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Abstract

An economy with a nonempty core may plausibly be regarded as socially stable since there
exists allocations against which no group in the economy wishes to “recontract out.” Aside from
classical economies, it is not generally known what are the primitives of an economy that give rise
to a nonempty core. This paper finds a class of perturbations that operate directly on economic
primitives to generate a nonempty core. These perturbations are characterized by two properties
which have economic content. The first is a notion of specialization — individuals hold goods and
essential inputs to productive processes that are not readily available elsewhere in the economy.
The second is a curvature condition. Each agent’s preferences must display sufficient curvature so
that another person’s specialized holdings are valued by the agent. It is shown that for any economy
of a general class that includes possibly local nonconvexities and a wide variety of property rights
configurations, if the economy is sufficiently specialized and the curvature condition is satisfied,
then the corresponding NTU game is balanced. Hence, the economy has a nonempty core.
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1 Introduction

An economy with a nonempty core may plausibly be regarded as socially stable as it yields outcomes
from which no group of individuals could feasibly “recontract out.” What kinds of economies have
nonempty cores?

The answer to this question is well known for the class of Arrow-Debreu, convex economies.
These economies are typically characterized by convex preferences, nonincreasing returns to scale
production possibilities, and individually assigned endowments (i.e., private rather than collective
ownership). We will refer to these economies as classical economies. The canonical economy of
this form is the standard exchange economy with consumers having concave utility functions. A
series of papers in the late sixties and early seventies (e.g., Scarf (1967), Shapley and Shubik
(1969), Shapley (1973), Billera (1974), and Billera and Bixby(1973)) established that any economy
that generates a balanced NTU (nontransferable utility) game has a nonempty core. The classical
economies described above satisfy this criterion.? Also, many nonclassical economies such as the
coalitional production economies found in Boehm (1974) and Border (1984) are balanced.

Because the balancedness criterion is defined directly on NTU games it is generally applicable to
a wide variety of environments and social situations. However, though elegant, it remains unclear
beyond classical economies how balancedness translates into economic fundamentals. The abstrac-
tion inherent in the NTU formulation makes balancedness difficult to translate into primitives of
the underlying economy.

A much stronger hypothesis, outcome balancedness, is defined on economic fundamentals (the
concept originated from Boehm (1974) though our terminology is Border’s (1985)). Economies
that are outcome balanced generate balanced NTU games in the usual sense, and many classical
economies such as classical exchange economies do satisfy this stronger condition. Since outcome
balancedness is a condition defined on physical outcomes of the economy instead of utility outcomes
of the corresponding NTU game, it has the advantage of being “closer” to economic settings than
the more general balancedness condition. However, since outcome balancedness mimics, in some
sense, the balancedness condition for the physical environment, it suffers from the same interpre-
tational problems. Moreover, many economies of interest including many classical economies with
production are not outcome balanced.

One way to address this issue is through the following approach. Suppose that one starts with
an economy that has an empty core. Is there then a systematic way of changing the primitives of
the economy so that the resulting new economy is balanced? Does this systematic method have a
reasonable interpretation in terms of these primitives?

This paper finds a class of “perturbations” which operates along a sequence of economies to
generate balancedness for economies far enough out on the sequence. Two general conditions of
interest interact with one another along the sequence to generate balancedness. The first is a
notion of specialization. Specialization means that individuals hold goods and essential inputs to
productive processes that are not readily available elsewhere in the economy. The second condition
is a curvature condition. It is necessary that, say, agent A’s preferences display sufficient curvature
so that agent B’s specialized holdings are valued by agent A. This condition should be regarded
as a complementary assumption to specialization since this curvature is necessary to effectively

2In fact, they go a step further in showing that these economies typically generate totally balanced games, that is,
balanced on all possible subgames. Since every totally balanced game comes from a certain classical economy of a
general class described in Billera (1974), there is an isomorphism between a family of equivalence classes of classical
economies and the class of NTU games.



translate specialization into utility space. The two conditions taken together guarantee that each
agent possesses valuable goods for which there are no close substitutes. Note that without some
type of curvature condition, it may be inevitable that certain “corner solutions” arise which allow
coalitions to exclude an agent despite his exclusive holdings of some goods.

We give an elementary proof of the following result: given a sequence of economies which belong
to a certain class (to be defined shortly), if the economies along the sequence are increasingly
specialized, and if the curvature condition holds, then corresponding NTU game for economies far
enough along the sequence is balanced. Hence these economies have a nonempty core.

The notion of an economy used here is permissive in the sense that we allow for an almost
unlimited variety of property rights configurations,® including proprietary productive processes; it
is restrictive in the sense that agents’ utility functions are assumed component-wise, unboundedly
and strictly increasingly concave, and there are assumed to be no income effects. The feasible sets
for all coalitions are also assumed to be compact and the aggregate feasible set is convex (though
coalitionally feasible sets need not be).

Since these latter conditions are more restrictive than many standard models of core existence,
our economic interpretation of balancedness comes at the cost of some generality. Moreover, the
definition of specialization considered here is to some extent nonparametric; we cannot say in
absolute terms how much more specialized is one economy than another. Our definition does
transform economies along a sequence from those that may have an empty core to those whose core
is nonempty.

For this reason it is inaccurate, if tempting, to view the perturbations in the same way as the
replica economies in the core convergence literature.* Both involve systematic changes along a
sequence of economies, and both relate to the core. However, while that literature was interested
in measuring precisely how close is the core to competitive allocations, the purpose here is to
interpret balancedness by the economic content of the perturbations that asymptotically generate
balancedness. Hence, it is the nature of the perturbations, not their magnitude, that is of primary
importance here.

The analysis of the present paper relates to a model of the core with increasing returns by
Ichiichi and Quinzii (IQ) (1983), and a model of coalitional property rights by Glomm and Lagunoff
(GL) (1995). 1Q prove the nonemptiness of the core of certain types of production economies with
increasing returns. They do this by proving the existence of a hybrid equilibrium contained in the
core. The solution utilizes both coalitional stability and a decentralized price system. As with the
present analysis, joint restrictions on both the production and consumption sectors are employed.
In particular, the degree of nonconvexity in the production set is restricted. Although the analogy
is loose, the Increasing Specialization assumption in the present framework is roughly similar to
an asymptotic restriction of the degree of nonconvexity. Moreover, the Curvature condition here is
reminiscent of an assumption in IQ which similarly serves to exclude “corner solutions” of the type
mentioned above.?

The GL model generalizes the standard, “private property” Arrow-Debreu exchange economy.
They examine a class of nonclassical exchange economies in which ownership of goods and services

3Moulin and Peleg (1982) consider a concept of coalition effectiveness that may be used here to describe a property
rights configuration.

4See Anderson (1986) for a survey.

5The precise relation between the two analyses are difficult to ascertain since IQ employ joint restrictions on
both exogenous variables and derived variables such as prices. Meanwhile, the present analysis does not the consider
decentralization issue at all.



is attributable to coalitions of various sizes. GL then prove a special case of the result given here for
property rights regimes that exhibit certain exclusionary properties. The main differences between
the present paper and GL is that the notion of specialization is generalized here, and the present
analysis also allows for production and local (coalitional) nonconvexities.

The paper is organized as follows. Section 2 provides preliminary definitions. The class of
economies and their corresponding NTU games are defined. The balancedness condition is defined
for these games. Section 3 gives some examples of economies which exhibit “specialization” and
“curvature.” These concepts are developed formally in Section 4. Section 5 gives the main result:
sufficiently specialized economies are balanced, hence have nonempty cores. Section 6 provides the
proof.

2 Preliminaries

2.1 The Economy

We consider the following class of environments. There is a set I = {1,...,n} of agents who can
consume ¢ goods or commodities. An arbitrary agent will be denoted by 4, an arbitrary good by k.
We assume that an agent’s preferences are represented by a continuous, concave, and component-
wise, unboundedly strictly increasing function u’ : S%ﬂ_ — R, i € I, normalized so that u*(0) = 0.
We also assume that u’ displays no income effects. Formally, we assume that for any =,y € §Rﬂ_
with u'(2) > u'(y), then u'(x + 2) > ui(y + 2) for all z € RL.6 Let u = (ul,...,u")

An economy will be described here in reduced form by a resource-feasibility correspondence
w: 2I\{0} —— R’ that satisfies

(i) For each C' C I, w(C) is a compact and comprehensive set in .7
(ii) For any pair C1,Cy with C1 NCy =0, w(Ch)Uw(Cy) Cw(Cy U Cy)
(iii) w(I) is convex.

Here, w(C') is interpreted as the set of feasible aggregate resource vectors achievable by coalition
C. Notationally, we will find it convenient to construct economy-wide allocations that are feasible
for a particular coalition without using the projection mapping. For each coalition C' C I, define
a C-feasible allocation 2(C') € R to be one that satisfies ;. 2/(C) € w(C) and 27(C) = 0 if
jgcC.

This formulation of an economy is a generalization of the usual Arrow-Debreu formulation
of an economy in which each individual i is privately endowed with some vector e € 5)?{,_ In
the case of the standard exchange economy, w(C) = {z € R\ | 2 < ¥ ,cc €’} for each coalition
C C I. In the case of a “blue-print” production technology (equal access) with production set Y,
w(@)={r <y+YiecelyeY}

The definition of the outcome correspondence w, however, also includes the coalitional produc-
tion economies of Boehm (1974) and Border (1984), and the coalitional property rights economies
of Glomm and Lagunoff (1992). In the case of the former, coalition C' has joint proprietary rights
to the coalitional production set Y'¢, while in the case of the latter, a quantity of good k is jointly
held by C only if C includes all the members with joint legal rights to that quantity.

8This condition is also referred to as quasi-linearity.
"The set w(C) is comprehensive if for any & € w(C), then any bundle y € R} with y < = satisfies y € w(C).



Our formulation excludes economies with global externalities, but does include economies with
club goods and local public goods such as in Greenberg (1983), Scotchmer (1985), and Wooders
(1978).

Formally, an economy & will be defined by the pair £ = (w, u). The core of an economy €& is an
I-feasible allocation x(I) € R" for which there is no coalition C' and no C-feasible allocation z(C')
such that u'(2*(C)) > u'(2*(I)) for all i € C.

2.2 NTU Games

The interest of this paper is in a, by now standard, sufficient condition for the existence of a
nonempty core.

The NTU game U derived from an economy £ = (w, u) (usually called a “market game” when
it is derived from a classical economy) is a correspondence U : 2" —— R"™ defined by

U(C) = {aeR"| 3 Cteasible 2(C), s.t. @ < u'(2'(C)), Vie C}, (1)

for each coalition C' C I. It will be sufficient for our purposes to consider those elements in U(C')
that map from C-feasible points 2(C). We denote such elements by

n—|C|
u(2(C)) = | (v (2"(C)))iec, 0, ..., 0

The balancedness criterion used here is standard. Let B denote a nonempty collection of subsets
B CI. Let B(i) = {B € B| i € B}. The collection B is balanced if there is a tuple (Ap)pep where
Ap > 0 satisfying for each agent 7,
Y g =1

BeB(i)
The collection B is minimally balanced if it strictly contains no balanced collection B'.
An NTU game U is balanced® if for any balanced collection? B of I with balancing weights
(AB)BeB, and for each B-feasible allocation z(B) with B € B,
> Apu(z(B)) € UI). (2)
BeB
Well known theorems of Scarf and Billera have shown that economies that correspond to bal-
anced NTU games have nonempty cores. We do not provide a proof of their results here. However,
showing that balancedness holds under certain conditions is the crux of the paper.

3 Some Examples

What does balancedness mean in terms of economic primitives — preferences, technologies and
endowment structure? Some examples are given here which display the two key concepts of spe-
cialization and curvature to be formalized in section 4.

Example 1 Consider the following example of exchange.! There are three individuals and four

8This paper uses the definition of Shapley and Shubik (1969) and applied by Billera (1974) to NTU games rather
than the generally weaker definition used in Scarf (1967)).

“We note here that there is no loss in generality in considering balanced collections B in which there is no pair of
disjoint coalitions (see Shapley (1973)).

10This example is similar to Example 8 in GL.



goods. The distribution of endowments and the “property rights” structure is given in the matrix
in Table 1 below. In Table 1 there are 3 + 2« units of each of the first three goods distributed so
that agent ¢ (i = 1,2,3), holds [ units of good i. Agent j, j # 7, holds « units of good i where
a < 3. The fourth good, of which there is «v units, may be regarded as “communally owned” among
the three agents. This good is allocated via majority rule. That is, up to v units of good 4 may
be consumed by a coalition C' if and only if |C| > 2. Otherwise, if |C| < 2 then none of the fourth
good is held.

good 1 good 2 good 3 good 4
agent 1 8 o o 0
agent 2 o I} o 0
agent 3 o o I} 0
agents 1 and 3 0 0 0 ¥
agents 1 and 2 0 0 0 ¥
agents 2 and 3 0 0 0 ¥
Table 1

Observe that if 3 grows relative to « then the holdings of the first three goods are increasingly
specialized in the sense that individual 1 owns an increasing proportion of the first good, individual
2 owns an increasing proportion of the second good, etc. What is interesting about this example is
that whether or not the NTU game corresponding to this economy is balanced depends crucially on
the degree of this type of specializaton in endowments over the privately held goods. The majority
rule over the fourth good creates “voting cycles” that are typically responsible for empty cores and
violations of balancedness.!! The specialized endowment holdings, if they are suffciently large and
if agents’ preferences have sufficient curvature so that there are enough gains from trade in the
private holdings, may prevent such cycles.

In terms of this example, this means that if 3 is sufficiently large relative to both « and ~ then
the core of this economy is “more likely” to be nonempty. If § is large relative to « then each agent
owns relatively large specialized holdings. If § is large relative to v then these specialized holdings
have a greater weight in an agent’s consumption bundle than the communally held good.

Whether or not the core is actually nonempty depends on the curvature of the utility functions
of the three agents. If, for example, the three agents have identical utility functions in which the
first three goods are perfect substitutes, then no amount of specialization can rescue the economy
— the core is empty. There has to be a reason not to exclude an individual in the majorities that
form to allocate the fourth good. To prevent such exclusion requires that each agent prefer to
smooth his consumption over all (the first three) goods. Some form of strict concavity is required.

"However, the majority rule alluded to here is not actually a majority voting mechanism. Rather, it refers to
the property rights structure under which the majority coalitions have the ability to claim the entire quantity of the
fourth good.



Using the symmetric utility representation u‘(z") = Zizl(:p};)%, it is not difficult to check that
if, for example, 5 = 3, = 0 and v = 3, then the core of this economy is nonempty.

Example 2 [t is straightforward to extend this example to include production. Supposey = 0 and,
instead, the fourth good is produced by inputs from the other three with production function x4 =
min{z, x9, x3}. With this technology both specializaton and curvature are manifested through the
productive process rather than only through endowments and utilities, resp. Nevertheless, the idea
remains the same. Even if agents only value the fourth good, specialized holdings of productive
inputs combined with extreme curvature in the production function allows the core to be nonempty
despite the voting cycle in the only good that has (utility) value.'?

In the example with production, curvature in the production function plays a crucial role.
If, for example, all goods are perfect substitutes in the production process as with the function
T4 = x1 + T3 + x3, then majority rule over the fourth good yields an empty core regardless of how
specialized are the holdings of the first three goods.

Example 3 A faulty conclusion that one might draw from the first example is that private property
is necessary for agents to be specialized, and hence, necessary for the existence of a nonempty core.
Consider an example of exchange with (the same) three agents but only two goods. The endowment
and property rights structure is exhibited in the matrix in Table 2.

good 1 good 2
agents 1,2, and 3 B8 0
agents 1 and 3 0 vy
agents 1 and 2 0 y
agents 2 and 3 0 vy
Table 2

Each of the two goods are collectively held by all three agents. The analysis hinges crucially
upon the compatibility of claims of the coalitions that can form. For good 2 consider the majority
rule as in the previous examples. For good 1 consider a unanimity rule in which up to 2 units of
good 1 can be consumed by C'if and only if C' = 1.

It should be clear that with enough curvature in agents’ utilities, the core is nonempty if 5 is
large enough relative to v. The reason is that the unanimity rule endows each agent with veto
power over the use of good 1. In this sense, each agent is specialized in the holding of good 1
where specialization means that each agent holds on to good(s) that are not available elsewhere,
i.e., without the presence of that agent.

12However, the main result in section 5 does not cover the case in which some goods are not valued as we assume
that utilities are strictly monotonic.



4 A Formalization

4.1 Specialization

The intuition of the examples above is formalized. Consider a sequence of economies {&}5°, =
{wt, u}22, in which there are only changes in the physical environment defined by w;. The sequence
is assumed monotone in the sense that wy1(C) O wi(C) for each C' C I. We formalize a notion of
specialization for an agent ¢ which looks at how the sequence {w;} progresses when the aggregate
resource set wy([) increases relative to the aggregate resource set without the presence of agent i,

wi(I\{7}).

Definition 1 Given a monotone sequence {&}5°, = {(w, u)}22, an agent ¢ is said to be increas-
ingly specialized in good k if proj,w:(I) is unboundedly strictly increasing in ¢ while projpw: (I'\ {i})
remains constant on t. (where “proj.” is the projection mapping onto the k" good coordinate).

Denote the set of commodities in which ¢ is increasingly specialized by 7 (i). Observe that
projpw(I) is a compact interval in R4 of the form [w;,,Wy]. The assumption that proj.w(I) is
unboundedly strictly increasing means that the number @y is unboundedly strictly increasing.

Definition 2 A monotone sequence of economies, {&:}72, = {(wr, u) }12, is increasingly specialized

if
1. Each agent i is increasingly specialized in at least one good (i.e., (i) # 0, Vi)
2. For each t there is some 14 € w(I) such that for each i, w:(I\{i}) is bounded above by 4.

3. If for any C' C I, no agent in C is increasingly specialized in good k (i.e., k & U;cc 7(7)),
then proj,w:(C) is constant on t.

Part 1 of Definition 2 assumes that, along the sequence {&}, every agent is increasingly spe-
cialized in at least one good. Part 2 assumes, further, that there is an aggregate resource vector for
the economy & that uniformly bounds the aggregate resource vectors that are feasible if one agent
is missing. Though somewhat restrictive, observe that all exchange economies, classical and non-
classical, satisfy this condition. Examples 1 and 3 in Section 3 are two such nonclassical examples.
Finally, part 3 of the Definition implies that proj,w:(C) is constant if no one in C' is specialized in
good k. Hence, if no one is specialized in good k then coalition C’s aggregate holdings of good k is
bounded by max{xy : =i € projwo(C)}.

4.2 Curvature

The idea that increasing specialization must hold in utility space is formalized here.

Definition 3 We will say that a monotone sequence of economies, {&:}72, = {wr, u}2, satisfies
the Curvature Condition if for each i € I, for each minimally balanced collection B with no disjoint
sets, for each collection of balancing weights (Ap), and for each z¢ € wy(I), the following implication
holds.

For any collection of sequences, {z(B)}2,, B € B(i), that satisfies

(a) z(B) € w(B) for each t and each B € B(i); and



(b) there exists some pair B, B’ € B(i) and a pair k and k' so that z(B) = zy/(B’) = 0, while
2z (B) and zy(B') increase without bound,

then there exists some ¢ and € > 0 so that for each ¢ > ¢,

Z Apu'(xo + 2(B)) < u'( Z Apz(B)) — e (3)

BeB(i) BeB(i)

The Curvature Condition is a joint restriction on utility functions and on aggregate feasible
resource vectors along the sequence of economies. It states loosely that utility functions have
enough curvature on the sequence of economies so as to eventually overwhelm the effect of any
initial point that is feasible in the initial economy &. To see what this means observe that (3)
is almost the standard Jensen’s Inequality (if zo = 0 and € = 0). Therefore, (3) states that the
effect of any fixed initial point zg on the weighted utility is uniformly dominated by the utility of
the weighted allocation of unboundedly increasing consumption allocations if ¢ becomes sufficiently
large.

The 2 (B) sequences represent some transformation of the initial economy &. The restrictions
on these sequences given by (a) and (b) guarantee that the condition can be satisfied for a large class
of utility functions. The reason is that such sequences grow farther apart as ¢ increases. This makes
it possible for utilities with enough curvature to satisfy Jensen’s Inequality with a uniform bound if
t is sufficiently large and /or zg is sufficiently small. Note that the more restrictive the requirements
on the sequences, or the smaller is the initial feasible point, the more likely the Curvature Condition
will be satisfied.

From a simplified version of the economy in Example 1 in Section 3, a sequence of economies can
easily be constructed to be increasingly specialized and satisfy the Curvature Condition. Consider
the economy in Table 1. Letting o = 0, define the sequence {w;} so that for each ¢, wi(I) =
{z € RY| = < (B, B, Br, )}, where (3 is assumed to increase in ¢ without bound. Assume the
feasible endowments of the subcoalitions w(C'), C' C I conform to Table 1. Clearly, this sequence
is monotone, and it is increasingly specialized since agent i, 7 = 1,2, 3 is increasingly specialized
in good 4. No individual is increasingly specialized in good 4. Now fix some zg € wp(I). Without
loss of generality we can take xy to be the upper bound (8o, 5o, 50,7). The only relevent balanced
collection is the collection B = {{1,2}, {1, 3}, {2,3}} with weights 1/2 for each coalition. Finally,
consider agent 1. For any pair

z2({1,2}) = (z11,22,0,24) € wi({1,2}), and
z2({1,3}) = (216,0,23,24) € wi({1,3}),

where z9; and z3; increase without bound, it suffices to verify that (3) holds. That is, we must
verify that there is some # and € > 0 such that for all + > ¢,

1 1 1 1
5”1(ﬂ0+21t7ﬂ0+32t75077+Z4>+§”1(ﬂ0+21t7507ﬂ0+23t77+24) < 711(217&75227«,, §Z3t7’7+24) —e (4)

Letting preferences be given by u'(2") = Zk(x}c)%, the inequality (4) reduces to

|+ [(52) 3+t -6 6

Observe that while the first term in the brackets on the right-hand side of (5) is bounded, the second
and third bracketed terms are unboundedly increasing in . Hence, given the preferences above for

[
[

1 1 1
€ < [z — (Bo+ 21t) - 5(50 + 291)2] + [(5230)



all three agents, this sequence of economies satisfies the Curvature Condition. Our main result
states that the sequence of cores corresponding to the sequence of these economies are nonempty
sets for all but finitely many ¢.

5 The Result

Theorem Let {&}2) = {(wr,u)}2, denote a sequence of monotone economies that (1) is in-
creasingly specialized, and (2) satisfies the Curvature Condition. Then there is a t such that for
each t > t, the NTU game derived from & is balanced. (Hence the core of & is nonempty.)

This result demonstrates how changes made to the initial economy &y create a transformation
of the original economy which is eventually balanced. Systematic changes are made only to w; as
t varies, and only in a way that increases specialization in &y as specified by Definition 2. Utilities
are held constant. For large enough # the economy & is balanced. Hence, sufficient specialization
gives the balancedness condition.

Remark: An Alternative Approach:

The approach in the main result is to examine a sequence of economies, each of which vary in
the structure of w (which is determined by endowments and technology). Each successive economy
has certain endowments which are larger than before. Preferences are held fixed. An alternative
approach is to fix w and vary, instead, the preferences. One might call this the normalized approach
since it examines a fixed endowment structure which is already “specialized” and then varies pref-
erences in a way that increases the effect of the specialization in utility space. As an example
consider:3

There are two agents, ¢ = 1,2, two goods, k = a, b, and,

w(l) = {x¢€ §Ri e <1, 2 <1}
w({l}) = {zeR?| 2,=0, 2, <1}
w{2}) = {2€eR% | 2,<1, 2,=0}

Increased specialization is reflected through increased preference complementarities between goods.
Define the sequence of economies {&;} = {w, u;} where w is fixed as above and

up = —— (@) ="+ ()] (6)

Here, u} converges to the perfect complements case as t+ — oo. The effect of increasing the
parameter ¢ is not unlike that of increasing 5 in Examples 1-3 in Section 3. The advantage of this
approach is that the sequence of economies has a well defined “limit” economy, the perturbations
of which exhibit a nonempty core. The disadvantage is that it is difficult to express increased
specialization (globally) in a more general class of preferences than, say, some parameterized class
of utilities (such as the CES case above).

131 thank a referee for suggesting this approach and suggesting the coalitional structure in the example.



6 Proof of the Theorem

The proof is elementary though somewhat involved. For each economy &; in the sequence {&;} we
denote the corresponding NTU game by U; which is defned analogously to (1). Let B denote a
balanced collection of I which we assume, without loss of generality, contains no disjoint sets (see
Shapley (1973)). Let (Ap) be a collection of balancing weights for B. We must show that, under
the hypothesis of the Theorem,

up € Z ApUp(B) implies u; € Up(T) (7)
BeB

for ¢ sufficiently large.

By the Specialization assumption there is a sequence {14};2, such that for each ¢, 1y € wi(I)
and 14 bounds from above each wi(B), B € B. Without loss of generality we may assume that
viy1 > 1y for all t. In particular, we assume that vy increases without bound whenever proj.wy(I)
increases without bound, and remains constant whenever projiw;(I') is. Furthermore, the convexity
of we(I) allows us to consider a 14 with the following property: each vy € wi(I) is efficient if there
is no other v; € w(I) satisfying v), > vy, for all k and v}, > vy, for some k. We assume therefore
that 14 is efficient for all ¢.

Consider the utility allocation u; € Y. gcp ApUs(B). This utility vector u; may be expressed,
for each 7, by

up = Y Apu'(Y +2(B)) (8)
BEB(i)

where, for each B € B and each ¢, (¢' + 2}(B));cp is a B-feasible allocation for w; and satisfies
V! € wy(I) and 2{(B) € R’ for each i, and 3,5 ¢ < vy

For each coalition B in the collection B, let z(B) = 3.5 zi(B) denoting the increment from
the amount 1, in the initial economy & to the “#*"” economy &. Without loss of generality we
suppose that z(B) + 3 ;.5 1" is contained in the upper boundary of w;(B). In this construction,
the aggregate coalitional bundles are decomposable into an initial upper bound vy, and a part z
which increments .

It therefore suffices to show, in utility vector form,

> Apu(y + z(B)) € Ul (9)

14

for large enough t. We do so by making use of the following claims.

Fix k and define C(k) = {i | k € w(i)}. By definition, each ¢ € C(k) is increasingly specialized
in good k.

"“From here on, we adopt the convention that u’(¢)" + 2{(B)) = 0 whenever i ¢ B.

10



Lemma 1 For each k and each B € B, Zy(B) > 0 only if C(k) # 0 and C(k) C B.

proof of Lemma 1 The fact that C(k) # 0 follows from part 3 of Specialization Assumption
(Definition 2). Suppose that C(k) € B. Then there is some i € C(k) where i ¢ B. By the
Specialization Assumption, projuwi(B) C projuwi(I\{i}) C projuwo(I), and so Zy(B) + 3 ,c5 ¥h <
v = v by our earlier construction of {r;}. Given the construction of z;(B) it follows that
Ztk(B) <0. O

Lemma 2 Y 3.3 A% (B) <y, Vi

proof of Lemma 2 Fix t. Suppose that z(B) > 0 for some k£ and some B. By Lemma 1,
C(k) # 0 and C(k) C B. Hence the balancing weights must satisfy

> A <L

{BeB| C(k)CB}

From the definition of Specialization, z(B) < 14 for each B € B. Therefore, by Lemma 1,

> Apzu(B) = > ApZu(B) < vy,
e {BeB| C(hCh}

concluding the proof of Lemma 2. O

By Lemma 2, we can find some y; € %ﬂ_ that satisfies

nyr + Z ABZ(B) = v, Vi. (10)
BeB

By (10), the vector (yt + 32 BeB() /\Bzz(B)>i€I is I-feasible for wy, therefore

(ui(yw > ABzé(BD) € Up(I). (11)
el

BeB(i)

Notice that if ui(yt—l—ZBeg(i) Apzi(B)) > > BEB() Apul (¥ +21(B)) for each i, then we would be
done. The remainder of the proof will verify (9) by establishing an approximation of this inequality.

Lemma 3 For each i € I and each k € w(i), there is some B € B(i) such that:
if yik is bounded from above then Zy(B) is unboundedly increasing.

proof of Lemma 3 Fix i and let £ € w(i). Then proj,wi(I) increases unboundedly. From the
way in which vy was constructed, it follows that 14 also increases unboundedly. Suppose that .
is bounded. Then (10) implies that > 5 ApZi(B) increases unboundedly which, in turn, implies
that for some B’, zy.(B’) increases unboundedly. By Lemma 1, i ¢ B’ would imply z(B') = 0. It
therefore must be the case that i € B’. O
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Now suppose that g; is unbounded. Given that u' is unboundedly increasing in each good, fix
t sufficiently large so that for each i, u’(y:) > u'(¢*). Then, since > BEB() Apzi(B) > 0, by the

quasi-linearity assumption on " we have

uye+ Y Apz(B) > u' (@ + Y Apz(B) = ) Apu'(y' +z(B))

BeB(i) BeB(i) BeB(i)

where the last inequality follows from the concavity of u’. But since this holds for all i this means
that utility vector in (11) dominates the utility vector in (9), which would conclude the proof.
Therefore, without loss of generality, in the sequel we assume that y; is bounded above. Hence, we
can apply Lemma 3 to assert that for each i and each k € 7(i), Zy(B) is unboundedly increasing.
We may also assume that for any i € B, z}(B) increases without bound whenever z;(B) does so.

Lemma 4 Suppose that y; is bounded above. Then there is at least one agent i € I such that the
sequences {21(B)}, B € B(i) satisfy the hypothesis of the Curvature Condition. Specifically, the
sequences satisfy (a) and (b) of Definition 3.

proof of Lemma 4 Suppose that the Lemma is false. Specifically, the sequences violate (b) of
Definition 3 (since (a) holds by construction). Then for each i, each k, and any pair Bi, By € B(i),

Z(B1) = 0 iff Z(By) = 0. (12)

Fix one such i. Since y; is assumed bounded above, Lemma 3 implies that for each k € 7 (i),
24, (B) increases unboundedly for some B € B(i) Then by the hypothesis in (12), 2}, (B) and
21, (Bg) also increase without bound and so, by Lemma 1, C(k) C By and C(k) C By for every
ke m(i).

Since B is minimal, the coalitions B; and By intersect without inclusion. Therefore, there is
some agent j where j ¢ By and yet j € By. Observe that j ¢ By implies j ¢ C(k) for every
k € m(i). This, in turn, implies 7(i) N7 (j) = 0. Nevertheless, by Specialization, 7(j) # 0. Let
k' € 7(j). Again, by Lemma 3 there is some By € B(j) for which 2/,,(B3) increases without bound,
implying j € C(k") C Bs. Also, i ¢ Bs since otherwise, the maintained hypothesis in (12) would
be violated for By and Bs. Since j ¢ By, it follows that zgk,(Bl) =0 and so ng/(BQ) =0 as well.
We conclude that, given &’ € w(j) and any k € (i),

ka(BL%) = sz/ (B2) =0

while zgk,(Bg) and 27, (By) increase without bound.
Hence, agent j has a nonempty subcollection of B(j), {B2, B3}, in which z/(Bs) and z](Bj3)
satisfy hypothesis (b) of the Curvature Condition. O

Following the notation in Lemma 4, we assume that, for an agent j, {2/ (B)}, B € B(j) satisfies
the hypothesis of the Curvature Condition. Then there is some ¢ and € > 0 such that for all t > ¢,

S Apul (97 +2(B)) < Wy + Y Az (B)) —e (13)
B

B

Given the uniform bound €, a number v > 0 can be found close enough to 0 so that

Z/\Buj(wj—i—zg(B)) < w4+ (1—~ Z)\th (14)
B

12



for each t > 1. _

Let (7")iz; satisfy 4° > 0 for each i # j, and Y, ;v = 7. Recall that > Apz/(B) has
unboundedly increasing components, and each u*, i # 7, is unboundedly increasing in each com-
ponent. Therefore, for each i there is some #* such that for each ¢ > #*,

S A (¥ +2(B) < w'(y+ Y Apz(B)+7' D> A2l (B)). (15)

Finally, let # = max{Z, (t');2;}. We conclude that (9) holds for all ¢ > ¢, which concludes the proof.
oo
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