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Abstract

We propose a simple and fast �xed-point iteration algorithm (FiPIt) to obtain the global,

non-linear solution of macro models with two endogenous state variables and occasionally bind-

ing constraints. This method uses �xed-point iteration on Euler equations to avoid solving

two simultaneous non-linear equations (as with the time iteration method) or creating modi�ed

state variables requiring irregular interpolation (as with the endogenous grids method). In the

small-open-economy RBC and Sudden Stops models provided as examples, FiPIt is much faster

than time iteration and various hybrid methods.

∗We thank Javier Bianchi, Pablo D'Erasmo, Bora Durdu, Vincenzo Quadrini and Urban Jermann for helpful
comments and suggestions. Contact email addresses: egme@sas.upenn.edu and vsergio@sas.upenn.edu.



1 Introduction

Important branches of the recent macroeconomics literature study quantitative solutions of models

in which constraints are triggered endogenously (i.e. they are �occasionally binding�), as in studies

of the zero-lower-bound on interest rates or �nancial crises triggered by credit constraints. Because

these models typically feature non-linear decision rules that lack analytic solutions and capture

precautionary savings, global solution methods (e.g. time iteration or endogenous grids methods)

are the preferable tool for solving them. Global methods are, however, less practical than pertur-

bation methods, because of limitations that make them slow and di�cult to implement with widely

used software (e.g. Matlab). On the other hand, perturbation methods for solving models with

occasionally binding constraints, such as OccBin developed by Guerrieri and Iacoviello [2015] and

DynareOBC proposed by Holden [2016], have caveats that limit the scope of the �ndings that can

be derived from using them (see Aruoba et al. [2019], Durdu et al. [2019])

This paper proposes a simple and fast algorithm to obtain the global solution of models with two

endogenous states and occasionally binding constraints. This algorithm is denoted as FiPIt because

it is based on the well-known �xed-point iteration approach to solve systems of transcendental

equations. It is easy to implement in a Matlab platform and is signi�cantly faster than the standard

time iteration algorithm and several hybrid alternatives. FiPIt 's solution strategy builds on the

class of time iteration methods that originated in the work of Coleman [1990], who �rst proposed

a global solution method based on policy function iterations of the Euler equation. Since then,

various enrichments and modi�cations of this approach have been developed, in particular the

endogenous grids method proposed by Carroll [2006] (see Rendahl [2015] for a general discussion of

these methods and an analysis of their convergence properties). FiPIt di�ers from these methods

in that it applies the �xed-point iteration method to solve a model's Euler equations. For instance,

in the Sudden Stops model solutions provided as example in this paper, the bonds (capital) Euler

equation is used to solve directly for a �new� bonds decision rule (capital pricing function) without

the need of a non-linear solver. The capital decision rule is solved for in �exact� form using the

models' optimality conditions.

The endogenous grids method also avoids using a non-linear solver, but it does so by de�n-

ing alternative state variables so that obtaining analytic solutions of Euler equations for control

variables (e.g. consumption, investment) requires irregular interpolation of functions de�ned over

endogenous grids of the original state space. This is innocuous in one-dimensional problems, but
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in two- and higher-dimensional problems it requires elaborate interpolation methods to tackle the

non-rectangular nature of the endogenous grids. In particular, Ludwig and Schön [2018] developed

a method using Delaunay interpolation, and showed that it is signi�cantly faster that standard time

iteration.1 Alternatively, Brumm and Grill [2014] proposed a a variant of the time iteration method

that still uses a non-linear solver but gains speed and accuracy by updating grid nodes to track

decision rule kinks using also Delaunay interpolation. In contrast, FiPIt retains the original state

variables so that standard multi-linear interpolation on regular grids can be used.

We apply the algorithm to solve the model proposed by Mendoza [2010], which is a model

of Sudden Stops (�nancial crises) in a small open economy. This model includes an occasionally

binding credit constraint limiting intertemporal debt and working capital not to exceed a fraction

of the market value of physical capital (i.e. pledgeable collateral). The results show that, relative

to the time iteration method, FiPIt reduces execution time by a factor of 2.5 (or 18.1 when solving

an RBC variant of the model).2 We also found that FiPIt continues to perform well for several

parameter variations, despite the well-known drawback of �xed-point iteration methods indicating

that their convergence is not guaranteed. Execution times for seven parameter variations of the

model were smaller than using time iteration by factors of 2.0 to 18.1. Ludwig and Schön [2018]

report reductions by factors of 2.7 to 4.1 using endogenous grids with Delaunay interpolation v.

standard time iteration, or 1.8 to 2.5 using their hybrid method v. standard time iteration, when

solving a perfect-foresight model of human capital accumulation in a small open economy.3

In addition to the Delaunay interpolation, a second drawback of the endogenous grids method

relative to the FiPIt method is that it still requires a root-�nder in order to determine equilibrium

solutions in points of the state space in which occasionally binding constraints bind (see Ludwig

and Schön [2018]). FiPIt requires a non-linear solver only if the solution of the allocations when the

constraint binds cannot be separated from the solution of the multiplier of the constraint. The two

are separable in models that feature several widely-used occasionally binding constraints, including

1Adjacent points in the endogenous grids do not generally match adjacent nodes in the matrix formed by the
original grids. Ludwig and Schon tackled this problem using Delaunay interpolation. They also proposed a hybrid
method that uses an exogenous grid for one of the endogenous states and an endogenous grid for the second.

2We used Matlab version R2017a on a Windows 10 laptop with an Intel Core i7-6700HQ 2.60GHz chip, 4 physical
cores and 16 GB of RAM. The state space for the Sudden Stops (RBC) model has 72 (80) nodes on foreign assets and
30 on domestic capital. The Sudden Stops (RBC) model solved in 810 (100) seconds, compared with 1,986 (1,808)
using the time iteration method.

3They report faster solution times for each individual scenario than with our algorithm but these are not compa-
rable due to di�erences in models and hardware. We solve a stochastic model with three shocks, capital accumulation
and adjustment costs, and a credit constraint that depends on the model's two endogenous states and a market price.
They solve a deterministic model in which human capital is an accumulable factor produced with an exponential
technology and a no-borrowing constraint. We do not have details about the software and hardware they used.
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standard no-borrowing constraints, maximum debt limits, and constraints on debt-to-income and

loan-to-value ratios that depend on endogenous variables. Solving variations of the SS model using

these constraints, FiPIt reduced execution time relative to the time iteration method by a factor of

13.0 for a loan-to-value-ratio constraint and 17.9 for a maximum debt limit.

There are applications in the literature that solve models using �xed-point iteration algorithms

with some features similar to the one we proposed here. Carroll [2011] described and implemented

a �xed-point iteration algorithm for solving the workhorse complete-markets RBC model of a closed

economy. Boz and Mendoza [2014], Bianchi and Mendoza [2018] and Bianchi et al. [2016] solved

open-economy models with occasionally binding collateral constraints iterating on bond decision

rules and/or pricing functions. All these applications considered only one endogenous state variable.

Perri and Quadrini [2018] solved a two-country model with two endogenous state variables and a

credit constraint resulting from an enforcement friction using Fortran and a state space with 121

points (11 nodes for each state variable). This paper di�ers from these studies in that we develop

an algorithm that solves models with two endogenous states easily and fast in a standard Matlab

platform and with a sizable state space including 2,160 points. FiPIt can be used in a variety of

models with two endogenous states. The choice of functions that are iterated on using the Euler

equations can vary across models, and there can be more that one arrangement for the same model.

The rest of the paper proceeds as follows. The next Section describes the principles of the

algorithm in the simple case of a model of savings with endowment income, and uses this example

also to explain how FiPIt di�ers from the time iteration and endogenous grids methods. Section 3

describes the Sudden Stops model and provides a step-by-step description of the complete algorithm.

Section 4 provides quantitative results, evaluates the robustness of the algorithm, and conducts

performance comparisons with alternative algorithms, including the standard time iteration method.

Section 5 presents conclusions. In addition, the Matlab codes and an Appendix that provides a user's

guide to the codes are available online.

2 A Fixed-Point Iteration Algorithm for a Simple Savings Model

We describe the principles of the FiPIt method using a savings model with stochastic endowment

income and an exogenous interest rate. This model is a workhorse of various branches of the macro

literature, including consumption and savings in partial equilibrium, heterogeneous agents models

with incomplete markets, and international macro models of the small open economy.
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A representative agent chooses consumption and savings plans so as to maximize a standard

expected utility function:

E0

{ ∞∑
t=0

βtu(ct)

}
. (1)

subject to the budget or resource constraint:

ct = ezt ȳ + bt − qbt+1. (2)

and a debt limit:

bt+1 ≥ −ϕ. (3)

In the utility function, β ∈ (0, 1) is the subjective discount factor and u(·) is the period utility

function, which can be any standard twice, continuously di�erentiable and concave utility function,

although the CRRA functional form is the one used most often:

u(ct) =
c1−σt

1− σ
,

where σ is the relative risk aversion coe�cient. In the resource constraint, ezt ȳ is stochastic income

with mean ȳ and shocks zt of exponential support e
zt , bt are holdings of one-period, non-state-

contingent discount bonds traded in a frictionless credit market. In a partial equilibrium model of

savings or a model of a small open economy, the real interest rate r is exogenous, so the price of

bonds is also exogenous and given by q ≡ 1
1+r . In a general equilibrium model of heterogeneous

agents, the above optimization problem is solved by each individual agent facing idiosyncratic income

uncertainty, and the interest rate is endogenously determined so as to clear the bond market. The

FiPIt method can be used in all of these models, except that in the heterogeneous agents model we

would also need to iterate on the interest rate until the bond market clears. We focus on the small

open economy case to simplify the exposition.

If the utility function satis�es the Inada condition and income shocks follow a discrete Markov

process or a truncated continuous distribution, the debt limit follows from Aiyagari's Natural Debt

Limit: agent's never choose optimal plans that leave them exposed to the risk of non-positive

consumption, and hence never borrow more than the annuity value of the lowest income realization.

Alternatively, agents may face an ad-hoc debt limit tighter than the natural debt limit. Thus, the

model includes an occasionally binding constraint, albeit of a simple form: bt+1 ≥ −ϕ.
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The Euler equation for bond holdings is

uc (ct) = (1 + r)βEt [uc(ct+1)] + µt, (4)

where uc(ct) is the marginal utility of ct and µt is the multiplier on the debt limit. Note that using

the resource constraint to substitute for consumption, the Euler equation can be expressed as:

uc (ezt ȳ + bt − qbt+1) = (1 + r)βEt [uc (ezt+1 ȳ + bt+1 − qbt+2)] + µt. (5)

A competitive equilibrium for this economy is de�ned by stochastic sequences [ct, bt+1]
∞
t=0 that

satisfy equations (3) and (4) for all t. The economy has a well-de�ned limiting distribution of (b, y)

(i.e. a stochastic steady state) only if β(1+r) < 1 (see Ljungqvist and Sargent [2012], Ch. 18). This

condition is also a general equilibrium outcome in heterogeneous agents models, because otherwise

all agents would want an in�nite amount of bonds, which is inconsistent with market clearing in

the market of risk-free bonds.

Since there are no ine�ciencies a�ecting the small open economy (other than the incompleteness

of asset markets), the competitive equilibrium can be represented as the solution to the following

dynamic programming problem:

V (b, z) = max
c,b′

{
c1−σ

1− σ
+ β

∑
z′

π(z′, z)V
(
b′, z′

)}
, (6)

subject to

c = ez ȳ + b− qb′

b′ ≥ −ϕ

The solution to the above Bellman equation is characterized by a decision rule b′(b, z) and the

associated value function V (b, z), and the decision rule together with the Markov process of the

shocks induce a joint ergodic (unconditional) distribution of bonds and income λ(b, z).

�Euler equation� methods typically solve for b′(b, z) over a discrete state space of (b, z) pairs

using the recursive equilibrium conditions that follow from the �rst-order-conditions of the above

Bellman equation:

c(b, z)−σ ≥ βR
∑
z′

π(z′, z)
(
c(b′(b, z), z′)

)−σ
(7)
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c(b, z) = ez ȳ + b− qb′(b, z). (8)

The recursive equilibrium of the model is then de�ned as the pair of decision rules c(b, z), b′(b, z)

that satisfy these two conditions.

The FiPIt method poses a conjecture of the decision rule b̂′j(b, z) in iteration j, de�ned over

the nodes of discrete grids for b and z. Intermediate values are then found by interpolation. The

function b̂′j(b, z) uses the resource constraint to generate its associated consumption function as

cj(b, z) = ez ȳ + b− qb̂′j(b, z). Using this consumption function, the above �rst-order conditions can

be combined into an equation that solves for the �new� consumption function:

cj+1(b, z) =

{
βR
∑
z′

π(z′, z)
(
cj(b̂

′
j(b, z), z

′)
)−σ}− 1

σ

(9)

In the right-hand-side of this Euler equation, we need the value of ct+1, which is obtained by

evaluating the consumption function at the t+1-values of the state variables: cj(b̂
′
j(b, z), z

′)). Since

b̂′j(b, z) is de�ned only on the nodes of the grid of bonds, this consumption function is interpolated

over its �rst argument in order to determine cj(b̂
′
j(b, z), z

′) (i.e. the value of ct+1 implied by the

conjectured consumption function). Once this is done, the Euler equation solves directly for a

new consumption function cj+1(b, z) without a non-linear solver. Using the resource constraint,

this new consumption function yields a new decision rule for bonds b′j+1(b, z), which is re-set to

b′j+1(b, z) = −ϕ if b′j+1(b, z) ≤ −ϕ. Then the decision rule conjecture is updated to b̂
′
j+1(b, z) as a

convex combination of b̂′j(b, z) and b
′
j+1(b, z): b̂

′
j+1(b, z) = (1− ρ)b̂′j(b, z) + ρb′j+1(b, z). The process

is repeated until b′j+1(b, z) = b̂′j(b, z) for all (b, z) in the grids, up to a convergence criterion.

Three points raised by Judd [1998] about �xed-point iteration algorithms like this one are worth

recalling. First, using collocation methods instead of solving for a �nite state space, the �xed-

point iteration method can be represented in a form analogous to the Parameterized Expectations

method, because the latter is a �xed-point iteration method that uses simulation and regression to

construct conditional expectations. Second, using 0 < ρ < 1 (ρ > 1) to set the decision rule of the

next iteration is useful to address possible instability (slow convergence) of the algorithm. Third, a

�nite state space may be preferable to collocation methods to de�ne the decision rules depending

on whether we expect decision rules to be smooth or to have strong curvature. The latter can be

particularly important in models with occasionally binding constraints that depend on endogenous

variables, such as credit constraints that depend on collateral prices and yield U-shaped decision
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rules because of the Fisherian debt-de�ation mechanism (see Bianchi and Mendoza [2018]). This

will be the case in the model solved in the next Section.

Fixed-point iteration di�ers from the time iteration method because the latter applies the con-

jectured decision rule b̂′j(b, z) only to substitute for the term bt+2 in the right-hand-side of the Euler

equation (5), and then uses a non-linear solver to solve the resulting non-linear equation for the op-

timal choice of bt+1 as a function of (zt, bt). Hence, we can think of the �xed-point iteration method

as a �proxy time iteration method� that substitutes for the bt+1 in the right-hand-side of the Euler

equation with a proxy that is de�ned to be the conjectured decision rule, instead of treating that

bt+1 term as endogenous.4 Fixed-point iteration is also di�erent from the endogenous grids method,

because it does not rede�ne the endogenous state variable and instead solves the problem over the

original rectilinear grids (b, z). Still, �xed-point iteration retains the main computational advantage

of the endogenous grids method, which is that the Euler equation is reduced to an equation with

an analytic solution for the decision rule, avoiding the need to use non-linear solvers.

3 The FiPIt Method for Two-Dimensional Models

This Section provides a detailed description of the steps that the FiPIt method follows to solve a

model with two endogenous states and an occasionally binding constraint. The model pertains to a

small open economy with two endogenous states, capital (k) and net foreign assets (b), and a credit

constraint. If the constraint never binds, the algorithm solves a standard RBC model of a small

open economy, and if it binds it solves a model with endogenous �nancial crises or Sudden Stops.

3.1 Model structure and equilibrium conditions

The model is the same as in Mendoza [2010], except that the preferences with endogenous dis-

counting are replaced with standard time-separable expected utility with exogenous discounting at

rate β. The economy is inhabited by a representative �rm-household with preferences de�ned over

stochastic sequences of consumption ct and labor supply Lt, for t = 0, ...,∞, given by:

E0

[ ∞∑
t=0

βt
(ct − Lωt

ω )1−σ

1− σ

]
(10)

4From this perspective, it may seem as if the FiPIt method solves the �incorrect� Euler equation. Yet, as the
paper shows, the solutions satisfy the same equilibrium conditions and are negligibly di�erent from those obtained
using standard time iteration. This is because FiPIt is essentially an application of the standard �xed-point iteration
approach to solve transcendental equations.
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The agent chooses sequences of consumption, labor, investment, and holdings of real, one-period

international bonds, bt+1 (the agent borrows when bt+1 < 0), so as to maximize the above utility

function subject to the following budget and collateral constraints:

ct(1+τ)+kt+1−(1−δ)kt+
a

2

(kt+1 − kt)2

kt
= AtF (kt, Lt, vt)−ptvt−φ(Rt−1)(wtLt+ptvt)−qbt bt+1+bt,

(11)

qbt bt+1 − φRt(wtLt + ptvt) ≥ −κqtkt+1. (12)

The right-hand-side of the budget constraint is the sum of net pro�ts from production and the

resources generated by trading assets abroad. Net pro�ts are equal to gross production minus the

cost of imported inputs minus the servicing of foreign working capital loans for labor and imported

inputs. Gross output is represented by a constant-returns-to-scale technology, AtF (kt, Lt, vt) =

exp(εAt )Akγt L
α
t v

η
t , that requires capital, kt, labor and imported inputs, vt, to produce a tradable

good sold at a world-determined price (normalized to unity without loss of generality). TFP is

subject to a random shock εAt with exponential support around a mean of A. Working capital loans

pay for a fraction φ of the cost of imported inputs and labor in advance of sales. These loans are

obtained from foreign lenders at the beginning of each period and repaid at the end. Lenders charge

the world gross real interest rate Rt = R exp(εRt ) on these loans, where εRt is an interest rate shock

around a mean value R. Imported inputs are purchased at an exogenous relative price in terms of

the world's numeraire pt = p exp(εPt ), where p is the mean price and εPt is a shock to the world price

of imported inputs (i.e., a terms-of-trade shock). The shocks εAt , ε
R
t , and ε

P
t follow a joint �rst-order

Markov process. The resources generated by trading assets abroad are given by −qbt bt+1 + bt, where

qt is the price of the international bonds, which satis�es qbt = R−1t .

The left-hand-side of the budget constraint is the sum of consumption expenditures, investment

and capital adjustment costs. Gross investment is it = kt+1−(1−δ)kt and gross investment inclusive

of adjustment costs is ĩt = kt+1 − (1 − δ)kt + a
2
(kt+1−kt)2

kt
. Since government expenditures are not

included in the model, we include a time-invariant consumption tax τ that is used to calibrate the

model to match the average share of government expenditures in GDP in the data. This is done

so that consumption and investment shares in the model can match their data counterparts. Since

the tax is constant, it does not distort the savings-consumption margin. The tax does distort labor

supply but this distortion is constant over time, since the tax itself is constant.

The credit constraint limits the total debt, which is equal to intertemporal debt plus working

capital �nancing, not to exceed the fraction κ of the market value of the end-of-period capital stock.
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This is a more complex constraint than borrowing constraints of the class bt+1 ≥ −ϕ, widely used in

heterogeneous agents models and also in the algorithm proposed by Ludwig and Schön [2018]. Notice

that the prices qt and wt that appear in this constraint (and the wage in the budget constraint), are

endogenous market prices taken as given by the agent when solving its optimization problem. As in

Mendoza [2010], the wage rate must be on the labor supply curve (i.e. it must equal the tax-adjusted

marginal disutility of labor), which requires wt = Lω−1(1 + τ), and the price of capital must satisfy

the optimality condition requiring that qt = ∂ĩt
∂kt+1

. With these simpli�cations noted, the competitive

equilibrium of the economy can be represented with the optimization problem of the �rm-household,

instead of de�ning separate problems for households and �rms. This equilibrium, however, cannot

be represented as the solution to a planner's problem formulated as a single Bellman equation,

because the planner would internalize the responses of wages and asset prices to its optimal plans,

while the representative �rm-household does not.

De�ning λt and µt as the future-value multipliers of the budget and collateral constraints re-

spectively, the model's equilibrium conditions in sequential form are:

(
ct −

Lωt
ω

)−σ
= λt(1 + τ) (13)

AtFLt(kt, Lt, vt) = wt

(
1 + φ(Rt − 1) +

µt
λt
φRt

)
(14)

AtFvt(kt, Lt, vt) = pt

(
1 + φ(Rt − 1) +

µt
λt
φRt

)
(15)

λt =
1

qbt
βEt[λt+1] + µt (16)

λt =
1

qt
βEt

[
λt+1

(
exp(εAt+1)Fkt+1 − δ +

a

2

(kt+2 − kt+1)
2

k2t+1

+ qt+1

)]
+ µtκ (17)

qt =
∂ĩt
∂kt+1

= 1 + a

(
kt+1 − kt

kt

)
(18)

wt = Lω−1(1 + τ) (19)

ct(1+τ)+kt+1−(1−δ)kt+
a

2

(kt+1 − kt)2

kt
= AtF (kt, Lt, vt)−ptvt−φ(Rt−1)(Lωt (1+τ)+ptvt)−qbt bt+1+bt

(20)

Solving this model with the time iteration method requires solving the Euler equations (16) and

(17) as part of a system of non-linear equations. Given conjectures of the decision rules for capital

and bonds, and simplifying using the other equilibrium conditions, the two Euler equations form
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a two-equation system that yields the �new� decision rules. When the collateral constraint does

not bind, these two Euler equations have their standard forms. When the constraint binds, the

multiplier µt is an additional endogenous variable and there is an additional equation, which is the

constraint holding with equality. The solution can still be reduced to a two-equation system, by

using the constraint to substitute for qbt bt+1 together with the conjectured decision rules so as to

obtain a two-equation system in kt+1 and µt.
5

Solving with the endogenous grid method requires de�ning grids for two alternative state vari-

ables (s1, s2) such that s1t ≡ qbt bt+1 and s2t ≡ kt+1/(1 − δ), and then proceeding as in Ludwig and

Schön [2018] to �rst determine the values of (bt+1, kt+1) associated with each (s1t , s
2
t ) pair, then

use the optimality conditions (including the Euler equations) to solve for the contemporaneous

controls, particularly (ct, it), and then use the resource constraint and the de�nition of gross invest-

ment to extract the implied values of the original endogenous states (bt, kt), namely the endogenous

grids. When solving for the contemporaneous controls, the optimality conditions form a system of

equations that has an analytic solution, thus avoiding the need to use a non-linear solver, but the

endogenous grids of (bt+1, kt+1) are irregular, so interpolation of the relevant functions required to

obtain the solution of the system is implemented using Delaunay interpolation.6 As noted earlier,

FiPIt does not need either non-linear solvers or interpolation methods for irregular grids.7 Standard

bi-linear interpolation over rectangular grids still applies.

3.2 Description of the FiPIt algorithm

The FiPIt method solves the model's equilibrium conditions in recursive form. The model has two

endogenous states, b and k, and three exogenous states, using s to denote the triple of exogenous

shocks s ≡ (A,R, p), which includes shocks to TFP (A), the world interest rate (R) and the price

of imported inputs (p). The recursive equilibrium is de�ned by a set of recursive functions for

allocations [b′(b, k, s), k′(b, k, s), c(b, k, s), L(b, k, s), v(b, k, s)], prices [w(b, k, s), q(b, k, s)] and multi-

pliers [λ(b, k, s), µ(b, k, s)] that satisfy the recursive representation of equations (13)-(20), which is

provided in Section 2 of the Appendix.

5If the solution implies a value of bt+1 lower than the lower bound of the grid of bonds, we set bt+1 to that lower
bound and solve again the two-equation system for the values of kt+1 and µt+1 consistent with that value of bt+1.
Hence, the lower bound of the bonds grid is still treated as a constraint of the form bt+1 ≥ −ϕ.

6The Ludwig-Schon algorithm still needs to solve a non-linear equation in order to solve for the contemporaneous
controls in states in which their no-borrowing constraint binds.

7A non-linear equation may need to be solved for in states in which the credit constraint binds, depending on
the structure of the constraint (as we explain in subsection 3.2), but this is separate from the need to solve a
two-Euler-equation non-linear system when time iteration is used to solve models with two endogenous states.
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The recursive equilibrium is solved for over a discrete state space, which requires de�ning discrete

grids for (b, k, s). The grid for the shock triples s ∈ S comes from the discretization of the stochastic

processes of the model's three shocks. This is typically done using Tauchen's quadrature method.

Here we take S and the associated Markov transition probability matrix from Mendoza [2010],

where S has eight triples (i.e. each shock has two realizations). For the endogenous states, we de-

�ne grids with M nodes for bonds and N nodes for capital, respectively: B = {b1 < b2 < ... < bM},

K = {k1 < k2 < ... < kN}. The state space has M × N × 8 elements and is de�ned by all

(b, k, s) ∈ B ⊗K ⊗ S. Once parameter values and the discrete state space are de�ned, the FiPIt

algorithm is implemented following the steps described below.

Step 1. Start iteration j with conjectured functions for the price of capital q̂j(b, k, s), the de-

cision rule for bonds b̂′j(b, k, s), and the multiplier ratio ˆ̃µj(b, k, s) ≡ µj(b, k, s)/λj(b, k, s). The �rst

iteration can start with ˆ̃µ0(b, k, s) = 0 so that the �rst pass runs as if it were an RBC model and

only cases where the constraint binds pass positive multipliers to the next iteration. The initial

functions can be set to q̂0(b, k, s) = 1 and b̂′0(b, k, s) = b, which imply stationary decision rules for

capital and bonds. Note also that this same algorithm can be used to solve a standard RBC model

without the occasionally binding constraint, by simply setting κ high enough so that the constraint

never binds.

Step 2. Using the recursive equilibrium conditions, compute the iteration-j implied decision rules

for capital k′j(b, k, s), consumption, investment (inclusive of adjustment costs), labor, inputs and

output as shown below. Note that, given q̂j(b, k, s), the capital decision rule has an analytic solution

that follows from optimality condition (18) (i.e. the capital decision rule has a closed-form solution

as a function of the price of capital). The factor allocation rules follow from the conditions equating

marginal products with marginal costs, which include factor prices and �nancing costs. The wages

bill wL is replaced with (1 + τ)Lω because of the optimality condition for labor supply. With these

arguments in mind, the iteration-j implied decision rules are:
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k′j(b, k, s) =
k

a
[q̂j(b, k, s)− 1 + a] (21)

ĩj(b, k, s) =(k′j(b, k, s)− k)

[
1 +

a

2

(
k′j(b, k, s)− k

k

)]
− δk (22)

vj(b, k, s) =

{
Akγη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + ˆ̃µj(b, k, s)φR]

} ω
ω(1−η)−α

(23)

Lj(b, k, s) =

{
α

η(1 + τ)
pvj((b, k, s)

} 1
ω

(24)

yj(b, k, s) =AkγLj(b, k, s)
αvj(b, k, s)

η (25)

Consumption then follows from the resource constraint:

(26)
(1 + τ)cj(b, k, s) = yj(b, k, s)− pvj(b, k, s)− φ(R− 1) [(1 + τ)Lj(b, k, s)

ω + pvj(b, k, s)]

− ĩj(b, k, s)−
b̂′j(b, k, s)

R
+ b

Note that for points where ˆ̃µj(b, k, s) = 0, factor allocations and output are the same as for an

RBC model without credit frictions, which because of the GHH structure of period utility (i.e. the

marginal rate of substitution between c and L is independent of c) depend only on (k, s). We keep

them as functions of all three states because when ˆ̃µj(b, k, s) > 0 factor allocations and output do

depend on the three states.

Step 3. Assume the collateral constraint does not bind. This implies that the new decision

rule for the modi�ed multiplier is ˆ̃µj+1(b, k, s) = 0, and the new decision rules for the rest of the

endogenous variables are solved using the recursive equilibrium conditions as follows:

3.1 Factor allocations and output again match the expressions corresponding to an RBC model

with perfect credit markets:

vj+1(b, k, s) =

{
Akγη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1)]

} ω
ω(1−η)−α

(27)

Lj+1(b, k, s) =

{
α

η(1 + τ)
pvj+1(b, k, s)

} 1
ω

(28)

yj+1(b, k, s) =AkγLj+1(b, k, s)
αvj+1(b, k, s)

η (29)
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3.2 Solve for cj+1 by applying the �xed-point iteration method to the Euler equation for bonds.

The iteration-j conjectures for capital and bonds are used everywhere in the right-hand-side

of this Euler equation, so that we obtain an analytic solution for cj+1. Keep track of the

subscripts denoting which function is used in each term:

cj+1(b, k, s)

=

βRE
(cj(b̂′j(b, k, s), k′j(b, k, s), s′)−Lj(b̂′j(b, k, s), k′j(b, k, s), s′)ωω

)−σ
− 1
σ

+
Lj+1(b, k, s)

ω

ω
(30)

In the above expression, the functions cj(b, k, s) and Lj(b, k, s) are de�ned only at the nodes

of B ⊗K ⊗ S, but since the values of b̂′j(b, k, s) and k′j(b, k, s) generally do not match node

grids in B and K, respectively, cj(·) and Lj(·) are interpolated over their �rst two arguments

to determine cj(b̂
′
j(b, k, s), k

′
j(b, k, s), s

′) and Lj(b̂
′
j(b, k, s), k

′
j(b, k, s), s

′). Standard bi-linear

interpolation is applied. Use extrapolation if k′j(b, k, s) is below (above) k1 (kN ) and also if

b̂′j(b, k, s) is above b
M , but for b̂′j(b, k, s) < b1 evaluate the functions at b1, because the lower

bound on bonds represents an ad-hoc debt limit commonly used for calibration of the model

to the data (see Durdu et al. [2019]). Note also that, because of the fractional exponent (since

typically σ > 1) the above equation solves only if cj(·) − Lj(·)ω
ω > 0, but if this is true for

the consumption and labor decision rules implied by the initial conjectures set for the �rst

iteration (c0(·), L0(·)), it will also be true at any iteration j > 0.

3.3 Solve for b′j+1(b, k, s) using the resource constraint:

b′j+1(b, k, s) =R
{
yj+1(b, k, s)−pvj+1(b, k, s)−φ(R−1) [(1+τ)Lj+1(b, k, s)

ω+pvj+1(b, k, s)]

− ĩj(b, k, s)− (1 + τ)cj+1(b, k, s) + b
}

(31)

3.4 Evaluate if the collateral constraint binds. If:

b′j+1(b, k, s)

R
− φR [(1 + τ)Lj+1(b, k, s)

ω + pvj+1(b, k, s)] + κq̂j(b, k, s)k
′
j(b, k, s) ≥ 0, (32)

the constraint does not bind at the point (b, k, s), the functions with j+1 subscripts are saved,

and skip to Step 5. Otherwise, the constraint binds at this point, the functions with j + 1

subscripts are discarded and move to Step 4.
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Step 4. Solve for new decision rules when the collateral constraint binds. Since q̂j(b, k, s) has not

changed, we use the same iteration-j implied decision rule for capital k′j(b, k, s) = k
a [q̂j(b, k, s)− 1 + a]

and the same function ĩj(b, k, s) as before. This is the most computationally intensive step, because it

solves a non-linear simultaneous equations system to determine Lj+1(b, k, s), vj+1(b, k, s), cj+1(b, k, s),

b′j+1(b, k, s), µ̃j+1(b, k, s). The �ve equations in the system are the two optimality conditions for

factor allocations, the Euler equation for bonds (with the µ̃ terms), the credit constraint hold-

ing with equality, and the resource constraint. To make the solution more tractable, we express

Lj+1(b, k, s), vj+1(b, k, s), cj+1(b, k, s), b
′
j+1(b, k, s) as functions of µ̃(b, k, s), and use the results to

reduce the system to a single non-linear equation in µ̃(b, k, s). In the simpli�ed system, factor allo-

cations, consumption and bonds are functions denoted Lj+1(b, k, s, µ̃), vj+1(b, k, s, µ̃), cj+1(b, k, s, µ̃),

b′j+1(b, k, s, µ̃), but to make the notation simpler we write them as depending on µ̃ only (still, keep

in mind the set of equations needs to be solved for each (b, k, s) for which the constraint was found

to be binding in step 3.4):

v(µ̃) =

{
Akγη

ω−α
ω

α
1+τ

α
ω

p
ω−α
ω [1 + φ(R− 1) + µ̃φR]

} ω
ω(1−η)−α

(33)

L(µ̃) =

{
α

η(1 + τ)
pv(µ̃)

} 1
ω

(34)

b′(µ̃)

R
=− κq̂jk′j + φRpv(µ̃)

[
1 +

α

η

]
(35)

(1 + τ)c(µ̃) =AkγL(µ̃)αv(µ̃)η − pv(µ̃)− φ(R− 1)pv(µ̃)

[
1 +

α

η

]
− ĩj −

b′(µ̃)

R
+ b (36)

The equations for labor and inputs follow from combining the borrowing constraint with the opti-

mality conditions equating marginal products with marginal costs, including the µ̃ terms. They are

the same equations used in Step 2, but now we need to �nd the value of µ̃j+1 that solves them,

instead of taking as given µ̃j .

In addition to equations (33)-(36), the solution for µ̃j+1(b, k, s) must also satisfy the Euler

equation for bonds, which can be written as:

µ̃j+1(b, k, s) = 1−
βRE

[(
cj(b̂

′
j(b, k, s), k

′
j(b, k, s), s

′)− Lj(b̂′j(b,k,s),k′j(b,k,s),s
′)ω

ω

)−σ]
(
c(µ̃j+1(b, k, s))− L(µ̃j+1(b,k,s))ω

ω

)−σ (37)

Notice the numerator in the second term in the right-hand-side still applies �xed-point iteration by
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computing expected marginal utility using j-dated functions only. The values of cj(b̂
′
j(b, k, s), k

′
j(b, k, s), s

′)

and Lj(b̂
′
j(b, k, s), k

′
j(b, k, s), s

′) are again determined by bi-linear interpolation.

Algebraic manipulation of equations (33)-(37) reduces to this non-linear equation in µ̃j+1(·)

(38)

(1− µ̃j+1(·))

{
C

ω
(1−η)ω−α
1

[
α

1 + φ(R− 1) + µ̃j+1(·)φR

] ηω+α
(1−η)ω−α

−
[

αC1

1 + φ(R− 1) + µ̃j+1(·)φR

] ω
(1−η)ω−α

C2 −

(
ĩj(·)− κq̂j(·)k′j(·)− b

1 + τ

)}−σ

= βRE

(cj(b̂′j(·), k′j(·), s′)− Lj(b̂
′
j(·), k′j(·), s′)ω

ω

)−σ
where:

C1 ≡
(

1

1 + τ

)1−η
Akγ

(
η

αp

)η
(39)

C2 ≡
1

ω
+
η

α
+ φ

(
1 +

η

α

)
(2R− 1) (40)

Note again that, because of the fractional exponent in the right-hand-side of (38), the equation

solves only if cj(·)− Lj(·)ω
ω > 0. Since the �rst iteration starts with µ̃0(·) = 0, any state that yields

a binding credit constraint in the �rst iteration will solve for µ̃1(·) as long as the same condition

required for the unconstrained consumption function (eq. (30)) to solve in the �rst iteration holds,

namely that c0(·)− L0(·)ω
ω > 0 for the decision rules implied by the initial conjectures set for the �rst

iteration. Moreover, since when the constraint binds it must be true that 0 < µ̃ < 1, it follows from

eq. (37) that cj(·) − Lj(·)ω
ω > 0 will hold for any iteration j > 0. Once µ̃j+1(b, k, s) is solved, the

functions vj+1(b, k, s), Lj+1(b, k, s), b
′
j+1(b, k, s), cj+1(b, k, s) are determined using equations (33)-

(36), but replacing µ̃ with µ̃j+1(b, k, s). The functions with j+ 1 subscripts are saved, and we move

to Step 5.

It is important to note that, depending on the structure of the occasionally binding constraint, if

µ̃ can be solved for separately after solving for the allocations, Step 4 is much easier because FiPIt

does not require a non-linear solver anywhere. For example, if working capital is not in the credit

constraint, we can set b′j+1(b, k, s)/R = −κq̂j(b, k, s)k′j(b, k, s), and this can be used to determine

cj+1(b, k, s) directly from the resource constraint. The implied value of µ̃j+1(b, k, s) can then be

solved for from the bonds Euler equation. The same applies for a credit constraint set to a constant

value, as in Ludwig and Schön [2018], where they used bt+1 ≥ 0. Hence, FiPIt can solve models

15



with a large class of occasionally binding constraints without using a non-linear solver at any point,

whereas the Ludwig-Schön algorithm needs both the Delaunay interpolation and a non-linear solver

when the constraint binds.

Step 5. Return to Step 3 and repeat ∀(b, k, s) ∈ B⊗K⊗ S. This is necessary before proceeding

to compute a new asset pricing function, because the complete set of j+1-dated functions is required.

Step 6. Compute the new pricing function qj+1(b, k, s). We describe two ways of doing this:

6.1 The FiPIt algorithm proceeds in a manner analogous to �xed-point iteration on the Euler

equation for bonds, by applying the new decision rules for cj+1(·), Lj+1(·), b′j+1(·), µ̃j+1(·) to

the Euler equation for capital and solving it so as to obtain the following analytic solution for

qj+1(b, k, s):

qj+1(b, k, s)

=

βEt

[(
cj+1

(
b′j+1(·), k′j(·), s′

)
− Lj+1(b′j+1(·),k′j(·),s′)

ω

ω

)−σ [
d′ (·) + q̂j

(
b′j+1(·), k′j(·), s′

)]]
(
cj+1(·)− Lj+1(·)ω

ω

)−σ
(1− κµ̃j+1(·))

(41)

where

d′
(
b′j+1(·), k′j(·), s′

)
= γA′k′j(·)γ−1Lj+1

(
b′j+1(·), k′j(·), s′

)α
vj+1

(
b′j+1(·), k′j(·), s′

)η
− δ +

a

2

(k′j(b
′
j+1(·), k′j(·), s′)− k′j(·))2

k′j(·)2

The asset price used in the right-hand-side of (41) is the conjecture set in Step 1. Since all

the functions in the right-hand-side are known, the equation solves directly for qj+1(b, k, s).

The values of cj+1

(
b′j+1(·), k′j(·), s′

)
), Lj+1

(
b′j+1(·), k′j(·), s′

)
and q̂j

(
b′j+1(·), k′j(·), s′

)
are

determined by bi-linear interpolation. The value of the dividends function d′(·) is obtained by

applying bi-linear interpolation to evaluate Lj+1

(
b′j+1(·), k′j(·), s′

)
and vj+1

(
b′j+1(·), k′j(·), s′

)
in the marginal product of capital and k′j(b

′
j+1(·), k′j(·), s′) in the adjustment cost term. Notice

that the decision rule for bonds that sets the value of bt+1 at which all these functions are

interpolated is a j+1-indexed function, not the j-indexed function used in Steps 3 and 4, but

over the capital dimension we are still using the j-indexed decision rule.
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6.2 A variant of the algorithm labeled Fixed-Point Iteration with Forward Solution (FPIFS) solves

for the new price conjecture by iterating to convergence on the capital Euler equation (i.e.

it uses the forward solution of the asset price). Index the iterations on this equation with

superscript z, the iterations solve this functional equation problem, always using the j + 1-

dated functions and the multiplier µ̃j+1(·) obtained in Steps 3 to 5:

qz+1(b, k, s)

=

βEt

[(
cj+1

(
b′j+1(·), k′j(·), s′

)
− Lj+1(b′j+1(·),k′j(·),s′)

ω

ω

)−σ [
d′ (·) + qz

(
b′j+1(·), k′j(·), s′

)]]
(
cj+1(·)− Lj+1(·)ω

ω

)−σ
(1− κµ̃j+1(·))

(42)

Iterate until ||qz+1(b, k, s)− qz(b, k, s)||≤ εq for small εq, and if the result converges, the �nal

result sets qj+1(b, k, s). The values of cj+1

(
b′j+1(·), k′j(·), s′

)
), Lj+1

(
b′j+1(·), k′j(·), s′

)
, d′ (·)

and qz
(
b′j+1(·), k′j(·), s′

)
are determined using bi-linear interpolation as in step 6.1.

Step 7. Check the convergence of the conjectured functions. Convergence requires that for small

εf the following conditions are satis�ed ∀(b, k, s) ∈ B⊗K⊗ S:

|qj+1(b, k, s)− q̂j(b, k, s)|≤ εf (43)

|b′j+1(b, k, s)− b̂′j(b, k, s)|≤ εf (44)

|µ̃j+1(b, k, s)− ˆ̃µj(b, k, s)|≤ εf (45)

If these conditions hold, the recursive competitive equilibrium has been solved. The level of the

multiplier on the credit constraint can then be solved for as follows:

(46)µj+1(b, k, s) = µ̃j+1(b, k, s)

(
cj+1(b, k, s)−

Lj+1(b, k, s)
ω

ω

)−σ
The accuracy of the solution can then be evaluated by verifying that the equilibrium conditions

hold, including computations of the maximum and average absolute values of the errors in the

Euler equations of k and b.

If any of the three convergence conditions fails, update the conjectured functions using a convex

combination of the last conjectures and the new functions to dampen possible overshooting or speed

up convergence. This is conventional practice because there is no guarantee that �xed-point iteration

algorithms converge, but when they diverge it is generally because they overshoot the true solution.
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Hence, the new conjectures are set as:

x̂j+1(b, k, s) = (1− ρx)x̂j(b, k, s) + ρxxj+1(b, k, s) (47)

for x = [q, b′, µ̃] and some 0 ≤ ρx. Notice that x̂j(b, k, s) in the right-hand-side of this expression

represents the initial conjectures that were used in the current iteration, while x̂+1j(b, k, s) in the

left-hand-side denotes the new conjectures for the next iteration. Use 0 < ρx < 1 (ρx > 1) for the

particular function x(·) that is not converging (converging too slowly). Return to Step 2, setting

x̂j(b, k, s)=x̂j+1(b, k, s), and repeat until convergence is attained.

4 Application to Sudden Stops Model

This Section examines solutions of the Sudden Stops model obtained with a set of Matlab programs

we developed to implement the FiPIt algorithm. The Matlab codes and an Appendix that explains

how the codes execute each of the algorithm steps are available online. All the computations were

made using Matlab R2017a on a Windows 10 laptop with an Intel Core i7-6700HQ 2.60GHz four-core

chip and 16GB of RAM.

The model's parameter values are taken from Mendoza [2010] and listed in Table 1, including the

same baseline value for the collateral coe�cient (κ = 0.2). We also use the same Markov process

for the model's three shocks. The only di�erence, as mentioned earlier, is that instead of using

preferences with an endogenous rate of time preference we use standard time-separable expected

utility with constant discounting, setting the subjective discount factor at β = 0.92.

The state space consists of evenly-spaced grids with 72 nodes for bonds and 30 nodes for capital.

K spans the [654.5,885.5] interval and B spans the [-188.6,800.0] interval. Solving with larger grids

increases sharply execution time and produces negligibly di�erent results, while solving with smaller

grids is faster but yields inaccurate results. The Markov process of the shocks has two realizations

for each shock and their values together with the associated 8x8 transition probability matrix

approximate the variability, autocorrelation, and contemporaneous correlation of TFP, interest rates

and the price of imported inputs in the data (see Mendoza [2010] for details).

To assess the performance of the FiPIt algorithm, we computed solutions using FiPIt and the

FPIFS variant, as well as solutions from three other algorithms: TIFS replaces the �xed-point

iteration solution of the bonds decision rule with a standard time iteration solution that uses a

non-linear solver, and solves for the price of capital using the forward solution of the capital Euler
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equation; TIFPI uses again standard time iteration for the bonds decision rule, but solves for the

price of capital using the �xed-point iteration approach; and FTI is the full time iteration solution

in which the Euler equations for capital and bonds are solved as a non-linear equation system. In

all these solutions except FTI, we found faster convergence by setting the dampening parameters

for updating the conjectured functions to 0.3 for the price of capital (0.25 for a scenario with 60

capital nodes) and 1 for bonds and µ̃. For FTI solutions, we kept ρx = 1 for all three functions,

and con�rmed that these produces convergence in the smallest number of iterations.

Table 1: Calibrated Parameter Values

Parameter Value

σ risk aversion coe�cient 2.0
ω labor elasticity coe�cient 1.8461
β discount factor 0.92
a capital adjustment cost 2.75
φ working capital parameter 0.2579
δ depreciation rate 0.088
α labor share 0.59
η imported inputs share 0.10
γ capital share of income 0.31
τ tax on consumption 0.17
A average TFP 6.982
κ collateral coe�cient 0.20

4.1 Comparison of Results & Performance Metrics

Table 2 reports long-run moments of the main macro aggregates and performance statistics of the

algorithm for the following seven solution scenarios: Columns (1) and (2) are FiPIt solutions with

capital grids of 60 and 30 nodes respectively, (3) is the TFIS solution, (4) is the FPIFS solution,

(5) is the TIFPI solution, (6) is the FTI solution and Column (7) shows the results from Mendoza

[2010] for reference.

The comparison of Cols. (1) and (2) shows that solving using FiPIt with the smaller capital

grid has nearly no e�ect on the results but reduces execution time by a factor of 2.5. The moments

reported in Columns (2) to (6) are very similar, and in fact identical up to one or two decimals.

Hence, all of the four solution algorithms we tried yield e�ectively the same results. The results

from Mendoza [2010] in Column (7) are qualitatively similar in terms of ranking of volatilities and

signs and ranking of correlations and autocorrelations, but quantitatively show more di�erences.

These are due to the di�erent discount factors (Mendoza used endogenous discounting) and the
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di�erent solution methods (Mendoza solved forcing decision rules to be on the nodes of the grids

of bonds and capital, instead of using interpolation, and used value function iteration on a quasi

planner's problem with w and q restricted to satisfy the labor supply and investment optimality

conditions). The one item that di�ers sharply is the probability of Sudden Stops, which is about

2.0 percent in Cols. (1)-(6) v. 3.3 percent in Mendoza's paper.8 This is due to the approximately-

continuous decision rules obtained using interpolation in our solutions v. decision rules forced to

be on grid nodes in Mendoza's solution. This makes our estimates of the frequency with which

µ(b, k, s) > 0, and of the trade balance adjustment implied by the associated b′(b, k, s) in those

states, more accurate. In all of our results, the long-run probability of states with µ > 0 is about

2.6 percent, but 23 percent of these states do not yield a su�ciently large increase in the trade

balance to classify as a Sudden Stop.

The performance metrics for Columns (1)-(6) reported in panel (b) of Table 2 show that all the

solutions have similar accuracy, with small maximum and average absolute-value errors in the Euler

equations for bonds and capital. The FTI solution yields larger errors, but still this makes little

di�erence in the statistical moments it produces relative to those produced by the other solutions.

In terms of execution time, the FiPIt method in Col. (2) dominates the other solution methods

by large margins.9 The absolute speeds will vary widely with hardware and software con�gurations,

but the relative speeds are likely to vary less and the ranking across methods based on this criterion

is unlikely to change. Comparing speeds relative to FiPIt, which took 810 seconds to run, the second

fastest method is FPIFS in Col. (4), which took 20 percent longer solve. This algorithm only di�ers

from FiPIt in that it solves for the price of capital by solving forward the capital Euler equation. The

slowest methods are the three that use time iteration (i.e. a non-linear solver) for at least one Euler

equation. In Cols. (3) and (5) the bonds decision rule is solved with the time iteration method, but

the price of capital is solved using the forward solution in Col. (3) v. �xed-point iteration in Col.

(5). This makes little di�erence in execution time, as they take 4.6 and 5.1 times longer than the

FiPIt solution in Col. (2), respectively. Interestingly, the standard FTI method in Col. (6), which

solves the simultaneous non-linear Euler equations for bonds and capital, is signi�cantly faster than

the methods used in Cols. (3) and (5), indicating that solving only one non-linear Euler equation

instead of two does not guarantee a faster algorithm. Still, the FTI execution time exceeds that of

8We applied the same de�nition of Sudden Stops: coordinates (b, k, s) in which the collateral constraint binds and
the trade balance-GDP ratio is at least 2 percentage points above what the RBC model yields.

9
FiPIt has even lower relative execution times than the other methods when solving the RBC model, because it

avoids using the non-linear solver completely (see Section 4.2 for details).
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the FiPIt solution by a factor of 2.5!

The FTI solution is faster than the ones in Cols. (3) and (5) because time iteration takes

advantage of the contraction mapping properties of the two non-linear Euler equations by solving

them simultaneously while �xed-point iteration methods do not. Intuitively, every iteration with

FTI tends to generate relatively more accurate outcomes, and hence attains convergence in 94

iterations. The algorithms in Cols. (3) and (5) take more than twice as many iterations (190

iterations for TIFS and 207 for TIFPI ), and still in each they have to use a root �nder because

they solve for the bonds decision rule using time iteration. The FiPIt method converges in a

similar number of iterations (196) as these two methods, but goes through each iteration much

faster because it avoids using non-linear solvers when the constraint does not bind, overcoming the

drawback of not taking advantage of the contraction mapping properties of the Euler equations,

and this makes it the fastest method.10 FPIFS in Col. (4) is the second fastest for a similar reason,

and it is slower than FiPIt because solving the price of capital with the forward solution is slower

than with �xed-point iteration.

10This suggests that FiPIt can be again much faster than FTI in applications in which, as explained in Section 3,
the structure of the occasionally binding constraint is such that FiPIt does not need a root-�nder in states in which
the constraint binds (e.g. qbt bt+1 ≥ −κqtkt+1, q

b
t bt+1 ≥ −ϕ). We show results for a case like this in subsection 4.2.
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Table 2: Long-run Moments & Performance Metrics: Sudden Stops Model (κ = 0.2)

(1) (2) (3) (4) (5) (6) (7)
FiPIt-large k grid FiPIt TIFS FPIFS TIFPI FTI Mendoza [2010]

(a) Long-run moments

Mean
gdp 393.629 393.619 393.626 393.618 393.626 393.549 388.339
c 273.910 274.123 274.074 274.124 274.073 274.011 267.857
i 67.482 67.481 67.484 67.481 67.484 67.459 65.802
nx/gdp 0.016 0.015 0.015 0.015 0.015 0.015 0.024
k 765.191 765.171 765.202 765.170 765.202 764.922 747.709
b/gdp 0.007 0.015 0.013 0.015 0.013 0.012 -0.104
q 1.000 1.000 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.106 -0.102 -0.103 -0.102 -0.103 -0.103 -0.159
v 42.618 42.617 42.618 42.617 42.618 42.609 41.949
working capital 76.660 76.658 76.659 76.658 76.659 76.644 75.455

Standard deviation (in percent)
gdp 3.91 3.94 3.94 3.94 3.94 3.94 3.85
c 3.95 4.03 4.02 4.03 4.02 4.03 3.69
i 13.33 13.33 13.33 13.33 13.33 13.32 13.45
nx/gdp 2.90 2.94 2.94 2.94 2.94 2.94 2.58
k 4.40 4.49 4.49 4.49 4.49 4.50 4.31
b/gdp 18.72 19.62 19.47 19.62 19.47 19.45 8.90
q 3.20 3.20 3.20 3.20 3.20 3.20 3.23
leverage ratio 8.79 9.22 9.15 9.22 9.15 9.14 4.07
v 5.87 5.89 5.89 5.89 5.89 5.89 5.84
working capital 4.33 4.35 4.35 4.35 4.35 4.36 4.26

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000 1.000 1.000
c 0.849 0.842 0.844 0.842 0.844 0.844 0.931
i 0.646 0.641 0.641 0.641 0.641 0.641 0.641
nx/gdp -0.122 -0.117 -0.118 -0.117 -0.118 -0.120 -0.184
k 0.757 0.761 0.761 0.761 0.761 0.761 0.744
b/gdp -0.133 -0.120 -0.119 -0.120 -0.119 -0.117 -0.298
q 0.400 0.387 0.387 0.387 0.387 0.387 0.406
leverage ratio -0.125 -0.111 -0.111 -0.111 -0.111 -0.108 0.258
v 0.831 0.832 0.832 0.832 0.832 0.832 0.823
working capital 0.994 0.994 0.994 0.994 0.994 0.994 0.987

First-order autocorrelation
gdp 0.823 0.825 0.824 0.825 0.824 0.825 0.815
c 0.823 0.830 0.829 0.830 0.829 0.829 0.766
i 0.500 0.501 0.500 0.501 0.500 0.500 0.483
nx/gdp 0.589 0.601 0.598 0.601 0.598 0.598 0.447
k 0.964 0.962 0.962 0.962 0.962 0.962 0.963
b/gdp 0.989 0.990 0.990 0.990 0.990 0.990 0.087
q 0.444 0.447 0.446 0.447 0.446 0.446 0.428
leverage ratio 0.991 0.992 0.992 0.992 0.992 0.992 0.040
v 0.776 0.777 0.777 0.777 0.777 0.777 0.764
working capital 0.800 0.801 0.801 0.801 0.801 0.801 0.777

Prob. of Sudden Stops 1.98% 1.99% 2.03% 1.99% 2.04% 2.05% 3.32%

(b) Performance metrics

Bonds Euler Equation
Max Log10 Abs. Euler Error -3.58 -3.58 -3.58 -3.58 -3.58 -3.52 -
At Grid Points (b, k, s) (1, 11, 3) (1, 6, 3) (1, 6, 3) (1, 6, 3) (1, 6, 3) (2, 1, 7) -
Mean Log10 Abs. Euler Error -14.45 -14.45 -12.41 -14.27 -12.39 -12.35 -

Capital Euler Equation
Max Log10 Abs. Euler Error -15.38 -15.37 -15.42 -15.37 -15.42 -4.06 -
At Grid Points (b, k, s) (72, 1, 7) (72, 1, 7) (32, 1, 7) (72, 1, 7) (32, 1, 7) (1, 1, 7) -
Mean Log10 Abs. Euler Error -16.22 -16.22 -16.07 -16.04 -16.21 -12.45 -

Grid size (#b,#k) (72, 60) (72, 30) (72, 30) (72, 30) (72, 30) (72, 30) (80, 60)

Seconds elapsed 1985 810 3735 956 4136 1986 -
Relative to FiPIt 2.5 1.0 4.6 1.2 5.1 2.5 -
Number of iterations 196 196 190 178 207 94 -

Note: Column (1) and Column (2) are for the FiPIt algorithm, �xed-point iteration is used for both the bonds decision rule and the price of capital.
Column (3) is for the TIFS method, which uses the time iteration method for the bonds decision rule and the forward solution of the capital Euler
equation for the price of capital. Column (4) is for the FPIFS method, which uses �xed-point iteration for the bonds decision rule and the forward
solution of the capital Euler equation for the price of capital. Column (5) is for the TIFPI method, which uses time iteration for the decision rule for
bonds and �xed-point iteration for the price of capital. Column (6) is for the FTI method, which solves the bonds decision rule and the price of
capital by solving the Euler equations for bonds and capital as two simultaneous non-linear equations. Sudden Stop states are de�ned as in Mendoza
[2010]: states (b, k, s) such that µ(b, k, s) > 0 and the trade balance-GDP ratio is at least 2 percentage points above its value in the RBC model.
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In addition to comparing Euler equation errors, we also compared the recursive equilibrium

functions produced by each solution method relative to the FiPIt solution. Table 3 shows the

maximum and mean of the absolute value of the point-wise di�erences of the functions as a ratio of

the corresponding FiPIt solution. The di�erences are generally negligible, except for the maximum

di�erences for b′ and i in the FTI solution, which reach 9.94 and 2.25 respectively in states in which

the corresponding denominator is very close to zero. Still, as shown in Table 2 this makes little

di�erence in �rst moments and is nearly irrelevant for second- and higher-order moments.

Table 3: Absolute Values of Di�erences in Equilibrium Functions Relative to FiPIt Solution

Di�erences Relative to FiPIt Method

(1) (2) (3) (4)
TIFS FPIFS TIFPI FTI

Max Di�erence
b′ 3.17e+00 5.71e-02 3.21e+00 9.94e+00
k′ 2.23e-04 7.17e-07 2.23e-04 1.10e-02
q 6.04e-04 1.99e-06 6.04e-04 1.30e-01
c 9.72e-05 7.08e-07 9.72e-05 1.09e-02
i 8.75e-02 5.79e-05 8.74e-02 2.25e+00
L 4.92e-05 3.94e-07 4.92e-05 2.57e-03
v 9.08e-05 7.27e-07 9.08e-05 4.76e-03
gdp 3.27e-05 2.61e-07 3.27e-05 1.77e-03

Mean Di�erence
b′ 6.29e-04 1.10e-05 6.37e-04 4.35e-03
k′ 1.13e-05 2.76e-07 1.15e-05 9.81e-05
q 3.16e-05 7.61e-07 3.22e-05 5.64e-04
c 2.00e-05 3.22e-07 2.03e-05 7.10e-05
i 1.74e-04 3.27e-06 1.76e-04 1.51e-03
L 1.22e-06 3.27e-09 1.22e-06 2.38e-05
v 2.24e-06 6.03e-09 2.25e-06 4.40e-05
gdp 8.16e-07 2.19e-09 8.18e-07 1.62e-05

Figure 1 shows the ergodic marginal distributions of bonds and capital, and the ergodic joint

marginal distribution of both variables produced by the FiPIt solution. These plots are generated

using the full ergodic distribution of (b, k, s), which FiPit computes using a procedure that iterates

to convergence on the law of motion of the conditional distribution of (b, k, s) (starting from an

arbitrary initial condition) taking into account the fact the the decision rules of capital and bonds

are generally o� the nodes of the corresponding grids. Full details are provided in the Appendix.
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The long-run moments listed in Table 2 were produced using this distribution. The distributions

produced by all the other solution methods are visually identical, and hence we only show the ones

for the FiPIt case. Relative to the distributions that the RBC model would produce, the distribution

of bonds shifts to the right because of the credit constraint and the stronger precautionary saving

incentives. The distribution of capital shows higher dispersion and a fatter left tail because of the

�re-sales of capital in states in which the constraint binds.
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Figure 1: Long-run Distributions of the Sudden Stops Model Solved with FiPIt

We also examined the recursive equilibrium functions to evaluate the relevance of the global
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solution to capture non-linearities. Figure 2 shows the decision rules of bonds and capital, the

pricing function of capital and the multiplier of the credit constraint across the full state space of

endogenous states, B⊗K, with s evaluated for a state with low TFP, high interest rate, and high

input prices. We show results for the Sudden Stops model and for the RBC variant, and provide

only the FiPIt results because the other methods yield visually identical graphs. The equilibrium

functions of the Sudden Stops model show signi�cant non-linearities, whereas the RBC outcomes

are approximately linear. The non-linearities result from the �re-sales of capital when the constraint

binds, the resulting collapse in the price of capital, and the associated sharp reversal in the bond

position as borrowing capacity collapses.

The sharp curvature of these non-linear solutions highlights the advantages of using a �nite-

state-space solution method, instead of a colocation method, as well as the importance of solving

using �rst-order conditions and approximately-continuous decision rules. Decision rules that capture

accurately the non-linearities implied by occasionally binding constraints are critical for quantifying

the positive and normative implications of this class of models, including Sudden Stops models.

For their positive implications, the magnitude, dynamics and frequency of �nancial crises depends

critically on the behavior of decision rules near and at the constraint. For the normative implications,

quantifying the size of distortions induced by the credit constraint and the properties of optimal

policies to tackle them hinges critically on how likely and how severely is the credit constraint

expected to bind at t+1 in a state in which it does not bind at t (see Bianchi and Mendoza [2018]).
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Figure 2: Equilibrium Recursive Functions of the Sudden Stops & RBC Models

Note: All plots show solutions obtained with the FiPIt method. Surface plots in red (blue) are for the SS
(RBC) model.

The plots of equilibrium functions do not control for whether particular (b, k, s) triples have

positive probability in the stochastic steady state. States with zero-probability are irrelevant in

the long run, and if this is the case in the region where equilibrium functions are non-linear, the

non-linearities would be of less relevance than what the equilibrium functions suggest. To assess this

issue, we follow Mendoza [2010] to calculate impact ampli�cation coe�cients and report the results

in Table 4. These coe�cients measure the excess response of macro variables across the Sudden

Stops and RBC solutions for each triple (b, k, s), separating the state space into Sudden Stop (SS)
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and non-Sudden Stop (NSS) regions.11 The averages shown in the SS and NSS columns of the Table

are computed using the limiting distribution of (b, k, s) of the Sudden Stops model. The results in

the SS column measure ampli�cation on impact when a crisis occurs. Di�erences across the SS and

NSS columns illustrate asymmetry, namely the amount by which shocks of identical magnitudes

generate di�erent e�ects when the collateral constraint is present and active v. when is not.

Table 4 compares ampli�cation coe�cients produced by the FiPIt and FTI solutions (the other

methods yield nearly identical results). The coe�cients di�er very marginally and in most instances

they are the same up to the second decimal. The Table shows that the Sudden Stops model yields

signi�cant ampli�cation and asymmetry. Ampli�cation coe�cients on factor allocations and output

are relatively smaller, because on impact at date-t when the credit constraint binds it can only

a�ect them via its e�ect on working capital �nancing and hence on labor and imported inputs. In

turn, this is due to the absence of the wealth e�ect on labor supply implied by the utility function

speci�cation and to the fact that the date-t capital stock is pre-determined.

The FiPIt method yields more accurate results than those produced by the solution method used

in Mendoza [2010]. The results in Table 4 are qualitatively similar to those reported in Table 4 of

Mendoza's paper, but quantitatively there are signi�cant di�erences. Di�erences in model structure

(i.e. endogenous v. exogenous discounting) play some role, but the bulk of the di�erences is due to

di�erences in the solution methods. Mendoza solved for decision rules forced to be on grid nodes

using value function iteration, while FiPIt solves for interpolated decision rules and iterates on the

model's optimality conditions. FiPIt yields coe�cients for �supply side� variables (i.e. GDP, labor,

imported inputs and working capital) that are smaller, while those for the rest of the variables

(particularly investment and the price of capital) are larger. Moreover, for supply-side variables

in the NSS region FiPIt yields near-zero ampli�cation while Mendoza reports �gures in the -0.29

to -0.11 range. The FiPIt results are the correct ones because the ampli�cation coe�cients for

these variables should indeed di�er from zero only due to numerical approximation error. Since k is

pre-determined at each date t and there is no wealth e�ect on labor supply, when µ(b, k, s) = 0 the

set of optimality conditions is the same in the RBC and Sudden Stops models and in both cases

11A triple (b, k, s) belongs in the SS set if the trade balance-GDP ratio in the Sudden Stops model is 2 percentage
points or more above its value in the RBC model, otherwise it belongs in the NSS region. The ampli�cation coe�cients
for each variable at a given (b, k, s) are calculated as di�erences relative to their values in the RBC model in the
same state and expressed in percent of the unconditional mean of the variable also in the RBC model. For variables
de�ned in ratios, the coe�cient is the di�erence in the Sudden Stops model relative to the RBC model.
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all supply-side variables depend only on (k, s). The coe�cients around -0.11 to -0.29 that Mendoza

obtained result from non-trivial numerical approximation errors due to inaccuracies of the solution

algorithm when averaging outcomes for states in which the NSS and SS regions are adjacent and in

determining the value of µ(b, k, s) when assigning (b, k, s) triples to the SS and NSS sets.

Table 4: Ampli�cation and Asymmetry of Sudden Stop events

(1) (2)
FiPIt FTI

SS NSS SS NSS

gdp -0.777 -0.001 -0.789 -0.001
c -3.849 -0.255 -3.882 -0.260
i -24.965 -1.036 -25.384 -1.089
q -6.090 -0.253 -6.194 -0.266
nx/gdp 4.033 0.233 4.047 0.238
b′/gdp 4.215 0.251 4.229 0.257
k′/gdp -1.667 -0.105 -1.680 -0.110
lev. ratio 1.166 0.081 1.167 0.082
L -1.178 -0.001 -1.196 -0.002
v -2.146 -0.003 -2.180 -0.003
w. cap -2.160 -0.003 -2.193 -0.003

Note: Sudden Stop (SS) states are de�ned as states in which the collateral constraint binds and the trade
balance-GDP ratio in the Sudden Stop model is more than 2 percentage points above the trade
balance-GDP ratio of the RBC model. The coe�cients are computed as mean di�erences relative to the
RBC model in percent of the RBC unconditional averages.

4.2 Robustness Analysis & Credit Constraint Variations

The last set of experiments evaluates the robustness and stability of the FiPIt algorithm by ex-

amining its performance relative to the time iteration method for various parameter changes. This

is important in light of the potential instability of �xed-point iteration methods. As documented

below, the FiPIt method remains stable and continues to outperform the FTI method in all the

experiments. We also provide results for the RBC variant of the model and for variations of the

credit constraint for which FiPIt does not require using a non-linear solver in states in which the

constraint binds and found even larger gains in execution time in both instances.

Tables 5, 6 and 7 show long-run moments and performance metrics obtained by solving the

model using the FiPIt and FTI methods for these parameter changes: (a) removing working capital

(φ = 0); (b) lowering the discount factor (β = 0.91); (c) reducing the collateral coe�cient (κ = 0.15);

(d) increasing the collateral coe�cient (κ = 0.25); (e) setting the collateral coe�cient so that the
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constraint never binds (κ ≥ 1.0), which yields the RBC solution; (f) increasing the labor disutility

coe�cient (ω = 2.5); and (g) increasing the relative risk aversion coe�cient (σ = 3.0). For each

parameter variation, the grids of capital and bonds were re-sized to obtain the fastest solution that

does not distort the quantitative results, using identical grids for the FiPIt and FTI solutions. Still,

this resulted in grids of about the same dimensions as before: 71 or 72 nodes in B and 30 nodes in

K, except for case (e) with the RBC model, for which 80 nodes in B were needed, and case (f) that

needed only 62 nodes in B.12

The dominance of the FiPIt method is robust to all these parameter changes, and in all cases

the algorithm is stable and yields solutions nearly identical to the FTI results. Comparing across

the cases in which the root-�nder is needed to solve allocations when the credit constraint binds

(i.e. excluding case (a)), FTI is 2.0 to 6.0 times slower than FiPIt depending on which scenario

is considered. Comparing v. the scenario in which FiPIt does not need the root-�nder when the

constraint binds (Col. (2) of Table 5), FTI is 13.0 times slower, and for solving the RBC model,

which also does not need a root-�nder (Col. (6) of Table 6), FTI is 18.1 times slower. In both of

these instances, FiPIt solves in about 2 minutes. Moreover, in most cases FiPIt did not require

changing the values of the dampening parameters for the updates of the decision rule for bonds

(ρb = 1), the credit constraint multiplier (ρµ = 1) and the pricing function (ρq = 0.3).

It is worth noting that the time iteration solutions required about the same number of iterations

(between 87 and 100) and execution time in all the experiments except case (f), which has the

smaller B grid and used about the same number of iterations but solved faster than the other time

iteration solutions. There is more variation in both number of iterations and execution times in the

FiPIt solutions, but the two tend to move together: The slowest solution was for case (b) which

took 1,130 seconds and 244 iterations.

For the case without working capital (case (a)), Column (2) shows the results that FiPIt yields

when the code is modi�ed to take into account that a root-�nder is not needed to solve when

the credit constraint binds, as explained in Section 3 (since the constraint is now of the form

b′j+1(b, k, s)/R ≥ −κq̂j(b, k, s)k′j(b, k, s)). We also solved an additional experiment with an alterna-

12When solving the RBC variant of the model, the bonds grid is extended to accommodate larger debt positions
that are part of the equilibrium solution. In this case, B consists of 80 nodes spanning the [-300.0,800.0] interval.
The upper bound is the same as before, but the lower bound of -300 is signi�cantly smaller (relative to -188.6 used
in the solutions reported earlier).
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tive credit constraint in the same class that does not require a non-linear solver: b′j+1(b, k, s)/R ≥ ϕ

with ϕ set one standard deviation below the average of b′ in the limiting distribution of the RBC

model. These experiments illustrate the large additional gain in speed that FiPIt yields when used

to solve models with constraints like these. In Case (a), the FiPIt solution is obtained in almost

one-third of the time taken by the FiPIt algorithm that uses the non-linear solver, which implies

that FiPIt is faster than the time iteration solution by a factor of 13.0 (v. 5.6 with the FiPIt

algorithm that uses the non-linear solver). In the case with the constraint given by ϕ, the FiPIt

solution is faster than the time iteration method by a factor of 17.9.
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Table 5: Sudden Stops Model Variations: Working Capital & Discounting

(a) Working Capital φ = 0 (b) Discount factor β = 0.91

(1) (2) (3) (4) (5)
FiPIt FiPIt FTI FiPIt FTI

(no root-�nder when µ > 0)

(a) Long-run moments

Mean
gdp 406.361 406.361 406.291 368.772 368.159
c 282.681 282.681 282.564 255.219 254.877
i 69.847 69.847 69.824 59.863 59.678
nx/gdp 0.015 0.015 0.015 0.029 0.029
k 792.035 792.035 791.780 678.870 676.802
b/gdp -0.202 -0.202 -0.205 -0.161 -0.160
q 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.095 -0.095 -0.097 -0.195 -0.195
v 45.079 45.079 45.072 39.798 39.729
working capital 0.000 0.000 0.000 71.585 71.460

Standard deviation (in percent)
gdp 3.71 3.71 3.71 3.93 3.93
c 3.82 3.82 3.82 3.91 3.92
i 13.16 13.16 13.16 12.17 12.16
nx/gdp 2.94 2.94 2.93 2.12 2.11
k 4.44 4.44 4.45 4.53 4.54
b/gdp 20.06 20.06 19.88 2.28 2.26
q 3.16 3.16 3.16 2.88 2.88
leverage ratio 9.47 9.47 9.39 0.69 0.68
v 5.42 5.42 5.43 5.97 5.97
working capital - - - 4.38 4.39

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000
c 0.820 0.820 0.823 0.969 0.969
i 0.593 0.593 0.594 0.713 0.713
nx/gdp -0.083 -0.083 -0.085 -0.310 -0.311
k 0.775 0.775 0.776 0.754 0.754
b/gdp -0.070 -0.070 -0.067 -0.093 -0.096
q 0.334 0.334 0.334 0.442 0.441
leverage ratio -0.076 -0.076 -0.073 -0.024 -0.030
v 0.795 0.795 0.795 0.833 0.833
working capital - - - 0.988 0.988

First-order autocorrelation
gdp 0.834 0.834 0.834 0.818 0.818
c 0.860 0.860 0.860 0.759 0.759
i 0.501 0.501 0.500 0.330 0.330
nx/gdp 0.608 0.608 0.606 0.068 0.068
k 0.962 0.962 0.962 0.970 0.970
b/gdp 0.991 0.991 0.991 0.423 0.415
q 0.446 0.446 0.446 0.234 0.235
leverage ratio 0.992 0.992 0.992 0.686 0.679
v 0.788 0.788 0.788 0.756 0.757
working capital - - - 0.755 0.756

P(S.S) 1.43% 1.43% 1.49% 39.98% 40.44%

(b) Performance metrics

Bonds Euler Equation
Max Log10 Abs. Euler Error -4.17 -4.17 -4.13 -3.56 -3.51
At Grid Points (b, k, s) (1, 1, 3) (1, 1, 3) (1, 1, 3) (3, 1, 3) (3, 1, 3)
Mean Log10 Abs. Euler Error -15.53 -15.53 -13.25 -18.96 -12.07

Capital Euler Equation
Max Log10 Abs. Euler Error 15.43 15.43 -6.36 15.40 -4.18
At Grid Points (b, k, s) (72, 1, 7) (72, 1, 7) (1, 1, 7) (72, 1, 7) (2, 1, 7)
Mean Log10 Abs. Euler Error -16.17 -16.17 -12.77 -22.43 -12.23

Grid size (#b,#k) (72, 30) (72, 30) (72, 30) (72, 30) (72, 30)

Seconds elapsed 297 123 1593 1220 2405
Relative to FiPIt 2.4 1.0 13.0 1.0 2.0
Number of iterations 200 200 95 244 87

Note: Columns (1) are FiPIt solutions and Columns (3) are time iteration (FTI ) solutions. Column (2) shows results for the
model with φ = 0 obtained with the FiPIt algorithm without using a non-linear solver when µ > 0, since it is not needed.
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Table 6: Sudden Stops Model Variations: Collateral Coe�cient

(c) Lower Coll. Coe�. κ = 0.15 (d) Higher Coll. Coe�. κ = 0.25 (e) RBC Non-Binding Coll. Coe�. κ ≥ 1

(1) (2) (3) (4) (5) (6)
FiPIt FTI FiPIt FTI FiPIt FTI

(a) Long-run moments

Mean
gdp 393.503 393.433 393.728 393.659 393.847 393.813
c 276.545 276.436 271.926 271.807 264.021 263.871
i 67.442 67.420 67.517 67.495 67.530 67.518
nx/gdp 0.007 0.008 0.022 0.022 0.045 0.046
k 764.752 764.503 765.564 765.316 765.885 765.759
b/gdp 0.109 0.106 -0.070 -0.073 -0.372 -0.377
q 1.000 1.000 1.000 1.000 1.000 1.000
leverage ratio -0.057 -0.059 -0.142 -0.144 -0.286 -0.288
v 42.604 42.596 42.630 42.622 42.649 42.646
working capital 76.634 76.620 76.681 76.667 76.716 76.710

Standard deviation (in percent)
gdp 3.91 3.91 3.96 3.96 3.99 3.99
c 3.87 3.87 4.20 4.20 5.15 5.14
i 13.23 13.22 13.43 13.43 13.51 13.51
nx/gdp 2.90 2.89 3.02 3.01 3.53 3.52
k 4.43 4.44 4.54 4.55 4.65 4.65
b/gdp 19.10 18.92 20.73 20.55 30.28 30.04
q 3.18 3.18 3.23 3.23 3.24 3.23
leverage ratio 8.96 8.88 9.76 9.68 14.42 14.31
v 5.87 5.87 5.91 5.91 5.91 5.91
working capital 4.33 4.33 4.38 4.38 4.40 4.40

Correlation with GDP
gdp 1.000 1.000 1.000 1.000 1.000 1.000
c 0.842 0.844 0.836 0.839 0.773 0.776
i 0.641 0.642 0.640 0.640 0.640 0.640
nx/gdp -0.085 -0.088 -0.145 -0.148 -0.227 -0.230
k 0.758 0.758 0.763 0.763 0.767 0.767
b/gdp -0.169 -0.167 -0.072 -0.069 0.090 0.093
q 0.390 0.390 0.385 0.385 0.381 0.381
leverage ratio -0.165 -0.164 -0.060 -0.057 0.112 0.115
v 0.831 0.831 0.833 0.833 0.834 0.834
working capital 0.995 0.995 0.994 0.994 0.995 0.995

First-order autocorrelation
gdp 0.823 0.823 0.826 0.826 0.830 0.830
c 0.823 0.822 0.837 0.837 0.885 0.885
i 0.500 0.499 0.501 0.501 0.516 0.516
nx/gdp 0.602 0.600 0.607 0.604 0.711 0.709
k 0.961 0.961 0.962 0.962 0.964 0.964
b/gdp 0.989 0.988 0.991 0.991 0.997 0.997
q 0.447 0.447 0.446 0.446 0.460 0.460
leverage ratio 0.990 0.990 0.993 0.993 0.997 0.997
v 0.776 0.776 0.777 0.777 0.780 0.780
working capital 0.800 0.800 0.802 0.802 0.807 0.808

P(S.S) 2.90% 2.98% 1.34% 1.45% - -

(b) Performance metrics

Max Log10 Abs. Euler Error -3.59 -3.53 -3.57 -3.52 -6.93 -6.93
At Grid Points (b, k, s) (1, 1, 3) (1, 1, 3) (1, 2, 3) (1, 1, 3) (1, 1, 3) (1, 1, 3)
Mean Log10 Abs. Euler Error -14.11 -12.09 -14.96 -12.71 -15.96 -13.33

Capital Euler Equation
Max Log10 Abs. Euler Error 15.37 -4.22 15.37 -4.14 15.42 -9.91
At Grid Points (b, k, s) (71, 1, 7) (1, 1, 7) (72, 1, 7) (1, 1, 7) (2, 1, 7) (2, 1, 3)
Mean Log10 Abs. Euler Error -16.28 -12.38 -16.24 -12.56 -16.36 -12.74

Grid size (#b,#k) (71, 30) (71, 30) (72, 30) (72, 30) (80, 30) (80, 30)

Seconds elapsed 1066 2668 657 1604 100 1808
Relative to FiPIt 1.0 2.5 1.0 2.4 1.0 18.1
Number of iterations 196 94 196 94 201 94

Note: Columns (1) are for the FiPIt algorithm. Columns (2) are for the full time iteration method (FTI ).
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Table 7: Sudden Stops Model Variations: Labor Elasticity & Risk Aversion

(f) Higer Labor Coe�. ω = 2.5 (g) Higher Risk Aversion σ = 3

(1) (2) (3) (4)
FiPIt FTI FiPIt FTI

(a) Long-run moments

Mean
gdp 110.477 110.441 393.797 393.722
c 78.995 78.897 277.504 277.357
i 18.937 18.924 67.534 67.509
nx/gdp -0.007 -0.006 0.005 0.005
k 214.735 214.586 765.801 765.531
b/gdp 0.289 0.278 0.138 0.134
q 1.000 1.000 1.000 1.000
leverage ratio 0.027 0.023 -0.044 -0.045
v 11.960 11.956 42.639 42.630
working capital 21.514 21.507 76.697 76.682

Standard deviation (in percent)
gdp 3.33 3.33 3.97 3.98
c 6.31 6.24 4.35 4.35
i 13.11 13.11 13.46 13.46
nx/gdp 5.39 5.31 3.25 3.24
k 4.32 4.34 4.59 4.61
b/gdp 56.17 55.03 28.69 28.55
q 3.17 3.17 3.23 3.23
leverage ratio 26.48 25.94 13.55 13.49
v 5.40 5.41 5.91 5.92
working capital 3.76 3.77 4.39 4.40

Correlation with GDP
gdp 1.000 1.000 1.000 1.000
c 0.451 0.463 0.744 0.747
i 0.614 0.614 0.638 0.639
nx/gdp -0.077 -0.084 -0.059 -0.062
k 0.755 0.756 0.765 0.765
b/gdp -0.039 -0.034 -0.058 -0.054
q 0.366 0.365 0.381 0.381
leverage ratio -0.043 -0.037 -0.048 -0.044
v 0.797 0.797 0.834 0.834
working capital 0.992 0.992 0.995 0.995

First-order autocorrelation
gdp 0.820 0.821 0.828 0.828
c 0.941 0.939 0.894 0.894
i 0.489 0.489 0.506 0.506
nx/gdp 0.857 0.852 0.733 0.731
k 0.960 0.960 0.963 0.963
b/gdp 0.995 0.995 0.995 0.995
q 0.435 0.435 0.450 0.450
leverage ratio 0.995 0.995 0.996 0.996
v 0.768 0.769 0.779 0.779
working capital 0.793 0.794 0.804 0.805

P(S.S) 3.38% 3.66% 1.29% 1.35%

(b) Performance metrics

Bonds Euler Equation
Max Log10 Abs. Euler Error -3.43 -3.37 -3.82 -3.75
At Grid Points (b, k, s) (1, 1, 7) (1, 1, 7) (2, 1, 7) (2, 1, 7)
Mean Log10 Abs. Euler Error -14.27 -13.16 -15.11 -12.41

Capital Euler Equation
Max Log10 Abs. Euler Error 14.09 -4.46 16.30 -3.90
At Grid Points (b, k, s) (62, 1, 7) (1, 1, 7) (71, 1, 7) (1, 1, 7)
Mean Log10 Abs. Euler Error -14.76 -12.52 -17.13 -12.56

Grid size (#b,#k) (62, 30) (62, 30) (71, 30) (71, 30)

Seconds elapsed 283 1700 1108 3533
Relative to FiPIt 1.0 6.0 1.0 3.2
Number of iterations 163 98 246 100

Note: Columns (1) are for the FiPIt algorithm. Columns (2) are for the full time iteration method (FTI ).
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5 Conclusions

FiPIt is a simple and fast algorithm designed to solve macroeconomic models with two endogenous

state variables and occasionally binding constraints using widely used software. The algorithm

applies �xed-point iteration on the Euler equations and by doing so it avoids solving the Euler

equations as a non-linear system, as with the standard time iteration method, and does not require

interpolation of decision rules over irregular grids, as with the endogenous grids method. Analytic

solutions are obtained for recursive equilibrium functions in each iteration of the algorithm, and

standard bi-linear interpolation for obtaining these analytic solutions remains applicable.

The FiPIt algorithm can handle a large class of occasionally binding constraints, including

constraints set to �xed values as well as constraints that depend on endogenous variables. If the

constraints are such that equilibrium allocations and prices when the constraints bind must be

solved jointly with their associated multipliers, FiPIt does need a root-�nder in states in which the

constraint bind, but for a large class of constraints the two can be solved separately and FiPIt does

not require a non-linear solver anywhere. In contrast, the endogenous grid method requires a root

�nder whenever the constraint binds.

We documented the performance gains and accuracy of FiPIt by comparing the solutions it

produces for a Sudden Stops model of a small open economy vis-a-vis solutions obtained with the

time iteration method, and hybrid methods that combine �xed-point and time iteration techniques.

In addition, we explored the robustness of our algorithm by documenting solutions for seven pa-

rameter variations, including an RBC model in which the constraint never binds. The algorithm

was coded in Matlab and executed in a standard Windows laptop. In all cases, FiPIt produced

results nearly identical to time iteration results with large gains in speed and comparable accuracy

as measured by Euler equation errors. Time iteration solutions exceeded the execution time of the

FiPIt solutions by factors of 2.0 to 18.1. The largest gains were obtained in cases in which FiPIt

does not use root-�nders anywhere, which include the RBC solution and a variation of the Sudden

Stops model without working capital. In these cases, solving for allocations when the constraint

binds does not require a non-linear solver. Time iteration took 18.1 and 13 times longer than FiPIt

to solve the RBC model and the Sudden Stops model without working capital, respectively. For

the baseline Sudden Stops model, which does need the solver to determine allocations when the
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constraint binds, time iteration took 2.5 times longer than FiPIt.

The FiPIt algorithm can be extended to other models with two endogenous states, since applying

it requires mainly a �xed-point strategy to iterate on recursive functions using Euler equations. In

this paper, FiPIt was applied to the Euler equation for bonds to solve for the bonds decision rule

and to the Euler equation for capital to solve for the price of capital. The Tobin's Q investment

optimality condition was then used to determine the decision rule for capital. It is possible to

re-arrange the solution in other ways that FiPIt may still accommodate, for example conjecturing

the bonds and capital decision rules and using the two Euler equations to solve for their updates.

Applying these principles to other models with two endogenous state variables so that they can be

solved using FiPIt seems relatively straightforward. We provide a brief sketch of four examples in

the online Appendix.

Performance gains using FiPIt are likely to be even larger if the algorithm is coded in languages

that are more e�cient than Matlab at handling high-dimensional, sequential loops and parallel

optimization, such as Julia, Fortran or Python. The large gains in speed and simplicity of the

algorithm also open up the possibility of exploring research topics such as Bayesian estimation of

models of �nancial crisis driven by occasionally binding collateral constraints.
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