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Abstract
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to be allocated to agents with strict quasi-convex preferences over
lotteries. We show that ex-ante, all feasible and Pareto efficient al-
locations give almost all agents binary lotteries. Therefore, even if
all preferences are the same, some identical agents necessarily receive
different lotteries. Our results provide simple criterion to show that
many popular allocation mechanisms are ex-ante inefficient. Assuming
the reduction of compound lotteries axiom, social welfare deteriorates
by first randomizing over these binary lotteries. Efficient full ex-ante
equality is achieved if agents satisfy the compound independence ax-
iom.
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1 Introduction

Ten thousand children need to be allocated into ten schools, each accommo-
dating one thousand of them. The schools are not the same, and parents may
rank them in different ways. However, if all children are considered equal,
then a social lottery seems to be the best solution, where each student has an
equal chance to attend each of the ten schools.1 This procedure is egalitarian
— everyone gets the same lottery — and feasible. But is it efficient? Specifi-
cally, is there no other procedure such that ex-ante, before people know their
allocated school, they will get a better lottery?

If individual preferences over the schools are not the same, then this pro-
cedure may be inefficient — for example, if each school is ranked best by
exactly 1000 parents. It is true that if all individuals are expected utility
maximizers and have the same preferences over lotteries (and in particular,
over the schools), then this procedure leads to an efficient allocation. This is
also the case if all have the same quasi-concave preferences over lotteries. But
if preferences are quasi-convex, and a mixture of two indifferent lotteries is
inferior to the mixed lotteries, then we show that this procedure is never effi-
cient, regardless of whether individual preferences are the same or not. Such
preferences are implied by some well known alternatives to expected util-
ity theory (for example, Tversky and Kahneman’s [35] Cumulative Prospect
Theory, where risk aversion implies quasi-convexity. See discussion below).

We analyze first an economy where N types of goods, with k units each,
need to be allocated, one for each of Nk agents. All agents have strict
preferences over the basic goods, and continuous, monotone (with respect
to first-order stochastic dominance, based on their ranking of the goods),
and strictly quasi-convex preferences over lotteries. Agents’ preferences over
the goods and over lotteries are not necessarily the same. Our first result
(Theorem 1) shows that any feasible and ex-ante Pareto efficient allocation
must give all but ‘not too many’ agents binary lotteries, where the proportion
of agents who hold non-binary lotteries vanishes as k increases.2 In particular,
even if all preferences are the same, some identical agents necessarily receive
different lotteries. For the case of identical preferences, we establish existence

1For example, divide the students into ten groups A1, . . . , A10 of size 1000 each. Choose
with probability 1

10 one of the ten permutations σ1, . . . , σ10 of (1, . . . , 10), where σj(i) =
(i+ j − 1) (mod 10) + 1, j = 1, . . . , 10.

2As we show in Section 2.1, this result, with a small caveat, essentially also holds when
individuals have different expected utility preferences.
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of a feasible and efficient solution, in which all the lotteries used are equally
attractive (Theorem 2). We also derive an upper bound on the number of
lotteries used.

We then consider a continuum economy with the same mass of agents and
goods, where each type has its own quasi-convex preferences over lotteries.
In this part we are looking for no-envy allocations, that is, allocations of
lotteries where no person prefers to receive somebody else’s lottery. We show
that under a mild condition on preferences, a feasible and efficient allocation
for the continuum economy with strictly quasi-convex preferences yields all
agents a binary lottery. The set of no-envy such allocations is not empty.
Moreover, if all agents have the same preferences, then equality with such
lotteries is obtained (Theorem 3).

The last part of the paper discusses possible merits of random allocations
of the binary lotteries among individuals with identical preferences. The
need for such an extra layer of randomization may be due to lack of con-
fidence in policy makers’ integrity or willingness of the allocating agencies
to demonstrate they are unbiased. We show how individual preferences over
two-stage lotteries imply different answers to this question. If they simplify
such lotteries by multiplying probabilities of the two stages, this extra ran-
domization will reduce participants utilities. But if decision makers instead
satisfy the compound independence axiom, according to which if they prefer
q to q′ they will prefer to replace q′ with q in any compound lottery that in-
cludes the former as an outcome, then such randomizations will not change
agents’ welfare.

Our analysis depends on the assumption that individual preferences over
lotteries are quasi-convex. This is, for example, the case with the popular
family of rank-dependent utilities models (Quiggin [27]), which also includes
Tversky and Kahneman’s [35] Cumulative Prospect Theory, where risk aver-
sion implies quasi-convexity. Other models which can exhibit quasi-convexity
include quadratic utility (Chew, Epstein, and Segal [7]), and Köszegi and Ra-
bin’s [19] models of reference-dependence. In addition, Machina [20] pointed
out that quasi-convexity occurs if, as is common in many applications such
as insurance purchasing, before the lottery is resolved, agents can take ac-
tions that affect their final utility. If the optimal action depends on the
probabilities, the induced maximum expected utility will be convex in the
probabilities, meaning that even if the underlying preferences are expected
utility, induced preferences over the ‘optimal’ lotteries will be quasi-convex.

The experimental evidence on quasi-convexity versus quasi-concavity is
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mixed. Most of the experimental literature that documents violations of
expected utility (e.g., Coombs and Huang [8]) found either preference for
randomization or aversion to it. Camerer and Ho [6] find support for quasi-
convexity over gains and quasi-concavity over losses. An example of behavior
that distinguishes between the two attitudes to mixture is the probabilistic
insurance problem of Kahneman and Tversky [17]. They showed that in
contrast with experimental evidence, any risk averse expected utility max-
imizer must prefer probabilistic insurance to regular insurance. Sarver [30]
pointed out that this result readily extends to the case of quasi-concave pref-
erences. In contrast, quasi-convex preferences can accommodate aversion to
probabilistic insurance together with risk aversion (for example, risk-averse
rank-dependent utility; see Segal [31]). Sarver further illustrates that quasi-
convex preferences are consistent with increasing marginal willingness to pay
for insurance at some levels of coverage; another plausible property that in
most models requires violation of risk aversion. In the context of group de-
cision making, Dillenberger and Raymond [11] show that quasi-convexity of
preferences in the individual level is equivalent to the consensus effect: indi-
viduals tend to conform to the choices of others in group decisions, compared
to choices made in isolation.

The idea of using lotteries to allocate indivisible goods is not new (see,
for example, Diamond [9], Hylland and Zeckhauser [16], and Rogerson [28]).
Moreover, the possible existence of an optimal solution that induces each
individual to face a binary lottery was already discussed in Hylland and
Zeckhauser [16], under expected utility preferences. Our approach differs
from these works. We show that in a large economy with quasi-convex pref-
erences, any ex-ante efficient solution must use only binary lotteries. Also, as
long as individuals simplify compound lotteries by multiplying the probabil-
ities, randomizing among these binary lotteries (thus giving identical people
the same ex-ante lottery) is always suboptimal.

In this paper we employ a strong notion of ex-ante efficiency, which takes
into consideration individuals’ preferences over lotteries. Two weaker notions
of efficiency were previously studied, ordinal efficiency and ex-post efficiency,
both only depend on individuals’ (ordinal) ranking of the final goods. As
we remark in Section 2.1, our results imply that many of the popular alloca-
tion mechanisms used in the literature are ex-ante inefficient. For example,
random serial dictatorship, that assigns the order of individuals using uni-
form distribution, is inefficient as is typically implies that each individual
faces a lottery with more than two elements in its support. Note that un-
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like in standard expected utility, this inefficiency does not rely on cardinal
information which can be used to assess the intensity of preferences over
the basic goods, but on the ordinal property of the preferences over lotteries
themselves, namely that they are quasi-convex in probabilities.

The paper is organized as follows. Section 2 lays out the basic problem in
a finite environment. Section 3 studies the case of a continuum economy. In
Section 4 we discuss the benefit of a pre-randomization over the allocation
lotteries. Section 5 concludes with a further discussion on binary lotteries.
All proofs are in the Appendix.

2 Finite Economies

Consider an economy with Nk individuals and with k units of each of N > 3
basic goods x1, . . . , xN . Denote by q = (q1, . . . , qN) the lottery (x1, q1; . . . ;
xN , qN) that yields xi with probability qi, i = 1, . . . , N . Each member n of so-
ciety has preferences �n over such lotteries, which are assumed to be contin-
uous, strictly monotonic (with respect to first-order stochastic dominance),
and strictly quasi-convex in probabilities. This last assumption captures a
dislike of probabilistic mixtures of lotteries: q ∼ q′ =⇒ q � αq + (1 − α)q′

for all α ∈ (0, 1).
A solution is a list of N -dimensional probability vectors q1, . . . , qNk, where

qn is the lottery faced by person j. We require for all n = 1, . . . , Nk,

N∑
i=1

qni = 1 (1)

That is, the probability that person n will get one of the items is 1. Also,
for i = 1, . . . , N ,

N∑
n=1

qni = k (2)

This condition means that with probability 1, each of the k items of each
good will be allocated to someone. The last equation implies

1

Nk

Nk∑
n=1

qn =

(
1

N
, . . . ,

1

N

)
(3)
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That is, the average lottery faced by the participants is a uniform distribution
over the N goods. Obviously, this distribution is feasible. The sum of its
components must be 1, as the original lottery satisfies eq. (1). And if the
average lottery is not uniform, then the original allocation is not feasible as
it must violate eq. (2).

Any solution q specifies the probability distribution over final outcomes
for each individual. The Birkhoff–von Neumann Theorem ([4],[39]) guaran-
tees that for any q there is always a (social) lottery over all possible per-
mutations of the allocations of the final outcomes that induces the marginal
probabilities of q.3

2.1 Ex-Ante Efficiency

We first characterize solutions that are feasible, that is, satisfy equations (1)
and (2), and are ex-ante Pareto efficient, in the sense that there is no other
solution in which some individuals are strictly better off and no one is worse
off.4 As preferences are continuous over a compact domain, feasible efficient
allocations exist. We show that in such allocations, and without any further
assumptions on individuals’ preferences, all but ‘not too many’ individuals
obtain either a degenerate lottery or a lottery with positive probabilities on
two goods only.

Definition 1 A lottery qn is binary if qni > 0 for no more than two outcomes.

Theorem 1 Suppose preferences are strictly quasi-convex. Let q be a fea-
sible and Pareto efficient solution. Then for any three goods xr, xs, xt, there
is at most one person n such that qnr , q

n
s , q

n
t > 0.

This result implies that to detect violation of ex-ante efficiency, it is
enough to observe an allocation in which two individuals receive lotteries
that put positive probabilities on the same three goods. The exact proba-
bilities are inconsequential. To illustrate the main argument of the theorem,
suppose that two agents m and n agree on their ranking of three goods

3We assume throughout that each agent is indifferent between all units of the same
good, so that we can confine our attention to the allocation of the goods themselves. This
would not be the case if, for example, we were to allocate seats in a given flight and
travelers prefer sitting in a window or an isle seat.

4Formally, there is no solution q̃ such that q̃n � qn for all n and q̃m � qm for some m.
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xr � xs � xt and that they both receive lotteries with positive probabil-
ities on these three goods, as in Figure 1 in the appendix. To make both
agents better off, transfer probabilities from one agent to another as in the
right-hand side of the figure, a violation of the efficiency assumption. The
same intuition extends also to cases where individuals’ ordinal rankings of
the goods are not identical. Note that this intuition applies also to agents
with different expected utility preferences. See Footnote 9 below.

Corollary 1 The number of individuals who hold non-binary lotteries in
any feasible and efficient allocation is bounded above by

(
N
3

)
.

The number of subsets of {1, . . . , N} where no two elements have an
intersection with more than two numbers is bounded above by

(
N
3

)
, which

is the case where all subsets have three elements each.5 Since the number
of individuals who hold non-binary lotteries is bounded above by

(
N
3

)
while

the total population size is Nk, their fraction becomes arbitrarily small as k
increases.

There are many popular mechanisms that can be used to allocate objects
among a group of agents. One example that is broadly used and is easy to
implement is random serial dictatorship. Randomly order the Nk individu-
als and let them choose in their turn the best good still available according
to their personal ranking. It is well known that using this mechanism, the
ultimate ex-post allocation of goods among agents is Pareto optimal (see,
for example, Abdulkadiroğlu and Sönmez [3]). Theorem 1 implies, however,
that ex-ante this mechanism is typically inefficient. To illustrate, suppose all
individuals have the same ranking over the basic goods and that each indi-
vidual has a probability 1

Nk
to be the ith in the order. Then, each individual

will perceive this as a uniform lottery over all the goods (with probability 1
N

each), which, according to the theorem, is inefficient. This argument is also
valid if individuals don’t have the same (ordinal) preferences over the goods,
in which case the ex-ante lottery induced by random serial dictatorship for
each agent is not necessarily uniform, yet typically has more than two goods
in its support.6 It thus follows that with quasi-convex preferences, random
serial dictatorship is typically inefficient ex-ante.

5This bound may be tighter under further assumptions on individuals’ preferences. See,
for example, the case of same preferences in Section 2.2.

6An extreme situation is where for each good i there are exactly k people who rank it
first in their ordinal preferences. In this case the (degenerate) lottery is ex-ante efficient,
but there is no need for a mechanism in the first place.
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This suggests a broader point. There are known results that imply the
equivalence of different randomized mechanisms and random serial dictator-
ship (Abdulkadiroğlu and Sönmez [3]; see also Pathak and Sethuraman [25]),
in the sense that they induce the same ex-ante probability distribution over
the final goods. But then those seemingly identical mechanisms are also typ-
ically ex-ante inefficient. If social planners know the individuals’ preferences
over lotteries, and in particular that they are strictly quasi-convex, they can
improve the agents’ welfare ex-ante.7 Importantly, this argument only relies
on simple, observable information: strict quasi-convexity of preferences and
the size of the supports of the lotteries that are used, rather than on the
intensity of preferences over the goods or the weights given to each of them
in the corresponding lotteries.8

While for exposition purposes we confine our attention to the case of strict
quasi-convex preferences, Theorem 1 generically also holds under expected
utility, which is linear (and hence also weakly quasi-convex) in probabili-
ties. Suppose all individuals are expected utility maximizers. Hylland and
Zeckhauser [16] use competitive equilibrium with equal incomes to show the
existence of a solution in which almost all agents receive a binary lottery.9

Our result holds without relying on any market mechanism.
Also assuming expected utility, Bogomolnaia and Moulin [5] show how

random serial dictatorship, which uses uniform distribution to rank agents, is
not necessarily even ordinally efficient; it may induce for each agent a distri-
bution over the goods that is stochastically dominated, with respect to that
agent’s ordinal preferences, by another feasible distribution. Their suggested

7Note that we ignore here the question of strategy-proofness, that is, how to guarantee
that agents truly reveal their preferences. We are instead focusing only on the properties
of the induced allocation (of lotteries) for any given set of preferences.

8Abdulkadiroğlu, Che, and Yasuda [2] point out that cardinal information allows the
social planner to take into consideration preference intensities. These can be used to
improve individuals’ welfare over mechanisms that randomly break ties between agents
with identical ordinal preferences over the goods.

9Under expected utility, if all agents have the same preferences over lotteries then there
are many efficient solutions, including interior ones. Our results are thus more prominent
once preferences are cardinally different. More precisely, for any three goods xr, xs, and
xt, take two expected utility agents m and n with Bernoulli utility um and un, respectively.

If um(xs)−um(xt)
um(xr)−um(xs)

6= un(xs)−un(xt)
un(xr)−un(xs)

, that is, if the slopes of their indifference curves in the

corresponding probability triangles are not the same, then any allocation that gives both
agents lotteries with positive probabilities on these three goods is inefficient. The proof is
identical to the one given in the appendix for Theorem 1.
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probabilistic serial mechanism (which is ordinally efficient) is typically not
ex-ante efficient. It is also worth noting that their solution implies that agents
with the same ordinal preferences must receive the same lottery over goods.
In our case, even if all agents have the same cardinal preferences (and are
strictly quasi-convex), necessarily not all of them receive the same lottery, as
otherwise, the same binary lottery to all will not allocate all available goods.

2.2 Same Preferences

When all individuals have the same preferences, it is natural to require that
a just mechanism will offer them the exact same outcome. But since, by
Theorem 1, efficient allocations of lotteries with quasi-convex preferences
are inconsistent with such a requirement, we instead impose equality in the
sense that identical agents receive equally attractive outcomes. That is, if
�1 = . . . =�Nk =�, then q1 ∼ . . . ∼ qNk.

The next result uses the floor function (or the greatest integer function),
which gives for any real number x the greatest integer less than or equal to
x.

Theorem 2 Suppose that �1 = . . . =�Nk =�. Then:

1. There exist feasible and efficient solutions that satisfy equality.

2. The number of different binary lotteries used in any optimal solution
is bounded above by M=floor(N

2

4
).

3. An optimal solution yields all but at most M=floor(N
2(N−2)

8
) agents a

binary lottery.

The number of binary lotteries used in any optimal solution is bounded
above by the number of non-dominated binary lotteries that can simulta-
neously be used. Suppose, without loss of generality, that all agents agree
that x1 � x2 � . . . � xN . If one of the lotteries used involves outcomes xi
and xj, with i < j, then since all lotteries on two outcomes better than xi
dominate it, and all lotteries on outcomes inferior to xj are dominated by it,
such lotteries cannot be part of the optimal solution.

Similarly, the bound on the number of agents who hold non-binary lot-
teries (which refines, for N > 4, the

(
N
3

)
bound from the general case of

Theorem 1) is the number of non-dominated lotteries with three possible
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outcomes that can simultaneously be used. Note that many individuals may
hold the same binary lottery, but only one individual can hold any non-binary
lottery. The actual number of different lotteries, binary and non-binary, used
in an optimal solution depends on the individuals’ preferences.

3 Continuum Economies

Consider a continuum economy with a unit mass A of N equally sized (with
respect to the Lebesgue measure µ) types of agents A1, . . . ,AN . There is
a unit mass B of N goods x1, . . . , xN to be allocated among them, where
the mass of each unit is 1

N
.10 Each of the individuals of type i has strictly

quasi-convex preferences �i over lotteries over the N goods.
Our aim in this paper is to analyze possible mechanisms for the alloca-

tion of goods which are desired by all, as otherwise there is no need for a
compromise. Our analysis therefore fits best a situation where everyone has
the same preferences over the N goods (even if not the same preferences over
lotteries over these goods). Nevertheless, our mathematical results hold on a
wider range of preferences, with the only restriction that all agents agree that
a certain good, say x1, is best. That is, for all i = 1, . . . , N and j = 2, . . . , N ,
x1 �i xj, but there are no other restrictions on the way individuals rank the
outcomes x2, . . . , xN .

With a little abuse of notation, a point q in the (N−1)-dimensional prob-
ability simplex ∆N−1 represents the lottery (x1, q1; . . . ;xN−1, qN−1;xN , 1 −∑N−1

i=1 qi) and we now denote by qa ∈ ∆N−1 the lottery obtained by person
a. An allocation is a measurable function f : A → ∆N−1. The allocation f
is feasible if

∫
A fi(a)dµ = 1

N
, i = 1, . . . , N − 1 (this is the analogue condition

to eq. (3) of Section 2). It is efficient if there is no allocation g such that ∀i
and ∀a ∈ Ai, g(a) �i f(a), and a positive mass of agents strictly prefer their
outcome under g to their outcome from f . To simplify the presentation, we’ll
use the term “all” for “all but a zero measure of agents.” We are interested in

10In fact, we can assume J types of goods, and that both the N types of individuals,
as well as the J types of goods, are not of same size. However if the sizes are rational
numbers, we can assume without loss of generality that J = N and the sizes of the different
goods are the same; and if they are irrational, we’ll obtain our results using continuity,
where the economy is the limit of economies with rational sizes. We therefore assume
throughout J = N and that the sizes of the types of agents and of the goods are all 1

N .
See Footnote 12 below for a further generalization.
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characterizing allocations that are efficient and satisfy the following No-Envy
criterion.

No-Envy For all a and b, qa �a qb.

No-Envy postulates that in the allocation of lotteries, no individual would
prefer to replace their lottery with that of any other agent.11 Clearly, if
�1= . . . =�N=�, then No-Envy implies equality, in the sense that for all
a, b ∈ A, f(a) ∼ f(b).

No-Envy is appealing on a normative grounds. Furthermore, in a stan-
dard (convex) economy, it is compatible with the Efficiency requirement (see,
for example, Varian [37]). But in a non-convex economy as ours, it is not
guaranteed that the two coexist (see, for example, Vohra [38] and Mani-
quet [22]). We show however that in the present context, the continuum
economy guarantees the existence of no-envy allocations.

Theorem 3 A feasible and efficient allocation for the continuum economy
with strictly quasi-convex preferences yields all agents a binary lottery. The
set of no-envy such allocations is not empty, and if all agents have the same
preferences, then equality with such lotteries is obtained.

We offer here an outline of the proof. The first step shows, similarly
to the proof of Theorem 1, that efficient allocations must yield all agents a
binary lottery. Next, we start from an allocation where everyone is facing the
lottery that gives them an equal chance for each of the goods and employ a
known technique of demand-sets convexification (see Mas-Colell, Whinston,
and Green [24, Section 17.I]) to obtain a competitive market equilibrium
prices and allocations. Given these prices, all agents will maximize their
utility along the same budget set, so No-Envy is guaranteed. Competitive
equilibria are feasible and efficient, hence the claim of the theorem.

There is however one issue that requires special attention in which our
analysis of the market equilibrium differs from the literature. Formally, the
lottery (x1, q1; . . . ;xN , 1−

∑N−1
i=1 qi) is represented as the vector (q1, . . . , qN−1)

in the N−1-dimensional simplex. This is different from the standard model,
where the domain of preferences is not bounded from above. To see why this
may create a problem, consider Example 1 in the Appendix with N = 3. The
preferences of this example are monotonic in the probabilities q1 and q2, but

11The definition is again in the ex-ante sense, before agents know the realization of the
lotteries they receive.
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they do not satisfy monotonicity with respect to first order stochastic dom-
inance, and equilibrium does not exist. We show in the proof of Theorem 3
that this stronger version of monotonicity eliminates the existence problem.

Remark 1 Let T be the number of lotteries used in the proposed solution.
Then for h = 1, 2, ..., T there is a continuum of agents who receive the same
binary lottery, say (xh, ρh; yh, 1−ρh) for some outcomes xh, yh and ρh ∈ [0, 1].
The implementation of this, so that the fraction of the people in this group
that receives xh is ρh, can be guaranteed by using the appropriate law of large
numbers for a continuum of independent random variables. Such approach
appears, for example, in Sun [34], and we adopt here his measure theoretic
framework.12

4 Ex-ante Lotteries

If preferences are strictly quasi-convex, then giving two identical agents the
same interior outcome must be inefficient, as moving in opposite directions
along a supporting plane of the indifference curve will make both better off.
Instead of equality in outcomes, allocation mechanisms will seek a weaker
notion of equality, where identical agents will be indifferent between their
respective outcomes. This is indeed the conclusion from Theorem 3, where
everyone receives a binary lottery, but not the same one.

But indifference between the outcomes does not imply indifference to the
procedures used to allocate these outcomes. A person may be indifferent
between two seemingly identical objects of art left by his grandparents. Yet
realizing that at least one of them must be a faked copy of the original, he
will not trust his cousin, a museum curator, to choose first. In the context
of the school allocation problem, parents may suspect the social planner
of having some private information regarding the schools which will imply
better lotteries for some families favored by the authorities.

There is a simple way to avoid such potential mistrust: Everyone will face
the same lottery P over the set of the binary lotteries. The learned cousin

12We assumed that there are N blocks of agents so that the analysis of the continuum
will parallel the finite case. If there is a continuum of types where the measure of each
type is zero, then as in Mas-Colell, Whinston, and Green [24, p. 629] the actual allocation
doesn’t require the analysis of this remark, as almost all agents will have a unique lottery
in their demand set.

12



may know which of the two vases is Ming and which is a modern counterfeit,
but she will not be able to use this information if the allocation is dictated by
the outcome of a fair coin. Similarly, even if the social planner favors some
families, inside information about the schools becomes useless if the binary
lotteries of Theorem 3 are allocated by a lottery.13 Given that all individuals
will face the exact same lottery, this procedure guarantees full equality in
the ex-ante stage.

The effectiveness of this procedure crucially depends on the agents’ at-
titude towards multi-stage lotteries. Denote the relevant binary lotteries
q(1), . . . , q(T ). If agents care only about the overall probability distribution
over final outcomes, then they will perceive a compound lottery over lotteries
as a simple lottery over final outcomes, where the probability of each xi is∑

j P (q(j))q(j)(xi). But then, if preferences over simple lotteries are strictly
quasi-convex, all individuals will be worse off compared to their initially held
lottery.

Suppose, however, that individuals do not reduce compound lotteries us-
ing the laws of probability, and instead satisfy the compound independence
axiom (Segal [32], Dillenberger [10]). This axiom prescribes that if a per-
son is indifferent between receiving either q or q′ for sure, then they will
be indifferent to replacing q with q′ in any compound lottery that has q in
its support. Since, by construction, equality implies that all agents are in-
different between all lotteries in the suggested allocation, they will also be
indifferent to any lottery over them. In other words, compound independence
guarantees full ex-ante equality among agents without reducing their welfare.
The experimental support for compound independence, and the lack of such
support for the reduction of compound lotteries axiom,14 suggest that this is
indeed a fair procedure to follow.

13The emphasize here is on a real randomization rather than an imaginary randomization
that each agent may entertain about his possibility to receive any of the objects. Only the
former will remove agents’ concerns for unfairness or of a biased use of planer’s private
information in the allocation decision.

14See, among others, Halevy [12], Abdellaoui, Klibanoff, and Placido [1], Harrison,
Mart́ınez-Correa, and Swarthout [13], and Masatlioglu, Orhun, and Raymond [23].
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5 Concluding Remarks

The use of binary lotteries is pervasive in economics. Many experimental
works are conducted with choices among such lotteries (or between them
and sure outcomes), where the main rationale for using binary lotteries is
that they are easily interpretable. The Binary Lottery Procedure, which
pays subjects in binary lottery tickets instead of monetary amounts, is of-
ten employed to induce risk neutrality of subjects in a belief elicitation task
(see, for example, Harrison, Mart́ınez-Correab, Swarthout, and Ulm [14] and
Hossain and Okui [15]).15 Some recent theoretical papers use simplicity cri-
teria to argue for the attractiveness of binary lotteries in terms of minimizing
complexity costs (for example, Puri [26]), and of binary acts, that are always
‘well-understood’ and can be used as a tool for making difficult comparisons
(Valenzuela-Stookey [36]).

In our setting, that (almost) everyone should receive a binary lottery fol-
lows mathematically from the assumption that all individual preferences are
quasi-convex. As argued above, this gives us a simple necessary condition
that can be used to assess whether an allocation of lotteries is ex-ante effi-
cient. But as a social mechanism, binary lotteries have another independent
attraction of their own. When facing a lottery over a set of outcomes on
which they do not have full information, people may wait till they know
what outcome they won before learning more about it. But as it is quite
natural for people to look for information about the potential outcomes be-
fore the lottery is played, it is clearly better for them to face a lottery with
fewer outcomes.

In Section 4 we suggested another layer of social randomization over the
binary lotteries that will be used. If people reduce lotteries by multiplying
the probabilities then they will probably need to evaluate all N outcomes.
But if they use the compound independence axiom, then they view the first
stage as a lottery over lotteries and will defer evaluating the outcomes till
the next stage, when they’ll face a lottery over two outcomes only.

15This method was first introduced by Smith [33] and Roth and Malouf [29]. There is
an on going debate about its descriptive accuracy (see Kirchkamp, Oechssler, and Sofianos
[18] and references therein).
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Appendix

Proof of Theorem 1: Suppose that for a = n,m, qar , q
a
s , q

a
t > 0. If the two

individuals do not have the same ordinal preferences over the three goods,
for example, if xr �n xs but xs �m xr, then transfer ε probability of xr
from person m to n and ε probability of xs from n to m to obtain a feasible
allocation which is strictly preferred to the original one by n and m and
indifferent to the original one by everyone else.

Suppose now that for a = m,n, xr �a xs �a xt and as before, that
qar , q

a
s , q

a
t > 0. For a = m,n, let q̄a = qar + qas + qat . The two modified

Machina-Marschak triangles below depict probability allocations over the
three outcomes for individuals m and n that do not change the sums of
these probabilities (see Figure 1 below). All the changes in this proof are
sufficiently small so that they can be done without violating eqs. (1) and (2).
In both panels, the probability of xt is measured on the horizontal axis and
that of xr on the vertical one. The only values of q that will be changed
are those of qai for a = m,n and i = r, s, t. We will therefore deal with
the induced preferences over the above triangles and ignore the rest of the
probabilities. To simplify notation, we write (qat , q

a
r ) for (qat , q̄

a− qat − qar , qar ),
which by itself stands for (qat , q̄

a − qat − qar , qar , qa−(t,s,r)).

q̄m

q̄m

q̄n

q̄n

qmt qmt +ε

qmr

qmr +τε

qntqnt−ε

qnr

qnr−τε

Figure 1: Changes in the allocations of individuals m and n

1
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Without loss of generality, one of the supporting slopes to the indiffer-
ence curve of person n through (qnt , q

n
r ) is weakly steeper than one of the

supporting slopes to the indifference curve of person m through (qmt , q
m
r )

(such slopes exist by the quasi-convexity of the preferences). Let τ be a
slope between these two values. Since preferences are strictly quasi-convex,
we get that for a sufficiently small ε > 0, (qmt + ε, qmr + τε) �m (qmt , q

m
r ) and

(qnt − ε, qnr − τε) �n (qnt , q
n
r ). Observe that eqs. (1) and (2) are still satisfied

and everyone else is indifferent between the new and the old lotteries. �

Proof of Theorem 2: Let q be a feasible egalitarian solution in which
two individuals, m and n, receive units of the goods xr � xs � xt with
positive probabilities, for example, a lottery q that yields everybody the
lottery ( 1

N
, . . . , 1

N
). As in the proof of Theorem 1 (see figure 1), transfer

probabilities from one person to the other to make both of them strictly
better off.

Suppose that person m is now better off than person n. That is, (qmt +
ε, qmr +τε, qm−t,r) � (qnt −ε, qnr−τε, qn−t,r). Transfer probability of r from person
m to n (and the same probability of s from n to m) to equate their utilities,
which are still higher than their original utilities under p, hence higher than
the utility of everyone else. Likewise, if person n is better off than person m,
we’ll transfer probability of s from n to m and probability of t from m to n.

Let V be a continuous representation of the common �. The next step in
the proof shows that we can utilize this improvement in the utilities of m and
n to benefit everyone else while maintaining equality. Since for all b 6= m,n,
qm ∼ qn � qb and individuals m and n both receive non-degenerate lotteries,
there are for each a = m,n and b 6= m,n goods i(ab) and j(ab) such that
xi(ab) � xj(ab) and qai(ab), q

b
j(ab) > 0. Transfer now probability of xi(ab) from

persons a = m,n to person b 6= m,n in exchange for probability of xj(ab)
while maintaining equal utility to m and n and equal utility to everyone else,
until the decreased utility of the formers match those of the rest. Continuity
implies the possibility of this procedure. This new allocation satisfies eqs. (1)
and (2). It satisfies equality and by monotonicity everyone prefers it to the
original one, hence ex-ante efficiency is violated.

The set of solutions satisfying equality is not empty, for example, q1 =
. . . = qNk = ( 1

N
, . . . , 1

N
). Let v = sup{V (q) : q is a solution satisfying

equality} and for h = 1, . . ., let qh = (q1,h, . . . , qNk,h) such that V (qh) → v.
Since all probabilities are between 0 and 1, it follows by standard arguments
that there is a subsequence of qh, without loss of generality the sequence itself,
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such that for all n = 1, . . . , Nk, qn,h → qn,∗. The vector q∗ = (q1,∗, . . . , qNk,∗)
satisfies eqs. (1) and (2), hence it is a solution. Since V is continuous it
satisfies equality, and as by the continuity of V , V (qn,∗) = vn, it follows by
the definition of v that q∗ is optimal.

We next establish the bound M on the number of possible binary lotteries.
Relabel the basic goods so that all agents agree that x1 � x2 � . . . � xN .
Consider the set B := {(xi, xj) : i 6 N

2
, j > N

2
}. Note that for any pair

(xk, xl) /∈ B, there is (xi, xj) ∈ B with either (i) j 6 l, k with at least one
strict inequality; or (ii) i > l, k, with at least one strict inequality. This
means that either any lottery between xi and xj is strictly better than any
lottery between xk and xl or the other way around, and hence such lotteries
cannot be given to different agents while maintaining equality. On the other
hand, this is not the case for any (xi, xj), (x

′
i, x
′
j) ∈ B, as x′i < xj and x′j > xi.

The cardinality of B is floor(N
2

4
):= max{m ∈ Z : m ≤ N2

4
}, where Z is the

set of all integers. To show that there is no other such set of ‘non-dominated’
pairs with greater cardinality, we note that, mathematically, the bound M
cannot be greater than the bound on the number of edges in any graph on
N vertices with no triangle. Mantel’s theorem (Mantel [21]) states that such
graph contains at most floor(N

2

4
) edges. Indeed, the set B described above

can be represented as an N -vertex complete balanced bipartite graph that
has no triangle subgraph and has exactly floor(N

2

4
) edges.

Establishing the bound M on the number of possible non-binary lotteries
is similar. For the same relabeling of the goods as above, let B∗ be a maximal
set of non-binary lotteries. We show first that there is `∗ such that for all
(xi, xj, xk) ∈ B∗ such that i < j < k, either i, j 6 `∗ and k > `∗, or i 6 `∗

and j, k > `∗. Suppose not. Then for every ` either there is (xi, xj, xk) ∈ B∗
such that i, j, k 6 `∗, or there is (xi, xj, xk) ∈ B∗ such that i, j, k > `∗. Let ¯̀

be the highest index for which there is (xi, xj, xk) ∈ B∗ such that i, j, k > ¯̀.
Clearly i = ¯̀ + 1 (otherwise ¯̀ is not the highest such index). Therefore
there is (xi′ , xj′ , xk′) ∈ B∗ such that i′, j′, k′ 6 ¯̀+ 1, but then all lotteries
with support (xi′ , xj′ , xk′) are strictly preferred to all lotteries with support
(xi, xj, xk), so no-envy cannot be satisfied.

The maximal number or triplets given `∗ is(
`∗

2

)
× (N − `∗) + `∗ ×

(
N − `∗

2

)
=
`∗(N − `∗)(N − 2)

2

This expression is maximized at `∗ = N
2

, where it is equal to floor(N
2(N−2)

8
). �
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Example 1 Consider a continuum economy as in Section 3 with N = 3.
The preferences �1, �2, and �3 over ∆2 = {(q1, q2) ∈ <2

+ : q1 + q2 6 1}
can be represented by V1 = V2 = 3q1 + q2 and V3 = 6.25q21 + q22. The initial
lottery held by each person is represented by the point (1

3
, 1
3
) ∈ ∆2. Let the

price of q2 be 1, and denote the price of q1 by π. The convexified demand
correspondences of the various agents are given by

D1(π) = D2(π) =



(1, 0) π 6 1
2

(1+π
3π
, 0) 1

2
< π < 3

{(3+5α
18

, 5(1−α)
6

) : α ∈ [0, 1]} π = 3

( π−2
3π−3 ,

2π−1
3π−3) π > 3

D3(π) =



(1, 0) π 6 1
2

(1+π
3π
, 0) 1

2
< π < 5

{(2α
5
, 1− α) : α ∈ [0, 1]} π = 5

(0, 1) 5 < π < 6.8

(8α
29
, 29−8α

29
) : α ∈ [0, 1] π = 6.8

( π−2
3π−3 ,

2π−1
3π−3) π > 6.8

Clearly, there is no π such that 1
3
[D1(π) +D2(π) +D3(π)] = (1

3
, 1
3
). �

Proof of Theorem 3: We show first that an efficient solution yields every-
one a binary lottery. Suppose that q is an efficient solution with γ > 0 mass
of individuals receiving non-binary lotteries. Without loss of generality, they
all receive with positive probabilities each of the three outcomes xr, xs, xt
where r > s > t. That is, µ{a : fi(a) > 0, i = r, s, t} > 0. As µ is σ-additive,
it follows that µ(A) > 0, where A = {a : fi(a) > ε, i = r, s, t} for some
ε > 0.

For every a ∈ A, let Da be the triangle {(qt, qr) ∈ <2
+ : qt + qr 6

q̄a = fr(a) + fs(a) + ft(a)}. Let τa be the slope of a supporting line to
the indifference curve in Da through (ft(a), fr(a)). Let τ ∗ be such that
µ(a : τa > τ ∗), µ(a : τa < τ ∗) 6 1

2
µ(A). Divide A into two sets A1 and

A2 such that µ(A1) = µ(A2) = 1
2
µ(A), for all a ∈ A1, τa > τ ∗ and for all

18



a ∈ A2, τa 6 τ ∗. We now follow the procedure described in the proof of
Theorem 1, where individuals m and n are replaced with A1 and A2.

Let ΠN−1 = {(π1, . . . , πN−1) ∈ <N−1+ :
∑N−1

i=1 πi = 1} be a prices simplex.
For π ∈ ΠN−1, let Di(π) = {q ∈ ∆N−1 : π· q 6 1

N
and π ·q′ 6 1

N
=⇒ q �i q′},

i = 1, . . . , N , and let D∗i (π) = Conv(Di(π)). These are the convexified
demand sets of the various types given prices π. Observe that since the
preferences �i are strictly quasi-convex, the set Di(π) is a finite set of binary
lotteries. In the continuum economy, these lotteries can be allocated to the
type-i individuals in such proportions to obtain any point in D∗i (π).

Suppose that for some q ∈ Di(π), π · q < 1
N

. If q = (1, 0, . . . , 0) := δ1,
then since for all i, x1 is the best outcome, it follows that for all i, Di(π) = δ1
and π cannot be a Walrasian equilibrium price-vector. Otherwise, there is
α ∈ (0, 1] such that π · [αδ1 +(1−α)p] = 1

N
. By monotonicity with respect to

first-order stochastic dominance, αδ1 + (1− α)q �i q, a contradiction to the
definition of Di(π). It thus follows that Di(π) = {q ∈ ∆N−1 : π · q = 1

N
and

π · q′ 6 1
N

=⇒ q �i q′}. Clearly the correspondences Di(π) (and therefore
D∗i (π)) are upper hemi-continuous, hence there exists an equilibrium vector
π and allocations q∗i in D∗i (π), i = 1, . . . , N , such that

∑N
i=1 q

∗
i = ( 1

N
, . . . , 1

N
).

These allocations are efficient, feasible, and since all agents face the same
“price” vector π, they satisfy no-envy. The first part of the proof implies
that all agents receive a binary lottery, hence the claim of the theorem. �
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[2] Abdulkadiroğlu, A., Y. Che, and Y. Yasuda, 2015. “Expanding ”Choice”
in School Choice,” American Economic Journal: Microeconomics 7 (1):
1-42.
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