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Diversified cross-shareholding networks are thought to be more resilient to shocks, but
diversification also increases the channels by which a shock can spread. To resolve these
competing intuitions we introduce a stochastic model of a diversified cross-shareholding
network in which a firm’s valuation depends on its cash endowment and the shares it owns
in other firms. We show that a concentration of measure phenomenon emerges: almost all re-
alized network instances drawn from any probability distribution in a wide class are resilient
to contagion if endowments are sufficiently large. Furthermore, the size of a shock needed to
trigger widespread default increases with the exposure of firms to each other. Distributions
in this class are characterized by the property that a firm’s equity shares owned by others are
weakly dependent yet lack “dominant” shareholders.

KEYWORDS: financial network, random network, contagion, systemic risk, equilibrium,
dynamics, concentration of measure.

1. INTRODUCTION

Cross-shareholding networks, incorporating interdependencies between firms holding each
other’s shares, are pervasive (Shi, Townsend and Zhu, 2019). In such settings interconnectivity
is traditionally held to encourage resilience via diversification but also has the countervailing
possibility of acting as a conduit by which shocks to one firm can be transmitted to others.

As in Elliott, Golub and Jackson (2014) we suppose a firm’s value depends on the shares it
owns in other firms as well as its cash endowment (in the form of held primitive assets). When
a firm’s value falls below a failure threshold (insolvency), it discontinuously imposes losses on
its counter-parties, e.g., as default costs. The counter-parties in turn may push other firms below
the failure threshold. Thus, an initial small shock to a small number of firms has the potential
to trigger widespread insolvency.

Prior work sought to characterize the structure of cross-shareholding networks that encour-
age the propagation and amplification of shocks. The absence of a closed form description of
the equilibrium profile of firm valuations in cross-shareholding networks limited attention to
specific networks, such as paths, cycles, stars, or cliques. An equilibrium here is a combination
of firm values consistent with the firms’ cash endowments and equity share cross-ownership.
As a firm’s value is a non-linear function of its cash endowment and the returns on its invest-
ment in other firms, there can be many equilibria. Prior work deals with this by selecting a
“maximal” or “minimal” equilibrium. Therefore, one may justifiably wonder to what extent
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the behavior observed in specific networks will extend to other networks and whether their
extreme equilibria are informative about behavior at other equilibria.

Here we focus on diversified networks in which equity shares are widely distributed. On
the one hand, they should be more resilient to shocks because of diversification, but it also
increases the channels by which a shock can spread. Which of the two forces will dominate?
Diversification is usually modeled by assuming that each firm holds equal amounts of shares in
all other firms (called a regular clique). Instead of identifying fully diversified networks with the
regular clique, we define them as arising from a probability distribution over equity shares. The
properties of the distribution—rather than the features of any specific realized profile of share
cross-ownership—encode what it means to be fully diversified. Specifically, the equity shares
of a firm that are held by other firms are exchangeable random variables drawn from a suitably
regular distribution where “regularity” is captured by a weak moment condition designed to
obviate pathologies; we assume that the vectors of share allocations are independent across
firms. We impose no conditions on cash endowments.

Exchangeability means that no one firm is distinguished from the others in some relevant
way. It does not require firms to hold identical quantities of a given firm’s shares. The moment
condition ensures that the differences in shares held are not so dramatic as to result in owner-
ship being concentrated in the hands of a few firms. Shares being widely distributed and the
absence of concentration capture the essence of diversification. We call a network generated in
this way a fully diversified network. No two realized fully diversified networks will be iden-
tical. However, as the size of the network increases, we show that the equilibria of almost all
fully diversified networks are concentrated around the equilibria of the regular clique, making
the latter “typical”: even though, ex post, any realization of a fully diversified network will
generally be very different from a regular clique, we can infer its equilibrium behavior from
the equilibria of the regular clique.

To come to a clearer understanding of how a fully diversified network will respond to a shock
to a firm’s value, we abstract away from differences between firms by assuming each has the
same endowment and exposure (fraction of a firm’s equity owned by the firms in the network).
As the equilibria of a fully diversified network are concentrated around the equilibria of the
regular clique, two parameters suffice to determine equilibrium valuations: the endowment and
the exposure.

By exploiting the fact that the equilibria of cross-shareholding networks lend themselves
to an interpretation as the rest points of a natural dynamic we determine how all equilibria
respond to a shock, not just the best (or the worst) equilibria that are the focus in, say, Elliott,
Golub and Jackson (2014). The dynamic’s state space is comprised of vectors of firm valuations
divided into three zones: optimal (the number of solvent firms is “large”), safe (the number of
solvent firms is “middling”), and risky (the number of solvent firms is “small”). Suppose a
shock displaces firm values from their equilibrium state. The new profile of firm valuations
becomes the initial state of the dynamic. If the initial state is located in the optimal zone, the
dynamic converges to the “best” equilibrium profile (where every firm is solvent). If the initial
state is located in the risky zone, the dynamic converges to the “worst” equilibrium profile
(every firm is insolvent, which, essentially, corresponds to the economy’s collapse). If the initial
state is located in the safe zone, the dynamic converges to a profile of firm valuations where,
often, initially solvent firms remain solvent, and initially insolvent firms remain insolvent.

We also describe how the “sizes” of these zones change as we vary both the endowment
and exposure. With exposure fixed and a sufficiently large endowment, there is only one equi-
librium, the “best” one in which all firms are solvent. As the endowment declines (holding
exposure fixed), the “worst” equilibrium where all firms are insolvent emerges. This is not a
sign of fragility as it requires a substantial shock to the “best” equilibrium to send the system
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into the “worst” equilibrium, that is, the basin of attraction of the “best” equilibrium is large. As
the endowment declines further, equilibria where a majority of the firms are insolvent appear.
However, the basin of attraction of the “best” equilibrium continues to remain large.

As the endowment continues to diminish, the basin of attraction of the “worst” equilibrium
expands, absorbing equilibria with a small number of solvent firms, while that of the “best”
equilibrium shrinks. As the endowment shrinks further, equilibria where a majority of firms
are solvent appear. In this domain characteristic of smaller endowments, a very small shock to
the “best” equilibrium will result in firms’ valuations either returning to the best equilibrium or
converging to a state that is “close” to the initial state. By “close” we mean that, while a firm’s
valuation will change, the firm will preserve its (in)solvency status, that is, if its valuation ex-
ceeded the failure threshold, it will not drop below it; and if it was initially below that threshold,
it will not rise above it. The situation is perilous, however, as a medium to large shock, will pro-
pel the dynamics into the large basin of attraction of the worst equilibrium leading to collapse.
The greatest peril emerges when the endowment becomes small: in that domain all equilibria
vanish except the “worst” which now dominates the landscape.

If instead, we hold the endowment fixed, an increase in exposure increases the basin of
attraction of the “best” equilibrium. Hence, a small shock to the profile of firm valuations
in the best equilibrium will result in the system returning to its original state. A decrease in
exposure, while shrinking the basins of attraction of the best and worst equilibria introduces
many equilibria with a “middling” number of solvent firms. In this case, a small shock to
the best equilibrium could cause the state of the system to fall out of its basin of attraction.
However, the system will not terminate in the worst equilibrium but get “trapped” by one with
a “middling” number of solvent firms.

We also investigate the impact of a shock to the endowment when there is a large number
of firms. We find that increasing exposure makes firms slightly more sensitive to each other’s
endowment shocks. We also find that as the exposure increases, the magnitude of an endowment
shock to any one needed to drive the system to the worst equilibrium decreases. However, the
impact of exposure is of second order in the asymptotic regime: both these effects are strongly
muted by the fact that there is a large number of firms. In particular the magnitude of the
shock needed to force the system into the worst equilibrium scales with the number of firms.
Hence, small shocks to the endowment are unlikely to generate widespread failure. Our story
in a slogan: if, for any given exposure, the endowment reaches a critical level then almost all
diversified networks are resilient to shocks and contagion.

A key technical contribution of independent interest is to the theory of random matrices: we
show a concentration of measure phenomenon for random matrices that possess weak depen-
dencies in the form of exchangeable column elements.

The remainder of this paper is organized as follows. Prior work is summarized in Section 2.
Essential technical preliminaries are in Section 3. The model is defined in Section 4 and the
characterization of its equilibria can be found in Section 5. Section 6 is devoted to the equi-
libria of the regular clique. Section 7 characterizes equilibria in random equity networks and
fleshes out the concentration result which justifies the focus on the regular clique. Dynamical
considerations are introduced in Section 8, leading naturally to Section 9 in which resilience to
shocks is discussed. And to conclude, extensions to Erdös–Rényi topologies, stochastic block
models, and sparse networks are sketched in Section 10. Proofs of the technical results are de-
ferred to appendices (A–F) to keep the flow of presentation of the main ideas as unencumbered
as possible.
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2. PRIOR WORK & CONNECTIONS TO THE RESULTS OF THIS PAPER

The role that network structure plays in systemic risk has attracted considerable attention
in the last twenty years. The relevant papers are those that consider a network of firms linked
through debt, equity, or both. Their focus is to link the topology of the network (degree distri-
bution, centrality) to the likelihood of contagion.

Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), for example, consider a network where firms
are connected via debt. An underlying network of debtor and creditor relationships is fixed
(these are the links) and the magnitude of the clearing payments associated with these links
are determined in equilibrium. They find that when shocks have small magnitude, higher net-
work density (fraction of links relative to the maximum possible number of links) improves
robustness of the system, with the regular clique being the best and the ring being the worst
among regular networks. However, they find that for larger shocks, denser networks, such as
the regular clique, facilitate the spread of defaults.

Our model of cross-shareholding networks follows Elliott, Golub and Jackson (2014) and
focuses on equity rather than debt. Elliott, Golub and Jackson (2014) characterize the equilibria
of the model—these are the firm valuations consistent with asset holding and equity share
cross-holding by the firms. Like Acemoglu, Ozdaglar and Tahbaz-Salehi (2015), their focus
is on relating network structure as measured by exposure (called integration in their paper)
and diversification (the number of firms that hold one’s shares) to contagion. Elliott, Golub
and Jackson (2014) [see also Jackson and Pernoud (2019, Sec. 2.4)] argue that exposure and
diversification at an “intermediate” level make networks susceptible to contagion. This non-
monotonicity is absent in our model.

A direct comparison of our results with those of Elliott, Golub and Jackson (2014) is not
possible because we do not measure diversification in terms of the number of firms that hold
one’s shares. In our analysis we don’t fix the number of counterparties that a firm has equity
stakes in a priori but let it depend on the realized distribution of equity shares. Our analog to
the notion of “density” in the cited work is exposure, the relative share of a firm’s equity owned
by other firms in the network. As remarked earlier, in our setting we find that the impact of
exposure on stability is as follows: holding endowment fixed, an increase in exposure increases
the basin of attraction of the “best” equilibrium.

Nevertheless, in Section 10 we outline a variant of our model based on Erdös–Rényi random
graphs that does permit a comparison with the cited work and a resolution of the apparently
contradictory findings. We argue that the “intermediate level” of integration identified in Elliott,
Golub and Jackson (2014) at which non-monotonic behavior is manifested occurs when the
underlying network is very sparse, that is to say, network topologies potentially susceptible
to contagion are characterized by bounded, typically small, node degrees. In Section 10 we
deal with the connected domain in Erdös–Rényi networks and their stochastic block model
extensions which, even at the junction where connectivity just emerges, are much richer in
interconnections than the sparse “intermediate zone” of Elliott, Golub and Jackson (2014). In
the connected regime we consider, network behavior is resolutely monotone with an emergent
concentration of measure as the network size becomes large.

Unlike Elliott, Golub and Jackson (2014) our focus is not just on the extremal equilibria. We
provide a complete characterization of the distribution of all equilibria.

We study the stability of the equilibria and their susceptibility to shocks and contagion using
a natural dynamic in the spirit of Eisenberg and Noe (2001). In this latter paper the authors con-
sider a network of firms linked through debt rather than equity, characterize consistent clearing
vectors of debt repayments between firms, and provide an algorithm—referred to as the “ficti-
tious sequential default” algorithm—for determining such vectors. Eisenberg and Noe (2001)
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interpreted the algorithm as a process of dynamic adjustment of firm valuations. They do not
provide results that relate network structure to contagion.

Finally, our work is related to Dasaratha (2020), which characterizes eigenvector centrality—
defined via a recurrence, similar to our equilibria, albeit, in a linear form—of a wide range of
networks. These centrality issues are elegantly addressed using existing concentration results
for random matrices. These results are of independent interest but not applicable to our setting.
Our focus is on the actual equilibria and not centrality, our model has added complexities in
view of non-linearities, and, from a technical point of view, significant hurdles are created by
the fact that the relevant network matrices in our case do not have independent entries. The
bulk of the existing literature on concentration deals with matrices with independent entries
and those results will not carry through to our setting. Thus, a technical contribution of this
paper is a concentration result for random matrices with dependent entries.

3. NOTATIONAL PRELIMINARIES

All vectors are interpreted as column-vectors unless stated otherwise. We reserve the special
notation 1n for the vector of all ones of length n and drop the subscript and write simply 1
when we can safely do so without ambiguity when the dimension is clear from context. In
the same spirit, we will also write 1n×m = 1n1

⊺
m for the n ×m matrix of ones. We will in

analogous fashion reserve the notation 0 = 0n for the vector of length n all of whose elements
are equal to zero and write 0n×m for the n×m matrix of zeros.

The names of generic vectors and matrices are displayed in boldface. Vector inequalities are
understood elementwise: if x = (x1, . . . , xn)

⊺ and y = (y1, . . . , yn)
⊺ are two n-dimensional

real vectors, then the vector inequality x ≤ y means that xi ≤ yi for each i. The expression
diag(x) represents the n × n diagonal matrix with the elements of x residing on its main
diagonal.

If A is a generic matrix, we write Ai∗ for its ith row and A∗j for its jth column. If A is any
real square matrix, its matrix exponential exp(A) is defined as exp(A) :=

∑∞
ℓ=0

Aℓ

ℓ!
.

If A is symmetric then spec(A) stands for its spectrum—its set of eigenvalues—and
λmax(A) denotes its largest eigenvalue. More generally, if A is an n×m real rectangular ma-
trix, then σmax(A) and σmin(A) represent its largest and smallest singular values, respectively.

We utilize the standard definitions of the vector ℓp-norm, ∥x∥p, for 1≤ p≤∞. In the special
case of ∥x∥1 where x ∈ {0,1}n, the ℓ1-norm counts the number of 1s in the vector and we will
take a liberty with notation and write ∥x∥1 = |x| for the ℓ1-norm in this context.

As is customary, we recycle notation for the matrix norms induced by vector norms. Suppose
A= [aij ]

n
i,j=1 is any real square matrix of order n. For 1≤ p≤∞, identify the operator p-norm

∥A∥p with the norm induced by the corresponding vector ℓp-norm via

∥A∥p := sup
x ̸=0

∥Ax∥p
∥x∥p

.

We will encounter the special cases p = 1, 2, and ∞: in these cases the operator norms take
on simple aspects. The operator 1-norm may be identified with the maximum absolute column
sum: ∥A∥1 =max1≤j≤n

∑n

i=1 |aij |; the operator 2-norm (also called the spectral norm) may
be identified with the largest singular value: ∥A∥2 = σmax(A); and the operator∞-norm may
be identified with the maximum absolute row sum: ∥A∥∞ =max1≤i≤n

∑n

j=1 |aij |.
Finally, in the usual abuse of notation, we will also use this terminology for random variables

in Lp-spaces: if X is a random variable in some probability space and X ∈ Lp for some p ≥
1, the Lp-norm of X is ∥X∥p := E

(
|X|p

)1/p where E(·) is expectation with respect to the
underlying probability measure.
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4. A CROSS-SHAREHOLDING MODEL

We consider a network of n interconnected financial firms. Each firm i has a cash endowment
ei and valuation Vi. We think of the vector of cash endowments e = (e1, . . . , en)

⊺ ∈ Rn
+ as a

fixed parameter of the model. Our focus is on the vector of firm valuations V= (V1, . . . , Vn)
⊺

which represents the state of the system. We suppose that V takes values in some bounded box
D ⊂ Rn serving as the state space or the domain of firm valuations.

The valuation Vi of each firm i depends upon its cash endowment and the dividends on its
investments in other firms. Interdependencies between firms holding each other’s shares are
captured by a matrix of cross-holdings C = [Cij ]

n
i,j=1 where Cij ∈ [0,1) is the share of firm

j’s equity owned by firm i. For each j, we will suppose that the totality of the shares of firm j
owned by the firms in the network is strictly less than one, C1j + · · ·+Cnj < 1, and interpret
the deficit Ĉj := 1−

∑
iCij > 0 as the share of firm j owned by outside investors external to

the network. Identify Ĉ := diag
(
Ĉ1, . . . , Ĉn

)
.

We may interpret the cross-holdings matrix C = [Cij ]
n
i,j=1 as the adjacency matrix of an

edge-weighted directed graph with self-loops allowed. We set Cij = 0 if the edge (i, j) is
absent in the graph.

An equilibrium profile of firm valuations (or, simply, equilibrium), V, is identified with a
solution of the fixed point equation

V= e+CV− β1{V≤τ1} (1)

where τ and β are fixed positive values specified in the model, and the vector indicator 1{V≤τ1}
picks out indices i for which Vi ≤ τ : the ith component of 1{V≤τ1} is equal to 1 if Vi ≤ τ and
is equal to 0 if Vi > τ . We interpret the fixed point equation (1) as saying that the valuation Vi of
firm i is comprised of its cash endowment ei, together with the dividends

∑
j CijVj it receives

on its investment in other firms, but subject potentially to a shock penalty β (representing, for
example, a fire sale or debt write-down) applied if its valuation is below the fixed threshold τ .

We will refer to the firms whose valuations fall below τ—and who suffer the fixed penalty
β—as insolvent. The language, while admittedly taking liberties with the meaning of the term,
has the virtue of being vivid.

DEFINITION 1—Solvent and Insolvent Firms: Given a solvency threshold τ , fixed in the
model, we say that a firm i ∈ {1, . . . , n} is solvent if Vi > τ , and insolvent otherwise.

Equation (1) is the model of Elliott, Golub and Jackson (2014, p. 9, eq. (4)) and we refer the
reader there for a detailed discussion. There are three points of departure in our paper from their
formulation, one major and two minor, and we touch upon these briefly before proceeding.

i. (Major) A focus of Elliott, Golub, and Jackson was the number of counterparties each
firm has and its influence on the impact of integration and diversification on the risk
of contagion. In our paper we shift focus to the actual amount of equity that is shared.
A major point of departure then becomes a nuanced consideration of the rôle of the
wide range of possible cross-holdings: we accomplish this by a consideration of random
selections of cross-holdings of shares (random networks). As we shall see, this change
in perspective leads to insights of a very different character.

ii. (Minor) In Elliott, Golub, and Jackson, firm valuations are thought of as arising from the
values of primitive assets or factors of production. These may be viewed as investments
in external assets that generate a flow of cash over time. The particulars of these primitive
assets are not critical in our setting and we have rolled the net contribution for each firm i
into a fixed cash holding or endowment ei which may be thought of in the Elliot, Golub,
Jackson framework as the return from a single primitive asset.



CONTAGION AND EQUILIBRIA IN DIVERSIFIED FINANCIAL NETWORKS 7

iii. (Minor) Elliott, Golub, and Jackson distinguish between the book value of the firm and
its market value which is the value held by outside investors. They differ by a scale
factor. The book value is what we call the firm valuation denoted V. The vector of market
valuations is v := ĈV. We use V, in the insolvency indicator 1{V≤τ1} on the right in (1)
to trigger penalties. In Elliott, Golub, and Jackson, the insolvency indicator is replaced
by 1{v≤τ ′1}. The two formulations are equivalent once τ is scaled appropriately.

There is a natural dynamic which allows us to interpret the fixed-point equation (1) as equi-
libria of a dynamical system. If firm valuations are allowed to adjust with time, we write Vt

and Vi,t to reflect the values of V and Vi, respectively, at time t. In the dynamic setting we
interpret Vi,t as the “estimated” valuation of firm i at time t, with Vi,∞ denoting its equilibrium
valuation (assuming convergence).

In discrete-time, the dynamical system takes the form

Vt+1 = e+CVt − β1{Vt≤τ1}. (2)

In this formulation, firm valuations Vt adjust in time based on cash endowments e and the
dividends CVt on the investments in other firms at their current valuations Vt, subject to a
potential penalty of β applied whenever the current valuation drops below the solvency thresh-
old τ . The non-linear plunge in a firm’s valuation can be interpreted as indicative of distress
if we interpret the process (2) as describing the actual change in firm valuations in time. Al-
ternatively, we can interpret it as a “fictitious” dynamic [in the language of Eisenberg and Noe
(2001)] that an external party uses to arrive at a consistent set of firm valuations starting from
an initial estimate.

The continuous time counterpart of (2) is given by

d

dt
Vt =

.
Vt = e− (I−C)Vt − β1{Vt≤τ1}. (3)

The equilibria of both (2) and (3) are solutions of the fixed point equation (1), but the
continuous-time version (3) is analytically easier to work with in a consideration of the dy-
namics.

5. EQUILIBRIA IN FIXED NETWORKS

The equilibria of the model are the solutions of the equation (1). An alternative characteriza-
tion is available in view of the following observation.

LEMMA 1—[Proof ]: The matrix I−C is non-singular.

We defer the proof of this and the other assertions in this section to Appendix A.
In view of Lemma 1, we may rewrite the fixed point equation (1) as

V= (I−C)−1(e− β1{V≤τ1}). (4)

When β = 0, the model possesses a unique equilibrium (I−C)−1e. In general, the system (4)
can have many solutions. A partitioning of the state space enumerates the possibilities.

Each partition of the collection of firms into two sets, one identified with solvency and the
other with insolvency, identifies a unique subset of the state space that we call an orthant
for reasons that will become clear directly. Let us define k = (k1, . . . , kn)

⊺ ∈ {0,1}n to be
an indicator of solvency of the corresponding firms (1 ≡ solvent, 0 ≡ insolvent): for a given
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indicator of solvency k, firm i is solvent if ki = 1 and insolvent if ki = 0. We further define
Kn(k) to be an orthant in Rn, anchored at point τ1 rather than the origin, identifying the space
of firm valuations with solvency characterized by k:

Kn(k) := {x : xi > τ if ki = 1 and xi ≤ τ if ki = 0}.

The language, of course, is an extension of quadrants in two dimensions: the 2n orthants
thus engendered as k sweeps across {0,1}n partition Rn. We may group the 2n orthants into
n+ 1 equivalence classes, R0, R1, . . . , Rn, where equivalence class Rk consists of the

(
n

k

)
orthants Kn(k) for which |k|= k. That is to say,Rk is the collection of orthants each of which
is characterized by a distinct set of exactly k solvent firms. When we are concerned only with
the number k of solvent firms in an orthant, we write K(k) to refer to any one orthant Kn(k),
|k|= k, from class Rk, dropping dimensionality n if clear from context.

Fix any solvency-identifying index vector k ∈ {0,1}n. If V is any point in the corresponding
orthant Kn(k) then 1{V≤τ1} = 1− k, as the indicator picks out precisely those indices i for
which Vi ≤ τ . It follows that, if a solution to the fixed point equation (1) exists in orthant
Kn(k), it must be given by

V=V(k) := (I−C)−1
(
e− β(1− k)

) (
k ∈ {0,1}n

)
. (5)

This is a putative1 equilibrium. It will be feasible if, and only if, V(k) ∈ Kn(k).
As the orthants Kn(k) partition the space, it follows that, if the fixed point equation (1) has

any feasible solution(s) at all, then it (they) must lie in the collection of putative equilibria{
V(k) : k ∈ {0,1}n

}
. But is there any feasible equilibrium at all in this collection? Yes:

existence is guaranteed by the Knaster–Tarski theorem.

THEOREM 1—Equilibrium Existence [Proof ]: The fixed point equation (1) has at least
one solution.

Candidates for extremal equilibria are easy to identify. Set

Vsup :=V(1) = (I−C)−1e,

Vinf :=V(0) = (I−C)−1(e− β1).
(6)

Then Vsup is a candidate for an equilibrium in the “best” orthant K(n) = Kn(1) = {V :V >
τ1} in which all firms are solvent; it is feasible if, and only if, Vsup > τ1. Likewise, Vinf is a
candidate for an equilibrium in the “worst” orthant K(0) = Kn(0) = {V :V ≤ τ1} in which
all firms are insolvent; it is feasible if, and only if, Vinf ≤ τ1. If we set

f(V) := e+CV− β1{V≤τ1},

then the natural iteration

Vt+1 = f
(
Vt

)
(t≥ 0)

converges to one of the extremal fixed point candidates depending on whether the iteration
is started at a “very large” or a “very small” initial vector of valuations V0. Necessary and
sufficient conditions for the feasibility of these extremal equilibria may be deduced from the
defining equations (6).

1While, formally, putative equilibria may not be feasible, they affect the shape of the model state’s trajectory in
the dynamic version of our model.
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THEOREM 2—Extremal Equilibria [Proof ]: Suppose equal cash endowments e= e1 and
that every firm i holds a positive amount of equity shares, that is to say, Cij > 0 for at least one
j. Then:

a) For Vsup to be an equilibrium it is necessary that e > τ · σmin(I − C); for it to be an
equilibrium it is sufficient that e > τ .

b) For Vinf to be an equilibrium it is necessary that e≤ τ + β; for it to be an equilibrium it
is sufficient that e≤ τ · σmin(I−C)√

n
+ β.

The bounds in Theorem 2 are crude—this is the price of extreme generality. A more refined
understanding of the feasible equilibria of the model will have to devolve upon the imposition
of more structure.

6. THE EQUILIBRIA OF THE REGULAR CLIQUE

We now fix the cash endowment of each firm at the same nominal value e. Suppose addition-
ally that a fixed fraction c ∈ (0,1) of each firm’s equity is distributed across the network, with
the residual equity proportion 1− c held by outside investors. We do this so as to focus on the
role of network structure on equilibrium outcomes.

An egalitarian distribution of equity will result in each firm distributing a fraction c
n

of its
equity to every firm in the network. We call this a regular clique. The matrix of cross-holdings
(or adjacency matrix) takes on a particularly simple form in this setting with every element
equal to c

n
or, in matrix form, C=C0 := c

n
11⊺.

The simplicity of the regular clique is appealing for an initial foray into the model structure
by way of building intuition into the nature of equilibria. The symmetries inherent in the model
permit explicit analytical characterizations. But we accrue much much more by a careful ex-
amination of this special case. As we shall see in the following section, the regular clique is
typical of the entire class of fully diversified networks. Hence, by focusing on its properties we
learn about the properties of all fully diversified networks.

The dependence of equilibria upon the model parameters in the regular clique is simple. The
fixed point condition (1) is

V= e1+ c
n
11⊺V− β1{V≤τ1}.

The penalty offset on the right ranges over 2n possibilities depending on which subset of firms
are solvent. Some notation will help navigate the labyrinth.

Recall that each index vector k= (k1, . . . , kn)
⊺ ∈ {0,1}n is associated with a unique orthant

Kn(k) in Rn consisting of those points x= (x1, . . . , xn)
⊺ satisfying the inequalities xi > τ if

ki = 1 and xi ≤ τ if ki = 0. If V ∈ Kn(k) then 1{V≤τ1} = 1−k and so any given k engenders
a putative equilibrium V=V0(k) indexed by k and satisfying the fixed point equation

V0(k) =
(
(e− β)1+ βk

)
+ c

n
11⊺V0(k). (7)

This will be a feasible equilibrium in orthant Kn(k) if, and only if, the solution satisfies
V0(k) ∈ Kn(k). The collection of feasible equilibria as k ranges over all possibilities iden-
tifies the collection of equilibrium points of the regular clique.

The symmetries inherent in the situation lead to explicit closed form solutions. For k ∈
{0,1}n, write |k| := k1+ · · ·+kn for the ℓ1-norm. For a given cash endowment e, the feasibility
constraint for a given k is captured by the system of inequalities

τ(1− c) +
(
1− |k|

n

)
βc < e≤ τ(1− c) + β − |k|

n
βc (if 1≤ |k| ≤ n− 1), (8)
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e≤ τ(1− c) + β (if |k|= 0), (9)

e > τ(1− c) (if |k|= n). (10)

The reason for the terminology will be apparent shortly. With a view to keeping the theorem
statement uncluttered, it will also be useful to define

v(s) :=
e− (1− s)βc

1− c
(0≤ s≤ 1). (11)

THEOREM 3—Equilibria for Regular Cliques [Proof ]: For any given k ∈ {0,1}n, the fixed
point equation (7) has a unique solution V0(k) with components given by

V 0
i (k) =

{
v
( |k|

n

)
if ki = 1,

v
( |k|

n

)
− β if ki = 0,

(12)

where v(·) is defined in (11). For it to be a feasible equilibrium of the regular clique in orthant
Kn(k) it is necessary and sufficient that the corresponding feasibility constraint in the system
of inequalities (8–10) be satisfied. Setting k = 0 and 1 in turn, it follows a fortiori that the
extremal equilibria are given putatively by

Vinf =V0(0) =
(
v(0)− β

)
1=

e− β

1− c
1,

Vsup =V0(1) = v(1)1=
e

1− c
1.

(13)

They are feasible if the corresponding feasibility constraints (9, 10), respectively, hold.

The proof, presented in Appendix B, follows from the fact that the matrix I − c
n
11⊺ is almost

diagonal.
The feasibility constraints (8–10) depend only on |k|. Therefore, we group the orthants into

the n+1 equivalence classes,R0,R1, . . . ,Rn, where, as defined earlier, the equivalence class
Rk consists of the

(
n

k

)
orthants Kn(k) for which |k| = k. When cash endowments are equal,

the symmetry of the regular clique enjoins that if there is a feasible equilibrium in any orthant
Kn(k) in the equivalence class Rk, then there will be feasible equilibria in all the orthants
Kn(k) in the class. The form of the solution (33) reinforces this observation.

How does the set of equilibrium profiles of valuations change as e changes? The “inverted
Z” in Fig. 1 shows the relationship between the cash endowment e and the presence of feasible
equilibria in the equivalence classesRk. For each 1≤ k ≤ n− 1, the corresponding feasibility
constraint (8) identifies an endowment interval of length β(1 − c); the feasibility constraints
for the bookend cases k = 0 and k = n form the foot and head of the inverted Z. For any given
e, the intersection of the vertical line at e with the horizontal feasibility constraint intervals
identifies those equivalence classes containing distinct feasible equilibria.

We can use the inverted Z to understand what happens as we shrink the endowment holding
exposure fixed. Fig. 2 attempts to convey snapshots of the evolution of the number and distri-
bution of equilibria as e decreases from left to right, top to bottom. Each vertical pair of figures,
from (a) to (f), corresponds to a particular value of e. In each vertical figure pair, the top figure
identifies, for each e, the equivalence classes Rk of orthants that contain feasible equilibria.
The bottom figure in each figure pair schematically illustrates which orthants are populated
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FIGURE 1.—A schematic of endowment versus solvency index illustrating the feasibility constraints (8, 9, 10) for
the existence of equilibria in the equivalence classes, Rk , of orthants. Each horizontal line identifies an endowment
interval for which orthants in the identified equivalence class contain distinct feasible equilibria.

with equilibria. The two-dimensional grid is a convenient2 visualization of the orthants: the
square in the northeast corner represents the sole orthant K(n) = Kn(1) in the equivalence
class Rn; the square in the southwest corner represent the sole orthant K(0) = Kn(0) in the
equivalence class R0. The orthants that are home to equilibria where at least half the firms
are insolvent appear below the off-diagonal. Above the off-diagonal are the orthants home to
equilibria where at most half the firms are insolvent.

We start with the case of “largest” e depicted in (a). In this case there is only one orthant
containing an equilibrium: it is the “best” equilibrium point Vsup in orthant Kn(1) which is the
sole representative in equivalence class Rn at the northeast corner of the grid.

As e declines, the “best” equilibrium Vsup acquires a companion “worst” equilibrium Vinf in
orthant Kn(0) which is the sole representative in the class R0 at the southwest corner of the
grid.

Decreasing e further, results in equivalence classes Rk with a minority of solvent firms
becoming populated with equilibria near the southwest corner of the grid as illustrated in (b).
As e continues to decline, more and more orthants with a majority of insolvent firms acquire
equilibria, and in (c) orthants in the classes Rk near the southwest corner are all populated
with equilibria while the other half of the state space of orthants are almost bereft of equilibria
excepting the “best” equilibrium point Vsup in the northeast corner.

One should not confuse the presence of a plethora of equilibria in which a large proportion of
firms are insolvent as a sign of fragility. As we show in Section 8, once we associate a dynamic
with these equilibria, the basin of attraction of the “best” equilibrium remains large. Hence, a
small (or even moderate) shock to the profile of valuations at the “best” equilibrium does not

2The square grid distorts the true picture of the actual number of orthants in each class Rk: as noted earlier, the
actual number of orthants in a given equivalence class varies binomially rather than linearly with index.
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Largest e Larger e Large e

(a) (b) (c)

Small e Smaller e Smallest e

(d) (e) (f)

FIGURE 2.—Snapshots of the evolution of the number of equilibria as the cash endowment decreases. The top
row identifies equivalence classes Rk that contain feasible equilibria. The bottom row schematically illustrates the
distribution of equilibria across orthants.
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result in widespread default. In fact, the system is resilient in the sense that after a small shock
to the “best” equilibrium, the system returns to its initial position.

As the endowment continues to decline in (d)–(f), the equilibrium points from the orthants
closest toR0 vanish, but the population of equilibria in the half of the space of orthants closest
to Rn increases.

Decreasing e further extinguishes all equilibria except the “worst” and “best” equilibria,
Vinf and Vsup. A further decrease in endowment (f) eliminates the “best” equilibrium so that,
eventually, only the “worst” equilibrium Vinf remains.

7. EQUILIBRIA IN RANDOM NETWORKS

This section contains the main result of this paper. In it we justify the careful consideration
of the regular clique by showing that, in a formal sense, it is the archetypal fully diversified
cross-holding network. We accomplish this by a consideration of a random selection of cross-
shareholding matrix C. This permits the simultaneous consideration of all instances of cross-
holdings, most of a highly irregular character. Its benefit rests in the idea that randomness
creates probabilistic symmetries that can be exploited analytically. And its utility devolves
from the phenomenon of concentration of measure wherein, as we shall see, “most” networks,
very different from each other in their realizations, behave very similarly in the disposition and
nature of their equilibria.

7.1. The Scaffolding and a Preview of the Results

In order to understand the impact of interdependencies on contagion and cascades of failures,
we consider networks where firms, while potentially having very different investment portfo-
lios, follow similar (random) investment strategies. The setting is sanitized to be sure but it
permits us to focus on the interaction between diversification and contagion. With this objec-
tive in mind, we hold other parameters in the system, such as the cash holdings of each firm
(more generally, the primitive assets or factors of production) and the fraction of each firm’s
value owned by outside shareholders external to the network, fixed at some nominal values. Our
models are qualitatively different from settings which are topologically non-uniform—included
among these are Erdös–Rényi topologies, stochastic block models, core-periphery networks, or
scale-free-like settings—but many of our results have natural extensions in these directions. We
outline one of these in Section 10.

We will need to build up some technical machinery but some motivation is always welcome
before diving into dry technicalities. Suppose, as in the previous section, that the cash holdings
of each firm are fixed at the nominal value e and that a fixed fraction c of each firm’s equity is
distributed across the network. The notion that firms have similar random investment strategies
is captured by a consideration of a random matrix of cross-holdings C (a random clique) whose
columns are independent and identically distributed and share a common distribution. The
notion of probabilistic balance is captured in the idea that the distribution of a firm’s equity
across network entities is an exchangeable system satisfying a suitable regularity constraint to
avoid pathologies: we will define what this means precisely later in this section in a notion
that we call asymptotically diffuse. Recall that, for k ∈ {0,1}n, the vector V(0)(k) represents
the putative equilibrium in orthant Kn(k) of the regular clique C0. Let the analogous putative
equilibrium corresponding to an asymptotically diffuse random clique C be V(k) (if it exists).

The following theorem provides an inviting flavor of the kind of result that is now within
reach. In rough terms: the feasible equilibria of the random clique converge point-wise to the
feasible equilibria of the regular clique. Or, with a little more precision in language:
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THEOREM 4—Equilibria in Large Random Networks: Simplified Version: Select ϵ > 0 and
δ > 0 as small as desired. Then, for all sufficiently large n, and any selected index vector
k ∈ {0,1}n, with probability at least 1− δ, if V0(k) ∈ Kn(k) then so is V(k) and, moreover,
each component Vi(k) of the equilibrium of the random clique is ϵ-close to the corresponding
component V 0

i (k) of the equilibrium of the regular clique.

We will actually be able to say much much more but we will need to first detour through
some preliminaries.

7.2. The Probabilistic Skeleton

Suppose that the elements of the stochastic (column) vector X = (X1, . . . ,Xn)
⊺ are ex-

changeable, nonnegative-valued random variables summing to 1. These will represent, up to
a scale factor, the distribution of a given firm’s equity across the entities in the network. If
Fn = Fn(x1, . . . , xn) denotes the (joint) distribution of X1, . . . , Xn then: exchangeability en-
joins that Fn = Fn(x1, . . . , xn) is invariant with respect to permutations of its coordinates;
positivity enjoins that Fn is supported in the first orthant x1, . . . , xn ≥ 0; and the sum con-
straint enjoins that Fn is singular and concentrated on the hyperplane x1 + · · ·+xn = 1. As an
immediate consequence of exchangeability, we see that the component-wise expectations and
variances must be equal, as indeed must all moments. For the same reason, all mixed moments
are also invariant with respect to permutations of the spacings X1, . . . , Xn but more can be
said: the sum constraint X1 + · · · +Xn = 1 enjoins indeed that the spacings are negatively
correlated. A rich variety of identities arise out of this simple observation. We will defer these
to Lemma 4 in Appendix C and satisfy ourselves here with a pared down, second moment
variation on the theme for immediate reference—the technical details of the full monty will
become important only in the proof of the main theorem and are not essential here.

PROPOSITION: Suppose X1, . . . , Xn are exchangeable, non-negative, and sum to 1. Then,
they have common mean 1/n, and the common pairwise covariance γ is related to the common
variance s2 through the relation γ =− 1

n−1
s2. In words: the variables are negatively correlated

and asymptotically weakly dependent.

The following examples provide several natural ways of generating such families of ex-
changeable random variables.
EXAMPLE 1) The de Finetti spacings. Identify X1, . . . , Xn with the spacings engendered by
throwing n− 1 points uniformly at random in the unit interval. The corresponding joint distri-
bution was obtained by Bruno de Finetti [see Venkatesh (2013, §IX.2, p. 282)]. Write x+ for
the positive part of x. Then, for any non-negative x1, . . . , xn,

P{X1 > x1, . . . ,Xn > xn}=
[
(1− x1 − · · · − xn)+

]n−1
, (14)

whence the distribution function Fn(x1, . . . , xn) =P{X1 ≤ x1, . . . ,Xn ≤ xn} can be written
down by inclusion and exclusion. An elementary integration now show that, if 1≤ i≤ n and
i′ ̸= i, then

E(Xi) =
1

n
and Var(Xi) =

n− 1

n2(n+ 1)
∼

1

n2 . (15)

These assertions are proved in Lemma 10 in Appendix C; we will see indeed in Corollary 6
that E

(
(Xi − 1/n)ν

)
=O(n−ν) for every non-negative integer ν. ▶
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The de Finetti distribution (14) is an archetype for our model of a fully diversified cross-
holding network; it provides perhaps the most intuitive way to distribute points in the interval
in an unbiased fashion. It may not be surprising that other formulations lead to similar results.
EXAMPLE 2) Spacings induced via the Haar measure on the sphere. Suppose Z= (Z1, . . . ,Zn)∼
Haar(Sn−1) is drawn from the Haar measure on the n-dimensional unit sphere Sn−1 := {z :
∥z∥2 = 1}. The Haar measure formalizes the notion of “uniformly random selection” on the
sphere Sn−1: if A is any Borel-measurable subset of Sn−1, then

P{Z ∈ A}= Area(A)
Area(Sn−1)

=

∫
A

dΩ∫
Sn−1

dΩ

=
nπn/2

Γ
(
n
2
+ 1
) ∫

A

dΩ (16)

where dΩ represents a differential element with respect to geodesic distance on the unit sphere
Sn−1. The final step is a consequence of the observation that the area of the unit sphere is given
from elementary considerations by [Venkatesh (2013, Theorem XIV.7.2, page 496)]

An := Area(Sn−1) =

∫
Sn−1

dΩ=
2π

n
2

Γ
(
n
2

) . (17)

The Haar measure exhibits rotation invariance: if Q is any orthogonal transformation on Rn

and A is any Borel set in Sn−1 then P{Z ∈ A}=P{Z ∈QA}. This is the natural analogue on
the sphere of the characteristic property of translation invariance of Lebesgue measure on the
real line.

Set Xi = Z2
i for 1≤ i≤ n. Then X1, . . . , Xn are exchangeable, non-negative variables

representing spacings of the unit interval with distribution inherited from (16). In particular, the
marginal distribution is given by

P{X1 ≥ x}=P
{
Z1 ≥

√
x
}
=

2An−1

An

∫ 1

x

(1− t)
n−2
2

2
√
t

dt (0≤ x≤ 1).

This assertion is proved in Lemma 15 in Appendix C. Another routine integration now shows
that

E(Xi) =
1

n
and Var(Xi) =

2(n− 1)

n2(n+ 2)
∼

2

n2 .

The Haar-induced spacings are approximately one-and-a-half times more dispersive than the de
Finetti spacings but the moments share the same asymptotic order: we shall see in Corollary 8
in Appendix C that E

(
(Xi − 1/n)ν

)
has asymptotic order n−ν for every ν ≥ 0. ▶

The construction in the previous example exploited the fact that Z2
1 + · · ·+ Z2

n = 1. If the
variables are not already normalized properly, it is easy enough to normalize by scaling. This
leads to a rich class of distributions of spacings.
EXAMPLES: 3) Spacings engendered by the exponential density. Suppose Z1, . . . , Zn are inde-
pendent, exponentially distributed random variables with unit mean. If we set

Xi =
Zi

Z1 + · · ·+Zn

(1≤ i≤ n), (18)

then X1, . . . , Xn have the de Finetti distribution (14) [Venkatesh (2013, §IX.11, Problem 21,
p. 312)].
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4) Periodogram analysis. Suppose U1, . . . , Un, V1, . . . , Vn are independent, standard normal
random variables and let Zi = U2

i +V 2
i . The variables X1, . . . , Xn defined anew by (18) again

have the de Finetti distribution (14) [Venkatesh (2013, §IX.12, Problem 24, p. 365)]. ▶
More generally, the formulation (18) provides a systematic way of generating exchangeable

variables with a sum constraint.
EXAMPLES: 5) General spacings engendered by scaling. Suppose Z1, . . . , Zn is drawn by in-
dependent sampling from an absolutely continuous distribution G with support in the positive
half-line. Let g =G′ be the corresponding density. Form X1, . . . , Xn via (18). As in the case
of the spacings of the uniform, the variables X1, . . . , Xn are exchangeable (by virtue of the
fact that the underlying product measure G⊗n is invariant with respect to permutations of co-
ordinates). Again, the variables X1, . . . , Xn are linearly dependent with X1 + · · ·+Xn = 1. If
we introduce the nonce variable X0 = Z1 + · · ·+Zn, however, then the variables X0, X1, . . . ,
Xn−1 are linearly independent. The Jacobian of the transformation

Z1 =X0X1, . . . , Zn−1 =X0Xn−1, Zn =X0(1−X1 − · · · −Xn−1)

is J = xn−1
0 , whence the density of X0, X1, . . . , Xn−1 is

xn−1
0 · g(x0x1) · · ·g(x0xn−1)g

(
x0(1− x1 − · · · − xn−1)

)
.

Integrating out x0 yields the explicit form for the density

fn−1(x1, . . . , xn−1) =

∫ ∞
0

xn−1
0 g(x0x1) · · ·g(x0xn−1)

· g
(
x0(1− x1 − · · · − xn−1)

)
dx0 (19)

of X1, . . . , Xn−1 with support in the regular probability simplex Pn−1. No further analytical
simplification is possible in general unless g is amenable.
6) Spacings engendered by folded normals. If U1, . . . , Un are independent, standard normal,
then Z1 = |U1|, . . . , Zn = |Un| are independent with the common folded normal density

g(x) = 2ϕ(x) =
√

2
π
e−x2/2 with support only in the positive half-line [0,∞). In this case (19)

simplifies to the explicit form

fn−1(x1, . . . , xn−1) =

(
4

π

)n
2

·
Γ
(n
2

)
2
· 1[

x2
1 + · · ·+ x2

n−1 + (1− x1 − · · · − xn−1)
2
]n

2

with support again in the regular probability simplex Pn−1. ▶
All systems of exchangeable spacings X1, . . . , Xn are negatively correlated and satisfy the

Proposition at the start of this section. Not all exchangeable systems of spacings will have
moments that decay as quickly as the de Finetti system (15). Pathological cases arise in “winner
take all” scenarios such as coordinate or frame-based spacings.
EXAMPLE 7) Coordinate spacings lead to pathologies. Suppose the distribution Fn(x1, . . . , xn)
is atomic and places equal mass on each of the n atoms (1,0, . . . ,0), (0,1, . . . ,0), and
(0,0, . . . ,1). In other words, precisely one of X1, . . . , Xn is equal to one, the others all taking
value 0. Then each Xi individually is a Bernoulli variable taking value 1 with probability 1/n
and value 0 with probability 1− 1/n. It follows that

E(Xi) =
1

n
, Var(Xi) =

1

n

(
1− 1

n

)
, Cov(Xi,Xj) =

−1
n2
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for 1 ≤ i ≤ n and j ̸= i. As each variable is individually Bernoulli, we may conclude in fact
that E

(
(Xi − 1/n)ν

)
=O(n−1) uniformly for ν ≥ 1. ▶

Examples like the one above are pathological. In the context of cross-holdings they concen-
trate all the available equity of each firm in a single entity, albeit randomly selected: on average,
each firm owns the majority stake in a single other firm. This manifests itself in a centered νth
moment decaying glacially at rate n−1. De Finetti-type distributions, on the other hand, spread
shares more uniformly across the network, a manifestation of which is a centered νth-moment
which decays much more rapidly at rate n−ν . With a view to understanding the impact of di-
versification we will add a smoothness constraint to the system to enforce a certain amount
of diversification of equity: this will effectively enjoin that no firm, or small number of firms,
corners all shares. The specific form this will take is in the form of an asymptotically uniform
eighth-moment constraint.

With asymptotics in n in mind, temporarily introduce a superscript (n) to make explicit the
size of the network under consideration. We are then really dealing with a triangular array

X(1) X(1)
1

X(2) X(2)
1 ,X(2)

2

X(3) X(3)
1 ,X(3)

2 ,X(3)
3

X(4) X(4)
1 ,X(4)

2 ,X(4)
3 ,X(4)

4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

X(n) X(n)
1 ,X(n)

2 ,X(n)
3 ,X(n)

4 , . . . ,X(n)
n

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

of non-negative random variables where, for each n, the variables X(n)
1 , . . . , X(n)

n in the nth
row are exchangeable and sum to 1. By exchangeability, E

(
X(n)

1

)
= 1

n
for each n. We will

want a little control over the next few moments as well to head off pathological settings like
those of Example 7. This leads to a consideration of a dispersive family of distributions that we
call asymptotically diffuse with an eighth-moment constraint.

In the usual notation, for p≥ 1 write ∥X∥p :=E
(
|X|p

)1/p for the Lp-norm of X .

DEFINITION 2: Suppose X =
{(

X(n)
1 , . . . ,X(n)

n

)
: n≥ 1

}
is a triangular array of row-wise

exchangeable, non-negative valued random variables with row sum unit. We say that the array
(or more precisely, its distribution in a suitable probability space) is asymptotically diffuse if∥∥∥∥X(n)

1 − 1

n

∥∥∥∥
8

≤ A

n
(n≥ 1)

for some absolute positive constant A.

The terminology is intended to capture the idea that in an asymptotically diffuse system the
unit interval is parceled out equitably across all the spacings and no small group of spacings
is typically dominant; or, in the economic context, all parties have a prima facie share in the
wealth.

If a triangular array is asymptotically diffuse then, in view of the monotonicity of Lp-norms,
it follows that∥∥∥∥X(n)

1 − 1

n

∥∥∥∥
ν

≤ A

n
, or, equivalently, E

(∣∣∣∣X(n)
1 − 1

n

∣∣∣∣ν)≤ Aν

nν (for 1≤ ν ≤ 8). (20)
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The de Finetti distributional family of Example 1 is an archetype of such a system: more gen-
erally, an asymptotically diffuse triangular array is of the de Finetti-type in the behavior of the
low-order moments up through the eighth moment.

7.3. The Random Network Model

With preliminaries out of the way, let X1 =
{
X(n)

1 , n ≥ 1
}

, X2 =
{
X(n)

2 , n ≥ 1}, . . . ,
Xj =

{
X(n)

j , n ≥ 1
}

, . . . be a sequence of triangular arrays drawn by independent sampling
from a common asymptotically diffuse distribution. In particular, for each j and n, the compo-
nents of the vector X(n)

j =
(
X(n)

1j , . . . ,X(n)
nj )⊺ (which constitutes the nth row of the jth array

Xj reassembled in a vector column) are exchangeable, nonnegative-valued random variables
summing to 1 and satisfying the eighth-moment constraint

∥∥X(n)
1j − 1

n

∥∥
8
≤ A

n
for some abso-

lute constant A.
The idea is to use the nth rows of these arrays to generate the corresponding random cross-

holdings matrix for that value of n. The process is as follows: let 0< c < 1 be a fixed positive
value representing the fraction of each firm’s equity collectively owned by all the firms. For
each n, set C(n)

ij = cX(n)
ij and identify the corresponding random matrix of cross-holdings[

C(n)
ij

]n
i,j=1

=C(n) = c
[
X(n)

1 X(n)
2 · · ·X(n)

n

]
obtained by identifying the columns in turn with the nth rows of the triangular arrays X1, . . . ,
Xn. For each n, the matrix C(n) has independent columns, each column C(n)

j = cX(n)
j consist-

ing of a family of exchangeable, non-negative valued variables summing to c and representing
the distribution of ownership of firm j’s equity across the network. The model captures the idea
of distributing a fixed fraction c of each firm’s equity among all the firms in the network in a
stochastically unbiased fashion.

In view of the Proposition of Section 7.2, for each j, the variables C(n)
1j , . . . , C(n)

nj have
common mean c/n, are negatively correlated, and are weakly dependent.3 In view of the fact
that the generating distribution is asymptotically diffuse, we can say a little more: for 1≤ i≤ n
and i′ ̸= i,

E
(
C(n)

ij

)
=

c

n
, Var

(
C(n)

ij

)
=O

(
1

n2

)
,
∣∣Cov

(
C(n)

ij ,C(n)

i′j

)∣∣=O( 1

n3

)
,

E

(∣∣∣∣C(n)
ij −

1

n

∣∣∣∣ν)=O
(

1

nν

)
(1≤ ν ≤ 8).

Figure 3 illustrates the archetypal setting of Example 1 when the cross-holdings of shares of
firm j are engendered by throwing n− 1 points uniformly at random in the interval [0, c].4

7.4. Empirical Insights from Small Networks

We summarize some empirical insights gleaned from small random networks that motivate
the theoretical analysis.

3Dependence is technically weak in the sense that the covariance of the random variables is an order of magnitude
smaller than their variance. It is qualitatively weak in that the behavior of the model over random networks will show
to be similar to its behavior over deterministic networks.

4It is worth noting at this juncture that these considerations generalize without difficulty to sparser network models
inherited from Erdös–Rényi topologies where equity is distributed only along edges that are present. We will indicate
how this can be done in Section 10 but defer a full consideration of this and other extensions for elsewhere.
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FIGURE 3.—A de Finetti allocation of share equity in which cross-holdings are assigned according to the spac-
ings engendered by throwing n− 1 points uniformly at random in the interval [0, c]. The superscript (n) has been
suppressed for legibility.

An enumeration of equilibrium points in random and regular cliques of n = 16 firms indi-
cates that their respective sets of equilibrium points behave similarly with changing endowment
e. In the notation introduced in Section 6, let Rk denote the equivalence class of orthants con-
sisting of the regions in which there are exactly k solvent firms and let K1(k), . . . , K(nk)(k) be
an enumeration of the distinct orthants in the class. In Fig. 4 the fraction of orthants containing
an equilibrium point in a given equivalence class Rk is reported as a function of k for the reg-
ular clique and an instance of a random clique. The endowment e decreases from left to right
and top to bottom.

The symmetry of regular cliques means that if any orthant in the equivalence class Rk con-
tains an equilibrium point, then so do all orthants in the class. In (relatively small) random
cliques, however, we often see that, due to the lack of symmetry, some orthants in an equiva-
lence class Rk may contain equilibria but not others.

In Section 8 we shall see that the setting of small endowments (the bottom three rows in
Fig. 4) are of primary interest in evaluating systemic risks in such networks. In such cases
random cliques do not admit the full range of equilibria in a given equivalence class as in the
corresponding regular clique. This gap typically occurs within a short transient range of values
k. One may conjecture that this transient range where there is a gap between the outcomes for
the regular clique and a random clique would rapidly diminish as the network’s size grows.
Fig. 5 and Fig. 6 confirm this though there are visible diminishing returns as the shrinkage of
the transient region slows down with increasing n.

Fig. 5 presents a visualization of data for an instantiation of a random clique in a larger
network of size n = 100. Exhaustive enumeration becomes untenable as network size grows
and we have resorted to statistical sampling: a sample of 100 orthants is selected at random in
each equivalence class Rk for 1 ≤ k ≤ 99 and each of the selected orthants is tested for the
presence of an equilibrium point. Successive graphs in the figure show how the fraction of the
orthants containing equilibria in each equivalence class Rk is affected by decreasing endow-
ment. The transient region where there is a qualitative difference in the equilibria distribution
in the classes Rk in the two cases is shrinking but still visible.

To get a better understanding of the evolution of the gap between the presence of equilibria
in the regular clique vis-à-vis a random clique we formalize the notion of the “size” of the
transient as the ratio, with respect to n, of the number of equivalence classes where the share
of orthants with equilibria differs by ten percent between the regular clique and an instantiation
of a random clique. Fig. 6 shows the decrease in the transient region as n increases.

The take away from our simulations is that the random clique, in spite of huge instantiation
variability, appears to behave increasingly like the regular clique in terms of the number and
disposition of equilibria when n becomes large. This, in fact, is the content of our main theorem.
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FIGURE 4.—The dependence of the set of equilibrium points on endowment e in random and regular cliques of
size n= 16. Each figure corresponds to a different value of endowment e, starting with “large” values in the left top
corner, and ending with “small” values in the bottom right corner.
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FIGURE 5.—The dependence of the set of equilibrium points on endowment e in random and regular cliques of
size n= 100. Endowments decrease from left to right.

7.5. Concentration of Measure in Large Networks

The insight from our analysis of equilibria in small networks is that, when the network size
grows, the set of equilibrium profiles of random clique instances is often similar to the set of
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FIGURE 6.—The dependence of the relative size of the transient region where the equilibrium population in a
random clique differs from that of the corresponding regular clique as the network size increases.

equilibrium profiles of the regular clique. Our main theorem in this paper establishes indeed
that, in spite of the fact that typical instances of a random clique are highly irregular, for
almost all network instances, the equilibria of a random clique do indeed converge to the
corresponding equilibria of a regular clique. In a formal sense, (almost) all roads do lead to
Rome.

This is the setting: suppose that the cash holdings (primitive assets, factors of production)
of each firm is fixed at a nominal value e and that a fixed fraction c of each firm’s equity is
distributed across the network (with the residual proportion 1− c of each firm’s equity held by
outside investors).

Fix any positive integer n and suppose k ∈ {0,1}n is any solvency-identifying index vector
k= (k1, . . . , kn) ∈ {0,1}n; the corresponding orthant Kn(k) in Rn consists of those points x=
(x1, . . . , xn) satisfying xi > τ if ki = 1 and xi ≤ τ if ki = 0. Consider the case of the regular
clique with n×n cross-holdings matrix C(0,n) := c

n
1n×n = c

n
1n1

⊺
n where all the elements are

equal to c/n. Theorem 3 now identifies the explicit form of the potential equilibrium solution
V(0,n)(k) in orthant Kn(k); the solution is feasible if, and only if, the corresponding feasibility
constraint in the system of inequalities (8–10) is satisfied.

Now suppose C(n) is a sequence of random cross-holding matrices generated by an asymp-
totically diffuse distribution. Write I(n) for the identity matrix of order n. Then, for any given
n, the unique putative equilibrium of the random clique in orthant Kn(k), if it exists, is given
by

V(n)(k) =
(
I(n) −C(n)

)−1(
(e− β)1(n) + βk

)
, k ∈ {0,1}n.

The solution will exist if I(n)−C(n) is non-singular (which happens almost surely); the solution
will be feasible if V(n)(k) ∈ Kn(k).

The following result vastly strengthens Theorem 4 and is the main theorem of this paper. It
asserts that, in a formal sense, the equilibria of almost all instances of a random clique coincide
with the corresponding equilibria of a regular clique.

THEOREM 5—Equilibria in Large Random Networks: Full Version [Proof ]: For any se-
quence of index vectors,

{
k(n) ∈ {0,1}n, n≥ 1

}
, we have

sup
1≤i≤n

∣∣V n
i

(
k(n)

)
− V 0,n

i

(
k(n)

)∣∣→ 0

almost surely as n→∞.
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Introduce the nonce notations I(n)
1 =

{
i : k(n)

i = 1
}

and I(n)
0 =

{
i : k(n)

i = 0
}

for the index
sets labelling putatively solvent and insolvent firms, respectively. Recall from (11) that

v(s) :=
e− (1− s)βc

1− c
.

COROLLARY 1: Suppose 1
n

∣∣k(n)
∣∣ := 1

n

(
k(n)
1 + · · ·+ k(n)

n

)
→ s for some 0 ≤ s ≤ 1. Then,

for every ε > 0,

sup
i∈I(n)

1

∣∣V n
i

(
k(n)

)
− v(s)

∣∣< ε and sup
i∈I(n)

0

∣∣V n
i

(
k(n)

)
− v(s)− β

∣∣< ε

almost surely as n→∞. The putative equilibria V(n)
(
k(n)

)
are asymptotically feasible for all

sufficiently large n if, and only if, the cash position satisfies

τ(1− c) + (1− s)βc < e < τ(1− c) + β − sβc if 0< s< 1,

e < τ(1− c) + β if s= 0,

e > τ(1− c) if s= 1.

In rough terms: given a sequence
{
k(n), n ≥ 1

}
with 1

n

∣∣k(n)
∣∣→ s, for almost all instanti-

ations of asymptotically diffuse cross-holdings, the identified asymptotic fraction s of solvent
firms have equilibrium valuations ϵ-close to v(s), while the identified asymptotic fraction 1− s
of insolvent firms have equilibrium valuations ϵ-close to v(s)− β. Convergence is in the sup-
norm—the equilibrium valuations of all the firms converge simultaneously.

The theorem relies on subtleties in the concentration of measure and we have assembled the
complex proof in stages in three appendices in an effort to keep the key ideas plainly in view:
preparatory materials are gathered in Appendices B and C, and the pieces are stitched together
in Appendix D.

8. DYNAMICS

We have described the set of equilibria and how they depend on endowment and exposure.
To determine which, if any, of these equilibria are stable (do they attract or repel a state Vt at
time t?) we need an associated dynamic. We present the results without adornment here and
relegate proofs to Appendix F.

8.1. The General Setting

Begin by a consideration of the general form of the model where e is a vector of firm en-
dowments and C a fixed matrix of cross-shareholdings. It will be analytically more convenient
to work with the continuous-time form (3) of the model reproduced here for ease of reference:

.
Vt = e− (I−C)Vt − β1{Vt≤τ1}. (3)

As described earlier, the dynamical equation can be interpreted in two ways: as the actual
change in the firm valuations as a result of dividend cross-payment and shock absorption; or as
a fictitious dynamics that an external party—such as the market—uses to compute the firms’
valuations starting with some initial firm market valuation estimates V0 using locally available
information.
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Our goal is to understand the form and properties of functions Vt that satisfy (3). We refer
to such functions Vt as solutions or (state) trajectories of (3).

The dynamical system (3) has discontinuities in its right-hand side at the boundaries of or-
thants Kn(k) ⊂ D. Thus, we cannot expect the system to have smooth solutions. When the
behavior of solutions at the surface of a vector field discontinuity is unknown, it is custom-
ary to replace the original dynamical system with a differential inclusion, replace the standard
derivative with the corresponding Filippov map, and look for the generalized Filippov solu-
tions Vt (Filippov, 1988, Ch. 2, Sec. 4). We will understand a solution Vt as a Carathéodory
solution, that is, Vt is an absolutely continuous function defined for all t > 0 and differen-
tiable almost everywhere (see Filippov (1988, Sec. 2.4.1)). Each such solution has no standard
derivative at the boundary between orthants Kn(k). We may select among solutions by impos-
ing the conservative assumption that, at each orthant boundary point, Vt moves as defined by
the right-hand side of (3), that is, in the direction of the adjacent region with the smallest num-
ber of solvent firms. The boundedness of the right-hand side of (3) guarantees existence of a
solution, while our assumption regarding solution behavior at the region boundary establishes
uniqueness [Cortés (2009), Filippov (1988, Sec. 2.7)].

With these conventions in place, with k any fixed index vector of solvency suppose that the
trajectory Vt is governed by the dynamical system

.
Vt = e− (I−C)Vt − β(1− k) (t > 0) (21)

for any fixed vector of endowments e and cross-shareholding matrix C. We begin by a con-
sideration of the plausible assertion that, if the trajectory Vt never escapes the orthant Kn(k),
then it will converge to a feasible equilibrium in it (if one exists). Eq. (5), reproduced here for
convenience, provides an explicit representation for the putative limit point

V=V(k) := (I−C)−1
(
e− β(1− k)

)
.

Suppose that the equilibrium V(k) is feasible and suppose additionally that the initial point
V0 of the trajectory lies in the orthant Kn(k).

THEOREM 6—Dynamics in Orthants Containing an Equilibrium [Proof ]: If the trajectory
Vt starts in orthant Kn(k), then, for all t > 0 until the trajectory escapes Kn(k) or, if such an
escape never happens, for all t > 0,

Vt = exp
(
−(I−C)t

)(
V0 −V(k)

)
+V(k), (22)

and, a fortiori, if the trajectory does not escape Kn(k), lim
t→∞

Vt =V(k).

For a discussion of the plausibility of the no-escape assumption see Appendix E.
In rough terms, Theorem 6 can be interpreted as saying that, if initial firm valuations V0 are

not too distant from an equilibrium V(k), then the dynamic will converge to that equilibrium.
The theorem is silent about (i) the “typical” firm valuation dynamics in random networks, and
(ii) the role of the assumption that the state never exits the orthant under consideration and the
complementary question of dynamical flow across orthant boundaries.

To come to a better understanding of these issues we focus, in the remainder of this section,
on regular cliques.
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8.2. The Regular Clique

As before, consider the fixed adjacency matrix C = c
n
11⊺ and fix a common endowment

e= e1. Rewriting (33) for ease of reference, the putative equilibrium V=V0(k) in any given
orthant Kn(k) has an explicit form with components given by

V 0
i (k) =


e−

(
1− |k|

n

)
βc

1−c
if ki = 1,

e−
(
1− |k|

n

)
βc

1−c
− β if ki = 0.

Introduce the nonce notation avg(V) := 1
n
1⊺V for the arithmetic mean of the components

of V. By specializing Theorem 6 to the regular clique with a common endowment, we obtain
an explicit rate of convergence for confined trajectories. As before, suppose that the putative
regular clique equilibrium V0(k) is feasible for some index vector of solvency k. Suppose
additionally that the initial point of the trajectory, V0 = (V1,0, . . . , Vn,0)

⊺, lies in the orthant
Kn(k), and that the trajectory Vt is specified by (21) with C= c

n
11⊺ and e= e1:

.
Vt = e1−

(
I− c

n
11⊺

)
Vt − β(1− k) (t > 0). (23)

THEOREM 7—Dynamics in Orthants Containing an Equilibrium for Regular Cliques [Proof
]: If the trajectory Vt = (V1,t, . . . , Vn,t)

⊺ starts in orthant Kn(k), then, for all t > 0 until the
trajectory escapes Kn(k) or, if such an escape never happens, for all t > 0,

Vi,t =
[
avg(V0) + β

(
1− |k|

n

)
− V 0

i (k)
]
exp
(
−(1− c)t

)
(24)

−
[
avg(V0) + β

(
1− |k|

n

)
− Vi,0

]
exp(−t) + V 0

i (k),

and, a fortiori, the trajectory approaches the equilibrium exponentially fast.

Of fundamental importance to the resilience of the regular clique to contagion is the size of
the basins of attraction of the “best” and “worst” equilibria, Vsup and Vinf, respectively. For the
regular clique with a common endowment, these extremal equilibria are given in (34) by

Vsup =V0(1) =
e

1− c
1,

Vinf =V0(0) =
e− β

1− c
1.

Simulations suggest that the basins of attraction of the extremal equilibria engulf the corre-
sponding extreme orthants Kn(0) and Kn(1), and, in practice, are tangibly larger. For instance,
whenever either Vinf or Vsup is the only equilibrium, then, unsurprisingly, the entire space is
this equilibrium’s basin of attraction. This is an immediate consequence of the fact that Vinf

and Vsup are attractive and unique. Simulations suggest that the basins of attraction continue to
be dominant even in intermediate cases—when non-extremal equilibria are present—as well:
see Fig. E.2 in Appendix E for the attraction basin diagram in two dimensions.

The latter intermediate case is most interesting, so let us focus on it, assuming that τ(1 −
c)< e≤ τ(1− c) + β. In this regime, as per Theorem 3, we are guaranteed that the extremal
equilibria Vinf and Vsup are present. Let k low +1 and k high−1 denote, respectively, the smallest
and the largest numbers of solvent firms in any non-extreme equilibrium. Formally, k low is the
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largest index k for which e ≤ τ(1 − c) +
(
1 − k

n

)
βc, and k high is the smallest index k for

which e > τ(1− c) + β − k
n
βc. With k low and k high defined this way, Theorem 3 tells us that

all the non-extremal orthants Kn(k) with either 1 ≤ k ≤ k low or k high ≤ k ≤ n− 1 contain no
equilibria: orthants in the immediate neighborhood of the extremal orthants are equilibria-free.

In this regime, simulations show the following dynamics across orthants. If k low exists, and
V0 ∈ Kn(k) with k ≤ k low, then limtVt =Vinf. Likewise, if k high exists, and V0 ∈ Kn(k) with
k ≥ k high, then limtVt = Vsup. Simply put, the orthants with at least k high solvent firms are
subsumed into the attraction basin of Vsup, while the orthants with at most k low solvent firms
are subsumed into the attraction basin of Vinf. The only observed deviations from this behavior
are when the trajectory started in orthants with k ≈ k low or k ≈ k high and accidentally escaped
into an orthant with k low < k < k high or the other way around—see Appendix E for a discussion
of such escapes.

A figure may help clarify the notational potage: the distribution of equilibria and the dynam-
ics of firm valuations are shown schematically in Fig. 7 for intermediate values of endowment
e. In this intermediate range, orthants in the immediate neighborhood of the extremal orthants

FIGURE 7.—A cartoon depiction of firm valuation dynamics in a regular clique for the case of intermediate cash
endowments.

do not contain equilibria. The diagram should not be taken too literally: the sizes of the attrac-
tion basins of the two extremal equilibria and the positioning and size of the “safe” zone depend
upon the size of endowment and the exposure—at the extreme, one or the other basin of attrac-
tion dominates the landscape. Bearing this caveat in mind, we distinguish three qualitatively
different zones in the model’s state space.

i. Risky: Orthants K(k) with k ≤ k low are “risky” in that, if the initial vector of firm valu-
ations V0 is in one of these orthants, then oftentimes the trajectory Vt converges to the
worst equilibrium point Vinf, that is, each firm ends up insolvent. Orthants in this regime
are the source of systemic risk.
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ii. Optimal: In contrast, orthants K(k) with k ≥ k high are “ultimately safe” in that, even if
some firms start as insolvent in V0 ∈ K(k), in typical trajectories every firm ends up
solvent with Vt converging to the best equilibrium point Vsup.

iii. Safe: The third part of the state space—“the safety band”—is comprised of the orthants
K(k) with a “middling” number of solvent firms k low < k < k high. In these orthants, the
system is stable, in that, if V0 belongs to one of these orthants, then V∞ = limtVt

typically stays within the same orthant. That is to say, in this region the initial firm
valuations are already consistent in terms of each firm’s (in)solvency.

The figure provides a sanitized view of the real picture—trajectory escapes can occur at the
boundary from one region to an adjacent region occasionally. Appendix E contains a discus-
sion of trajectory escape, with Fig. E.4 providing a more nuanced view of the state of affairs
illustrated in Fig. 7 adjusted for the possibility of trajectory escape into nearby orthants. In
short, a trajectory that begins in the edges of the safety band may remain in the safety band or
be attracted by the respective extremal equilibrium.

In conjunction with our concentration result, Theorem 5, we now have reason to believe that,
for most instantiations of random, fully diversified cross-shareholding networks: trajectories in
the interior of orthants containing equilibria will converge (exponentially) quickly to them in a
safe zone of orthants; the basin of attraction of the best equilibrium Vsup grows as endowment
increases, expanding the size of the optimal zone; and, conversely, the basin of attraction of
the worst equilibrium Vinf increases as endowment shrinks, increasing the size of the risky
zone. We provide additional empirical evidence in Appendix E. These insights shed light on
the response of the system to shocks.

9. SHOCKS

9.1. Shock to Firm Market Value

What happens if the system experiences a shock which takes the form of one or more firms
experiencing a sudden dip in market valuation and falling below the solvency threshold τ?
Concentration of measure suggests that, at least for large networks, the state of affairs captured
in Fig. 7 for the regular clique tells the story for most network instantiations.

Reset the time origin to the point of shock and suppose that a market valuation shock is
manifested in an initial state V0 where one or more firms is rendered insolvent. We are inter-
ested in the limiting time horizon of market valuations V∞ = limtVt in the corresponding
continuous-time dynamical system (3) with C= c

n
11⊺ and e= e1. In this setting, two book-

end definitions capture the extremes of what a tolerance to shock may entail.

Guaranteeing full recovery: all firms eventually recover to solvency.

Avoiding total collapse: at least one firm is eventually solvent.

Full recovery requires V0 to be in the basin of attraction of Vsup, strictly above the “safety
band” in the schematic state space diagram shown in Fig. 7, while avoiding total collapse
requires V0 to lie either within or above the “safety band,” that is to say, outside the attraction
basin of Vinf.

Suppose that the market valuation shock at time t= 0 has resulted in an initial state of dis-
placed firm valuations, V0, where precisely k firms are solvent. We have now honed in on a
precise formulation of tolerance to valuation shock: what conditions on the minimal endow-
ment guarantee full recovery or, at least, avoid total collapse? The feasibility condition (8) in
Theorem 3 provides a succinct answer:
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• The system recovers fully if

e > τ(1− c) + β − k
n
βc=: e.

• The system avoids total collapse if

e > τ(1− c) +
(
1− k

n

)
βc=: e.

The apparently non-monotonic dependence of the minimal endowments e and e on exposure
c is illusory. As pointed out in Elliott, Golub and Jackson (2014, p. 9, eq. (4)), it is preferable
to cast insolvency in terms of market values via the market value insolvency threshold τ ′. Our
book value insolvency threshold τ is related to the fixed market value insolvency threshold τ ′

via the simple scaling relation τ = τ ′/(1− c) [see comment iii on page 7]: if a firm defaults at
some profile of book values in our setting, it will also do so with respect to its market value,
and vice versa. Accordingly, the minimal endowments to guarantee full recovery and avoid
total collapse, respectively, are given in terms of the market value insolvency threshold τ ′ by

e= τ ′ + β − k
n
βc,

e= τ ′ +
(
1− k

n

)
βc.

(25)

With τ ′, β, k, and n viewed as fixed parameters, the expressions for the minimal endowments
needed to tolerate a valuation shock of the given size (measured in terms of the number n−k of
firms whose valuations have dropped below the insolvency threshold) both vary monotonically
with exposure, with e decreasing and e increasing as c increases from 0 to 1. The gap between
the minimal endowments in the two cases, e− e= β(1− c), is independent of the market value
insolvency threshold τ ′ and shrinks to zero as c increases to one. Fig. 8 shows how the minimal
endowments in the two cases behave as a function of c and the number n− k of failures that
can be tolerated.

The interplay between endowment, exposure, and shock tolerance may be further clarified
by reinterpreting (25) in terms of the basins of attraction arising from a given endowment
e and exposure c. As in the previous section, let k low denote the largest index k for which
e≤ τ ′ +

(
1− k

n

)
βc, and let k high denote the smallest index k for which e > τ ′ + β − k

n
βc. In

formalism:

k low :=
⌊
(τ ′ + βc− e) n

βc

⌋
,

k high :=
⌊
(τ ′ + β − e) n

βc

⌋
+ 1.

(26)

With 0< c < 1, consider the case of intermediate endowments τ ′ < e≤ τ ′+ β. 5 We may now
interpret the three generic zones in Fig. 7 in relation to the response to a valuation shock:

i. The risky zone: if k ≤ k low then the system collapses.
ii. The optimal zone: if k ≥ k high then the system recovers fully.

iii. The safe zone: if k low < k < k high then the system avoids total collapse but does not
recover fully.

5The extreme cases e≤ τ ′ and e > τ ′+β are trivial: in the first case the worst equilibrium is the sole attractor and
systemic collapse will occur whatever the starting point; in the second case the best equilibrium is the sole attractor
and the system recovers fully even if every firm suffers an insolvency shock.
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FIGURE 8.—The minimal endowments e and e requisite for full recovery and avoiding total collapse, respectively,
as a function of the exposure c and the number n− k of firm failures.

All three statements have to be hedged by caveats because sporadic (and empirically rare)
trajectory escapes do occur at the boundaries of these regions.

There are three lessons that we may now infer from the explicit expressions for k low and
k high given in (26). First, k high decreases with both e and c and so the basin of attraction of
the best equilibrium increases monotonically with both endowment and exposure. Second, k low

decreases with e and increases with c, whence the basin of attraction of the worst equilibrium
decreases with endowment but increases with exposure. And third, ignoring integer round-off,
as k high − k low = n

c
(1− c), the width of the safety zone is invariant with respect to endowment

and decreases with exposure.
Increasing endowment provides untrammeled benefits to shock tolerance—the minimal en-

dowments needed to provide specified levels of tolerance are given in (25). Increasing exposure
also provides benefits but the relation of tolerance to exposure is slightly more nuanced.

When exposure is high (Fig. 9) orthants within the thin safety band are all susceptible to
trajectory escapes, making them vulnerable to collapse, but the thinning of the safe zone with
increasing exposure is compensated for by an increase in the attraction basin of the best equi-
librium.

When exposure is low (Fig. 10), the “safety band” in the state space is large and improves re-
silience against systemic risk (total collapse) by providing a stable buffer between the attraction
basins of the extreme equilibria, but, at the same time, reduces the likelihood of total recovery
for even a moderate number of firm failures. Unsurprisingly, for low exposure, the system is
inert, tending to preserve firms’ (in)solvency.

9.2. Shock to Endowment

To examine how sensitive a firm’s valuation is to a change in the endowment of another firm
we need a version of Theorem 3 where endowments vary by firm. It is stated below without
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FIGURE 9.—A state space diagram of equilibrium distribution under large exposure c. The “safety band” of
equilibria is very narrow, and most of the state space is shared among the massive attraction basins of the extreme
equilibria V∗sup and V∗inf .

FIGURE 10.—A state space diagram of equilibrium distribution under small exposure c. The “safety band” of
equilibria is thick, insulating the states within from the risky region—the attraction basin of Vinf—yet, at the same
time, impeding full recovery due to a similar shrinkage of the attraction basin of Vsup.

proof. Let ei be the endowment of firm i and set

vi(s) := ei +

c
n∑

i=1

ei

n(1− c)
− (1− s)βc

1− c
(0≤ s≤ 1). (27)
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THEOREM 8: For any given k ∈ {0,1}n, the fixed point equation (7) has a unique solution
V0(k) with components given by

V 0
i (k) =

{
vi
( |k|

n

)
if ki = 1,

vi
( |k|

n

)
− β if ki = 0,

(28)

Suppose e1 declines by δ > 0, i.e., firm 1 suffers a negative shock to its endowment.
From (27) it is easy to see that the change in vi(s) for any i ̸= 1 is cδ/n(1− c). Hence, the
impact on other firms declines with n holding c fixed, and increases with c holding n fixed.

Suppose all firms have the same endowment e, and the only equilibrium is one where all
firms are solvent. From (10) we know that this requires e > τ ′ + β where we recall that the
fixed market value solvency threshold τ ′ is related to the book value solvency threshold τ via
the relation τ ′ = τ(1− c). Suppose a negative shock to firm 1’s endowment. How large must
that shock be to summon into existence an equilibrium with a large number of insolvent firms?

If firm 1 alone suffers a negative shock of δ to its endowment, we determine the smallest δ
in order to generate an equilibrium where r firms (including firm 1) are insolvent. Without loss
we may suppose the first r firms are insolvent. The relevant putative equilibrium must satisfy
vi(

r
n
)≤ τ for i= 1, . . . , r, and vi(

r
n
)> τ otherwise. For i= 1 we have

−δ+ e

1− c
− cδ

n(1− c)
−

(1− r

n
)βc

1− c
≤ τ.

For i= 2, . . . , r, we have

e

1− c
− cδ

n(1− c)
−

(1− r

n
)βc

1− c
≤ τ.

Clearly, the second inequality gives us the greatest lower bound on δ:

δ ≥ n(1− c)

c

[e− (1− r

n
)βc

1− c
− τ

]
(29)

=
ne− (n− r)βc

c
− nτ ′

c
=

n(e− τ ′)

c
− (n− r)β.

If r scales with n, as e > τ ′, it follows that the size of the shock to firm 1’s endowment needed
to introduce an equilibrium with a large fraction of defaulting firms scales with n. In other
words, the initial shock must be many multiples of what is needed to push a firm’s endowment
below τ ′. Under limited liability this cannot happen.

10. RANDOM GRAPHS & DIVERSIFICATION

A focus of earlier work has been on the role that diversification, measured by the number of
firms that own a given firm’s shares, plays in spreading contagion. Elliott, Golub and Jackson
(2014), for instance, argue that diversification at an “intermediate” level makes networks sus-
ceptible to contagion. This non-monotonicity, as we have previously remarked, is absent in our
model.
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We have hitherto considered networks where the underlying graph is fully connected: the
outgoing edge weights are specified by an exchangeable process and, in general, are almost
surely all positive. In this model, the size of endowment and the level of exposure are the
key parameters governing behavior. As we’ve seen, in this setting an increase in endowment
increases tolerance to shocks. It is natural to ask at this juncture what role diversification can
play in the picture.

A natural variant on the theme that we have considered is to impose an Erdös–Rényi graph
topology as a superstructure in our model. The idea is as follows. Begin by engendering a ran-
dom digraph G(n,p) on n vertices with edge parameter p: for each ordered pair (i, j), insert an
edge directed from i to j with probability p, independent of all other ordered pairs; self-loops
are permitted. The outdegree of any given vertex j determines its connected neighborhood:
these are the firms that are entitled to hold shares in firm j’s equity. On average, the number
of firms holding a given firm’s shares will be np and we can think of p as a diversification pa-
rameter. If, for a given exposure c, we allocate j’s shares equally to all its neighbors, we obtain
the Erdös–Rényi equivalent of the regular clique. If j’s shares are allocated to its neighbors via
an exchangeable process we obtain the natural analog of our random networks embedded in a
stochastic topological superstructure.

Our analysis carries through in toto for these model extensions. Our basic conclusions: once
n is sufficiently large for a given exposure c and diversification parameter p (roughly, n >
(1 − c)−4p−1), almost all network realizations will behave like the regular clique. Systemic
risk is now entirely determined by e and c as in this paper. Simulations provide additional
support for the theoretical conclusion that there is no sensitivity to diversification, even for
very small p.

These results carry over to the stochastic block cousins of the Erdös–Rényi models though
we have to be careful with the asymptotics of block sizes. We leave details of this and the
underlying Erdös–Rényi variants to a subsequent paper.

In these random graph extensions to our model we work resolutely in the connected6

domain—it would be strange to begin an analysis of network systemic risk abeyant connec-
tivity. In the Erdös–Rényi formulation, for instance, this means that p≫ log(n)/n, the critical
threshold for connectedness. The concentration of measure phenomenon emerges anew in this
domain and almost all network instantiations have similar equilibrium behavior. In this setting
we find a monotone relationship between endowment and exposure on the one hand, and toler-
ance to shock on the other; diversification appears to play no role in systemic risk once we are
safely in the connected Erdös–Rényi regime.

As mentioned earlier, the “intermediate level” of integration identified in Elliott, Golub and
Jackson (2014) at which non-monotonic behavior is manifested appears to occur when the un-
derlying network is very sparse, that is to say, network topologies potentially susceptible to
contagion are characterized by bounded, typically small, vertex degrees. If such networks are
sampled from, say, the family of d-regular networks where d = np = O(1) is small and the
graph is large, then most network instances are connected but the channels by which contagion
can spread are severely limited; if such networks are sampled from an Erdös–Rényi topology
with small expected degree this will lead to disconnected networks with many isolated compo-
nents. This class of networks of low density lies at the boundary of the spectrum of possible
network realizations and it is not clear if our techniques are effective in this domain.

6A directed graph is connected if for every pair of vertices there is a directed path from one vertex to the other. It
is strongly connected if there is a directed cycle between any pair of vertices.
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11. CONCLUSION

Rather than rehash our introduction in fewer words, we conclude by emphasizing the
methodological contribution of this paper. Specifically, it is to think about network structure
as encoded in a probability distribution over networks rather than the features of realized net-
works. As we have shown here, this allows one to draw conclusions about the behavior of a
wide range of networks that by the usual indicia of network structure appear very different.
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APPENDIX A: PROOFS OF THEOREMS 1 AND 2

We begin by verifying that (4) is a bona fide solution of the fixed point equation (1). This
follows quickly via the Gershgorin disc theorem (c.f. (Horn and Johnson, 2012)): suppose
A = [aij ]

n
i,j=1 is a complex matrix of order n. For each j, let rj =

∑
i̸=j |aij | and let the

Gershgorin disc D(ajj , rj) be the closed disc of radius rj centered at the point ajj .

THEOREM [GERSHGORIN (1931)]: Every eigenvalue of A lies in the union of the Gersh-
gorin discs D(ajj , rj).

Recall that the matrix of cross-holdings C is column sub-stochastic: 0 <
∑

iCij < 1 for
each j. Setting c̃=maxj

∑
iCij =maxj

[
Cjj +

∑
i̸=j Cij

]
, we see that 0< c̃ < 1.

LEMMA 1: The matrix I−C is non-singular.
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PROOF: By the Gershgorin disc theorem, each eigenvalue of C lies within the union of the
discs D

(
Cjj ,

∑
i ̸=j Cij

)
. It follows that the spectrum of C is constrained within the closed disc

D
(
0, c̃
)

of radius c̃ < 1 centered at the origin. By symmetry, this is also true for the spectrum
of −C. The addition of the identity matrix right shifts the spectrum by 1 and so the spectrum
of I−C is contained within the disc D

(
1, c̃
)
. In particular,

min
λ∈spec(I−C)

Re(λ)≥ 1− c̃ > 0.

We conclude that 0 /∈ spec(I−C) or, what is the same thing, I−C is non-singular. ▶

The proof of Theorem 1 devolves from the Knaster–Tarski theorem (Tarski, 1955, Theo-
rem 1, (i-iii)). Begin with the setting: a pair (X,≼) consisting of a non-empty set X and a
binary relation ≼ is a partially-ordered set (or poset) if ≼ is reflexive, antisymmetric, and tran-
sitive on X . An upper bound of a subset S ⊆X is an element of X such that all members of S
are ≼ it. The least upper bound or supremum of S is ≼ all upper bounds of S. Lower bounds
and the greatest lower bound or infimum are defined analogously. A lattice (X,∨,∧) is a poset
(X,≼) any two elements a, b ∈ X of which have a unique supremum (or join) a ∨ b and a
unique infimum (or meet) a ∧ b. A lattice is complete if each of its subsets has a supremum
and an infimum, both belonging to the lattice. A function u : A→B is order-preserving with
respect to the partial order ≼ if f(x)≼ f(y) for any elements x, y ∈A satisfying x≼ y.

THEOREM [KNASTER–TARSKI (TARSKI, 1955, THEOREM 1, (I-III))]: Let (L,≼) be a
non-empty complete lattice. For every order-preserving function f : L→ L, the set of its fixed
points with the ordering induced by ≼ forms a non-empty complete lattice.

THEOREM 1 (Equilibrium Existence): The fixed point equation (1) has at least one solution.

PROOF: Consider the function f : D→D defined by f(V) = e+CV− β1{V≤τ1} in a suf-
ficiently large bounded box D ⊂ Rn. Begin with the observation that the domain D together
with the elementwise vector operator ≤ forms a complete lattice. As D is a bounded box, the
elementwise max and min functions deliver subset suprema and infima, respectively, with each
infimum and supremum also a part ofD. It is now easy to verify that f is order-preserving: sup-
pose U and V are elements of D and U≤V. Then 1{V≤τ1} ≤ 1{U≤τ1} and, as the elements
of C are all non-negative, CU≤CV. We conclude that

f(U) = e+CU− β1{U≤τ1} ≤ e+CV− β1{V≤τ1} = f(V).

By the Knaster–Tarski theorem, the set of fixed points of f forms a non-empty complete lattice
in D. We conclude that (1) has at least one equilibrium point. ▶

THEOREM 2 (Extremal Fixed Points): Suppose equal cash endowments e = e1 and that
every firm i holds a positive amount of equity shares, that is to say, Cij > 0 for at least one j.
Then:

a) For Vsup to be an equilibrium it is necessary that e > τ · σmin(I − C); for it to be an
equilibrium it is sufficient that e > τ .

b) For Vinf to be an equilibrium it is necessary that e≤ τ + β; for it to be an equilibrium it
is sufficient that e≤ τ · σmin(I−C)√

n
+ β.
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PROOF: a) Necessary and sufficient conditions for Vsup to be an equilibrium. We begin with
the sufficient condition. Suppose e > τ . Then

Vsup = e(I−C)−11= e
∞∑

k=0

Ck1= e1+ eC1+
∞∑

k=2

Ck1≥ e1+
∞∑

k=2

Ck1≥ e1> τ1,

the matrix geometric series converging by virtue of the fact that C has non-negative elements
bounded by one. We conclude that Vsup ∈ Kn(1) and hence that it is feasible.

To establish a necessary condition, observe that Vsup is feasible if, and only if, e(I−C)−11>
τ1. By the monotonicity of the Euclidean norm, by taking the norm of both sides, we conclude
that, if Vsup is feasible, then

e > τ · ∥1∥2∥∥(I−C)−11
∥∥
2

(†)
≥ τ · 1∥∥(I−C)−1

∥∥
2

= τ · 1

σmax

(
(I−C)−1)

= τ · σmin(I−C)

establishing necessity.7

b) Necessary and sufficient conditions for Vinf to be an equilibrium. Begin with the necessary
condition. Suppose e > τ + β. The positivity of C shows again that

Vinf = (e− β)(I−C)−11= (e− β)
∞∑

k=0

Ck1

= (e− β)1+
∞∑

k=1

Ck1> τ1+
∞∑

k=1

Ck1> τ1,

whence it is necessary that e≤ τ + β if Vinf is to be feasible.
To establish a sufficient condition, for Vinf to be feasible in the orthant Kn(0), we must have

(e− β)(I−C)−11≤ τ1. The inequality is tritely satisfied when e≤ β. Accordingly, suppose
e > β whence the inequality may be rewritten as

(I−C)−11≤ τ

e− β
1.

As the vector inequality holds component-wise it will be satisfied a fortiori if∥∥(I−C)−11
∥∥
∞ ≤

τ

e− β
. (30)

The matrix sup-norm is consistent (by definition) with the inducing vector sup-norm, and as
1√
n
∥A∥∞ ≤ ∥A∥2 for any square matrix of order n (c.f. Horn and Johnson (2012, Chapter 5)),

we may bound∥∥(I−C)−11
∥∥
∞ ≤

∥∥(I−C)−1
∥∥
∞ · ∥1∥∞ =

∥∥(I−C)−1
∥∥
∞

≤
√
n ·
∥∥(I−C)−1

∥∥
2
.=
√
nσmax

(
(I−C)−1

)
=

√
n

σmin(I−C)
. (31)

7The bound is actually tight as the step marked (†) is satisfied with equality for the regular clique C = c
n
11⊺.

This follows from the feasibility constraint (10) and Theorem 3, coupled with Lemma 2d from which we can deduce
that σmin

(
I− c

n
11⊺

)
= 1− c.
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It hence suffices if the bound on the right in (30) dominates the bound on the right in (31): if
e≤ τ · σmin(I−C)√

n
+ β, then

τ

e− β
≥

√
n

σmin(I−C)
≥
∥∥(I−C)−1

∥∥
∞,

completing the proof of sufficiency. ▶

APPENDIX B: PROOF OF THEOREM 3

Suppose n is any fixed positive integer lurking in the background. For each real α, define

D(α) := I+ α11⊺. (32)

For each α, D(α) = Dn(α) is a symmetric matrix of order n whose diagonal elements are
equal to 1 + α and whose off-diagonal elements are equal to α. We say that such a matrix is
almost diagonal8. With the dimensionality parameter n fixed, we will suppress the dependence
on n to keep notation uncluttered.

We begin by collecting some preliminary facts about almost diagonal matrices. These will
have utility elsewhere as well.

LEMMA 2: Almost diagonal matrices satisfy the following identities and properties.
a) Inverses: if nα ̸=−1, then D(α)−1 =D

(
−α

nα+1

)
; the matrix D

(−1
n

)
is singular.

b) Square roots: if nα >−1, then D(α)1/2 =D
{

1
n

(√
nα+ 1− 1

)}
.

c) Spectrum: specD(α) ∈ {1, nα+1}. If α ̸= 0, the eigenvalue 1 has multiplicity n−1 and
we may select as eigenvectors

(
−1, (In−1)1∗

)⊺, . . . ,
(
−1, (In−1)n−1,∗

)⊺; the eigenvalue
αn+ 1 has multiplicity 1 with corresponding eigenvector 1.

d) Spectral norm:
∥∥D(α)

∥∥
2
=max

{
1, |nα+ 1|

}
.

PROOF: a, b) To verify the given identities for the inverse and the square root, we need to show
that

D(α) ·D
(
−α

nα+ 1

)
= I,

D
{

1
n

(√
nα+ 1− 1

)}
·D
{

1
n

(√
nα+ 1− 1

)}
=D(α).

As 1⊺1= n, it only needs algebraic simplification to check for the two cases, respectively, that

α+
−α

nα+ 1
+
−α2

nα+ 1
· n= 0,

√
nα+ 1− 1

n
+

√
nα+ 1− 1

n
+

(√
nα+ 1− 1

n

)2

· n= α.

The verification that D
(−1

n

)
is singular is trite as the column sums are zero.

8For the curious reader, we will mention that the definition as well as many properties of almost diagonal matrices
easily extend to the case of non-identical entries on the main diagonal.
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To verify c) we may check by direct substitution that

D(α)

(
−1

(In−1)i∗

)
= 1 ·

(
−1

(In−1)i∗

)
(1≤ i≤ n− 1),

D(α)1= (nα+ 1)1.

And d) follows from c) because the largest singular value of D(α) is given by

σmax

(
D(α)

)
=
√

λmax

(
D(α)⊺D(α)

)
=
√

λmax

(
D(α)2

)
=
√
max

{
12, (nα+ 1)2

}
as D(α) is symmetric. ▶

LEMMA 3: If nα ̸=−1, the linear system D(α)x= b has the unique solution

x=D

(
−α

nα+ 1

)
b=

(
I− α

nα+ 1
11⊺

)
b.

PROOF: Apply part a) of Lemma 2. ▶

THEOREM 3—Equilibria for Regular Cliques: For any given k ∈ {0,1}n, the fixed point
equation (7) has a unique solution V0(k) with components given by

V 0
i (k) =

{
v
( |k|

n

)
if ki = 1,

v
( |k|

n

)
− β if ki = 0,

(33)

where v(·) is defined in (11). For it to be a feasible equilibrium of the regular clique in orthant
Kn(k) it is necessary and sufficient that the corresponding feasibility constraint in the system
of inequalities (8–10) be satisfied. Setting k = 0 and 1 in turn, it follows a fortiori that the
extremal equilibria are given putatively by

Vinf =V0(0) =
(
v(0)− β

)
1=

e− β

1− c
1,

Vsup =V0(1) = v(1)1=
e

1− c
1.

(34)

They are feasible if the corresponding feasibility constraints (9, 10), respectively, hold.

PROOF: For any k ∈ {0,1}n, the fixed point equation (7) may be rewritten in the form

D

(
−c
n

)
V0(k) = (e− β)1+ βk.

We now apply Lemma 3 to obtain the putative equilibrium

V0(k) =

(
I+

c

n(1− c)
11⊺

)(
(e− β)1+ βk

)
and recover (33). To test the feasibility of the solution we check to see whether it lies in the
orthant Kn(k) and rediscover the feasibility constraint. ▶
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APPENDIX C: PREPARATION FOR THEOREMS 4 AND 5

As a preamble to the proofs of the main theorems, we begin by collecting facts about generic
spacings and systems of sub-exponential random variables, and verify the assertions of the
behavior of the de Finetti and Haar-induced systems.

C.1. On the Moments of Spacings

Suppose X1, . . . , Xn are non-negative, exchangeable, and sum to one; in other words,
they form an exchangeable system of spacings of the unit interval engendered by any suit-
able random process. As X1 + · · · + Xn = 1, by taking expectations of both sides we see
that nE(X1) = 1 by an appeal to exchangeability whence the common expectation of the
spacings is 1/n. Write Zj = Xj − 1/n for the centered spacings. For ν1, . . . , νn ≥ 0, in-
troduce notation for the mixed centered moment µn(ν1, . . . , νn) := E

(
Zν1

1 · · ·Zνn
n

)
. By ex-

changeability, µn(ν1, . . . , νn) is invariant with respect to permutations of the indices. If νj = 0,
the corresponding centered spacing Zj is not represented in the expectation; we accordingly
take a slight liberty with notation and also write µn(ν1, . . . , νk) := µn(ν1, . . . , νk,0, . . . ,0) =
E
(
Zν1

1 · · ·Z
νk
k

)
. With these notational conventions, µn(1) = 0 (as the variables Zj are prop-

erly centered), µn(2) =E(Z2
1 ) = Var(X1) is the common variance, and µn(1,1) =E(Z1Z2) =

Cov(X1,X2) is the common covariance.
We extend the notation also to conditional moments. Suppose Q is any Borel measur-

able set of positive probability in the sample space of the spacings. We then also write
µn(ν1, . . . , νn | Q) := E

(
Zν1

1 · · ·Zνn
n | Q

)
for the conditional mixed moments. If we iden-

tify Q with the entire sample space [which we may identify with the (n − 1)-dimensional
simplex engendered by the spacings] we recover the unconditional moments. We will re-
strict attention to sets Q that preserve symmetry in the variables: formally, the centered spac-
ings Z1, . . . , Zn are conditionally exchangeable given Q. In this setting, the conditional
mixed moments µn(ν1, . . . , νn | Q) will likewise be invariant with respect to permutations
of coordinates. As in the unconditional case, we also take a liberty with notation and write
µn(ν1, . . . , νk | Q) := µn(ν1, . . . , νk,0, . . . ,0) =E

(
Zν1

1 · · ·Z
νk
k | Q

)
.

An amazing variety of relationships between mixed and pure moments arises out of the sum
constraint Z1 + · · ·+Zn = 0.

LEMMA 4: Let Q be any Borel measurable set of positive probability in the (n − 1)-
dimensional simplex engendered by the spacings and suppose further that the centered spacings
Z1, . . . , Zn are conditionally exchangeable given Q. If 1≤ k ≤ n− 1 and ν1, . . . , νk > 0, then

µn(ν1, . . . , νk,1 | Q) =
−1

n− k

[
µn(ν1 + 1, ν2, . . . , νk−1, νk | Q)

+ µn(ν1, ν2 + 1, . . . , νk−1, νk | Q) + · · ·+ µn(ν1, ν2, . . . , νk−1, νk + 1 | Q)
]
.

PROOF: As Zν1
1 . . .Zνk

k (Z1 + · · · + Zn) = 0, by conditioning with respect to Q and taking
expectations of both sides, we conclude that

0 =E
(
Zν1

1 Zν2
2 . . .Zνk

k (Z1 +Z2 + · · ·+Zn) | Q
)

=E
(
Zν1+1

1 Zν2
2 · · ·Z

νk
k | Q

)
+E

(
Zν1

1 Zν2+1
2 · · ·Zνk

k | Q
)
+ · · ·

+E
(
Zν1

1 Zν2
2 · · ·Z

νk+1
k | Q

)
+

n∑
l=k+1

E
(
Zν1

1 Zν2
2 · · ·Z

νk
k Zl | Q

)
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= µn(ν1 + 1, ν2, . . . , νk | Q) + µn(ν1, ν2 + 1, . . . , νk | Q) + · · ·

+ µn(ν1, ν2, . . . , νk + 1 | Q) + (n− k)µn(ν1, . . . , νk,1 | Q)

again by virtue of the exchangeability of the system. ▶

Useful special cases are illuminated by setting k = 1 and k = 2 and it will be convenient to
tabulate these two settings. When k = 1 we recover the Proposition of Section 7.2 and a little
more besides.

COROLLARY 2: For any ν ≥ 0,

µn(ν,1 | Q) =
−µn(ν + 1 | Q)

n− 1
.

In particular, the spacings are negatively correlated and satisfy

µn(1,1 | Q) =
−µn(2 | Q)

n− 1
, µn(2,1 | Q) =

−µn(3 | Q)
n− 1

, µn(3,1 | Q) =
−µn(4 | Q)

n− 1
.

COROLLARY 3: For any ν1, ν2 ≥ 0,

µn(ν1, ν2,1 | Q) =
−
(
µn(ν1 + 1, ν2 | Q) + µn(ν1, ν2 + 1 | Q)

)
n− 2

.

In particular,

µn(1,1,1 | Q) =
−2µn(2,1 | Q)

n− 2
=

2µn(3 | Q)
(n− 1)(n− 2)

,

µn(2,1,1 | Q) =
−
(
µn(3,1 | Q) + µn(2,2 | Q)

)
n− 2

=
µn(4 | Q)

(n− 1)(n− 2)
− µn(2,2 | Q)

n− 2
.

The inequality of Cauchy–Schwarz leads to other useful relationships between the moments
and we tabulate a few that will be of use.

LEMMA 5: Suppose Q is any Borel measurable set satisfying the conditions in Lemma 4.
Then:

µn(2 | Q)2 ≤ µn(4 | Q),

µn(2 | Q)2

(n− 1)2
≤ µn(2,2 | Q)≤ µn(4 | Q).

PROOF: The verification is by repeated application of the conditional Cauchy–Schwarz in-
equality

∣∣E(UV | Q)
∣∣≤√E(U2 | Q)E(V 2 | Q). For the bound in the first line of the claimed

inequalities, identify U = Z2
1 and V = 1; for the first of the bounds in the second line, identify

U = Z1Z2 and V = 1 and use Corollary 2; and for the second of the bounds in the second line,
identify U = Z2

1 and V = Z2
2 . ▶
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C.2. Sub-Exponential Random Variables

The spacings induced by the de Finetti and Haar distributions in Examples 1 and 2, respec-
tively, are instances of sub-exponential random variables with sub-exponential norm propor-
tional to n−1. A small detour to pick up the terminology helps consolidate the analysis.

We say that a non-negative valued random variable X is sub-exponential if there exist posi-
tive constants α and β such that

P{X ≥ x} ≤ αe−βx (x≥ 0). (35)

LEMMA 6: If X is sub-exponential then it has moments of all orders and, moreover, there
exists an absolute positive constant K such that ∥X∥p ≤ p ·K for p ≥ 1. In particular, if X
satisfies the sub-exponential inequality (35), then we may take K = β−1eα/e.

PROOF: Suppose X is non-negative and satisfies (35). We recall that if Y is a non-negative
random variable then E(Y ) =

∫∞
0

P{Y ≥ y}dy. Select any p ≥ 1 and identify Y =Xp. We
then obtain

E(Xp) =

∫ ∞
0

P{Xp > y}dy (xp←y)
=

∫ ∞
0

P{X > x} · pxp−1 dx

≤ αp

∫ ∞
0

e−βxxp−1 dx
(t←βx)
=

αp

βp

∫ ∞
0

e−ttp−1 dt=
αp

βp · Γ(p).

The simplest bounds suffice: Stirling’s upper bound for the gamma function may be further
reduced to the simple form

Γ(p)≤
√

2π

p

(p
e

)p

< pp

as
√
2π p−1/2e−p ≤

√
2π e−1 < 1 for p ≥ 1. We conclude that E(Xp) ≤ αp

(
p

β

)p, whence
∥X∥p = E(Xp)1/p = p · β−1(αp)1/p. The function f(p) = (αp)1/p = exp

{
1
p
log(αp)

}
achieves its unique maximum at p= e/α as is easily verified by differentiation. We conclude
that ∥X∥p ≤ p · β−1eα/e for all p≥ 1. ▶

The sub-exponential norm ∥X∥Ψ1
of X is the smallest value of K for which ∥X∥p ≤ p ·K

for all p≥ 1. Alternatively, ∥X∥Ψ1
= supp≥1 p

−1∥X∥p. Lemma 6 shows that if X satisfies (35)
then ∥X∥Ψ1

≤ β−1 · eα/e. In our applications, β is an asymptotic parameter and we conclude
that the sub-exponential norm is O(β−1).

LEMMA 7: Suppose X =
{(

X(n)
1 , . . . ,X(n)

n

)
: n ≥ 1

}
is a triangular array of row-wise

exchangeable, non-negative valued random variables with row sum unit. If there exist absolute
positive constants α and κ such that, for each n,

P
{
X(n)

1 ≥ x
}
≤ αe−κnx (x≥ 0),

then X is asymptotically diffuse in the sense of Definition 2.

In many settings spacings will exhibit sub-exponential behavior though we will not levy this
stronger constraint: the de Finetti and Haar-induced spacings are typical in this regard.
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C.3. The De Finetti Spacings

Suppose X1, . . . , Xn are the spacings engendered by n − 1 random points in the unit in-
terval. These spacings are governed by the de Finetti distribution (36), reproduced here for
convenience of reference:

P{X1 > x1, . . . ,Xn > xn}=
[
(1− x1 − · · · − xn)+

]n−1
. (36)

By setting x1 = x and x2 = · · ·= xn = 0, we obtain the common marginal distribution of the
spacings in the simple form

P{X1 ≥ x}=
[
(1− x)+

]n−1
(x≥ 0).

The elementary inequality 1−x≤ e−x shows that the right-hand side is ≤ e−(n−1)x and we’ve
verified that the spacings are of the generic sub-exponential form (35) with parameters α = 1
and β = n− 1.

LEMMA 8: The de Finetti spacings are sub-exponential with common sub-exponential norm
∥X1∥Ψ1

≤ (n− 1)−1 · e1/e. Equivalently, 0≤E(Xp
1 )≤ ppep/e · (n− 1)−p, for each p≥ 1.

If p varies over a bounded range {1, . . . , ν}, then E(Xp
1 ) =O(n−p) uniformly for 1≤ p≤ ν.

In the notation introduced in Section C.1, write µn(ν) =E
{(

X1 − 1
n

)ν}.

COROLLARY 4: The νth centered moment of the de Finetti spacings satisfies µn(ν) =
O(n−ν) for each fixed ν ≥ 0 and, a fortiori, the de Finetti spacings are asymptotically dif-
fuse.

PROOF: Expanding via the binomial theorem, we have

µn(ν) =E
{(

X1 − 1
n

)ν}
=

ν∑
k=0

(
ν

k

)
(−1)k

nk
E
(
Xν−k

1

)
.

Each term in the sum on the right is of asymptotic order n−k · n−(ν−k) = n−ν and the asserted
result follows. ▶

Lemma 4 and its corollaries provide a variety of bounds for the mixed moments of the de
Finetti system. More precision is available here in view of the explicit form of the de Finetti
distribution. As before, write Zj = Xj − 1/n for the centered spacings. For ν1, . . . , νn ≥ 0,
as before, write µn(ν1, . . . , νn) := E

(
Zν1

1 · · ·Zνn
n

)
for the moments of the centered spacings

and introduce the nonce notation mn(ν1, . . . , νn) :=E
(
Xν1

1 · · ·Xνn
n

)
for the non-centered mo-

ments.

LEMMA 9: For every choice of ν1 ≥ 0, . . . , νn ≥ 0,

mn(ν1, . . . , νn−1, νn) =
Γ(n)Γ(ν1 + 1) · · ·Γ(νn−1 + 1)Γ(νn + 1)

Γ(n+ ν1 + · · ·+ νn−1 + νn)
. (37)

PROOF: As X1 + · · ·+Xn−1 +Xn = 0, we may as well focus on, say, X1, . . . , Xn−1. Setting
xn = 0 in (36), we see that

P{X1 > x1, . . . ,Xn−1 > xn−1}=
[
(1− x1 − · · · − xn−1)+

]n−1 (38)
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for x1, . . . , xn−1 ≥ 0. It is clear now that (X1, . . . ,Xn−1) is concentrated in the regular proba-
bility simplex Pn−1 defined by the inequalities x1 ≥ 0, . . . , xn−1 ≥ 0, and x1+ · · ·+xn−1 ≤ 1.
Indeed, repeated differentiation of (38) shows that (X1, . . . ,Xn−1) has density

Γ(n) = (n− 1)! =
1

Vol(Pn−1)
=

1∫
Pn−1

dx1 · · ·dxn−1

uniformly distributed in Pn−1.
Suppose 0≤ ξ < 1, µ≥ 0, and ν ≥ 0. Begin with the basic identity∫ 1−ξ

0

xµ(1− ξ − x)ν dx= (1− ξ)µ+ν+1 · Γ(µ+ 1)Γ(ν + 1)

Γ(µ+ ν + 2)
. (39)

(The change of variable t← x/(1− ξ) is salutary and reduces the integral to a beta function.)
Iterating the basic identity yields the various mixed moments of the spacings. As Xn = 1 −
X1 − · · · −Xn−1, the mixed moments of the spacings are given by

mn(ν1, . . . , νn−1, νn) :=E
(
Xν1

1 · · ·X
νn−1
n−1 (1−X1 − · · · −Xn−1)

νn
)

for ν1 ≥ 0, . . . , νn ≥ 0. Integrating with respect to the uniform density over the regular simplex
shows that the right-hand side may be written as the iterated integral

(n− 1)!

∫ 1

0

dx1 x
ν1
1

∫ 1−x1

0

dx2 x
ν2
2

· · ·
∫ 1−x1−···−xn−2

0

dxn−1 x
νn−1
n−1 (1− x1 − · · · − xn−1)

νn .

Working outwards from the innermost integral, each integral has the form of the basic iden-
tity (39), and accumulating terms yields (37). ▶

If ν1, . . . , νn are non-negative integers then the gamma functions in (37) reduce to factorials
and the expression for the moments takes a familiar multinomial form. Write ν = ν1+ · · ·+ νn
to keep the expression compact. Then

mn(ν1, . . . , νn) =
(n− 1)!ν1! · · ·νn!

(n− 1 + ν)!
=:

1(
n− 1 + ν

n− 1, ν1, . . . , νn

) . (40)

With a view to keeping representations tidy, it will also be convenient to introduce the nonce
notation

Tn(ν1, . . . , νn) :=

ν1∑
i1=0

· · ·
νn∑

in=0

(−1)i1+···+in

ni1+···+in

(
n− 1 + ν

n− 1 + ν − i1 − · · · − in, i1, . . . , in

)
. (41)

LEMMA 10: If ν1, . . . , νn are non-negative integers then the mixed moments of the centered
de Finetti spacings are given by

µn(ν1, . . . , νn) =mn(ν1, . . . , νn) · Tn(ν1, . . . , νn). (42)
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PROOF: Expanding each Z
νj
j = (Xj − 1/n)νj via the binomial theorem and collecting terms,

we obtain

µn(ν1, . . . , νn) =

ν1∑
i1=0

· · ·
νn∑

in=0

(
ν1
i1

)
· · ·
(
νn
in

)
(−1)i1+···+in

ni1+···+in
mn(ν1 − i1, . . . , νn − in)

which we can put in a slightly more informative form by leveraging (40). Multiplying and
dividing the summands by mn(ν1, . . . , νn) we discover the alternating form (41) on the right
once we factor out mn(ν1, . . . , νn). ▶

COROLLARY 5: The centered moments of orders two and four of the de Finetti spacings are
given by:

µn(2) =
2

(n+ 1)n
· n− 1

2n
∼

1

n2 ,

µn(1,1) =
−1

n2(n+ 1)
∼
−1
n3 ,

µn(2,2) =
4

(n+ 3)(n+ 2)(n+ 1)n
· n

3 − 2n2 + 15n− 18

4n3 ∼
1

n4 ,

µn(4) =
24

(n+ 3)(n+ 2)(n+ 1)n
· (n− 1)(3n2 − 7n+ 6)

8n3 ∼
9

n4 .

(43)

The form of the covariance µn(1,1) obtained from Lemma 10 may be verified directly via
the negative correlation relation µn(1,1) =−µn(2)/(n− 1) obtained in Corollary 2.

The explicit form (42) for the de Finetti moments invites an asymptotic analysis leading to
a precise form of Corollary 4. The result illuminates precisely how the negatively correlated
dependency structure of the spacings creates additional rapid decay in the mixed moments.

LEMMA 11: Let ν be any fixed positive integer and ν1, . . . , νn any collection of non-negative
integers summing to ν. Suppose further that ρ of the νj are equal to one where 0 ≤ ρ ≤ ν.
Then the centered de Finetti moment µn(ν1, . . . , νn) has sign (−1)⌈ ρ2 ⌉ and asymptotic order
n−(ν+⌈

ρ
2⌉).

PROOF: The alternating sum (41) looks formidable to be sure but repeated evaluations of the
innermost sum show that it takes on a generic form asymptotically with n. We take in a small
analytic detour in anticipation.

As the alternating sum is invariant with respect to permutations of coordinates, in an exuber-
ant extension of notation we also write

Tn(ν1, . . . , νn−τ ,0, . . . ,0︸ ︷︷ ︸
τ terms

) =

ν1∑
i1=0

· · ·
νn−τ∑

in−τ=0

(−1)i1+···+in−τ

ni1+···+in−τ

×
(

n− 1 + ν
n− 1 + ν − i1 − · · · − in−τ , i1, . . . , in−τ

)
=: Tn(ν1, . . . , νn−τ ) (44)

for a version of the alternating sum when νij = 0 for τ of the indices j (which, by invariance
with respect to permutations of indices in the sum, we may as well take to be the final τ indices,
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j = n− τ +1, n− τ +2, . . . , n). For each fixed non-negative integer I and integer ξ ≤ I , now
consider the basic alternating sum

S(ξ;n, I) :=

ξ∑
i=0

(−1)i

ni

(
n+ I
i

)
=

ξ∑
i=0

(−1)i

i!

i−1∏
j=0

(
1 +

I − j

n

)
. (45)

In particular, direct calculation shows that for all I ≥ 0,

S(0;n, I) = 1,

S(1;n, I) = 1− n+ I

n
= − I

n
.

More generally, asymptotically with n, the product on the right in (45) approaches one. Indeed,
by expanding out the product, we see that

S(ξ;n, I) =

ξ∑
i=0

(−1)i

i!

[
1 +

1

n

i−1∑
j=0

(I − j) +O
(

1

n2

)]

=

ξ∑
i=0

(−1)i

i!

[
1 +

i
(
I − i− 1

2

)
n

+O
(

1

n2

)]
.

The term inside square brackets on the right approaches one asymptotically and we are led to
introduce notation for the truncated alternating exponential series,

Eξ :=

ξ∑
i=0

(−1)i

i!
= 1− 1 +

1

2!
− 1

3!
+ · · ·+ (−1)ξ

ξ!
(ξ ≥ 0).

Excepting only the case ξ = 1, when E1 = 0 because of accidental cancellation, the term Eξ is
strictly positive and converges rapidly to e−1 as ξ increases. In particular, E0 = 1, E1 = 0, and,
for any ξ ≥ 0,

∣∣Eξ − e−1
∣∣≤ 1

(ξ+1)!
. We conclude that

S(ξ;n, I) =Eξ +O
(
1

n

)
= e−1 +O

(
1

(ξ + 1)!
+

1

n

)
is strictly positive and bounded away from zero for ξ ̸= 1. It is only the case ξ = 1 when
accidental cancellations result in S(1;n, I) being strictly negative [unless I = 0, in which case
S(1;n,0) = 0] and of order 1/n: S(1;n, I) =−I/n.

Returning to the alternating sum (41), suppose τ of the νj are equal to zero, ρ of the νj are
equal to one, and the remaining σ = n− ρ− τ of the νj exceed one. We may suppose that we
so arrange the indices that

ν1 = ν2 = · · ·= νρ = 1,

νρ+1, νρ+2, . . . , νρ+σ ≥ 2,

νρ+σ+1 = νρ+σ+2 = · · ·= νρ+σ+τ = 0.

(46)
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Recursively specify the variables I0 = ν − 1 and Ij = Ij−1 − ij for j ≥ 1. Writing 1(ρ) for a
ρ-term sequence of 1s, (44) reduces to the form

Tn

(
1(ρ), νρ+1, . . . , νρ+σ

)
=

1∑
i1=0

(−1)i1

ni1

(
n+ I0
i1

)
· · ·

1∑
iρ=0

(−1)iρ

niρ

(
n+ Iρ−1

iρ

)

×
νρ+1∑

iρ+1=0

(−1)iρ+1

niρ+1

(
n+ Iρ
iρ+1

)
· · ·

νρ+σ∑
iρ+σ=0

(−1)iρ+σ

niρ+σ

(
n+ Iρ+σ−1

iρ+σ

)
.

We identify the innermost sum on the right with

S(νρ+σ;n, Iρ+σ−1) =Eνρ+σ
+O

(
n−1

)
where νρ+σ ≥ 2, whence Eνρ+σ

is strictly positive. We conclude that

Tn

(
1(ρ), νρ+1, . . . , νρ+σ

)
= Tn

(
1(ρ), νρ+1, . . . , νρ+σ−1

)
·
[
Eνρ+σ

+O
(
n−1

)]
.

As νρ+1, . . . , νρ+σ ≥ 2, each of Eνρ+1
, . . . , Eνρ+σ

is positive and bounded away from zero.
Churning through the induction machinery hence results in

Tn

(
1(ρ), νρ+1, . . . , νρ+σ

)
= Tn

(
1(ρ)
)
×
[
Eνρ+1

+O
(
n−1

)]
× · · · ×

[
Eνρ+σ

+O
(
n−1

)]
= Tn

(
1(ρ)
)
·Eνρ+1

· · ·Eνρ+σ

[
1 +O

(
n−1

)]
. (47)

To estimate Tn

(
1(ρ)
)
, begin by streamlining our expressions by introducing the nonce nota-

tion

hj =
(−1)ij
nij

(
n+ Ij−1

ij

)
(1≤ j ≤ ρ).

With base R0 = 1, now recursively define the iterated sums

Rj =
1∑

iρ−j+1=0

hρ−j+1Rj−1 (1≤ j ≤ ρ),

whence Tn

(
1(ρ)
)
=Rρ. Computing the recurrence through the first step shows

R1 =

1∑
iρ=0

hρR0 =

1∑
iρ=0

(−1)iρ
niρ

(
n+ Iρ−1

iρ

)
= 1− n+ Iρ−1

n
= − Iρ−1

n
.

Observe the accidental cancellation of the order one term; this is a feature of this iterated sum.
Evaluating the recurrence through one more step extracts the repeating pattern. As Iρ−1 =
Iρ−2 − iρ−1, we obtain

R2 =
1∑

iρ−1=0

hρ−1R1 =
1∑

iρ−1=0

(−1)iρ−1

niρ−1

(
n+ Iρ−2

iρ−1

)(
− Iρ−2 − iρ−1

n

)

= − 1

n

[
Iρ−2 −

n+ Iρ−2

n
(Iρ−2 − 1)

]
= − 1

n
+

Iρ−2(Iρ−2 − 1)

n2 = − 1

n
+O

(
1

n2

)
.
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By induction, we conclude that,

R2k−1 =
(−1)kIρ−2k+1

nk
+O

(
1

nk+1

)
,

R2k =
(−1)k

nk
+O

(
1

nk+1

)
,

for k ≥ 1, and, a fortiori,

Tn

(
1(ρ)
)
=O

(
n−⌈

ρ
2
⌉) (48)

and has sign (−1)⌈ ρ2 ⌉.
It only remains to estimate the first term on the right in (42). Under the arrangement (46),

one last appeal to (40) shows that

mn(ν1, . . . , νn) =mn

(
1(ρ), νρ+1, . . . , νρ+σ

)
=

νρ+1! · · ·νρ+σ!

nν

[
1 +O

(
1

n

)]
. (49)

With the asymptotic estimates (47,48,49) securely in hand, we return victorious to (42) and
conclude that

µn

(
1(ρ), νρ+1, . . . , νρ+σ

)
=mn

(
1(ρ), νρ+1, . . . , νρ+σ

)
· Tn

(
1(ρ), νρ+1, . . . , νρ+σ

)
=

νρ+1! · · ·νρ+σ!

nν ·Θn(ρ)

×Eνρ+1 · · ·Eνρ+σ ·
[
1 +O

(
1

n

)]
where Θn(ρ) =O

(
n−⌈

ρ
2
⌉
)

and has sign (−1)⌈ ρ2 ⌉. ▶

Specializing Lemma 11 to the case of a pure moment yields a refinement of Corollary 4.

COROLLARY 6: The pure centered de Finetti moments have asymptotic order µn(ν)≍ n−ν .
More expansively, for every integer ν ≥ 0, there exist constants A and B such that An−ν ≤
µn(ν)≤Bn−ν .

C.4. Spacings Induced by the Haar System

The distribution of spacings inherited from the Haar system as in Example 2 is related to the
area of caps on the unit sphere. Begin with some terminology and notation.

Suppose t is any point on the unit sphere Sn−1. Each such point determines a ray from
the origin passing through that point. For each 0 ≤ ρ ≤ 1, identify the set Cn(ρ; t) as the
collection of points z on the unit sphere satisfying ⟨z, t⟩ ≥ ρ. Geometrically, these are the
points on the sphere whose projection onto the ray passing through t is at least as large as ρ. In
a geometrically vivid terminology, we call each such collection a cap on the sphere centered at
t and with height 1− ρ.

For each n, it will also be convenient to introduce the nonce notation Sn−1(r) for the sphere
(nominally centered at the origin) of radius r in n dimensions, with Sn−1 = Sn−1(1) repre-
senting the unit sphere. Writing dΩ for a differential element with respect to geodesic distance
on the unit sphere, a simple scale of variable shows that

Area
(
Sn−1(r)

)
=

∫
Sn−1(r)

dΩ
(Ω←Ω/r)

= rn−1

∫
Sn−1

dΩ= rn−1An
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where, rewriting (17) for ease of reference,

An := Area(Sn−1) =

∫
Sn−1

dΩ=
2πn/2

Γ
(
n
2

) (50)

is the area of the unit sphere in n dimensions.

LEMMA 12: Suppose t ∈ Sn−1 and 0≤ ρ≤ 1. Then:

Area
(
Cn(ρ; t)

)
=

2π
n−1
2

Γ
(
n−1
2

) ∫ 1

ρ

(
1− z2

)n−3
2 dz. (51)

PROOF: The area of caps of given height parameter ρ is invariant with respect to choice of
center t as the Haar measure on the sphere is rotation invariant and we may as well identify
the cap center t with the unit first coordinate vector e1 := (1,0, . . . ,0). The cap Cn(ρ;e1)
consists of the points z = (z1, . . . , zn) on the unit sphere Sn−1 for which z1 ≥ ρ. Moving to
spherical coordinates, identify the first coordinate with an azimuthal projection z1 = sinθ for
0 ≤ θ ≤ π/2. For each z ≥ 0, the intersection of the hyperplane z1 = z with the unit sphere
consists of the points on Sn−1 for which

z1 = z and
√

z22 + · · ·+ z2n =
√
1− z2 =

√
1− sin2 θ = cosθ.

That is to say, for ρ ≤ z ≤ 1, the intersection of the hyperplane z1 = z = sinθ with Sn−1 is
isomorphic to Sn−2(cosθ), the sphere of radius cosθ in (n− 1) dimensions. Integrating out
over θ shows that

Area
(
Cn(ρ;e1)

)
=

∫ π/2

sin−1 ρ

Area
(
Sn−2(cosθ)

)
dθ =An−1

∫ π/2

sin−1 ρ

cos(θ)n−2 dθ.

Use (50) with n replaced by n − 1 and introduce the natural change of variable z = sinθ to
complete the proof. ▶

As in Example 2, suppose (Z1, . . . ,Zn) is a random point on the unit sphere Sn−1 obtained
by sampling from the Haar measure on the sphere. In view of (50), the identity (51) is equivalent
to the statement

P{Z1 ≥ t}=
Area

(
Cn(t;e1)

)
Area(Sn−1)

=
Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ 1

t

(
1− z2

)n−3
2 dz (52)

which establishes the common marginal distribution of the variables Z1, . . . , Zn. As an easy
consequence, we recover the well-known property that the area of a cap is exponentially small
in relation to the area of the sphere.

LEMMA 13: Suppose n≥ 3. Then P{Z1 ≥ t} ≤ 3
2
e−(n−3)t2/2 for every t≥ 0.9

9The constant “ 3
2

” can be improved but is not germane for our purposes.
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PROOF: When n= 3 the result is trite; suppose accordingly that n > 3. Starting from (52) we
then have

P{Z1 ≥ t}
(i)
≤

Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ 1

t

e−(n−3)z2/2 dz

≤
Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ ∞
t

e−(n−3)z2/2 dz

(ii)
=

Γ
(
n
2

)
√
πΓ
(
n−1
2

) · √2π√
n− 3

∫ ∞
√
n−3 t

ϕ(y)dy

(iii)
≤

Γ
(
n
2

)
√
πΓ
(
n−1
2

) · √2π√
n− 3

· e
−(n−3)t2/2

2
.

Step (i) follows from the exponential inequality 1 − x ≤ e−x; (ii) is via the natural change
of variable y←

√
n− 3z with ϕ(y) = (2π)−1/2e−y2/2; and (iii) follows from the normal tail

bound
∫∞
τ

ϕ(x)dx≤ 1
2
e−τ2/2 for τ ≥ 0 [Venkatesh (2013, Lemma VI.1.3, p. 165)]. Numerical

computation starting from Stirling’s bounds for the gamma function shows that the right-hand
side is ≤ 1.3e−(n−3)t2/2 for n≥ 4 and the claimed result follows where we have worsened the
constant a little in the interests of keeping the bounds neat. ▶

The non-negative, exchangeable values X1 = Z2
1 , . . . , Xn = Z2

n are the Haar-induced spac-
ings of the unit interval. Lemma 13 shows that for n≥ 4,

P{X1 ≥ x}=P
{
|Z1| ≥

√
x
}
= 2P

{
Z1 ≥

√
x
}
≤ 3e−(n−3)x/2 (x≥ 0),

whence the marginal distribution is sub-exponential with parameters α= 3 and β = (n− 3)/2.

LEMMA 14: The Haar-induced spacings are sub-exponential with common sub-exponential
norm ∥X1∥Ψ1

≤ 2e3/e(n− 3)−1.

COROLLARY 7: The νth centered moment of the Haar-induced spacings satisfies µn(ν) :=
E
(
(X1 − 1/n)ν

)
= O(n−ν) for each fixed ν ≥ 0 and, a fortiori, the Haar-induced spacings

are asymptotically diffuse.

Explicit expressions for the distribution and the moments of the Haar-induced spacings are
readily inferred from (52). As before, write mn(ν) =E(Xν

1 ) and µn(ν) =E
(
(X1 − 1/n)ν

)
.

LEMMA 15: The Haar-induced spacings share a common marginal distribution with density

f(x) =
Γ
(
n
2

)
√
πΓ
(
n−1
2

) · x− 1
2 (1− x)

n−3
2 (0< x< 1). (53)

This is the beta density with parameters 1/2 and (n− 1)/2.

PROOF: For x≥ 0, courtesy (52), we have

P{X1 ≥ x}= 2P
{
Z1 ≥

√
x
}
=

2Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ 1

√
x

(
1− z2

)n−3
2 dz
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=
2Γ
(
n
2

)
√
πΓ
(
n−1
2

) ∫ 1

x

(
1− ξ

)n−3
2 · 1

2
√
ξ
dξ

via the natural change of variable ξ← z2. Differentiation with respect to x yields the common
density via the fundamental theorem of the calculus. ▶

COROLLARY 8: For each non-negative integer ν, the moments of the spacings induced by
the Haar distribution on the unit sphere Sn−1 satisfy

mn(ν) =
Γ
(
ν + 1

2

)
√
π

·
Γ
(
n
2

)
Γ
(
n
2
+ ν
) ∼ 2νΓ

(
ν + 1

2

)
√
π

· 1
nν (n→∞).

The corresponding centered moments µn(ν) are hence also of asymptotic order n−ν .

PROOF: Integrating out with respect to the density (53), we have

mn(ν) =

∫ 1

0

xνf(x)dx=
Γ(

n

2
)

√
πΓ(

n− 1

2
)

∫ 1

0

x

(
ν+

1
2

)
−1(1− x)

n−1
2
−1 dx,

The integral on the right is in the form of the beta function

B(a, b) :=

∫ 1

0

xa−1(1− x)b−1 dx=
Γ(a)Γ(b)

Γ(a+ b)

where we identify a= ν + 1
2

and b= n−1
2

. Stirling’s formula wraps up the asymptotics. ▶

APPENDIX D: PROOFS OF THEOREMS 4 AND 5

Theorem 4 is subsumed by Theorem 5 and it hence suffices to prove the latter. Our approach
exploits two main ideas: (1) the putative equilibria for the random matrix of cross-holdings rep-
resent perturbations of the putative equilibria for regular cliques; and (2) the individual spac-
ings cannot get pathologically large. The properties of the random matrix of cross-holdings are
naturally central to the analysis and we begin by a characterization of its structural properties.

D.1. The Centered Cross-Holdings Matrix

Recall that, for each n ≥ 1, the matrix of cross-holdings of a regular clique is given by
C0 =C(0,n) = c

n
1n1

⊺
n and that of a random clique is given by C=C(n) = c

[
X(n)

1 · · ·X(n)
n

]
where the columns are drawn by independent sampling from a common asymptotically diffuse
distribution.

Hide the dependence on n for the nonce. In view of the exchangeability of the variables,
E(C) =C0 = c

n
11⊺ (see Section C.1). Then

Λ= [Λij ]
n
i,j=1 :=C− 1

n
11⊺ = c

[
X1 − 1

n
1X2 − 1

n
1 · · ·Xn − 1

n
1
]
,

where X1, X2, . . . , Xn are independent and asymptotically diffuse, represents the proper
centering of the cross-holdings matrix at its mean value. The centered spacings are patently
bounded and it is worth cataloguing it for future reference.
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LEMMA 16: The centered spacings are uniformly bounded and satisfy |Λij |< c < 1.

PROOF: As each spacing Xij lies in the unit interval, |Λij | ≤ cmax
{
1− 1

n
, 1
n

}
< c. ▶

The fact that the column sum of the spacings is unit leads to another simple observation.

LEMMA 17: The matrix I− c
n
11⊺ is invertible and satisfies

(
I− c

n
11⊺

)−1
Λ=Λ.

PROOF: The matrix I − c
n
11⊺ is almost diagonal and non-singular as c < 1. Applying

Lemma 2a with α=−c/n, we obtain(
I− c

n
11⊺

)−1

Λ=

(
I+

c

n(1− c)
11⊺

)
Λ=Λ+

c

n(1− c)
11⊺Λ.

Our centering means that the column sums of Λ are identically zero: for each j,

(1⊺Λ)j =Λ1j + · · ·+Λnj =
(
C1j − c

n

)
+ · · ·+

(
Cnj − c

n

)
= 0.

We conclude that 1⊺Λ= 0⊺ and hence that
(
I− c

n
11⊺

)−1
Λ=Λ. ▶

LEMMA 18: The matrix I−Λ is non-singular and, furthermore, its inverse has a convergent
Neumann series

(I−Λ)−1 =
∞∑
l=0

Λl.

PROOF: Gershgorin discs are still the driving force but the influence is a little more subtle: a
direct attempt at proof via a Gershgorin argument along the lines of Lemma 1 is a bit too crude
as it only allows us to deduce that the spectrum of I−Λ lies in the disc D(1,2c) in the complex
plane and, for 1/2< c < 1, this disc includes the origin. However, by Lemma 17,

I−C=
(
I− c

n
11⊺

)
−Λ=

(
I− c

n
11⊺

)[
I−

(
I− c

n
11⊺

)−1
Λ
]
=
(
I− c

n
11⊺

)
(I−Λ).

But I−C is invertible in view of Lemma 1. Multiplying both sides by (I−C)−1 leads hence
to the identity

I= (I−C)−1
(
I− c

n
11⊺

)
(I−Λ).

We conclude that I−Λ is invertible and identify

(I−Λ)−1 = (I−C)−1
(
I− c

n
11⊺

)
.

Now write ρ(Λ) for the spectral radius of Λ. Following Carl Neumann, the Neumann series∑
l≥0Λ

l converges if, and only if, ρ(Λ) < 1, and, in this case, the series converges to (I −
Λ)−1. Write X=

[
X1 X2 · · ·Xn

]
for the matrix of spacings and identify Λ= c

(
X− 1

n
11⊺

)
.

Then

Λ2 = c2
(
X2 −X · 1

n
11⊺ − 1

n
11⊺X+ 1

n211
⊺11⊺

)
= c2

(
X2 −X · 1

n
11⊺

)
as 1⊺X= 1⊺ because X is column stochastic and 1⊺1= n. It follows by induction that

Λl = cl
(
Xl −Xl−1 · 1

n
11⊺

)
(l≥ 1). (54)
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Again invoking the column stochasticity of the spacings matrix, the sub-multiplicativity of the
operator norm induced by the vector l1-norm shows that∥∥Xl

∥∥
1
≤ ∥X∥l1 = 1 (l≥ 0)

so that each of the matrices Xl is column sub-stochastic for each l. (This also follows by appeal
to the Chapman–Kolmogorov equations by identifying the (row) stochastic matrix X⊺ with the
transition matrix of a Markov chain.) Likewise, by appeal to sub-multiplicativity of the operator
norm once more, ∥∥Xl−1 · 1

n
11⊺

∥∥
1
≤
∥∥Xl−1

∥∥
1
·
∥∥ 1

n
11⊺

∥∥
1
≤ 1 (l≥ 1)

as 1
n
11⊺ is trivially doubly stochastic. We conclude a fortiori that the components of Xl −

Xl−1 · 1
n
11⊺ are uniformly bounded and take values in [−1,1]. As 0< c < 1, the representa-

tion (54) allows us to conclude that Λl→ 0 as l→∞ (and, indeed, component-wise conver-
gence is exponentially fast and uniform).

Now suppose r is any eigenvalue of Λ in the complex plane, v any associated eigenvector:
Λv = rv. By iteration, Λlv = rlv. But the left-hand side converges to 0 which can only
happen if |r|< 1. All the eigenvalues of Λ are hence confined to the open unit disc centered at
the origin. Or, what is the same thing, ρ(Λ)< 1. ▶

D.2. A Perturbation Analysis of Putative Equilibria

Fix any solvency indicator k ∈ {0,1}n and let V0(k) and V(k) be the corresponding puta-
tive equilibria for the regular clique and the random clique, respectively. These putative equi-
libria exist in view of Lemma 1. Since 1{V≤τ1} = 1−k if V ∈ Kn(k), these putative equilibria
satisfy the fixed point equations

V0(k) =
(
(e− β)1+ βk

)
+ c

n
11⊺V0(k),

V(k) =
(
(e− β)1+ βk

)
+CV(k).

Subtracting the two equations and rearranging terms leads to the identity

(I−C)V(k)−
(
I− c

n
11⊺

)
V0(k) = 0. (55)

We prepare for the proofs of Theorems 4 and 5 by a perturbation analysis of the separation
between the putative equilibria.

Introduce notation for the gap between the two putative equilibria: write

∆=∆(k) :=V(k)−V0(k). (56)

In terms of the gap, the left-hand side of (55) becomes(
I− c

n
11⊺−Λ

)(
V0(k)+∆(k)

)
−
(
I− c

n
11⊺

)
V0(k) =−ΛV0(k)+

(
I− c

n
11⊺−Λ

)
∆(k).

It follows that (
I− c

n
11⊺ −Λ

)
∆(k) =ΛV0(k). (57)

An analytical characterization of the gap between the solutions is now within reach.
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LEMMA 19: The gap may be represented in terms of a convergent Neumann series:

∆(k) =
∞∑
l=0

Λl ·ΛV0(k). (58)

PROOF: The matrix I−C= I− c
n
11⊺ −Λ is invertible in view of Lemma 1. We may hence

solve (57) explicitly for the gap and obtain

∆(k) =
(
I− c

n
11⊺ −Λ

)−1
ΛV0(k)

=
[(
I− c

n
11⊺

)(
I−

(
I− c

n
11⊺

)−1
Λ
)]−1

ΛV0(k)

=
(
I−

(
I− c

n
11⊺

)−1
Λ
)−1(

I− c
n
11⊺

)−1
ΛV0(k)

=
[
I−Λ

]−1
ΛV0(k)

by two applications of Lemma 17. Lemma 18 finishes up as (I−Λ)−1 has a convergent Neu-
mann series. ▶

In our representation of the gap (58) we have resisted the temptation to absorb the dangling Λ
in the term ΛV0(k) on the right into the Neumann series: a too early consolidation of matrix
products loses sight of the key idea that ΛV0(k) is already highly concentrated near zero:
indeed,

ΛV0(k) =
n∑

j=1

Λ∗jV
0
j (k),

and, as the columns of Λ are independent and properly centered, ΛV0(k) is a centered, vector
random walk. Keeping this term separate from the Neumann series allows us to exploit this
concentration.

We wish to characterize the component-wise behavior of the gap ∆= (∆i)1≤i≤n. The final
piece in our preparation finesses difficulties with the ℓ∞-norm by replacing it with the ℓ2-norm
to better exploit the inner product structure of the Hilbert space.

LEMMA 20: For each solvency indicator k ∈ {0,1}n,

∥∥∆(k)
∥∥
∞ ≤

∥∥ΛV0(k)
∥∥
∞ +

∞∑
l=1

∥Λ∥l2 ·
∥∥ΛV0(k)

∥∥
2
. (59)

PROOF: Beginning with (58), by separating the first term in the Neumann series from the rest
of the terms, the triangle inequality shows that

∥∥∆(k)
∥∥
∞ ≤

∥∥ΛV0(k)
∥∥
∞ +

∥∥∥∥ ∞∑
l=1

Λl ·ΛV0(k)

∥∥∥∥
∞
.

The following string of inequalities for the second term on the right is now almost self-
explanatory:∥∥∥∥ ∞∑

l=1

Λl ·ΛV0(k)

∥∥∥∥
∞

(i)
≤
∥∥∥∥ ∞∑

l=1

Λl ·ΛV0(k)

∥∥∥∥
2

(ii)
≤
∞∑
l=1

∥∥Λl ·ΛV0(k)
∥∥
2
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(iii)
≤
∞∑
l=1

∥∥Λl
∥∥
2
·
∥∥ΛV0(k)

∥∥
2

(iv)
≤
∞∑
l=1

∥Λ∥l2 ·
∥∥ΛV0(k)

∥∥
2
.

The step marked: (i) follows by the monotonicity of the ℓp-norms, ∥x∥∞ ≤ ∥x∥2; (ii) follows
by sub-additivity of matrix norms; (iii) follows as the operator spectral norm is consistent with
the inducing ℓ2-vector norm; and (iv) follows by sub-multiplicativity of matrix norms. ▶

D.3. Concentration of Measure in Random Cliques

We have thus far not yet exploited the probabilistic skeleton of the spacings: the negatively
correlated structure of the spacings illuminated in Lemma 4 provides the framework for an
assault on the gap; the asymptotically diffuse nature of the spacings as outlined in Definition 2
punctuates the approach by providing concentration.

Our workhorse is a concentration of measure inequality for sums of independent, centered,
bounded norm random matrices: the formulation is a matrix version of Bernstein’s classical
inequality [c.f. Tropp (2015, Theorem 6.6.1)].

THEOREM [BERNSTEIN’S INEQUALITY FOR MATRICES]: Suppose Z1, . . . , Zn is a se-
quence of independent Hermitian matrices of order d satisfying

E(Zi) = 0 and ∥Zi∥2 ≤L (1≤ i≤ n).

Write S=
∑

iZi and let V(S) denote the matrix variance statistic of the sum:

V(S) =
∥∥E(S2

)∥∥
2
=
∥∥∥∑

i
E
(
Z2

i

)∥∥∥
2
.

Then, for all t≥ 0,

P
{
∥S∥2 ≥ t

}
≤ 2d exp

(
−t2/2

V(S) +Lt/3

)
≤ 2d exp

(
− 1

4
min

{
t2

V(S)
,
t

L

})
. (60)

The first of the inequalities in (60) is the classical Bernstein formulation; the second simpli-
fies algebra at the cost of a slight loosening of the bound via the simple observation that, for
positive a and b,

1

a+ b
≥min

{
1

2a
,
1

2b

}
.

When d= 1 we recover the usual scalar version of Bernstein’s inequality. When d= n we have
our setting of a triangular array.

The expression on the right in (60) is particularly illuminating. It shows that the tail bound for
the norm of a random sum of centered, independent matrices with bounded spectrum consists
of a mixture of a sub-Gaussian term manifested in the exponent t2/V(S) and a sub-exponential
term manifested in the exponent t/L.
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D.3.0.1. A HIGH PROBABILITY SET Recall that the centered cross-holdings matrix is
given by

Λ= [Λji]1≤j,i≤n =
[
Λ∗i
]
1≤i≤n

= c
[
Xi − 1

n
1
]
1≤i≤n

(61)

where the columns are independent and asymptotically diffuse [Definition 2] and each element
is appropriately centered with Λji = c

(
Xji − 1

n

)
.

A naïve approach to bounding the gap (58) by attempting to exploit the fact that the centered
spacings are bounded, hence tritely sub-exponential, falters because the sub-exponential bound
is much too loose. A more subtle approach is to exploit the fact that the spacings cannot get
pathologically large. We have selected the asymptotic rates ex post facto to optimize the bounds.

With a a positive constant to be selected later, identify the high probability measurable set10

Q=Qn(a) :=
⋂
j,i

{∣∣∣∣Xji −
1

n

∣∣∣∣< 1

a
√
n log(n)

}
. (62)

The reason for the nomenclature becomes clear by an application of Chebyshev’s moment
inequality.

LEMMA 21: For every choice of a> 0, there exists a constant K1 determined by a such that

P
(
Q∁
)
=P

(
Qn(a)

∁
)
≤ K1 log(n)

8

n2

for all n≥ 2.

PROOF: As before, write µn(ν) =E
{(

Xji− 1
n

)ν} for the νth central moment of the spacings.
Then

P
(
Q∁
) (i)
≤ n2max

j,i
P

{∣∣∣∣Xji −
1

n

∣∣∣∣≥ 1

a
√
n log(n)

}
(ii)
≤ n2 · µn(8)( 1

a
√
n log(n)

)8
(iii)
≤ (Aa)8 · log(n)

8

n2 .

Step (i) follows by Boole’s inequality; (ii) is via Chebyshev’s inequality in its eighth power
incarnation (c.f. Venkatesh (2013, Theorem XVI.1.1 and Problem XVI.13.11)); and (iii) is
a consequence of the asymptotically diffuse nature of the spacings [Definition 2]. We may
identify K1 = (Aa)8 with a to be specified. ▶

Faster concentration obtains for spacings with a sub-exponential character satisfying
Lemma 7. This is the case for the de Finetti and Haar-induced settings. In such cases, step (ii)
in the proof is replaced by the much stronger exponential bound

αn2 exp

(
−κn1/2

a log(n)

)
and concentration is very rapid.

10The result outlined in Section 10 for an Erdös–Rényi topology can be obtained by repeating the argument here
by first conditioning on the event that every firm has out-degree n(p± ε) with high probability.
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As the variance of the spacings for an asymptotically diffuse distribution is O
(
n−2

)
, it is

clear that each spacing has a deviation approximately of order O
(
n−1

)
from its mean n−1;

however, with the large number of spacings in view, the chance of a significant number of
spacings deviating substantially from the mean is high. The eighth moment structure of an
asymptotically diffuse distribution allows us to conclude that all n2 spacings are loosely con-
centrated around their means: “looseness” here means of order n−1/2/ log(n) which, of course,
is much more collectively dispersive than what the individual standard deviation of order n−1

would have told us. This, as we shall see, is the critical range that we have to control: the
asymptotics are most delicately balanced.

D.3.0.2. CONCENTRATION OF THE RANDOM WALK ΛV0(k) We now turn our attention
to bounding the ℓ∞-norm of the random walk ΛV0(k) on the right in (58). This will provide
a platform for estimating the ℓ∞-norm of the gap using (59). The choice of constants and rates
has again been fine-tuned ex post facto so, without further apology, we will introduce another
positive constant b to be selected appropriately later and seek to estimate

P

{∥∥ΛV0(k)
∥∥
∞ <

b
√
log(n)√
n

}
,

the probability that the components of the random walk do not stray too far from the origin. The
notion of “far” from the origin is captured in the mysterious deviation term b

√
log(n)

/√
n.

Unburden notation by writing V0 = V0(k) and keeping the dependence on the solvency
indicator k implicit. We break the analysis down into stages.

1◦ Conditioning on the high probability set. Most of the action takes place in the high prob-
ability set Q=Qn(a). We will again keep notation sane by hiding its dependence on n and a.
Accordingly, by conditioning on Q, we obtain

P

{∥∥ΛV0
∥∥
∞ ≥

b
√
log(n)√
n

}
≤P

{∥∥ΛV0
∥∥
∞ ≥

b
√
log(n)√
n

∣∣∣∣Q}+P
(
Q∁
)

≤P

{∥∥ΛV0
∥∥
∞ ≥

b
√
log(n)√
n

∣∣∣∣Q}+
K1 log(n)

8

n2 (63)

by Lemma 21. Now, by Boole’s inequality,

P

{∥∥ΛV0
∥∥
∞ ≥

b
√
log(n)√
n

∣∣∣∣Q}=P

{
max
1≤j≤n

∣∣∣∣ n∑
i=1

ΛjiV
0
i

∣∣∣∣≥ b
√

log(n)√
n

∣∣∣∣Q}

≤ nmax
j

P

{∣∣∣∣ n∑
i=1

ΛjiV
0
i

∣∣∣∣≥ b
√

log(n)√
n

∣∣∣∣Q}. (64)

Our game plan is to use Bernstein’s inequality to estimate the conditional probability on the
right. We will need to prepare the ground by re-centering the summands.

Fix any index j and, promptly hiding it from view to further unburden notation, introduce
the nonce notation

Zi =
(
Λji −E(Λji | Q)

)
V 0
i (1≤ i≤ n). (65)
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As the columns of the matrix of spacings X=
[
Xi

]
1≤i≤n

are independent, the sets

Qi :=
⋂
j

{∣∣∣∣Xji −
1

n

∣∣∣∣< 1

a
√
n log(n)

}
(1≤ i≤ n)

are independent. As Q =
⋂

iQi, it follows that the spacings Xji (1 ≤ i ≤ n), hence also the
centered cross-holdings Λji (1≤ i≤ n), are conditionally independent givenQ, the symmetry
in the specification of the component sets Qi ensuring that they also share a common condi-
tional distribution. We conclude that, conditioned on Q, the variables Z1, . . . , Zn are condi-
tionally independent and centered, and share a common conditional distribution. Now form the
conditionally centered sum

n∑
i=1

Zi =
n∑

i=1

ΛjiV
0
i −E

( n∑
i=1

ΛjiV
0
i

∣∣∣Q).
By the triangle inequality,∣∣∣∣ n∑

i=1

ΛjiV
0
i

∣∣∣∣≤ ∣∣∣∣ n∑
i=1

Zi

∣∣∣∣+ ∣∣∣∣E( n∑
i=1

ΛjiV
0
i

∣∣∣Q)∣∣∣∣≤ ∣∣∣∣ n∑
i=1

Zi

∣∣∣∣+ n∑
i=1

∣∣E(Λji | Q)
∣∣ · ∣∣V 0

i

∣∣.
Introducing one more temporary piece of notation to aid visual clarity, write

τn :=
b
√
log(n)√
n

−
n∑

i=1

∣∣E(Λji | Q)
∣∣ · ∣∣V 0

i

∣∣ (66)

and, after a proper conditional centering of the sum, bound the conditional probability on the
right in (64) by

P

{∣∣∣∣ n∑
i=1

ΛjiV
0
i

∣∣∣∣≥ b
√
log(n)√
n

∣∣∣Q}≤P

{∣∣∣∣ n∑
i=1

Zi

∣∣∣∣≥ τn

∣∣∣Q}. (67)

The table is set for Bernstein’s inequality (60) specialized to the scalar case d = 1. In or-
der to deploy it we will need to estimate the variance statistic and the bounded range which
contribute to the sub-Gaussian and sub-exponential components of the inequality, respectively.
The conditional expectation is the first step.

2◦ Estimating the conditional expectation and the deviation from the mean. In the usual
notation, we write 1Q and 1Q∁ for the indicator variables for the setsQ andQ∁, respectively. As
Q and Q∁ partition the space, we may write Λji =Λji1Q+Λji1Q∁ . By virtue of the centering
of the spacings, it follows by additivity that

0 =E(Λji) =E(Λji1Q) +E(Λji1Q∁), or, equivalently, E(Λji1Q) =−E(Λji1Q∁).

As E(Λji | Q) = 1
P(Q)

E(Λji1Q), we obtain

∣∣E(Λji | Q)
∣∣= ∣∣E(Λji1Q)

∣∣
P(Q)

=

∣∣−E(Λji1Q∁)
∣∣

1−P(Q∁)
≤

E
(
|Λji|1Q∁

)
1−P(Q∁)

≤
E(1Q∁)

1−P(Q∁)
=

P(Q∁)

1−P(Q∁)
,
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the penultimate step a consequence of Lemma 16 in view of the crude bound |Λji| < 1. The
tail bound probability from Lemma 21 allows us to conclude that

∣∣E(Λji | Q)
∣∣≤ K1 log(n)

8

n2

1− K1 log(n)
8

n2

=
K1 log(n)

8

n2

[
1 +O

(
log(n)8

n2

)]
. (68)

The putative equilibria for a regular clique are given in (33) and in view of (11) they may be
uniformly absolutely bounded by

∣∣V 0
i

∣∣≤max
s
|v(s)| ≤ max{e,β}

1− c
. (69)

Putting these observations together, we conclude that

n∑
i=1

∣∣E(Λji | Q)
∣∣ · ∣∣V 0

i

∣∣≤ max{e,β}
1− c

· n · K1 log(n)
8

n2

[
1 +O

(
log(n)8

n2

)]
=O

(
log(n)8

n

)
.

The contribution of the conditional expectation is hence sub-dominant compared to the term
b
√

log(n)
/√

n on the right in (66) and so the conditional deviation from the mean on the right
in (67) is of asymptotic order

τn =
b
√
log(n)√
n

[
1−O

(
log(n)15/2√

n

)]
∼

b
√
log(n)√
n

. (70)

3◦ Estimating the conditional variance. The variables Zi given in (65) are properly centered
conditioned on Q. Recalling that Λji = c

(
Xji − 1

n

)
, we have

E
(
Z2

i | Q
)
=
(
V 0
i

)2 ·E[(Λji −E(Λji | Q)
)2 ∣∣∣Q]≤ (V 0

i

)2 ·E(Λ2
ji | Q

)
=
(
V 0
i

)2 · E(Λ2
ji1Q)

P(Q)

≤
(
V 0
i

)2 · E(Λ2
ji)

P(Q)

=
(
cV 0

i

)2 · E
[(
Xji − 1

n

)2]
1−P

(
Q∁
) .

Leveraging the asymptotically diffuse condition (20), Lemma 21, and (69), we obtain

E
(
Z2

i | Q
)
≤
(
cmax{e,β}

1− c

)2

·

A2

n2

1− K1 log(n)
8

n2

=

(
cmax{e,β}A

1− c

)2

· 1
n2 ·

[
1+O

(
log(n)8

n2

)]
.

Conditioned onQ, the variables Z1, . . . , Zn are conditionally independent—whence the condi-
tional variance is additive—and share a common distribution—a fortiori are exchangeable. The
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conditional variance statistic that contributes to the sub-Gaussian term in Bernstein’s inequality
may hence be bounded by

V
( n∑

i=1

Zi

∣∣∣Q) :=E

[( n∑
i=1

Zi

)2 ∣∣∣Q]= n∑
i=1

E
(
Z2

i | Q
)

= n ·E(Z2
1 | Q)

≤
(
cmax{e,β}A

1− c

)2

· 1
n
·
[
1 +O

(
log(n)8

n2

)]
.

(71)

4◦ Estimating the bounded range over Q. By the triangle inequality,

|Zi| ≤
∣∣V 0

i

∣∣ · (c∣∣Xji − 1
n

∣∣+ ∣∣E(Λji | Q)
∣∣).

The first term on the right is uniformly bounded by (69). Of the two terms inside the round
brackets, the absolute value of the centered spacing

∣∣Xji − 1
n

∣∣ is uniformly controlled over the
high probability set Q by (62) while the conditional expectation E(Λji | Q) is sub-dominant
with asymptotic character given by (68). Stitching the pieces together, on the high probability
set Q,

max
i
|Zi| ≤

max{e,β}
1− c

·
[

c

a
√
n log(n)

+
K1 log(n)

8

n2

{
1 +O

(
log(n)8

n2

)}]
=

cmax{e,β}
(1− c)a

· 1√
n log(n)

[
1 +O

(
log(n)9

n3/2

)]
=: L. (72)

5◦ Bernstein’s inequality. All the pieces are in hand: we apply the (conditional) scalar version
of Bernstein’s inequality (60) to the probability on the right in (67) to obtain

P

{∣∣∣∣ n∑
i=1

Zi

∣∣∣∣≥ τn

∣∣∣Q}≤ 2exp

(
− 1

4
min

{
τ2
n

V
( n∑
i=1

Zi | Q
) , τnL

})
. (73)

The sub-Gaussian term: applying the estimates (70) and (71),

τ2
n

V
( n∑
i=1

Zi | Q
) ≥

[
b
√
log(n)√
n

{
1−O

( log(n)15/2√
n

)}]2
(
cmax{e,β}A

1− c

)2

· 1
n

{
1 +O

( log(n)8
n2

)}

=

(
b(1− c)

cmax{e,β}A

)2

· log(n) ·
[
1−O

(
log(n)15/2√

n

)]
.

The term in square brackets on the right → 1 as n→∞, and so the right-hand side has a
logarithmic growth rate in n. It now becomes apparent how we should select the constant b.
Looking ahead with a view to obtaining a roughly quadratic decay in the probability in (63),
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select b to be any positive constant satisfying

b>

√
12 cmax{e,β}A

1− c
. (74)

With this choice we conclude that the sub-Gaussian exponent is bounded below by

τ2
n

V
( n∑
i=1

Zi | Q
) ≥ 12 log(n) (for all sufficiently large n).

The smallest value n= n0 for which this is true depends on the choices of both a and b but we
are interested in the asymptotics and the assertion holds for all n≥ n0.

The sub-exponential term: now applying the estimates (70) and (72),

τn
L
≥

b
√
log(n)√
n

{
1−O

( log(n)15/2√
n

)}
cmax{e,β}
(1− c)a

· 1√
n log(n)

{
1 +O

( log(n)9
n3/2

)}
=

ab(1− c)

cmax{e,β}
· log(n)3/2 ·

[
1−O

(
log(n)15/2√

n

)]
≥
√
12Aa · log(n)3/2 ·

[
1−O

(
log(n)15/2√

n

)]
in view of the selection (74). Again, the term in square brackets → 1 as n→∞ so that the
right-hand side has a growth rate of order log(n)3/2. We can afford to be cavalier with our
bounds and conclude that

τn
L
≥Aa log(n)3/2 (for all sufficiently large n).

Again, the asymptotics kick in for all n≥ n1 for some n1 depending on the choices of a and b.
As we may have anticipated because we are dealing with the tail of a random walk, we con-

clude that the tail behavior is sub-Gaussian—the sub-exponential exponent growth rate even-
tually outstrips the sub-Gaussian exponent growth rate. Let n2 be the smallest value of n so
that Aa log(n)3/2 ≥ 12 log(n). It follows that, for all n≥max{n0, n1, n2}, the inequality (73)
simplifies to

P

{∣∣∣∣ n∑
i=1

Zi

∣∣∣∣≥ τn

∣∣∣Q}≤ 2exp

(
− 1

4
min

{
12 log(n),Aa log(n)3/2

})
= 2e−3 log(n) =

2

n3

(75)
eventually, the estimate uniform in the hidden index j. Tracing the thread back via (75, 67, 64)
to (63), we conclude that

P

{∥∥ΛV0
∥∥
∞ ≥

b
√

log(n)√
n

}
≤ n · 2

n3 +
K1 log(n)

8

n2 =
2

n2 +
K1 log(n)

8

n2

eventually for all sufficiently large n. We encapsulate our findings.
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LEMMA 22: Suppose a is positive and b satisfies (74). Then, there exists a constant K2

determined by a and b such that

P

{∥∥ΛV0(k)
∥∥
∞ ≥

b
√
log(n)√
n

}
≤ K2 log(n)

8

n2

eventually, for all sufficiently large values of n.

The asymptotics kick in beyond a horizon determined by the selections of a and b, while our
development shows that we may generously take K2 =K1 +2= (Aa)8 +2. We will resist the
temptation to attempt to optimize the results over a at this stage.

D.3.0.3. CONCENTRATION OF THE LARGEST SINGULAR VALUE OF Λ We now turn
our attention to bounding the spectral norm of the centered matrix of cross-holdings. This will
be the final step in the estimation of the ℓ∞-norm of the gap using (59).

We have a few more technical complexities to contend with but our main line of attack
follows the line of the proof of Lemma 22 in that we reduce the problem to that of concentration
of a random matrix walk. The key is to exploit the fact that the centered cross-holdings matrix

Λ=
[
Λ∗1 Λ∗2 · · ·Λ∗n

]
= c
[
X1 − 1

n
1X2 − 1

n
1 · · ·Xn − 1

n
1
]

has independent columns via the useful observation that the spectral norm is invariant under
transposition. Accordingly,

∥Λ∥2 = ∥Λ⊺∥2 =
√
∥ΛΛ⊺∥2 =

√√√√∥∥∥∥ n∑
i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

; equivalently, ∥Λ∥22 =
∥∥∥∥ n∑

i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

.

(76)
With b selected in accordance with (74) and ε a tiny positive quantity which may be selected
arbitrarily small, we seek now to estimate,

P

{
∥Λ∥2 <

ε

b
√
log(n)

}
,

the probability that the spectral norm of Λ is concentrated near the origin. The identification
of what “near” means has been carefully calibrated but is admittedly mysterious—the rates are
glacially slow compared to our usual ideas of concentration; the selection becomes a little more
transparent if Lemma 22 is kept in mind. We again proceed in stages.

1◦ Conditioning on the high probability set. A naïve bounding of the centered cross-holdings
via Lemma 16 fails as the bound does not adequately capture the picture of the loose concen-
tration of cross-holdings conjured up by Lemma 21. We accordingly follow our well-worn path
by conditioning on the high probability set Q. Invoking additivity, again,

P

{
∥Λ∥2 ≥

ε

b
√
log(n)

}
≤P

{
∥Λ∥2 ≥

ε

b
√
log(n)

∣∣∣Q}+P
(
Q∁
)

(77)

≤P

{
∥Λ∥2 ≥

ε

b
√
log(n)

∣∣∣Q}+
K1 log(n)

8

n2



60

by Lemma 21. In view of (76), the conditional probability on the right in (77) can be re-
expressed in the form

P

{
∥Λ∥2 ≥

ε

b
√
log(n)

∣∣∣Q}=P

{√√√√∥∥∥∥ n∑
i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

≥ ε

b
√
log(n)

∣∣∣Q} (78)

=P

{∥∥∥∥ n∑
i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

≥ ε2

b2 log(n)

∣∣∣Q}.
On the right-hand side we have a sum of independent matrices with a common distribution and
the conditioning suggests that we center them appropriately. Introduce notation for the common
matrix of means

MQ :=E
(
Λ∗iΛ

⊺
∗i | Q

)
, (79)

and the corresponding conditionally centered matrices

Zi :=Λ∗iΛ
⊺
∗i −MQ (1≤ i≤ n). (80)

Recall that the sets

Qi =
⋂
j

{∣∣∣∣Xji −
1

n

∣∣∣∣< 1

a
√
n log(n)

}
(1≤ i≤ n)

are independent and Q =
⋂

iQi. For each i, the (column) vector Λ∗i = c
[
Xi − 1

n
1
]

is inde-
pendent of Qk for k ̸= i and so the matrices Z1, . . . , Zn are conditionally independent given
Q and, by the symmetry inherent in the specification of the sets Qi, have the same conditional
distribution. Centering the sum on the right in (78) results in

n∑
i=1

Λ∗iΛ
⊺
∗i =

n∑
i=1

(
Λ∗iΛ

⊺
∗i −MQ

)
+ nMQ =

n∑
i=1

Zi + nMQ,

whence, by the triangle inequality, we have∥∥∥∥ n∑
i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

≤
∥∥∥∥ n∑

i=1

Zi

∥∥∥∥
2

+ n
∥∥MQ

∥∥
2
.

Recycle notation and write

τn :=
ε2

b2 log(n)
− n
∥∥MQ

∥∥
2
. (81)

We may now conservatively bound the expression on the right in (78) by

P

{∥∥∥∥ n∑
i=1

Λ∗iΛ
⊺
∗i

∥∥∥∥
2

≥ ε2

b2 log(n)

∣∣∣Q}≤P

{∥∥∥∥ n∑
i=1

Zi

∥∥∥∥
2

≥ τn

∣∣∣Q} (82)

and we are primed for another use of Bernstein’s inequality—in its matrix incarnation this time.
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2◦ Estimating the norm of the conditional mean matrix. In the language of Section C.1, write

µn(ν1, . . . , νn) :=E
{(

X1i − 1
n

)ν1 × · · · × (Xni − 1
n

)νn},
µn(ν1, . . . , νn | Q) :=E

{(
X1i − 1

n

)ν1 × · · · × (Xni − 1
n

)νn | Q}
for the common mixed moments and the conditional mixed moments, respectively, of the
columns of the centered matrix of asymptotically diffuse spacings

[
Xi − 1

n
1
]
1≤i≤n

. We now
identify Q=

⋂
iQi with the high probability set (62). The symmetries in the specifications of

the sets Qi ensure that exchangeability is preserved for the spacings under conditioning with
respect to Q and so both µn(ν1, . . . , νn) and µn(ν1, . . . , νn | Q) are invariant with respect to
permutations of coordinates. As before, we take a liberty with notation and, for 1≤ k ≤ n, also
write

µn(ν1, . . . , νk) =E
{(

X1i − 1
n

)ν1 × · · · × (Xki − 1
n

)νk},
µn(ν1, . . . , νk | Q) =E

{(
X1i − 1

n

)ν1 × · · · × (Xki − 1
n

)νk | Q}.
With this for preparation, per the definition (79), the components of the conditional mean

matrix MQ = [Mjk]1≤j,k≤n are given by

Mjk =E(ΛjiΛki | Q) =

{
c2µn(2 | Q) if j = k,
c2µn(1,1 | Q) if j ̸= k.

Exploiting the fact that the spacings are negatively correlated, by Corollary 2 in Section C.1,
µn(1,1 | Q) =−µn(2 | Q)/(n− 1). In the terminology of Appendix B we conclude that MQ
is a scaled almost diagonal matrix,

MQ = c2µn(2 | Q) · I−
c2µn(2 | Q)

n− 1
·
(
11⊺ − I

)
=

c2n

n− 1
· µn(2 | Q) ·

(
I− 1

n
11⊺

)
(83)

=
c2n

n− 1
· µn(2 | Q) ·D

(
−1
n

)
.

By identifying α=−1/n in Lemma 2d, we see that
∥∥D(−n−1

)∥∥
2
= 1 and so

∥∥MQ
∥∥
2
=

c2n

n− 1
· µn(2 | Q) ·

∥∥∥∥D(−1n
)∥∥∥∥

2

=
c2n

n− 1
· µn(2 | Q). (84)

With 1Q again representing the indicator for the setQ, we may estimate the conditional second
moment via

µn(2 | Q) =
E
[(
X1i − 1

n

)2
1Q
]

P(Q)
(i)
≤

E
[(
X1i − 1

n

)2]
P(Q)

=
µn(2)

1−P
(
Q∁
) (85)

(ii)
≤

A2

n2

1− K1 log(n)
8

n2

=
A2

n2

[
1 +O

(
log(n)8

n2

)]
;
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the step labelled (i) follows by monotonicity of expectation, while (ii) follows by appeal to
the asymptotically diffuse condition (20) to bound the numerator and Lemma 21 to bound the
denominator. It follows that

n
∥∥MQ

∥∥= n · c2n

n− 1
· µn(2 | Q) =

c2A2

n

[
1 +O

(
1

n

)]
and we conclude that the impact of conditional centering is sub-dominant in (81). We are hence
interested in the right tail of asymptotic order

τn =
ε2

b2 log(n)
− c2A2

n

[
1 +O

(
1

n

)]
=

ε2

b2 log(n)

[
1−O

(
log(n)

n

)]
(86)

of the distribution of
∥∥∑

iZi

∥∥.
3◦ Estimating the matrix variance statistic. The conditional covariance matrix KQ of the

(conditionally centered) Hermitian form Zi =Λ∗iΛ
⊺
∗i −MQ is given by

KQ :=E
(
Z2

i | Q
)
=E

(
Λ∗iΛ

⊺
∗iΛ∗iΛ

⊺
∗i | Q

)
−M2

Q.

The representation (83) for the mean matrix MQ shows that

M2
Q =

(
c2n

n− 1

)2

· µn(2 | Q)2 ·
(
I− 1

n
11⊺

)2

=

(
c2n

n− 1

)2

· µn(2 | Q)2 ·
(
I− 1

n
11⊺

)
in view of the identity D

(
− 1

n

)2
= D

(
− 1

n

)
[a consequence of the elementary observation

1⊺1= n]. As the spacings X1i, . . . , Xni are exchangeable conditioned on Q, the conditional
covariance matrix KQ is a scaled almost diagonal matrix. Its common diagonal terms are given
by

Kjj =E
(
Λ∗iΛ

⊺
∗iΛ∗iΛ

⊺
∗i
)
jj
−
(
M2
Q

)
jj

=
n∑

l=1

E
(
Λ2

jiΛ
2
li

)
−
(

c2n

n− 1

)2

· µn(2 | Q)2 ·
(
1− 1

n

)

=E
(
Λ4

ji | Q
)
+
∑
l ̸=j

E
(
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jiΛ
2
li

)
− c4n

n− 1
· µn(2 | Q)2

= c4
[
µn(4 | Q) + (n− 1)µn(2,2 | Q)−

n

n− 1
· µn(2 | Q)2

]
=: γn. (87)

Likewise, for j ̸= k, the common off-diagonal terms of KQ are given by

Kjk =E
(
Λ∗iΛ

⊺
∗iΛ∗iΛ

⊺
∗i
)
jk
−
(
M2
Q

)
jk

=
n∑
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E
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ΛjiΛkiΛ

2
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)
−
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c2n

n− 1

)2

· µn(2 | Q)2 ·
(
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n

)

=E
(
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jiΛki

)
+E

(
ΛjiΛ

3
ki

)
+
∑

l̸∈{j,k}

E
(
ΛjiΛkiΛ

2
li

)
+

1

n− 1
· c4n

n− 1
· µn(2 | Q)2
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= c4
[
2µn(3,1 | Q) + (n− 2)µn(2,1,1 | Q) +

1

n− 1
· n

n− 1
· µn(2 | Q)2

]
=
−c4

n− 1

[
µn(4 | Q) + (n− 1)µn(2,2 | Q)−

n

n− 1
· µn(2 | Q)2

]
=
−γn

n− 1
.

In the penultimate step we’ve appealed to the correlation identities in Corollaries 2 and 3 in
Appendix C.1 and consolidated terms; in the final step we’ve identified the expression within
the square brackets with the diagonal term γn given in (87).

We conclude that KQ is almost diagonal up to a constant scale and is given by

KQ = γn · I−
γn

n− 1
·
(
11⊺ − I

)
=

n

n− 1
· γn ·

(
I− 1

n
11⊺

)
=

n

n− 1
· γn ·D

(
−1
n

)
.

We again identify α=−1/n in Lemma 2d and exploit the identity
∥∥D(−n−1

)∥∥
2
= 1 to obtain

∥∥KQ∥∥2 = n

n− 1
· γn =

c4n

n− 1

[
µn(4 | Q) + (n− 1)µn(2,2 | Q)−

n

n− 1
· µn(2 | Q)2

]
.

We may rewrite the expression in square brackets on the right in the form

[
µn(4 | Q)− µn(2 | Q)2

]
+ (n− 1)

[
µn(2,2 | Q)−

µn(2 | Q)2

(n− 1)2

]
,

and verify by two applications of Lemma 5 that it is non-negative. The simplest bounds will
suffice here. As µn(2,2 | Q)≤ µn(4 | Q) by another appeal to Lemma 5, we have

∥∥KQ∥∥2 ≤ c4n

n− 1

[
µn(4 | Q) + (n− 1)µn(2,2 | Q)

]
≤ c4n

n− 1
· n · µn(4 | Q). (88)

The asymptotic estimate of the fourth conditional moment on the right follows exactly the same
pattern as the estimate of the conditional second moment (85) and we merely note down the
result:

µn(4 | Q)≤
µn(4)

1−P
(
Q∁
) ≤ A4

n4

1− K1 log(n)
8

n2

=
A4

n4

[
1 +O

(
log(n)8

n2

)]
.

By substitution into (88), we see that

∥∥KQ∥∥≤ c4A4

n3

[
1 +O

(
1

n

)]
.

The conditional variance statistic of the sum
∑

iZi may hence be bounded by

V
(∑

i
Zi
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E
(
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2

=
∥∥nKQ∥∥2 = n ·
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[
1+O

(
1

n
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. (89)
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4◦ Estimating the bounded range over Q. Applying the triangle inequality to the right hand
side of (80) we obtain∥∥Zi

∥∥
2
=
∥∥Λ∗iΛ⊺
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2
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2
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2
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(
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1

n

)2

+
∥∥MQ

∥∥
2
.

Over Q the first term on the right is uniformly bounded by (62); the second term is sub-
dominant via the estimates (84) and (85). Reusing notation, over the high probability set Q,
we may hence bound

max
i

∥∥Zi

∥∥
2
≤ c2 · n · 1

a2n log(n)2
+

c2A2

n2

[
1 +O

(
1

n

)]
=

c2

a2 log(n)2

[
1 +O

(
log(n)2

n2

)]
=: LQ. (90)

5◦ Bernstein’s inequality. We apply (60) with d= n to the probability on the right in (82) to
obtain

P

{∥∥∥∥ n∑
i=1

Zi
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2

≥ τn

∣∣∣Q}≤ 2n exp

(
−1

4
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V
( n∑
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Zi | Q
) , τnLQ

})
. (91)

The sub-Gaussian term: applying the estimates (86) and (89),

τ2
n

V
( n∑
i=1

Zi | Q
) ≥

(
ε2

b2 log(n)

[
1−O

( log(n)
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)])2
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[
1 +O

( 1
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)] =
( ε

bcA

)4
· n2

log(n)2

[
1−O

(
log(n)

n

)]
.

The sub-Gaussian exponent hence has a growth rate of at least n2/ log(n)2. We will see shortly
that the sub-Gaussian contribution to the tail probability is sub-dominant and we can afford to
be cavalier with the bound: we may select n4 determined by a, b, and ε, such that

τ2
n

V
( n∑
i=1

Zi | Q
) ≥ 1

2
·
( ε

bcA

)4
· n2

log(n)2

eventually, for all n ≥ n4. The constant “ 1
2

” may, of course, have been replaced by any other
constant < 1.
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The sub-exponential term: applying the estimates (86) and (90),

τn
LQ
≥

ε2

b2 log(n)

[
1−O

( log(n)
n

)]
c2

a2 log(n)2

[
1 +O

( log(n)2
n2

)] =
(εa
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1−O

(
log(n)

n
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.

The expression in square brackets on the right tends to 1 as n→∞ and so the right-hand side
has a logarithmic growth rate in n.

It is now clear that the order n2/ log(n)2 growth of the sub-Gaussian exponent rapidly out-
strips the logarithmic growth rate of the sub-exponential exponent. With the benefit of hindsight
we may feel that this is intuitive: the distribution of the norm has a sub-exponential tail. The
proper choice of the constant a now becomes evident: we select a with a view to obtaining
an approximately quadratic rate of decay in the probability (77). With b any constant satisfy-
ing (74), select a to satisfy

a>

√
12bc

ε
. (92)

With these selections for a and b we conclude that the sub-exponential exponent is bounded
below by

τn
LQ
≥ 12 log(n) (eventually),

the caveat to be taken to mean for all n≥ n4 for some n4 determined by a, b, and ε.
With our discretionary choices now all established, let n5 determined by a, b, and ε be the

smallest value of n so that

1

2
·
( ε

bcA

)4
· n2

log(n)2
≥ 12 log(n).

Then the inequality (91) simplifies to
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eventually, for all n≥max{n3, n4, n5}. Tracing the sequence back via (93, 82, 78) to (77), we
conclude that

P

{
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ε

b
√
log(n)

}
≤ 2

n2 +
K1 log(n)

8

n2

eventually, for all sufficiently large n. Here is the capsule summary.

LEMMA 23: Fix any ε > 0 and suppose b and a are constants satisfying (74) and (92),
respectively. Then there exists a constant K3 determined by a, b, and ε such that

P

{
∥Λ∥2 ≥

ε

b
√
log(n)

}
≤ K3 log(n)

8

n2
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eventually, for all sufficiently large values of n.

Again, the asymptotics kick in beyond a horizon specified by the selections of ε, a, and b.
As before, we may take K3 = (Aa)8 + 2.

All is in readiness for Theorem 5. Reintroduce superscripts (n) to keep track of dimension-
ality.

THEOREM 5—Equilibria in Large Random Networks: Full Version: For any sequence of
index vectors,

{
k(n) ∈ {0,1}n, n≥ 1

}
, we have
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∣∣V n
i
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quence. By Lemma 20,
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But Lemmas 22 and 23 together assert that, with probability at least 1− 2K3 log(n)
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It follows that there exists a constant K4 determined by the fixed selections of ε, b, and a such
that

P
{∥∥∆(n)

(
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}
≤ K4 log(n)
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n2 (for all sufficiently large n).
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by the first Borel–Cantelli lemma (c.f. Venkatesh (2013, Section IV.4)).11 As the tiny positive ε
may be taken arbitrarily small, we conclude that

∥∥∆(n)
(
k(n)

)∥∥
∞→ 0 almost surely. ▶

We include a word on the choices of the discretionary constants a and b that appeared some-
what mysteriously in the proof and have had a magical effect on the outcome.

Bearing in mind that the variance of the spacings is of order n−2, individual components(
ΛV0(k)

)
i

of the random walk exhibit excursions of order n−1/2 from the origin by virtue of
the central limit theorem. The need to control the maximal excursion of the n components of
the walk leads to the considered deviation of b

√
log(n)

/√
n. The constant b is now chosen just

large enough—in other words, the maximal excursion is pegged to a value just big enough—to
guarantee that the sub-Gaussian tail goes to zero quickly enough for the strong law to kick in
via the Borel–Cantelli lemma.

With the collective excursions of the components of the random walk confined to this order,
the ℓ2-norm of the random walk grows at the rate of b

√
log(n) which increases slowly but

inexorably. The need to rein in this growth compels us to try to control the spectral norm of the
centered cross-holdings matrix Λ to within ε

/(
b
√

log(n)
)

where the tiny ε is chosen as small
as desired.

The key to the analysis is the fact that the negative correlative structure of the spacings
in the asymptotically diffuse setting prohibits pathologically large deviations from the mean.
While tighter concentrations could have been achieved at the expense of more smoothness
constraints, for example, by levying yet higher moment constraints or a sub-exponential condi-
tion, the choice of an eighth moment condition imposes the least onerous constraints consistent
with our goal. But we now have to step delicately. The eighth moment constraint concen-
trates the spacings collectively within a deviation of 1

/√
n from their means but this is just

a smidgin too loose. The key to managing the sub-exponential tail of the spectral norm of Λ
is to buy ourselves a little wiggle room by considering the set where the n2 spacings collec-
tively are constrained to excursions from the mean within a slightly more corseted box of size
1
/(

a
√
n log(n)

)
. The logarithmic tightening of the concentration box gives us that little extra

wiggle room: the logarithmic term opens up a tiny window of opportunity through which the
square root logarithmic control desired for the spectral norm of Λ can now opportunistically
squeeze in. And finally, when the dust has settled, the constant a provides the coup de grâce by
fine tuning the logarithmic rate so that the sub-exponential tail decays quickly enough for the
Borel–Cantelli lemma to come into force.

APPENDIX E: THE NO-ESCAPE ASSUMPTION

We remark upon the repeatedly invoked assumption that the system’s trajectory Vt does not
escape the orthant(s) under consideration. Such an escape is possible even in regular cliques, as
shown in Fig. E.1. Orthant boundaries are linear, while the solution to the system—expressed
through exponential functions per Theorem 7—is not, and, since orthant boundaries do not ex-
plicitly repel or attract trajectories, and the only force driving the dynamics is that of attraction
by a (putative or feasible) equilibrium, a trajectory passing close to an orthant’s boundary may
escape into a nearby orthant.

Fig. E.2 overlays the trajectories of the two-dimensional model instance from Fig. E.1 on top
of the basins of attraction of the four equilibria.

An empirical observation that may be made from these figures is that, within a bounding box
whose boundary is not too far from the equilibria, the boundaries of the attraction basins stay

11In the terminology introduced by Kai Lai Chung, the event limsupn An =
⋂

m

⋃
n≥m An is more vividly

captured in the language “An occurs infinitely often” and denoted An i. o..
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FIGURE E.1.—State trajectories Vt satisfying (3) for a regular clique of two firms. Equilibria are shown as stars,
with Vinf and Vsup wrapped in a square and a circle, respectively. Two trajectories beginning in the orthant K2([1,0]⊺)
and passing close to the orthant K2([1,1]⊺) escape into it. The location of escape is shown in a red frame.

FIGURE E.2.—Four equilibria, their attraction basins, and several representative trajectories Vt for the model
with two firms: β = 0.6, c= 0.6, τ = 0.4, and e= 0.5.
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close to the boundaries of the orthants. This suggests that, at least in low dimensions, trajectory
escape to nearby orthants is a rare event.

But what about higher dimensions and (locally) highly irregular network instances? Are
such escapes rare in such networks? And, if present, are they localized, occurring only in some
orthants? In Fig. E.3, we display the aggregated results of a large number of model simulations
for a network of n= 32 firms for the cases of a regular clique, a single instance of an irregular
clique, and a random clique (with each simulation run using a new network instance). For
each network, we track the orthant locations of the initial firm valuations V0 and the final firm
valuations V∞ = limtVt. In regular cliques, trajectory dynamics largely follow the idealized
dynamics diagram of Fig. 7 (though, as mentioned earlier, trajectory escapes are possible). In
the case of a single instance of an irregular clique, there is an increased frequency of sporadic
trajectory escape from orthants K(k) where the number k of solvent firms is close to k low or
k high into the extremal basins of attraction. The picture from a single instance of an irregular
clique does not change significantly when we aggregate results over a large number of random
clique instantiations in the third figure though we now also see the sporadic emergence of
equilibria in orthants adjacent to the two extremal orthants in rare random clique instances.
To summarize: the simulations suggest that trajectory escapes are largely confined to orthants
K(k) where the number k of solvent firms is close to k low or k high, that is to say, in the orthants
at the boundaries of the “safety band” in the state space.

FIGURE E.3.—Tracking trajectory escape for a network of n= 32 firms for the cases of a regular clique, a single
instantiation of an irregular clique, and a random clique. Each cell represents the number of solvent firms in a given
orthant K(k). A fixed number of runs is made for each value of k by, for each of the three cases, selecting a random
initial point V0 in that orthant and tracking the orthant location of the corresponding limit point V∞. The cell color
intensity reflects the frequency of the associated transition aggregated over the individual runs. The diagonal cells
correspond to orthant preservation by a trajectory (no escape). In all three cases, trajectories originating in orthants
with k ≤ k low are typically absorbed by Vinf, while trajectories originating in orthants with k ≥ k high are typically
absorbed by Vsup. Trajectories originating in orthants with k low < k < k high are generally confined to the orthant,
though there is a greater frequency of escape from boundary orthants in the cases of the irregular and random cliques.

It should be noted that the similarity of the dynamics when considering a large number of
random cliques drawn from a distribution (the diagram on the right in Fig. E.3) to that of
the regular clique (the diagram on the left in Fig. E.3) is not due to any sort of “averaging”
over random network instances; even a single arbitrarily chosen, sufficiently large, irregular
network instance (the middle diagram in Fig. E.3) with high probability manifests the “typical”
dynamics of the regular clique, and the slightly “diffused” nature of two latter diagrams in
Fig. E.3 stems from local irregularities in the network rather than randomness per se.

Our findings for trajectories for random cliques are summarized in the revised firm valuation
dynamics diagram shown schematically in Fig. E.4.
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FIGURE E.4.—Diagram of firm valuation dynamics in random cliques adjusted to account for possible trajectory
escapes from orthants at the boundaries of the “safety band” in the state space to the adjacent extremal orthant.

APPENDIX F: PROOFS OF THEOREMS 6 AND 7

THEOREM 6—Dynamics in Orthants Containing an Equilibrium: If the trajectory Vt starts
in orthant Kn(k), then, for all t > 0 until the trajectory escapes Kn(k) or, if such an escape
never happens, for all t > 0,

Vt = exp
(
−(I−C)t

)(
V0 −V(k)

)
+V(k), (22)

and, a fortiori, if the trajectory does not escape Kn(k), lim
t→∞

Vt =V(k).

PROOF: The assumption that the state Vt never leaves the orthant Kn(k) for all considered
times t allows us to treat the system (3) as an affine linear system. We begin by a change of
coordinates, moving the origin to V(k): set xt = Vt −V(k). In these new coordinates, the
original system (3) takes the form

ẋt =−(I−C)xt

[
with initial condition x0 =V0 −V(k)

]
.

It is well known from the theory of linear systems, that this system has the unique solution

xt = exp
(
−(I−C)t

)
x0.

Returning from x to V, we obtain (22).
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To show convergence to the limit point V(k), begin with the trite observation (C⊺1)i = c.
As 0< c < 1, by the Gershgorin disc theorem, the spectral abscissa of the matrix −(I−C) is
negative (see the proof of Lemma 1),

µ
(
−(I−C)

)
:= max

{
Re(λ) : λ ∈ spec

(
−(I−C)

)}
≤ c− 1< 0.

It follows that the matrix −(I−C) is Hurwitz (or convergent), whence, for its matrix expo-
nential, lim

t→∞
exp
(
−(I−C)t

)
= 0n×n. We conclude that lim

t→∞
Vt =V(k). ▶

THEOREM 7—Dynamics in Orthants Containing an Equilibrium for Regular Cliques: If the
trajectory Vt = (V1,t, . . . , Vn,t)

⊺ starts in orthant Kn(k), then, for all t > 0 until the trajectory
escapes Kn(k) or, if such an escape never happens, for all t > 0,

Vi,t =
[
avg(V0) + β

(
1− |k|

n

)
− V 0

i (k)
]
exp
(
−(1− c)t

)
(24)

−
[
avg(V0) + β

(
1− |k|

n

)
− Vi,0

]
exp(−t) + V 0

i (k),

and, a fortiori, the trajectory approaches the equilibrium exponentially fast.

PROOF: The trajectory Vt is given by (22) with C = c
n
11⊺ and V(k) =V0(k). Recall two

elementary facts about matrix exponentials: (1) if Λ = diag(λ1, . . . , λn) is diagonal then its
matrix exponential is given by exp(Λ) = diag

(
eλ1 , . . . , eλn

)
; and (2) if A is a real, symmetric

matrix with eigendecomposition A =UΛU−1, its matrix exponential is given by exp(A) =
U exp(Λ)U−1. For the case of the regular clique we may identify A = −(I −C) = −

(
I −

c
n
11⊺

)
as almost diagonal. Routine computation now shows (see Lemma 2)

Λ=

[
0(n−1)×(n−1) 0

0 c

]
,

U=

[ −1⊺
n−1 1

I(n−1)×(n−1) 1n−1

]
,

U−1 =
1

n

([−1(n−1)×n

11×n

]
+ (n− 1)Sn

)
,

where Sn is the n-by-n upper shift matrix with n− 1 ones above the main diagonal, with all
other elements equal to zero. After simplification, we now get

exp
{
−
(
I− c

n
11⊺

)
t
}
= 1

n

{
exp
(
−(1− c)t

)
− exp(−t)

}
11⊺ + exp(−t)I.

Substituting into the expression (22) for Vt, after simplification, we recover the claimed re-
sult (24). ▶
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