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Abstract

This paper develops a new method for identifying econometric models with

partially latent covariates. Such data structures arise in industrial organization

and labor economics settings where data are collected using an input-based

sampling strategy, e.g., if the sampling unit is one of multiple labor input fac-

tors. We show that the latent covariates can be nonparametrically identified, if

they are functions of a common shock satisfying some plausible monotonicity

assumptions. With the latent covariates identified, semiparametric estimation

of the outcome equation proceeds within a standard IV framework that ac-

counts for the endogeneity of the covariates. We illustrate the usefulness of our

method using a new application that focuses on the production functions of

pharmacies. We find that differences in technology between chains and inde-

pendent pharmacies may partially explain the observed transformation of the

industry structure.
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1 Introduction

This paper develops a new method for identifying econometric models with partially

latent covariates. We show that a broad class of econometric models that play a

large role in industrial organization and labor economics can be nonparametrically

identified if the partially latent covariate variables satisfy certain monotonicity as-

sumptions. Examples that fall into this class of models are a variety of different

production, skill formation, and achievement functions.1

It is often plausible to assume that the different inputs or covariates are functions

of a common unobserved random shock, and we consider models in which it is natural

to impose strict monotonicity in this common shock.2 The monotonicity assumption

imposes functional dependencies on the explanatory variables as pointed out in the

context of production function estimation by Ackerberg, Caves, and Frazer (2015).

The key insight of this paper is that we can leverage the functional dependence

between inputs to achieve identification within a partially latent covariate framework.

In that sense, we turn the functional dependence problem on its head to impute

the partially latent covariates. Broadly speaking, our imputation is in the spirit of

matching algorithms (Rubin, 1973). In contrast to traditional matching algorithms,

we propose to match on the expected dependent variable to impute missing covariates.

The partially latent data structure that we study in this paper arises quite nat-

urally in certain matched employer-employee data sets which contain information

collected from individuals as well as information collected from businesses or estab-

lishments. In the past decades economists made enormous strides in finding and

using matched employer-employee data, which have provided a new empirical basis

for the study of workplace organization, compensation design, mobility, and produc-

tion. In this paper we focus on cross-sectional employer-employee data sets which

are commonly used in applied microeconomics and econometrics. Following Abowd

and Kramaz (1999), an important dimension that distinguishes matched employer-

employee data sets is the sampling design. Some sampling designs focus on the firm

while others use the employee as the primary unit of analysis. In this paper we focus

1Other potential applications in applied microeconomics are discussed in the conclusions.
2Note that this assumption is commonly used, for example, in the production function literature

as discussed by Olley and Pakes (1996). In particular, this assumption does not require that inputs
are “optimally” chosen by competitive firms and is consistent with a broad class of strategic and
non-strategic models that may describe the agents’ behavior.
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on the later type of sampling designs that often only sample one employee or a small

random set of employees of the firm.

This lack of sampling of all employees of the firm may not be important from

a perspective of labor economics, which largely focuses on job mobility and wage

determination. However, it is more problematic if the focus is on productivity mea-

surement within a production function framework. If the survey does not sample all

employees in a firm then some important inputs are latent from the perspective of the

econometrician. As a consequence, we call this type of sampling design an “input-

based sampling” approach, since the sampling unit is one of the multiple labor input

factors. We provide a formal definition of this data structure in this paper. The main

application that we study considers a production team in which team members per-

form different tasks. In our data set only one member from each team is interviewed

to provide the data. It is plausible that this person knows the team’s output, but

does not have complete information about the other team members’ input choices.

By randomly sampling the teams we elicit information from all different types of team

members and hence input factors.

Once we have identified the latent inputs, the estimation of the outcome or pro-

duction function can proceed using standard semiparametric methods developed in

the econometric literature. One key issue here is that the common shock creates

an endogeneity problem.3 We show that we can combine our identification results

with a variety of linear, nonlinear, and semiparametric estimation strategies. In that

sense our approach is flexible and allows researchers to make appropriate functional

form assumptions if necessary. We consider the scenario in which researchers only

have access to a single cross-section of data and rely on instrumental variables for

estimation.4 For example, production function estimation relies on the assumption

that differences in local input prices give rise to differences in input choices that are

uncorrelated with productivity shocks at the local level.5

3In the context of production function estimation this endogeneity problem is referred to as the
transmission bias problem since inputs are correlated with unobserved productivity shocks (Marschak
and Andrews, 1944).

4Hence we cannot address this endogeneity problem using panel data with fixed effects, first
advocated by Hoch (1955, 1962) and Mundlak (1961, 1963). We can also not use more sophisticated
timing assumptions within a control function or IV frameworks as discussed, for example, in Olley
and Pakes (1996) and Blundell and Bond (1998, 2000), Levinsohn and Petrin (2003), and Ackerberg,
Caves, and Frazer (2015). We discuss the extension of our methods to this scenario in the conclusions.

5Hence, local input prices can serve as valid instruments for endogenous input choices. See
Griliches and Mairesse (1998) for a critical discussion of the assumption that these input prices are
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Estimation proceeds in two steps. In finite samples, we first nonparametrically

estimate the latent input functions. Plugging the estimators into our outcome equa-

tion, we can estimate the parameters of this function using a standard IV estimator

based on the observed and imputed inputs. The second econometric challenge then

arises for the need to account for the sequential nature of the estimator when deriv-

ing the correct rate of convergence and computing asymptotic standard errors. To

illustrate this we consider the standard log-linear, Cobb-Douglas model. We propose

two different estimators and provide both high-level and lower-level conditions under

which these semiparametric two-step estimators are consistent and asymptotically

normal at the usual parametric rate of convergence. The technical proofs are based

on the general econometric theory on semiparametric two-step estimation as in Newey

(1994), Newey and McFadden (1994), and Chen, Linton, and Van Keilegom (2003).

Finally, we show that using the conditional expectation of outcomes as the dependent

variable produces efficiency gains relative to the more traditional estimator that uses

the observed output instead.

To evaluate the performance of our estimator we conduct a variety of Monte Carlo

experiments. Our findings suggest that our estimators are well-behaved in samples

that are similar in size to those observed in our applications discussed below. We also

study the behavior of our estimator when we pool observations across markets as is

often necessary for many practical applications.

The type of sampling design that gives rise to a partial latent data structure

arises in administrative employer-employee data sets that are designed by statisti-

cal agencies. It is also common among profession-based surveys that focus on one

narrowly-defined occupation. These surveys tend to be national in scope since pro-

fessions have generally a national market, the characteristics of which the survey

organizers want to know. In our main application, we use data from the National

Pharmacist Workforce Survey (NPWS) in 2000 which not only collects data for each

pharmacist that is surveyed but also a limited amount of information at the store

level including output.

We implement our new estimator using the NPWS and study differences in pro-

ductivity in pharmacies. Goldin and Katz (2016) have forcefully argued that this

exogenous. Similarly, skill formation and achievement function estimation requires the choice of
suitable instruments for parental inputs. For a more general discussion of the issues encountered in
estimating achievement and skill formation functions see, among others, Todd and Wolpin (2003)
and Cunha, Heckman, and Schennach (2010).
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is one of the most egalitarian and family-friendly professions in which females face

little discrimination in the workforce. One potential explanation of this fact has been

related to the rise of chains that have replaced independent pharmacies in many

local markets. Here we estimate a team production function that distinguishes be-

tween managerial and non-managerial certified pharmacists. We can, therefore, test

the hypothesis whether managers have become more productive in chains than in

independent pharmacies. We find that we can reject the null hypothesis that inde-

pendent pharmacies and chains have the same technology. Estimates for independent

pharmacies are somewhat noisy but do not suggest that there is a large difference be-

tween managers and regular employees. Estimates for chains suggest that managers

are more productive than regular employees. We thus conclude that chains seem to

improve the effectiveness of managers which may partially explain why they have

become the dominant firm type in this industry.

This paper relates to the line of literature on production function estimation by

proposing a method to handle the problem of partially latent inputs. Our identifi-

cation strategy is based on strict monotonicity and the consequent invertibility in a

scalar unobservable, a feature also leveraged by Olley and Pakes (1996) and Levin-

sohn and Petrin (2003). They essentially use an auxiliary variable together with an

input to control for the unobserved productivity shock: investment with capital in

Olley and Pakes (1996) and intermediate inputs with capital in Levinsohn and Petrin

(2003). In comparison, we use the output with the observed input to pin down the

productivity shock. We emphasize that the feature of functional dependence between

input variables, which was pointed out by Ackerberg, Caves, and Frazer (2015) as an

underlying problem in Olley and Pakes (1996) and Levinsohn and Petrin (2003), in

fact, forms the basis of our imputation strategy. While most of these papers focus

on value-added production functions, there is also much interest in estimating gross

output production functions. Doraszelski and Jaumandreu (2013) propose a solution

to the transmission bias problem that also relies on observed firm-level variation in

prices. In particular, they show that by explicitly imposing the parameter restrictions

between the production function and the demand for a flexible input and by using

this price variation, they can recover the gross output production function. Gandhi,

Navarro, and Rivers (2020) provide an alternative identification strategy to estimate

gross output production functions that works well in short panels. Beyond these con-

ceptual linkages, our paper has a different focus from these papers cited above: they
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focus more on the dynamic nature of capital inputs, while we focus on the problem

of partially latent inputs. Moreover, the estimation of production functions is just

one of many applications of our general identification result. This paper shows that

our methods may be even more useful for applications outside of IO where these data

structures are more prevalent as we discuss below.

Also, we should point out that this paper is both conceptually and technically

different from previous work on missing data in linear regression and, more generally,

GMM estimation settings, such as Rubin (1976), Little (1992), Robins, Rotnitzky,

and Zhao (1994), Wooldridge (2007), Graham (2011), Chaudhuri and Guilkey (2016),

Abrevaya and Donald (2017) and McDonough and Millimet (2017). This line of liter-

ature usually exploits two types of conditions: first, observations with no missing data

occur with positive probability, and second, data are “missing at random” (potentially

with conditioning). Neither condition is satisfied in our setting: every observation

contains missing data, and missing can be correlated with other observables as well

as the unobserved productivity shock. Instead, we rely on monotonicity in a scalar

unobservable shock to identify and impute the latent input.

Similarly, our monotonicity conditions also differentiate our paper from the econo-

metric literature on data combination as surveyed by Ridder and Moffitt (2007),

which mostly involves conditional independence assumptions. In particular, our pa-

per shares a similar flavor with the “moment-matching” approach in this literature,

such as Angrist and Krueger (1992), Ridder and Moffitt (2007), and Buchinsky, Li,

and Liao (2022): these papers utilize conditional independence to achieve “moment

matching”, while we exploit monotonicity to do so. Hence, our proposed method may

also be useful as a complementary data combination method for scenarios where our

monotonicity conditions are interpretable and justifiable.

Broadly speaking, our imputation is in the spirit of matching algorithms (Rubin,

1973). In contrast to traditional matching algorithms, we propose to match on the

expected dependent variable to impute missing covariates. Hence, we do not apply

the matching approach within the standard potential outcome framework of program

evaluation based on the potential outcome model developed by Fisher (1935).6

The rest of the paper is organized as follows. Section 2 presents our main identi-

6For a discussion of the properties of matching estimators in that context see, among others,
Rosenbaum and Rubin (1983), Heckman, Ichimura, Smith, and Todd (1998), and Abadie and Imbens
(2006).
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fication result. Section 3 discusses the problems associated with estimation. Section

4 reports the results from a Monte Carlo Study. Section 5 introduces our application

focusing on the production functions of pharmacies. It discusses our data sources

and presents our main empirical findings. Section 6 provides a discussion of other

potential applications and presents our conclusions.

2 Identification of Partially Latent Covariates

2.1 Model Setup

Consider the following cross-sectional econometric model:

yi = F (xi1, xi2, ui) + εi (1)

where i = 1, ..., N indexes a generic observation from a random sample, yi denotes

an observable scalar-valued output variable, and xi := (xi1, xi2) denotes a two-

dimensional vector of covariates.7 Both ui and εi are scalar-valued unobserved er-

rors, with ui taken to be a structural error (such as a productivity shock) that is

endogenous with respect to xi, while εi is a “measurement error” that is assumed

to be exogenous. The unknown outcome function F may be either parametric or

nonparametric.

First, we need to define what we mean by partially latent covariates, a key data

structure that we seek to handle in this paper.

Assumption 1 (Partially Latent Covariates). For each observation i, the econome-

trician either observes xi1 or xi2, but never both.

Essentially, one of the two covariates (xi1, xi2) is latent in each observation in the

data. In the following, it will be convenient to write

di :=

1, if xi1 is observed and xi2 is latent,

2, if xi2 is observed and xi1 is latent,

so that effectively (di, (2− di)xi1, (di − 1)xi2) is observed for i.

7See Corollary 1 for the extension of our identification method to settings with covariates of
higher dimensions.
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Example (Team Production Functions). Such data structures, for example, arise

when the data is collected at the individual input level while we are interested in

some firm or team level output variable that also depends on other individual inputs

who are not surveyed in the data. Our main application focuses on identifying and

estimating team production functions.8 For simplicity, let us assume a log-linear

Cobb-Douglas specification:

yi = α0 + α1xi1 + α2xi2 + ui + εi, (2)

where yi is the logarithm of the team’s output, xi1 is the logarithm of hours worked by

the first team member (a manager), and xi2 is the logarithm of hours worked by the

second team member (an employee).9 The data structure described in Assumption

1 arises if the researcher interviews only one member, and not both members of the

team. We also refer to this technique as an “input-based sampling” approach. It is

plausible that the interviewed team member knows the team’s output, but does not

have complete information about the other team member’s input choices. Hence, the

surveyed person provides the output level, yi, and her own hours worked, xi1 or xi2,

leading to the problem of partially latent inputs as defined in Assumption 1.

The next assumption imposes a monotonicity condition on the outcome function.

Assumption 2 (Monotonicity of the Outcome Function). F is nondecreasing in all

its arguments and is strictly increasing in at least one of its arguments.

This assumption essentially states that the inputs (xi1, xi2) and the productivity

shock ui have nonnegative effects on the output variable yi. Moreover, the monotonic-

ity is strict in, at least, one of the three arguments xi1, xi2, and ui. The restriction

of monotonicity with respect to (xi1, xi2) is substantive: it requires that the inputs

cannot negatively affect the output variable holding everything else fixed. In con-

trast, the restriction of monotonicity with respect to ui is largely innocuous given the

interpretation of ui as a (weakly) “positive shock”.

8We use the term “team production function” since we largely focus on different types of labor
inputs and abstract from capital or other inputs that may be subject to dynamics and adjustment
costs.

9The team production concept is also related to the concept of task production functions, which
are surveyed by Acemoglu and Autor (2011). Haanwinckel (2018) estimates a task production
function in which each team member specializes in a single task.
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Example (Team Production Functions Continued). Assumption 2 is satisfied in the

linear additive model in equation (2) provided that the model satisfies the additional

parameter restriction that α1, α2 ≥ 0.

Next, we turn to the assumptions on the unobserved errors ui and εi in equation

(1). First, we assume that the endogenous inputs xi are strictly monotone functions

of the scalar productivity shock ui, potentially after conditioning on a set of observed

covariates zi, that may affect the inputs xi.

Assumption 3 (Strict Monotonicity of the Covariates in the Structural Shock).

There exists a vector of additional observed covariates zi and two deterministic, real-

valued functions h1, h2, such that

xi1 = h1 (ui, zi) , xi2 = h2 (ui, zi) ,

with both h1 (ui, zi) and h2 (ui, zi) strictly increasing in their first argument ui for

every realization of zi.

We note that the functions h1 and h2 can be unknown and nonparametric. The

only requirement here is that, after conditioning on zi, the covariates xi1 and xi2 can

be written as deterministic monotone functions of the error ui. Such a “monotonicity-

in-a-scalar-error” assumption has been widely used in the econometric literature on

identification analysis.10

Example (Team Production Functions Continued). In the IO literature, ui is typi-

cally interpreted as a “productivity shock” that enters into the choices of inputs xi. In

contrast, εi captures either a measurement error or an “ex-post productivity shock”

that does not affect inputs, since it is not observed to the firms when input choices

are made. Assumption 3 requires that the input choice functions are strictly increas-

ing in the “productivity shock” ui, conditional on any additional observed covariates

zi that may influence input choices, as suggested, for example, by Olley and Pakes

(1996)11 and others. 12 For concreteness, we take zi to be local wages for managers

10See Matzkin (2007) for a general survey, and see Ackerberg, Caves, and Frazer (2015) in the
specific context of production function identification, which fits into our working example (2).

11We only consider the cross-sectional setting here, but the identification arguments below for the
imputation of partially latent inputs can also be applied to a panel data setting with dynamic input
choices, such as in Olley and Pakes (1996), where current capital input kit is a function of last-period
capital stock ki,t−1 and current-period productivity shock uit. In that setting, lagged input ki,t−1
will need to be part of the control variables zi,t.

12This is a standard assumption that underlies most, if not all, existing approaches of production
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and employees.

Assumption 3 can be further micro-founded in a variety of settings based on

efficiency or equilibrium criteria, which we elaborate in Subsection 2.3, given that

Assumption 3 is the key assumption in this paper.

Assumption 4 (Exogeneity of the Measurement Error). E [εi|xi, zi, di] = 0.

Note that, under Assumption 3, conditioning on (xi, zi, di) is equivalent to con-

ditioning on (ui, zi, di). In the production function estimation literature without the

partial latency problem, E [εi|ui, zi] = 0 is a standard assumption imposed on εi. In

our current setting, we are requiring that εi is furthermore exogenous with respect to

the partial latency indicator variable di.

It is worth noting that this paper is both conceptually and technically different

from previous work on missing data in linear regression and, more generally, GMM

estimation settings, such as Rubin (1976), Little (1992), Robins, Rotnitzky, and Zhao

(1994), Wooldridge (2007), Graham (2011), Chaudhuri and Guilkey (2016), Abrevaya

and Donald (2017) and McDonough and Millimet (2017). This line of literature

usually exploits two types of assumptions to handle missing values: first, observations

with no missing data occur with positive probability, and second, data are “missing

at random (MAR)”: the indicator for missingness is exogenous to or independent of

certain observable covariates or constructed conditioning variables. Neither condition

is satisfied in our setting: here every observation contains “missing values”, and the

partial latency indicator di is allowed to be correlated with other observables as well

as the unobserved productivity shock. Instead, we will be relying on monotonicity

conditions to identify and impute the latent input.

Specifically, Assumption 4 here is simply requiring that εi is a “measurement er-

ror” term that is exogenous with respect to the observables and consequently the

productivity shock ui, but does not impose any restriction on the dependence struc-

ture between the partial latency indicator di and other structural components of the

model (ui, xi, zi).

That said, we do require the following very mild condition on the variable di.

Assumption 5 (Nondegenerate Latency Probabilities). 0 < P {di = 1|ui, zi} < 1.

function estimation in one way or another: see, for example, Griliches and Mairesse (1998) and
Ackerberg, Caves, and Frazer (2015) for reviews of the relevant literature.
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Assumption 5 guarantees that conditioning on realizations of (ui, zi) we will ob-

serve xi1, and xi2, with strict positive probabilities. Again, this assumption is much

weaker than “missing-at-random” assumptions, which would usually require that

P {di = 1|ui, zi} is constant in ui, zi, or some other variables. In contrast, here

we do not impose any restrictions on the dependence of P {di = 1|ui, zi} on (ui, zi)

beyond non-degeneracy.

As discussed in the introduction, allowing for di to depend on (ui, zi), and thus

xi, is also a feature that differentiates our monotonicity-based method from the

“moment-matching method” in the literature on data combination, such as (Angrist

and Krueger, 1992; Ridder and Moffitt, 2007; Buchinsky et al., 2022), which are based

on conditional independence of di.

2.2 Main Result

We are now ready to present our main identification result.

Theorem 1. Under Assumptions 1-5, for each observation i, the latent input, xi2 if

di = 1 or xi1 if di = 2, is point identified.

Given that the identification strategy underlying the Theorem 1 is the key novelty

of this paper, we prove Theorem 1 in the main text below.

Proof. The starting point of our identification strategy is the reduced form of our

model with the measurement error term:

yi = F (ui, zi) + εi (3)

where

F (ui, zi) := F (h1 (ui, zi) , h2 (ui, zi) , ui) . (4)

Note that F (ui, zi) is strictly increasing in ui given Assumptions 2 and 3.

Now, define γ1 (c) as the expected output of firm i conditional on the event that

xi1 is observed (di = 1) to have a given value of c1, i.e.,

γ1 (c1; z) := E [yi| zi = z, di = 1, xi1 = c1] . (5)

Note that γ1 is directly identified from the data given Assumptions 1 and 5.13

13Assumption 5 ensures that the conditioning event occurs with strictly positive probability.
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Taking a closer look at γ1, we have, by equation (3), Assumption 3, and Assump-

tion 4,

γ1 (c1; z) = E
[
F (ui, zi) + εi

∣∣ zi = z, di = 1, h1 (ui, zi) = c1
]

= F
(
h−11 (c1; z) , z

)
+ E

[
εi| zi = z, di = 1, ui = h−11 (c1; z)

]
= F

(
c1, h2

(
h−11 (c1; z) , z

)
, h−11 (c1; z)

)
. (6)

By conditioning on zi and a particular observed value of xi1 = c1, we are effectively

conditioning on the unobserved productivity shock ui. Aggregating across observa-

tions allows us to average out the measurement errors and obtain a quantity that is

implicitly a function of the productivity shock ui = h−11 (c1; zi).

Next, observe that γ1 (c1; z) is strictly increasing in c1, since

∂

∂c1
γ1 (c1; z) = F1 + F2 ·

∂

∂u
h2
(
h−11 (c1) , z

) 1
∂
∂u
h1
(
h−11 (c1) , z

) + F3 ·
1

∂
∂u
h1
(
h−11 (c1) , z

)
> 0 (7)

since ∂
∂u
h1,

∂
∂u
h2 > 0 by Assumption 3, and the partial derivatives F1, F2, F3 of F

are all nonnegative with, at least, one being strictly positive by Assumption 2. This

guarantees that the inverse function γ−11 (·; z) exists.14

Similarly, we can define

γ2 (c2; z) := E [yi| zi = z, di = 2, xi2 = c2]

which is strictly increasing in c2 and thus invertible with respect to its first argument.

Now, the key idea behind our identification strategy is to consider the event that

γ1 (c1; z) = γ2 (c2; z) (8)

for some c1, c2, and z. By (6), equation (8) holds if and only if

h−11 (c1; z) = h−12 (c2; z) = u (9)

14The partial derivatives F1, F2, F3 of F are evaluated at
(
c1, h2

(
h−11 (c1; z) , zi

)
, h−11 (c1; z)

)
.
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for some value of the productivity shock u, which is furthermore equivalent to

c1 = h1 (u; z) , c2 = h2 (u; z) (10)

for some u.15

Now, consider any observation i with covariates xi1 and xi2. Recall that xi1 =

h1 (ui; zi) and xi2 = h2 (ui; zi) by Assumption 3. Then, by the equivalence of (10)

and (8) established above, we deduce that

γ1 (xi1; zi) = γ2 (xi2; zi) .

Hence, if xi1 is observed while xi2 is latent, then the latent xi2 can be identified via a

composition of γ−12 and γ1 as

xi2 = γ−12 (γ1 (xi1; zi) ; zi) ,

where on the right-hand side xi1 is observed and γ1, γ2 are nonparametrically identified

functions. Similarly, xi1 can be identified when xi2 is observed.

In summary, we can identify the partially latent covariate by

xi2 = γ−12 (γ1 (xi1; zi) ; zi) , for di = 1,

xi1 = γ−11 (γ2 (xi2; zi) ; zi) , for di = 2. (11)

It should be pointed out that (11) is an explicit representation of the “functional

dependence” between the two input variables as in Ackerberg et al. (2015): xi1 is a

deterministic function of xi2, and vice versa, conditional on instruments zi. While

functional dependence was a concern in the context of Olley and Pakes (1996), Levin-

sohn and Petrin (2003) and Ackerberg et al. (2015), here we are exactly leveraging the

functional dependence between input variables to solve the partially latency problem.

15To see more clearly why (10) is true, consider WLOG the possibility that c1 = h1 (u1; z) and
c2 = h2 (u2, z) for some u1 > u2. Then by (6) we have

γ1 (c1; z) = F (h1 (u1, z) , h2 (u1, z) , u1)

> F (h1 (u2, z) , h2 (u2, z) , u2) = γ (c2; z) .
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Remark 1 (More Than Two Inputs). We have thus far focused on the case with

two inputs. It is straightforward to see that our model, assumptions, and the main

identification result can be easily generalized to the case with inputs of an arbitrary

finite dimension D. This result is summarized by the following Corollary.

Corollary 1. Consider the model yi := F (xi1, ..., xiD, ui)+εi along with Assumptions

2 and 4 unchanged, and the following modifications of other assumptions:

(i) Assumption 1: for each i at least one out of D inputs is observed.

(ii) Assumption 3: all D inputs are strictly increasing in ui given zi.

(iii) Assumption 5: all D inputs are observed with strictly positive probabilities.

Then the latent inputs are identified.

Remark 2. If Condition (i) in Corollary 1 is strengthened so that more than one inputs

are simultaneously observed in a given observation (with positive probability), then

we would also obtain over-identification, and the input-monotonicity restriction in

Assumption 3 becomes empirically refutable. Alternatively, with two or more inputs

simultaneously observed, we would be able to accommodate higher dimensions of

unobserved shocks, provided that the dimension of the unobserved shock ui is strictly

smaller than the dimension of the covariates D. Since such an extension would be

more involved and move farther away from the applications we consider in this paper,

we leave it as a direction for future research.

2.3 Discussion of Assumption 3

The monotonicity of input choices in the unobserved productivity shock (Assump-

tion 3) can be further micro-founded in a variety of settings based on efficiency or

equilibrium criteria.

On a general level, one may use the theory of monotone comparative statics to

obtain more primitive conditions for input monotonicity, which typically involve vari-

ous forms of supermodularity (or increasing-difference) conditions: see Topkis (1998)

and Vives (2000) for general treatments on this topic. Essentially, in settings where

input choices are made by a single decision maker, we need the objective function

to be supermodular in input variables x and the productivity shock u. In settings
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where the input choices are generated as equilibria of a strategic game between two

decision makers, strategic complementarity is typically required (so that the game

is supermodular) to establish monotonicity. For games with strategic substitutes,

we further need a condition to ensure that the extent of strategic substitutes is not

overwhelming: see, for example, Roy and Sabarwal (2010).

We now provide some concrete examples that illustrate how Assumption 3 can be

satisfied: as the optimal choice of a single decision maker, as the Nash equilibrium

of a game of strategic complements, as the Nash equilibrium of a game of strategic

substitutes.

Optimal Choice of a Single Decision Maker

Suppose that firms optimally choose inputs to maximize profits under the Cobb-

Douglas production function with a constant output price. Formally, each firm i

solves the problem

max
Xi1,Xi2

eα0+uiXα1
i1 X

α2
i2 − Zi1Xi1 − Zi2Xi2,

where Xi1, Xi2 are inputs in its original scale (with xi1, xi2 denoting the logarithm of

Xi1, Xi2) and Zi1, Zi2 are input prices in its original scale (with zi1, zi2 denoting the

logarithm of Zi1, Zi2). Then the input choice functions h1 and h2 are characterized

by the relevant first-order conditions and have simple closed-form solutions that are

linear, increasing in ui, and decreasing in zi.
16 In particular, we have:

h1 (u, z) =
α0 + (1− α2) logα1 + α2 logα2 − (1− α2) z1 − (1− α2) z2 + u

1− α1 − α2

,

satisfying Assumption 3. See Appendix A.1 for more details of the derivation.

16We note that the problem of partially latent inputs is less relevant in that case since the “reduced-
form” regression of the observed inputs on the exogenous wages wi will indirectly recover the pro-
duction function parameters α. This corresponds to the “duality approach” to production function
estimation as discussed in detail in Griliches and Mairesse (1998). However, an attractive feature
of our approach is also that we can test whether inputs are optimally chosen. If we reject the null
hypothesis that inputs are optimal, our estimator is still feasible while duality estimators are not.
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Nash Equilibrium in a Game of Strategic Complements

Assumption 3 is also satisfied if the inputs are Nash equilibrium choices of two part-

ners, each of whom solves the following optimization problem: given u, z and the

other partner’s choice X2, partner 1 solves

max
X1

π1 (X, u;Z) := λ1 (F (X, u)− Z1X1 − Z2X2) + Z1X1 −
1

2
c1X

2
1 ,

where F (X, u) := eu+α0Xα1
1 Xα2

2 is the Cobb-Douglas production function. The term

F (X, u) − Z1X1 − Z2X2 is the profit of the firm (as in the single decision maker’s

problem described above), and λ1 ∈ (0, 1) is a positive share of firm profit distributed

to partner 1 as “dividends”. Moreover, in addition to the “dividends”, partner 1

receives her wage income Z1X1. Finally, 1
2
c1X

2
1 captures partner 1’s quadratic private

cost of input X1 with c1 > 0.

Similar, partner 2 solves

max
X2

π2 (X, u;Z) := λ2 (F (X, u)− Z1X1 − Z2X2) + Z2X2 −
1

2
c2X

2
2 ,

with λ2 ∈ (0, 1) and c2 > 0.

This is a (supermodular) game of strategic complementarity since

∇X1X2πj = λj∇X1X2F = λjα1α2e
α0+uXα1−1

1 Xα2−1
2 > 0. (12)

Furthermore, the payoff functions feature increasing differences between the produc-

tivity shock u and the input xj:

∇uXjπj = λj∇uXjF = αje
α0+uX

αj−1
j Xαk

k > 0. (13)

With these conditions and the theory on monotone comparative statics, say, Mil-

grom and Roberts (1990), we can show that the unique Nash equilibrium X∗ (u, Z)

of this game is strictly increasing in u, thus satisfying Assumption 3. See Appendix

A.2 for the detailed proof.
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Nash Equilibrium in a Game of Strategic Substitutes

Consider an example with a married couple and two parental households, j = 1, 2,

whose wealth levels are respectively Z1 and Z2, which is based on Bergstrom, Blume,

and Varian (1986). Parents are altruistic toward their married offspring but not

toward that offspring’s spouse. Parental household j has utility

vj (X,Z) = log (Zj −Xj) + u log (X1 +X2)

where Xj is the married couple’s gift from parental household j and u is the proba-

bility that both parental households think the children’s marriage will endure. This

leads to a noncooperative game between the two parental households since the incen-

tive for either household to gift the offspring couple diminishes as the other parental

household gives more. Formally, parental household j’s marginal return from Xj

∂

∂Xj

vj (X,Z) = u · 1

Xj +Xk

− 1

Zj −Xj

is decreasing in the other parental household’s return Xk, and thus the best response

of household j

BRj (Xk) =
u

1 + u
Zj −

1

1 + u
Xk

is also decreasing in Xk. Hence, this is a game of strategic substitutes.

There is a unique Nash equilibrium of this game between the two parental house-

holds, given by

X∗1 =
(1 + u) Z1 − Z2

2 + u
, X∗2 =

(1 + u) Z2 − Z1

2 + u

for any u and wealth levels Z1, Z2, provided that the two households that are not

“too” different in wealth so that interior solutions in X∗1 , X
∗
2 obtain.17 Both X∗1 and

X∗2 are strictly increasing in the shock u, and hence the outcome is strictly increasing

in u.

17Formally, for the interiority we also need to require that u is strictly positive and bounded away
from 0 in this stylized example. One can perturb the example in various ways to ensure interiority
without such a restriction, but at the cost of additional complications.
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3 Estimation of the Outcome Function

Once the partially latent covariates xi1, xi2 are identified and imputed, researchers

may use them to identify and estimate functions or parameters defined based on

(xi1, xi2). Note that researchers may use (xi1, xi2) for completely different purpose

from the identification and estimation of the outcome function F . Hence, our pro-

posed method in Section 2 can be thought as a monotonicity-based method for data

imputation or data combination.

That said, how to identify and estimate the outcome function F is a natural

question to ask, given that our method for the identification of partially latent inputs

is built upon assumptions on F . Hence we focus on the identification and estimation

of F in this section.

With the latent inputs identified in Theorem 1, we are back to equation (1)

yi = F (xi1, xi2, ui) + εi,

but now we can effectively regard both xi1 and xi2 as being known, at least for iden-

tification purposes. Researchers may proceed to identify the production function F

under appropriate application-specific assumptions as in a “standard” setting without

the partial latency problem. Hence, the identification of F or other objects of interest

is largely “separable” from the partial latency problem, which is the key problem we

are solving in this paper.

That said, we note that the estimation of the latent inputs will affect the esti-

mation of (the parameters of) F based on “plugged-in” latent input estimates. This

section provides a discussion on how to identify and estimate F , and analyzes the

impact of the “first-stage” estimation of latent inputs on the final estimator of F .

While we cannot cover all relevant specifications of F , in this section we will pro-

vide both identification and estimation results for the linear case, which is arguably

the workhorse model, or at least a natural benchmark, in various empirical applica-

tions. We also discuss how our method can be applied under more general settings.

18



3.1 The Linear Model

In this subsection we focus on the linear parametric specification of F as in (2):

yi = α0 + α1xi1 + α2xi2 + ui + εi,

where our goal is to identify and estimate the unknown parameters α := (α0, α1, α2).

3.1.1 Identification

In the presence of the endogeneity problem between xi := (xi1, xi2) and ui, we will

need instrumental variables for the identification of α. For illustrational simplicity,

we impose the following standard IV assumption.

Assumption 6 (Instrumental Variables). Write zi := (zi1, zi2), zi := (1, zi1, zi2)
′

and

xi = (1, xi1, xi2)
′
. Assume

(i) Relevance: Σzx := E
[
zix

′
i

]
has full rank.

(ii) Exogeneity: E [ui| zi] = 0.

Remark 3. Here we are using the same “zi”, i.e., the observable determinants of

input choices in Assumption 3, as the instrumental variables for identification and

estimation of the outcome equation, because such “zi” are naturally relevant (as it

enters into the input choice function h) and excluded (as it does not enter into the

outcome equation F ) given our model specification.

However, it should be pointed out that we can also include additional instrumental

variables beyond the “zi” in the input choice functions. These additional IVs from

outside our model can help with the identification and estimation of the outcome

function as well, as long as the relevance and exogeneity conditions in Assumption 6

are satisfied.

This point also illustrates the “separability” between the problem of identifying

partially latent variables in Section 2 and the problem of identifying the outcome

function in Section 3. Correspondingly, we view our framework and results in Section

2 as the main contribution of this paper, while the current Section 3 is just one

example of how our main results in 2 can be used.

Corollary 2 (Identification of Linear Parameters). Under Assumptions (1)-(6), α is

point identified.
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Example (Team Production Function Continued). In the context of our working ex-

ample, here we are essentially following a strategy discussed in Griliches and Mairesse

(1998) and assume that we have access to some instrumental variables (such as local

wages) that affect input choices.

3.1.2 Estimation Procedure

We now turn to the more interesting problem of estimation, propose semiparametric

estimators for α, and characterize their asymptotic distributions.

We first describe our proposed estimator. Since the identification of latent inputs

via equation (11) is constructive, it suggests a natural estimation procedure:

Step 1 (Nonparametric Regression): obtain an estimator γ̂1 of γ1 by nonpara-

metrically regressing yi on xi1 and zi, among firms with di = 1, i.e., those with xi1

observed. Similarly, obtain an estimator γ̂2 of γ2.

Step 2 (Imputation): impute latent inputs by plugging the nonparametric esti-

mators γ̂1, γ̂2 into equation (11), i.e.,

x̂i2 = γ̂−12 (γ̂1 (xi1; zi) ; zi) , for di = 1,

x̂i1 = γ̂−11 (γ̂2 (xi2; zi) ; zi) , for di = 2.

Step 3 (IV Regression): run either of the following two IV regressions:

(3a) Estimate equation (2) with zi as IVs for xi, i.e.,

α̂ :=

(
1

n

n∑
i=1

zix̃i

)−1(
1

n

n∑
i=1

ziyi

)

where zi := (1, zi1, zi2)
′

and

x̃i :=

(1, xi1, x̂i2)
′
, for di = 1,

(1, x̂i1, xi2)
′
, for di = 2.

(3b) Estimate the following equation

yi = α0 + α1xi1 + α2xi2 + ui, (14)
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with the outcome variable

yi := F (ui, zi) = γ1 (xi1, zi) = γ2 (xi2, zi) ,

replaced by its plug-in estimator

ỹi :=

γ̂1 (xi1, zi) , for di = 1,

γ̂2 (xi2, zi) , for di = 2,

Again using zi as IVs, estimate α by

α̂∗ :=

(
1

n

n∑
i=1

zix̃i

)−1(
1

n

n∑
i=1

ziỹi

)
.

3.1.3 Asymptotic Theory

We now establish the consistency and the asymptotic normality of α̂ and α̂∗ under

the following regularity assumptions.

Assumption 7 (Finite Error Variances). E [u2i | zi] <∞ and E [ε2i |xi, zi, di] <∞.

Assumption 8 (Strong Monotonicity). The first derivative of γk (·, z) is uniformly

bounded away from zero, i.e., for any c, z,

∂

∂c
γk (c; z) > c > 0.

In view of equation (7), Assumption 8 is satisfied if either α1, α2 > 0 or ∂
∂u
h1,

∂
∂u
h1

are uniformly bounded above by a finite constant. Assumption 8 is needed to ensure

that γ̂−1k (·, z) is a good estimator of γ−1k (·, z) provided that the first-stage nonpara-

metric estimator γ̂k is consistent for γk.

Assumption 9 (First-Stage Estimation).

(i) Donsker property: γ1, γ2 ∈ Γ, which is a Donsker class of functions with uni-

formly bounded first and second derivatives, and γ̂1, γ̂2 ∈ Γ with probability

approaching 1.

(ii) First-stage convergence: ‖γ̂k − γk‖∞ = op

(
N−

1
4

)
for k = 1, 2.
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Assumption 9(i) is guaranteed if γ1, γ2 satisfy certain smoothness condition, e.g. γk

possesses uniformly bounded derivatives up to a sufficiently high order. Assumption

9(ii) requires that the first-stage estimator converges at a rate faster thanN−1/4, which

is satisfied under various types of nonparametric estimators under certain regularity

conditions. This is required so that the final estimator of the production function

parameters α can converge at the standard parametric (
√
N) rate despite the slower

first-step nonparametric estimation of γ1, γ2.

Finally, we state another technical assumption that captures how the first-stage

nonparametric estimation of γ1, γ2 influences the final semiparametric estimators α̂

and α̂∗ through the functional derivatives of the residual function with respect to

γ1, γ2. Assumption 10 below, based on Newey (1994), provides an explicit formula for

the asymptotic variances of α̂ and α̂∗ that does not depend on the particular forms

of first-stage nonparametric estimators.

Formally, write wi := (yi, xi, zi, di), γ := (γ1, γ2), and suppress the conditioning

variables zi in γ for notational simplicity. Define the residual functions

g (wi, α̃, γ̃) :=

zi
(
yi − α̃0 − α̃1xi1 − α̃2γ̃

−1
2 (γ̃1 (xi1))

)
for di = 1,

zi
(
yi − α̃0 − α̃2xi2 − α̃1γ̃

−1
1 (γ̃2 (xi2))

)
for di = 2.

g∗ (wi, α̃, γ̃) :=

zi
(
γ̃1 (xi1)− α̃0 − α̃1xi1 − α̃2γ̃

−1
2 (γ̃1 (xi1))

)
for di = 1,

zi
(
γ̃2 (xi2)− α̃0 − α̃2xi2 − α̃1γ̃

−1
1 (γ̃2 (xi2))

)
for di = 2

for generic α̃, γ̃, and

g (wi, γ̃) := g (wi, α, γ̃) , g∗ (wi, γ̃) := g∗ (wi, α, γ̃) ,

at the true α. Define the pathwise functional derivative of g at γ along direction τ by

G (wi, τ) := lim
t→0

1

t
[g (wi, γ + tτ)− g (wi, γ)] ,

and similarly define G∗ (zi, τ) for g∗. Then, following Newey (1994), the influence

function can be derived analytically18 based on G and takes the form of ϕ (wi) ziεi

18See the proof of Theorem 2 for details on the calculation.
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with

ϕ (wi) := −
(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1 {di = 1} − 1 {di = 2}) .

ϕ∗ (wi) :=

[
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

]
1 {di = 1}+

[
λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

)]
1 {di = 2}

where γ
′

k denotes ∂
∂hk

γk (xik; zi), λ1 stands for

λ1 (xi, zi) := E [1 {di = 1}|xi, zi]

i.e., the conditional probability of observing xi1, and λ2 := 1− λ1.
The influence function essentially characterizes how the first-stage estimation in-

fluences the asymptotic variance of the final estimator. Formally, we present the

following assumption, commonly known as an asymptotic linearity condition, which

basically requires that the expected error induced by the first-stage estimation is

asymptotically equivalent to the sample averages of ϕ (wi) ziεi and ϕ∗ (wi) ziεi. In

particular, the formula for ϕ and ϕ∗ given above will be the same regardless of the

specific forms of first-step estimators used, provided that some suitable regularity

conditions are satisfied.

Assumption 10 (Asymptotic Linearity).

(i) Suppose

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ (wi) ziεi + op

(
N−

1
2

)
.

(ii) Suppose

∫
G∗ (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ∗ (wi) ziεi + op

(
N−

1
2

)
.

We emphasize that Assumptions 9 and 10 are standard assumptions widely im-

posed in the semiparametric estimation literature, which can be satisfied by many

kernel or sieve first-stage estimators under a variety of conditions. See Newey (1994),

Newey and McFadden (1994) and Chen, Linton, and Van Keilegom (2003) for refer-

ences. In Assumption 11 below, we also provide an example of lower-level conditions
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that replace Assumptions 9 and 10 when we use the Nadaraya-Watson kernel estima-

tor in the first-stage nonparametric regression.

The next theorem establishes the asymptotic normality of α̂.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1-9 hold.

(i) With Assumption 10(i),

√
N (α̂− α)

d−→ N (0,Σ) ,

where Σ := Σ−1zx ΩΣ−1xz and

Ω := E
[
ziz

′

i

(
u2i + [1 + ϕ (wi)]

2 ε2i
)]
.

(ii) With Assumption 10(ii),

√
N (α̂∗ − α∗) d−→ N (0,Σ∗) ,

where Σ∗ := Σ−1zx Ω∗Σ−1xz and

Ω∗ := E
[
ziz

′

i

(
u2i + ϕ∗ (zi)

2 ε2i
)]
.

We note that, if the latent inputs were observed and the first-step nonparametric

regression were not required, the asymptotic variance of standard IV estimator of α

would be given by Σ−1zx Var (zi (ui + εi)) Σ−1xz . Hence, the presence of the additional

term ϕ (zi) in Ω captures the effect of the first-step nonparametric regression on the

asymptotic variance of α̂.

To obtain consistent variance estimators, define

Ω̂ :=
1

N

N∑
i=1

ziz
′

i

[
yi − x̃

′

iα̂ + ϕ̂ (wi) (yi − ỹi)
]2

where

ỹi :=

γ̂1 (xi1, zi) , for di = 1,

γ̂2 (xi2, zi) , for di = 2,
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and with

ϕ̂ (wi) := −
(
λ̂1
α̂2

γ̂
′
2

− λ̂2
α̂1

γ̂
′
1

)
(1 {di = 1} − 1 {di = 2})

where λ̂1 is any consistent nonparametric estimator of λ1. Then the variance estima-

tors can be obtained as

Σ̂ := S−1xz̃ Ω̂S−1z̃x

with Szx̃ := 1
N

∑N
i=1 zix̃

′
i.

Similarly, Ω̂∗ and Σ̂∗ can be constructed accordingly.

Corollary 3. In addition to Assumptions 1-10, suppose that λ̂1 is any consistent

nonparametric estimator of λ1. Then Σ̂
p−→ Σ and Σ̂∗

p−→ Σ∗.

If furthermore λ1 (xi, zi) ≡ λ1 ∈ (0, 1) is assumed, then we may use the sample

proportion λ̂1 := 1
N

∑
i {di = 1}.

We also note that, when the first step takes the form of sieve lease squares, the

simple procedure in Ackerberg, Chen, and Hahn (2012), in which we may “pretend”

that the first stage is a parametric model, may be applied to obtain estimates of the

asymptotic variance matrix.

Finally, we show that the estimator α̂∗ is asymptotically more efficient than α̂.

Next, we compare the asymptotic variances of α̂∗ and α̂, and show that α̂∗ is in

fact asymptotically more efficient.

Theorem 3 (α̂∗ is Asymptotically More Efficient than α̂). Ω−Ω∗ is positive definite,

which implies that α̂∗ is asymptotically more efficient than α̂.

The proof is in Appendix B.4. Here we discuss the intuition of Theorem 3. The

error term for the IV regression with the raw outcome yi as the left-hand-side variable

is ui + εi, which has a larger variance than the corresponding error term ui, if the

conditionally expected outcome yi is used instead. Even though we do not observe yi

and must use an estimator ỹi = γ̂1 (xi1) or ỹi = γ̂2 (xi2), the impact of the first-stage

estimation error (which can be loosely thought as an average of εi across i) is smaller

than the impact of εi itself.

To see this more clearly, first consider the multiplier “1 + ϕ (wi)” in (i): the “1”

comes from the one “raw” share of error εi embedded in each yi that we use as the
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outcome variable, while “ϕ (wi)” essentially captures the share of influence of the

first-step estimation error γ̂ − γ due to εi. Together, we have

1 + ϕ =

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
1 {di = 1}+

(
λ1
α2

γ
′
2

+ 1− λ2
α1

γ
′
1

)
1 {di = 2} ,

while the corresponding multiplier ϕ∗ on εi in (ii) is essentially the same except that

“1−λ1 α2

γ
′
2

” becomes “λ1−λ1 α2

γ
′
2

” and “1−λ2 α1

γ
′
1

” becomes “λ2−λ2 α1

γ
′
1

”. Since λ1, λ2 < 1,

the overall multiplier on εi becomes smaller in magnitude19. Essentially, by using the

estimated conditional expected output ỹi, the raw “1” share of εi in yi is moved

into the first-stage estimation error of yi, which is then “averaged” and reduced in

magnitude to λ1 or λ2, thus leading to smaller overall variance.

Lastly, we emphasize that the efficiency comparison in 3 does not directly relate

to the theory of semiparametric efficiency bounds, such as in Ackerberg et al. (2014),

which is about asymptotic efficiency of semiparametric estimators under a given cri-

terion function. In fact, by Ackerberg et al. (2014), both estimators based on yi and

ỹi attain their corresponding semiparametric efficiency bounds with respect to their

different criterion functions g and g∗. Theorem 3, however, is a comparison across the

two criterion functions g and g∗: it essentially states that the asymptotically efficient

estimator under g∗ is even more efficient than the efficient estimator under g.

3.1.4 Lower-Level Regularity Conditions for Kernel First Step

Finally, we present a set of lower-level conditions that replace Assumptions 9 and 10,

when we use the canonical Nadaraya-Watson kernel estimator for the nonparametric

regression in Step 1. We emphasize that this subsection simply serves as an illustration

of Assumptions 9-10 and Theorem 2, as our method does not require the use of

a specific form of first-step nonparametric estimators. For sieve (series) first-step

estimators, similar results can be derived based on, for example, Newey (1994), Chen

(2007) and Chen and Liao (2015).

Assumption 11 (Example of Lower-Level Conditions with Kernel First Step). Let

Nk :=
∑N

i=1 1 {di = k} denote the number of firms for which hik is observed, and let

19Note that α1/γ
′

1 ≤ 1 and α2/γ
′

2 ≤ 1 by equation (7).
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γ̂k be the Nadaraya-Watson kernel estimator of γk defined by

γ̂k (v) :=
1

Nkb3

∑
di=k

K
(
v−vik
b3

)
yi

1
Nkb3

∑
di=k

K
(
v−vik
b3

)
where vik := (xik, zi1, zi2) for all i such that di = k. Suppose the following conditions:

(i) λ1 (xi, zi) ∈ (ε, 1− ε) for all (xi, zi) for some ε > 0.

(ii) (xi, zi) has compact support in R4 with joint density f that is uniformly bounded

both above and below away from zero.

(iii) E [y4i ] <∞ and E [y4i |xi, zi] f (xi, zi) is bounded.

(iv) γk has uniformly bounded derivatives up to order p ≥ 4.

(v) K (u) has uniformly bounded derivatives up to order p, K (u) is zero outside

a bounded set,
∫
K (u) du = 1,

∫
utK (u) du = 0 for t = 1, ..., p − 1, and∫

‖u‖p |K (u)| du <∞.

(vi) b is chosen such that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp → 0.

Assumption 11(i) essentially requires that the proportion of observations with xi1

observed and that with xi2 observed are both strictly positive, or in other words,

the numbers of both types of observations tend to infinity at the same rate of N .

This guarantees that we can estimate both γ1 based on observations with xi1 and

γ2 based on observations with xi2 well enough asymptotically. Assumption 11(iv)

is the key smoothness condition that will help establish the Donsker property (and

a consequent stochastic equicontinuity condition) in Assumption 9(i). Assumption

11(v)(vi) are concerned with the choice of kernel functionK and bandwidth parameter

b: (v) requires that a “high-order” kernel function (of order p) is used, while (vi)

requires that the bandwidth is set (with “under-smoothing” ) so that the kernel

estimator γ̂k converges at a rate faster than N−1/4, as required in Assumption 9(ii).

The requirement of p ≥ 4 in (iii) ensures that (vi) is feasible. Together with the

additional regularity conditions in (ii)(ii), these conditions ensure that Assumptions

9-10 are satisfied. See Newey and McFadden (1994, Section 8.3) for additional details.

Theorem 4 (Asymptotic Distributions with Kernel First Step). Under Assumptions

1-8 and 11, the conclusions of Theorem 2 hold.
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3.2 Generalizations

Additional Instrumental Variables

If additional instruments are available, it is straightforward to incorporate them in the

second-stage regression, which will take the form of a two-stage least square estimator

instead of an IV regression. Our results will carry over with suitable changes in

notation. For example, the asymptotic variance formula for α̂ needs to be adapted as

Σ :=
(
ΣxzΣ

−1
zz Σzx

)−1
ΣxzΣ

−1
zz ΩΣ−1zz Σzx

(
ΣxzΣ

−1
zz Σzx

)−1
.

Other Parametric Production Functions

Consider a potentially nonlinear parametric production function of the form

yi = Fα (xi1, xi2) + ui + εi

After the identification of partially latent inputs via Theorem 1, the second stage boils

down to the estimation of α based on the moment condition E [zi (yi − Fα (xi1, xi2))] =

0, which can be obtained via GMM estimation. Technically, since GMM estima-

tors are Z-estimators, the corresponding asymptotic theory in Newey and McFadden

(1994), on which the proof of Theorem 4 is mainly based, still applies with proper

changes in notation.

Nonparametric Production Functions

More generally, with any nonparametric production function that is additively sepa-

rable in ui and εi of the form

yi = F (xi1, xi2) + ui + εi,

where F is an unknown function that satisfies Assumption 2, the only thing that

changes is the second-stage nonparametric estimation of F with the imputed inputs

x̃i (or more precisely, with one component known and one component imputed) based

on the moment condition E [zi (yi − F (xi1, xi2))] = 0. The asymptotic theory for this

case can be similarly obtained based on theory on nonparametric two-step estimation

(e.g. Ai and Chen, 2007, and Hahn, Liao, and Ridder, 2018).
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In the more general specification (1):

yi = F (xi1, xi2, ui) + εi

where there is no more additive separability in ui, one way to obtain identification and

implement IV estimation is by adapting Chernozhukov, Imbens, and Newey (2007) to

our current context. Essentially, we would need to impose strict monotonicity of F in

ui, impose independence of ui from zi, normalize the distribution of ui to be uniform,

and then exploit a quantile-based residual condition as described in Chernozhukov,

Imbens, and Newey (2007).

4 A Monte Carlo Experiment

Here we report the findings of some Monte Carlo experiments. Table 1 reports the

parameter specifications of the Cobb-Douglas production function that we use in our

experiments. We assume that inputs are optimally chosen by a profit maximizing firm

as discussed in detail in Appendix A.1. Specification 1 is the baseline specification.

These parameters were chosen so that the simulated data are broadly consistent with

the descriptive statistics of our application that we discuss in detail in Section 5.

Specification 2 has a larger variance in productivity shocks (ui). Specification 3 has

a smaller variance in wage distributions (zi). Finally, specification 4 has a larger

variance in measurement errors (ei).

Specifically, we consider L different markets, with each market containing I firms,

so that the total number of firms is N = L×I. Firms in the same market l all pay the

same local wages, which we use as the instrumental variables. Local wages are drawn

from a joint log-normal distribution with mean µz and variance σz where wages for the

two inputs are positively correlated. The firm-level idiosyncratic productivity shocks

and the measurement errors are independently drawn from normal distributions with

zero means and variances σu and σe, respectively. The productivity shocks and the

measurement errors are independently and identically distributed both across firms

and markets. We consider different configurations of L and I: specifically, L = 50,

100, 500 and I = 1, 50, 100.

For each experiment, we compute the difference between the true parameter value

and the sample average of the estimates using M = 1000 replications, which is a
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measure of the bias of our estimator. We also estimate the root mean squared error

(RMSE) using the sample standard deviation of our estimates.

Table 1: Monte Carlo Parameter Specification

Constant Across Specification Variable Across Specification

α0 α1 α2 µz σz σu σε

Spec 1 4 0.35 0.25

(
2.4
2.1

) (
0.05 0.01
. 0.02

)
0.4 0.3

Spec 2 4 0.35 0.25

(
2.4
2.1

) (
0.05 0.01
. 0.02

)
0.8 0.3

Spec 3 4 0.35 0.25

(
2.4
2.1

) (
0.02 0.01
. 0.02

)
0.4 0.3

Spec 4 4 0.35 0.25

(
2.4
2.1

) (
0.05 0.01
. 0.02

)
0.4 0.5

Note that our data generating process mechanically implies xi1 and xi2 have a

linear relationship with yi. We estimate γ1 (·, zi) and γ2 (·, zi) using second degree

polynomials. Not surprisingly, we find that the estimated coefficients on quadratic

terms are almost 0. The interpolated functions γ−11 and γ−12 are also almost linear.

Table 2 summarizes the performance of two different estimators: the two stage

least squares estimator (TSLS) when all inputs are observed as well as our first version

of TSLS when inputs are imputed and output is used as the dependent variable. We

refer to this version of the TSLS estimator as the “matched” TSLS estimator. As

we would expect given our asymptotic results, the matched TSLS performs almost

as well as the standard TSLS estimator under these ideal sampling conditions. This

finding holds for all four different specifications and several choices for the number of

firms within a market and the number of local markets.

Next, we investigate how our estimator performs when we have a relatively small

number of observations in each market. Considering an extreme case, we simulate

data for L = 500 and I = 1. In this case, as we only have a single firm in each

market, we cannot impute the missing input variable using within market information.

Instead, we pool observations across markets and estimate conditional expectations
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Table 2: Monte Carlo: Different Markets

Number of Number of TSLS Matched TSLS

Param Markets (L) Firms (I) Spec Bias RMSE Bias RMSE

α0 50 50 1 0.001 0.000 0.001 0.000
α0 100 100 1 0.000 0.000 -0.000 0.000
α0 50 50 2 0.001 0.000 0.001 0.000
α0 100 100 2 0.000 0.000 -0.000 0.000
α0 50 50 3 0.001 0.000 0.001 0.000
α0 100 100 3 0.000 0.000 -0.000 0.000
α0 50 50 4 0.001 0.000 0.001 0.000
α0 100 100 4 0.000 0.000 0.000 0.000
α0 500 1 1 -0.000 0.001 -0.002 0.001
α0 500 1 2 -0.001 0.002 -0.002 0.002
α0 500 1 3 -0.000 0.001 -0.001 0.001
α0 500 1 4 -0.001 0.001 -0.002 0.001

α1 50 50 1 -0.003 0.002 -0.004 0.003
α1 100 100 1 0.000 0.001 0.001 0.001
α1 50 50 2 -0.004 0.007 -0.007 0.009
α1 100 100 2 0.001 0.002 0.001 0.002
α1 50 50 3 -0.005 0.006 -0.007 0.007
α1 100 100 3 0.000 0.001 0.001 0.002
α1 50 50 4 -0.003 0.004 -0.004 0.005
α1 100 100 4 0.000 0.001 0.001 0.001
α1 500 1 1 0.008 0.011 0.010 0.013
α1 500 1 2 0.020 0.039 0.024 0.045
α1 500 1 3 0.007 0.027 0.010 0.033
α1 500 1 4 0.009 0.018 0.015 0.024

α2 50 50 1 0.003 0.003 0.005 0.004
α2 100 100 1 -0.000 0.001 -0.001 0.001
α2 50 50 2 0.003 0.010 0.006 0.012
α2 100 100 2 -0.002 0.002 -0.002 0.003
α2 50 50 3 0.005 0.006 0.007 0.007
α2 100 100 3 -0.000 0.001 -0.001 0.002
α2 50 50 4 0.004 0.005 0.005 0.007
α2 100 100 4 -0.000 0.001 -0.001 0.002
α2 500 1 1 -0.013 0.017 -0.015 0.019
α2 500 1 2 -0.039 0.062 -0.043 0.074
α2 500 1 3 -0.011 0.029 -0.014 0.034
α2 500 1 4 -0.014 0.026 -0.020 0.036
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conditional on x1 (or x2), z1, and z2.
20 Table 2 also summarizes the bias and RMSE

where L = 500 and I = 1. We find that the matched TSLS estimator performs almost

as well as the standard TSLS estimator that assumes that both inputs are observed.

The only case where the matched TSLS estimator exhibits relatively large bias and

RMSE is when the variance of the measurement errors is large (Spec 4). In Appendix

C, we present a Monte Carlo experiment where we have partially latent wages.

5 Team Production Functions

Our main application focuses on the estimation of team production functions. We

introduce our data set and discuss our main empirical findings. Finally, we discuss

other data sets that have a similar structure than the one we use and potential

applications of our methods.

5.1 Institutional Background and Data

We study team production functions in pharmacies. This industry has undergone

a dramatic change over the past decades. An industry that used to be primarily

dominated by local independent pharmacies has been transformed by the entry of

large chains that operate in multiple markets.

According to Goldin and Katz (2016) one important technological change in the

pharmacy sector “is the extensive use of information technology systems and an in-

crease in prescription drug insurance, which have both enhanced the ability of phar-

macists to hand off clients. Improvements in information technology have enhanced

the ability of pharmacists to leave a coherent and comprehensive record of each client,

increasing the substitutability of pharmacists and reducing consumer preferences for

particular pharmacists. Because of the increase in insurance coverage, pharmacists

can access the prescriptions of clients through Pharmacy Benefit Managers (PBM)

even if the scripts were not filled at that pharmacy... [Another] change is the stan-

dardization of pharmacy products and services. Medications have been increasingly

produced by pharmaceutical companies rather than being compounded in individual

pharmacies and hospitals. The greater standardization of medications has meant that

the idiosyncratic expertise and talents of a particular pharmacist have become less

20Note that the missing inputs are imputed for each market separately when I 6= 1.
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important ... [these] changes make pharmacists better substitutes for each other and

enable an almost costless handoff of clients.” (p. 708-709)

An important question is the extent to which this transformation has been driven

by technological change that has benefited large chains over smaller independently

operated pharmacies. If this is in fact the case, these technological changes may help

to explain why this profession has become so popular with females (Goldin and Katz,

2016).

The main data set that we use is the National Pharmacist Workforce Survey of

2000 which is collected by Midwestern Pharmacy Research. The data comes from

a cross-sectional survey answered by randomly selected individual pharmacists with

active licenses. The data set is composed of two types of information: information

about pharmacists and information about the pharmacy each pharmacist works at.

Information at the pharmacy level includes the type of pharmacy (Independent

or Chain), the hours of operation per week, the number of pharmacists employed,

and the typical number of prescriptions dispensed at the pharmacies per week. The

store-level information is provided by an individual pharmacist who works at the

pharmacy, thus the quality of the responses may depend on how knowledgeable the

person is about the pharmacy. However, considering that most of the pharmacists in

our sample are observed to be full-time pharmacists, the quality of the firm-level data

is likely to be high. The number of prescriptions dispensed at the pharmacy is our

measure of output. As a consequence, we do not have to use revenue based output

measures which could bias our analysis as discussed, for example, in Epple, Gordon,

and Sieg (2010).

Table 3 summarizes the means of key variables that are observed at the firm or

pharmacy level. After eliminating cases with missing input/output information, we

observe 332 pharmacists. Table 3 suggests that there are some pronounced differences

between chains and independent pharmacies. Chains are more likely to be located in

larger urban areas than independent pharmacies. They also operate longer hours per

week. Interestingly, hourly productivity measured by the number of prescriptions per

hour is, on average, similar to the independent pharmacies with similar employment

size.21 We explore these issues in more detail below and test whether the different

types of pharmacies have access to the same technology.

21Most pharmacies in our sample have one manager pharmacist and one employee pharmacist,
but there are a few pharmacies with a larger employment size.
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Table 3: Summary Statistics at the Firm Level: Pharmacies

Firm Number Emp Operating Prescriptions Prescriptions Prop Number
Type Pharmacists Size Hours per Week per Hour Urban of Obs

Indep n < 2 3.15 51.96 778.00 14.94 0.63 50
(1.41) (7.08) (368.95) (6.54) (0.39)

Indep 2 ≤ n < 3 3.94 56.99 914.40 16.09 0.71 58
(1.80) (10.04) (472.81) (8.43) (0.34)

Indep 3 ≤ n 4.71 64.24 1252.22 19.44 0.78 36
(1.44) (14.15) (610.61) (8.75) (0.32)

Chain n < 2 1.88 53.50 666.88 12.90 0.81 8
(0.99) (8.02) (278.84) (6.58) (0.34)

Chain 2 ≤ n < 3 3.25 80.50 1294.68 16.21 0.81 101
(1.36) (9.86) (595.08) (7.66) (0.29)

Chain 3 ≤ n 5.32 82.82 1765.67 21.43 0.89 79
(1.63) (13.67) (681.57) (7.87) (0.20)

Independent pharmacies: fewer than 10 stores under the same ownership.
Chain pharmacies: more than 10 stores under the same ownership.
Standard deviations in parentheses.
One part-time pharmacist is counted as 0.5 pharmacist in number of pharmacists.
Employment size includes interns and technicians.

The survey also collects various information about pharmacists including hours

of work, demographics, and household characteristics. Most importantly we observe

the position at the pharmacy (Owner/Manager or Employee). We treat hours of

the manager and hours of the employees as the two input factors in the production

function.

Information related to the individual pharmacists is summarized in Table 4. Em-

ployee pharmacists at independent pharmacies work fewer hours than the employee

pharmacists at chain pharmacies, and hourly earnings are lower than those of the

employees at the chains. Pharmacists in managerial positions at independent phar-

macies work more hours than do managers at chain pharmacies, but they have lower

hourly earnings on average.

5.2 Empirical Results

We observe only one pharmacy in each local labor market, which is defined as the

5-digit zip code area. Hence, we use the version of our estimator that averages
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Table 4: Summary Statistics at the Worker Level: Pharmacists

Firm Number of Actual Paid Hourly Number of
Type Position Pharmacists Hours Hours Earnings Obs

Indep Employee n < 2 40.94 39.28 28.87 9
(11.61) ( 9.60) (7.64)

Indep Employee 2 ≤ n < 3 33.90 33.03 29.37 29
(12.01) (11.14) (4.09)

Indep Employee 3 ≤ n 31.61 30.95 30.24 28
(11.62) (10.96) (4.93)

Indep Manager n < 2 50.02 45.34 30.32 41
(9.05) (7.24) (12.45)

Indep Manager 2 ≤ n < 3 49.45 44.19 28.70 29
(8.15) (7.99) (9.90)

Indep Manager 3 ≤ n 46.50 44.38 30.28 8
(4.11) (6.30) (6.57)

Chain Employee n < 2 46.20 43.00 34.70 5
(2.77) (4.47) (2.19)

Chain Employee 2 ≤ n < 3 41.82 39.84 34.13 66
(5.76) (4.38) (3.32)

Chain Employee 3 ≤ n 39.96 37.94 34.03 56
(8.63) (7.02) (3.12)

Chain Manager n < 2 45.33 42.00 36.75 3
(5.03) (2.65) (4.43)

Chain Manager 2 ≤ n < 3 44.10 40.50 34.06 35
(7.02) (2.58) (4.90)

Chain Manager 3 ≤ n 43.61 41.43 35.04 23
(5.41) (3.41) (3.59)

Independent pharmacies: fewer than 10 stores under the same ownership.
Chain pharmacies: more than 10 stores under the same ownership.
Hourly earnings are computed based on the paid hours, not actual hours.
Standard deviations in parentheses.
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across local markets as discussed in Section 4. We use imputed hourly wages for

the manager and the employer as the additional observed covariates (z1, z2) for the

first-stage estimation.22 In the second stage estimation, we use the observed wage for

the observed position and principal components of local demand shifters as additional

instruments.23

We implement two versions of our “matched” TSLS estimator: the first estimator

uses the observed outputs while the second one uses expected outputs. Since the

observed output is subject to a measurement error, the semi-parametric estimator

using expected outputs offers the potential of some efficiency gains as discussed in

Theorem 3. Table 5 summarizes our findings. We report the estimated parameters

of the Cobb-Douglas production function as well as the estimated standard errors.

In addition, we report standard F-statistics for the first stage of the TSLS estimator

to test for weak instruments. Overall, we find that our instruments are sufficiently

strong in most cases.24

Table 5 shows that we estimate most of parameters of the production function

with good precision. Correcting for potential measurement error by using the ex-

pected output as the dependent variable, we achieve similar, maybe even slightly

more plausible estimates.

Our results provide several insights to understanding the difference between in-

dependents and chains. First, our results indicate that chains may have a different

production function than independent pharmacies. A formal joint hypothesis test

reported in Table 6 rejects the null hypothesis that the coefficients of the production

function are the same.

Second, our findings also suggest that managers may be more effective in chains

than independents. A formal one-sided t-test reported in Table 6 rejects the null hy-

pothesis that the two coefficients that characterize managerial efficiency are the same.

Our findings imply that larger chains are more efficient in many other dimensions,

22In this application, we only observe the wage for the observed type. Thus, wages are imputed
using local demand shifters in 5-digit zip code levels and pharmacists’ characteristics. We have
verified with additional Monte Carlo simulation exercise reported in Appendix C that our method
performs as well as the standard TSLS estimator with this variation.

23The local demand shifters include total population size, median household income, and propor-
tion of households with retirement income.

24As a robustness check, we also explored a different matching algorithm which estimates the
expectation of output conditional on local demand shifters rather than wages. The results are
consistent although the matching algorithm with local demand shifters gives slightly larger point
estimates with slightly less precision.
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Table 5: Estimation Result

Independent Chain
Observed Expected Observed Expected
Outputs Outputs Outputs Outputs

α0 5.447 5.857 2.504 3.634
(0.597) (0.331) (1.790) (1.060)

α1 0.227 0.163 0.819 0.687
(0.122) (0.057) (0.454) (0.268)

α2 0.090 0.047 0.409 0.250
(0.071) (0.051) (0.191) (0.105)

Nobs 144 144 188 188
First-stage F for x1 9.320 9.320 11.774 11.774
First-stage F for x2 13.648 13.648 3.630 3.630

such as task assignments or logistics, so that managers at larger chains may be able

to focus more on prescription-related tasks compared to managers at independent

pharmacies.

Table 6: Hypothesis Tests

Production Function Managerial Efficiency Residual Variance
(Joint) α1 V (u)

Independent 0.163 0.010
Chain 0.687 0.006
Difference or Ratio -0.524 1.532

Test Statistics 122.841 -1.913 1.532
Test Wald t F
p-value (0.000) (0.028) (0.003)

Finally, we find that chains have a significantly lower residual variance than in-

dependents. A formal F test reported in Table 6 rejects the null hypothesis that the

residual variance of independents is greater than or equal to the residual variance of

chains. Note that all the tests are based on the estimation results with the expected

outputs as the dependent variable.

We also test whether the observed labor inputs are indeed the optimal choice of

firms. If the inputs are optimally chosen, the coefficients can be directly estimated

from equation (16) in Appendix A.1. Under the assumption of Cobb-Douglas pro-
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duction, we can test the optimality by jointly testing the null hypothesis of equality

of both coefficients. Table 7 shows the results. A formal Wald test rejects the null

hypothesis of optimality. Thus, the direct inversion of the optimality conditions can-

not be applied to estimate the parameters of the production function, whereas our

new estimator is feasible. We note, however, that the test of the optimality of inputs

here is built upon the premise that the linear model is correctly specified and all the

assumptions underlying our method are valid.

Table 7: Test for Optimality of Inputs

Independent Chain
x1 Observed x2 Observed x1 Observed x2 Observed

Wald Statistic 5.495 36.914 15.312 26.172
p-value (0.064) (0.000) (0.000) (0.000)

Although most pharmacies in our sample have one manager and one pharmacist,

there are a few pharmacies with more than one employee pharmacist. For this subset

of pharmacies, we compute the total hours worked by employee pharmacists by mul-

tiplying the reported hours worked from an employee by the number of employees.

Then, the second imputation step is applied based on the total hours worked by all

employees. In this process, we implicitly assume the labor hours from two different

employees are perfect substitutes. As a robustness check, we also estimate a ver-

sion of production function which has an elasticity of substitution between the hours

worked by different employees equal to one. Table 8 summarizes this version of the

estimation result. The estimated parameters show that employees become slightly

less productive at both independents and chains compared to our baseline estima-

tion, but in general our estimation result is robust to how we treat employee inputs

from pharmacies with more than one employee.

We thus conclude that chains have different production functions than indepen-

dent pharmacies which may partially explain the change in the observed market

structure of that industry. However, more research is needed to fully address this

important research question.
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Table 8: Using N2 ∗ log(x2) instead of log(N2 ∗H2)

Independent Chain
Observed Expected Observed Expected
Outputs Outputs Outputs Outputs

α0 5.493 5.888 3.409 4.201
(0.527) (0.270) (1.656) (0.972)

α1 0.258 0.178 0.878 0.719
(0.121) (0.057) (0.446) (0.261)

α2 0.033 0.017 0.092 0.056
(0.021) (0.014) (0.039) (0.022)

Nobs 144 144 188 188
First-stage F for x1 10.066 10.066 10.199 10.199
First-stage F for x2 12.360 12.360 3.210 3.210

5.3 Discussion of Other Applications

As we discussed above, the partially latent data structure that we study in this

paper arises quite naturally in matched employer-employee data sets which contain

information collected from individuals as well as information collected from businesses

or establishments. Hence, they contain useful information about the firm such as

output and revenues as well as the employees of the firm. However, the sampling

design often implies that only a small subset of the employees of a firm are included in

the sample. If the survey does not sample all employees in a firm then some important

labor inputs are likely to be latent from the perspective of the econometrician.25

Consider the Workers Establishment Characteristics Database (WECD) which

matches long form respondents of the 1990 U.S. Census of Population to data on

their employers from the Longitudinal Research Database (LRT). Note that the LRT

not only has detailed output measures, but also includes measures of the capital

stock, which is important in manufacturing. Since the long-form was only given to a

random sample of approximately five percent of the population, we can typically only

match five percent of the workers for large plants and a much lower percentage for

some smaller plans. For example, Hellerstein, Neumark, and Troske (1999) focused on

large plans with more than 20 employees and rely on the aggregate data in the LRD to

estimate the production function. Hence, they do not differentiate between different

25For an early survey of employer-employee data sets see Abowd and Kramaz (1999).
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types of labor inputs, such blue and white collar workers. The methods developed

in our paper allows researchers to use the data from the WECD to estimate the

production function of small plants, even if we do not observe white and blue collar

workers for each small plant.26

Another well-known employer-employee data set that applied this sampling design

is the Workplace and Employee Survey (WES), a longitudinal survey of workplaces

and their employees administered annually by Statistics Canada between 1999 and

2006. Every year, a representative sample of approximately 6,000 employers was

surveyed. A maximum of twenty-four employees were randomly interviewed from

each sampled workplace in each odd year and re-interviewed the following year. Thus,

we only observe a small subsample of the employees at each firm in the WES.27

Other applications of our techniques can be based on surveys conducted by pro-

fessional associations. Consider, for example, the After the JD , which is a nationally

representative longitudinal data set constructed by the American Bar Foundation

and the National Association for Law Placement. The data set follows students who

graduated in 2000. The respondents were surveyed three times: once each in 2003,

2007, and 2012. The survey thus contains detailed information about associates and

partners. The commonly available version of the After the JD does not contain the

identity of the law firm. However, this information is available to internal researchers

at the American Bar Association. Hence, one should be able to match the employees

in the AJD to individual law firms and study the productivity differences among law

firms using our technique.

Finally, there are numerous applications outside of industrial organization. In Ap-

pendix D show that the partially latent covariate problem can also arise in the study

of intergenerational transmission of human capital, wealth or attitudes. It is rather

common that we do not sample all relevant household members. Here, we consider,

the Child Development Supplement of the PSID to study the transmission of human

capital from parents to children. If a child grows up in traditional family, it is likely

that we observe inputs from both mother and father. However, traditional family

26The New Worker-Employer Characteristic Dataset is an extension of the WECD that also con-
tains firms. Another relevant data set is the Longitudinal Employer-Household Dynamics (LEHD)
which is drawn from state unemployment insurance administrative files, and hence, contains a larger
subset of workers. It suffers from missing data problems, especially for firms with high turnover in
the labor force. Hence, we often only observe a subset of workers for these firms. This is particularly
problematic for small firms in the service sector.

27See, for example, Dostie and Javdani (2020), for more details.
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arrangements have become less common during the past decades and thus the focus

has shifted on evaluating the impact of growing up in less traditional environments.

If a child grows up in a non-traditional family one of the two parents’ inputs are often

missing. We can also apply our framework to study achievement functions. We find

that there are some significant differences between married and divorced parents. In

particular, divorced fathers have no significant impact on child quality.

6 Concluding Remarks

We have developed a new method for identifying econometric models with partially

latent covariates. We have shown that a broad class of econometric models that play

a large role in industrial organization and labor economics can be non-parametrically

identified if the partially latent covariates are monotonic functions of a common shock.

Examples that fall into this class of models are production and skill formation func-

tions. The partially latent data structure arises quite naturally in these settings if

we employ an “input-based sampling” strategy, i.e. if the sampling unit is one of

multiple labor input factors. It is plausible that the sampling unit will only have

incomplete information about the other labor inputs that affect output. Our proofs

of identification are constructive and imply a sequential, two-step semi-parametric

estimation strategy. We have discussed the key problems encountered in estimation,

characterized rate of convergence, and the asymptotic distribution of our estimators.

Our application focuses on estimating team production functions. Using a national

survey of pharmacists, we have found some convincing evidence that chains have dif-

ferent technologies than independently operated pharmacies. In particular, managers

appear to be to have higher marginal productivities in chains.

There is substantial scope for future research in other areas. Finally, our re-

search provides ample scope for future research in econometric methodology. We

have restricted ourselves to applications in which our method of identification can be

combined with standard IV techniques to estimate the functions of interest. Much

of the recent panel data literature has focused on dynamic inputs in the presence of

adjustment costs, and more research is needed to extend the idea in this paper to

a fully fledged dynamic panel data framework. We have also restricted ourselves to

systems of inputs with a single common shock. Another potentially interesting re-

search question is how our methods can be extended to more complicated econometric
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structures with multiple shocks.
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A Additional Derivations

A.1 Optimal Input Choice in the Cobb-Douglas Case

Suppose that firm i chooses inputs optimally by solving the following (expected)

profit-maximization problem:

max
Xi1,Xi2

eα0+uiXα1
i1 X

α2
i2 − Zi1Xi1 − Zi2Xi2, (15)

where Xi1, Xi2, Zi1, Zi2 denote exponents of xi1, xi2, zi1, zi2. By the first-order condi-

tions,

Xi1 = e
α0+ui

1−α1−α2

(
Zi1
α1

) 1−α2
α1+α2−1

(
Zi2
α2

) α2
α1+α2−1

Xi2 = e
α0+ui

1−α1−α2

(
Zi2
α2

) 1−α1
α1+α2−1

(
Zi1
α1

) α1
α1+α2−1

Y i = e
α0+ui

1−α1−α2

(
Zi1
α1

) α1
α1+α2−1

(
Zi2
α2

) α2
α1+α2−1

= eα0+ui

(
α2Zi1
α1Zi2

)α2

X
α1+α2

i1 = eα0+ui

(
α1Zi2
α2Zi1

)α1

X
α1+α2

i2

In log forms

xi1 = h1 (ui, zi) =
α0 + (1− α2) logα1 + α2 logα2

1− α1 − α2

− 1− α2

1− α1 − α2

zi1 −
α2

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

xi2 = h2 (ui, zi) =
α0 + α1 logα1 + (1− α1) logα2

1− α1 − α2

− α1

1− α1 − α2

zi1 −
1− α1

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

yi = y (ui, zi) =
α0 + α1 logα1 + α2 logα2

1− α1 − α2

− α1

1− α1 − α2

zi1 −
α2

1− α1 − α2

zi2 +
1

1− α1 − α2

ui

= α0 + α2 log (α2/α1) + (α1 + α2)h1 (ui, zi) + α2zi1 − α2zi2 + ui

= α0 + α1 log (α1/α2) + (α1 + α2)h2 (ui, zi)− α1zi1 + α1zi2 + ui

Taking inverses

ui = h−11 (xi1, zi) := − [α0 + (1− α2) logα1 + α2 logα2] + (1− α1 − α2)xi1 + (1− α2) zi1 + α2zi2

= h−12 (xi2, zi) := − [α0 + α1 logα1 + (1− α1) logα2] + (1− α1 − α2)xi2 + α1zi1 + (1− α1) zi2
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Hence,

γ1 (xi1, zi) = y
(
h−11 (xi1, zi) , zi

)
= − logα1 + xi1 + zi1,

γ2 (xi2, zi) = y
(
h−12 (xi2, zi) , zi

)
= − logα2 + xi2 + zi2,

and

yi = γ1 (xi1, zi) + εi =− logα1 + xi1 + zi1 + εi

= γ2 (xi2, zi) + εi =− logα2 + xi2 + zi2 + εi. (16)

It is then evident that α1 or α2 can be estimated directly from (16) from the corre-

sponding subsample where xi1 or xi2 is observed. Furthermore, we may test input

optimality based on equation (16).

A.2 Nash Equilibrium under Strategic Complementarity

Suppose that, given u, z and the other partner’s choice X2, partner 1 solves

max
X1

π1 (X, u;Z) := λ1 (F (X, u)− Z1X1 − Z2X2) + Z1X1 −
1

2
c1X

2
1 ,

where F (X, u) := eu+α0Xα1
1 Xα2

2 , λ1 ∈ (0, 1) and c1 > 0. Similarly, partner 2 solves

max
X2

π2 (X, u;Z) := λ2 (F (X, u)− Z1X1 − Z2X2) + Z2X2 −
1

2
c2X

2
2 ,

with λ2 ∈ (0, 1) and c2 > 0.

Since the game is supermodular by (12), the set of Nash equilibria admits a

minimum and a maximum under the partial order defined by bivariate monotonicity.

Let X∗ (u, Z) the minimum NE and X∗∗ the maximum NE.

Suppose that X∗ 6= X∗∗. Then WLOG suppose that X∗ � X∗∗. Moreover, both

X∗ and X∗∗ must solve the FOCs:

∇X1F (X, u) +
1− λ1
λ1

Z1 −
c1
λ1
X1 = 0,

∇X2F (X, u) +
1− λ2
λ2

Z2 −
c2
λ2
X2 = 0,
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or in vector form

∇XF (X, u) =

(
c1
λ1
X1

c2
λ2
X2

)
−

(
1−λ1
λ1

Z1

1−λ2
λ2

Z2

)
. (17)

Taking difference of (17) evaluated at X∗ and X∗∗, we have

∇XF
(
X
∗∗
, u
)
−∇XF (X∗, u) =

(
c1
λ1

(X∗∗1 −X∗1 )
c2
λ2

(X∗∗2 −X∗2 )

)
,

and hence, by X∗ 6= X∗∗,

(X∗∗ −X∗)
′ (
∇XF

(
X
∗∗
, u
)
−∇XF (X∗, u)

)
=
c1
λ1

(X∗∗1 −X∗1 )2 +
c2
λ2

(X∗∗2 −X∗2 )2 > 0. (18)

In the meanwhile, we have

∇XF
(
X
∗∗
, u
)
−∇XF (X∗, u) = ∇XXF

(
X̃, u

)
(X∗∗ −X∗)

for some X̃ between X∗ and X∗∗, and we know ∇XXF
(
X̃, u

)
must be negative semi-

definite for Cobb-Douglas production functions under the assumption of α1 +α2 ≤ 1,

which implies

(X∗∗ −X∗)
′ (
∇XF

(
X
∗∗
, u
)
−∇XF (X∗, u)

)
= (X∗∗ −X∗)

′
∇XXF

(
X̃, u

)
(X∗∗ −X∗) ≤ 0,

a contradiction to (18). Hence, we conclude that X∗ = X∗∗ and thus the NE is

unique.

Take any u > u and write X := X∗ (u, Z) and X := X∗ (u, Z). By, for example,

Milgrom and Roberts (1990), we know that X ≥ X.

Suppose that X1 = X1. Then

∇X1F
(
X1, X2, u

)
=
c1
λ1
X1 −

1− λ1
λ1

Z1

=
c1
λ1
X1 −

1− λ1
λ1

Z1 = ∇X1F (X, u)
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= ∇X1F
(
X1, X2, u

)
≤ ∇X1F

(
X1, X2, u

)
by ∇X2X1F > 0 in (12)

which contradicts with (13).

Thus X1 > X1 and similarly X2 > X2.

Hence, both X∗1 (u, Z) and X∗2 (u, Z) must be strictly increasing in u, satisfying

Assumption (3).

B Proofs

B.1 Additional Notation and Lemmas

Notation For each i, we use xij to denote the observed input and use xik to denote

the latent input variable for firm i, i.e.

xij = xi1, xik = xi2, for di = 1,

xij = xi2, xik = xi1, for di = 2.

We write

di1 := 1 {di = 1} ,

di2 := 1 {di = 2} ,

so that xij = di1xi1 + di2xi2 while xik := di1xi2 + di2xi1. We write xi := (1, xi1, xi2)
′

to

denote the true regressor vector. (Recall x̃i denotes the same regressor vector with

imputed latent input x̂ik in place of xik.)

Moreover, we suppress the instrumental variables zi in functions, such as γ1 (ui, zi),

unless it becomes necessary to emphasize the dependence of such functions on zi.

Lemma 1. Under Assumption 8, if ‖γ̂k − γk‖∞ = Op (an), then
∥∥γ̂−1k − γ−1k ∥∥∞ =

Op (an) and |x̂ik − xik| = Op (an).

Proof. By Assumption 8 we have

c |u1 − u2| ≤ |γk (u1)− γk (u2)|
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For any v ∈ Range (γk),

∣∣γ̂−1k (v)− γ−1k (v)
∣∣ ≤ 1

c

∣∣γk (γ̂−1k (v)
)
− γk

(
γ−1k (v)

)∣∣ =
1

c

∣∣γk (γ̂−1k (v)
)
− v
∣∣

=
1

c

∣∣γk (γ̂−1k (v)
)
− γ̂k

(
γ̂−1k (v)

)∣∣ ≤ 1

c
‖γ̂k − γk‖∞ = Op (an) .

Furthermore, observing that

c
∣∣γ−1k (v1)− γ−1k (v2)

∣∣ ≤ ∣∣γk (γ−1k (v1)
)
− γk

(
γ−1k (v2)

)∣∣ = |v1 − v2|

we have by Assumption 8 and Lemma 1, for di = 1,

|x̂ik − xik| =
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
=
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γ̂k (xik)) + γ−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
≤
∣∣γ̂−1j (γ̂k (xik))− γ−1j (γ̂k (xik))

∣∣+
∣∣γ−1j (γ̂k (xik))− γ−1j (γk (xik))

∣∣
≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
|γ̂k (xik)− γk (xik)|

≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
‖γ̂k − γk‖∞

= Op (an) . (19)

Lemma 2. Under Assumption 8:

(i) The pathwise derivative of γ−1k w.r.t. γk along τk ∈ Γ is given by

∇γkγ
−1
k [τk] := lim

t↘0

(γk + tτk)
−1 (v)− γ−1k (v)

t
= −

τk
(
γ−1k (v)

)
γ
′
k

(
γ−1k (v)

) .
(ii) The pathwise derivative of γ−1k (γj (·)) w.r.t. γj along τj ∈ Γ is given by

∇γj

(
γ−1k ◦ γj

)
[τj] := lim

t↘0

γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
(
γ−1k
)′

(γj (x)) τj (x) =
1

γ
′
k

(
γ−1k (γj (x))

)τj (x) .
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(iii) The second-order derivatives have bounded norms:

∇2
γk
γ−1k [τk] [τk] ≤M ‖τk‖2

∇2
γj

(
γ−1k ◦ γj

)
[τj] [τj] ≤M ‖τk‖2

Proof. (i) and (ii) follow immediately from the definition of pathwise derivatives. See,

e.g., Lemma 3.9.20 and 3.9.25 in Van Der Vaart and Wellner (1996) for reference. For

(iii),

∇2
γk
γ−1k [τk] [νk] =

τ
′

k

(
γ−1k
)

γ
′
k

(
γ−1k
) · νk (γ−1k )

γ
′
k

(
γ−1k
) − τk

(
γ−1k
)[

γ
′
k

(
γ−1k
)]2
[
γ
′′

k

(
γ−1k
)

+
1

γ
′
k

(
γ−1k
)] νk (γ−1k )

≤M ‖τk‖ ‖νk‖

since γ
′

k ≥ c > 0 by Assumption 8 and γ
′′

and τ
′

k are uniformly bounded above by

Assumption 9(i). Similarly for ∇2
γj

(
γ−1k ◦ γj

)
.

Lemma 3. Writing γ := (γ1, γ2), the pathwise derivative of γ−1k ◦ γj w.r.t. γ along τ

is given by

∇γ

(
γ−1k ◦ γj

)
[τ ] := lim

t↘0

(γk + tτk)
−1 (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
1

γ
′
k

(
γ−1k (γj (x))

) [τj (x)− τk
(
γ−1k (γj (x))

)]
Proof. By Lemma 2,

1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x))
]

=
1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x) + tτj (x))
]

+
1

t

[
γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

]
→ ∇γkγ

−1
k [τk] (γj (x)) +∇γj

(
γ−1k ◦ γj

)
[τj]

= −
τk
(
γ−1k (γj (x))

)
γ
′
k

(
γ−1k (γj (x))

) +
1

γ
′
k

(
γ−1k (γj (x))

)τj (x)

=
1

γ
′
k

(
γ−1k (γj (x))

) (τj (x)− τk
(
γ−1k (γj (x))

))
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B.2 Proof of Theorem 2(i)

Proof. We verify the conditions in Lemma 5.4 of Newey (1994), or equivalently, The-

orems 8.11 of Newey and McFadden (1994).

Recall wi := (yi, xi, zi, di), γ := (γ1, γ2) and

g (wi, α̂, γ̂) =zi
(
yi − α̂0 −

(
xi1α̂1 + γ̂−12 (γ̂1 (xi1)) α̂2

)
di1 −

(
xi2α̂2 + γ̂−11 (γ̂2 (xi2)) α̂2

)
di2
)

=zi
(
yi − α̂0 − xijα̂j − γ̂−1k (γ̂j (xij)) α̂k

)
g (wi, γ̂) =zi

(
yi − α0 −

(
xi1α1 + γ̂−12 (γ̂1 (xi1))α2

)
di1 −

(
xi2α2 + γ̂−11 (γ̂2 (xi2))α2

)
di2
)

=zi
(
yi − α0 − xijαj − γ̂−1k (γ̂j (xij))αk

)
=zi

(
ui + εi +

[
xik − γ̂−1k (γ̂j (xij))

]
αk
)

Clearly, E [g (wi, γ)] = E [zi (ui + εi)] = 0 by Assumptions 6 and 4. Moreover,
1
N

∑N
i=1 g (wi, α̂, γ̂) = 0 by the definition of α̂.

Now, define

G (wi, γ̂ − γ) := ∇γg (wi, γ) [γ̂ − γ]

= −αkzi∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

=
−αkzi

γ
′
k

(
γ−1k (γj (xij))

) [(γ̂j − γj) (xij)− (γ̂k − γk)
(
γ−1k (γj (xij))

)]
= − αkzi

γ
′
k (xik)

[γ̂j (xij)− γj (xij)− γ̂k (xik) + γk (xik)] since γ−1k (γj (xij)) = xik

= di1zi

(
−α2

γ
′
2

)
(1,−1)

(
γ̂1 − γ1
γ̂2 − γ2

)
+ di2zi

(
−α1

γ
′
1

)
(−1, 1)

(
γ̂1 − γ1
γ̂2 − γ2

)

= −zi
(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) (20)

By Lemma 2(iii) and Lemma 3, we deduce

‖g (w, γ̂)− g (w, γ)−G (w, γ̂ − γ)‖ = Op

(
‖γ̂ − γ‖2∞

)
= op

(
1√
N

)
given our assumption that ‖γ̂ − γ‖∞ = op

(
N−1/4

)
.
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Next, the stochastic equicontinuity condition

1√
N

N∑
i=1

(
G (wi, γ̂ − γ)−

∫
G (wi, γ̂ − γ) dP (wi)

)
= op

(
1√
N

)
(21)

is guaranteed by Assumptions 8 and 9. Specifically, γ̂ − γ belongs to a Donsker class

of functions by the smoothness assumption while 1/γ
′

k (xik) ≤ 1/c guarantees that

G (zi, ·) is square-integrable, so that G (zi, ·) is also Donsker and thus (21) holds.

Now, write ζi := (xi, zi) so that wi = (yi, ζi, di). Then we have∫
G (wi, γ̂ − γ)Pwi

=

∫
−zi

(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dP (ζi, di)

=

∫
−zi

([∫
di1dP (di| ζi)

]
α2

γ
′
2

−
[∫

di2dP (di| ζi)
]
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPζi

=

∫
−zi

(
λ1 (ζi)

α2

γ
′
2

− λ2 (ζi)
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPζi

By Proposition 4 of Newey (1994), with

ϕ (wi) := −
(
λ1
α2zi
γ
′
2

− λ2
α1zi
γ
′
1

)
(di1 − di2)

we have

zi

(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1,−1)

(
di1 (yi − γ1 (xi1))

di2 (yi − γ2 (xi2))

)
≡ ϕ (wi) ziεi,

and by Assumption 10

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ (wi) ziεi + op

(
1√
N

)
.

Hence, Lemma 5.4 of Newey (1994),

1√
N

N∑
i=1

g (wi, γ̂) =
1√
N

N∑
i=1

[g (wi, γ) + ϕ (wi) ziεi] + op (1)
d−→ N (0,Ω) ,
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where

Ω :=Var [g (wi, γ) + ϕ (wi) ziεi]

=E
[
ziz

′

i (ui + [1 + ϕ (wi)] εi)
2
]

= E
[
ziz

′

i

(
u2i + [1 + ϕ (wi)]

2 ε2i
)]

Lastly, by Lemma 1∣∣∣∣∣ 1n
n∑
i=1

zi (x̂i1 − xi1)

∣∣∣∣∣ ≤ 1

n

n∑
i=1

|zi| |x̂i1 − xi1| ≤ Op (an) · 1

n

n∑
i=1

|zi| = Op (an) = op (1)

and thus

1

N

N∑
i=1

zix̃
′

i = E
[
zix

′

i

]
+

1

N

N∑
i=1

zi (x̃i − xi)
′
+

1

N

N∑
i=1

(
zix

′

i − E
[
zix

′

i

])
= E

[
zix

′

i

]
+Op (aN) +Op

(
1√
N

)
p−→ Σzx := E

[
zix

′

i

]
.

Hence,

√
N (α̂− α) =

(
1

N

N∑
i=1

zix̃i

)−1
1√
N

N∑
i=1

g (wi, γ̂)
d−→ N

(
0,Σ−1zx ΩΣ

′−1
zx

)
.

B.3 Proof of Theorem 2(ii)

Proof. We adapt the proof of Theorem 2(i) above with

g∗ (w, α̂, γ̂) :=zi
(
γ̂j (xij)− α̂0 − α̂jxij − α̂kγ̂−1k (γ̂j (xij))

)
,

g∗ (w, γ̂) :=zi
(
γ̂j (xij)− α0 − αjxij − αkγ̂−1k (γ̂j (xij))

)
.

with E [g∗ (wi, γ)] = E
[
zi
(
γj (xij)− α0 − αjxij − αkγ−1k (γj (xij))

)]
= E [ziui] = 0

and 1
N

∑N
i=1 g (z, α̂∗, γ̂) = 0.

By the chain rule,

G∗ (wi, τ) :=∇γg
∗ (wi, γ) [γ̂ − γ]

=zi
(
[γ̂j (xij)− γj (xij)]− αk∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

)
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=zi

(
1− αk

γ
′
k (xik)

)
[γ̂j (xij)− γj (xij)]− zi

αk
γ
′
k (xik)

[γ̂k (xik)− γk (xik)]

=zi

[
di1

(
1− α2

γ
′
2

,−α2

γ
′
2

)
+ di2

(
−α1

γ
′
1

, 1− α1

γ
′
1

)]
(γ̂ − γ)

and∫
G (wi, γ̂ − γ)Pwi =

∫
zi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
(γ̂ − γ) dPζi

By Proposition 4 of Newey (1994), with

ϕ∗ (wi) := −
(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
di2

we have

zi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))(
di1 (yi − γ1 (xi1))

di2 (yi − γ2 (xi2))

)
≡ ϕ∗ (wi) ziεi,

and by Assumption 10

∫
G (w, γ̂ − γ) dP (w) =

1

N

N∑
i=1

ϕ∗ (wi) ziεi + op

(
1√
N

)
.

Hence, we have

1√
N

N∑
i=1

g∗ (wi, γ̂) =
1√
N

N∑
i=1

[g∗ (wi, γ) + ϕ∗ (wi) zi] + op (1)
d−→ N (0,Ω∗) ,

where

Ω := Var [g∗ (wi, γ) + δ∗ (zi)] = E
[
ziz

′

i

(
u2i + ϕ∗ (wi)

2 ε2i
)]
,

giving

√
N (α̂− α) =

(
1

N

N∑
i=1

zix̃i

)−1
1√
N

N∑
i=1

g∗ (wi, γ̂)
d−→ N

(
0,Σ−1zx Ω∗Σ

′−1
zx

)
.
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B.4 Proof of Theorem 3

Proof. By (6), we have

∂

∂c
γj (c; z) = αj + αkx

′

k

1

x
′
j

+
1

x
′
j

> αj,

and thus 0 < αj/γ
′
j < 1, which implies

λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

> 0, λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

> 0.

Hence,

ϕ∗ =

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

)
di2 > 0

1 + ϕ = 1−
(
α2

γ
′
2

λ1 −
α1

γ
′
1

λ2

)
(di1 − di2)

=

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
di1 +

(
1− λ2

α1

γ
′
1

+ λ1
α2

γ
′
2

)
di2

= ϕ∗ + (1− λ1) di1 + (1− λ2) di2
> ϕ∗ > 0.

Hence, (1 + ϕ)2 > ϕ∗2 > 0 and

Ω− Ω∗ = E
[
ziz

′

i

[
(1− ϕ (xi, di))

2 − ϕ∗ (xi, di)
2] ε2i ]

is positive definite. Therefore, Σ−Σ∗ is also positive definite and α̂∗ is asymptotically

more efficient than α̂.

B.5 Proof of Theorem 4

Proof. Assumption 11(i) guarantees that N1 ∼ N2 ∼ N so that

‖γ̂1 − γ1‖∞ ∼ ‖γ̂2 − γ2‖∞ = Op (aN)
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where, by Assumption 11(ii)-(v) and Theorem 8 of Hansen (2008),

aN = bp +

√
logN√
Nb3

.

With b chosen according to Assumption 11(vi) so that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp →

0, implying that

aN = o
(
N−

1
2

)
+ o

(
N−

1
4

)
= o

(
N−

1
4

)
,

verifying Assumption 9(ii). Assumption 10 (and consequently Theorem 4) follows

from Theorem 8.11 of Newey and McFadden (1994).

C Monte Carlo with Partially Latent Wages

In this section, we consider the case in which the wage for type j is observed only

when we observe the input for type j. This data structure can typically be observed

when we have individual-level survey data where each individual reports his/her own

inputs and wages. Specifically, we have that:

(zi1, zi2) =

(zi1,missing) if xi1 is observed

(missing, zi2) if xi2 is observed
(22)

Since we need to impute missing wages, we assume that wages differ across, but not

within local labor markets. Let m(i) denote the local market that firm i is active in. If

we observe enough firms in a local market than we can treat both wages as observed.

Below we consider the case in which we only observe one firm per local labor market,

but wages can be expressed as functions of some demand shifters Dm ∈ R2 for the

local labor market m and a random error ηi which is assumed to be independent from

the demand shifters. Note that this specification allows for correlation between z1m(i)

and z2m(i) through Dm. Specifically, we simulate wages as follows:

zi1 =κ1Dm + ηi1 (23)

zi2 =κ2Dm + ηi2 (24)

The demand shifters are drawn randomly from a bivariate normal distribution
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with a mean of µD = (2.4, 2.1)′ and a variance of ΣD = (0.05, 0; 0, 0.02). And the

parameter values are set to be κ1 = (1.1, 0.3) and κ2 = (0.1, 0.9). All other parameter

values vary across the specifications reported in Table 1.

To impute the missing wages, we regress the observed wages (zi1, zi2) on the de-

mand shifters (Dm). Using estimated parameters from the regression, we then impute

the missing local labor market wages.

Table 9: Monte Carlo: Small Markets with Partially Latent Wages

Number of Number of Standard SLS Matched TSLS

Param markets firms Spec Bias RMSE Bias RMSE

α0 500 1 1 -0.002 0.002 -0.002 0.002
α0 500 1 2 -0.010 0.006 -0.010 0.006
α0 500 1 3 -0.002 0.002 -0.002 0.002
α0 500 1 4 -0.001 0.002 -0.000 0.003

α1 500 1 1 0.001 0.014 0.003 0.016
α1 500 1 2 0.007 0.049 0.010 0.056
α1 500 1 3 0.001 0.014 0.003 0.016
α1 500 1 4 0.001 0.022 0.009 0.033

α2 500 1 1 -0.007 0.019 -0.007 0.021
α2 500 1 2 -0.028 0.067 -0.030 0.077
α2 500 1 3 -0.007 0.019 -0.007 0.021
α2 500 1 4 -0.006 0.030 -0.013 0.043

Table 9 summarizes the performance of our new estimator together with TSLS

estimator. Even if we have a relatively large variance of the measurement errors, such

as in Specification 4, our new estimator performs reasonably well.

D Applications outside of Industrial Organization

In this appendix we discuss that the partially latent covariate problem can also arise

in the study of intergenerational transmission of human capital, wealth or attitudes.

It is rather common in many data sets that we do not sample all relevant household

members. We then illustrate these ideas and estimate the achievement function of

children with and without divorced parents.
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D.1 Discussion

There are a number of surveys that have a sampling design that gives rise to par-

tially latent covariates. A prototypical survey is the Panel Study of Income Dynamics

(PSID). The survey starts with an initial set of respondents that is representative of

the U.S. population in 1968. The initial survey collects the answers to a large number

of questions about the respondent’s background and financial circumstances, includ-

ing family information (married or single, number of children, etc.) Importantly, all

children born to a PSID respondent join the PSID sample and are included in future

waves. As a result, the PSID data set has substantial information about individuals

with the “PSID gene”, that is, individuals who are direct descendants of the initial

cohort. These individuals typically marry individuals who lack the PSID gene, and

consequently, much more is known about the individual with the gene than about

the individual without the gene. Hence, the PSID data set has, by construction, a

large number of couples for which many variables are partially latent. For example, if

we wanted to know whether parental teenage employment affects offspring education

attainment, we have the teenage employment for one parent but not the other (unless,

of course, the matched couple each had the gene.) The inclusion of the CDS sam-

ple amplifies the effect: for the youngest children, we have information about their

grandparents with the PSID seed, but nothing about the other set of grandparents.

More generally, the partially latent covariate problem arises in studies of inter-

generational outcomes, such as the transmission of wealth or attitudes. For example,

researchers have been interested in inter vivos gifts. It is common for parents, while

still alive, to give money to their children, often to help with a down payment on a

house or to reduce taxes the parents will pay. When a couple makes a gift to their

married child, however, they risk that the child divorces and a portion of the gift

will accrue to the child’s spouse. The concern is real since approximately 40% of

marriages in the U.S. end in divorce. A natural question is how well parents can

predict how long a child’s marriage will last at the time they contemplate making a

gift. One could address this question with a data set that includes inter vivos gifts

from parents to married children and, in addition, how long the child’s marriage sur-

vives. Such data sets exist, for example the PSID, which documents these for family

lines that stretch over a half century. In this application, we know the inter vivos

gifts to the couple from the parents of the PSID gene child but not inter vivos gifts

to the couple from the spouse’s parents. It is straightforward to write down a non-
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cooperative model of intergenerational transfer, where the transfers of both sets of

parents are monotonically increasing in the estimated probability that the marriage

survives. Hence, the model satisfies our monotonicity assumption.

Similar data structures arise in the National Longitudinal Survey of Youth, Amer-

ican Community Survey, Health and Retirement Study, and the American Time Use

Survey. The bottom line is that for a large set of questions relating to family economics

and the intergenerational transmission of wealth, human capital, and attitudes, the

data one might use is often survey data that often very naturally has partially latent

variables. The methods developed in this paper are, therefore, central to improving

our understanding intergenerational mobility and intergenerational poverty.28 This

is not to say that the techniques in our paper will necessarily solve all such latent

variable issues. However, we conjecture that the methods developed in this paper

should provide useful insights into the study of a variety of questions related to in-

tergenerational linkages.

D.2 An Application: Achievement Functions

To illustrate these ideas, we consider, the Child Development Supplement of the PSID

to study the transmission of human capital from parents to children. If a child grows

up in a traditional family, it is likely that we observe inputs from both mother and

father. However, traditional family arrangements have become less common during

the past decades and thus the focus has shifted on evaluating the impact of growing

up in less traditional environments. If a child grows up in a non-traditional family

one of the two parents’ inputs is often missing.

Our data is based on the four available waves of the Child Development Sup-

plement (CDS). These are the cohorts interviewed in 1997, 2002, 2007, and 2014.29

For these children, we have detailed time usage information of their parents on two

days, each of which is randomly selected among weekdays and weekends, respectively.

Based on this time diary information we can construct time inputs for mothers and

fathers.30 The CDS can be linked to the original PSID survey using the family ID.

28The NLSY, HRS and ATS contain more information about the initial respondents than their
spouses. The ACS collects more data about the person filling out the questionnaire than the spouse.

29The CDS 1997 cohort consists of up to 12-year-old children and follows them for 3 waves (1997,
2001, 2007). The CDS 2014 cohort consists of children that were up to 17 years old in 2013.

30We exclude families with stepmother and stepfather from our sample.
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Hence, we have detailed parental information such as education level, household in-

come, and the number of children.

The CDS collects multiple measures of child development including both cognitive

and non-cognitive skills. We focus on two important cognitive tests. First, we study

the passage comprehension test which assesses reading comprehension and vocabulary

among children aged between 6 and 17. Second, we analyze the applied problems test

which assesses mathematics reasoning, achievement, and knowledge for children aged

between 6 and 17.31

Here we assume that a child’s achievement yi is a function of the mother’s and

the father’s time inputs, denoted by xim and xif . Again, we consider a log-linear

Cobb-Douglas specification given by

yi = αi + αm xim + αf xif + ui (25)

where heterogeneity in the intercept is given by:

αi = x′i α0 (26)

Hence, we assume that the baseline productivity αi varies with family characteristics,

such as family income. As before, we can estimate the education production function

using TSLS with wages as instruments for inputs as well as our “matched” TSLS

estimator if some inputs are partially latent.

We begin by estimating an achievement function using the subsample of children

who live in married households. Hence, we observe the mother’s and the father’s

inputs in the data set. We observe 3,236 children with complete inputs and applied

problem scores as well as 2,789 children with complete inputs and reading compre-

hension scores. Table 10 provides descriptive statistics of the main variables in our

sample.

We can estimate the model using the traditional TSLS estimator. We compare

these estimates with our matched TSLS which is based on a sample in which we ran-

domly omit one of the two inputs. This exercise allows us to compare the performance

of both estimators when there is no latent input problem. We restrict our attention

31We also analyzed the letter word test which assesses symbolic learning and reading identification
skills. There are also two non-cognitive measures. The externalizing behavioral problem index
measures disruptive, aggressive, or destructive behavior. The internalizing behavioral problem index
measures expressions of withdrawn, sad, fearful, or anxious feelings.
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Table 10: Summary Statistics of CDS Sample

Married Sample Divorced Sample

Applied Problem Score (Standardized) 107.58 101.28
(16.63) (16.92)

Passage Comprehension Score (Standardized) 105.89 99.48
(14.77) (14.49)

Mother’s Time Input 20.77 15.18
(14.32) (14.06)

Father’s Time Input 13.87 4.34
(11.96) (13.81)

Total Number of Child In Family 2.17 2.1
(0.9) (0.9)

Child’s Age At Interview 9.68 11.37
(4.74) (4.44)

Total Household Labor Income (in 2011 Dollar) 68941 24158
(55732) (28616)

Mother’s Age 37.05 37.3
(7.27) (6.85)

Father’s Age 39.1 38.81
(7.7) (8.8)

Mother’s Years of Education 13.51 12.92
(2.57) (1.97)

Father’s Years of Education 13.38 12.97
(3.21) (1.9)

Living With Mother - 0.88
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to married couples with both spouses living together. We exclude families with more

than 5 children. As instruments for time inputs we use education, employment status,

hourly wage, age of children. To preserve the representativeness of our sample, we use

the child-level survey weight for all analyses. Household labor income is measured in

10,000 dollars. Table 11 summarizes our findings.

Table 11: Education Production Function: Married Sample

Applied Problems Passage Comprehension
TSLS matched TSLS TSLS matched TSLS

Mom Hour 0.016 0.027 0.100 0.098
(0.008) (0.002) (0.012) (0.033)

Dad Hour 0.032 0.021 0.017 0.006
(0.007) (0.007) (0.009) (0.040)

Num Child = 2 −0.011 0.034 −0.051 −0.097
(0.008) (0.020) (0.013) (0.150)

Num Child = 3+ 0.008 0.077 −0.030 −0.059
(0.009) (0.026) (0.014) (0.152)

Household Labor Inc 0.008 0.006 0.010 0.009
(0.001) (0.002) (0.001) (0.017)

Constant 4.510 4.484 4.321 4.380
(0.017) (0.026) (0.026) (0.223)

Nobs 3,236 3,236 2,789 2,789
First-stage F for xm 61.997 127.295 41.812 58.530
First-stage F for xf 62.636 117.966

Overall, our empirical findings are reasonable. We find that investments in child

quality decrease with the number of children in the family and increase with house-

hold income, as expected. Both parental time inputs are positive and typically sta-

tistically significant and economically meaningful. Comparing the TSLS with our

matched TSLS estimator, we find that the results are remarkably similar, especially

for the passage comprehension test. The results for the applied problem test are also

encouraging although the differences in the estimates are slightly larger. Qualita-

tively, we reach the same conclusions with both estimators. We thus conclude that

our matched TSLS performs well in this sample.

Next, we consider the subsample that consists of households that self-reported to

be either divorced or separated. We exclude single households for obvious reasons.

In all households in this sample one of the parents is not living in the child’s house-
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Table 12: Education Production Function: Divorced Sample

Applied Problems Passage Comprehension
matched TSLS matched TSLS

Mom Hour 0.050 0.037
(0.028) (0.015)

Dad Hour 0.010 0.001
(0.013) (0.003)

Num Child = 2 0.051 0.019
(0.055) (0.039)

Num Child = 3+ 0.002 −0.015
(0.056) (0.066)

Household Labor Inc −0.013 −0.006
(0.016) (0.004)

Constant 4.548 4.529
(0.078) (0.061)

Nobs 785 723
First-stage F for xm 40.532 35.264
First-stage F for xf

hold. We typically do not observe time inputs for these divorced parents. For the

applied problem (passage comprehension) score we observe 785 (723) children with

the mother’s input. There are 103 (92) observations where we have the father’s in-

put, which we use for imputation purposes.32 Note that the standard TSLS is no

longer feasible in this subsample because of the latent variable problem. Table 12

summarizes our findings.

Table 12 shows that the time inputs for mothers are positive, statistically signif-

icant, and economically meaningful. Moreover, the point estimates for the applied

problem test are similar to the ones we obtained for the married sample reported in

Table 11. The main difference is that mother’s time inputs are slightly less productive

for children from divorced families, and father’s time inputs are not statistically dif-

ferent from zero. In summary, our estimator works well in this application and yields

plausible and accurate point estimates for most coefficients of interest. Most impor-

tantly, we find that the inputs of divorced fathers into the skill formation function of

their children are negligible.

32Missing instruments for the unobserved spouse are imputed using standard techniques based on
the observed spouse’s information.
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