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Abstract

We study the distributional effects of asset returns using a heterogeneous-agent

model estimated to match the joint distribution of wealth and returns. In the model,

endogenous portfolio decisions play a key role through their impact on households’

wealth accumulation. We find substantial welfare effects of changes in asset returns. A

permanent decline of one percentage point in expected returns increases the consump-

tion share of the top 10% by 6% permanently. Our findings suggest that lower returns

increase inequality, which contradicts Piketty’s (2014) r − g formula. To resolve this

contradiction, we derive a generalized formula that includes the consumption/wealth

ratio and which is consistent with our empirical and theoretical findings. Nonetheless,

wealth inequality within the Pareto tail is fairly insensitive to asset returns. Instead,

inequality between the Pareto tail and the lower range of the distribution responds

strongly to asset returns through their differential effects on active savings relative to

wealth. Simulations suggest that asset price dynamics can explain the main variations

in U.S. top wealth shares since the 1960s.

∗Correspondence: jesusfv@econ.upenn.edu (Fernández-Villaverde) and oren.levintal@runi.ac.il (Oren Lev-
intal). This research was supported by a grant from the United States-Israel Binational Science Foundation
(BSF), Jerusalem, Israel.
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1 Introduction

How do asset returns affect inequality? This question has attracted growing attention,

starting with the seminal paper by Piketty (2014). Recent contributions include Hubmer et al.

(2020), Bach et al. (2020), Fagereng et al. (2020), Kuhn et al. (2020), Greenwald et al. (2021),

Fagereng et al. (2022), Gomez (2022), and Gomez and Gouin-Bonenfant (2024) among many

others. Changes in asset returns affect the market value of households’ wealth and hence

directly impact the wealth distribution. However, if households’ consumption remains the

same, these revaluation effects may have no distributional welfare consequences (Cochrane,

2020). Hence, a key question is whether asset returns induce distributional welfare effects

through changes in consumption.

In this paper, we show that endogenous portfolio choices play a central role in determining

the welfare effects of asset returns. As documented in various studies, e.g., Fagereng et al.

(2020) and Bach et al. (2020), rich households hold high-yield assets and earn higher re-

turns on wealth compared to poor households. This observation implies that rich households

accumulate wealth mainly through returns on wealth, whereas poor households accumulate

wealth through “active savings,” defined as savings out of labor income (Bach et al., 2017).

When expected returns fall, asset prices go up, and the value of aggregate wealth increases.

As a result, it becomes harder for poor households to keep their wealth shares from falling

because their active savings as a fraction of aggregate wealth become smaller. Hence, the

wealth accumulation of poor households slows down compared to rich households, leading

eventually to higher inequality in wealth, capital income, and consumption.

To quantify this effect, we study a heterogeneous-agent model with endogenous portfolio

decisions. The model is set in a Lucas (1978) economy with uninsurable idiosyncratic shocks

to labor and capital income, as well as aggregate disaster shocks as in Barro (2006). Agents

have Epstein and Zin (1989) preferences with time-varying risk aversion (Barro et al., 2022).

Low risk-aversion agents choose to save in riskier assets and earn higher returns on wealth,

whereas high risk-aversion agents save in safer low-return assets. We estimate the model

using a simulated method of moments to match key moments of the joint distribution of

wealth and returns. We find that a permanent decline of 1 percentage point in expected

returns increases consumption of the top 10% by 6% permanently. That is, the distributional

welfare effects are large and permanent.

The fundamental property of the model is the positive correlation between wealth and

returns (i.e., the rich earn higher returns). Since portfolios are endogenous, agents that choose

riskier portfolios earn higher returns on wealth and accumulate wealth faster. A stationary

equilibrium is attained when the active saving rates of the wealthy agents offset (roughly)
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their higher returns on wealth so that the wealth distribution remains constant.1 Hence,

the positive correlation between wealth and returns implies a negative correlation between

wealth and active saving rates. Put differently, in our model (as in the data), wealthy

agents accumulate wealth mainly through higher returns, and poor agents accumulate wealth

through active savings. The distributional effects of asset returns depend critically on this

property.

To illustrate this point, we compare our model to an alternative version with heterogeneous

time discount rates as in Krusell and Smith (1998). In this alternative version, poor agents are

relatively less averse to stock market risk because their income is composed mostly of labor

income. Hence, poor agents save in riskier assets and earn higher returns but have lower

active saving rates compared to wealthy agents, which is in stark contrast with the data.

We show that in this model, the distributional welfare effects are exactly the opposite of our

baseline case: poor agents are better off when returns are lower (and asset prices higher). We

conclude that the wealth-return correlation is key to understanding the distributional welfare

effects of asset returns.

We also use our model to examine the Pareto tail of the wealth distribution. Focusing

on a steady-state analysis, Piketty and Zucman (2015) show that the Pareto exponent of the

right tail is decreasing in r− g.2 Their result implies that top wealth inequality is increasing

in r− g, as suggested by Piketty (2014). By contrast, our findings suggest that lower returns

increase inequality, which contradicts the r − g hypothesis. We revisit Piketty and Zucman

(2015) and derive an “extended Piketty formula,” whereby top wealth inequality is increasing

in r − g − c, where c denotes the consumption/wealth ratio at the Pareto tail. The r − g

formula is correct as long as the consumption/wealth ratio is fixed, which is the case in

Piketty and Zucman (2015). However, when the consumption/wealth ratio is endogenous (as

in our model), the general r − g − c formula applies.

More importantly, we find that changes in key parameters affect r − g and c by roughly

the same magnitude, so r− g− c hardly changes. Therefore, in our model, wealth inequality

within the Pareto tail is fairly insensitive to asset returns.3 Nevertheless, inequality between

the Pareto tail and the lower range of the distribution responds strongly to asset returns

through their differential effects on active savings relative to wealth (“active saving rate”).

We draw two main conclusions. First, focusing on inequality within the Pareto tail may

miss the full impact of asset returns on wealth inequality since most of the effect takes place

at the lower range of the distribution. Second, these effects work mainly through changes in

1The active saving rate is defined as the ratio between savings out of labor income and wealth.
2In this formula, r denotes the aggregate return on wealth and g is the economy growth rate.
3Gomez and Gouin-Bonenfant (2024) study a model with limited access to capital markets and show that

low returns may increase inequality within the Pareto tail. Our model assumes free access to capital markets.

3



the active saving rate rather than the r − g − c formula.

To complement the analysis, we examine transitional dynamics across different steady

states. We find that variations in wealth inequality along a transition path are driven pri-

marily by unanticipated capital gains, which are earned disproportionately by the rich, who

own larger shares of equity. That is, along a transition path, inequality is increasing in re-

alized returns (including unanticipated capital gains). To explore this channel empirically,

we feed the model with a sequence of discount-rate shocks that replicate the dynamics of

the U.S. aggregate price/earning ratio from 1960 to 2020. The model generates variations in

wealth inequality that track the actual dynamics fairly well. We find that the decline in the

top 10% wealth share in the 1970s and the rebound since the 1980s can be explained largely

by changes in asset prices.

Finally, we contribute to the computational literature of heterogeneous-agent models by

employing a novel computational approach that extends the method of Campbell (1998),

Reiter (2009), Winberry (2018), and Ahn et al. (2018). These studies combine global ap-

proximations along the individual state variables with local approximations around the de-

terministic steady state. We use a similar idea, but our local approximation is different.

Instead of standard perturbation, we use the Taylor projection method developed by Lev-

intal (2018) and implemented in Fernández-Villaverde and Levintal (2018) and Barro et al.

(2022). The main advantage of this method is that it is applicable for portfolio choice models

because the approximation point incorporates the full volatility of the aggregate shocks. By

comparison, perturbation is done around a point of no aggregate shocks (the steady state),

where the portfolio decision is indeterminate. Hence, perturbation is usually inapplicable for

portfolio-choice models.

Our paper is related to the broad literature on income and wealth inequality (Piketty and

Saez, 2003; Piketty, 2014; Saez and Zucman, 2016; Piketty et al., 2018). More specifically,

we build on a recent strand of the literature that studies the welfare implications of asset

returns. Glover et al. (2020) explore a recessionary shock that triggers a decline in asset

prices, similar to the magnitude of the Great Recession. They find that welfare losses are

increasing with age. Greenwald et al. (2021) show that a lower discount rate shifts welfare

from young to old. The effects of these two studies work through the life-cycle profile of

financial transactions. Specifically, the young are the main buyers of assets, and the old are

the sellers. Lower returns shift welfare from prospective buyers to sellers, thus making the old

better off. Building on this insight, Fagereng et al. (2022) estimate the distributional effects

of asset price dynamics in Norway since 1994 using portfolio and asset price data. They find

a substantial welfare shift from young to old due to the overall increase in asset prices over

this period.
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We study a different channel that is independent of the life-cycle saving profile. Our

channel works through heterogeneity in active saving rates induced by heterogeneous portfolio

decisions. Thus, compared to the previous literature, our focus is on active savings rather

than total savings. More specifically, we emphasize that rich and poor households use different

sources of wealth accumulation. The rich save mainly through returns on wealth, and the

poor save through active savings. Asset returns generate welfare effects because they impact

these wealth processes differently.

A key feature of our model is heterogeneity in returns on wealth. Previous studies have ac-

knowledged the importance of heterogeneous returns as a key determinant of wealth inequality

(Benhabib et al., 2011, 2015, 2016; Atkeson and Irie, 2020; Hubmer et al., 2020; Xavier, 2021).

These studies assumed exogenous heterogeneity in returns, whereas our model generates het-

erogeneous returns through endogenous portfolio choices. Related models with endogenous

portfolios include Krusell and Smith (1997), Cagetti and De Nardi (2006), Favilukis (2013),

Lei (2019), Kacperczyk et al. (2019), and Gomez (2022). Relative to these models, our main

contribution is quantitative, as we are able to match the joint distribution of wealth and

returns. Gomez (2022) also studies the joint distribution of wealth and returns but focuses

only on the top tail of the distribution. Instead, we study the entire wealth distribution.

Importantly, we find that most of the effects of asset returns work through saving decisions

at the lower range of the distribution.

Our portfolio-choice model builds on the long literature of two-agent models with hetero-

geneous risk aversion, most notably Dumas (1989), Wang (1996), Longstaff and Wang (2012),

Gârleanu and Panageas (2015), and Barro et al. (2022) among many others. These models

tend to generate too much wealth inequality because the wealth and consumption shares of

high risk-aversion agents tend to converge to zero. We avoid this problem by introducing a

non-negativity constraint on financial wealth (which we consider empirically plausible given

existing liquidity constraints), which is absent from previous models with heterogeneous risk

aversion. This constraint serves as a reflecting barrier that prevents the wealth distribution

from over-expanding (Gabaix, 2009). The drawback is that it comes at high computational

costs. We address the computational problem with our novel solution method.

Our analysis of the dynamics of U.S. wealth inequality is related to a number of previous

studies that explored the contribution of asset prices to changes in U.S. wealth inequality. In

particular, our results are consistent with model-based estimates provided in Greenwald et al.

(2021) and Gomez (2022) as well as model-free estimates presented in Kuhn et al. (2020),

Greenwald et al. (2021), and Gomez (2022), as well as the partial-equilibrium analysis in

Cioffi (2021). We extend this empirical literature in three ways. First, our model is matched

to a different set of moments focused on the joint distribution of wealth and returns. Second,
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we construct a new measure of the aggregate price/earning ratio and use it in our simulations.

Third, we simulate the dynamics of U.S. wealth inequality over a long period (1960 to 2020).

Gomez and Gouin-Bonenfant (2024) document the rise in U.S. wealth inequality within

the Pareto tail over the past several decades, and attribute it to the decline in asset returns.

A key assumption of their results is limited access to capital markets. Agents with invest-

ment opportunities (entrepreneurs) borrow from other agents (rentiers) and gain an internal

return that is higher than the external return. A decline in the external return increases

the internal return, thus creating more heterogeneity in returns on wealth. Consequently,

wealth inequality within the Pareto tail increases. By comparison, in our model, access to

capital markets is free, so returns on all assets move together roughly similarly. We find that,

in this environment, Pareto inequality is insensitive to asset returns, although total wealth

inequality is strongly affected by asset returns.

The rest of the paper is organized as follows: Section 2 derives the model. Section 3

discusses our computational approach. Section 4 presents our estimation. Section 5 conducts

a comparative statics analysis. Section 6 reports the main analysis of the distributional

effects of asset returns. Section 7 studies the dynamics of U.S. wealth inequality. Section 8

concludes. A computational appendix provides technical details.

2 The model

We postulate an economy consisting of a continuum of agents indexed by i on the unit

interval. Agents have Epstein and Zin (1989) preferences over sequences of consumption Ci,t:

U1−θ
i,t = (1− β)C1−θ

i,t + β
(
Ei,tU

1−γi,t
i,t+1

) 1−θ
1−γi,t , (1)

where β is the discount factor, and the conditional expectation operator Ei,t is taken with

respect to future aggregate shocks and idiosyncratic shocks. For most of the analysis, we focus

on the case of unit elasticity of intertemporal substitution attained at the limit as θ → 1.

Throughout, we let ρ denote the time discount rate defined as β−1 − 1.

Our main departure from the standard Epstein-Zin parameterization is that the risk-

aversion parameter γi,t is an uninsurable idiosyncratic shock that follows a 2-state Markov

process with values γ1 < γ2. Agents are aware of the possibility of future changes in their

risk aversion and consider it in their economic decisions. The time variation in risk aversion

is a parsimonious way to model more complex phenomena, such as life-cycle considerations

or liquidity constraints.
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Output Yt is exogenous (Lucas, 1978) and follows the process:

∆ log Yt = g + ϵYt − bdt,

where ϵYt is a standard business cycle shock, dt is a low-probability disaster shock (taking

the values 0 or 1), and b is the size of the disaster. The disaster shock, modeled as in Barro

(2006), allows us to match the equity premium without resorting to unrealistic values of risk

aversion. Throughout, we focus on samples without realized disasters corresponding to the

U.S. post-WWII.

A share 1− α of output is paid to agents as labor income and a share α is paid to stock-

holders as dividends. Agents can trade equity shares and short-term safe bonds. Therefore,

the budget constraint for an agent is:

Ci,t + PtEi,t +QtBi,t =
(
1 + ϵLi,t

)
(1− α)Yt +

(
1 + ϵEi,t

)
(αYt + Pt)Ei,t−1 +Bi,t−1. (2)

Here, Ei,t and Bi,t denote equity and bonds acquired in period t at market prices Pt and Qt,

respectively, while ϵLi,t and ϵEi,t denote uninsurable idiosyncratic shocks to labor income and

stock returns.

The labor-income shock ϵLi,t follows a zero-mean 2-state Markov process calibrated to

match the labor-income shares of the top 10% and bottom 90%. The stock-return shock ϵEi,t

is a zero-mean i.i.d. shock calibrated to match the cross-sectional variation in returns on

wealth observed in the data. A law of large numbers ensures that the idiosyncratic shocks

are averaged out at the aggregate: ∫
ϵLi,tdi =

∫
ϵEi,tdi = 0.

The return on equity and bonds is:

Re
i,t =

(
1 + ϵEi,t

)
(αYt + Pt)

Pt−1

, Rf
t =

1

Qt−1

.

Thus, the total return on wealth is:

Rw
i,t = Rf

t + λi,t−1

(
Re

i,t −Rf
t

)
,

where λi,t denotes the equity portfolio share:

λi,t =
PtEi,t

PtEi,t +QtBi,t

.
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Trade in financial assets is subject to three constraints:

PtEi,t +QtBi,t ≥ 0 (3)

Ei,t ≥ 0 (4)

PtEi,t ≤ λ̄ (PtEi,t +QtBi,t) . (5)

Constraint (3) precludes agents from having a negative net worth, constraint (4) rules out

short sale of equity, and constraint (5) imposes an upper bound on leverage. Constraint

(3) (“net worth” constraint) is key because it imposes a lower bound on financial wealth,

which is necessary to attain a stationary wealth distribution. In the unconstrained version

of our model, studied in Barro et al. (2022), the equilibrium growth rate of agents’ wealth

(including human capital) is an exogenous random variable. Hence, wealth inequality grows

without bound (see Gabaix, 2009, for a discussion of random growth models). The “net

worth” constraint (3) pins down the wealth distribution by inducing higher wealth growth

rates as wealth gets closer to the “net worth” constraint. Constraint (4) prohibits short sales

of equity, and constraint (5) imposes an upper bar on leverage, denoted λ̄ > 1, thus limiting

the amount of debt an agent can issue. These two constraints are empirically plausible,

though they are not essential for the main results.

Agents maximize their preferences (1) subject to the constraints (2)-(5). For convenience,

let ξi,t+1 denote the stochastic discount factor:

ξi,t+1 = β
Cθ

i,t

Cθ
i,t+1

U
θ−γi,t
i,t+1(

Ei,tU
1−γi,t
i,t+1

) θ−γi,t
1−γi,t

. (6)

Then, the consumption-saving decision is determined by the first-order condition:{
Ei,tξi,t+1R

w
i,t+1 = 1 PtEi,t +QtBi,t > 0

PtEi,t +QtBi,t = 0 else
, (7)

and the portfolio decision is determined by the following condition:
Ei,tξi,t+1

(
Re

i,t+1 −Rf
t+1

)
≤ 0 Ei,t = 0

Ei,tξi,t+1

(
Re

i,t+1 −Rf
t+1

)
= 0 0 < PtEi,t < λ̄ (PtEi,t +QtBi,t)

Ei,tξi,t+1

(
Re

i,t+1 −Rf
t+1

)
≥ 0 PtEi,t = λ̄ (PtEi,t +QtBi,t)

. (8)

Finally, we have market-clearing conditions in the goods market, the stock market, and
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the bond market: ∫
Ci,tdi = Yt (9)∫
Ei,tdi = 1 (10)∫
Bi,tdi = 0. (11)

The cross-sectional distribution. LetWi,t denote the financial wealth of agent i in period

t (including dividend and interest income):

Wi,t =
(
1 + ϵEi,t

)
(αYt + Pt)Ei,t−1 +Bi,t−1.

Aggregate wealth is given by Wt = αYt + Pt.

Then, we can define the normalized wealth of agent i as a fraction of aggregate wealth:

µi,t =
Wi,t

Wt

,

and F t

(
µ, γ, ϵL

)
as the joint cumulative distribution function of normalized wealth, risk

aversion, and the labor-income shock:

F t

(
µ, γ, ϵL

)
=

∫
1
(
µi,t ≤ µ, γi,t ≤ γ, ϵLi,t ≤ ϵL

)
di, (12)

where 1 (·) is the indicator function.

Recursive equilibrium. Let xi,t =
(
µi,t, γi,t, ϵ

L
i,t

)
denote the vector of individual state

variables of agent i in period t. Analogously, let Xt = (Yt,F t) denote the aggregate state

variables in period t, which include output and the cross-sectional distribution. When we

solve the model, we detrend all the variables by output and, therefore, we can exclude output

from the state vector. However, for notational clarity, we define here the solution of the

non-detrended model.

A recursive equilibrium is defined by the function G:(
Pt

Qt

)
= G (Xt) ,
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the function g: (
Ci,t

Ei,t

)
= g (xi,t,Xt) ,

and the function H:

F t+1 = H (Xt,∆ log Yt+1) ,

such that in each period t the optimality conditions (7)-(8) and the budget constraint (2) hold

for each agent i, the market-clearing conditions (9)-(11) hold, and the distribution function

satisfies (12), given the exogenous processes of γi,t, ϵ
L
i,t, ϵ

E
i,t and Yt.

3 Solution method

The introduction of heterogeneous risk aversion in an incomplete-markets heterogeneous-

agent model involves computational challenges that have not been addressed before. Previous

models with heterogeneous risk aversion have usually been embedded in complete markets,

e.g., Gârleanu and Panageas (2015), or have facilitated simple aggregation, e.g., Barro et al.

(2022).

Our computational approach combines global and local approximations. The effects of

the individual state variables, potentially highly nonlinear, are approximated by a global

method. In contrast, the effects of the aggregate state variables, which are locally close to

linear, are approximated by a local method. A similar idea has been implemented previously

in Campbell (1998), Reiter (2009), Winberry (2018), and Ahn et al. (2018).

We deviate from the previous literature in our choice of a local method. The studies

cited above implement perturbation, a local solution method that is accurate near the steady

state. However, in the context of our model, perturbation has two major limitations. First,

the portfolio decision is indeterminate at the deterministic steady state because equity and

bonds are identical in a world without aggregate uncertainty. Second, perturbation often

fails to approximate the equity premium accurately, even when implemented to high orders

(Fernández-Villaverde and Levintal, 2018). This is particularly relevant for us because our

model incorporates disaster risk.

To resolve this problem, we implement the Taylor projection method proposed by Levintal

(2018). This method has proved successful for models with rare disasters and a large equity

premium, e.g., Fernández-Villaverde and Levintal (2018) and Barro et al. (2022). Taylor

projection is a generalization of perturbation. It exploits information embedded in derivatives
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of the equilibrium conditions in a way that is very similar to perturbation. Like perturbation,

Taylor projection builds on Taylor theorem to compute a solution that is locally accurate in

the neighborhood of the approximation point.

The advantages of Taylor projection over perturbation are twofold. First, the method can

be applied at any arbitrary point of the state space. It is not restricted to the steady state

and, hence, does not depend on the existence of a steady state. Second, Taylor projection does

not have a certainty equivalence property. The approximation accounts for the full volatility

of the model (unlike standard perturbation methods unless one includes higher-order terms).

Consequently, it captures well asset price effects of risk and uncertainty, which are essential

elements of our model.

The detailed implementation of our method is relegated to the computational appendix.

Here, we highlight some key ideas. First, following Krusell and Smith (1998), we approximate

F t

(
µ, γ, ϵL

)
by a finite set of M moments. We find that the first moments conditional on

risk aversion and labor income are sufficient to approximate the local dynamics of the model

accurately (although more moments could be used in other applications if needed).

Second, we approximate a distribution function that satisfies the M moments and use

it to integrate across agents, as done in Winberry (2018). To improve the approximation,

we introduce additional K moments so that, in practice, our distribution function satisfies

M +K moments. The additional K moments are not important quantitatively for the local

dynamics of the model, so we exclude them from the state vector and treat them as locally

constant. This approach substantially reduces computational costs.

Third, we approximate an auxiliary function Pt+1 = P (Xt,∆ log Yt+1) that provides the

future stock price as a function of current aggregate state and future aggregate shocks (Kubler

and Schmedders, 2003; Cao et al., 2023), which is essential for deriving our recursive solution.

Fourth, for our simulations, we discretize the cross-sectional distribution over a highly

dense grid. We start at an arbitrary initial distribution, solve the model, and simulate the

distribution along a path of aggregate shocks that happen to be zero. We solve the model at

several points along the simulation path (recall that Taylor projection can be implemented

at any point) until convergence. This point is the stochastic steady state of the model.4 For

simplicity, when we report the results of the model below, we will refer to the stochastic

steady state more simply as the “steady state.”

4The deterministic steady state is a point where all aggregate variables are constant, and there are no
aggregate shocks, but agents still face idiosyncratic risk. In contrast, the stochastic steady state is a point at
which all aggregate variables are constant, and the realizations of the aggregate shocks are zero. However,
agents are aware that non-zero realizations can come in the future. Also, agents still face idiosyncratic risk.
The stochastic steady state is a useful concept because it often provides a better summary of the ergodic
distribution of nonlinear models than the deterministic steady state.
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4 Estimation

This section discusses our choice of calibrated parameters and estimation moments. We

calibrate the model parameters that can be inferred directly from the data or that are con-

ventional in the literature. The remaining parameters are estimated by the simulated method

of moments (SMM). We evaluate the estimation results by examining the model fit for a set

of untargeted moments. Table 1 summarizes the parameter values.

4.1 Calibrated parameters

As mentioned above, we set the inverse IES equal to θ = 1 (below, we will report results

for the model when we change many parameter values, including θ). Capital income share is

calibrated to the conventional value of α = 1/3. The maximum leverage (i.e., the equity port-

folio share) is calibrated at λ̄ = 2, which implies a maximum return on wealth of 9.8% (given

the targeted asset returns described below). This constraint rarely binds in our simulations,

as only 6% of the population and 3% of total wealth are bound by this constraint.

The mean growth rate of U.S. GDP per capita post-WWII is g = 0.02 with a standard

deviation σY = 0.023 (Barro and Ursúa, 2008). The disaster parameterization follows Barro

and Ursúa (2012). Specifically, a disaster is defined as a rare event with a GDP contraction

of 10% or more (from peak to trough). Based on a sample of 40 countries observed from

1870-2009, Barro and Ursúa (2012) estimate the disaster probability at 3.7% per year and

the average GDP contraction at 21%.

The labor-income shock ϵLi,t takes two values, ϵL1 and ϵL2 , which correspond to the bottom

90% and top 10% of the labor-income distribution, respectively. We calibrate these parame-

ters based on the U.S. distribution over the period 1960-1970, which we consider as a long-run

steady state. Over this period, the average labor income of individuals at the top 10% was

roughly three times larger than that of the bottom 90% (Piketty et al., 2018), which implies

the values ϵL1 = −1/6 and ϵL2 = 3/2 with the corresponding population shares θL1 = 0.9 and

θL2 = 0.1, respectively. Since we are dealing with infinitely lived agents and large and per-

sistent labor-income shocks, we use dynastic data to match the persistence of labor income.

Based on data from Chetty et al. (2014), we compute a probability of 0.92 that a child whose

parents are in the bottom 90% of the income distribution is still in the bottom 90% at the

age of 30. This translates into an annual probability of 0.9972 of remaining at the bottom

90%.
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4.2 Estimation moments

The remaining parameters are the 2-state Markov process of risk aversion, the discount

factor β, and the volatility of the i.i.d. stock-return shock ϵE. We estimate these six param-

eters by SMM using the following six moments: the risk-free rate, the return on aggregate

wealth, the wealth shares of the top 10% and top 0.1%, the excess return on wealth of the

top 10%, and the cross-sectional variation in return on wealth.

Asset returns are taken from Jordà et al. (2019). Wealth shares are taken from Piketty

et al. (2018). We follow the procedure of Hubmer et al. (2020) and focus on the period 1960-

1970 when wealth shares were relatively stable. We interpret this period as a steady state.

Excess returns by wealth percentiles are taken from Hubmer et al. (2020). Cross-sectional

variation in returns on wealth is from Fagereng et al. (2020).

4.3 Estimation results

Table 2 compares simulated moments to data moments. The model fits exactly the

estimation moments (marked in bold font). Importantly, the model accurately replicates

the fat tail of the wealth distribution (top 10% and 1%), which has been the subject of a

large literature. Our contribution is that we account for this fat tail through endogenous

portfolio decisions that generate large heterogeneity in returns on wealth.

Figure 1 plots the optimal consumption/wealth ratio. This function is decreasing for all

agent types and converges to 1−β within the top 1% of the wealth distribution. In contrast,

Figure 2 shows that the portfolio decisions are starkly different for low risk- and high risk-

aversion agents. Agents with low risk aversion hold riskier portfolios composed of equity

holdings financed by debt (i.e., λi,t > 1). Their leverage is falling with wealth because they

issue debt against their labor income, which is large relative to capital income at low levels

of wealth. By comparison, agents with high risk aversion do not hold equity at low wealth

levels. Hence, our model generates limited stock market participation endogenously. But

even above the participation threshold, agents with high risk aversion hold less than 50% of

their wealth in equity.

We now assess the model’s performance by examining moments not used in our estimation

procedure (i.e., the untargeted moments in normal font in Table 2). We start with the wealth

shares of the bottom 50% and the middle 50-90%. The model replicates these moments

fairly well, with a slightly over-estimated wealth for the bottom 50%. In this range, wealth

inequality is largely determined by labor-income inequality. For computational reasons, we

allow labor income to take only two values. This comes at the cost of insufficient labor-income

inequality and, hence, insufficient wealth inequality at the bottom of the distribution.
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Excess return is the return on wealth in excess of the risk-free rate. Hubmer et al. (2020)

compute excess returns for different wealth percentiles in the U.S. economy. Their estimate

for the excess return of the top 10% is targeted by our SMM and matched exactly by the

model. Excess returns within the bottom 90% are not targeted but are still replicated fairly

accurately by the model. In particular, the bottom 50% in the model save mainly in risk-free

assets, so their excess return is zero, compared to 0.6% in the data. However, the model

fails to generate a steep rise in excess returns within the top 10%. For instance, the excess

return of the top 0.1% is 9.4% in the data but only 5.1% in the model. This difference might

be due to tax and regulatory considerations that our model misses. For example, access to

private equity funds is severely limited in the U.S.5 Since much of the excess returns to the

top 0.01% come from private equity, our model misses an important source of heterogeneity.

We leave this issue for future research and focus in this paper on the top 10%, which the

model captures fairly well.6

Interestingly, the amount of safe assets generated by the model (untargeted by the SMM)

conforms reasonably well with the amount of safe assets in the U.S. estimated at 32% of total

assets by Gorton et al. (2012). This result suggests that trade in safe assets is an important

driving force of wealth inequality.

Turning to the income distribution presented in Table 3, the model replicates fairly ac-

curately the income share of the top 10%, an untargeted moment. Income inequality within

the bottom 90% is somewhat underestimated. As explained earlier, this can be improved

by a finer approximation of the labor-income distribution, though at larger computational

costs. Income inequality within the top 10% is also slightly underestimated. This is related

to the underestimation of the return on wealth at the top of the wealth distribution, discussed

earlier. For the top 10%, which will be the focus of our analysis, the simulated income share

is 36.1% (untargeted), very close to the 35.4% in the data.

Krueger et al. (2016) use data from the Consumer Expenditure Survey (CEX) and the

Panel Study of Income Dynamics (PSID) to compute the U.S. distribution of consumption

in 2006. Table 3 compares their data to our model simulations.7 The model captures the

fat right tail, though the simulated distribution is more unequal than suggested by the data.

Specifically, the consumption share of the top 10% implied by the model is 38.1%, while the

5The SEC defines “accredited investors,” who can invest in some private equity as individuals that earn
over $200,000 per year or who have a net worth of over $1 million dollars (excluding the value of their home).
“Qualified purchasers,” who can invest in a larger range of private equity, are required to hold a wealth of $5
million or more, not including their primary residence or property used in the normal conduct of business.

6Another obstacle for matching the excess returns within the top 10% is that the portfolio equity share
of low risk-averse agents is falling with wealth as shown in Figure 2.

7The model is calibrated to the period 1960-1970, when consumption inequality was probably lower than
in 2006 (Attanasio and Pistaferri, 2014). Unfortunately, consumption data from this early period are rather
limited (Attanasio and Pistaferri, 2016).
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data suggest a range between 26.4% (CEX) to 29.8% (PSID). Apart from the well-known

difficulties in measuring consumption inequality (Attanasio and Pistaferri, 2016), part of the

gap between the model and the data is due to the omission of progressive taxes. In the absence

of a redistributive tax system, matching top wealth shares requires higher top consumption

shares to slow down wealth accumulation at the top.

Next, we examine the “active saving rate” defined by Bach et al. (2017) as the ratio of

savings out of labor income to wealth. As we show in the next sections, the active saving

rate plays an important role in the dynamics of wealth distribution. In what follows, we use

the subscript k to denote a certain group of agents, for example, k can refer to the top 10%.

The active saving rate of group k is given by:

sk =

∫
i∈k

[(
1 + ϵLi,t

)
(1− α)Yt − Ci,t

]
di∫

i∈k Wi,tdi
. (13)

Table 3 reports estimates of the active saving rate in Sweden obtained by Bach et al.

(2017) and compares them to the simulated saving rates (as far as we know, there is no

equivalent exercise using U.S. data). A key pattern in the data and the model is that the

active saving rate is decreasing with wealth. The simulated ratios are fairly close to the data.

For instance, the active saving rate of the top 10% is -4.6% in the model and -3.7% in the

Swedish data. Within the top 10%, the active saving rates fall significantly in the data but

slightly increase in the model. This is related to the previous discussion on the failure of the

model to capture the observed heterogeneity in returns on wealth within the top 10%. For

this reason, our focus below is on the top 10%.

5 Comparative statics

Our next step is to understand the forces behind the results in the previous section, in

particular, the main forces that drive wealth inequality in the model. To do so, Table 4

explores the effects of the model parameters on key moments of the model. In each case,

we change one or two parameters relative to the benchmark parameterization and compute

the new stationary equilibrium. In the interest of space, we will focus our discussion on the

three most interesting exercises: varying the idiosyncratic shocks, the capital income share,

and the intertemporal elasticity of substitution.
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5.1 The role of the idiosyncratic shocks

We start by shutting down all idiosyncratic shocks, except labor-income shocks (column

(2) vs. (1)). Wealth inequality falls significantly, particularly at the right tail. For instance,

the wealth share of the top 0.1% falls from 9.9% to 1.0%. Hence, our model shares the same

property found in the literature: labor-income shocks alone cannot explain the fat tail of

the wealth distribution (Benhabib and Bisin, 2018) unless a very high degree of skewness is

assumed (Castañeda et al., 2003).

Next, column (3) introduces the idiosyncratic stock-return shock (ϵE) in addition to the

labor-income shock (ϵL) but still shuts down the risk-aversion shock. The right tail of the

wealth distribution hardly changes (column (3) vs. (2)). Interestingly, the lower end of

the wealth distribution changes quite dramatically. The wealth share of the bottom 50%

increases from 0.1% to 12.6%. Moreover, poor agents save larger shares of their portfolios

in risky equity compared to rich agents. This is because capital income is a relatively small

source of income for poor agents. Hence, poor agents are willing to take on more stock market

risk. This is at odds with the data (Bach et al., 2020), suggesting that heterogeneity in risk

aversion is essential to fit the model to the data.

When we shut down the idiosyncratic stock market shock but keep the labor-income shock

and the risk-aversion shock active, the top wealth shares fall quite significantly (compare

column (4) to (1)). This effect is explained through precautionary savings. The decline in

stock market risk mainly affects wealthy agents who save more in stocks. Their precautionary

savings fall and their wealth shares decline consequently. By comparison, when we shut down

the idiosyncratic labor-income shock only, precautionary savings of the poor fall, so top wealth

shares rise (column (5) vs. (1)). We conclude that idiosyncratic shocks to capital income and

labor income affect the wealth distribution mainly through precautionary savings. Labor-

income risk affects the precautionary savings of the poor, whereas capital income risk affects

the precautionary savings of the rich.

5.2 The role of the capital income share α

Column (6) in Table 4 changes the capital income share from α = 1/3 to α = 1/2. The

effect on wealth inequality is substantial. The wealth share of the top 10% increases from

70.3% to 78.4%. Moreover, the effect on consumption inequality is even larger, e.g., the

consumption share of the top 10% increases from 38.0% to 50.7%. The main channel at work

is income redistribution. The rise in the capital income share reduces the income of poor

agents, whose earnings come primarily from labor income. Thus, they save less and hence

accumulate wealth at a slower rate.
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5.3 The role of the intertemporal elasticity of substitution

The parameter θ controls the intertemporal elasticity of substitution (IES= 1/θ). When

θ falls, top wealth shares and consumption shares fall. See column (7) vs. (1) in Table 4.

To gain some insight into this effect, consider the optimal decision of an unconstrained

agent with fixed preferences and no labor, studied in Epstein and Zin (1991). Under i.i.d.

returns, the consumption/wealth ratio is:

Ct

Wt

= 1−

(
β
(
Et

(
Rw

t+1

)1−γ
) 1

1−γ

) 1
θ

(
Et

(
Rw

t+1

)1−γ
) 1

1−γ

.

If returns are sufficiently volatile, the term β
(
Et

(
Rw

t+1

)1−γ
) 1

1−γ
is smaller than one, so that

the consumption/wealth ratio is falling with θ. This behavior is a fair approximation to

the behavior of the wealthy agents in the model since they are relatively unconstrained.

The decline in θ increases their consumption/wealth ratio, thus reducing their savings and,

eventually, their top wealth shares.

6 The distributional effects of asset returns

We turn now to study the distributional effects of asset returns. Let Ik, Ck, and Wk

denote group k’s labor income, consumption, and wealth, respectively. With this notation,

the active saving rate sk defined in equation (13) becomes:

sk =
Ik − Ck

Wk

,

which we can decompose as follows:

sk =
Y

W
· Ik/Y − Ck/C

Wk/W
, (14)

where C, Y , and W denote aggregate consumption, output, and wealth, respectively, and

C = Y through the market-clearing conditions. Holding constant the distributional term
Ik/Y−Ck/C

Wk/W
, asset prices affect the active saving rate through the aggregate term Y/W (the

output/wealth ratio). Importantly, the effect is larger for poor households because the active

saving rate is falling in wealth. Therefore, changes in asset prices impose a differential effect

on the active saving rate. Specifically, higher asset prices reduce the active saving rate of the
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poor relative to the rich. As we show below, this channel drives our main results.

Let gwk denote the growth rate of Wk, defined by:

gwk = sk + rwk + τk, (15)

where rwk denotes the return on wealth of group k and τk denotes net wealth transfers into

group k (as a share of Wk) from the rest of the population.8 For the aggregate economy, we

omit the k subscript and drop the net transfer term. Thus, the aggregate wealth growth rate

gw is:

gw = s+ re, (16)

where s is the aggregate active saving rate, and re is the return on equity, which is just the

return on aggregate wealth.

Let µk ≡ Wk/W denote the wealth share of group k, and let gµk denote the growth rate

of µk:

gµk = gwk − gw = (sk − s) + (rwk − re) + τk. (17)

Hence, the change in the wealth share of group k is determined by the three terms on the

RHS of equation (17). We call these terms the “saving term,” the “portfolio term,” and the

“between term,” respectively. The saving term is the active saving rate of group k in excess

of the aggregate saving rate. The portfolio term is the excess return on wealth of group k

due to a larger portfolio share of high-yield assets. The last term τk is the net transfer of

wealth into group k from other groups, which Gomez (2023) calls the “between term.” In

what follows, we use equation (17) to understand the dynamics of wealth inequality.

6.1 Steady state

We start by analyzing the (stochastic) steady state, where the distribution is constant,

i.e., gµk = 0 for all k. Substituting in equation (17) yields:

(s̄k − s̄) + (r̄wk − r̄e) + τ̄k = 0, (18)

where upper bars denote the steady state. A key property of our model is that the return on

wealth is rising with wealth, while the active saving rate is falling with wealth, as shown in

Tables 2 and 3.9 Hence, the saving term s̄k − s̄ is falling with wealth and the portfolio term

r̄wk − r̄e is rising with wealth.

8The exact equation is 1 + gwk = (1 + sk) (1 + rwk ) (1 + τk), so equation (15) is a log approximation.
9Our model successfully replicates these empirical patterns across the bottom 50%, middle 50-90%, and

top 10% of the wealth distribution.
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Consider a permanent fall in the time discount rate ρ. Table 4 presents the effects of

a lower ρ on the steady state. The discount rate is ρ = 4.2% in column (1) (the bench-

mark estimate), but it falls to ρ = 3.2% in column (10). Accordingly, the dividend yield

rd (the inverse of the price/dividend ratio) falls from 3.5% to 2.5%, which implies a rise of

40% in the price/dividend ratio. As a result, we find a substantial rise in wealth and con-

sumption inequality. The wealth share of the top 10% increases from 70.3% to 71.3%, and

their consumption share rises from 38.0% to 40.4%. This implies a permanent rise of 6%

in consumption of the top 10%. Recall that in a representative-agent version of the model,

variations in the discount rate affect asset prices but not consumption. This result does not

carry over to heterogeneous agents.

To understand these numbers, we examine the three terms on the RHS of equation (17).

Starting at the steady state, the sum of the three terms is zero, as stated in equation (18).

Now, consider a fall in ρ, holding constant the joint distribution of wealth and consumption

shares. The effect on the saving term sk − s can be deduced from the active saving rate sk,

defined in (14). A lower ρ implies a lower dividend yield and, hence, a lower output/wealth

ratio Y/W . Since sk is falling in wealth, a lower Y/W reduces the active saving rate of the

poor more than the rich (holding the distributional term Ik/Y−Ck/C
Wk/W

constant). It follows

that the saving term falls for the poor and rises for the rich. This effect widens the wealth

distribution, as wealth accumulation of the poor slows down relative to that of the rich.

We turn now to the portfolio term rwk − re, which can be written as:

rwk − re = (λk − 1)
(
re − rf

)
,

where λk denotes the share of equity in the portfolio of group k. The portfolio term is

composed of the equity premium re − rf and the portfolio share of equity λk. How does a

lower ρ affect these two variables?

The simulation results presented in Table 4 show that the equity premium and portfolio

decisions are fairly insensitive to permanent changes in the discount rate; compare columns

(1) and (10). These findings are surprisingly similar to frictionless versions of our model.

For instance, under complete markets, the equity premium is independent of the discount

rate. Furthermore, in the classical unconstrained portfolio choice model with CRRA studied

in Merton (1969), optimal portfolios depend on risk aversion and the equity premium, but

not the discount rate. These models suggest that portfolio decisions and the equity premium

are not sensitive to the discount rate. Interestingly, despite the frictions included in our

model (i.e., market incompleteness and constraints on asset trade), the main insights coming

from unconstrained asset price and portfolio choice models still hold. We conclude that the

portfolio term rwk − re is approximately insensitive to permanent changes in ρ.
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The final term in (17) is the between term τk. Gomez (2023) derives this term analytically

for a class of models that are similar (but not identical) to our model. He shows that the

between term depends on the volatility of the wealth growth rate. In our model, this volatility

is dominated primarily by idiosyncratic shocks to equity and labor income, which are both

exogenous. Hence, changes in ρ are not likely to affect τk much. Indeed, columns (1) and

(10) in Table 4 confirm numerically that τk is roughly independent of ρ.

Our analysis suggests that a decline in ρ affects the saving term in equation (17) (holding

constant wealth and consumption shares) but leaves the other two terms roughly constant.

The saving term falls for the poor and rises for the rich, leading to higher wealth growth

rates for the rich relative to the poor. Thus, wealth inequality is growing. To restore a steady

state, the rich must reduce their active saving rates relative to the poor (otherwise, the wealth

distribution keeps spreading out). This is attained through higher consumption shares of the

rich, as shown in Table 4, columns (1) vs. (10). The anticipation of higher future income

induces them to increase their consumption to the point where their wealth share stabilizes

and a new steady state is attained.

We complete the analysis with further experiments. First, we consider a change in the

growth rate g. Under unit elasticity of intertemporal substitution (θ = 1), the change in

g generates a similar change in asset returns, but the price/dividend ratio and the out-

put/wealth ratio remain constant. Thus, the saving term in equation (18) does not change,

and the steady state remains the same. Table 4 confirms this result numerically. Column

(8) changes the growth rate g from the benchmark 2% to 3%. Asset returns increase by one

percentage point, but the dividend yield and the distribution of wealth, consumption, and

labor income do not change (compare columns (8) and (1)).

Next, we turn to the case θ = 1/2, which implies IES = 2. In this case, a permanent

change ∆g in the growth rate changes asset returns by roughly θ∆g, as illustrated in Table

4, columns (7) and (9), for ∆g = 1%. The effect on the dividend yield is ∆rd ≈ (θ − 1)∆g.10

Thus, under θ = 1/2, a rise in g decreases the dividend yield and hence the output/wealth

ratio. Consequently, the active saving rate of the poor falls more than that of the rich,

generating inequality dynamics similar to the case of a lower discount rate.

Table 4 reports the effect of an increase in the growth rate g from 2% to 3% under θ = 1/2;

see columns (7) and (9). We find that the consumption share of the top 10% increases

from 35.6% to 36.6%, and their wealth share increases from 64.1% to 65.2%. Portfolios

remain roughly fixed, the equity premium hardly changes, and the between terms are roughly

constant, which is consistent with our previous analysis.

10In a steady state, the return on equity is (up to first-order) re = rd + g. Since ∆re ≈ θ∆g, we get that
∆rd ≈ (θ − 1)∆g.
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The results above demonstrate that changes in asset returns have large permanent welfare

effects. A decline of one percentage point in the dividend yield (due to a lower discount

rate) increases the long-run consumption of the top 10% by 6%. Similarly, a decline of

0.5 percentage points in the dividend yield (due to a higher growth rate under IES = 2)

increases the consumption of the top 10% by 3%. Joining these two results, the elasticity of

consumption of the top 10% with respect to the dividend yield is computed to be around -6.

6.2 r − g − c and the Pareto tail

Piketty (2014) argues that wealth inequality is increasing in r − g, where r denotes the

return on aggregate wealth (equivalent to re in our model). To formalize this idea, Piketty

and Zucman (2015) show that the right tail of the stationary wealth distribution follows an

approximate Pareto distribution, where the Pareto exponent is a decreasing function of r− g

(i.e., top wealth inequality is increasing in r − g).11

Table 4 reports the Pareto exponent for the top 0.1% and r − g. The results contradict

Piketty and Zucman (2015). For instance, when r− g falls from 3.6% to 2.6% due to a lower

ρ, the Pareto exponent hardly changes; compare columns (1) and (10). Similarly, r − g falls

from 3.9% to 3.4% due to a higher growth rate (under IES=2), but the Pareto exponent does

not change much; compare columns (7) and (9).

To explain these results, consider the law of motion of wealth of agent i:

Wi,t+1 = (Wi,t + Ii,t − Ci,t)R
w
i,t+1,

where Ii,t denotes labor income. We focus on the steady state, where aggregate wealth grows

at the rate of the aggregate economy eg−1. Hence, normalized wealth µi,t = Wi,t/Wt follows:

µi,t+1 =
Y

W
· Ii,t
Yt

· exp
(
rwi,t+1 − g

)
+ exp

(
rwi,t+1 − g − ci,t

)
· µi,t,

where Y/W is fixed at the steady state, rwi,t+1 ≡ logRw
i,t+1, and ci,t ≡ − log (1− Ci,t/Wi,t).

The classical result of Kesten (1973) implies that if Ii,t/Yt, ci,t, and rwi,t+1 are i.i.d., then

µi,t converges to a stationary distribution with a right Pareto tail. The Pareto exponent is

decreasing in r − g − c, which is the mean of rwi,t+1 − g − ci,t.
12 For the case of zero labor

income (Ii,t = 0), Gomez (2022) derives the Pareto exponent analytically in continuous time.

Benhabib et al. (2011) extend Kesten (1973) to Markov processes satisfying certain regu-

11We define the “Pareto exponent” as the parameter ζ of the Pareto counter CDF Pr (x̃ ≥ x) = kx−ζ .
12Formally, the Pareto exponent ζ satisfies Eeϕζ = e−ζ(r−g−c), where ϕ ≡

(
rwi,t+1 − g − ci,t

)
− (r − g − c)

is a zero-mean i.i.d. variable; see Gabaix (2009). It follows that ζ is decreasing in r − g − c (holding the
distribution of ϕ constant).
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larity conditions, building on de Saporta (2005). Our model does not fall exactly within the

general conditions of Benhabib et al. (2011), but we can use their result as an approximation

for the right tail of the wealth distribution. Along the right tail, the term rwi,t+1 − g − ci,t

behaves as an approximate Markov process.13 It follows from Benhabib et al. (2011) and

de Saporta (2005) that the stationary distribution of the right tail is approximately Pareto

with a coefficient that is decreasing in r − g − c, where c denotes the consumption/wealth

ratio at the Pareto tail. Put differently, top wealth inequality is increasing in r − g − c. If

the top consumption/wealth ratio is fixed, we get the r − g result of Piketty and Zucman

(2015). However, the top consumption/wealth ratio is endogenous in our model, and the

general r − g − c formula applies.

Consider a decline in ρ of 1 percentage point reported in column (10) of Table 4. The

term r− g falls by one percentage point, but r− g− c does not change. The Pareto exponent

remains roughly unchanged, which is consistent with our r−g−c formula. Similarly, a rise of

one percentage point in the growth rate g (under IES>1) reduces r − g by half a percentage

point; see columns (7) and (9). However, r − g − c does not change and so neither does the

Pareto exponent. Hence, wealth inequality within the Pareto tail is fairly insensitive to asset

returns.

However, these results do not imply that overall inequality does not respond to changes

in asset returns. On the contrary, we find that wealth and consumption inequality between

the Pareto tail and the lower range of the distribution change quite substantially. In this

range, the r − g − c formula does not apply. As we explained in the previous section, in

this range, asset returns drive inequality primarily through differential effects on the active

saving rate. Interestingly, these effects work in the opposite direction to Piketty’s (2014) r−g

formula. Namely, lower (expected) returns increase inequality.

We conclude that changes in asset returns do not automatically translate into changes in

wealth inequality within the Pareto tail because they may change the consumption/wealth

ratio so that r−g− c stays fixed. Moreover, we find that inequality within the Pareto tail is

often a poor measure of overall wealth inequality. In particular, changes in asset returns may

have substantial effects on overall wealth inequality without changing inequality within the

Pareto tail. These effects work through the active saving rate rather than the r − g − c

formula.

13At the right tail, the consumption/wealth ratio ci,t converges to a constant under θ = 1 or a Markov
process depending on risk aversion under θ ̸= 1. The (log) return rwi,t+1 is determined by the risk aversion
γi,t, which is a Markov process.
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6.3 Transitional dynamics

Our next step is to study the effect of asset returns on the cross-sectional distribution along

a transition path from one steady state to another. We show that wealth and consumption

inequality are increasing along a transition path with the price/dividend ratio. The main

driver is unanticipated capital gains, which are earned disproportionately by the rich since

they own larger shares of equity.

Figure 3 presents the impulse response function for an unanticipated decline of one per-

centage point in the discount rate. The decline in ρ generates an unexpected rise in the

price/dividend ratio, which translates into capital gains for stockholders, who are relatively

wealthier. Consequently, the wealth and consumption shares of the top 10% increase. The

discount-rate effect on equity prices is due to their longer maturity relative to bonds.

Figure 3 also depicts the dynamics of re−g, which correspond to r−g in Piketty (2014). A

temporarily higher re − g increases top wealth shares along the transition path. This finding

is consistent with Piketty’s (2014) explanation for the rise in wealth inequality in the last

decades of the 20th century. However, this result holds only along the transition path, where

capital gains are higher than initially anticipated. Once the economy stabilizes at the new

steady state, re− g falls below its initial level, yet wealth inequality remains higher. Namely,

the correlation between re − g and top wealth shares is positive along a transition path but

negative at the steady state. Similar findings are obtained when there is an unanticipated

shock to the growth rate g under IES>1; see Figure 4.

This analysis highlights two different channels through which asset returns affect wealth

distribution. At the steady state, the “saving term” in equation (17) is more dominant. By

comparison, the “portfolio term” prevails along a transition path. In Section 7, we show that

this channel can explain a large part of the dynamics of U.S. wealth inequality.

These results build on two important properties of the model. First, the return on wealth

is rising with wealth. Second, the active saving rate is falling with wealth. Both properties

are supported by the data and generated endogenously by the agents’ portfolio choices, not

imposed ex-ante. In the next subsection, we present a model with heterogeneous saving rates

that delivers different results because it violates these two properties.

6.4 Heterogeneous saving rates

Much of the literature has studied heterogeneous saving rates as a driver of wealth in-

equality (Krusell and Smith, 1998). We contrast the heterogeneous-saving model against

our heterogeneous-risk-aversion model. The main difference between the two models is the

distributional effects of asset returns.
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We follow Krusell and Smith (1998), who generate heterogeneous savings rates by intro-

ducing idiosyncratic shocks to the time discount factor β but holding γ fixed. Specifically, β

is replaced with a time-varying parameter βi,t that follows an idiosyncratic 2-state Markov

process. Thus, the stochastic discount factor (6) becomes:

ξi,t+1 = βi,t
1− βi,t+1

1− βi,t

Cθ
i,t

Cθ
i,t+1

U θ−γ
i,t+1(

EtU
1−γ
i,t+1

) θ−γ
1−γ

.

We estimate this “β-shock model” by SMM using the same moments we used in estimating

our benchmark “γ-shock model.” Since the β-shock model cannot explain the excess returns

observed in the data, we drop the excess returns of the top 10% from the targeted moments

to allow the SMM to match exactly the remaining moments. The estimation results are

reported in Table 5, where targeted moments are marked in bold.

The two models can replicate asset returns and the wealth distribution. However, they

differ substantially in the equilibrium portfolios and saving rates. In the γ-shock model,

the rich earn higher returns on wealth since they save larger shares of their portfolios in

equity, which is consistent with the data. By contrast, the β-shock model delivers exactly

the opposite result. The poor save larger shares of their portfolios in equity and earn higher

returns than the rich because they are relatively less averse to stock market risk since their

income is mainly labor income. Furthermore, in the γ-shock model, the active saving rate

falls with wealth, which is supported by the data (Bach et al., 2017). By contrast, in the

β-shock model, the active saving rate rises with wealth since the rich tend to have higher

values of β.

The steady-state correlation between wealth and returns is related to the correlation

between wealth and the active saving rate through equation (18). If returns are rising with

wealth, then the active saving rate is likely to fall with wealth, as long as the between term

τ̄k is not falling too much with wealth. Indeed, in the γ-shock model, returns are rising with

wealth and active saving rates are falling with wealth, whereas, in the β-shock model, these

two patterns are reversed.

These reversed patterns generate a completely different response to asset pricing shocks.

Figure 5 presents an impulse response function of the β-shock model to a permanent decline

in ρ. The distributional effects significantly differ from the γ-shock model in Figure 3. On

impact, top wealth shares and consumption shares fall in the β-shock model and rise in the γ-

shock model. This is a direct result of the different portfolios in the two models. Specifically,

in the β-shock model, the poor take on more stock market risk than the rich, earning higher

returns when equity prices rise.

In the long run, the β-shock model converges to lower wealth and consumption inequality,
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whereas the γ-shock model converges to higher inequality. Namely, the two models deliver

opposite welfare effects of asset returns. This is because, in the β-shock model, the active

saving rate of the rich is higher than that of the poor (contrary to the data). Thus, higher

asset prices reduce the active saving rate of the rich more than that of the poor, which tends

to contract the wealth distribution.

To sum up, the correlation between wealth and returns is a key determinant of the dis-

tributional effects of asset returns. When the correlation is positive (as in the data), the

active saving rate is falling with wealth. In this case, lower returns (higher asset prices) make

the rich better off in the short run and the long run. Conversely, when the wealth-return

correlation is negative, these results are reversed.

7 The dynamics of U.S. wealth inequality

In our final exercise, we use the model to study the effects of asset prices on U.S. wealth

inequality. Asset prices declined significantly in the 1970s and increased during the 1980s

and 1990s. This is evident in the price/earning ratio of stocks and price/rent ratio of housing

presented in Figure 6. The main driving force was the rise and fall in the real interest rate.

We take a neutral approach regarding the sources of U.S. asset price dynamics. Instead,

we impose the dynamics on the model exogenously through discount rate shocks. We feed

the model with unanticipated discount rate shocks that replicate the dynamics of the U.S.

price/earning ratio. That is, we interpret changes in the price/earning ratio as unanticipated

capital gains/losses triggered by changes in ρ.

We estimate the impact of these capital gains on the dynamics of U.S. wealth inequal-

ity through model simulations. To this end, we construct a measure of the aggregate

price/earning ratio by focusing on three asset classes: stocks, housing, and bonds. Our mea-

sure of the aggregate asset price is the sum of the market values of Stocks+Housing+Bonds.

The measure of aggregate earning is the sum of firms’ profits, housing rents, and real interest

payments. It follows that the aggregate price/earning ratio is:

Price/Earning =
Stocks + Housing + Bonds

Profits + Rent + Bonds · (i− π)
=

Stocks
Wealth + Housing

Wealth + Bonds
Wealth

Profits
Stocks ·

Stocks
Wealth + Rent

Housing · Housing
Wealth + Bonds

Wealth · (i− π)

The ratios of stocks, housing, and bonds to aggregate wealth are taken from the U.S.

Flow of Funds and depicted in Figure 7. We measure the profits/stocks ratio by the S&P

earning/price ratio taken from Shiller (2015). The rent/housing ratio is the housing rent/price

ratio taken from Jordà et al. (2019). We approximate the interest rate i by a 10-year moving

average of the 10-year yield on government bonds.
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Figure 8 presents our measure of the aggregate price/earning ratio. It decreased during

the 1970s, mainly due to the drop in stock prices, and remained relatively flat until the

mid-1980s as the real interest rate increased and house prices declined. From the late 1980s,

the price/earning ratio has increased steadily, though with high volatility due to the stock

market crash following 2000 and the real estate crisis after 2007. We are able to replicate

the dynamics of the price/earning ratio through a sequence of unanticipated discount rate

shocks. Figure 8 shows that the simulated series closely tracks the actual dynamics.

Figure 9 presents the wealth share of the top 10% simulated by the model. We compare

the simulated wealth share to two estimates of the U.S. wealth distribution. The first is

obtained by Piketty et al. (2018) from tax data (henceforth “PSZ”), and the second is from

Kuhn et al. (2020) based on the Survey of Consumer Finances (henceforth “SCF”). We start

the simulation in 1960, which we consider a steady state in terms of wealth distribution and

asset prices.

The model successfully captures the general trends of the top 10% wealth share, namely,

the fall in the 1970s and the rise since the 1980s. While the model overestimates the level of

the top 10% wealth share since the late 1980s, the overall change from 1980 to 2019 is fairly

consistent with the data. For 2019, the model predicts a top 10% wealth share of 73.5%,

roughly within the PSZ estimate of 71.5% and SCF estimate of 76.5%.

Our model abstracts from housing, which plays a key role in the dynamics of wealth

inequality (Kuhn et al., 2020). Consequently, the model predicts the wrong dynamics fol-

lowing the financial crisis of 2008. During this period, housing prices fell strongly, which

inflicted significant losses, particularly among poorer households (Glover et al., 2020; Kuhn

et al., 2020) and, thus, increased top wealth shares. The rebound in house prices since 2015

reversed this trend and brought the data closer to the model. Our model does not capture

the large debt-financed holdings of housing at the bottom of the wealth distribution, which

greatly exposes these households to house price shocks. This requires introducing additional

heterogeneity such as age (Glover et al., 2020), further complicating our model. We leave

these issues for future research.

8 Conclusions

We study the distributional effects of asset returns. We find that lower expected returns

increase long-run inequality. To resolve the contradiction with Piketty’s (2014) r−g formula,

we derive an extended formula of the form r− g− c, which is applicable when the consump-

tion/wealth ratio c is endogenous. Importantly, we find that asset returns affect steady-state

inequality mainly through their differential impact on the active saving rate rather than the
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r − g − c formula.

Our results suggest that portfolio decisions are a key determinant of the distributional

effects of asset returns. Specifically, we find that models that do not correctly capture

the positive correlation between wealth and returns deliver the wrong distributional effects,

both in the short run and in the long run. Incorporating endogenous portfolio decisions in

heterogeneous-agent models is computationally difficult. However, given the importance of

portfolio decisions, we believe that tackling these computational challenges is worthwhile.

We hope that our methodological contributions presented in this paper will help to promote

future research on heterogeneous portfolios and inequality.
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Table 1: Parameter values: Benchmark

Parameter Value Source

A. Calibrated parameters
Inverse IES θ 1 Conventional
Capital income share α 1/3 Conventional
Maximum leverage λ̄ 2 Rarely binding
Output growth

g (mean in normal periods) 0.02 Barro and Ursúa (2008)
σY (Gaussian volatility) 0.023 Barro and Ursúa (2008)
pdisaster (disaster probability) 0.037 Barro and Ursúa (2012)
b (disaster size) − log (1− 0.21) Barro and Ursúa (2012)

Labor-income shock (ϵLit)
values

Match the bottom 90% and
top 10% of the U.S. labor-
income distribution in 1960-
1970 from Piketty et al.
(2018)

ϵL1 (low income) -1/6
ϵL2 (high income) 3/2

population shares
θL1 (high income) 0.9
θL2 (low income) 0.1

probability of remaining at the low-income state
πL
11 0.9972 Chetty et al. (2014)

B. Estimated parameters
Markov process of risk aversion (γit)

SMM estimates to match
six moments: aggregate re-
turn on wealth, risk-free
rate, wealth shares of top
10% and top 0.1%, excess
return of top 10%, and stan-
dard deviation of returns on
wealth across households.

values
γ1 3.7
γ2 10.0

transition probabilities
πγ
11 0.993

πγ
22 0.999

Time discount factor (β) 0.959
Exogenous return volatility (σE) 0.053
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Table 2: Wealth and returns: Model vs. data

Model Data

Returns (%) Jordà et al. (2019) (1950-2017)
return on equity 5.6 5.6
return on bonds 1.4 1.4

Wealth shares (%) Piketty et al. (2018) (1960-1970)
bottom 50% 5.7 1.1
50-90% 24.0 28.6
top 10% 70.3 70.3
top 1% 29.3 28.1
top 0.1% 9.9 9.9

Excess returns (%) Hubmer et al. (2020) (1967)
bottom 50% 0.0 0.6
50-90% 2.6 2.2
top 10% 5.1 5.1
top 1% 4.9 7.0
top 0.1% 4.8 8.8

Fagereng et al. (2020) (Norway 2005-2015)
Return volatility (%) 7.8 7.8

Gorton et al. (2012) (1952-2011)
Safe to total assets (%) 28.1 32.0

Targeted moments in bold. Data samples are in parentheses. All data are for the U.S.
except return volatility, which is based on Norwegian data. The returns on (unleveraged)
equity and bonds are the total return on wealth and the bill rate, respectively, from Jordà
et al. (2019). Excess return is the portfolio return in excess of the risk-free rate, estimated
by Hubmer et al. (2020). Return volatility refers to volatility across households and over
time.
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Table 3: Income, consumption, and savings: Model vs. data

model data

Income shares1 (%) Piketty et al. (2018) (1960-1970)
bottom 50% 28.5 18.5
50-90% 35.4 46.2
top 10% 36.1 35.4
top 1% 11.7 12.2
top 0.1% 3.7 4.2

Consumption shares2 (%) Krueger et al. (2016) (PSID/CEX 2006)
bottom 60% 33.0 31.9-34.3
60-90% 29.0 38.2-39.3
top 10% 38.1 29.8 - 26.4
top 1% 13.0 8.2 - 5.1

Active saving rate3 (%) % Bach et al. (2017) (Sweden)
bottom 50% 0.6 14.3
50-90% -1.7 0.0
top 10% -4.2 -3.7
top 1% -4.2 -5.2
top 0.1% -4.1 -6.5

1 Sorted by income.
2 Sorted by consumption.
3 Sorted by wealth. Active saving rate is saving out of labor income as a ratio of wealth.
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Table 4: Comparative statics

benchmark
γ1 = γ2, γ1 = γ2 ϵE = 0 ϵL = 0 α = 0.5 θ = 1/2 g + 1%

θ = 1/2,
ρ− 1%

ϵE = 0 g + 1%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Wealth share (%)
bottom 50% 5.7 0.1 12.6 11.4 11.1 4.2 7.4 5.7 7.5 7.0
50-90% 24.0 49.3 41.9 26.6 16.3 17.4 28.6 24.0 27.3 21.6
top 10% 70.3 50.6 45.5 62.0 72.6 78.4 64.1 70.3 65.2 71.3
top 1% 29.3 7.9 7.9 21.3 32.9 43.5 20.8 29.3 21.3 30.0
top 0.1% 9.9 1.0 1.1 5.2 13.0 21.5 5.3 9.9 5.4 10.3

Consumption share (%)
bottom 50% 27.5 27.9 33.9 27.4 33.2 20.7 27.6 27.5 27.3 26.4
50-90% 34.6 44.9 41.4 35.4 30.9 28.3 36.9 34.6 36.3 33.3
top 10% 38.0 27.1 24.9 37.4 35.9 50.7 35.6 38.0 36.6 40.4
top 1% 13.0 3.9 3.8 10.9 13.2 25.1 9.8 13.0 10.1 14.1
top 0.1% 4.1 0.5 0.5 2.5 4.9 12.1 2.3 4.1 2.4 4.5

Capital income share (%)
bottom 50% 1.5 0.1 16.8 3.7 3.6 1.3 2.2 2.1 2.7 0.7
50-90% 17.0 49.3 41.9 17.8 14.6 12.8 21.7 18.0 21.4 13.3
top 10% 81.6 50.6 41.3 78.5 81.8 85.9 76.1 79.9 75.9 86.0
top 1% 33.2 7.9 7.1 26.8 35.3 46.7 23.8 32.6 23.9 34.5
top 0.1% 11.0 1.0 1.0 6.5 13.7 22.9 5.9 10.8 6.0 11.6

Portfolio share of equity (%)
bottom 50% 1 100 140 0 1 1 0 1 0 1
50-90% 61 100 100 51 85 61 65 61 66 57
top 10% 121 100 89 139 119 114 127 121 126 123
top 1% 118 100 87 138 111 111 120 118 119 117
top 0.1% 115 100 86 137 108 110 117 115 116 114

Between term (%)
bottom 50% 0.0 9.7 -0.2 0.0 0.0 -0.1 0.0 0.0 0.0 0.0
50-90% -0.2 0.0 0.0 0.0 -0.2 -0.2 -0.2 -0.2 -0.2 -0.2
top 10% 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.1 0.1 0.1
top 1% 0.2 0.0 0.4 0.0 0.1 0.1 0.3 0.2 0.3 0.2
top 0.1% 0.2 0.0 0.6 0.0 0.1 0.1 0.3 0.2 0.3 0.2

Aggregate variables (%)
re 5.6 5.8 6.3 5.1 5.9 5.9 5.9 6.6 6.4 4.6
rf 1.4 1.5 1.1 1.7 1.9 1.8 1.8 2.4 2.3 0.4
rd 3.5 3.7 4.1 3.0 3.8 3.8 3.8 3.5 3.3 2.5
g 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 3.0 2.0
c 4.2 5.2 5.3 4.2 4.2 4.1 4.7 4.2 4.2 3.2
re − g 3.6 3.8 4.3 3.1 3.9 3.9 3.9 3.6 3.4 2.6
re − g − c -0.6 -1.4 -1.0 -1.1 -0.3 -0.2 -0.8 -0.6 -0.8 -0.6

Pareto 1.939 0.685 7.998 2.767 1.696 1.437 2.616 1.939 2.582 1.920

Steady state for different parameter values. In each column, the parameter values are identical to the benchmark
estimation, except for the parameters listed in the header. Agents are sorted by wealth. In columns (2) and (3),
risk aversion equals the level that matches the equity premium in a representative agent model. re, rf , and rd

denote the equity return, bond return, and dividend yield, c is the consumption/wealth ratio of the top 0.1%.
Pareto is the Pareto exponent of the top 0.1%.
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Table 5: Heterogeneous risk aversion vs. heterogeneous saving rates

γ shocks β shocks data

Returns (%)
equity 5.6 5.6 5.6
bonds 1.4 1.4 1.4

Wealth shares (%)
bottom 50% 5.7 3.4 1.1
50-90% 24.0 26.3 28.6
top 10% 70.3 70.3 70.3
top 1% 29.3 30.1 28.1
top 0.1% 9.9 9.9 9.9

Excess returns (%)
bottom 50% 0.0 8.4 0.6
50-90% 2.6 5.3 2.2
top 10% 5.1 3.6 5.1
top 1% 4.9 3.3 7.0
top 0.1% 4.8 3.2 8.8

Active saving rate (%)
bottom 50% 0.6 -6.5 14.3
50-90% -1.7 -4.2 0.0
top 10% -4.2 -2.9 -3.7
top 1% -4.2 -2.7 -5.2
top 0.1% -4.1 -2.6 -6.5

Return volatility (%) 7.8 7.8 7.8

Safe to total assets (%) 28.1 10.4 32.0

Targeted moments in bold.
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Figure 1: Consumption/wealth ratio

The optimal consumption/wealth ratio (Ci,t/Wi,t) for different wealth values and agent
types evaluated at the steady state. The horizontal axis presents the agent’s wealth and
marks the 90th, 99th, and 99.9th percentiles.
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Figure 2: Portfolio share of equity

The optimal portfolio share of equity (λi,t) for different wealth values and agent types
evaluated at the steady state. The horizontal axis presents the agent’s wealth and marks
the 90th, 99th, and 99.9th percentiles.
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Figure 3: Impulse response: Permanent change in ρ (IES = 1)
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Figure 4: Impulse response: Permanent change in g (IES = 2)
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Figure 5: β-shock model: Impulse response to a permanent change in ρ (IES = 1)
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Figure 6: Stock prices, house prices, interest rate, and inflation

Stock and bond data are from Shiller (2015) and housing data from Jordà et al. (2019).
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Figure 7: Aggregate portfolio shares of stocks, housing and bonds

Source: U.S. Flow of Funds. Equity includes direct holdings of corporate and noncorporate
equity and indirect holdings through pension, insurance, and mutual funds. Bonds include
direct and indirect holdings of bonds, deposits, and money market funds net of loans to
households.
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Figure 8: Aggregate price/earning ratio: Model vs. data

The solid line depicts our estimate for the U.S. aggregate price/earning ratio. In our
simulation, we use a sequence of discount rate shocks that replicate the dynamics of the
price/earning ratio observed in the data. The dashed line depicts the simulated price/earning
ratio (normalized to coincide with the actual price/earning ratio in 1960).
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Figure 9: Top 10% wealth share: Model vs. data

The solid blue line is the simulated wealth share of the top 10%. The dashed blue line is
actual data from the SCF compiled by Kuhn et al. (2020). The dashed red line is data
compiled by Piketty et al. (2018).
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Computational Appendix
This appendix describes our computational procedure in detail. First, we rewrite the

model in a form similar to Winberry (2018), where the individual variables are approximated

globally over a grid, the cross-sectional distribution is approximated by a finite number of

moments, and the aggregate variables are approximated locally. Then, we apply the Taylor

projection method developed by Levintal (2018) to approximate the local effects of the ag-

gregate variables. Since Taylor projection can be implemented around any point in the state

space, we start at an arbitrary initial distribution and simulate the model from that state on.

We solve the model several times along the simulation path until the distribution converges.

The appendix is organized as follows. Section A detrends the model and simplifies the

notation. Section B approximates the individual decisions over a grid of wealth nodes. Sec-

tion C approximates the cross-sectional distribution. Section D derives the market-clearing

conditions. Section E introduces an auxiliary variable that forecasts the future price/dividend

ratio. This variable is used in Section F to define the dynamics of the wealth distribution in

a recursive form. Section G summarizes the model conditions in a recursive form. Section H

discusses the solution and simulation methods.

A The detrended model

Define the variables yt+1 = Yt+1

Yt
, pt =

Pt

αYt
, qt = Qt, ui,t =

Ui,t

Yt
, ci,t =

Ci,t

Yt
, ei,t = Ei,t, and

bi,t =
Bi,t

Yt
. Then, we can rewrite the Epstein-Zin utility function (1) as follows:

u1−θ
i,t = (1− βi,t) c

1−θ
i,t + βi,tz

1−θ
i,t , (19)

where zi,t is the (detrended) Epstein-Zin certainty-equivalence variable:

1 = Et

(
ui,t+1yt+1

zi,t

)1−γi,t

, (20)

and βi,t and γi,t are assumed to be time-varying.

The stochastic discount factor for this general case is:

ξi,t+1 = βi,t
1− βi,t+1

1− βi,t

cθi,t
cθi,t+1

u
θ−γi,t
i,t+1

z
θ−γi,t
i,t

y
−γi,t
t+1 . (21)
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Define the (detrended) wealth (including labor income):

wi,t =
(
1 + ϵLi,t

)
(1− α) + α (1 + pt)

(
1 + ϵEi,t

)
ei,t−1 +

bi,t−1

yt
. (22)

Note that wi,t is equal to
(1+ϵLi,t)(1−α)Yt+Wi,t

Yt
in the main text.

The portfolio share of equity is given by:

λi,t =
αptei,t

wi,t − ci,t
. (23)

Thus, the budget constraint (2) can be rewritten as:

ci,t + αptei,t + qtbi,t = wi,t, (24)

and the future returns on equity and bonds are:

Re
i,t+1 =

(
1 + ϵEi,t+1

) 1 + pt+1

pt
yt+1 (25)

Rf
t+1 = 1/qt. (26)

In addition, define the total portfolio return at the maximum portfolio share λ̄ by:

RB
i,t+1 = Rf

t+1 + λ̄
(
Re

i,t+1 −Rf
t+1

)
. (27)

The optimality conditions are given by equations (7) and (8) in the main text. Equation

(7) becomes: 
0 = Et

(
ξi,t+1R

f
t+1 − 1

)
wi,t − ci,t > 0 , λi,t < λ̄

0 = Et

(
ξi,t+1R

B
i,t+1 − 1

)
wi,t − ci,t > 0 , λi,t = λ̄

ci,t = wi,t else

, (28)

while equation (8) becomes:
0 = Et

(
ξi,t+1R

e
t+1 − 1

)
wi,t − ci,t > 0 , 0 < λi,t < λ̄

ei,t = 0 wi,t − ci,t > 0 , 1 > Etξi,t+1R
e
t+1

αptei,t = λ̄ (wi,t − ci,t) wi,t − ci,t > 0 , 1 > Etξi,t+1R
f
t+1

ei,t = 0 else

. (29)
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Finally, the market-clearing conditions (9)-(11) are now:∫
ci,tdi = 1 (30)∫
ei,tdi = 1, (31)

where the bond market clears by Walras’ law.

Individual wealth wi,t follows the law of motion in equation (22). The idiosyncratic shocks

γi,t, βi,t, and ϵLi,t follow Markov processes. The idiosyncratic shock ϵEi,t is an i.i.d. discrete

shock, and yt is an aggregate i.i.d. discrete shock.

B Approximating individual decisions over a grid

Next, we approximate the individual decisions over a grid and derive the optimality con-

ditions at the grid nodes. The general approach is similar to Winberry (2018), with some

differences in the details. We classify all agents into types according to the values of the

idiosyncratic Markov shocks γ, β, and ϵL. The total number of types is denoted I. From

now on, we use subscript i = 1, . . . , I to denote the agent type in period t and subscript

j = 1, . . . , I to denote the agent’s type in period t+1.14 The transition probability from i to

j is denoted πij. We drop time subscripts and denote the next period by ′.

The optimality conditions depend on two constraints. The “portfolio constraint” imposes

the condition that 0 ≤ λ ≤ λ̄, where λ is the portfolio share of equity defined in equation

(23). The “net-worth constraint” imposes the condition that w − c ≥ 0.

The portfolio constraint is difficult to address computationally because we do not know

a priori if the portfolio decision hits the bounds of this constraint. To resolve this problem,

we approximate the portfolio decision under three different scenarios, henceforth “portfolio

states,” which are as follows: i) The portfolio decision is unconstrained; ii) The portfolio

decision hits the lower bound; iii) The portfolio decision hits the upper bound. We denote the

portfolio state by superscript index S that takes the values U (Unconstrained), E (constrained

to sell more Equity), and B (constrained to sell more Bonds), respectively. The actual

portfolio state is endogenous. If the portfolio decision under state U does not violate the

bounds of the portfolio constraint, then the endogenous portfolio state is U . If state U

violates the lower-bound constraint, then the endogenous portfolio state is E. Otherwise, the

portfolio state is B.

14Note that we change the meaning of subscript i. In the main text and in Section A, subscript i is an
index of the individuals over the unit interval. Here and in the following sections, subscript i is an index of
agent type, which determines the values of risk aversion, the time discount rate, and labor income.
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B.1 The grid

Fix a grid of N nodes over the interval [0, x̄], where x̄ > 0 is a fixed parameter. Denote

the vector of nodes by:

x = (x1, . . . , xN) , (32)

where the first node is x1 = 0 and the last node is xN = x̄. The nodes are indexed by

subscript n = 1, . . . , N . For instance, cin denotes the consumption of agent type i at node n.

For each agent type i = 1, . . . , I and portfolio state S ∈ {U,E,B}, define the vectors of

individual variables over the grid:

CS
i =

(
CS

i1, . . . , C
S
iN

)
(33)

ES
i =

(
ES

i1, . . . , E
S
iN

)
(34)

ZS
i =

(
ZS

i1, . . . , Z
S
iN

)
, (35)

where CS
in, E

S
in, and ZS

in correspond to endogenous variables determined in period t by agent

type i at node n in portfolio state S.15 Since S ∈ {U,E,B} and i takes I values, the total

number of variables in equations (33)-(35) is 3× 3× I ×N .

B.2 The wealth cutoff of the net-worth constraint

Now, we derive the wealth cutoff at which the net-worth constraint becomes binding (for

each agent type i and portfolio state S). The cutoff is endogenous. We will use it below to

determine if the net-worth constraint binds or not.

Let cSi1 and wS
i1 denote consumption and wealth at the first node (n = 1) for agent type i

in portfolio state S. Define consumption at the first node by:

cSi1 =
(
wS

i1 + h
)
exp

(
CS

i1

)
,

where h = (1− α) p > 0 is a measure of per capita human capital. This ensures (numerically)

that cSi1 is strictly positive (provided that h is sufficiently larger than wS
i1).

Define the first node (n = 1) as the wealth cutoff. Namely, the net-worth constraint is

slack for any wealth level above wS
i1 and binds otherwise. Thus, since wS

i1 = cSi1, we obtain

the wealth cutoff:

wS
i1 =

h exp
(
CS

i1

)
1− exp (CS

i1)
. (36)

15In practice, we eliminate vectors ES
i in portfolio states S = E,B, because they can be derived analytically

by the corner solution. For notational clarity, we treat these vectors here as unknown endogenous variables.
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B.3 The interpolation algorithm

We use the following algorithm to interpolate (or extrapolate) the individual decisions for

a given level of wealth:

Algorithm 1 For a given wealth w of agent type i, we compute consumption, ci (w), Epstein-

Zin variable, zi (w), and equity decision, ei (w). To do so, we first compute these variables

for a given portfolio state S ∈ {U,E,B}, and then derive the portfolio state endogenously.

Given w, we compute the distance of w from the wealth cutoff wS
i1, defined in (36) for

agent type i in portfolio state S:

xS
i (w) = log (w + h)− log

(
wS

i1 + h
)
.

Use vectors (32)-(35) to interpolate:

CS
i (w) = interpolate

(
xS
i (w) ,x,C

S
i

)
ES

i (w) = interpolate
(
xS
i (w) ,x,E

S
i

)
ZS

i (w) = interpolate
(
xS
i (w) ,x,Z

S
i

)
.

The notation y = interpolate (x,x,y) denotes the value of y given x, interpolated through the

vectors of nodes and values denoted x and y, respectively. We use piecewise interpolation.

For agent type i in portfolio state S, compute:

cSi (w) =

{
(w + h) exp

(
CS

i (w)
)

xS
i (w) > 0

w else
(37)

eSi (w) =
1

αp
×

{
−h+ (w + h) exp

(
ES

i (w)
)

xS
i (w) > 0

−h+
(
wS

i1 + h
)
exp

(
ES

i1

)
else

(38)

zSi (w) =

{
(w + h) exp

(
ZS

i (w)
)

xS
i (w) > 0(

wS
i1 + h

)
exp

(
ZS

i1

)
else

. (39)

When xS
i (w) ≤ 0, the net-worth constraint binds. Hence, consumption is equal to wealth, as

defined in equation (37). Moreover, when the net-worth constraint binds, the equity decision

and the Epstein-Zin variable are independent of wealth w. Hence, they are equal to their

values at the first node of the grid, as defined in equations (38)-(39).

Finally, derive the portfolio state and the corresponding endogenous variables, depending
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on the portfolio decision in the unconstrained state (S = U):

ci (w) , ei (w) , zi (w) =


cUi (w) , eUi (w) , zUi (w) 0 < αpeUi (w) < λ̄

(
w − cUi (w)

)
cEi (w) , eEi (w) , zEi (w) αpeUi (w) ≤ 0

cBi (w) , eBi (w) , zBi (w) else

. (40)

B.4 The optimality conditions

For each agent type i in portfolio state S, define wealth at node n by:

wS
in = −h+

(
wS

i1 + h
)
exp (xn) ,

where wS
i1 is the wealth cutoff defined in equation (36).

Use Algorithm 1 to compute cSi
(
wS

in

)
, eSi

(
wS

in

)
, and zSi

(
wS

in

)
, through equations (37)-(39).

To simplify notation, denote these variables cSin, e
S
in, and zSin, respectively. The bond decision

comes from the budget constraint (24):

bSin =
wS

in − cSin − αpeSin
q

.

Next period wealth follows from equation (22):

w′S
ijn =

(
1 + ϵ′Lj

)
(1− α) + α (1 + p′)

(
1 + ϵ′E

)
eSin +

bSin
y′

. (41)

Here, w′S
ijn denotes the future wealth of an agent at node n that is currently in portfolio state

S and switches from type i to type j, conditional on the future realizations of the stock-return

idiosyncratic shock ϵ′E, the aggregate shock y′, and the price/dividend ratio p′.

Use Algorithm 1 to compute cj
(
w′S

ijn

)
, ej
(
w′S

ijn

)
, and zj

(
w′S

ijn

)
through equation (40). To

simplify notation, denote these variables c′Sijn, e
′S
ijn and z′Sijn, respectively. Evaluate equations

(19) and (21) as follows:

u′S
ijn =

[
(1− βj)

(
c′Sijn
)1−θ

+ βj

(
z′Sijn
)1−θ

] 1
1−θ

log ξ′Sijn = log βi + log (1− βj)− log (1− βi) + θ log cSin − θ log c′Sijn

+(θ − γi)
[
log u′S

ijn − log zSin
]
− γi log y

′.

Evaluate equation (20) for each agent type i = 1, . . . , I, node n = 1, . . . , N , and portfolio
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states S = {U,E,B}:

0 = E
∑
ϵE

πE
∑
j

πij

(u′S
ijny

′

zSin

)1−γi

− 1

 . (42)

The net-worth constraint is (weakly) slack over the grid. Hence, optimality conditions (28)-

(29) hold in the following form:
0 = E

∑
ϵE

πE
∑
j

πij

[
ξ′SijnR

′f − 1
]

S = {U,E}

0 = E
∑
ϵE

πE
∑
j

πij

[
ξ′SijnR

′B − 1
]

S = B
(43)


0 = E

∑
ϵE

πE
∑
j

πij

[
ξ′SijnR

′e − 1
]

S = U

eSin = 0 S = E

αpeSin = λ̄
(
wS

in − cSin
)

S = B.

(44)

The returns R′e, R′f , and R′B are defined in equations (25)-(27). The expectation operator

E is with respect to the distribution of the aggregate shock y′. The first sum operator runs

over the values of the idiosyncratic stock-return shock ϵE with corresponding probabilities

πE. The second sum operator runs over future types j with transition probabilities πij.

C The cross-sectional distribution

Given wealth w, define a normalized wealth measure µ:

µ =
w + h

1 + αp+ h
. (45)

Here, wealth is augmented by the measure of per capita human capital h to ensure that µ

is strictly positive. In the main text, µ is defined in terms of financial wealth only, which is

clearer analytically but computationally less convenient because of negative or zero values.

Let Fi (µ) denote the CDF of µ across type i agents, where the mean is:

µi =

∫
µdFi (µ) . (46)

Let θi denote the type i population share. Then, at the aggregate:∑
i

θiµi = 1. (47)
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Define a measure of wealth relative to type i mean ζi = log µ− logµi and the cumulative

wealth-share function relative to type i wealth:

Φi (ζ) =
1

µi

µi exp(ζ)∫
0

µdFi (µ) .

We approximate the distribution by discretizing the cumulative wealth-share function Φi (ζ).

Specifically, discretize Φ by K fixed points over the interval [0, 1− τ ] (for some τ > 0),

denoted Φ = (Φ1, . . . ,ΦK). Find K values:

ζi = (ζi1, . . . , ζiK) , (48)

that satisfy Φi (ζik) = Φk ∀k = 1, . . . , K. The vectors ζi and Φ provide a discrete approxi-

mation of Φi (ζ), where ζi changes over time and Φ is held fixed.

The complete distribution is represented by µi and ζi for all types i = 1, . . . , I. We

find that the information in µi (the first moment of type i normalized wealth) is sufficient

to approximate the local dynamics of asset prices successfully. Hence, we include µi in the

vector of state variables. Since all µi’s aggregate to 1 through condition (47), we drop µ1

and define the aggregate state variables as follows:

X = [µ2, . . . ,µI ] . (49)

The information in ζi captures higher moments. It is important for aggregating accurately

across all agents, but its local dynamics are less important. Hence, we treat ζi as locally fixed.

This approach simplifies the computations considerably.

D Market-clearing conditions

Consider a certain cumulative wealth share Φq ∈ [0, 1]. Compute the associated wealth

measure ζiq = interpolate (Φq,Φ, ζi) and use ζiq and equation (45) to compute the corre-

sponding wealth wiq = µi (1 + αp+ h) exp (ζiq) − h. Then, use Algorithm 1 to compute

ci (wiq) and ei (wiq) through equation (40).

The market-clearing conditions (30)-(31) are obtained by integrating with respect to
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wealth shares:

1 =
∑
i

(1 + αp+ h) θiµ

 1∫
0

ci (wiq)

wiq + h
dΦq


1 =

∑
i

(1 + αp+ h) θiµ

 1∫
0

ei (wiq)

wiq + h
dΦq

 .

At high wealth levels, individual decisions are proportional to wealth. We exploit this

property to approximate the integral over the top tail. For each agent type i, the top tail is

defined as the top τ wealth share of type i. Let w̄i denote an arbitrary wealth level within

tail i, and use Algorithm 1 to compute ci (w̄) and ei (w̄). Use these variables to compute the

consumption/wealth ratio and the equity/wealth ratio at the top tail.

A quadrature approximates the integral over the region below the top tail. Define a set

of Q quadrature nodes over the interval [0, 1− τ ]: Φ = (Φ1, . . . ,ΦQ). The corresponding

weights are ω = (ω1, . . . , ωQ).

Approximate the market-clearing conditions as follows:

1 =
∑
i

{
(1 + αp+ h) θiµi

(
Q∑

q=1

ci (wiq)

wiq + h
ωq +

ci (w̄i)

w̄i + h
τ

)}
(50)

1 =
∑
i

{
(1 + αp+ h) θiµi

(
Q∑

q=1

ei (wiq)

wiq + h
ωq +

ei (w̄i)

w̄i + h
τ

)}
. (51)

E Future price/dividend ratio

Let H denote the law of motion of the state vector X:

X′ = H (X, y′) , (52)

where y′ is the only aggregate shock in the model. Let the function p denote the solution of

the price/dividend ratio p = p (X).

Let p′f (y′) be the future price/dividend ratio forecasted in period t conditional on the

future realization of y′. Namely, p′f (y′) is defined by:

p′f (y′) = p (X′) = p (H (X, y′)) . (53)

Note that p′f (y′) is determined in period t + 1, but it is known in period t, because it is

conditional on the future realization of y′, which is the only unknown future variable. This
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will enable us below to define the evolution of wealth as a function of current state variables

and future aggregate shocks.

F Law of motion of the moments

This section computes the law of motion of µi, defined in equation (46). The normalized

wealth of agent type i with wealth wiq is µiq =
wiq+h

1+αp+h
. Compute the bond decision through

the budget constraint (24): biq =
wiq−ciq−αpeiq

q
. Here, ciq and eiq denote ci (wiq) and ei (wiq)

from Section D, respectively. Future wealth is derived from equation (22):

w′
ijq =

(
1 + ϵ′Lj

)
(1− α) + α

(
1 + p′f (y′)

) (
1 + ϵ′E

)
eiq +

biq
y′
. (54)

Here, w′
ijq denotes the future wealth of agent type i with current wealth wiq that switches in

period t+ 1 to type j, conditional on the future realizations of y′ and ϵ′E. We use the future

price/dividend ratio p′f (y′) defined in equation (53), which is a function of the current state

X and the future realization y′. Hence, equation (54) describes future wealth as a function

of variables known in period t and future shocks only. This allows us to define the dynamics

of the wealth distribution recursively.16

Define h′ = (1− α) p′f (y′) and use equation (45) to define future normalized wealth:

µ′
ijq =

w′
ijq + h′

1 + αp′f (y′) + h′ ,

where h′ ensures that µ′
ijq depends on variables known in period t and future shocks only.

It follows that the mean future normalized wealth of agent type j conditional on future

realization y′ is:

µ′
j (y

′) =
1

θj

∑
ϵE

πE
∑
i

θiµiπij

1∫
0

µ′
ijq

µiq

dΦq.

Here, θiµi is the current share of type i agents in aggregate wealth, and θiµiπijdΦq is the

current wealth share associated with type i agents that switch to type j, whose wealth-share

growth is
µ′
ijq

µiq
. It follows that θiµiπij

1∫
0

µ′
ijq

µiq
dΦq is the future wealth share of agents that

switch from i to j. Integrating across all types i = 1, . . . , I and future realizations of the

idiosyncratic stock-return shock ϵE yields the future wealth share of type j agents (conditional

on y′), namely θjµ
′
j. Multiplying by 1

θj
yields µ′

j.

16By comparison, future wealth in equation (41) is defined as a function of p′, which is an endogenous
variable determined in t+ 1. Hence, equation (41) does not admit a recursive form for wealth.
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To approximate the integral accurately, we follow the procedure used in equations (50)-

(51):

µ′
j (y

′) =
1

θj

∑
ϵE

πE
∑
i

θiµiπij

{
Q∑

q−1

µ′
ijq

µiq

ωq +
µ′
ij (w̄i)

µi (w̄i)
τ

}
. (55)

G Summary of the model conditions

The state vector is defined in condition (49). The control variables include the variables

over the grid, defined in equations (33)-(35), the price/dividend ratio p, and the price of a

risk-free bond q.

We define additional control variables as follows. Let y′1, . . . , y
′
M denote the future real-

izations of y′. Define a new variable denoted p′fm, which is the future price/dividend ratio,

defined in equation (53), conditional on realization y′m:

p′fm = p′f (y′m) . (56)

Similarly, let µ′
im denote future mean normalized wealth conditional on realization y′m deter-

mined by equation (55):

µ′
im = µ′

i (y
′
m) . (57)

Importantly, p′fm and µ′
im depend only on variables known in period t. Hence, we include

them in the vector of control variables together with the other variables that are determined in

period t: Y =
[{

CS
i ,E

S
i ,Z

S
i , p

′f
m,µ

′
im|i = 1, . . . , I, S = {U,E,B} ,m = 1, . . . ,M

}
, p, q

]
. The

solution of Y is denoted:

Y = G (X) . (58)

We can define the future mean normalized wealth as µ′
i =

∑
m

1 (y′ = y′m)µ
′
im, where µ

′
im is

defined by equation (57) and known in period t. It follows that the future vector of aggregate

state variables (49) can be written as a function of variables known in period t and the future

aggregate shock, denoted:

X′ = Θ(X,Y, y′) , (59)

where Θ is a known function. Substituting equation (58) yields the function H in equation

(52):

H (X, y′) = Θ (X,G (X) , y′) .

The solution is identified by the optimality conditions (42)-(44), the market-clearing con-
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ditions (50)-(51), and conditions (56)-(57). Together, these conditions can be written as:

0 = EF (Y′,Y,X′,X, y′) , (60)

where E denotes expectations with respect to the distribution of the aggregate shock y′.17

Equations (58), (59), and (60) complete the definition of the model.

H Solving and simulating the model

The model solution (58) provides the effects of the cross-sectional distribution, approxi-

mated by the moments in X, on the control variables Y. We approximate this solution by the

Taylor projection method developed by Levintal (2018). First, postulate a linear solution:18

Y = Xb,

and substitute in equations (59) and (60) to get:

0 = EF (Θ (X,Xb, y′)b,Xb,Θ(X,Xb, y′) ,X, y′) . (61)

Then, differentiate (61) with respect to X:

0 = E
∂F

∂X
(Θ (X,Xb, y′)b,Xb,Θ(X,Xb, y′) ,X, y′) . (62)

We evaluate equations (61)-(62) at a given state X0 and find b that satisfies these condi-

tions. As shown in Levintal (2018), the solution is accurate locally around X0.

To simulate the model, we start at an arbitrary distribution of normalized wealth µ,

measured by the CDF Fi (µ) ∀i, and discretized over a dense grid with 104 nodes. Denote

the simulated distribution in period t by F t. Starting at t = 0, we use F t to compute the

first moments µi (∀i) defined in equation (46), and store them in the aggregate state Xt,

defined in equation (49). In addition, we compute the higher moments ζi (∀i) defined in

equation (48), and pass them into equation (60) as fixed parameters. As explained in the

main text and in Section C, the local dynamics of the higher moments are not essential for

forecasting asset prices. Namely, forecasts based on first moments only (included in Xt) are

sufficiently accurate. However, the higher moments are important for aggregating accurately

across the distribution. Hence, they are included in the model as fixed parameters. This

17To define conditions (56)-(57) in the form of equation (60), we can use indicator functions that select
that relevant realization y′m.

18The method can be implemented at higher orders, but this is not necessary for our analysis.
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approach substantially reduces computational costs.

We solve the model at Xt and obtain the solution Yt = G (Xt). We use this solution

to compute asset prices and individual decisions across the wealth distribution, from which

we compute the next-period distribution F t+1. Repeating the same procedure, we compute

Xt+1 and evaluate the model conditions (60) under the previous solution. If the residuals are

too large, we solve the model again at the new state. We continue with the simulation until

the distribution converges.
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