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1 Introduction

Extensive work in economics and psychology has documented individuals’ systematic

biases and errors when interpreting information and forming beliefs. A rich literature

has explored how to model such inaccurate updating. Two modeling approaches are

commonly used: the ‘non-Bayesian’ approach and the ‘misspecified model’ approach.

In the non-Bayesian approach, a particular bias is parameterized with an updating rule

that maps signal realizations to posterior beliefs (e.g. under- and overreaction in Epstein,

Noor, and Sandroni (2010).) In the misspecified model approach, a subjective model of

the signal generating process describes how individuals interpret signals; the individual

forms beliefs using Bayes rule with respect to this model but the model may be wrong.

Each approach has distinct advantages. The misspecified model approach can cap-

ture a variety of behavioral biases without departing too far from the standard frame-

work. It is therefore relatively easy to adapt existing methods to this approach. More-

over, a misspecified model is ‘complete’: in addition to specifying how an agent forms

beliefs, it also pins down how an agent forms expectations before observing information,

which can be relevant for ex-ante decisions and strategic interaction. Finally, the ap-

proach is amenable to analysis in a general context. A large literature establishes general

learning properties for misspecified models (e.g. Bohren and Hauser (2021); Fudenberg,

Lanzani, and Strack (2022); Frick, Iijima, and Ishii (2020b)) and develops a general

solution concept—Berk-Nash equilibrium (Esponda and Pouzo 2016).

In contrast, the non-Bayesian approach provides a transparent link between the

conceptual form of the bias (e.g. overprecision, partisan bias) and the resulting belief

distortion, highlighting the specific way in which an agent distorts information. For

example, the agent may miscode certain signal realizations, double-count signals, or slant

beliefs in a particular direction. This connection to the underlying psychological friction

allows for empirically validated modeling choices. Additionally, this is the approach often

used in empirical work, as an updating rule can be identified from belief data (Danz,

Vesterlund, and Wilson 2022). Importantly, however, the approach is incomplete: it does

not pin down anticipated beliefs. The analysis is also typically conducted on a case-by-

case basis to understand how a specific updating rule impacts learning, to determine

which solution concept to pair with an updating rule, or to pin down expectations.

For example, Rabin and Schrag (1999); Epstein et al. (2010) study how confirmation

bias and over/undereaction, respectively, impact asymptotic beliefs, Eyster and Rabin

(2010) define a solution concept for naive learning, and Benjamin, Bodoh-Creed, and

Rabin (2019) outline an assumption to pin down anticipated beliefs in a setting with

base-rate neglect. This contrasts with the misspecified model approach, which provides a

general and complete framework for studying biases but less guidance on how to capture
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a specific bias.

The goal of this paper is to link these two approaches in order to leverage the ad-

vantages of each. We first determine when it is possible to represent an updating rule

as a misspecified model, in the sense that the model prescribes the same posterior be-

lief as the updating rule following each signal realization. While we show that such a

representation exists for many commonly used updating rules, in general, this repre-

sentation is not unique. We next show that an agent’s forecast of her future beliefs is

the other component of belief formation needed to pin down a unique representation.

Importantly for empirical work, a forecast is also identifiable from belief data.1 Bringing

these pieces together, our main result establishes necessary and sufficient conditions for

a given updating rule and forecast to be jointly represented and constructs this unique

representation. Finally, we explore how to select a forecast to pair with an updating

rule. From the perspective of the misspecified model approach, these results clarify

the belief formation restrictions implicit in using this approach, decompose the model

into empirically identifiable components, and highlight how these components isolate

the forms of bias that a given model induces. From the perspective of the non-Bayesian

approach, these results provide guidance on how to incorporate a given form of bias

into more complex decision problems (e.g. strategic settings, settings with an ex-ante

decision before information arrives) and yield a set of off-the-shelf tools that can be used

to immediately establish important results such as the convergence of beliefs.

We now describe our setting in more detail. We focus on an informational environ-

ment in which an agent learns about a hidden state from a signal. The non-Bayesian

approach consists of an updating rule mapping each signal realization to a posterior

belief and a forecast describing the agent’s anticipated distribution of her posterior be-

lief after observing the signal. This set-up draws a distinction between the prospective

bias of the agent—how the agent reasons about information yet to be realized via the

forecast—and the retrospective bias—how the agent reasons about realized information

via the updating rule.2 The misspecified model approach consists of a family of sub-

jective distributions over the signal space, one for each state. A model is misspecified

when it differs from the true (objective) signal distribution. We say a misspecified model

represents an updating rule when the posterior belief prescribed by the updating rule

is equal to the posterior belief derived from Bayesian updating with respect to the mis-

specified model. Similarly, a misspecified model represents a forecast when the predicted

1See Chambers and Lambert (2021); Karni (2020) for methods to elicit an agent’s prediction of her
own future belief and Manski and Neri (2013) for a method to elicit an agent’s prediction of others’
beliefs.

2Benjamin, Rabin, and Raymond (2016) drew a similar distinction between how an agent retro-
spectively versus prospectively processed information in models of non-Bayesian updating; we discuss
the conceptual differences with our distinction in Section 1.1.
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distribution of the posterior belief derived from the misspecified model is equal to the

forecast.

We first derive individual necessary and sufficient conditions for an updating rule

or a forecast to be represented. The condition for the updating rule is quite mild: it

must be responsive, in that the prior belief is contained in the relative interior of the

convex hull of the set of posterior beliefs prescribed by the updating rule. This rules

out updating rules that, for example, move beliefs towards the same state following

all signal realizations. It is satisfied by many updating rules commonly used in the

literature (e.g. overreaction (Epstein et al. 2010), partisan bias (Bohren and Hauser

2021), confirmation bias (Rabin and Schrag 1999)). The condition for a forecast is more

restrictive: it must be plausible, in that its expectation is equal to the prior. This is

a misspecified analogue of Bayes-plausibility (Kamenica and Gentzkow 2011). In both

cases, it is straightforward to show that these conditions are a necessary implication of

Bayesian updating, as required in a misspecified model; the more innovative aspect is

to show that these conditions are also sufficient.

We then bring these results together to establish necessary and sufficient conditions

for an updating rule and a forecast to be jointly represented by the same misspecified

model. In addition to the two conditions described above, a third no unexpected be-

liefs condition is needed. This condition requires the set of posteriors prescribed by the

updating rule to be equal to the support of the forecast. In other words, any set of pos-

terior beliefs that the agent anticipates with positive probability must arise with positive

probability given her updating rule. This condition is mild for sufficiently rich signal

spaces. A given updating rule can therefore be paired with many different forecasts,

and similarly for a given forecast. This shows that a misspecified model can feature

very different forms of prospective and retrospective bias—neither component places

much restriction on the form of the other. Together, these conditions clarify the belief

formation restrictions implicit in using the misspecified model approach: (i) responsive

updating rules, (ii) plausible forecasts, and (iii) no unexpected beliefs. We show that the

second and third condition imply the first, so (i) is redundant. Therefore, any updating

rule and forecast satisfying (ii) and (iii) have a misspecified model representation.

Importantly, such a representation is unique. From the perspective of the misspeci-

fied model approach, this establishes that a misspecified model can be uniquely decom-

posed into the prospective and retrospective biases that it induces. The prospective

bias reflected in the forecast captures errors in anticipating future belief formation; the

retrospective bias reflected in the updating rule captures how an agent misinterprets

information after it arrives. Every misspecified model is uniquely identified by these

two components, and they describe all biases that the model induces. This provides a
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convenient formulation for a misspecified model in terms of the resulting biases—and

also, in terms of components that can be identified from belief data. Moreover, it es-

tablishes that the induced updating rule and forecast together pin down all behavioral

implications of a misspecified model, in that the model imposes no further belief dis-

tortions beyond those reflected in these two components. From the perspective of the

non-Bayesian approach, this result establishes that for any given updating rule, select-

ing a forecast uniquely pins down a misspecified model that can be used for analysis.

Moreover, the chosen form of retrospective bias places very little structure on the choice

of prospective bias, and vice versa.

Finally, our main result provides a method to construct the misspecified model that

represents a desired updating rule and forecast. This construction provides a simple

formula that can be easily used in applications.

Since the majority of the non-Bayesian updating literature focuses on updating rules,

we next provide guidance on how to select a forecast to pair with a given updating rule.

We propose two reasonable choices, both of which use the correctly specified model to

impose structure on anticipated beliefs. We first consider the accurate forecast, where

the agent’s anticipated distribution of her posterior belief is equal to the true ex-ante

distribution. In other words, the agent exhibits no prospective bias. The accurate

forecast automatically satisfies no unexpected beliefs. Therefore, if it is plausible, then it

has a (unique) representation. Moreover, the corresponding misspecified model satisfies

a property we call introspection-proof. This property ensures that even with an infinite

amount of data, a misspecified agent would not observe inconsistencies with her model.

While the introspection-proof property provides a natural constraint in many settings,

the accurate forecast is not plausible for many common updating rules. This means

that many common updating rules cannot be represented by an introspection-proof

misspecified model.

We next define a forecast that captures a natural analogue to the naiveté assumption

used in many behavioral settings. The naive consistent forecast corresponds to the

accurate forecast of an agent who uses Bayes rule to update beliefs. An agent with

a naive consistent forecast believes that she will correctly interpret information in the

future—she believes that she has no retrospective bias. But when she actually updates

her beliefs, she uses a biased updating rule.3 The naive consistent forecast is plausible

by definition. Therefore, if it satisfies the no unexpected beliefs property, then it has

a (unique) representation. In contrast to introspection-proofness, a naive consistent

representation exists for many common updating rules.

3Benjamin et al. (2019) study an updating rule that features base rate neglect and close their model
with an assumption that results in a naive consistent forecast.
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In two applications, we demonstrate how our results yield novel insights in specific

settings. The first shows how discrimination can emerge endogenously due to self-image

concerns. Consider a dual-selves model in which a manager learns about her own and

others’ ability (high or low) from a signal, which includes a test score and a group identity.

The first self selects an updating rule to interpret this signal and the second self uses this

updating rule to form beliefs. The second self has an intrinsic value for believing that he

is a high type and an instrumental value for learning the types of others. He must use

the same updating rule to interpret his own and others’ signals. A natural constraint

to place on the first self’s choice of updating rule is that any bias will be undetectable

by the second self, i.e. the updating rule can be represented by an introspection-proof

misspecified model. Self-image concerns lead the first self to select an updating rule

that exhibits motivated reasoning, in that the manager inflates his interpretation of the

test score for workers in his own demographic group. The introspection-proof constraint

places an endogenous upper bound on the magnitude of this bias. It also leads the

chosen updating rule to shade down the interpretation of the test score for members of

the other demographic group. We show that such self-image concerns can generate biased

stereotypes and inaccurate statistical discrimination (Bordalo, Coffman, Gennaioli, and

Shleifer 2016; Bohren, Haggag, Imas, and Pope forthcoming).

In the second application, we show that conceptually similar prospective and retro-

spective biases can lead to very different predictions about behavior. Consider a firm

searching for a new technology. After observing a signal of a technology’s productivity,

the firm chooses whether to adopt this technology or to continue searching. We compare

how over- and underprecision impact this search decision, depending on whether the bias

emerges prospectively or retrospectively. A firm that interprets signals correctly but has

an overprecise forecast searches inefficiently many alternatives, as it overestimates the

value of future information. In contrast, a firm with an overprecise updating rule and a

low search cost searches too few alternatives, as it overestimates the accuracy of current

positive information. Analogous insights hold for underprecision. Together, these appli-

cations demonstrate how our results can be used to harness the advantages of both the

misspecified model approach and non-Bayesian updating approach when studying how

biased beliefs impact economic decisions.

We close with several extensions of our setting. First, we characterize the set of

updating rules that have a prior-free representation, in the sense that the same misspec-

ified model represents the updating rule at all prior beliefs. Second, we allow for the

possibility that an agent also has a misspecified prior and derive an analogue of our main

result. Finally, we discuss how time inconsistency can emerge in a dynamic version of

our framework.
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1.1 Literature Review

There has been renewed interest in using model misspecification as a tool for capturing

behavioral biases.4 In a variety of general settings, recent work has developed the so-

lution concept ‘Berk-Nash equilibrium’ (Esponda and Pouzo 2016), characterized the

asymptotic beliefs of misspecified learning, (Molavi 2019; Bohren and Hauser 2021;

Fudenberg, Lanzani, and Strack 2021; Frick et al. 2020b; Esponda, Pouzo, and Ya-

mamoto 2021), and explored questions of robustness to perturbations of the model

(Frick, Iijima, and Ishii 2020a; Bohren and Hauser 2021). Papers have also studied

the implications of misspecified learning for a variety of specific biases, including over-

confidence (Heidhues, Koszegi, and Strack 2018), gambler’s fallacy (He 2022), selective

attention (Schwartzstein 2014) and omitted variable bias (Mailath and Samuelson 2020;

Levy, Razin, and Young 2022). Our paper shows how the non-Bayesian approach can

be represented as a misspecified model, allowing for analysis using these general results.

Another strand of literature seeks to provide a foundation for model misspecifica-

tion (Ba 2022; Fudenberg and Lanzani 2022; Gagnon-Bartsch, Rabin, and Schwartzstein

2018; He and Libgober 2021; Frick, Iijima, and Ishii 2021; Fudenberg et al. 2022). One

of the main classes of models we consider—introspection-proof models—are naturally

robust to many of these criteria. This condition—which requires that the misspecified

agent correctly anticipates the unconditional distribution of signals—is analogous to con-

ditions used to correct misspecified models in Espitia (2021), Spiegler (2020), Mailath

and Samuelson (2020), and solution concepts such as cursed equilibrium (Eyster and Ra-

bin 2005), behavioral equilibrium (Esponda 2008), and analogy expectation equilibrium

(Jehiel 2005).

The misspecified model approach assumes that an agent updates using Bayes rule. A

number of papers characterize properties of posteriors that arise from Bayesian updat-

ing. Shmaya and Yariv (2016) show that if an agent updates using Bayes rule, then the

prior belief is in the interior of the convex hull of the set of posterior beliefs. In Lemma 1,

we provide a minor extension of this result that applies to the class of updating rules

and misspecified models we consider. Molavi (2021) shows that any distribution over

posteriors satisfying very mild assumptions can be induced via Bayes rule with respect

to a misspecified model. His condition is weaker than both the condition in Shmaya

and Yariv (2016) and our conditions, as he allows the misspecified model to put positive

probability on signals outside of the support of the correctly specified model. A similar

result follows from our characterization under slightly more restrictive conditions to ac-

count for our stronger requirement on the support of the misspecified model. Augenblick

and Rabin (2021) provide conditions on the movement of posterior beliefs over time to

4Early papers in this literature include Arrow and Green (1973); Nyarko (1991).
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test for (correctly specified) Bayesian updating.

There is also a related literature on non-Bayesian updating. A number of recent

papers provide foundations for general classes of non-Bayesian updating rules and draw

parallels between the structure of non-Bayesian and Bayesian updating (Epstein, Noor,

and Sandroni 2008; Lehrer and Teper 2017; Cripps 2018; Chauvin 2020; Zhao 2022;

Jakobsen 2022). In contrast, we characterize the properties of updating rules that emerge

from Bayesian updating with respect to a misspecified model of the signal process. Other

work characterizes properties of specific non-Bayesian updating rules. For example, He

and Xiao (2017) describe a class of updating rules that distorts the prior likelihood

and signal likelihood terms in Bayes rule in a specific way. They show that this class of

updating rules satisfies processing consistency in that sequential and simultaneous signal

processing lead to the same posterior. Benjamin et al. (2019) study an updating rule

that captures base rate neglect by distorting the prior likelihood ratio. As in our paper,

they highlight prospective beliefs as a necessary model component in many economic

settings and pin them down by assuming that an agent believes she will use Bayes rule

to update in the future. This is similar in spirit to our naive consistent forecast.

Benjamin et al. (2016) first highlighted the need to distinguish between how an

agent retrospectively processes information she has already observed versus prospectively

predicts she will process information in models of non-Bayesian updating. In their

context, this distinction is drawn in relation to how an agent groups multiple signals

for processing. They highlight how different retrospective versus prospective groupings

can lead to time-inconsistency, which arises because realized signals change how an

agent interprets future signals. In contrast, our distinction separates prospective versus

retrospective bias that emerges with respect to a single signal (or more generally, a fixed

grouping of signals): an agent’s bias in anticipating what her belief will be after observing

this signal versus the bias in actual updating after observing the signal. Such an agent

can be time-consistent. In Section 6.3, we discuss how time-inconsistency can emerge

in a dynamic version of our setting with a sequence of signals. Similar to Benjamin

et al. (2016), time-inconsistency stems from the difference between which model(s) an

agent anticipates versus actually uses at future information sets. This notion of bias

in anticipated versus actual model is conceptually distinct from our notion of bias in

anticipated versus actual processing of a signal within a given model.5

Much of the literature on biased belief formation focuses on either a prospective or

a retrospective bias. The work on misspecified causal graphs (Spiegler 2016) and Berk-

Nash equilibrium (Esponda and Pouzo 2016) take a prospective perspective, focusing on

5The former relates to the property of processing consistency studied in He and Xiao (2017); up-
dating rules that satisfy their condition for processing consistency result in the same prospective and
retrospective beliefs.
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how an agent (incorrectly) predicts what will happen after she has made her decision.

In contrast, papers such as Heidhues et al. (2018); Levy et al. (2022) as well as much

of the behavioral literature that models and empirically documents specific updating

biases (see Benjamin (2019) for a survey) focus on retrospective biases. When modeling

even simple economic decisions, such as the search application in Section 5.2, or strategic

interactions, such as those studied in Bohren and Hauser (2021); He (2022); Frick et al.

(2021), both prospective and retrospective biases play a role in determining beliefs and

behavior. In Bohren and Hauser (2023), we show how our decomposition can be used

to determine the way in which retrospective and prospective biases differentially impact

an optimal lending contract.

Our work also relates to the literature on Bayesian persuasion. Our main result

requires a version of Bayes plausibility (Kamenica and Gentzkow 2011) for misspecified

models. de Clippel and Zhang (2022) develop an analogue of Bayes plausibility in a

persuasion setting where the receiver uses a non-Bayesian updating rule.6 Their con-

dition is both technically and conceptually distinct from ours: it characterizes the set

of possible distributions over posteriors that a correctly-specified sender could induce,

while our plausibility condition describes the set of distributions over posteriors that a

misspecified agent could hold about her future belief. The forecast in our decomposition

is analogous to the unconditional distribution over posterior beliefs often characterized

in the Bayesian persuasion literature (Kamenica 2019). This unconditional distribution

also plays an important role in the literature that describes general measures of the

value/cost of information (Frankel and Kamenica 2019; Caplin, Dean, and Leahy 2022;

Pomatto, Strack, and Tamuz Forthcoming; Mensch 2018).

Recent work on the wisdom of the crowd focuses on how higher order beliefs impact

prediction and identification. Prelec, Seung, and McCoy (2017) show that knowing both

an agent’s posterior belief and her belief about others’ beliefs can yield more accurate

predictions. Prelec and McCoy (2022); Libgober (2023) show that if many agents draw

signals from the same information structure, then knowing both an agent’s posterior

belief about the state and her posterior belief about the distribution of others’ beliefs

identifies the information structure. This relates to our insight that eliciting an updating

rule on its own is insufficient to identify a unique misspecified model (i.e. subjective

information structure)—it must be paired with a component describing the distribution

over beliefs.

6Alonso and Câmara (2016); Lee, Lim, and Zhao (2023) also stusdy communication games with
biased receivers.

8



2 Model

2.1 The Informational Environment.

We study belief updating in the following informational environment. Suppose nature

selects one of N states of the world ω ∈ Ω ≡ {ω1, ω2, . . . , ωN} according to prior distribu-

tion p ≡ (p1, ..., pN) ∈ ∆(Ω), which we assume to be strictly interior. An agent observes

a signal of the state drawn from a measurable space (Z,F), where Z is an arbitrary set

with element z and F is a σ-algebra defined on Z. To ensure that densities exist, we

define a σ-finite reference measure ν on (Z,F); we will assume all subsequent measures

are absolutely continuous with respect to ν.7 Let µi ∈ ∆(Z) be the true probability

measure on Z in state ωi. Assume that µi and µj are mutually absolutely continuous for

each i, j = 1, ..., N and µi is absolutely continuous with respect to ν for all i = 1, ..., N .8

This ensures that no signal perfectly rules out a state.9 Let ∆∗(Z) denote the set of all

probability measures that are mutually absolutely continuous with respect to µ1 (note

this also implies the measures are mutually absolutely continuous with respect to µi for

i 6= 1). Finally, let µ ≡
∑N

i=1 piµi denote the unconditional measure on Z.

Our main analysis focuses on belief updating following a single signal realization or

“batch” of realizations. The framework naturally extends to studying a dynamic signal

process, albeit with more cumbersome notation (see Section 6.2). The signal space is

rich enough to capture many different common signal structures used in the literature,

including real-valued continuous signals (Z ⊆ R and ν is the Lebesgue measure), finite

signals (Z ⊆ R is finite and ν is the counting measure), multidimensional signals, causal

graphs, Markov signals, and signal distributions that are neither continuous nor discrete

(e.g. mixture distributions).10

2.2 Modeling Errors in Belief Updating

We are interested in exploring the relationship between two approaches used to model

behavioral biases and errors in belief-formation: (i) a “non-Bayesian” approach that

7When Z is not finite, this introduces a number of measure-theoretic and topological complications.
A standard tool to resolve these complications is to define a reference measure that dominates the other
measures in the model. This allows us to consider multiple types of signal spaces within the same
framework, such as settings where the signal measures have densities and settings where the signal is
not a real-valued continuous random variable. Note that our set-up is the finite state version of the
misspecified parametric environment from Kleijn and van der Vaart (2006).

8Given our assumptions, one could set ν = µi for any i or ν = µ. We chose to separate these objects
to maintain a reference measure that is independent of the state and prior.

9Note this implies that dµi

dν (z) = 0 if and only if
dµj

dν (z) = 0 except on a set of ν-measure 0, so that
signals that lead to a Bayesian posterior that places probability zero on a state or signals for which the
Bayes posterior is not defined are a probability 0 events.

10This set-up can also capture signals that are multiple draws from an urn (Rabin 2002), signals that
are up to K realizations of some process (He 2022), and signals that are a realization of a Brownian
motion (Fudenberg, Romanyuk, and Strack 2017).
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consists of defining an arbitrary updating rule and/or a prediction about future beliefs;

and (ii) a “misspecified Bayesian” approach that derives beliefs from Bayesian updating

with respect to a misspecified model. We introduce each approach in turn, then discuss

the relative advantages and disadvantages of each approach.

The Non-Bayesian Approach. This approach, often used in the behavioral learning

literature (e.g. see Benjamin (2019) for review), describes how an agent forms a posterior

belief after observing each possible signal realization—that is, an updating rule. A second

component of belief formation—an agent’s forecast, or prediction of what future beliefs

will be—is needed in many economic settings. The updating rule determines how an

optimal action depends on the signal realization for decisions that occur after the signal

is observed, whereas the forecast guides pre-signal action choices by pinning down the

likelihood of different post-signal actions. The general definitions of updating rules and

forecasts we outline below nest specific updating rules and forecasts used in non-Bayesian

approaches to belief-formation.

An updating rule specifies how an agent forms beliefs after observing each signal

realization. An agent uses updating rule h(z) if, for each i = 1, ..., N , the agent assigns

probability h(z)i to state ωi after observing signal realization z ∈ Z.11

Definition 1 (Updating Rule). An updating rule h : Z → ∆(Ω) is a measurable

function that maps each signal realization to a posterior belief over the state space.

We restrict attention to updating rules that do not interpret any signals as perfectly

ruling out a state and map a certain prior belief to a certain posterior belief: h(z)i = 0

iff pi = 0 and h(z)i = 1 iff pi = 1. A special case of an updating rule is Bayesian updating

with respect to the true family of measures (µi)ωi∈Ω. Given a signal realization z ∈ Z,

this corresponds to

hB(z)i ≡
pi
dµi
dν

(z)∑N
j=1 pj

dµj
dν

(z)
, (1)

with 0/0 = 0 by convention.12

We refer to bias that arises from the updating rule as retrospective bias, since it

arises following the signal realization. An updating rule can capture many common

biases studied in the literature. For example, suppose Ω = {ω1, ω2} and define the

11Given our focus on belief updating following a single signal realization, this definition of an updating
rule is for a fixed prior. In Section 6.2, we define an updating rule as a mapping from the signal and
prior to a posterior in order to study a dynamic signal process.

12This describes an equivalence class of updating rules that differ on a set of measure 0 with respect
to ν (and thus with respect to all distributions considered). Fix hB as some arbitrary member of this
class.
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biases with respect to the belief that the state is ω2, i.e. h(z)2. Partisan bias in favor

of ω2 is captured by h(z)2 = hB(z)α2 for some α ∈ (0, 1), a counting updating rule is

captured by Z = {ω1, ω2}K for some K ∈ N and h(z)2 = 1
K

∑K
k=1 1zk=ω2 , confirmation

bias is captured by h(z)2 ≥ hB(z)2 if p2 ≥ 1/2 and h(z)2 ≤ hB(z)2 if p2 ≤ 1/2, h(z)2 =

αp2 + (1 − α)hB(z)2 captures linear underreaction for α ∈ (0, 1) and overreaction for

α > 1, h(z)2
h(z)1

= p2
p1

(
dµ2
dµ1

(z)
)β

captures geometric overreaction for β > 1 and underreaction

for β ∈ (0, 1), and base rate neglect is captured by h(z)2
h(z)1

=
(
p2
p1

)α
dµ2
dµ1

(z) for some

α ∈ (0, 1).

While an updating rule captures how an agent forms beliefs retrospectively after

observing the signal, it does not specify what an agent thinks prospectively about what

her posterior belief will be. Such prospective beliefs are a crucial component of many

economic settings where there is an ex-ante decision before the signal is observed (e.g.

what information to acquire or pay attention to, whether to pursue a new project before

learning about its profitability). an agent must also predict how she will form future

beliefs. This is captured by the agent’s forecast, which specifies a distribution over

posterior beliefs. The forecast is also a necessary component in settings with strategic

interaction and social learning.

Definition 2 (Forecast). A forecast ρ̂ is a Borel probability measure over ∆(Ω) for

which there exists a measurable g : Z → ∆(Ω) such that µ ◦ g−1 and ρ̂ are mutually

absolutely continuous.

The second part of the definition describes a condition to ensure that the forecast is

compatible with the signal. The space of posteriors cannot be “larger” than the space of

signal realizations, since each signal realization maps to a unique posterior. In the case

of a finite support Z, this condition is straightforward—it requires that the cardinality

of the support of the forecast is less than or equal to the cardinality of Z. In the case of

an infinite Z, the condition is a bit more nuanced—it uses mutual absolute continuity to

relate the measure-zero sets of the forecast to the measure zero sets of the information

structure.

For a given updating rule h, we define the accurate forecast with respect to h as

ρh(X) ≡ µ({z : h(z) ∈ X}) (2)

for any Borel set X ∈ ∆(Ω). This is well-defined since h is measurable. We denote

the special case of the accurate forecast with respect to Bayes rule as ρB(X) ≡ µ({z :

hB(z) ∈ X}).
Bias can also enter through the forecast. We refer to such bias as prospective bias,

since it stems from a prediction of what the signal will be. For example, suppose
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Ω = {ω1, ω2} and denote the posterior belief by the belief that the state is ω2. When

the accurate forecast with respect to Bayes rule is uniform on [0, 1], then overprecision

is captured by a distribution that overweights extreme beliefs and underweights inter-

mediate beliefs, while underprecision overweights intermediate beliefs and overweights

extreme beliefs.

Given that updating rules are more frequently the object of focus in the non-Bayesian

learning literature, one goal of this paper is to construct reasonable forecasts and analyze

how they interact with different updating rules. In this vein, we construct two classes

of forecasts with compelling properties in Section 4.

The Misspecified Model Approach. This approach defines an agent’s subjective

model of the signal process. Posterior beliefs and predictions of posterior beliefs are

both pinned down by this model and Bayes rule.

A misspecified model is a family of subjective measures over the signal space that is

not equal to the family of true measures. We focus on misspecified models where µi and

µ̂i are mutually absolutely continuous for all i = 1, ..., N .13

Definition 3 (Misspecified Model). A misspecified model corresponds to (µ̂i)ωi∈Ω ∈
∆∗(Z)N such that there exists an ωi ∈ Ω where µ̂i 6= µi.

An agent with a misspecified model uses Bayes rule as defined in Eq. (1) to form her

posterior belief with respect to her subjective measures. Mutual absolute continuity with

respect to the correct model implies that no set of signal realizations that the misspec-

ified model assigns zero probability occur with positive probability under the correctly

specified model, and that the misspecified model does not assign positive probability

to sets of signal realizations that occur with probability zero under the correctly speci-

fied model. It also implies that µ̂i and µ̂j are mutually absolutely continuous for each

i, j = 1, ..., N , since µi and µj are mutually absolutely continuous. Let µ̂ ≡
∑N

i=1 piµ̂i

denote the subjective unconditional signal measure (note this depends on the prior).

It follows directly from Bayes rule and mutual absolute continuity that a misspecified

model induces an updating rule. Specifically, (µ̂i)ωi∈Ω induces posterior belief

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
(3)

that the state is ωi following signal realization z. A model also induces a forecast, which is

the unconditional distribution of posteriors according to the model. Specifically, (µ̂i)ωi∈Ω

13This implies that dµi

dν (z) = 0 iff dµ̂i

dν (z) = 0 except on a set of ν-measure 0. It also implies that µ̂i
is absolutely continuous with respect to ν for all i = 1, ..., N .
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induces forecast

µ̂

z :

{
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

}
ωi∈Ω

∈ X


 (4)

that the posterior belief is in Borel set X ∈ ∆(Ω).

In order to focus on errors in interpreting signals, this set-up implicitly assumes that

the agent has a correctly specified prior belief. The misspecified learning literature has

also studied settings with a misspecified prior (Fudenberg et al. 2017). In Section 6.1,

we augment the model to also include a subjective prior and derive an analogue of our

main result.

2.3 Defining a Representation

The goal of this paper is to connect these two approaches. Specifically, we seek to char-

acterize when different updating rules and forecasts can be represented as a misspecified

model. To this end, we define what it means for a misspecified model to represent an

updating rule or a forecast. In particular, a model represents an updating rule if it

prescribes the same posterior belief as the updating rule following each signal realiza-

tion, and a model represents a forecast if it prescribes the same ex-ante distribution over

posterior beliefs as the forecast.

Definition 4 (Representing Updating Rules and Forecasts).

1. An updating rule h is represented by misspecified model (µ̂i)ωi∈Ω if, for every signal

z ∈ Z, an agent who uses Bayes rule to update her posterior with respect to

this misspecified model forms the beliefs prescribed by the updating rule µ-almost

everywhere:

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= h(z)i. (5)

2. A forecast ρ̂ is represented by misspecified model (µ̂i)ωi∈Ω if, for every Borel set

X ⊂ ∆(Ω):

µ̂

z :

(
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

)
ωi∈Ω

∈ X


 = ρ̂(X). (6)

Given that we also focus on characterizing when a representation is unique, we next

formalize our notion of uniqueness. If an updating rule maps multiple signal realizations

to the same posterior belief and can be represented by a given misspecified model, then
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any other model that shifts mass between these signal realizations will also represent this

updating rule. However, the difference between these models is trivial in an economic

sense, since they all prescribe the same distribution over realized beliefs and they all in-

duce the same forecast. Therefore, we define the following notion of essential uniqueness

to capture the idea that the representation is unique in terms of the model features that

are relevant for beliefs about the state and decisions.

Definition 5 (Essentially Unique Representation). An updating rule h has an essen-

tially unique representation if all misspecified models representing h are equivalent when

restricted to sets of signal realizations in the σ-algebra generated by h, i.e. Fh ≡ {Z ∈
F : Z = h−1(X) for some Borel set X ⊂ ∆(Ω)}.

Informally, an updating rule has an essentially unique representation when any misspec-

ified model representing the updating rule is equivalent on the sets of signal realizations

that map to the same posterior belief.

2.4 Discussion of Two Approaches

A fundamental aspect of behavioral learning models, which separates them from most

fully rational models, is the distinction between “prospective” and “retrospective” belief

formation (see, e.g., Benjamin et al. (2016, 2019)). The way a behavioral agent forecasts

her future behavior may be in some sense different from how she formed beliefs in the

past. This is common in the literatures on time consistency, projection bias, reference de-

pendence, and self-control, and relates to the two components of our behavioral learning

set-up. We formalize retrospective bias in the form of an updating rule and prospective

bias in the form of a forecast. While misspecified models are generally time-consistent,

misspecification allows for inconsistency with respect to predicted versus actual beliefs

that is similar in spirit to time inconsistency. In particular, in misspecified settings, the

distribution an agent expects her future beliefs and behavior to be drawn from is fun-

damentally different from the distribution her past behavior was actually drawn from.

See Section 6.3 for further discussion of time consistency in our framework.

The updating rule approach is often used to model a specific form of bias or belief-

updating error. In general, this literature chooses a reasonable parameterization for a

bias, and studies how this parameterization impacts beliefs and behavior. In contrast,

the misspecified model approach is often applied to general learning environments that

can capture a range of biases within the same framework. For example, recent work

in the misspecified learning literature establishes general convergence results for a large

class of misspecified models (Bohren and Hauser 2021; Frick et al. 2020b; Fudenberg

et al. 2021). Connecting these approaches makes it straightforward to apply the tools

developed in the misspecified learning literature to extend the results from the updating
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rules literature to a larger set of parameterizations of a given bias. For instance, in

Bohren and Hauser (2019), we use these tools to generalize the learning results from

Rabin and Schrag (1999) to a larger set of updating rules that capture the conceptual

features of confirmation bias. This establishes that the qualitative insights of Rabin

and Schrag (1999) do not rely on their specific parameterization of confirmation bias or

choice of information structure (i.e. binary signals).

To a large extent, the theoretical and empirical literature on behavioral biases has

focused on updating rules, which are a simple way to define and express biases. But

updating rules are ‘incomplete’ in that on their own, they do not pin down all aspects

of belief formation required for economic analysis. Since a misspecified model of belief

formation is complete, in the sense that it describes all aspects of the environment

necessary for analysis, mapping updating rules into misspecified models makes it possible

to study the implications of a given bias in a richer set of economic environments.

3 Representing Updating Rules and Forecasts

This section derives our main representation result. We first establish a necessary and

sufficient condition for an updating rule to be represented by a misspecified model, and

analogously for a forecast. We then establish a necessary and sufficient condition on an

updating rule and forecast pair for it to be jointly represented by a misspecified model

and show that this model is essentially unique.

3.1 Representing Updating Rules

We begin by fixing an updating rule and characterizing when it can be represented by

a misspecified model. An important feature of Bayesian updating is that the posterior

belief is equal to the prior in expectation. Therefore, given the set of posterior beliefs in-

duced by the updating rule, it must be possible to find a misspecified model that satisfies

this property. We use this martingale property of beliefs to characterize necessary and

sufficient conditions for there to exist a misspecified model that represents the updating

rule.

Let N (h) ≡ supp ρh denote the support of the accurate forecast ρh for updating rule

h (that is, the set of posteriors that arise from h), and let

S(h) ≡ rel int(ConvN (h)) (7)

denote the relative interior of the convex hull of this support.14 We say that an updating

rule is responsive if the prior belief lies inside this set of posterior beliefs.

Definition 6 (Responsive Updating Rule). An updating rule is responsive if p ∈ S(h).

14Recall that the relative interior of a set S is the set of points that are on the interior of S within
its affine hull.
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Many non-Bayesian updating rules considered in the literature are responsive, including

all of the examples discussed in Section 2.2. It is not satisfied for pathological updating

rules such as one in which beliefs move towards a given state following all signal realiza-

tions. It can also be violated at certain parameters in updating rules that capture base

rate neglect (Benjamin et al. 2019) and cognitive noise (Woodford 2020).15

It is straightforward to see that the prior must fall within S(h) in order for the

martingale property to hold. It turns out that this condition is also sufficient for the

prior to be the center of mass for some distribution over posterior beliefs, which we can

then map back into some family of signal distributions, and hence, model.

Lemma 1 (Updating Rule Representation). There exists a model (µ̂i)ωi∈Ω with µ̂i ∈
∆∗(Z) that represents updating rule h if and only if h is responsive.

This result extends Lemma 1 from Shmaya and Yariv (2016) to a more general signal

space.16 Some care must be taken here, both due to the lack of structure on the signal

space and the requirements that a misspecified model is absolutely continuous with

respect to the reference measure ν and has non-zero Radon-Nikodym derivatives. The

space of posterior beliefs has more structure than the signal space, which we leverage

via S(h) for this characterization.

The condition in Lemma 1 is very weak. As discussed above, it holds for many of the

non-Bayesian updating rules that have been considered in the literature. Therefore, this

result establishes that most non-Bayesian updating rules of interest can be represented

by a misspecified model. This is good news if one would like to use a misspecified model

to fill in the gaps left by an ‘incomplete’ updating rule. However, in general, the repre-

sentation is not essentially unique. As we illustrate in the following example, there are

often many distinct misspecified models that represent a given updating rule and each

representation induces a different forecast. Therefore, the choice of representation de-

termines the prospective bias. Different representations can lead to different predictions

precisely when a forecast is needed to close the model.

Example 1. Consider binary state space Ω = {L,R} with a flat prior p1 = 1/2 and

signal space Z = {z1, z2, z3, z4}. In a slight abuse of notation, when the state space

is binary we can define the updating rule as the probability assigned to state R after

observing each signal, i.e. h(z) = Pr(R|z) for each z ∈ Z, and the forecast as a

distribution ρ̂ over a set of probabilities that the state is R. Note | supp ρ̂ | ≤ 4 since a

15The key feature of these updating rules that leads to a violation is that the bias manipulates the
prior belief. In Section 6, we extend our framework to allow for a misspecified prior and show that such
updating rules are responsive with respect to this misspecified prior.

16In Shmaya and Yariv (2016), S(h) is the relative interior of the convex hull spanned by posteriors.
Our set S(h) is the analogue of this set with the additional measurability restrictions necessary for this
to be well-defined on infinite signal spaces.
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signal cannot map to multiple beliefs. In this set-up, a model corresponds to a pair of

vectors (µ̂L, µ̂R), where each vector specifies a subjective probability mω,k for each signal

zk in each state ω, i.e. µ̂ω = (mω,1,mω,2,mω,3,mω,4) with
∑4

k=1mω,k = 1.

A responsive updating rule maps at least one signal to a posterior above the prior and

one signal to a posterior below the prior, i.e. mink h(zk) < 1/2 < maxk h(zk). Given a

responsive updating rule h, any solution (m1,m2,m3,m4) ∈ ∆ to
∑4

k=1 h(zk)mk = 1/2

pins down a model with mR,k = 2h(zk)mk and mL,k = 2(1−h(zk))mk for k = 1, ..., 4 that

represents h.17 Aside from knife-edge cases,
∑4

k=1 h(zk)mk = 1/2 has multiple solutions,

and therefore, h has multiple representations. For example, if h(z1) = .1, h(z2) = .2,

h(z3) = .8 and h(z4) = .9, then (.2, .3, .3, .2) and (.1, .4, .4, .1) are both solutions (in fact,

there are a continuum of solutions). Note that each model induces a unique forecast,

which assigns probability mk = mR,k/2 +mL,k/2 to posterior belief h(zk).

Appendix D.2 provides an additional example of the construction and non-uniqueness

of a misspecified model representation of the non-Bayesian updating rule of over- and

underreaction in Epstein et al. (2010).

3.2 Representing Forecasts

We next develop an analogous result to Lemma 1 for forecasts. Again, the property

that the posterior belief is equal to the prior in expectation plays a key role. In this

case, since the forecast is a distribution over posterior beliefs, the property applies to

the forecast directly. This motivates the following definition.

Definition 7 (Plausible Forecast). A forecast ρ̂ is plausible if
∫
∆(Ω)

xidρ̂(x) = pi for

each ωi ∈ Ω.

In other words, a forecast is plausible if the expected posterior, taken with respect to

the agent’s forecast, is equal to the prior. Plausibility ensures that the agent believes

that their prior captures all current uncertainty about the state.

Plausibility is a necessary property of Bayesian updating: a Bayesian agent always

believes that on average, her posterior will be equal to her prior. Therefore, in order

for the forecast to be represented by a misspecified model, it must be plausible—a

misspecified agent does not believe that she is systematically biased. This condition is

also sufficient for a representation to exist—for any plausible forecast, it is possible to

find a misspecified model that induces it. This is the analogue in our setting of the result

in Kamenica and Gentzkow (2011), who show that a distribution over posteriors can be

induced by some information structure if and only if it satisfies the martingale property.

17To see that any such model represents h, note that it induces posterior belief mR,k/(mR,k+mL,k) =
h(zk) following signal realization zk, and therefore, it induces the desired updating rule.
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Lemma 2 (Existence of a Forecast Representation). There exists a model (µ̂i)ωi∈Ω with

µ̂i ∈ ∆∗(Z) that represents forecast ρ̂ if and only if ρ̂ is plausible.

The condition in Lemma 2 is relatively strong compared to Lemma 1. Unlike the

updating rule, which needs very little structure to be consistent with a misspecified

model, a forecast must satisfy a strong requirement of Bayesian learning. However, while

plausibility rules out many forecasts (e.g. forecasts that systematically slant posteriors

towards one state), it still allows for a broad class of forecasts, as illustrated below

in Example 2. Moreover, by also allowing for a misspecified prior, a broader class of

prospective biases than those that satisfy plausibility with respect to the correct prior

can be represented by a misspecified model. We explore this extension in Section 6.1.

As in the case of updating rules, a forecast on its own generally does not identify a

unique misspecified model. In fact, a continuum of misspecified models can be consistent

with a given forecast. Each model is associated with a different induced updating rule.

Therefore, the choice of model to represent a given forecast determines the retrospec-

tive bias. Different models that represent the same forecast can lead to very different

predictions depending on the updating rule they induce.

The following two examples demonstrate the notion of plausible forecasts and provide

an illustration of the multiplicity of representations.

Example 1 (continued). Return to the set-up introduced in Section 3.1 with Ω = {L,R},
p1 = 1/2, and Z = {z1, z2, z3, z4}. A forecast ρ̂ is plausible if

∑
x∈supp ρ̂ xρ̂(x) = 1/2. For

example, the forecast ρ̂ = {.5, .5} with support {x, 1−x} for some x ∈ (0, .5) is plausible

since .5x + .5(1 − x) = .5. One such model that represents this forecast is mR,1 = x/2,

mR,2 = x/2, mR,3 = (1 − x)/2 and mR,4 = (1 − x)/2 in state R, and similarly for

state L substituting 1 − x for x.18 This model induces updating rule h(z1) = h(z2) = x

and h(z3) = h(z4) = 1 − x.19 Alternatively, the model mR,1 = x/3, mR,2 = x/3,

mR,3 = x/3 and mR,4 = 1−x in state R, and similarly for state L substituting 1−x for

x, also represents ρ̂. This model induces a different updating rule: it maps {z1, z2, z3}
to posterior x and z4 to posterior 1 − x. In fact, for any updating rule that assigns at

18To see that this model represents ρ̂, note that from Bayes rule, it induces posterior belief
mR,k/(mR,k + mL,k) following signal zk. This simplifies to posterior belief x following z1 and z2
and posterior belief 1 − x following z3 and z4. Therefore, it induces forecast ρ̂(x) = µ̂({z1, z2}) =
(mR,1 +mL,1)/2 + (mR,2 +mL,2)/2 = .5 and ρ̂(1− x) = µ̂({z3, z4}) = .5 by an analogous calculation,
as desired.

19In fact, any α ∈ (0, 1) pins down a model that represents ρ̂ with signal distribution mR,1 = αx,
mR,2 = (1 − α)x, mR,3 = α(1 − x) and mR,4 = (1 − α)(1 − x) in state R, and similarly for state L
substituting 1− x for x. For each α, the corresponding model induces updating rule h(z1) = h(z2) = x
and h(z3) = h(z4) = 1−x. Therefore, all models in this class induce the same forecast and updating rule,
and hence, their difference is economically irrelevant. This motivates our notion of essential uniqueness
in Definition 5.

18



least one signal to each posterior x and 1− x, it is possible to find a model that induces

this updating rule and represents ρ̂. As discussed above, different updating rules induce

different retrospective biases. For example, if the updating rule generated by the correct

model maps {z1, z2} to posterior x, then mapping {z1, z2, z3} to x corresponds to slanting

information towards state L, whereas mapping {z1, z3} to x corresponds to inverting the

interpretation of z2 and z3.

Example 2. Suppose there are two equally likely states of the world Ω = {L,R}. Let

Z = [0, 1] and F be the Borel σ-algebra, and let the correctly specified model be a set of

full support distributions over Z. Consider the following parametric family of forecasts,

where, in a slight abuse of notation, dρ̂θ denotes the probability density function of the

forecast:

dρ̂θ(x) =
xθ−1L (1− xL)θ−1

Γ (θ)2/Γ (2θ)
(8)

for θ > 0, where x = (xL, xR) is a posterior belief.20 This corresponds to the family

of beta distributions with mean 1/2. Any forecast from this family is plausible since∫
∆(Ω)

xi dρ̂θ(x) = 1/2 for ωi ∈ Ω.

To illustrate the multiplicity of representations, consider the case of θ = 1. This

corresponds to the uniform forecast, i.e. dρ̂1(x) = 1. For any γ > 0, the model with pdfs

dµ̂R(z) = 2γz2γ−1 and dµ̂L(z) = 2γzγ−1− dµ̂R(z) represents ρ̂1.21 From Bayes rule, this

model induces updating rule h(z)R = dµ̂R(z)/(dµ̂R(z) + dµ̂L(z)) = zγ. Each value of γ

captures a different level of retrospective bias: as γ increases, the updating rule slants

information more towards state R.

3.3 Decomposition

As shown above, an updating rule or forecast on its own does not identify a unique mis-

specified model. This multiplicity gives rise to several important questions. First, given

an updating rule, what (if any) restrictions does this place on the set of forecasts that

are compatible with it for a representation? In other words, does fixing a retrospective

bias restrict the set of feasible prospective biases, and vice versa? Second, given an up-

dating rule and forecast that are jointly compatible with a representation, are these two

parts sufficient to pin down a unique representation, or does a model contain additional

restrictions on belief formation? Our next result answers these questions.

A necessary condition for a forecast to be compatible with a given updating rule, in

20Note that g(z) = (z, 1 − z) satisfies the mutually absolutely continuous condition in Definition 2,
and therefore, this is indeed a forecast.

21To see this, note that the unconditional signal cdf is µ̂(z) = zγ . Given x = zγ , this induces forecast
cdf µ̂(x1/γ) = x which is the uniform forecast.
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that the pair can be jointly represented by a misspecified model, is that the support of

the updating rule and the forecast are the same.

Definition 8 (No ‘unexpected’ beliefs). An updating rule h and forecast ρ̂ satisfy no

unexpected beliefs if ρ̂ is mutually absolutely continuous with the accurate forecast with

respect to h, ρh.

In other words, it is not possible for an agent to arrive at an entirely unexpected poste-

rior. Additionally, she cannot assign positive probability to a set of posteriors that will

never eventuate. Any set of posteriors that the agent anticipates holding with positive

probability also arise with positive probability given her updating rule. Importantly,

this does not rule out the possibility that the agent has an incorrect expectation about

her posterior. The predicted and actual probabilities of holding a given set of posteriors

can differ—and indeed do whenever the agent exhibits prospective bias.

Our main result shows that ‘no unexpected beliefs’, together with the conditions

for the updating rule and forecast to be individually represented (i.e. responsive and

plausible), are necessary and sufficient for determining whether an updating rule and

a forecast can be jointly represented by a misspecified model. Moreover, plausibility

and ‘no unexpected beliefs’ imply that the updating rule is responsive—and hence, this

condition is redundant. We also show that the representation is unique and provide a

construction.

Theorem 1 (Decomposition). Consider an updating rule h and a forecast ρ̂. There

exists a model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h and ρ̂ if and only if (i) ρ̂ is plausible

and (ii) h and ρ̂ satisfy no unexpected beliefs. When such a representation exists, it is

essentially unique and satisfies

µ̂i(Z) =
1

pi

∫
Z

h(z)idρ̂(h(z)) (9)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N . This model is

misspecified unless h = hB µ-almost everywhere and ρ̂ = ρB.

This result shows that if we take a forecast and an updating rule that satisfy plau-

sibility and no unexpected beliefs, then we can find a misspecified model to represent

it. It also answers the reverse question: If a forecast and an updating rule are induced

by a misspecified model, then what properties must they satisfy? The answer is that

the forecast must be plausible and the pair must satisfy no unexpected beliefs. To-

gether, this tells us that not only are plausibility and no unexpected beliefs necessary

consequences of the misspecified model approach, but they encompass all of the belief

formation restrictions implicit in using this approach.
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This result has several important theoretical and empirical implications. From a the-

oretical perspective, it shows that the updating rule and the forecast are the “essential”

components of a misspecified model. Together they uniquely pin down a complete model

for analysis and capture all features of a misspecified model that impact behavior (e.g.

how behavior will depart from that of a correctly specified agent). Thus, a misspecified

model can be decomposed into the two forms of bias it induces: the prospective bias

through the forecast and the retrospective bias through the updating rule.

Moreover, these components are largely independent from each other: aside from ‘no

unexpected beliefs’, the forecast places no further restrictions on which updating rules

it can be paired with and vice versa. Given that ‘no unexpected beliefs’ is a relatively

mild condition, especially for sufficiently rich signal spaces, this shows that a given

retrospective bias does not place very strong restrictions on the prospective bias that a

misspecified model induces. For instance, optimistic updating does not imply optimistic

forecasting. This is an appealing property of the misspecified model approach, as it

shows that it can be used to capture the interaction between different natural biases.

Second, the result provides a powerful tool for the construction of models of biased

belief formation. Rather than needing to specify a family of conditional probability

distributions—which is potentially quite complicated and removed from the conceptual

biases of interest—we can simply write down a reasonable parameterization of the desired

retrospective and prospective biases and use these components to construct a model.

Section 5 illustrates this in two applications.

On the empirical side, the updating rule and the forecast can both be identified from

belief data (see e.g. Danz et al. (2022) for updating rules and Chambers and Lambert

(2021); Karni (2020) for forecasts). Therefore, the result provides a method to empiri-

cally identify a misspecified model via these two components. Finally, relatively simple

parameterizations of updating rules or forecasts are often used in empirical analysis.

When one would like to connect the estimates from such analysis with a misspecified

model—for instance, to capitalize on the rich set of theoretical results that have been

developed for misspecified models—then one needs to simply make sure that the desired

parameterization satisfies the given conditions.

Before outlining the proof of Theorem 1, we present a technical corollary. The fore-

cast doesn’t place structure on how mass is allocated within a set of signal realizations

h−1(x) that induce the same posterior x. This is why the construction in Eq. (9) is

for the sigma-algebra generated by h, i.e. Fh. The following result constructs a repre-

sentation on the underlying sigma-algebra on the signal space Z, i.e. F . It uses the

correctly specified unconditional signal distribution to allocate mass within sets of signal

realizations that map to the same posterior. Specifically, the likelihood allocated to a
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subset of signals that map to a given posterior is equal to the true likelihood of this

subset of signals relative to the true likelihood of the set of signals that map to this

posterior. This is a simple way to ensure that the constructed misspecified model is

mutually absolutely continuous with the correctly specified model, as required by our

set-up.

Corollary 1 (Construction of Representation). Consider an updating rule h and a fore-

cast ρ̂, and let ρh be the accurate forecast for h. The following model represents h and

ρ̂:

µ̂i(Z) =
1

pi

∫
Z

h(z)i
dρ̂

dρh
(h(z)) dµ(z) (10)

for any measurable set of signal realizations Z ∈ F and i = 1, ..., N . This model is equal

to Eq. (9) on Fh.

Note that while other constructions are possible, all such models are equivalent on Fh,
as required for essential uniqueness.

Intuition for proof of Theorem 1. To establish this result, we first prove an inter-

mediate result that significantly simplifies the process of finding misspecified model(s)

to represent a given updating rule. Given either an unconditional distribution µ̂ or a

state-contingent distribution µ̂i in state ωi, we establish a necessary and sufficient con-

dition for this distribution to be part of a misspecified model representing the updating

rule. Moreover, if a model that includes this distribution exists, we show that this sin-

gle distribution uniquely pins down the remainder of the model—in other words, all of

the other state-contingent distributions. When the condition is not satisfied, then the

updating rule is incompatible with the given distribution and it cannot be part of a

representation.

This intermediate result implies a restriction on how a forecast and updating rule

must jointly behave over measure 0 sets in order to be represented by the same misspeci-

fied model. Specifically, to be compatible with an updating rule, a forecast cannot place

positive probability on a set of posteriors that are associated with a measure zero set of

signals under the updating rule. This corresponds to the no unexpected beliefs condi-

tion. It is straightforward to see why this condition is necessary to find a misspecified

model to jointly represent the forecast and updating rule. We show that this condition

is also sufficient, and therefore, is the only joint requirement on the updating rule and

forecast for such a representation to exist.

The following example illustrates the no unexpected beliefs condition and Theorem 1.

Example 1 (continued). Recall Ω = {L,R}, p1 = 1/2, and Z = {z1, z2, z3, z4}. Con-

22



sider the plausible forecast ρ̂ = {.5, .5} with support {x, 1 − x} for some x ∈ (0, .5).

Then any updating rule with h(z) ∈ {x, 1 − x} for all z ∈ Z satisfies no unexpected

beliefs. Consider h(z1) = h(z2) = x and h(z3) = h(z4) = 1 − x. Given that h maps

{z1, z2} to the same posterior and similarly for {z3, z4}, the σ-algebra generated by h

is Fh = {∅, {z1, z2}, {z3, z4},Z}. From Eq. (9), h and ρ̂ have an essentially unique

representation that satisfies µ̂R({z1, z2}) = x and µ̂R({z3, z4}) = 1 − x in state R

and µ̂L({z1, z2}) = 1 − x and µ̂L({z3, z4}) = x in state L. Applying Corollary 1,

one such representation is given by µ̂i(zk) =
(

µ(zk)
µ(z1)+µ(z2)

)
µ̂i({z1, z2}) for k = 1, 2 and

µ̂i(zk) =
(

µ(zk)
µ(z3)+µ(z4)

)
µ̂i({z3, z4}) for k = 3, 4 and ωi ∈ {L,R}. Note that this construc-

tion uses the true relative likelihood of signals that map to the same posterior under h

to pin down the subjective probability of these signals in the representation.

4 Selecting Forecasts

Given that updating rules are much more frequently studied in the literature, a natural

next question is how to choose a forecast. Sections 4.1 and 4.2 explore two natural

conditions to place on a forecast—introspection-proof and naive consistency—in order

to select a representation with certain desirable properties when retrospective bias is the

primary focus. The introspection-proof condition selects the forecast that is accurate

with respect to the given updating rule—it shuts down any prospective bias. Naive

consistency selects the forecast that is accurate with respect to Bayesian updating—it

describes an agent who is naive about anticipating her retrospective bias. Combined

with an updating rule, each condition uniquely selects a representation, provided one

exists. Both conditions are similar in spirit to other conditions that have been used in

the literature, but the introspection-proof condition is much more restrictive than naive

consistency—it is not satisfied for many common updating rules, and therefore no such

representation exists, while naive consistency selects a representation that broadly exists.

A forecast can also be chosen to explicitly capture a particular form of prospective bias.

In Section 4.3, we highlight a representation that shuts down any retrospective bias in

order to focus on prospective bias.

4.1 Introspection-Proof Models

A common concern with the misspecified model approach is that, if an agent observes a

lot of data (i.e. many independent draws of the signal), she may observe a pattern that is

highly unlikely under her misspecified view of the world. For example, she may observe

an extreme violation of the law of large numbers. In such a scenario, introspection may

lead the agent to eventually realize that she is misspecified. Motivated by this concern,

we define the following notion of an introspection-proof model.
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Definition 9 (Introspection-Proof Model). A model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N with induced

unconditional measure µ̂ is introspection-proof if µ̂(Z) = µ(Z) for all measurable sets

of signal realizations Z ∈ F .

In an introspection-proof model, the agent’s predicted distribution of the signal is equal

to the true distribution. Any distortion in belief formation stems from the agent’s

misperception of the relative likelihood of signal realizations in different states. In such

a model, the empirical frequency of signal realizations that the agent observes will be

in line with her expectation given her model. Therefore, she is no more likely than

a correctly specified agent to observe “unexpected” patterns in the data and come to

question her model.

A natural implication of an introspection-proof model is that an agent accurately

forecasts her future beliefs. To see this, note that under the misspecified model ap-

proach, the agent correctly predicts how she will form her posterior belief following each

signal realization (prospective bias stems from the agent misperceiving the likelihood

of each signal realization, not from misperceiving her mapping from signal realizations

to posterior beliefs). When she also correctly predicts the likelihood of each signal, as

required in an introspection-proof model, then she must correctly predict the likelihood

of each posterior belief. In other words, an introspection-proof model has no prospective

bias. This makes an introspection-proof model a natural choice when a researcher is

interested in shutting down prospective bias in order to isolate the impact of a given

form of retrospective bias.

Given this property, in any introspection-proof representation of an updating rule

h—that is, a representation by an introspection-proof model—the updating rule must

be paired with the accurate forecast for h, i.e. ρ̂ = ρh. From Theorem 1, we know

that an updating rule and forecast can be jointly represented if and only if the forecast

is plausible and the forecast and updating rule satisfy no unexpected beliefs. When

ρ̂ = ρh, no unexpected beliefs is trivially satisfied. Therefore, the necessary and sufficient

condition for an updating rule to have an introspection-proof representation is that the

accurate forecast is plausible. It immediately follows from Theorem 1 that when such a

representation exists, it is unique and defined by Eq. (11) as outlined in the following

proposition.

Proposition 1 (Introspection-Proof Representation). Consider an updating rule h. There

exists an introspection-proof model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h if and only if

the accurate forecast ρh is plausible. When such a representation exists, it is unique and
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defined by

µ̂i(Z) =
1

pi

∫
Z

h(z)i dµ(z) (11)

for any measurable set of signal realizations Z ∈ F and i = 1, ..., N . This model is

misspecified unless h = hB µ-almost everywhere.

Substituting an accurate forecast into the construction of a misspecified model in The-

orem 1 yields the introspection-proof model constructed in Eq. (11). Note that this

model is unique on the original sigma-algebra F , and not just on the sigma-algebra

Fh generated by h as in Theorem 1. This is because the introspection-proof condition,

µ̂ = µ, together with the other conditions uniquely pins down the signal distribution at

all signal realizations, including those that induce the same posterior.

The requirement that the accurate forecast is plausible is quite restrictive. Recall

that a plausible forecast ρ̂ must satisfy
∫
∆Ω

xi dρ̂(x) = pi for all i. By change of variables

and imposing the introspection-proof condition µ̂ = µ, this becomes
∫
Z h(z)i dµ(z) = pi.

So the accurate forecast is plausible only if the updating rule averages to the prior

under the true unconditional signal distribution.22 This relates to the Bayes-plausibility

condition in Kamenica and Gentzkow (2011) which, in our notation, requires plausibility

with respect to the Bayesian updating rule hB, i.e.
∫
Z hB(z)i dµ(z) = pi.

Despite this restrictive condition, an introspection-proof representation exists for

some forms of retrospective bias. An introspection-proof model must preserve the “cen-

ter of mass” of beliefs but can otherwise arbitrarily distort the spread of these beliefs.

This makes it possible to represent conceptual biases in updating that distort the vari-

ance of posterior beliefs, such as conservatism or overreaction, as we illustrate below in

Example 3. On the other hand, biases that distort the mean of posterior beliefs, such

as partisan bias that systematically slants beliefs in one direction, can never have such

a representation. We illustrate this below in Example 4. This condition also requires a

certain amount of complexity in how the updating rule distorts beliefs, which prevents

many simple updating rules from having an introspection-proof representation. For ex-

ample, the updating rule implied by the canonical Grether regressions (Grether 1980)

and commonly used in other empirical work (i.e. h(z)2
h(z)1

= p2
p1

(dµ2
dµ1

(z))β) does not have such

a representation.

Introspection-proof representations have important implications for empirical work.

22A natural class of biases that may appear to satisfy this condition are those that either over-
or underestimate the precision of information, in the sense that the corresponding misspecified model
is Blackwell ranked with respect to the true model. But this is not the case. In Appendix C, we
provide examples of misspecified models that are Blackwell less informative than the true model but
not introspection-proof and misspecified models that are Blackwell more informative than the true
model but not introspection-proof.
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From the perspective of a researcher who only observes signal realizations, an agent who

forms beliefs using an updating rule that admits an introspection-proof representation

is indistinguishable from a correctly-specified Bayesian agent. Therefore, this agent will

pass any test designed to detect Bayesian updating. In contrast, if an updating rule does

not have an introspection-proof representation, then with sufficient data, the analyst will

be able to reject the hypothesis that the agent is a correctly-specified Bayesian.

Similar restrictions have been used to pin down prospective beliefs for specific non-

Bayesian updating rules. For example, the processing-consistency property in Benjamin

et al. (2016) requires an agent to correctly anticipate how she will process informa-

tion. They define this property with respect to how an agent anticipates versus actually

groups multiple signals for processing. In contrast, our condition applies to a single

signal (or a fixed grouping of signals): it requires an agent to correctly anticipate her

belief distribution after observing this signal. Conceptually similar approaches have also

been used in the misspecified model literature to construct plausible restrictions on the

space of misspecified models. For example, Spiegler (2016) uses a similar condition to

connect a misspecified causal graph—as opposed to an updating rule—to a misspecified

model. He imposes this condition on each link of the graph to pin down a misspecified

probability distribution over the outcome of interest. Mailath and Samuelson (2020)

study a model of omitted variable bias, where the set of omitted variables together with

an introspection-proof condition pin down the misspecified model.

In Section 5.1, we show how the introspection-proof condition is a natural constraint

to impose in a dual-selves model where the first self selects an updating rule for the

second self. The first self selects an updating rule that exhibits motivated reasoning,

but the introspection-proof constraint limits the magnitude of this bias.

Examples. The following example illustrates how to determine whether an introspection-

proof representation exists and construct one when it does.

Example 1 (continued). Recall Ω = {L,R}, p1 = 1/2, and Z = {z1, z2, z3, z4}. Con-

sider updating rule h(z1) = h(z2) = x and h(z3) = h(z4) = 1−x for some x ∈ (0, 1). The

accurate forecast corresponds to ρh(x) = µ(z1)+µ(z2) and ρh(1−x) = µ(z3)+µ(z4), where

µ is the correct unconditional model. An introspection-proof representation of h exists if

this forecast is plausible, i.e. x(µ(z1)+µ(z2))+(1−x)(µ(z3)+µ(z4)) = 1/2. Note that this

is satisfied if either an equal mass of signals map to each posterior, µ(z1) + µ(z2) = 1/2

and µ(z3) + µ(z4) = 1/2, or the signal is perceived to be uninformative, x = 1/2. To

construct an introspection-proof representation of h, suppose the correct unconditional

distribution is µ = (.2, .3, .3, .2). From Eq. (11), the unique introspection-proof represen-
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tation is µ̂R = (.4x, .6x, .6(1− x), .4(1− x)) and µ̂L = (.4(1− x), .6(1− x), .6x, .4x).23

The next example shows that a common parameterization of conservatism has an

introspection-proof representation.

Example 3 (Conservatism). Consider a common updating rule for conservatism where

the posterior belief is a weighted average of the Bayesian posterior and the prior, h(z) =

λhB(z) + (1 − λ)p for some λ ∈ (0, 1) (Epstein et al. 2010; Hagmann and Loewenstein

2019; Gabaix 2019). From Eq. (11), this updating rule is represented by the introspection-

proof misspecified model µ̂i ≡ (1 − λ)µi + λµ. Note that the second term in this sum

depends on the prior, and hence, the constructed model will vary with the prior. See

Section 6.2 for further discussion of prior-dependent versus independent representations.

The final example shows that a common parameterization of partisan bias does not

have an introspection-proof representation.

Example 4 (Partisan Bias). Consider binary state space Ω = {L,R}. As in Exam-

ple 1, let h denote the mapping from the set of signal realizations to the posterior be-

lief that the state is R and let ρ̂ denote the distribution over the posterior belief that

the state is R. Consider updating rule h(z) = hB(z)α for α ∈ (0, 1). This updat-

ing rule exhibits R-partisan bias: after any signal realization, the agent places higher

probability on state R than a correctly specified agent. Under the accurate forecast,∫ 1

0
x dρh(x) =

∫
Z h(z) dρh(h(z)) =

∫
Z h(z) dµ(z), where the first equality follows from

change of variables and the second follows from a property of the accurate forecast. But∫
Z h(z) dµ(z) >

∫
Z hB(z) dµ(z) = p2, where the equality follows from Bayes-plausibility

(i.e. hB is plausible). Therefore, the accurate forecast cannot be plausible. This argu-

ment clearly applies more generally to any bias that systematically skews posterior beliefs

in one direction.

Alternative Notions of Introspection-Proof. The notion of introspection-proof

model in Definition 9 is relatively strong, in that it requires the subjective unconditional

signal measure to exactly match the correct unconditional measure. It is possible to

define conceptually similar notions with weaker requirements. For example, one could

restrict attention to models in which the means of the subjective and correct uncondi-

tional signal measures match, but allow these measures to differ on other dimensions

(e.g. variance) that may be less salient or harder to observe. Alternatively, one could

select the representation for an updating rule that is “closest” to introspection-proof un-

23To see that an introspection-proof representation can be misspecified, suppose the true model is
µR = (.4x′, .6x′, .6(1 − x′), .4(1 − x′)) and µL = (.4(1 − x′), .6(1 − x′), .6x′, .4x′) for some x′ ∈ (0, 1).
For any x′, this model generates unconditional distribution µ = (.2, .3, .3, .2). This representation is
misspecified when x 6= x′.
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der some natural measure of distance. Additionally, the notion we define is with respect

to the unconditional signal distribution. Analogous results hold when the subjective

conditional distribution in a fixed state is required to match the true distribution in this

state. See Appendix B for further exploration of these notions.

4.2 Naive Consistent Forecasts

When an agent exhibits bias at a future decision point, a common question is how she

anticipates this future bias. The two cases typically explored in the literature are that

an agent is sophisticated, in that she accurately anticipates her future bias, and that an

agent is naive, in that she believes she will have no future bias. The introspection-proof

condition in the previous section is in line with the first case. In this section, we develop

the notion of naive consistency to capture the latter case.

The naive consistent forecast captures an agent who naively predicts that she will

update beliefs correctly in the future, but when the information arrives, she interprets

it with bias.

Definition 10 (Naive Consistent Forecast). An agent has a naive consistent forecast if

she has an accurate forecast with respect to the Bayesian updating rule, ρ̂ = ρB, but she

updates with bias, h 6= hB with µ-positive probability.

An agent who has a naive consistent forecast assigns the same probability as a correctly

specified agent to the possibility that she will form a posterior belief in set X ⊂ ∆(Ω).

But when information arrives, she actually arrives at a posterior belief in set X with a

different probability than the correctly specified agent. In the absence of guidance on

the nature of the prospective bias, the naive consistent forecast in some sense shuts down

this channel. Before information is realized, an agent using a naive consistent forecast

will make exactly the same decisions as a Bayesian agent. Therefore, the agent’s bias

only alters behavior that occurs after the signal is observed.

The naive consistent representation of an updating rule corresponds to the misspec-

ified model that induces this updating rule and the naive consistent forecast. Since ρB

is the distribution of posteriors that a correctly specified Bayesian generates, it is al-

ways plausible. Therefore, from Theorem 1, no unexpected beliefs with respect to ρB

is the necessary and sufficient condition for an updating rule to have a naive consistent

representation. It immediately follows from Theorem 1 that when such a representa-

tion exists, it is essentially unique and defined by Eq. (12) as outlined in the following

proposition.

Proposition 2 (Naive Consistent Representation). Consider an updating rule h and

assume h 6= hB with µ-positive probability. There exists a misspecified model (µ̂i)ωi∈Ω ∈
∆∗(Z)N that represents h and induces the naive consistent forecast ρB if and only if h
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and ρB satisfy no unexpected beliefs. When such a representation exists, it is essentially

unique and defined by

µ̂i(Z) = µi({z : hB(z) ∈ h(Z)}) (12)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N .24

In the naive consistent representation, an analogue of the naive consistent forecasting

property holds in each state: for each ωi, the naive consistent representation induces a

forecast over the posterior that is equal to the forecast of a correctly specified Bayesian.

This is a consequence of Lemma 3 and is straightforward to see from Bayes rule.

The requirement that the updating rule satisfies no unexpected beliefs with respect

to ρB is not particularly strong: with a sufficiently rich signal space, it is possible

to satisfy for many commonly used updating rules, including all of the examples in

Section 2.2. Therefore, in contrast to the introspection-proof representation, a naive

consistent representation broadly exists for many retrospective biases of interest.

Naive consistency is analogous to common naiveté assumptions made in many be-

havioral models (e.g. models of time inconsistency (O’Donoghue and Rabin 1999)). The

assumption has previously been used to pin down prospective beliefs in models of bi-

ased learning such as for the case of base rate neglect (Benjamin et al. 2019) and social

learning with partisan bias and overreaction (Bohren and Hauser 2021). We impose it

in Section 5.2 to study how retrospective overprecision impacts search behavior. It has

also informally been made in many less detailed behavioral models. Therefore, formal-

izing how to capture naive consistency in the misspecified model approach shows that

we can consistently and rigorously impose such an assumption in this more complete

framework.

Examples. The first example illustrates how to construct the naive consistent forecast

and corresponding representation for a discrete signal space.

Example 1 (continued). Recall Ω = {L,R}, p1 = 1/2, and Z = {z1, z2, z3, z4}. As

in Section 4.1, consider the updating rule h(z1) = h(z2) = x and h(z3) = h(z4) =

1 − x for some x ∈ (0, 1). Suppose the correct model induces updating rule hB(z1) =

hB(z2) = hB(z3) = x and hB(z4) = 1 − x. Then ρB(x) = µ({z1, z2, z3}) and ρB(1 −
x) = µ(z4), where µ is the correct unconditional model. Given that the updating rule

h induces set of posteriors {x, 1 − x}, which is equal to the support of ρB, h and ρB

satisfy no unexpected beliefs. Therefore, a naive consistent representation of h exists.

From Eq. (12), this representation is unique on Fh = {{z1, z2}, {z3, z4},Z} and satisfies

24Alternatively, one could write this representation in analogous form to Eq. (9) as µ̂i(Z) =
1
pi

∫
Z
h(z)idρB(h(z)) and pin down a full representation by substituting ρB for ρ̂ in Eq. (10).
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µ̂i({z1, z2}) = µi({z1, z2, z3}) and µ̂i({z3, z4}) = µi(z4) for ωi ∈ {L,R}. We can complete

the construction of the representation by applying Corollary 1.

In Example 4, we showed that an updating rule that captured partisan bias did not

have an introspection-proof representation. We next show that this updating rule does

have a naive consistent representation.

Example 4 (Partisan Bias, cont.). Return to the set-up introduced in Section 4.1 with

Ω = {L,R} and h(z) = hB(z)α for α ∈ (0, 1). Recall this updating rule slants beliefs

towards state R. Consider prior p1 = 1/2 and signal space Z = [0, 1] with true measures

µR(z) = z2 and µL(z) = 2z− z2 (in a slight abuse of notation written in cdf form). This

induces unconditional measure µ(z) = (µR(z) + µL(z))/2 = z, updating rule hB(z) =
1

1+dµL/µR(z)
= z and forecast ρB(x) = Pr(z : hB(z) ≤ x) = µ(x) = x (again in cdf form).

The accurate forecast with respect to h is ρh(x) = Pr(z : h(z) ≤ x) = Pr(z : z ≤ x1/α) =

µ(x1/α) = x1/α. Given that ρB and ρh are mutually absolutely continuous, h and the

naive consistent forecast ρB satisfy no unexpected beliefs. Therefore, a naive consistent

representation of h exists. This representation is unique since each signal maps to a

unique posterior (i.e. Fh = F). From Eq. (12), the naive consistent representation is

µ̂i(z) = µi(z
α) for ωi ∈ {L,R}.

4.3 Retrospectively Correct Models

We next consider a representation in which prospective bias is the main focus. Introspection-

proof and naive consistent representations both shut down prospective bias in order to

isolate the implications of retrospective bias. Analogously, we can consider situations in

which an agent correctly interprets signals (i.e. uses the Bayesian updating rule hB(z))

but has a biased forecast. A retrospectively correct model shuts down any retrospective

bias and only allows for prospective bias.

Definition 11 (Retrospectively Correct Model). A misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

is retrospectively correct if it induces hB(z), i.e. for all ωi ∈ Ω,

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= hB(z)i (13)

µ-almost everywhere.

A misspecified agent with a retrospectively correct model makes the same decisions as

a correctly specified agent after information arrives, but can behave differently ex-ante.

The retrospectively correct representation of a forecast corresponds to the misspecified

model that induces this forecast and the Bayesian updating rule. While introspection-

proof and naive consistent representations pin down a forecast with respect to the cor-
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rectly specified model (the forecast is either accurate with respect to the agent’s updating

rule or the Bayesian updating rule), a retrospectively correct representation pins down

the updating rule with respect to the correctly specified model. The following corollary

immediately follows from Theorem 1.

Corollary 2. Consider a forecast ρ̂. There exists a retrospectively correct model (µ̂i)ωi∈Ω ∈
∆∗(Z)N that represents ρ̂ if and only if ρ̂ is plausible and hB and ρ̂ satisfy no unexpected

beliefs. When such a representation exists, it is essentially unique and satisfies Eq. (9)

setting h = hB.

This establishes that many forecasts are consistent with the Bayesian updating rule. An

agent can form very biased predictions about her future beliefs, but still update correctly

after observing the signal. Therefore, the misspecified model approach can be used to

capture prospective biases without needing to also allow for retrospective bias.

In Section 5.2, we use a retrospectively correct representation to study how prospec-

tive overprecision impacts search behavior. The following example illustrates a retro-

spectively correct representation of a forecast that exhibits overprecision.

Example 1 (continued). Recall Ω = {L,R}, p1 = 1/2, and Z = {z1, z2, z3, z4}. Sup-

pose the correct model induces updating rule hB(z1) = .1, hB(z2) = .2, hB(z3) = .8 and

hB(z4) = .9 and forecast ρB = (.1, .4, .4, .1) with supp ρB = {.1, .2, .8, .9}. Consider a

forecast ρ̂ = (.4, .1, .1, .4) with supp ρ̂ = {.1, .2, .8, .9}. Note this forecast is plausible and

satisfies no unexpected beliefs with respect to hB. Therefore, there exists a retrospec-

tively correct representation of ρ̂. In this representation, the agent exhibits overprecision

prospectively, since ρ̂ puts more weight on the extreme posteriors and less weight on

the interior posteriors relative to the accurate forecast ρB. From Eq. (9), the retrospec-

tively correct representation of ρ̂ is µ̂R = (.08, .04, .16, .72) and µ̂L = (.72, .16, .04, .08).

Note this model is misspecified, since from hB and ρB, the correctly specified model is

µR = (.02, .16, .64, .18) and µL = (.0.18, .64, .16, .02).

5 Applications

The following two applications demonstrate the results from Sections 3 and 4. In the first,

we show how the introspection-proof condition is a natural constraint to impose in a dual-

selves model with self-image concerns. This requirement moderates the magnitude of

motivated reasoning bias exhibited by the updating rule that the first self selects. In the

second, we show how our decomposition can clarify the impact that a misspecified model

has on an agent’s search decisions. Whether the bias induced by the misspecified model

emerges ex-ante versus ex-post to information arrival plays a key role in determining

how it impacts search behavior.
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5.1 Optimal Bias with Self-Image Concerns

Overview. Consider a dual-selves model where a manager first chooses an updating

rule to interpret information about ability, then uses this updating rule to evaluate him-

self and other workers. The manager observes the group identity—male or female—and

a productivity signal for workers as well as himself. He seeks to accurately evaluate

workers and also derives utility from his perception that he is of high ability. This

self-image concern leads to the selection of an updating rule that exhibits motivated

reasoning—it overestimates the ability of male workers. Requiring the updating rule

to be introspection-proof bounds the magnitude of this motivated reasoning, relative to

no such constraint. Moreover, it leads the manager to compensate for overestimating

the ability of male workers by underestimating the ability of female workers, despite

group identity being orthogonal to productivity. In contrast, without the introspection-

proof constraint, the manager does not distort beliefs about female workers. Therefore,

self-image concerns interact with introspection-proof belief formation to generate inac-

curate beliefs about both in-group and out-group workers, whereas self-image concerns

in isolation only lead to inaccurate beliefs about in-group workers. This illustrates how

motivated reasoning can be a driver of discrimination stemming from inaccurate beliefs

(Bohren et al. forthcoming; Eyting 2023).25

Set-up. Suppose a worker has either low or high ability, ωw ∈ {L,H}, drawn with

equal probability. A manager observes a two-dimensional signal zw = (yw, tw) for the

worker but not the worker’s ability. The first dimension yw ∈ {b, g} provides information

about the worker’s ability, with distribution Pr(g|H) = Pr(b|L) = α > 1/2. We refer

to this as the worker’s test performance. The second dimension is the worker’s group

identity tw ∈ {M,F}, male or female, which we assume is independent of (yw, ωw)

and distributed according to q ≡ Pr(M). Analogous to the worker, the manager has

unobserved ability ωm ∈ {L,H} drawn with equal probability and observes his own

test performance ym ∈ {b, g}, which has the same distribution as the worker’s test

performance. Without loss of generality, assume that the manager’s group identity is

tm = M , and therefore the manager’s own two-dimensional signal is zm = (ym,M). The

manager’s ability and signal are independent of the worker’s ability and signal.

The manager’s first self chooses an updating rule h(z) for interpreting all signals. The

second self observes the realized signals, uses this rule to update his beliefs about his

own ability to h(zm) and the worker’s ability to h(zw), and selects evaluation a ∈ [0, 1]

for the worker. Given that the state is binary, in a slight abuse of notation we let h(z)

denote the manager’s subjective probability that ability is high following signal z.

25Eyting (2023) shows that motivated reasoning leads to distorted belief formation, and hence,
inaccurate statistical discrimination in an experimental setting.
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The manager cares about accurately predicting the worker’s ability and his self-image,

captured by the second self’s belief h(zm) that he is of high ability,

u(a, ωw, zm) = h(zm)− c(1{ωw=H} − a)2, (14)

where c > 1/2q(1− α) to ensure that the manager puts sufficient weight on accurately

evaluating the worker.26 Each self maximizes the expectation of Eq. (14), where the first

self takes this expectation with respect to the correctly specified model before signals are

realized and the second self takes this expectation with respect to the chosen updating

rule h after signals are realized.

Given updating rule h(z), it is straightforward to see that the second self will choose

evaluation a∗(zw) = h(zw). Therefore, the first self chooses an updating rule to maximize

E[h(zm)− c(1{ωw=H} − h(zw))2]. (15)

Given that the manager must choose the same updating rule to interpret his own and the

worker’s signals, the choice of updating rule influences both the payoff from self-image

and the payoff from evaluation accuracy. Self-image concerns lead the manager to exhibit

motivated reasoning, i.e. to choose an updating rule that inflates the interpretation of

test performance for male workers. The desire for accuracy prevents this motivated

reasoning from becoming too extreme. This is the key trade-off in selecting an updating

rule.

Optimal IP Updating Rule. Suppose the first self wishes to select an updating rule

such that, after evaluating a sufficiently large number of workers, the second self does

not observe a pattern of signals that is at odds with what he expects—in other words,

an updating rule that has an introspection-proof representation. From Proposition 1,

an updating rule has an introspection-proof representation if∑
y∈{b,g}

1

2
(qh(y,M) + (1− q)h(y, F )) =

1

2
. (16)

In order to inflate self-image and simultaneously satisfy the introspection-proof con-

dition, the manager must compensate for inflating the test performance of males by

deflating the test performance for females. This leads the manager to overestimate the

ability of male workers and underestimate the ability of female workers, relative to the

Bayesian updating rule hB(z).

Proposition 3. The optimal introspection-proof updating rule h∗(z) inflates the inter-

26This condition ensures that the manager does not choose an updating rule that maps a noisy signal
into a certain belief about ability.
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(a) Introspection-Proof (b) Unconstrained

Figure 1. Optimal average update by group (α = .7, c = 4, q = .5).

pretation of both test outcomes for group M , h∗(y,M) = hB(y,M) + 1−q
2cq

for y ∈ {b, g},
and deflates the interpretation of both test outcomes for group F , h∗(y, F ) = hB(y, F )− 1

2c

for y ∈ {b, g}.

The optimal introspection-proof updating rule features inaccurate beliefs about both

groups. These inaccurate beliefs endogenously emerge from the interaction between

self-image concerns and the introspection-proof constraint. Therefore, in settings where

managers evaluate a sufficiently large pool of workers such that consistency with the

underlying signal distributions is a reasonable requirement, self-image concerns can lead

to inaccurate beliefs about other groups even though the manager derives no intrinsic

payoff benefit from this distortion.27 Fig. 1(a) illustrates this result.

The magnitude of the motivated reasoning is decreasing in the share q of male work-

ers. This is because when the hiring pool is more similar to the manager, it becomes

more costly for the manager to distort information in a way that improves his self-image,

as this distortion leads to a bigger loss from inaccurately evaluating workers. In contrast,

the optimal distortion for female workers is independent of their frequency in the pop-

ulation. As the share of male workers increases, the distortion against female workers

is less costly since they comprise a smaller share of workers, but it is also less beneficial

as a means to balance the distortion against males, since less distortion is desired. It

turns out that these two forces exactly balance for the linear-quadratic payoff form in

Eq. (14).

Optimal Unconstrained Updating Rule. Without the introspection-proof con-

straint, self-image concerns still lead the manager to inflate male test performance.

27Heidhues, Kőszegi, and Strack (2023) show that overconfidence about own ability can lead to a
similar pattern of inaccurate beliefs towards an in-group versus out-group.
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However, there is no incentive to distort test performance for females, as it is not nec-

essary to balance the distortion against males.

Proposition 4. The optimal unconstrained updating rule hU inflates the interpretation

of both test outcomes for group M , hU(y,M) = hB(y,M) + 1
2cq

for y ∈ {b, g}, and

accurately interprets both test outcomes for group F , hU(y, F ) = hB(y, F ) for y ∈ {b, g}.

In contrast to the optimal introspection-proof updating rule, the optimal unconstrained

updating rule only features inaccurate beliefs about the manager’s group. However,

it features a larger signal distortion for this group relative to the introspection-proof

updating rule. This is because without the introspection-proof constraint, distorting

test performance is only costly for the manager when he is hiring male workers; the

manager stands to lose less from distorting his belief about his own ability, as he does

not have to compensate by also distorting the perception of female workers. Thus,

the introspection-proof constraint serves as a natural moderator to the magnitude of

motivated reasoning bias that can emerge. It also leads to more accurate evaluations

overall.28 Fig. 1(b) illustrates this result.

5.2 Search with Over- and Underprecision

Overview. We explore how overprecision and underprecision—overestimating or un-

derestimating the precision of signals—impact search decisions. Prospective overpre-

cision leads to excess search, while retrospective overprecision leads to too little. The

insight reverses for underprecision. This demonstrates that whether a bias manifests

ex-ante or ex-post relative to the arrival of information is a key determinant of how it

impacts behavior.

Set-Up. A firm is considering whether to adopt one of two new technologies, j ∈ {1, 2}.
Technology j has either low or high value, ωj ∈ {L,H} with Pr(ωj = H) = p ∈
(0, 1). Values are independently drawn and unobserved. The firm learns about these

technologies sequentially. In each of two periods, it chooses whether to search a new

technology (if an unsearched option remains) or to adopt one of the technologies it

has already searched. Without loss of generality, assume that technology 1 is searched

first. When the firm searches technology j, it draws a signal zj from model (µL, µH)

but believes that the signal is drawn from misspecified model (µ̂L, µ̂H). The signals

are independent and perceived to be independent across technologies. Let h denote the

updating rule and ρ̂ denote the forecast induced by the misspecified model, where in a

slight abuse of notation h(z) is the subjective probability that the technology is high

28Although the unconstrained case results in less belief distortion for females, the higher distortion
for males dominates: the expected loss E((1ω=H −h(zw))2) from using hu is 1−α2− (1−α)2 + 1/8qc2,
which is larger than the expected loss from using h∗, 1− α2 − (1− α)2 + (1− q)/(8qc2).
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value after observing realization z and ρ̂ is the subjective distribution over the posterior

belief that the technology is high value.

The firm receives a payoff of 1 from adopting a high value technology and 0 from

adopting a low value technology or not adopting any technology. It costs the firm

c ∈ (0, p) to search each technology. The firm always searches the first technology since

p > c. After observing signal realization z1, it searches the second technology if

c <

∫ 1

h(z1)

(x− h(z1)) dρ̂(x), (17)

where we assume the firm does not search when indifferent.

The decomposition of the misspecified model into an updating rule and a forecast

isolates the forms of bias it induces. Moreover, as can be seen in Eq. (17), it highlights

the way each component of belief formation impacts search behavior. We next examine

how search decisions differ based on whether bias enters via the updating rule versus

the forecast.

Search with Prospective Bias. First suppose that the firm has prospective bias

but no retrospective bias, i.e. h = hB. The firm has an overprecise forecast if ρ̂ is a

mean-preserving spread of the accurate forecast ρB, and has an underprecise forecast

if ρB is a mean-preserving spread of ρ̂. When the firm has an overprecise forecast, it

overweights the likelihood of receiving a very precise signal when it searches the second

technology. From Eq. (17), it follows that such a firm searches the second technology

too often. In contrast, an underprecise forecast overweights the likelihood of receiving

a relatively uninformative signal, which leads to too little search. We formalize this in

the following proposition.

Proposition 5. Let ZS denote the set of signal realizations following which a correctly

specified firm searches the second technology. Then an overprecise forecast leads to search

following signal realizations in a superset of ZS, while an underprecise forecast leads to

search following signal realizations in a subset of ZS.

Even though ex-post the firm interprets information correctly, its prospective bias leads

to inefficiency.

Search with Retrospective Bias. Now suppose that the firm has retrospective bias

and uses the naive consistent forecast, i.e. ρ̂ = ρB. The firm exhibits overprecision if it

interprets signals as more precise then they actually are, h(z) < hB(z) when hB(z) < 1/2,

h(z) > hB(z) when hB(z) > 1/2, and h(z) = 1/2 when hB(z) = 1/2. It exhibits

underprecision if it interprets signals as less precise, h(z) ∈ (hB(z), 1/2) when hB(z) <

1/2, h(z) ∈ (1/2, hB(z)) when hB(z) > 1/2, and h(z) = 1/2 when hB(z) = 1/2.
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(a) Prospective Bias: h = hB , ρ̂ ∼ Beta(θ, θ) (b) Retrospective Bias: h(z)/(1 − h(z)) =
(hB(z)/(1− hB(z))γ , ρ̂ = ρB

Figure 2. Search Decisions with Over- and Underprecision (p = 1/2, c = 1/16, ρB ∼
U [0, 1]).

When the firm has an overprecise updating rule, it overreacts to the signal about the

first technology. Relative to an unbiased updating rule, the firm is (weakly) less likely

to search the second technology following a good signal realization and (weakly) more

likely following a bad realization. Whether more or less search emerges overall depends

on the cost of search: for a sufficiently low cost, there is less search and for a sufficiently

high cost, there is more. We formalize this in the following proposition.

Proposition 6. Let ZS denote the set of signal realizations following which a correctly

specified firm searches the second technology. There exists a c > 0 such that:

1. For c < c, an overprecise updating rule leads to search following signal realizations

in a subset of ZS and an underprecise updating rule leads to search following signal

realizations in a superset of ZS.

2. For c > c, an overprecise updating rule leads to search following signal realizations

in a superset of ZS and an underprecise updating rule leads to search following

signal realizations in a subset of ZS.

In contrast, as shown above, overprecise forecasting leads to (weakly) more search after

any signal realization relative to an unbiased forecast. Fig. 2 illustrates how the decision

to search the second technology depends on the level of prospective or retrospective bias.

Taken together, these results show that whether overprecision emerges prospectively

versus retrospectively leads to qualitatively different predictions of how the bias impacts

search behavior: prospective overprecision leads to more search while the retrospective
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overprecision leads to less. Therefore, the timing of when the bias emerges has important

implications for economic behavior.

6 Extensions

6.1 Misspecified Prior

Recent work on biased learning has also allowed for a misspecified prior (e.g. Fuden-

berg et al. (2017); Bohren et al. (forthcoming)). Our framework easily extends to such

settings. Let p̂ denote the subjective prior. The following result is an analogue of The-

orem 1. It pins down a unique prior and model of the signal process to represent an

updating rule and forecast pair.

Theorem 2 (Decomposition with Misspecified Priors). Consider an updating rule h and

a forecast ρ̂. There exists a prior p̂ ∈ ∆(Ω) and a model of the signal (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

that represents h and ρ̂ if and only if h and ρ̂ satisfy no unexpected beliefs. When such

a representation exists, it is essentially unique and satisfies

p̂i =

∫
∆(Ω)

xi dρ̂(x) (18)

and

µ̂i(Z) =
1

p̂i

∫
Z

h(z)idρ̂(h(z)) (19)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N . This model is

misspecified unless p̂ = p, h = hB µ-almost everywhere, and ρ̂ = ρB.

The key difference from Theorem 1 is that, rather than requiring the forecast to be

plausible, Theorem 2 uses plausibility to pin down the unique subjective prior. Given

this subjective prior, the misspecified model of the signal process is as in Theorem 1.29

A wider range of forecasts can be represented by a model with a misspecified prior, as

this relaxes the restrictive plausibility condition. Additionally, a wider range of updating

rules can be represented by an introspection-proof model with a misspecified prior. In

fact, all updating rules now have such a representation.30

29Analogous to Corollary 1, one can use the correctly specified model to pin down a representation
on F .

30Note that in order for the predicted empirical frequencies of signals to match their true empirical
frequencies, the predicted empirical frequencies of states do not match their true empirical frequencies.
So although the representation is introspection-proof with respect to the signal distribution, it is not
introspection-proof with respect to the state distribution.
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6.2 Prior-Independent Representations.

In order to consider dynamic updating for a sequence of signals or comparative statics

with respect to the prior, we next extend the definitions of an updating rule and a fore-

cast to allow them to depend on the prior. Specifically, updating rule h(z, p) specifies a

posterior belief for each signal realization z ∈ Z and prior p ∈ ∆(Ω), and the forecast

ρ̂(x, p) specifies the likelihood of each posterior belief x at each prior p ∈ ∆(Ω). Theo-

rem 1 pins down the misspecified model that represents the updating rule and forecast

at each prior.

In this expanded framework, an important question is whether an updating rule has

a representation that is independent of the prior.

Definition 12 (Prior-Independent Representation). An updating rule h(z, p) has a prior-

independent representation if there exists a model (µ̂i)ωi∈Ω that represents h(z, p) at all

p ∈ ∆(Ω).

When this property holds, the model representing the updating rule does not vary with

the prior belief. This is a conceptually appealing property for biases in which an agent

is inherently Bayesian but has a mistaken understanding of the information generating

process that does not depend on her current belief. For example, biases such as overreac-

tion and optimism are not intrinsically linked to the agent’s current belief. In contrast,

the property is conceptually at odds with biases in which the agent’s current belief in-

fluences her perception of information. For example, an agent’s current belief is a key

component of confirmation bias, and therefore, an updating rule exhibiting confirmation

bias is naturally represented by a model that varies with the prior. As we will discuss

below, the property is also at odds with some biases in which an agent is non-Bayesian.

The following proposition presents a necessary and sufficient condition for an updat-

ing rule to have a prior-independent representation. In particular, such a representation

exists if and only if it is possible to factor the prior likelihood ratio pj/pi out of the

posterior likelihood ratio h(z, p)j/h(z, p)i for any pair of states. When this condition

holds, then any model that represents an updating rule at some prior p also represents

the updating rule at any other prior p′—and can therefore form a prior-independent

representation.

Proposition 7 (Prior-Independent Representation). Fix an updating rule h(z, p) that

is responsive at all p ∈ ∆(Ω). Then h(z, p) has a prior-independent representation if

and only if

pi
pj

h(z, p)j
h(z, p)i

(20)
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is independent of p for all p ∈ ∆(Ω), z ∈ Z, and i, j = 1, ..., N . When this holds, then

any model that represents h(z, p) at prior p also represents h(z, p) at all other priors

p′ ∈ ∆(Ω).31

This result has an important implication for empirical work. When an updating rule

has a prior-independent representation, then identifying the updating rule at one prior

pins down the updating rule at all priors.

Many well-known parameterizations of common biases have prior-independent rep-

resentations. For example, the updating rule capturing geometric overreaction in Sec-

tion 2.2 and the partisan bias updating rule in Example 4 both have prior-independent

representations (see Appendix D.1). Intuitively, any bias that distorts the true sig-

nal likelihoods dµi
dν
/
∑

ωj∈Ω
dµj
dν

independently of the prior will have a prior-independent

representation.

This result also establishes when an updating rule does not have a prior-independent

representation. There are many biases that are naturally parameterized in a way that

inherently varies with the prior. For example, the direction of confirmation bias and

the magnitude of base rate neglect depend on the prior. Therefore, updating rules that

do not have a prior-independent representation are essential for capturing the essence

of these biases (see Page 11 for examples of such updating rules). While less obvious,

the linear parameterization of over/underreaction in Epstein et al. (2010) (see Exam-

ple 3) and the posterior parameterization of partisan bias in Example 4 only admit

prior-dependent representations (see Appendix D.1). In the former, even though the

over/underreaction parameter is independent of the prior, the additivity of the non-

Bayesian updating rule differs structurally from the multiplicative form of Bayes rule.

Therefore, it can only be represented in a framework that imposes Bayesian updating

by allowing the model to vary with the prior. In the latter, distorting the Bayesian

posterior, rather than the signal likelihood, links the magnitude of the bias to the prior

even though the parameter is independent of the prior. Similarly, the misspecified causal

models from Spiegler (2020) only admit prior-dependent representations.32

Even when a prior-independent representation exists for a given updating rule, the

unique model that represents a forecast-updating rule pair may not be prior-independent

31Whenever an updating rule h has at least two representations at some prior p, then trivially, a
prior-dependent representation exists. To see this, suppose Eq. (20) holds and consider two models
that represent h at prior p. Then both models represent h at all priors. To form a prior-dependent
representation, select one model to represent h at a subset of priors and select the other model to
represent h at the remaining priors.

32While prior-independent representations lend themselves to more straightforward dynamic analy-
sis, prior-dependent representations are still tractable. For example, recent work in the literature on
misspecified learning establishes general convergence results in settings where the model varies with the
prior (Bohren and Hauser 2021; Frick et al. 2020b).
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due to the dependence of the forecast on the prior. This brings us to the following result,

which establishes a desirable property of the naive consistent forecast.

Proposition 8 (NCF and Prior-Independence). Fix an updating rule h(z, p) that has

a prior-independent representation. Then the unique representation of h(z, p) and the

naive consistent forecast is prior-independent.

We already know that, by definition, the naive consistent forecast is consistent with

the forecast induced by the correctly specified model in a one-period setting. In a

dynamic setting with a sequence of signals, the naive consistent forecast paired with an

updating rule that has a prior-independent representation satisfies a stronger consistency

property. While ρ̂(x, p) specifies the period-t forecast of the period-(t+1) posterior belief,

in a dynamic setting one can also define the period-t forecast of the period-τ posterior

belief for any τ > t. The representation of the naive consistent forecast and an updating

rule with a prior-independent representation induces a period-t forecast over period-τ

posterior beliefs that is equal to the period-t forecast of period-τ posterior beliefs in the

correctly specified model.

6.3 Time Inconsistency and Prior-Dependent Representations

Time inconsistency is a key property of many dynamic behavioral models. In terms of

belief distortions, time inconsistency is an inherent feature of certain biases (e.g. confir-

mation bias or disbelief in the law of large numbers (Benjamin et al. 2016)). Therefore,

any representation of such biases will exhibit time inconsistency. This means that the

model an agent believes she will use in future periods differs from the model she actually

uses. A prior-dependent representation is a natural way to capture this property.

Consider the following setting. State ω is drawn at the beginning of the game. An

agent observes a sequence of conditionally i.i.d. signals drawn from µi when the realized

state is ωi. The agent uses an updating rule and a forecast that have a prior-dependent

representation with model (µ̂i(·; p))ωi∈Ω at prior p. When the agent has prior p, she

believes that she will use the forecast and updating rule induced by model (µ̂i(·; p))ωi∈Ω
in all future periods. This can lead to dynamically inconsistent behavior. The agent’s

model of how to interpret information changes with her belief but she does not anticipate

this. Therefore, the agent may wish to deviate from her ex-ante action strategy after

observing the signal and updating her belief, and hence, her model.

Prior-dependent models do not always lead to time inconsistency. When the agent

accurately anticipates how her model varies with the prior, she will be time consistent.

For example, when the correctly specified model varies with the prior—as in active

and social learning environments—it is prior-dependent but clearly also time consistent.

Alternatively, a biased agent who is sophisticated about her bias and accurately predicts
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how her future updating rule and forecast vary with her future belief is time consistent.

If an agent has a prior-independent representation and believes she will continue to use

this same updating rule and forecast at future beliefs, then behavior is time consistent

even if the agent is not aware of her bias.

7 Conclusion

We link two approaches commonly used to study biases in belief formation: the non-

Bayesian approach and the misspecified model approach. Our main result decomposes

a misspecified model into the two components of belief formation that are relevant for

decision-making—the updating rule and the forecast—and highlights the belief forma-

tion restrictions implicit in using the misspecified model approach. Moreover, it demon-

strates how one can ‘complete’ an updating rule through the construction of a forecast.

We also identify two natural paths for constructing such a forecast—the introspection-

proof model and the naive consistent forecast—and provide necessary and sufficient

conditions for these models to exist. Taken together, these results provide a method to

embed belief formation biases into economic decision problems when the updating rule

on its own is incomplete. They also highlight the importance of eliciting a forecast as

well as the commonly measured updating rule in empirical work, as both components

of belief formation play a key role in many economic settings.

A Proofs

A.1 Proofs from Section 3

Proof of Lemma 1. (If:) Let F ≡ {x : xi =
∫
Z h(z)i dµ̂(z), µ̂ ∈ ∆∗(Z)}. We first

show that F = S(h), which implies that S(h) = rel int F since both sets are convex,

and then show that any prior that lies in the relative interior of F can be represented

by a misspecified model. Consider any x ∈ S(h). Since S(h) is a compact convex set,

there is a set of K ≤ N ai ∈ S̄(h) s.t.
∑K

j=1 λjaj = x, λj > 0,
∑K

j=1 λj = 1. Fix

ε ∈ (0,minj{λj}), and for each aj take a collection of disjoint balls of radius δ < ε
2K

around aj, Bδ(aj). The set of signals that map to this ball has positive measure.

Define a density by

dµ̂

dµ
(z) =


λj− ε

2K

µ(h−1(Bδ(ai)))
if z ∈ h−1(Bδ(ai))

ε

2µ(Z\h−1(
⋃K
j=1Bδ(aj)))

o.w.

if µ(Z \ h−1(
⋃K
j=1Bδ(aj))) > 0, otherwise let dµ̂

dµ
(z) =

λj
µ(h−1(Bδ(ai)))

if z ∈ h−1(Bδ(ai)).

Then with respect to this density |
∫
Z h(z)idµ̂(z) − xi| ≤ ε, so x ∈ F . By standard

argument any point in F is in the closure of S(h), so these two sets are the same. So,

we can work directly with points in F .
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Consider the vector m ∈ ∆(Ω) where mi =
∫
Z h(z)i dµ(z), the expected value of the

misspecified posterior under the true unconditional distribution, which exists, and lies in

F . Since the prior p is in the relative interior, there exists an ε > 0 s.t. q = (1+ε)p−εm ∈
F . Moreover, there exists a probability distribution γ ∈ ∆∗(Z) absolutely continuous

with respect to ν s.t. q =
∫
Z h(z)i dγ(z). Consider the compound lottery where with

probability 1
1+ε

the signal z is drawn from γ and with complementary probability it

is drawn from µ. Call this measure µ̂. Then
∫
Z h(z)i dµ̂(z) = pi. Finally, suppose

that there was a set Z with ν-positive measure where for all z ∈ Z dµi
dν

(z) > 0 but
dµ̂i
dν

(z) = 0. This set occurred with positive probability under µ so it must occur with

positive probability under µ̂. This is a contradiction. Therefore, we can represent this

with a misspecified model.

(Only If:) Take a measure µ̂ ∈ ∆∗(Z). This induces a full support distribution

over supp ρh, denoted ρ̂µ̂ ≡ µ̂ ◦ h−1. Let mi =
∫
Z h(z)idµ̂(z). Suppose m was not on

the relative interior. Then there exists a hyperplane that properly supports S(h) at m,

v ∈ RN s.t. v ·m ≥ v · s for all s ∈ S(h), strict for any s on the relative interior. But

then, since the relative interior is non-empty, any point on the relative interior can be

written as the convex combination of points in the support (implying at least one of

these points is not on the hyperplane), and any neighborhood of that point occurs with

positive probability, v ·m =
∫
v · s dρ̂µ̂(s) < v ·m by the full support assumption. This

is a contradiction. �

Proof of Lemma 2. (If:) Fix a plausible forecast ρ̂ and and the associated function

g : Z → ∆(Ω). Let ρg = µ ◦ g−1. Define the measure

µ̂(Z) =

∫
Z

dρ̂

dρg
(g(z)) dµ(z).

Now note that ∫
Z
g(z)idµ̂(z) =

∫
∆(Ω)

xidρ̂(x) = pi

so the misspecified model

µ̂i(Z) =
1

pi

∫
Z

g(z)i dµ̂(z)

is a misspecified model with unconditional signal distribution µ̂. This misspecified model

has forecast ρ̂ by construction of µ̂ and the change of variables formula.

(Only If:) Fix a misspecified model (µ̂i)ωi∈Ω. Let h(z) be the updating rule defined

by Bayes rule with respect to this misspecified model. Then if ρ̂(X) = µ̂(h−1(X)) is

a forecast, it is, by definition, the forecast represented by the misspecified model. By

construction, h(z) is a measurable function s.t. ρ̂(X) = 0 if and only if ρh(X) = 0. So
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ρ̂ is a forecast. Finally, for any i∫
∆(Ω)

xidρ̂(x) =

∫
Z
h(z)idµ̂(z) =

∫
Z

pi
dµ̂i
dν

(z)∑N
k=1 pk

dµ̂k
dν

(z)
dµ̂(z) = pi

∫
Z
dµ̂i(z) = pi,

so it is a plausible forecast. �

Before proving Theorem 1, we first prove the following lemma, which establishes when

a measure over the signal space can be part of a model representing a given updating

rule.

Lemma 3.

1. Updating rule h can be represented by a misspecified model with unconditional signal

distribution µ̂ ∈ ∆∗(Z) iff ∫
Z
h(z)i dµ̂(z) = pi (21)

for all i. If a representation exists, then for any state ωi with pi > 0, µ̂i(Z) =
1
pi

∫
Z
h(z)i dµ̂(z) for any measurable set of signal realizations Z ⊂ F .

2. Updating rule h can be represented by a misspecified model with conditional signal

distribution µ̂j ∈ ∆∗(Z) in state ωj iff∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj

(22)

for all ωi ∈ Ω. If a representation exists, then for any state ωi with pi > 0,

µ̂i(Z) =
pj
pi

∫
Z
h(z)i
h(z)j

dµ̂j(z) for any measurable set of signal realizations Z ⊂ F .

The first part of this result is reminiscent of the well-known Bayes plausibility condi-

tion from the literature on communication games (Kamenica and Gentzkow 2011)—that

is, the posterior belief must be a martingale with respect to the prior. The second part

follows from the well-known condition that the likelihood ratio of the probability of state

ωi to state ωj is a martingale with respect to the distribution in state ωj—here, with

respect to the subjective distribution µ̂j. In either case, once one distribution is fixed,

this distribution in conjunction with the updating rule either pins down the entire set of

conditional signal distributions or violates Bayes-plausibility, and therefore, cannot be

part of a misspecified model that represents the updating rule.

Lemma 3 simplifies the process of selecting a model to represent an updating rule. In

particular, since specifying either the unconditional signal measure or one of the state-

contingent signal measures uniquely pins down the remainder of the misspecified model,
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a condition that selects an essentially unique such measure will also select an essentially

unique misspecified model.

Proof of Lemma 3. Fix an updating rule h.

Part 1: (⇒) Suppose h can be represented by a model with unconditional signal

distribution µ̂. It follows from standard argument that beliefs must be a martingale,

which implies
∫
Z h(z)i dµ̂(z) = pi.

(⇐) Now suppose that µ̂ is a measure with
∫
Z h(z)i dµ̂(z) = pi. Define conditional

distributions

µ̂i(Z) =
1

pi

∫
Z

h(z)i dµ̂(z)

for all Z ∈ F . These are probability distributions, as h(z)i is non-negative and µ̂i(Z) = 1

by construction. It remains to show this model induces the posterior prescribed by h

following each signal realization z. Since µ̂i is absolutely continuous with respect to µ̂,

Bayes rule with respect to (µ̂i)ωi∈Ω and the properties of the Radon-Nikodym derivative

imply that, µ-a.e.,

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
=

pi
dµ̂i
dµ̂

(z)∑N
j=1 pj

dµ̂j
dµ̂

(z)
= h(z)i,

so these distributions induce the posterior prescribed by h. Finally, for the above equa-

tion to hold, any misspecified model that represents h must solve
p1/h(z)1 −p2/h(z)2 0 . . . 0

p1/h(z)1 0 −p3/h(z)3 . . . 0
...

. . .

p1/h(z)1 0 . . . 0 −pN/h(z)N

p1 p2 . . . pN−1 pN




dµ̂1
dµ̂

(z)
dµ̂2
dµ̂

(z)
...

dµ̂N
dµ̂

(z)

 =


0

0
...

0

1


µ̂-a.s. Therefore, the conditional distributions are unique as the left-hand matrix is an

N ×N full-rank matrix.

Part 2. (⇒) Suppose h can be represented by a misspecified model with conditional

signal distribution µ̂j. Then, by standard argument, for any ωi the likelihood ratios

h(z)i/h(z)j must be martingales with respect to µ̂j so∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj
.

(⇐) Now suppose that µ̂j is a measure that satisfies∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj
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for updating rule h and all i. Define the misspecified model

µ̂i(Z) =

∫
Z

pj
pi

h(z)i
h(z)j

dµ̂j(z).

This is a misspecified model that induces updating rule h(z). WLOG assume j = 1.

Then, any family of misspecified models with updating rule h and conditional signal

distribution µ̂1 must solve

0 p2
p1

h(z)1
h(z)2

0 . . . 0

0 0 p3
p1

h(z)1
h(z)3

. . . 0
...

. . .

0 0 . . . 0 pN
p1

h(z)1
h(z)N

1
p1

−p2
p1

. . . −pN−1

p1
−pN

p1




dµ̂
dµ̂1

(z)
dµ̂2
dµ̂1

(z)
...

dµ̂N
dµ̂1

(z)

 =


1

1
...

1

1


µ̂1 a.s. so this model is unique. �

Proof of Theorem 1. We first prove the sufficiency of the conditions. To do so

requires a proof of Corollary 1. We then prove the necessity of the conditions.

Sufficiency: To establish sufficiency of the conditions, it is convenient to establish

the model defined in Corollary 1 represents h and ρ̂. By assumption ρ̂ is absolutely

continuous with respect to ρh, so dρ̂
dρh

exists. For any Borel set X, define

ρ̂i(X) ≡
∫
X

xi
pi

dρ̂

dρh
(x)dρh(x) =

∫
h−1(X)

h(z)i
pi

dρ̂

dρh
(h(z)) dµ(z)

where the second equality follows from change of variables. These are probability mea-

sures, and
∑
piρ̂i(X) = ρ̂(X). For any Z ∈ F , define

µ̂i(Z) ≡
∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z).

We are integrating a measurable function over a measurable set, so the model (µ̂i)ωi∈Ω

is indeed a family of measures over (Z,F). This is a probability measure as

µ̂i(Z) =

∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z) =

∫
∆(Ω)

1

pi
xi
dρ̂

dρh
(x) dρh(x) = 1.

It remains to show that this induces the desired forecast and updating rule. That is, we

must establish Corollary 1.

Proof of Corollary 1. Model (µ̂i)ωi∈Ω clearly induces the the specified updating rule h,

as dρ̂
dρh

is non-zero a.s. over the support of ρh. It remains to show that µ̂◦h−1(X) = ρ̂(X)
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for any Borel set X. For any Borel set X, note that

ρ̂i(X) =

∫
X

xi
pi

dρ̂

dρh
(x) dρh(x) =

∫
h−1(X)

h(z)i
pi

dρ̂

dρh
(h(z)) dµ(z) = µ̂i(h

−1(X)).

Therefore, for any Borel set X, µ̂(h−1(X)) =
∑
piρ̂i(X) = ρ̂(X). Therefore (µ̂i)ωi∈Ω is

a model that induces the desired forecast.

Necessity: We use Lemmas 2 and 3 to establish the necessity of the absolute conti-

nuity and plausibility conditions and the uniqueness of the representation. The forecast

must be plausible by Lemma 2. Suppose there exists a Borel set X such that ρh(X) > 0

but ρ̂(X) = 0 and a misspecified model (µ̂i)ωi∈Ω that induces the desired forecast and

updating rule exists. Let Z = h−1(X). Then by the mutual absolute continuity of the

misspecified and correctly specified measures, 0 = µ̂(Z) = µ(Z) = ρh(X) > 0, which

is a contradiction. Nearly identical logic implies that ρh(X) = 0 but ρ̂(X) > 0 is a

contradiction. Therefore, ρh and ρ̂ must be mutually absolutely continuous.

Uniqueness of the representation for sets in Fh follows from Lemma 3. Fix a model

(µ̂i)ωi∈Ω that represents h and ρ̂. For any Z ∈ Fh, the unconditional measure µ̂(Z) must

satisfy µ̂(Z) = ρ̂ ◦ h−1(Z). Since the model (µ̂i)ωi∈Ω induces µ̂ and h when restricted to

the measurable space (Z,Fh), this implies that

µ̂i(Z) =

∫
Z

h(z)idµ̂(z) =

∫
Z

h(z)idρ̂(h−1(z)).

so these conditional measures are unique. �

A.2 Proofs from Section 4

Proof of Proposition 1. Suppose h is an updating rule such that the accurate forecast

is plausible. This implies that∫
Z
h(z)i dµ = pi for all ω ∈ Ω.

Then by Lemma 3, there exists a misspecified model (µ̂i)ωi∈Ω that induces unconditional

distribution µ over Z and is represented by updating rule h(z). By the proof of Lemma 3,

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ
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describes a misspecified model that induces the desired distribution and updating rule.

Moreover, as argued before any misspecified model must solve
p1/h(z)1 −p2/h(z)2 0 . . . 0

p1/h(z)1 0 −p3/h(z)3 . . . 0
...

. . .

p1/h(z)1 0 . . . 0 −pN/h(z)N

p1 p2 . . . pN−1 pN




dµ̂1
dµ

(z)
dµ̂2
dµ

(z)
...

dµ̂N
dµ

(z)

 =


0

0
...

0

1

 .

There is at most one Radon-Nikodym derivative that solves this equation, and thus, the

misspecified model is unique.

Now suppose that (µ̂i)ωi∈Ω describes an introspection proof misspecified model that

induces updating rule h and has unconditional distribution µ. By the above logic, the

Radon-Nikodym derivative dµ̂i

dµ
(z) = 1

pi
h(z)i. This implies that

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ(z) = 1,

which in turn implies that
∫
Z h(z)i dµ̂(z) =

∫
Z h(zi) dµ(z) = pi, so the accurate forecast

is plausible. Therefore, the desired condition holds. �

Proof of Proposition 2. (If:) The existence of a misspecified model with naive con-

sistent forecast follows immediately from Theorem 1, since ρB is plausible because it

is the correctly specified forecast. For any Borel set X such that Z = h−1(X), note

that µ̂i(Z) = 1
pi

∫
Z
h(z)idρB(h(z)) = µi(h

−1
B (X)) = µi(h

−1
B (h(Z))) by construction of µ̂i,

Eq. (9), and the naive consistency of the forecast

(Only If:) Let ρB = µ(h−1(X)) be the accurate Bayesian forecast. Suppose there

exists a naive consistent representation (µ̂i)ωi∈Ω and there exists a Borel set X s.t.

ρB(X) > 0 but ρ̂(X) = 0. Then µ̂(h−1(X)) = 0, which by absolute continuity implies

that µ(h−1(X)) = 0. But, this then implies that µ(h−1B (X)) = 0 which is a contradiction.

A similar argument applies to the case where ρB(X) = 0 but ρ̂(X) > 0. �

A.3 Proofs from Section 5

Proof of Proposition 3. Fix the manager’s expected self-image, γ ≡ E(h(zm)|M) =

(h(g,M) +h(b,M))/2. The larger γ, the more the test scores for group identity M need

to be inflated on average. In order to maintain the introspection-proof constraint, this

requires on average a lower interpretation of test scores for group identity F , (h(g, F ) +

h(b, F ))/2 = 1−2qγ
2(1−q) . For a given γ, the first self chooses an updating rule to maximize

− E[(1ωw=H − h(zw))2],
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where the expectation is taken with respect to the true distribution over zw, subject

to the constraint that the self-image is indeed equal to γ, 1
2
(h(g,M) + h(b,M)) = γ

and that the updating rule is introspection-proof, 1
2
(h(g, F ) + h(b, F )) = 1−2qγ

2(1−q) . This is

solved by:

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α +
q

1− q

(
1

2
− γ
)

h∗(b, F ; γ) = 1− α +
q

1− q

(
1

2
− γ
)
.

To choose the optimal γ, the first self maximizes

max
γ∈[0,1]

γ − cE[(1ω=H − h∗(zw; γ))2].

This is solved by γ∗ = 1
2

+ 1−q
2qc

. This leads to the IP-updating rule in Proposition 3. �

Proof of Proposition 4. Fix the manager’s expected self-image, γ ≡ E(h(zm)|M) =

(h(g,M)+h(b,M))/2. Similar to the derivation for Proposition 3, the optimal updating

rule in terms of γ is

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α

h∗(b, F ; γ) = 1− α.

This leads to the optimal γ∗ = 1
2cq

+ 1
2
, which is higher than in the introspection-proof

case. �

Proof of Proposition 5. Consider how
∫ 1

hB(z)
(x − hB(z)) dρ̂(x) varies with ρ̂. We

can recast this as the utility a consumer with utility function u(x) = max{0, x− hB(z)}
receives from the lottery ρ̂. Since u(x) is a convex function, if ρ̂ is a mean-preserving

spread of ρ̂′ then Eρ̂(u(x)) ≥ Eρ̂′(u(x)). Therefore, the right hand side of Eq. (17) is

higher under ρ̂ than ρ̂′, so as the degree of overprecision increases, the firm searches

following a larger set of signal realizations. �

Proof of Proposition 6. Let f(q) ≡
∫ 1

q
(x − q) dρB(x). This is clearly a decreasing

function. The firm searches the second technology following any z1 such that f(h(z1)) >

c. Define c̄ ≡ f(1/2). Suppose c < c. Then for any h, a firm that uses updating rule h

49



searches for all z1 such that h(z1) < 1/2. If the firm is retrospectively underprecise, then

for every z1 such that the underprecise firm does not search following z1, i.e. f(h(z1)) ≤
c, we have h(z1) ≥ 1/2, and therefore, h(z1) < hB(z1). This implies f(hB(z1)) <

f(h(z1)) ≤ c, and therefore, the unbiased firm also does not search. Therefore, the

underprecise firm searches following signal realizations in a superset of ZS. If the firm

is retrospectively overprecise, then for every z1 such that the unbiased firm does not

search, f(hB(z1)) ≤ c, by analogous reasoning we have f(h(z1)) < f(hB(z1)) ≤ c and

the overprecise firm also does not search. Therefore, the overprecise firm searches for

signal realizations in a subset of ZS. The logic for c > c is analogous. �

A.4 Proofs from Section 6

Proof of Proposition 7. (If:) Fix an interior prior p ∈ ∆(Ω). By Lemma 1, there

exists a misspecified model (µ̂i)ωi∈Ω that represents h(z, p) at p. Therefore, by Bayes

rule, for µ-almost all z
h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

(z)

pj
dµ̂j
dν

(z)
.

So the condition from observation 1 implies that

h(z, p′)i
h(z, p′)j

=
p′i
dµ̂i
dν

(z)

p′j
dµ̂j
dν

(z)

which is exactly the condition h(z, p′) must satisfy to be induced by (µ̂i)ωi∈Ω at p′.

(Only If:) Suppose that h(z, p) admits a prior independent representation (µ̂i)ωi∈Ω.

By Lemma 1, for every p, h(z, p) ∈ S(h(·, p)). Moreover, by Bayes rule

h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

(z)

pj
dµ̂j
dν

(z)
,

so for any p,p′

pjh(z, p)i
pih(z, p)j

=
p′jh(z, p′)i

p′ih(z, p′)j
.

�

Proof of Proposition 8. Fix a prior p and let (µ̂i)ωi∈Ω be the essentially unique

representation of h(z, p) and the naive consistent forecast ρB at prior p. It follows from

Proposition 7 that this induces h(z, p) at every prior, as for any p′ the likelihood ratio

of the updating rule must be the likelihood ratio induced by Bayes rule with respect to

the representation,
p′j
p′i

h(z, p′)i
h(z, p′)j

=
pj
pi

h(z, p)i
h(z, p)j

=
dµ̂i
dν

(z)
dµ̂j
dν

(z)
.
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By construction, this representation induces the naive consistent forecast ρB at p′, as

for any Borel set X,

ρB(X; p′) =
N∑
i=1

p′iµi({z : hB(z) ∈ X}) =
N∑
i=1

p′iµ̂
i(h−1(X)).

�

Proof of Theorem 2 This follows immediately from Theorem 1. If ρ̂ and ρ are

mutually absolutely continuous then the forecast ρ̂ is plausible with respect to the prior

p̂. So, under prior p̂ the conditions of Theorem 1 are satisfied and a misspecified model

exists and is essentially unique. Moreover, under any other prior the forecast is not

plausible. Therefore the misspecified prior and model that jointly represents ρ̂ and h is

unique.

If ρ̂ and ρ are not mutually absolutely continuous, then by Theorem 1 the forecast

and updating rule cannot be jointly represented. Therefore, the absolute continuity

condition is necessary and sufficient for the existence of a unique misspecified prior and

an essentially unique misspecified model that jointly represent h and ρ̂. �

B Extensions

B.1 Almost Introspection-Proof.

Given a misspecified model, it is natural to ask (i) how far away is the forecast it

induces from the true distribution over misspecified posteriors, and (ii) how far away

is the forecast it induces from the “optimal” forecast for the given updating rule. A

natural way to formalize these questions is in terms of divergences.

Definition 13. Fix a misspecified model (µ̂i)ωi∈Ω. Let ρ̂ and h be the updating rule and

forecast induced by this misspecified model. ρ̂ is the KL-optimal forecast for updating

rule h if it minimizes minρ̂∗ D(ρ̂∗||µ ◦ h−1) across all forecasts that can represented by a

misspecified model that induces h(z).

The KL-optimal forecast provides a natural benchmark for in some sense quantifying

the additional prospective distortions induced by a misspecified model.

Before characterizing the KL optimal forecast ρ̂∗, it is convenient to think about the

following natural exercise. Even if no introspection-proof representation exists, perhaps

a natural model to represent an updating rule would be the one that in some sense

did the best against any sort of test for misspecification the agent could construct. To

formalize this, let Tn : Zn → ∆{0, 1} be a test, a mapping from a realized sequence of

signals to a 0 or 1. We say a sequence passes the test if the realization of this random

variable is 1, and it fails otherwise. Let Tn the set of all tests for samples of size n.
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Given a test Tn, we can ask how effective it is at detecting misspecification. That is,

Tn is a hypothesis test for the binary hypothesis

H0 : µ̂

H1 : µ.

Let

βnα = sup
Tn∈Tn

− lnPrµ(Tn = 1)

n

s.t. Prµ̂(Tn = 1) ≥ 1− α

so e−nβ is the probability of failing the detect misspecification when the true data gen-

erating process is (µi)ωi∈Ω.

Using this, we can define another class of misspecified models:

Definition 14. Given an updating rule h, a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

that represents h is α-introspection proof if across all possible representations of h it

minimizes lim infn→∞ β
n
α.

That is, given any hypothesis test that rejects the misspecified model with probability

less than α if it was true, the α-introspection proof model minimizes the worst-case

probability of rejection under the true distribution as n grows large. The α-introspection

proof misspecified model is in some sense the representation of h that makes it hardest

to detect misspecification. By the Chernoff-Stein lemma, for any α ∈ (0, 1) and µ̂,

limn→∞ β
n
α = D(µ̂||µ), where D is KL-divergence, so we can reformulate this problem as

min
µ̂∈∆∗(Z)

D(µ̂||µ)

s.t.

∫
hi(z)

dµ̂

dν
(z)dν(z) = pi for all i.

So the α-introspection proof misspecified model is the model induced by the KL-optimal

forecast.

Using tools from information theory, we can then characterize the α-introspection

proof misspecified model.

Proposition 9. Let ψh : RN
+ → R be the joint moment generating function of posteriors

ψh(λ) = Eµ(eλ·h(z)). Given an updating rule h, the α-introspection proof misspecified

model is given by:

dµ̂i
dν

(z) =
1

pi
hi(z) exp(λ · h(z)− logψh(λ))

dµ

dν
(z)
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where λ ∈ Rn solves
∫

(pi − h(z)i)e
λ·h(z)dµ(z) = 0 for each i.33 This model has KL-

divergence p · λ− logψh(λ) from the truth.

Proof. Our goal is to solve the program

min
µ̂∈∆∗(Z)

D(µ̂||µ)

s.t.

∫
hi(z)dµ̂(z) = pi for all i

If this min exists, we can apply our tools to construct a misspecified model that in-

duces unconditional distribution µ̂, and by the Chernoff-Stein Lemma this is the α

introspection-proof misspecified model. Let dµ̂∗

dν
(z) = exp(λ · h(z) − logψh(λ)) dµ

dν
(z).

Under this measure Eµ̂∗(h(z)i) satisfies

Eµ̂∗(h(z)i) =
1

ψh(λ)

∫
Z
h(z)i exp(λ · h(z))dµ(z) =

1

ψh(λ)

∫
Z
pi exp(λ · h(z)) dµ(z) = pi,

where the first equality follows from the definition of λ. In addition, µ̂∗ is non-negative

and integrates to 1 by the definition of ψh, so µ̂∗ satisfies the constraints. The misspeci-

fied model described in the statement of the theorem is then simply the model induced

jointly by µ̂∗ and h (see Lemma 3). To see that this model is a minimizer, note that for

any feasible µ̂,

D(µ̂||µ) = Eµ̂(log
dµ̂

dµ̂∗
(z)

dµ̂∗

dµ
(z))

= Eµ̂(log
dµ̂

dµ̂∗
(z)) + Eµ̂(log

dµ̂∗

dµ
(z))

= D(µ̂||µ̂∗) + Eµ̂(λ · h(z)− logψh(λ))

= D(µ̂||µ̂∗) + λ · p− logψh(λ)

≥ λ · p− logψh(λ) = D(µ̂∗||µ)

so µ̂∗ is a minimizer. �

The updating rule h pins down the exponential family that the α-introspection proof

misspecified model belongs to while the true distribution determines the exact represen-

tative of this family. Applying the change of variables formula, this also characterizes

the KL-optimal forecast, which satisfies for any x ∈ ∆(Ω)

dρ̂∗

dρh
(x) = exp(λ · x− logEρh(exp(λ · x))),

33Since h is a bounded random variable ψh exists. λ solves maxλ p · λ − logψh(λ), which has a
solution iff the h(z) is responsive.
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where λ is the λ from the proposition.

B.2 State-Dependent Introspection-Proof

We motivated our notion of introspection-proofness as robustness of the misspecified

model to infinite independent draws of the state and the signal. A natural, related

notion, would be to instead fix the true state of the world ωi and then require the

misspecified model to be robust to observing infinite conditionally independent draws of

z.

Definition 15. A family of misspecified models (µ̂i)ωi∈Ω representing updating rule h(z)

is an ωi introspection-proof model relative to ωj if for all Z ∈ F , µ̂j(Z) = µi(Z).

This restriction requires there to exist some state ωj where the observed frequencies

of different signals matches the truth. As with introspection-proofness, this condition is

enough to pin down a unique misspecified model that represents a given updating rule.

Proposition 10. Fix an updating rule h. This can be represented by an ωi-introspection-

proof misspecified model relative to ωj, (µ̂k)ωi∈Ω if and only if for all k ∈ {1, 2, . . . N}∫
Z

h(z)k
h(z)j

dµi(z) =
pk
pj
.

Moreover, if this representation exists, for any k and any Z ∈ F ,

µ̂k(Z) =

∫
Z

pj
pk

h(z)k
h(z)j

dµi(z).

Proof. Note that this satisfies the introspection proof condition as

µ̂j(Z) =

∫
Z

pj
pj

h(z)j
h(z)j

dµi(z) = µi(Z).

It follows immediately from Lemma 3 that (µ̂)ωi∈Ω represents h and induces distribution

µ̂j. �

This condition is once again a variation of the martingale property of beliefs—in this

case, the requirement that the likelihood ratio is a martingale with respect to the true

data generating process. While on the surface it appears very similar to the original

introspection-proof condition, this condition is in fact much less restrictive.

C Comparison to Blackwell’s Order

A common way of modeling biases, especially in the motivated reasoning literature, is to

take a correctly specified model and have the agent imperfectly recall signals by adding

noise to the signal distribution. This makes the agent perceive information as being
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drawn from a Blackwell less informative distribution. At first glance, it may seem like

this may be connected with our notion of introspection-proof models. In this section,

we demonstrate that these are distinct concepts.

Roughly, an information structure is Blackwell more informative than another in-

formation structure if and only if it is a mean-preserving spread of the distribution of

posteriors, which is equivalent to the existence of a garbling matrix. A garbled distribu-

tion in general induces different probabilities of each signal realization, as it combines

signals to make them less precise. In contrast, it is difficult to combine signals in a way

that is introspection-proof, as the agent still observes a draw from the original signal

space. In this section, we formally show that these concepts are distinct by providing

examples in which a misspecified model is Blackwell ranked with respect to the true

model but not introspection-proof, and introspection-proof but not Blackwell ranked

with respect to the true model.

Consider a finite signal space Z = {z1, z2, . . . zK} and let Q be a N ×K matrix with

(Q)ij = µi({zj}). Define Q̂ analogously. In this framework, Q and Q̂ capture models.

Model Q̂ is Blackwell less informative than Q iff there exists an K×K stochastic matrix

M s.t. QM = Q̂. The definition of introspection-proof corresponds to pQ = pQ̂, where

p is the (row) vector of priors as defined in Section 2. Proposition 1 establishes that

introspection-proof is equivalent to the the requirement that HQ′p′ = ĤQ′p′, where H

is the matrix with Hij = hB(zj)i and Ĥ is the matrix with Ĥij = h(zj)i.

To see that a misspecified model can be Blackwell ranked with respect to the true

model but not be introspection-proof, consider the models

Q =

(
3
4

1
4

1
4

3
4

)
, Q̂ =

(
2
3

1
3

1
4

3
4

)
.

Then Q̂ is a garbling of Q (use M = (7/8, 1/8; 1/24, 23/24)) and therefore, Blackwell

less informative. But Q̂ is not introspection-proof with respect to Q for any interior

prior, as unlike garbling information, the unconditional probabilities of each signal must

be the same under Q and Q̂, e.g. for z1,

p1
2

3
+ (1− p1)

1

4
= p1

3

4
+ (1− p1)

1

4
,

which only holds at p1 = 0.

However, the introspection-proof condition does not preclude a model from being

Blackwell ranked with respect to the true model. To see that a model can be Blackwell
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ranked and introspection-proof, consider prior p1 = 1/2 and model

Q̂ =

(
3
4
− τ 1

4
+ τ

1
4

+ τ 3
4
− τ

)
.

for τ ∈ [0, 1/4]. Then model Q̂ is introspection-proof with respect to Q and is also

Blackwell less informative than Q.

To see that models that are not Blackwell ranked with respect to the true model can

also be introspection-proof, consider

Q =

(
2
8

3
8

2
8

1
8

1
8

2
8

3
8

2
8

)
, Q̂ =

(
5
16

5
16

5
16

1
16

1
16

5
16

5
16

5
16

)
.

Then Q and Q̂ are not Blackwell ranked but Q̂ is introspection-proof with respect to Q.

D Additional Examples

D.1 Examples of Prior-Independent and Prior-Dependent Representations

We show that the updating rule modeling geometric overreaction in Section 2.2 and

the updating rule modeling partisan bias in Bohren and Hauser (2021) satisfy the con-

dition in Proposition 7, and therefore, have a prior-independent representation. We

also show that the updating rule modeling over/underreaction in Epstein et al. (2010)

(see Example 3) and the updating rule modeling partisan bias in Example 4 do not

satisfy the condition in Proposition 7, and therefore, do not have a prior-independent

representation.

The geometric overreaction updating rule from Section 2.2 corresponds to

h(z, p)i
h(z, p)j

=
pi
pj

(
dµi
dµj

(z)

)γ
.

It is straightforward to see that it is possible to factor out the prior from this expres-

sion, and therefore, it has a prior-independent representation. Consider the param-

eterization of partisan bias from Bohren and Hauser (2021). There are two states,

|Ω| = 2. Normalize the signal to be the posterior probability of ω1 following a flat prior,

z = dµ1
dν

(z)/(dµ2
dν

(z) + dµ1
dν

(z)), with support Z ⊂ [0, 1]. Consider updating rule

h(z, p)1
h(z, p)2

=
p1
p2

(
zα

1− zα

)
where α ∈ (0,∞) is the partisan bias parameter. Again it is straightforward to see that

it is possible to factor out the prior from this updating rule, and therefore, it has a

prior-independent representation.
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In contrast, the model of over/underreaction in Example 3 does not satisfy the con-

dition in Proposition 7, as

pj
pi

h(z, p)i
h(z, p)j

=
dµi
dν

(z) +
∑N

k=1 pk
dµk
dν

(z)
dµj
dν

(z) +
∑N

k=1 pk
dµk
dν

(z)

clearly depends on the prior. Similarly, in the model of partisan bias in Example 4,

p2
p1

h(z, p)1
h(z, p)2

=
p2
p1

(
hB(z, p)α1

1− hB(z, p)α1

)

where hB(z, p)1 ≡
p1
dµ1
dν

(z)

p1
dµ1
dν

(z)+p2
dµ2
dν

(z)
. This expression also clearly depends on the prior.

D.2 Linear Under- and Overreaction

The following example illustrates the multiplicity of representations for the updating

rule for under- and overreaction defined in Epstein et al. (2010),

h(z) = αhB(z) + (1− α)p

for some α ∈ (−∞, 1]. We can use Lemma 3 to find misspecified models that represent

this updating rule. First consider a misspecified model that induces a subjective uncon-

ditional distribution that is equal to the true unconditional distribution, µ̂ = µ. Then µ̂

satisfies Eq. (21) as
∫
Z hB(z)i dµ̂(z) =

∫
Z hB(z)i dµ(z) = pi by standard argument, and

therefore,
∫
Z(αhB(z)i + (1 − α)pi) dµ̂(z) = pi. In this case, the subjective distribution

in state ωi must be equal to:

dµ̂i
dν

(z) =

[
α

pi
hB(z)i + (1− α)

]
dµ

dν
(z).

In other words, it is completely pinned down by the true unconditional measure µ, the

Bayesian updating rule hB, and the under- or overreaction parameter α.

This representation is not unique. To illustrate this, consider a setting with |Ω| = 2,

Z = [0, 1], p = 1/2, a uniform true unconditional signal distribution, and |hB(z)1 − 1
2
|

symmetric about z = 1/2. Then the model that induces subjective unconditional pdf

dµ̂(z) = 3/2−6(z−1/2)2 (in a slight abuse of notation, using dµ̂ to denote the pdf) also

satisfies
∫
Z hB(z)idµ̂(z) = 1/2, and therefore,

∫
Z(αhB(z)i+(1−α)/2) dµ̂(z) = 1/2. In the

first representation, the agent correctly anticipates the frequencies of different signals but

underreacts to them, while in the second representation, the agent underestimates the

frequency of “extreme” signal realizations. Given that hB is monotone, this means that

in addition to underreacting to the signal, the agent also anticipates that she will observe

signal realizations that are, on average, less informative than the signal realizations she
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actually observes.
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