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Abstract

We introduce reduced form representations of Bayesian persuasion problems

where the variables are the probabilities that the receiver takes each of her actions.

These are simpler objects than, say, the joint distribution over states and actions

in the obedience formulation of the persuasion problem. This can make a dif-

ference in computational and analytical tractability which we illustrate with two

applications. The first shows that with quadratic receiver payoffs, the worst-case

complexity scales with the number of actions and not the number of states. If |A |

and |S | denote the number of actions and states respectively, the worst case com-

plexity of the obedience formulation is O(|A |2.5 max{|A |2.5, |S |2.5}). The worst

case complexity of the reduced form representation is O(|A |3). In the second ap-

plication, the reduced form leads to a simple greedy algorithm to determine the

maximum value a sender can achieve in any cheap talk equilibrium.
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1 Introduction

The model of Bayesian persuasion in Kamenica and Gentzkow (2011) is now the main

framework for investigating how a principal can use information rather than carrots and

sticks to influence the behavior of an agent.1 There is an underlying state initially un-

known to both principal (called the sender) and agent (called the receiver). The receiver

wishes to choose an action whose payoff depends on the unknown state. That action

affects the sender’s payoffs as well. The state, when realized, is revealed only to the

sender. However, before the state is realized, the sender commits to how much infor-

mation about the state she will reveal to the receiver. Any information revealed by the

sender affects the posterior beliefs of the receiver, thereby affecting the receiver’s action

choice.2 Should the sender obfuscate the actual state, and if so, how?

The sender’s problem of choosing what information to reveal about the state to

maximize her payoff can be formulated in three ways. The first is in terms of choosing a

decomposition of the prior distribution over states into a convex combination of possible

posterior distributions. This decomposition yields the information structure, that is, the

mapping from state to signals that the sender should employ to maximize her expected

payoff (e.g., Kamenica and Gentzkow (2011); Dworczak and Martini (2019); Doval

and Skreta (2021)). The second, called concavification, does not explicitly identify the

optimal signal structure. Instead, it characterizes the sender’s optimal expected payoff

in terms of a concave envelope. For examples, see Lipnowski and Mathevet (2018) and

Lipnowski and Ravid (2020). The third assumes that the sender recommends an action

as a function of the underlying state. These recommendations must be in the receiver’s

interest to follow. For this reason we call it the obedience formulation (e.g. Kolotilin

(2018); Dughmi and Xu (2016); Dughmi et al. (2019); Salamanca (2021); Galperti and

Perego (2018)).

Our paper proposes a reduced-form representation of the obedience formulation.

Reduced form representations of optimization problems have proved useful in other

1See Kamenica (2019) for a survey.
2A standard alternative interpretation is that the sender does not observe the state either, but can

design an arbitrary experiment whose result is observed by the receiver, who then takes an action.
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settings. See, for example, Che et al. (2013), Epitropou and Vohra (2019), Pai and

Vohra (2014), Bertsimas and Niño-Mora (1996) and Queyranne and Schulz (1994). In

our case, the reduced form variables are the probabilities with which the receiver takes

each of her actions. This bypasses the complications associated with decompositions of

distributions or concavification of functions.3

We demonstrate the usefulness of the approach with two applications. In each,

the sender’s preferences are state independent. In the first, the receiver cares about

matching the state as measured by a quadratic loss function. If |A | is the number of

actions and |S | is the number of states, the worst-case complexity of the algorithm

is no more than O(|A |3). Thus, the complexity does not scale with the number of

states which is an advantage in settings where the number of states far exceeds the

number of actions. By comparison, the worst-case complexity of solving the obedience

formulation as a linear program is O(|A |2.5 max{|A |2.5, |S |2.5}). 4

In the second application, the receiver also benefits from matching the state, but

unlike the quadratic loss case, she incurs a fixed, state-dependent cost when she mis-

matches. While the reduced form representation does not suggest a simple algorithm

for solving the persuasion problem, it does yield a simple greedy algorithm to determine

the maximum value a sender can achieve in any cheap talk equilibrium.

Section 2 of this paper describes the obedience formulation of the persuasion prob-

lem. Section 3 describes the reduced form representation for the first application. Sec-

tion 4 discusses the cheap talk application.

2 The Persuasion Problem

We formulate the optimal persuasion problem with a finite number of states and actions

as a linear program. Let S be a finite set of states and A a finite set of actions. Elements

of each are denoted by ω j and ai, respectively.

3Mathematically, these are equivalent, but a reduced-form representation may reveal structure ob-

scured by other representations.
4In all cases, we refer to complexity bounds for deterministic algorithms. The exact bounds contain

a logarithmic term in |A | and relative accuracy, which we ignore. See Cohen et al. (2019) for details.
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We restrict attention to the so-called pure persuasion environment where the sender’s

(she/her) payoff is independent of the state and depends only on the receiver’s (he/him)

action.5 If the receiver chooses action ai in state ω j, his payoff is denoted VR(ω j,ai),

and the value to the sender is denoted VS(ai). The sender and the receiver share a com-

mon prior p over S .

Let x(ω j,ai) be the (joint) probability of the realized state being ω j and the sender

recommending action ai to the receiver. The sender’s optimization problem is

max
x(ω,a)

|A |

∑
i=1

|S |

∑
j=1

VS(ai)x(ω j,ai)

s.t.
|S |

∑
j=1

VR(ω j,ai)x(ω j,ai)≥
|S |

∑
j=1

VR(ω j,ak)x(ω j,ai) for all ai and ak (1)

|A |

∑
i=1

x(ω j,ai) = p(ω j) for all ω j ∈ S (2)

x(ω j,ai)≥ 0 for all ω j ∈ S and ai ∈ A . (3)

Constraints (1) are the obedience constraints (henceforth referred to as OC) that

ensure that it is in the receiver’s interest to follow the sender’s recommendation.

Constraints (2) ensure that the total probability weight assigned to actions recom-

mended in state ω j matches the prior probability of state ω j being realized.

Dughmi et al. (2019), Salamanca (2021) and Galperti and Perego (2018) use duality

and complementary slackness to characterize the optimal solution of (1-3). Our point is

that other formulations of the persuasion problem can sometimes be more useful.

3 Pure Persuasion with Quadratic Loss

We assume in this section that the states and actions are real numbers, and the receiver’s

payoff depends on how close the action is to the state as measured by quadratic loss.

That is, VR(ω j,ai) = −(ai −ω j)
2. Without loss, we order the states and actions in S

and A in increasing order:

5This is an oft-studied case in the literature, see for example (Brocas and Carrillo (2007) and Lip-

nowski et al. (2020).
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ω1 < ω2 < .. . < ω|S |

a1 < a2 < .. . < a|A |

The persuasion problem in its obedience formulation is:

max
|A |

∑
i=1

|S |

∑
j=1

VS(ai)x(ω j,ai) (4)

s.t.
|S |

∑
j=1

[(ak −ω j)
2 − (ai −ω j)

2]x(ω j,ai)≥ 0 for all ai,ak ∈ A (5)

|A |

∑
i=1

x(ω j,ai) = p(ω j) ∀ω j ∈ S (6)

x(ω j,ai)≥ 0 ∀ai ∈ A ,ω j ∈ S . (7)

The reduced form representation is formulated in terms of the marginal distribution

over the receiver’s action rather than its joint distribution with the state of the world.

For each ai ∈ A , set zi = ∑
|S |
j=1 x(ω j,ai).

The setting can be thought of as canonical, see for example Dworczak and Mar-

tini (2019) and Kolotilin (2018). There, the set of states and actions are intervals with

S ⊂ A . The problem is formulated so that the variable is a distribution over the pos-

terior expected state. When the receiver’s preferences satisfy quadratic loss, states can

be relabeled to equal the receiver’s optimal actions. Thus, the relevant variable be-

comes the distribution over the receiver’s actions. When S ⊂ A the relabelling step is

straightforward. We do not impose this assumption. Further, this argument only shows

that a formulation in terms of the distribution over the receiver’s actions is equivalent

rather than better in a precise sense. As noted in the introduction, the reduced form

representation has a lower worst-case complexity than the obedience formulation.

As the sender’s payoff is state independent, it is clear that the sender’s expected

payoff can be expressed in terms of the zi’s. However, it is less obvious that this also

works for the obedience constraints. After all, the essence of persuasion is how states

are pooled, and the zi variables obscure that.

Theorem 3.1 For each ωr ∈ S let

1. U+(ωr) = {i : ai+ai+1
2 > ωr}
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2. B+(ωr) = {i : ai+ai+1
2 ≤ ωr}

3. U−(ωr) = {i : ai+ai−1
2 > ωr}

4. B−(ωr) = {i : ai+ai−1
2 ≤ ωr}

The persuasion problem (4-7) can be expressed as

max
z1,...,z|A |

|A |

∑
i=1

VS(ai)zi

s.t. ωr ∑
i∈B−(ωr)∪{1}

zi + ∑
i∈U−(ωr)

(ai +ai−1)zi

2
≤ ∑

j
max{ωr,ω j}p(ω j) ∀2 ≤ r ≤ |S |

(8)

ωr ∑
i∈U+(ωr)∪{|A |}

zi + ∑
i∈B+(ωr)

(ai +ai+1)

2
zi ≥ ∑

j
min{ω j,ωr}p(ω j) ∀1 ≤ r ≤ |S |−1

(9)

∑
i∈A

zi = 1 (10)

zi ≥ 0 ∀i ∈ A . (11)

The number of variables in this formulation depends on |A | only. Ostensibly the num-

ber of constraints depends on |S | but many of these will be redundant. To see why,

suppose
ai +ai−1

2
≤ ω j < ω j+1 ≤

ai+1 +ai

2
.

Then, B−(ω j) = B−(ω j+1) and U−(ω j) = U−(ω j+1). The proof of Theorem 3.1 ap-

pears in the appendix.

In many applications it is common to assume that A = S and ai = ωi = i for all i.

In this case, the persuasion problem (4-7) can be expressed as:

max
z1,...,z|A |

|A |

∑
i=1

VS(i)zi

s.t. z1 +∑
i≥2

(i−0.5)zi ≤ ∑
i

ip(i) (12)

∑
i∈A

max{(i−0.5),r}zi ≤ ∑
i∈A

max{i,r}p(i) ∀r ≥ 2 (13)

∑
i∈A

min{(i+0.5),r}zi ≥ ∑
i∈A

min{i,r}p(i) ∀r ≤ |A |−1 (14)
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∑
i≤|A |−1

(i+0.5)zi + |A |z|A | ≥ ∑
i

ip(i) (15)

zi ≥ 0 ∀i ∈ A . (16)

Note the absence of (10). This is because it is implied by the other constraints. If we

choose r = |A | in (13), this yields ∑i∈A zi ≤ 1. If we choose r = 1 in (14) it yields

∑i∈A zi ≥ 1.

To interpret (13) it is helpful to consider its ‘continuous’ analog. Suppose A =

S = [0,1]. Then, (13) can be rendered as:∫ 1

0
max{x,r}z(x)dx ≤

∫ 1

0
max{x,r}p(x)dx ∀r ∈ [0,1].

Therefore, the random variable associated with the density z(x) is below the random

variable associated with the density p(x) in the increasing convex order (see chapter

3 of Shaked and Shanthikumar (2007)). One consequence is that the variance of the

distribution over the actions is smaller than the variance of the distribution over the

states. In effect, the sender is ‘rewarding’ the receiver with lower variance in return

for taking an action that is more preferred by the sender. The receiver’s quadratic loss

preferences render them risk averse. Thus, they are willing to trade off a higher mean

for lower variance.

Constraints (12) and (15) are the discrete analogs of the following:∫ 1

0
xz(x)dx =

∫ 1

0
xp(x)dx.

In words, the expected action must equal the expected state.

Example 1 Suppose A = S = {1,2,3}. We show how elementary manipulations will

reduce an instance of (13-16) to an optimization problem involving a single variable.

Since many stylized models of persuasion involve only a handful of actions and states,

this will illustrate how one can use the reduced form to identify optimal solutions with-

out imposing restraints on the sender’s payoffs.

Problem (13-16) is:

maxVS(1)z1 +VS(2)z2 +VS(3)z3

s.t. z1 +1.5z2 +2.5z3 ≤ p(1)+2p(2)+3p(3)
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2z1 +2z2 +2.5z3 ≤
3

∑
j=1

max{ j,2}p( j)

1.5z1 +2z2 +2z3 ≥
2

∑
j=1

min{ j,2}p( j)

1.5z1 +2.5z2 +3z3 ≥ p(1)+2p(2)+3p(3)

z1 + z2 + z3 = 1

z1,z2,z3 ≥ 0

Using the constraint z1 + z2 + z3 = 1 we can simplify the constraints to

0.5z2 +1.5z3 ≤ p(2)+2p(3)

0.5z3 ≤ p(3)

0.5(z2 + z3)≥ 0.5− p(1)

z2 +1.5z3 ≥ p(2)+2p(3)−0.5

z1 + z2 + z3 = 1

z1,z2,z3 ≥ 0

The second of these constraints is redundant.

Eliminating z2, we obtain:

maxVS(1)z1 +VS(2)(1− z1 − z3)+VS(3)z3

s.t. z3 ≤ p(2)+2p(3)+0.5z1 −0.5

z1 ≤ 2p(1)

z3 ≥ 2p(2)+4p(3)−3

0 ≤ z3 ≤ 1− z1

Hence, z3 = min{1− z1, p(2)+ 2p(3)+ 0.5z1 − 0.5}. So, our problem reduces to the

following:

VS(2)+max[VS(1)−VS(2)]z1+[VS(3)−VS(2)]min{1− z1, p(2)+2p(3)+0.5z1−0.5}

s.t. 1−2p(2)−4p(3)≤ z1 ≤ 2p(1)

0 ≤ z1 ≤ 1
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It is common in the literature to assume that the sender’s and receiver’s preferences

depend only on the posterior mean (e.g. Dworczak and Martini (2019)). Hence, one

may wonder whether our approach would also extend to this case. For a specific func-

tional form of the sender’s payoffs, yes. The analysis is outlined in the appendix (see

Section 7.2).

4 Cheap Talk

We now consider the cheap talk version of the pure persuasion problem where the

sender chooses a signal structure (with some fixed, large set of signals), and the receiver

chooses her strategy (mapping from signals to actions) simultaneously. In contrast to

the previous section, the states and actions need not be real numbers, and the receiver’s

payoff need not be given by quadratic loss. We show that a reduced form representation

of the pure persuasion problem can be used to characterize the maximum payoff that a

sender can achieve in the cheap talk version of the problem.

To differentiate between persuasion and cheap talk, we use the term “information

policy” to refer to the sender’s communication strategy in the persuasion case where she

can commit to the strategy, and the receiver can observe this choice before any action is

taken. In the cheap talk setting, we call the sender’s choice a “signal structure.”

Lipnowski and Ravid (2020) study a general cheap talk game where the sender has

state-independent preferences. They show that the set of sender’s equilibrium payoffs in

the cheap talk game is equivalent to the set of “securable” payoffs for the sender in the

corresponding persuasion setting. To state the result formally, we need the following

definition.

Definition 4.1 The sender is said to secure a payoff L under information policy x if

VS(a)≥ L for every action a ∈ A recommended with positive probability under x (i.e.,

for all a ∈ A such that ∑
|S |
j=1 x(ω j,a)> 0). A payoff L can be secured if the sender can

secure it under some information policy.

Theorem 4.2 Lipnowski and Ravid (2020)
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Let a be the receiver’s best-response action under the prior. If L≥VS(a) can be secured,

then there is an equilibrium in the cheap talk game that yields L to the sender.

Given Theorem 4.2, we focus on formulating the persuasion problem with com-

mitment. As solving the persuasion problem with commitment entails understanding

incentive-compatible information policies, we will be able to solve the cheap-talk game

“along the way”.

For any subset of actions A ⊂ A let

f (A) = max ∑
ai∈A

∑
ω j∈S

x(ω j,ai)

s.t. (1−3).

The optimal value of this program is the maximum frequency with which the sender

can have the receiver take actions in A under any information structure satisfying the

obedience constraints.

Assume now without loss of generality that the actions are labeled in the order of

decreasing payoff to the sender, i.e., VS(a1)>VS(a2)> .. . >VS(a|A |).

Theorem 4.3 Let k∗ = min{k : f ({1. . . . ,k}) = 1}. Then, there is a cheap-talk equilib-

rium that yields payoff VS(ak∗) to the sender. Furthermore, this is the maximum payoff

the sender can receive in any cheap talk equilibrium.

Determining the achievable payoff in any cheap talk equilibrium is conceptually straight-

forward. Starting with action a1, compute the maximum probability with which one can

induce the receiver to play a1. Continue greedily, adding actions into the set A until the

sender can induce the receiver to play only actions in A.

This procedure has a close connection to the concavification approach. Let Πi de-

note the set of posteriors that induce action ai as a best response for the receiver. The

following is an alternative characterization of k∗.

Theorem 4.4 Let k∗ = min
{

k : p ∈ conv
(
∪k

i=1 Πi

)}
. There is a cheap-talk equilib-

rium that yields payoff VS(ak∗) to the sender. Furthermore, this is the maximum payoff

the sender can receive in any cheap talk equilibrium.
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4.1 Application

The receiver enjoys a benefit bω j > 0 if she “matches the state” ω j and bears cost

−cω j < 0 if she does not. Formally, for each ω ∈ S , there exists a unique a ∈ A such

that VR(a,ω) = bω . Moreover, if VR(a,ω) = bω then VR(a,ω ′) = cω ′ for all ω ′ ̸= ω . In

words, no action is optimal for the receiver at more than one state. Hence, it suffices to

restrict attention to the case where |A | = |S | = n > 0 as assumed above. The sets A

and S will be represented by {a1, . . . ,an} and {ω1, . . . ,ωn}, respectively. Without loss,

we assume action ai is optimal in state ωi and, as above, VS(a1)>VS(a2)> .. . >VS(an).

If the receiver selects ai in state ωi, we say that she matches the state. We provide some

examples to motivate this specification.

Example 2 An incumbent politician must implement a policy to combat an impending

crisis or adapt to a new state of affairs. In other words, the status quo, no longer

tenable, will be replaced by a state ω j ∈ S , and the politician must react to the new

environment appropriately.

The politician receives information from an ideological think tank. The think tank

will commission studies and research efforts to inform the politician about the state.

These studies are represented by a signal ψ : S → ∆S, where S is the signal space.

Once the politician observes the choice of ψ and the realized signal, she selects a

policy a ∈ A to implement.

The think tank has preferences over the implemented policies. The politician’s pay-

off depends on whether she matches the state. For each state ω j ∈ S , there is an ideal

policy a j ∈ A . If she implements a j in state ω j, she increases her chance of being

re-elected by bω j . If she implements policy a ̸= a j, and the state turns out to be ω j, she

decreases that chance by cω j . Whether or not the politician is re-elected is irrelevant to

the think tank.

Remark: Implicit is that none of the policies in A are “outlandish” in the sense of

being much worse than the others.

Example 3 A company must select a technology that will be adopted firm-wide. The

set of possible technologies is given by A . Because of technological obsolescence, it is

11



likely that only one of the technologies in A will become dominant, while the others will

become antiquated. That is, if the company adopted technology a ∈ A and technology

a′ ∈ A became dominant, it would need to replace all of its current technology, and its

employees would need time to learn how to use a′. In other words, the company would

incur a switching cost.

A seller has an inventory consisting of each of the technologies in A . It has prefer-

ences over the technologies it wants to sell. The seller can commit to a signaling policy

(studies, research, polls, surveys, etc.) to inform the company about which technologies

will become obsolete. In this setting, the states in S correspond to the technology that

becomes the "winner”.

Suppose the company selects action a j ∈A , meaning it adopts technology a j. If the

state turns out to be ω j, it incurs benefit bω j . If the state is ωk ̸=ω j, it incurs a switching

cost of cωk . In other words, state ωk represents the setting where technology ak becomes

dominant, and so the company must now switch to the dominant technology.

The sender’s optimization problem is:

max
x(ai,ω j)

n

∑
i=1

n

∑
j=1

VS(ai)x(ai,ω j) (17)

−∑
j ̸=i

cω jx(ai,ω j)+bωix(ai,ωi)≥− ∑
j ̸=k

cω jx(ai,ω j)+bωkx(ai,ωk) ∀i,k ∈ {1, . . . ,n} (18)

n

∑
i=1

x(ai,ω j) = p(ω j) for all j ∈ {1, . . . ,n} (19)

x(ai,ω j)≥ 0 for all i, j ∈ {1, . . . ,n}. (20)

Constraints (18) are the obedience constraints.

We focus on the maximum frequency with which the sender can have the receiver

take actions in A under any information structure satisfying the obedience constraints.

Theorem 4.5 For any subset of actions A ⊂ A let

f (A) = max ∑
ai∈A

∑
ω j∈S

x(ω j,ai)

s.t. (18−20).

Then, f (A) = ∑a j ̸∈A min{p(ω j),∑ai∈A
bωi+cωi
bω j+cω j

p(ωi)}+∑ai∈A p(ωi).
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Proof: The OC simplifies to:

(bωi + cωi)x(ωi,ai)− (bωk + cωk)x(ωk,ai)≥ 0 for all i,k ∈ {1, . . . ,n}.

For notational convenience, set αi = bωi + cωi for all i ∈ {1, . . . ,n}. Hence, the con-

straints of the persuasion problem can be expressed as follows:

−αix(ωi,ai)+αkx(ωk,ai)≤ 0 for all i,k ∈ {1, . . . ,n} (21)

|A |

∑
i=1

x(ω j,ai) = p(ω j) for all j ∈ {1, . . . ,n} (22)

zai −
|S |

∑
j=1

x(ω j,ai) = 0 for all i ∈ {1, . . . ,n} (23)

x(ω j,ai)≥ 0 for all i, j ∈ {1, . . . ,n}. (24)

We wish to eliminate the x variables. To do so, we interpret the system (21-24) in terms

of a network flow problem. Each ω j ∈ S corresponds to a supply node with supply

p(ω j). Each ai ∈ A corresponds to a demand node with demand zai . Any supply node

can serve any demand node. However, there is a side constraint:

x(ωk,ai)≤ αiα
−1
k x(ωi,ai).

For each i, fix the value of x(ωi,ai) at some ∆i ≤ p(ωi). Then, the constraints for a

feasible flow must satisfy:

x(ω j,ai)≤ αiα
−1
j ∆i for all i, j ∈ {1, . . . ,n} , j ̸= i

∑
ai ̸=a j

x(ω j,ai) = p(ω j)−∆ j for all j ∈ {1, . . . ,n}

zai −∆i − ∑
ω j ̸=ωi

x(ω j,ai) = 0 for all i ∈ {1, . . . ,n}

x(ω j,ai)≥ 0 for all i, j ∈ {1, . . . ,n}.

Now, these equations describe a standard flow problem with capacity constraints on the

arc flows. Each supply node has supply p(ω j)−∆ j, and each demand node demands

zai −∆i. By Gale’s demand theorem (see Gale (1957)) this flow problem is feasible if

and only if for all A ⊆ A , we have:

∑
ai∈A

zai ≤ ∑
j ̸∈A

min{p(ω j)−∆ j,∑
i∈A

αiα
−1
j ∆i}+∑

i∈A
p(ωi). (25)
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In words, the total demand in any subset A of demand nodes cannot exceed the total

supply of all supply nodes that service them.

Observe that the right hand side of (25) is maximized when we set ∆ j = 0 for all

a j ̸∈ A and ∆i = p(ωi) for all ai ∈ A.

Rather than focusing on the specific values of x(ai,ω j) or the signal structure, the

sender’s problem reduces to one of “how much flow can she transmit to action ai?”

Let a be the receiver’s best-response action under the prior, with no additional in-

formation. For each index i let Ai = {a1, . . . ,ai} and set

k∗ = min
{

i : f (Ai) = 1
}
. (26)

Theorem 4.6 There exists a cheap talk equilibrium that yields the sender a payoff of

max{VS(ak∗),VS(a)}. This is also the maximum payoff the sender can achieve in any

cheap talk equilibrium.

5 Conclusion

We illustrated the usefulness of reduced form representations for persuasion problems

in two ways. In the first, the reduced form reduces the worst-case complexity of de-

termining the optimal persuasion scheme. In the second, it is used to identify a simple

algorithm to determine the maximum payoff a sender can achieve in any cheap talk

equilibrium.
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Appendix

6 Proof of Theorem 3.1

Recognize that the OC (5) can be expressed as follows:

|S |

∑
j=1

(ai +ak −2ω j)(ak −ai)x(ω j,ai)≥ 0 for all i,k ∈ {1, . . . , |A |}.

Separating it into two parts yields:

|S |

∑
j=1

(ai +ak −2ω j)x(ω j,ai)≥ 0 for all k > i

and
|S |

∑
j=1

(ai +ak −2ω j)x(ω j,ai)≤ 0 for all k < i.

This pair can be rewritten as:

ai +ak

2
≥

∑
|S |
j=1 ω jx(ω j,ai)

∑
|S |
j=1 x(ω j,ai)

for all k > i (27)

ai +ak

2
≤

∑
|S |
j=1 ω jx(ω j,ai)

∑
|S |
j=1 x(ω j,ai)

for all k < i (28)

The right hand sides of (27) and (28) are independent of k. Hence, the inequalities in

(27) for k ≥ i+2 are redundant as are the inequalities (28) for k ≤ i−2. Therefore, the

only relevant OC are:

ai +ai+1

2
≥

∑
|S |
j=1 ω jx(ω j,ai)

∑
|S |
j=1 x(ω j,ai)

≥ ai +ai−1

2
∀i ∈ {2, . . . , |A |−1}

a1 +a2

2
≥

∑
|S |
j=1 ω jx(ω j,ai)

∑
|S |
j=1 x(ω j,ai)

∑
|S |
j=1 ω jx(ω j,a|A |)

∑
|S |
j=1 x(ω j,a|A |)

≥
a|A |+a|A |−1

2

Using this, we reformulate (5−7):

−
|S |

∑
j=1

ω jx(ω j,ai)+
|S |

∑
j=1

(ai +ai−1

2

)
x(ω j,ai)≤ 0 ∀i ∈ {2, . . . , |A |} (29)
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|S |

∑
j=1

ω jx(ω j,ai)−
|S |

∑
j=1

(ai +ai+1

2

)
x(ω j,ai)≤ 0 ∀i ∈ {1, . . . , |A |−1} (30)

|A |

∑
i=1

x(ω j,ai) = p(ω j) ∀ω j ∈ S (31)

zi −
|S |

∑
j=1

x(ω j,ai) = 0 ∀i ∈ {1, . . . , |A |} (32)

x(ω j,ai)≥ 0 ∀ω j ∈ S ai ∈ A . (33)

Our goal is to eliminate the x variables and find an equivalent representation involv-

ing just the z variables. Geometrically, we are projecting the polyhedron (29-33), which

lives in the (x,z) space, into just the z space. We review the basic facts about projec-

tions next. For more details see Balas (2001). The reader familiar with this can omit it

without loss.

6.1 Projection

Let P = {(x,y) : Ax+By ≤ b} where x ∈ Rn, y ∈ Rk, b ∈ Rm, A is a m×n matrix and

B is a m× k matrix. Assume P ̸= /0. The projection of P into the x space is the set

Q = {x ∈ Rn : ∃y ∈ Rkst. (x,y) ∈ P}. We would like to obtain a description of Q. Let

C = {u ≥ 0 : uB = 0}. The set C is a polyhedral cone sometimes called the elimination

cone. Notice there is one component of u for each inequality in P.

Theorem 6.1

Q = {x : uAx ≤ ub ∀u ∈C}.

Proof: It is straightforward to see that

Q ⊆ {x : uAx ≤ ub u ≥ 0 uB = 0, u ̸= 0}.

Suppose, for a contradiction that there is an x∗ in {x : uAx ≤ ub u ≥ 0 uB = 0, u ̸=

0} that is not in Q. This means there is no feasible choice of y in the following system:

Ax∗+By ≤ b.

By the Farkas lemma, there must exist a vector u ≥ 0 such that u(b−Ax∗) < 0 and

uB = 0. However, this contradicts the choice of x∗.
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Let U be the set of extreme rays of C. An extreme ray is a vector in C that cannot

be expressed as non-negative linear combination of other vectors in C. There are a finite

number of these. Hence,

Q = {x : uAx ≤ ub u ∈ U }.

If the only solution to uB = 0,u ≥ 0 is the trivial one, then, Q = Rn.

Thus, the problem of characterizing Q reduces to determining the extreme rays of

the elimination cone. Identifying the extreme rays of a polyhedral cone is a straight-

forward but tedious computation involving a variant of Gaussian elimination credited

to Fourier and Motzkin (see Khachiyan (2001)). Our goal is not just to compute the

extreme rays but find a succinct characterization of them.

Our approach to doing so will be to select an arbitrary x∈Q and focus on argmax{u(Ax−

b) : s.t. u∈C}. While the feasible region is unbounded (because C is a cone), this linear

program has an optimal solution because it is both feasible, and the objective function

value is bounded above by zero. The last follows from the fact that u ∈ C. If this pro-

gram has multiple optima, we can, by scaling, focus on one that satisfies 1u = 1. In this

way, we determine the tangent hyperplanes to Q.

While the polyhedron P in the larger space was described using inequalities only,

accommodating equality constraints can be done in the usual way. The component of u

corresponding to an equality constraint would be unrestricted in sign.

6.2 The Elimination Cone

If we set y(ω j,ai) = ω jx(ω j,ai), the constraints (29-31) can be rewritten as

−
|S |

∑
j=1

y(ai,ω j)+
(ai +ai−1

2

)
zi ≤ 0 ∀i ∈ {2, . . . , |A |} (ui)

|S |

∑
j=1

y(ω j,ai)−
(ai +ai+1

2

)
zi ≤ 0 ∀i ∈ {1, . . . , |A |−1} (vi)

|A |

∑
i=1

y(ω j,ai) = ω j p(ω j) ∀ω j ∈ S (w j)

zi −
|S |

∑
j=1

ω
−1
j y(ω j,ai) = 0 ∀i ∈ {1, . . . , |A |} (λi)
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We have included with constraint, in parenthesis, the variables that will be used in the

description of the elimination cone. The elimination cone is given by

−ui + vi +w j −λiω
−1
j ≥ 0 ∀2 ≤ i ≤ |A |−1, j ∈ S (34)

−u|A |+w j −λ|A |ω
−1
j ≥ 0 ∀ j (35)

v1 +w j −λ1ω
−1
j ≥ 0 ∀ j (36)

ui ≥ 0 ∀i ∈ {2, . . . , |A |} (37)

vi ≥ 0 ∀i ∈ {1, . . . , |A |−1} (38)

Each non-trivial element of the elimination cone where at least one of u or v is

non-zero gives rise to the following inequality

∑
i

λizi +∑
i≥2

0.5ui(ai +ai−1)zi − ∑
i≤|A |−1

0.5vi(ai +ai+1)zi ≤ ∑
j

w jω j p(ω j). (39)

On the other hand, if for all i, ui = vi = 0,λi = 1 and w j = 0 for all j, we obtain

∑i zi = 1. We assume that the non-zero values of λ are all the same. By scaling we can

suppose they are all 1’s or all -1’s. We justify this at the completion of the proof.

Proposition 6.2 (x,z) is feasible for (29-33) if and only if z is feasible for (9-11).

Proof: The proof is divided into two parts. In the first we suppose the λ s are 0-1 and

this will generate (8). In the second part we suppose that λi ∈ {0,−1} for all i ∈ A and

this will generate (zloss1).

Part 1: Let T = {i : λi = 1} and focus on elements of the elimination cone where

at least one of u or v is non-zero. Choose any feasible z and consider

max ∑
i≥2

0.5ui(ai +ai−1)zi − ∑
i≤|A |−1

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j) (40)

st −ui + vi +w j ≥ ω
−1
j ∀2 ≤ i ≤ |A |−1, i ∈ T, j ∈ S (41)

−ui + vi +w j ≥ 0 ∀2 ≤ i ≤ |A |−1, i ̸∈ T, j ∈ S (42)

−u|A |+w j −λ|A |ω
−1
j ≥ 0 ∀ j (43)
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v1 +w j −λ1ω
−1
j ≥ 0 ∀ j (44)

ui ≥ 0 ∀i ∈ {2, . . . , |A |} (45)

vi ≥ 0 ∀i ∈ {1, . . . , |A |−1} (46)

Problem (40-46) is clearly feasible, and given the choice of z, has a bounded objective

function value. Without loss we can assume that uivi = 0 for all i ∈ {2, . . . , |A |− 1}.

If not, add δ < 0 to both ui and vi. Feasibility is preserved and the objective function

value changes by δ (ai−1 −ai)> 0 which contradicts optimality.

Choose K ⊆ {2, . . . , |A |−1} and let K∗ be {2, . . . , |A |−1}\K with at least one of

K or K∗ being non-empty. We focus on solutions to (40-46) where vi > 0 for all i ∈ K

and ui ≥ 0 for all i ∈ K∗. The corresponding optimization problem is

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. vi +w j ≥ ω
−1
j ∀i ∈ K ∩T, j ∈ S

−ui +w j ≥ ω
−1
j ∀i ∈ K∗∩T, j ∈ S

vi +w j ≥ 0 ∀i ∈ T c ∩K, j ∈ S

−ui +w j ≥ 0 ∀i ∈ T c ∩K∗, j ∈ S

−u|A |+w j −λ|A |ω
−1
j ≥ 0 ∀ j

v1 +w j −λ1ω
−1
j ≥ 0 ∀ j

ui ≥ 0 ∀i ∈ {2, . . . , |A |}

vi ≥ 0 ∀i ∈ {1, . . . , |A |−1}

Fixing the value of the w js, the variables ui and vi are bounded as follows:

1. ∀i ∈ K ∩T,vi ≥ max j(ω
−1
j −w j) = (ω−1

j1 −w j1) and vi ≥ 0.

2. ∀i ∈ K∗∩T,0 ≤ ui ≤ min j(w j −ω
−1
j ) = w j1 −ω

−1
j1 .

3. ∀i ∈ T c ∩K,vi ≥ max j−w j =−min j w j =−w j2 and vi ≥ 0.

4. ∀i ∈ T c ∩K∗,0 ≤ ui ≤ min j w j = w j2 .
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5. v1 ≥ max j(λ1ω
−1
j −w j) and v1 ≥ 0. Depending on the value of λ the maximum

is attained on index j1 or j2.

6. u|A | ≥ min j(w j − λ|A |ω
−1
j ) and u|A | ≥ 0 . Depending on the value of λ the

minimum is attained on index j1 or j2.

In an optimal solution, each vi would be set at its lower bound and each ui to its upper

bound.

Case 1: max j(ω
−1
j −w j) = (ω−1

j1 −w j1)≤ 0.

From item 1 above it follows that vi = 0 for all i ∈ K ∩ T . As w j ≥ ω
−1
j ≥ 0 for all

j, from item 3 it follows that vi = 0 for i ∈ K ∩T c. From item 5 we see that whether

we set λ = 1 or 0 we can always choose v1 = 0. Therefore, our optimization problem

becomes

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi −∑
j

w jω j p(ω j)

s.t. 0 ≤ ui = w j1 −ω
−1
j1 ∀i ∈ K∗∩T

0 ≤ ui = w j2 ∀i ∈ K∗∩T c

0 ≤ u|A | = min
j
(w j −λ|A |ω

−1
j )

ω
−1
j ≤ w j ∀ j

w j2 ≤ w j ∀ j ̸= j2

w j1 −ω
−1
j1 ≤ w j −ω

−1
j ∀ j ̸= j1

Clearly w j = max{ω
−1
j +w j1 −ω

−1
j1 ,w j2} for all j ̸= j1, j2 and the objective function

value is piecewise linear in w j1 and w j2 . The only constraints that will be relevant are

ω
−1
j2 ≤ w j2 (47)

w j2 ≤ w j1 (48)

0 ≤ w j1 −ω
−1
j1 ≤ w j2 −ω

−1
j2 (49)
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The optimal solution must occur where at least one of (47) or 48) binds. If not, we can

add δ to w j1 and w j2 , preserve feasibility and change objective function in proportion

to δ , contradicting optimality.

If either (47) or (48) binds, we can choose j1 and j2 to be the same index, say, index

r. Then, the objective function value is a function of wr alone. The only constraint is

wr ≥ ω−1
r and this must bind otherwise the objective function is unbounded. Hence

w j = max{ω
−1
j +wr −ω

−1
r ,wr}= max{ω

−1
j ,ω−1

r }

for all j ̸= r. While the optimal choice of r will depend on K∗ and T , any choice of r

will yield a valid inequality.

The objective function value becomes

ω
−1
r ∑

i∈K∗∩T c
0.5(ai+ai−1)zi+(ω−1

r −λ|A |ω
−1
r )0.5(a|A |+a|A |−1)−max{ω

−1
j ,ω−1

r }∑
j

ω j p(ω j)

The corresponding inequality is

ωr ∑
i∈T

zi+ ∑
i∈K∗∩T c

0.5(ai+ai−1)zi+(1−λ|A |)0.5(a|A |+a|A |−1)≤max{ω
−1
j ωr,1}∑

j
ω j p(ω j).

The strongest version of this inequality for each fixed r occurs when T = {i : 0.5(ai +

ai−1) ≤ ωr}∪{1} (because we were free to choose λ1 = 1) and K∗ = T c. Therefore,

λ|A | = 0:

ωrz1+ωr ∑
i ̸=1:0.5(ai+ai−1)≤ωr

zi+ ∑
i:0.5(ai+ai−1)>ωr

0.5(ai+ai−1)zi ≤∑
j

max{ωr,ω j}p(ω j).

Case 2: max j(ω
−1
j −w j) = (ω−1

j1 −w j1)≥ 0 and w j2 = min j w j ≤ 0.

From item 1 vi = ω
−1
j1 −w j1 for all i ∈ K∩T . From item 3, vi =−w j2 for all i ∈ K∩T c.

From item 2 we have 0 ≤ ui ≤ w j1 − ω j1 ≤ 0 for i ∈ K∗ ∩ T. Thus, ui = 0 for all

i ∈ K∗ ∩ T and w j1 − ω j1 = 0. From item 4, 0 ≤ ui = w j2 ≤ 0 for all j ∈ K∗ ∩ T c,

hence, ui = 0∀i ∈ K∗∩T and w j2 = 0.

The optimization problem becomes

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)
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s.t. ui = 0 ∀i ∈ K∗

0 ≤ u|A | = min
j
(w j −λ|A |ω

−1
j )

vi = 0 ∀i ∈ K

v1 = max{max
j
(λ1ω

−1
j1 −w j1),0}

ω
−1
j1 = w j1

0 = w j2 ≤ w j ∀ j ̸= j2

0 = w j1 −ω
−1
j1 ≤ w j −ω

−1
j ∀ j ̸= j1

Now, whether λ1 = 1 or 0, v1 = 0. To maximize, we would set u|A | as large as

possible which we can do by choosing λ|A | = 0. Hence, 0 ≤ u|A | = w j2 , i.e. u|A | = 0.

Finally, we set w j = ω
−1
j for all j. This leaves us with an objective function value of

−∑ j p(ω j) = 1. The corresponding inequality is ∑i∈T zi −1 ≤ 0. The strongest version

of this is ∑i∈A zi ≤ 1.

Case 3: max j(ω
−1
j −w j) = (ω−1

j1 −w j1)≥ 0 and w j2 = min j w j ≥ 0.

From item 1 vi = ω
−1
j1 −w j1 for all i ∈ K ∩T . From item 3, vi = max{−w j2,0} = 0

for all i ∈ K ∩T c. From item 2 we have 0 ≤ ui ≤ w j1 −ω j1 ≤ 0 for i ∈ K∗∩T. Thus,

ui = 0 for all i∈K∗∩T and w j1 −ω j1 = 0. From item 4, 0≤ ui =w j2 for all j ∈K∗∩T c,

The optimization problem is

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. ui = 0 ∀i ∈ K∗∩T

ui = w j2 ∀i ∈ K∗∩T c

u|A | = min
j
(w j −λ|A |ω

−1
j )

vi = 0 ∀i ∈ K

v1 = max{max
j
(λ1ω

−1
j1 −w j1),0}

ω
−1
j1 = w j1
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0 ≤ w j2 ≤ w j ∀ j ̸= j2

w j1 −ω
−1
j1 ≤ w j −ω

−1
j ∀ j ̸= j1

To optimize, we would set λ|A | = 0 and λ1 = 0. Hence u|A | = w j2 and v1 = 0.

Our optimization problem reduces to

max ∑
i∈[K∗∩T c]∪|A |

0.5w j2(ai +ai−1)zi −∑
j

w jω j p(ω j)

s.t. 0 ≤ w j2 ≤ w j ∀ j ̸= j2

0 ≤ w j −ω
−1
j ∀ j ̸= j1

Therefore, at optimality w j = max{w j2,ω
−1
j }. The optimal solution must occur at some

breakpoint, say w j2 = ω−1
r . The corresponding inequality is

∑
i∈T

zi +ω
−1
r ∑

i∈[K∗∩T c]∪|A |
0.5(ai +ai−1)zi ≤ ∑

j
max{ω

−1
r ,ω−1

j }ω j p(ω j)

ωr ∑
i∈T

zi + ∑
i∈[K∗∩T c]∪|A |

0.5(ai +ai−1)zi ≤ ∑
j

max{ωr,ω j}p(ω j)

However, this is the same inequality we had in case 1.

Part 2: Now, let T = {i : λi =−1}. As before, choose any feasible z and consider

max ∑
i≥2

0.5ui(ai +ai−1)zi − ∑
i≤|A |−1

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j) (50)

st −ui + vi +w j ≥−ω
−1
j ∀2 ≤ i ≤ |A |−1, i ∈ T, j ∈ S (51)

−ui + vi +w j ≥ 0 ∀2 ≤ i ≤ |A |−1, i ̸∈ T, j ∈ S (52)

−u|A |+w j −λ|A |ω
−1
j ≥ 0 ∀ j (53)

v1 +w j −λ1ω
−1
j ≥ 0 ∀ j (54)

ui ≥ 0 ∀i ∈ {2, . . . , |A |} (55)

vi ≥ 0 ∀i ∈ {1, . . . , |A |−1} (56)

Problem (50-56) is feasible and has a bounded objective function value. As before we

can assume that uivi = 0 for all i ∈ {2, . . . , |A |−1}.
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Choose K ⊆ {2, . . . , |A |−1} and let K∗ be {2, . . . , |A |−1}\K with at least one of

K or K∗ being non-empty. We focus on solutions to (50-56) where vi > 0 for all i ∈ K

and ui ≥ 0 for all i ∈ K∗. The corresponding optimization problem is

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. vi +w j ≥−ω
−1
j ∀i ∈ K ∩T, j ∈ S

−ui +w j ≥−ω
−1
j ∀i ∈ K∗∩T, j ∈ S

vi +w j ≥ 0 ∀i ∈ T c ∩K, j ∈ S

−ui +w j ≥ 0 ∀i ∈ T c ∩K∗, j ∈ S

−u|A |+w j −λ|A |ω
−1
j ≥ 0 ∀ j

v1 +w j −λ1ω
−1
j ≥ 0 ∀ j

ui ≥ 0 ∀i ∈ {2, . . . , |A |}

vi ≥ 0 ∀i ∈ {1, . . . , |A |−1}

Fixing the value of the w js (these can be negative), the variables ui and vi are determined

as follows:

1. vi ≥ max{max j(−ω
−1
j −w j),0} ∀i ∈ K ∩T

2. 0 ≤ ui ≤ min j(w j +ω
−1
j ) ∀i ∈ K∗∩T .

3. vi ≥ max{max j−w j,0} ∀i ∈ K ∩T c

4. 0 ≤ ui ≤ min j w j ∀i ∈ K∗∩T c

5. v1 ≥ max{max j(λ1ω
−1
j −w j),0}

6. 0 ≤ u|A | ≤ min j(w j −λ|A |ω
−1
j )

Case 1: max j(−ω
−1
j −w j) =−ω

−1
j1 −w j1 ≥ 0.

By item 1 above vi =−ω
−1
j1 −w j1 ≥ 0 for all i ∈ K ∩T. By item 2 above we have

0 ≤ ui ≤ min
j
(w j +ω

−1
j )≤ 0.
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Therefore ui = 0 for all i ∈ K∗∩T and (w j1 +ω
−1
j1 ) = 0. Hence, vi = 0 for all i ∈ K∩T.

Now, w j1 = −ω
−1
j1 ≤ 0 implies that min j w j ≤ 0. Therefore, by item 3 above vi =

−min j w j =−w j2 ≥ 0 for all i ∈ K ∩T c.

By item 4 above, 0 ≤ ui ≤ min j w j ≤ 0 for all i ∈ T c ∩K∗. Either min j w j = 0 or

T c ∩K∗ = /0.

In the first case ui = 0 for all i∈K∗, vi = 0 for all i∈K and the optimization problem

becomes

max0.5u|A |(a|A |+a|A |−1)z|A |−0.5v1(a1 +a2)z1 −∑
j

w jω j p(ω j)

s.t. 0 ≤ u|A | = min
j
(w j −λ|A |ω

−1
j )

0 ≤ v1 = max
j
(λ1ω

−1
j −w j)

ω
−1
j1 +w j1 = 0

−w j2 ≥−w j ∀ j ̸= j2

0 ≤ w j +ω
−1
j ∀ j ̸= j1

If λ|A | = 0, then 0 ≤ u|A | ≤ min j w j = 0. In that case we would set each w j as

small as possible which is max{0,−ω
−1
j } = 0. This gives rise to the trivial inequality

∑i∈T zi ≥ 0. If λ|A | =−1, then 0 ≤ u|A |min j(w j+ω
−1
j )≤ 0. Again, we obtain a trivial

inequality.

So we go on to consider the next possibility, which means that K∗ ⊆ T. The opti-

mization problem becomes

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. ui = 0 ∀i ∈ K∗

0 ≤ u|A | = min
j
(w j −λ|A |ω

−1
j )

0 ≤ vi =−w j2 ∀i ∈ K ∩T c

vi = 0 ∀i ∈ K ∩T

v1 = max{max
j
(λ1ω

−1
j −w j),0}
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ω
−1
j1 +w j1 = 0

−w j2 ≥−w j ∀ j ̸= j2

0 ≤ w j +ω
−1
j ∀ j ̸= j1

Whether we set λ1 = −1 or λ1 = 0, v1 is always zero. Feasibility requires that

λ|A | =−1 which forces u|A | = 0. So, our optimization problem becomes:

maxw j2 ∑
i∈K∩T c

0.5(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. ω
−1
j1 +w j1 = 0

−w j2 ≥−w j ∀ j ̸= j2

0 ≤ w j +ω
−1
j ∀ j ̸= j1

w j2 ≤ 0

The constraints reduce to −ω
−1
j2 ≤ w j2 ≤−ω

−1
j1 and w j = max{w j2,−ω

−1
j } for all

j ̸= j2. So, we can write the optimization problem as

maxw j2 ∑
i∈K∩T c

0.5(ai +ai+1)zi − ∑
j ̸= j2

max{w j2,−ω
−1
j }ω j p(ω j)−w j2ω j2 p(ω j2)

s.t. −ω
−1
j2 ≤ w j2 ≤−ω

−1
j1

At optimality w j2 must be at its upper or lower bound. Suppose first that −ω
−1
j2 =

w j2 . The objective function value becomes

−ω
−1
j2 ∑

i∈K∩T c
0.5(ai +ai+1)zi + p(ω j2)− ∑

j ̸= j2

max{−ω
−1
j2 ,−ω

−1
j }ω j p(ω j)

The corresponding inequality is

−∑
i∈T

zi −ω
−1
j2 ∑

i∈K∩T c
0.5(ai +ai+1)zi + p(ω j2)− ∑

j ̸= j2

max{−ω
−1
j2 ,−ω

−1
j }ω j p(ω j)≥ 0

ω j2 ∑
i∈T

zi + ∑
i∈K∩T c

0.5(ai +ai+1)zi ≥ ω j2 p(ω j2)− ∑
j ̸= j2

max{−1,−ω j2ω
−1
j }ω j p(ω j)

ω j2 ∑
i∈T

zi + ∑
i∈K∩T c

0.5(ai +ai+1)zi ≥ ∑
j

min{ω j,ω j2}p(ω j)

Because K∗ ⊆ T it means that K = T c and so the strongest version of this this

inequality occurs when T = {i : 0.5(ai +ai+1)> ω j2}∪{|A |}.
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ω j2z|A |+ω j2 ∑
i̸=|A |:0.5(ai+ai+1)>ω j2

zi+ ∑
i:0.5(ai+ai+1)≤ω j2

0.5(ai+ai+1)zi ≥∑
j

min{ω j,ω j2}p(ω j)

The second possibility is that w j2 =−ω
−1
j1 . The objective function becomes:

−ω
−1
j1 ∑

i∈K∩T c
0.5(ai +ai+1)zi −∑

j
max{−ω

−1
j1 ,−ω

−1
j }ω j p(ω j)

But this yields the same inequality as before.

Case 2: (w j1 +ω
−1
j1 ) = min j(w j +ω

−1
j )≥ 0 and w j2 = min j w j ≥ 0.

By item 1 we have that vi = 0 for all i ∈ K ∩ T. By item 3 we have that vi = 0 for

all i ∈ K ∩T c. By item 3, ui = w j1 +ω
−1
j1 for all i ∈ K∗∩T. By item 4, ui = w j2 for all

i ∈ K∗∩T c.

The optimization problem becomes

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

s.t. vi = 0∀i ∈ K

ui = w j1 +ω
−1
j1 ∀i ∈ K∗∩T

ui = w j2 ∀i ∈ T c ∩K∗

u|A | = min
j
(w j −λ|A |ω

−1
j )

v1 ≥ max
j
(λ1ω

−1
j −w j)

ω
−1
j1 +w j1 ≥ 0

w j2 ≤ w j ∀ j ̸= j2

w j1 +ω
−1
j1 ≤ w j +ω

−1
j ∀ j ̸= j1

v1 ≥ 0
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Whether we set λ1 =−1 or zero, we would still set v1 = 0. The problem becomes

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi −∑
j

w jω j p(ω j)

s.t. ui = w j1 +ω
−1
j1 ∀i ∈ K∗∩T

ui = w j2 ∀i ∈ T c ∩K∗

u|A | = min
j
(w j −λ|A |ω

−1
j )

ω
−1
j1 +w j1 ≥ 0

w j2 ≤ w j ∀ j ̸= j2

w j1 +ω
−1
j1 ≤ w j +ω

−1
j ∀ j ̸= j1

Observe, if we add δ to all w j, feasibility is preserved and the objective function

changes linearly in δ . If objective function value increases with δ this would violate

boundedness. So, it must be that objective function value increases with δ < 0. There-

fore, we would set δ =−w j2 , meaning that in our solution w j2 = 0. The constraints of

our problem reduce to

ui = w j1 +ω
−1
j1 ∀i ∈ K∗∩T

ui = 0 ∀i ∈ T c ∩K∗

u|A | = min
j
(w j −λ|A |ω

−1
j )

ω
−1
j1 +w j1 ≥ 0

0 ≤ w j ∀ j ̸= j2

w j1 +ω
−1
j1 ≤ w j +ω

−1
j ∀ j ̸= j1, j2

To optimize we set w j = w j1 +ω
−1
j1 −ω

−1
j for all j ̸= j1, j2. Suppose λ|A | = 1. Then,

u|A | = u|A | = min j(w j +ω
−1
j ) = w j1 +ω

−1
j1 and the optimization problem becomes

max ∑
i∈T∩K∗∪{|A |}

0.5(w j1 +ω
−1
j1 )(ai +ai−1)zi −∑

j
[w j1 +ω

−1
j1 −ω

−1
j ]ω j p(ω j)

s.t. ω
−1
j ≤ w j1 +ω

−1
j1 ≤ ω

−1
j2 ∀ j

w j1 ≥ 0

30



Feasibility requires that

ω
−1
1 ≤ ω

−1
j2 ≤ ω

−1
1 .

Hence, w j1 = 0 and ω j1 = ω1. The objective function value is

∑
i∈T∩K∗∪{|A |}

0.5ω
−1
1 (ai +ai−1)zi −∑

j
[ω−1

1 −ω
−1
j ]ω j p(ω j)

The corresponding inequality is

−∑
i∈T

zi + ∑
i∈T∩K∗∪{|A |}

0.5ω
−1
1 (ai +ai−1)zi −∑

j
[ω−1

1 −ω
−1
j ]ω j p(ω j)≤ 0

−ω1 ∑
i∈T

zi + ∑
i∈T∩K∗∪{|A |}

0.5(ai +ai−1)zi ≤ ∑
j
[1−ω1ω

−1
j ]ω j p(ω j)

−ω1 ∑
i∈T

zi + ∑
i∈T∩K∗∪{|A |}

0.5(ai +ai−1)zi ≤ ∑
j

ω j p(ω j)−ω1

ω1[1− ∑
i∈T

zi]+ ∑
i∈T∩K∗∪{|A |}

0.5(ai +ai−1)zi ≤ ∑
j

ω j p(ω j)

The strongest version of this is when T = K∗ ∪{|A |} and K∗ = {i : 0.5(ai + ai−1) ≥

ω1, 2 ≤ i ≤ |A |−1}. The inequality becomes

ω1z1 +
|A |

∑
i=2

0.5(ai +ai−1)zi ≤ ∑
j

ω j p(ω j).

Had we set λ|A | = 0 instead, we obtain the weaker inequality:

ω1z1 +
|A |−1

∑
i=2

0.5(ai +ai−1)zi ≤ ∑
j

ω j p(ω j)

Case 3: (w j1 +ω
−1
j1 ) = min j(w j +ω

−1
j )≥ 0 and w j2 = min j w j ≤ 0.

By item 1 vi = 0 for all i ∈ K ∩ T . By item 2, ui = (w j1 +ω
−1
j1 ) for all i ∈ K∗ ∩ T.

By item 3, vi = −w j2 for all i ∈ K ∩T c. Item 4 implies that w j2 = 0 and ui = 0 for all

i ∈ K∗∩T c. Hence, vi = 0 for all i ∈ K ∩T c.

The optimization problem is

max ∑
i∈K∗∪|A |

0.5ui(ai +ai−1)zi − ∑
i∈K∪{1}

0.5vi(ai +ai+1)zi −∑
j

w jω j p(ω j)

31



s.t. ui = w j1 +ω
−1
j1 ∀i ∈ K∗∩T

ui = 0 ∀i ∈ K∗∩T c

0 ≤ u|A | = min
j
(w j −λ|A |ω

−1
j )

vi = 0 ∀i ∈ K

v1 ≥ max{max
j
(λ1ω

−1
j −w j),0}

0 ≤ w j1 +ω
−1
j1 ≤ w j +ω

−1
j ∀ j ̸= j1

w j ≥ w j2 = 0 ∀ j

To optimize we set λ|A | = −1 and λ1 = 0. Hence, u|A | = w j1 +ω
−1
j1 and v1 = 0. The

optimization problem reduces to

max(w j1 +ω
−1
j1 ) ∑

i∈K∗∩T∪{|A |}
0.5(ai +ai−1)zi −∑

j
w jω j p(ω j)

s.t. w j1 +ω
−1
j1 ≤ w j +ω

−1
j ∀ j ̸= j1

w j ≥ w j2 = 0 ∀ j

The optimal objective function value is

(w j1 +ω
−1
j1 ) ∑

i∈K∗∩T∪{|A |}
0.5(ai +ai−1)zi −∑

j
max{w j1 +ω

−1
j1 −ω

−1
j ,0}ω j p(ω j)

This is piecewise linear in w j1 and the optimal must occur at a breakpoint. Hence, there

is an r ∈ S such that w j1 = ω−1
r −ω1

j1 ≥ 0.

The corresponding inequality is

−∑
i∈T

zi +ω
−1
r ∑

i∈K∗∩T∪{|A |}
0.5(ai +ai−1)zi −∑

j
max{ω

−1
r −ω

−1
j ,0}ω j p(ω j)≤ 0

−ωr ∑
i∈T

zi + ∑
i∈K∗∩T∪{|A |}

0.5(ai +ai−1)zi −∑
j

max{1−ωrω
−1
j ,0}ω j p(ω j)≤ 0

−ωr ∑
i∈T

zi + ∑
i∈K∗∩T∪{|A |}

0.5(ai +ai−1)zi ≤ ∑
j

max{ω j −ωr,0}p(ω j)

The strongest version of the inequality is when T = K∗∪{|A |} and K∗ = {i : 0.5(ai +

ai−1)≥ ωr, 2 ≤ i ≤ |A |−1}.

ωr ∑
i̸∈T

zi + ∑
i∈T

0.5(ai +ai−1)zi ≤ ∑
j

max{ω j −ωr,0}p(ω j)+ωr
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ωr ∑
i:0.5(ai+ai−1)<ωr

zi + ∑
i0.5(ai+ai−1)≥ωr

0.5(ai +ai−1)zi ≤ ∑
j

max{ω j −ωr,0}p(ω j)+ωr

The right hand side satisfies:

∑
j

max{ω j−ωr,0}p(ω j)+ωr = ∑
j≥r

(ω j−ωr)p(ω j)+ωr ∑
j

p(ω j)=∑
j

max{ωr,ω j}p(ω j)

We now justify why the non-zero components of λ can be chosen to be equal. The

dual to (40-46) is

−max∑
i

∑
j

λiω
−1
j αi j

s.t. ∑
j

αi j ≥ 0.5(ai +ai+1)zi ∀i ∈ K ∪{1}

∑
j

αi j ≤ 0.5(ai +ai−1)zi ∀i ∈ K∗∪{|A |}

∑
i

αi j = ω j p(ω j)

This is an instance of a factored transportation problem (see Evans (1984)), so the so-

lution is ‘assortative’ in that one pairs high λ with high ω−1 and sends as much flow

as possible along that arc. Therefore, the optimal solution to the dual is independent of

the magnitude of the λ s; it only depends on how they are ordered from largest to small-

est. If we are free to choose the λ s to make the objective function value of the primal

as large as possible, i.e., the dual (without the negative sign) as small as possible, we

could shift weight from large λ s to small ones without changing the ordering of the λ s.

Thus, we can assume that either each λ is zero or, when non-zero, are all equal. Hence,

by scaling, we can assume the non-zero entries are all 1 or all -1.

7 When Preferences Depend Only on Posterior Mean

In this section, we assume that the set of states S is a finite set of distinct real numbers

with at least two elements and that the optimal action for the receiver is not the same in

all states. We first characterize the class of receiver payoff functions with the property

that the receiver’s preferences over actions depend only on the posterior mean of the
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state. Subsequently, we derive a reduced form representation of the persuasion problem

for this setting.

Given a posterior p ∈ ∆(S ), the receiver’s preferences over mixed actions are given

by the expected utility ∑a∈A σ(a)u(p,a), where u(p,a) = ∑ω∈S p(ω)VR(ω,a). We

say that the receiver’s preferences depend only on the posterior mean if for all posteriors

p,q ∈ ∆(S ) such that ∑ω p(ω)ω = ∑ω q(ω)ω , there exist constants α > 0 and β such

that u(q,a) =αu(p,a)+β for all a. That is, the receiver’s vNM preferences over mixed

actions are equivalent in the usual sense given p or q.

Theorem 7.1 The receiver’s preferences depend only on the posterior mean if and only

if there exist functions f ,g : A → R and h : S → R such that

VR(ω,a) = f (a)+g(a)ω +h(ω). (57)

Of course, the term h(ω) does not affect the receiver’s behavior, so for any VR satisfying

(57), there exists a behaviorally equivalent payoff function with h ≡ 0.

Proof: Suppose VR satisfies (57). Then u(p,a) = f (a)+ g(a)Epω +Eph. Thus, if q

has the same mean as p, then u(q,a) = u(p,a)+(Eqh−Eph) as desired.

To show the converse, suppose first that there are two states, ω and ω ′. Then every

payoff function VR satisfies (57) with h ≡ 0. To see this, fix VR. Define functions f ,g by

f (a) = VR(ω,a)− [VR(ω
′,a)−VR(ω,a)] ω

ω ′−ω
and g(a) = [VR(ω

′,a)−VR(ω,a)] 1
ω ′−ω

.

Then f (a)+g(a)ω = VR(ω,a) and f (a)+g(a)ω ′ = VR(ω
′,a). Thus, VR satisfies (57)

with h ≡ 0.

Suppose then that there are n ≥ 3 states. Without loss, assume ω1 < · · · < ωn. By

the previous step, the restriction of VR to the set {ω1,ωn}×A satisfies (57) with h ≡ 0.

That is, there exist f ,g such that VR(ω j,a) = f (a)+g(a)ω j for all a ∈A for j ∈ {1,n}.

Let j ∈ {2, . . . ,n− 1}. Then there exists λ ∈ (0,1) such that λω1 +(1−λ )ωn = ω j.

Let pλ be the corresponding two-point distribution. Since the receiver’s preferences

depend only on the mean, there exist constants α j > 0 and β j such that, for all a,

VR(ω j,a) = u(δω j ,a) = α ju(pλ ,a)+β j = α j[λVR(ω1,a)+(1−λ )VR(ωn,a)]+β j.

Using the form of VR at ω1 and ωn then gives

VR(ω j,a) = α j[ f (a)+g(a)ω j]+β j.
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By inspection of (57), it thus suffices to show that α j = 1.

To this end, take µ ∈ (0,1) and η ∈ (0,1) such that 0 ̸= ω̄ := µω1 +(1− µ)ωn =

ηω j + (1 − η)ωn. Because the receiver’s preferences depend only on the posterior

mean, there exist constants κ > 0 and ρ such that, for all a, u(pη ,a) = κu(pµ ,a)+ρ ,

or

ηVR(ω j,a)+(1−η)VR(ωn,a) = κ[µVR(ω1,a)+(1−µ)VR(ωn,a)]+ρ.

Substituting in what we know about VR gives

η [α j( f (a)+g(a)ω j)+β j]+ (1−η)( f (a)+g(a)ωn) = κ[ f (a)+g(a)ω̄]+ρ.

Matching the coefficients of f (a) on both sides gives κ = ηα j + 1 − η . Similarly,

matching the coefficients of g(a) gives κ = [ηα jω j+(1−η)ωn]/ω̄ . Thus, the equation

can hold for every action a only if these two expressions for κ coincide, which can easily

be verified to be the case only if α j = 1.6

The quadratic loss function is a special case of (57). This can be seen by taking

f (a) =−1
2a2 and g(a) = a. Then, VR(ω,a) = aω − 1

2a2, which can be written equiva-

lently as −1
2(a−ω)2 + 1

2ω2. Of course, the term 1
2ω2 does not affect preferences over

A , and hence it can be omitted—as is often done—if we are only interested in the opti-

mal choice of a. The quadratic loss function has the property that the receiver’s optimal

action is equal to the posterior mean.

Given Theorem 7.1, we assume that VR(ω j,ai) = f (ai)+g(ai)ω j. We also assume

that the sender’s payoff is linear in the posterior mean. Specifically sender’s payoff at

6To see this in somewhat more detail, recall that by the maintained assumption in this section, the

optimal action for the receiver is not the same in all states. Moreover, we have already shown above that

VR(ω j,a) = α j( f (a)+ g(a)ω j)+β j for all j. Thus, Topkis’ Theorem implies that the term g(a) has to

be non-decreasing in ω under the optimal action, and hence the optimal actions at ω1 and at ωn must

be different. (Otherwise, the action that is optimal at these extreme states would be optimal at all states,

violating our assumption.) Since α1 = αn = 1 and β1 = βn = 0, this means that there exist actions a

and b such that f (a)+ g(a)ω1 > f (b)+ g(b)ω1 and f (a)+ g(a)ωn < f (b)+ g(b)ωn. Subtracting the

second inequality from the first gives g(a)(ω1 −ωn)> g(b)(ω1 −ωn), or g(b)> g(a). But then the first

inequality implies f (a) > f (b). Therefore, we have f (a) ̸= f (b) and g(a) ̸= g(b), and for the equation

to hold for both a and b, the two expressions for κ have to coincide.
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action i is:

φ(ai)
∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)

where x(ω j,ai) has the usual meaning.

The obedience constraint needed to enforce action ai is

∑
ω j∈S

VR(ω j,ai)x(ω j,ai)≥ ∑
ω j∈S

VR(ω j,ai′)x(ω j,ai)

⇒ ∑
ω j∈S

[ f (ai)+g(ai)ω j]x(ω j,ai)≥ ∑
ω j∈S

[ f (ai′)+g(ai′)ω j]x(ω j,ai)

⇒ [g(ai)−g(ai′)] ∑
ω j∈S

ω jx(ω j,ai)≥ [ f (ai′)− f (ai)] ∑
j∈S

x(ω j,ai).

Depending on the sign of f (ai′)− f (ai)
g(ai)−g(ai′)

this yields either an upper or lower bound on
∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)
.

For each ai let Bi be the set of actions ai′ such that

∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)
≥ f (ai′)− f (ai)

g(ai)−g(ai′)
.

Similarly, let Ti be the set of actions ai′ such that

∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)
≤ f (ai′)− f (ai)

g(ai)−g(ai′)
∀ai′ ∈ Ti

Let aiB ∈ Bi be the index that maximizes f (ai′)− f (ai)
g(ai)−g(ai′)

. Similarly, let aiT ∈ Ti be the

index that minimizes f (ai′)− f (ai)
g(ai)−g(ai′)

. Hence, the OC reduce to

f (aiT )− f (ai)

g(ai)−g(aiT )
≥

∑ω j∈S ω jx(ai,ω j)

∑ j∈S x(ai,ω j)
≥ f (aiB)− f (ai)

g(ai)−g(aiB)
.

Thus, the persuasion problem reduces to

max∑
ai

∑
j∈S

x(ω j,ai)φ(ai)
∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)

s.t.
f (aiT )− f (ai)

g(ai)−g(aiT )
≥

∑ω j∈S ω jx(ω j,ai)

∑ j∈S x(ω j,ai)
≥ f (aiB)− f (ai)

g(ai)−g(aiB)
∀ai

For convenience set Ui =
f (aiT )− f (ai)

g(ai)−g(aiT )
≥ 0 and Li =

f (aiB)− f (ai)

g(ai)−g(aiB)
≥ 0 for all i. Assume that

Ui,Li ̸= 0 for all i. If we set yi = ∑ω j∈S ω jx(ω j,ai) the optimization problem becomes:

max ∑
ai∈A

φ(ai)yi (58)
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s.t. yi −Ui ∑
ω j∈S

x(ω j,ai)≤ 0 ∀ai ∈ A (59)

− yi +Li ∑
ω j∈S

x(ω j,ai)≤ 0 ∀ai ∈ A (60)

∑
ai

x(ω j,ai) = p( j) ∀ω j ∈ S (61)

yi − ∑
ω j∈S

ω jx(ω j,ai) = 0 ∀ai ∈ A (62)

x(ω j,ai),yi ≥ 0 ∀ai ∈ A ,ω j ∈ S (63)

Theorem 7.2 Problem (58-63) is equivalent to:

max ∑
ai∈A

φ(ai)yi

s.t. ∑
i∈A

yi = ∑
ω j∈S

ω j p( j).

∑
i∈A :ωr≥Ui

[
ωr

Ui
−1]yi ≤ ∑

ω j:ω j≤ωr

(ωr −ω j)p( j) ∀ωr ∈ S

∑
ai:ωr≤Li

[1− ωr

Li
]yi ≤ ∑

ω j:ω j≥ωr

(ω j −ωr)p( j) ∀ωr ∈ S

yi ≥ 0 ∀ai ∈ A

The proof is similar to the proof of Theorem 3.1 and is omitted (but is available upon

request from the authors).
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