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Abstract

We study preferences over lotteries that pay a fixed prize at an uncertain future date:
what we call time lotteries. The standard model of risk and time preferences, Expected
Discounted Utility, implies that individuals must be risk seeking towards such lotteries
(RSTL). In contrast, we show experimentally that almost all subjects violate this property.
Our main contributions are theoretical. First, we show that risk aversion over time lotteries
can be captured by a generalization of Expected Discounted Utility that is obtained by
keeping the behavioral postulates of Discounted Utility and Expected Utility. Second, we
introduce a new property termed Stochastic Impatience, a risky counterpart of standard
Impatience, and show that not only the model above, but also substantial generalizations
that allow for non-Expected Utility and non-exponential discounting, cannot jointly accom-
modate it and even a single instance of risk aversion over time lotteries (or, equivalently,
any violation of RSTL), showing a fundamental tension between the two.
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1 Introduction

Consider a choice between (i) receiving a prize in period t̄ for sure, or (ii) receiving
the same prize in a random period t with mean t̄. For example, the choice may involve
receiving a desirable outcome (such as $100 or a dinner at a fancy restaurant) in 10
weeks for sure versus receiving it in either 5 or 15 weeks with equal probability. Both
options deliver the same prize and have the same expected delivery date, but in one
of them the date is uncertain. What would, or should, the individual choose? This
paper studies these decisions, which we call time lotteries.1

Many real life decisions involve uncertainty about timing. For example, is an
investment that will start paying dividends in five years for sure better than another
that will start paying in five years on average? Is it worthwhile to pay an extra
fee to ensure that a package scheduled to arrive in a random time is delivered on a
guaranteed (average) date instead? Or, when picking a mode of transport, is it better
to take a train that follows a deterministic timetable or a bus which has random arrival
times (due to traffic)?

According to the standard model in economics, Expected Discounted Utility
(EDU), subjects should always pick the option with an uncertain payment date in any
possible instance – they must be Risk Seeking over Time Lotteries (RSTL). To see
why, note that if u is the (positive) utility function over prizes and β is the discount
factor, then the value of receiving x at time t is βtu(x), while that of the lottery with
random date is E[βt]u(x). Since βt is convex in t, Jensen’s inequality implies that the
latter option must be preferred.

The main contribution of our paper is theoretical. However, we start with an
incentivized experiment on time lotteries to motivate our theoretical analysis. We
find that only a minuscule fraction of subjects are consistently RSTL; most subjects
are Risk Averse over Time Lotteries (RATL) in the majority of the questions asked.2

We also find that risk attitudes towards time lotteries are highly correlated with
attitudes towards risk in standard lotteries (i.e., atemporal lotteries over money).
While perhaps intuitive, this connection is missing from EDU, where the curvature
of the utility function over prizes u plays no role for time lotteries.

We present two theoretical results on modeling risk attitudes toward time lotter-
ies, focusing on preferences defined over lotteries on dated rewards, that is, pairs of
the form (x, t), where x is a monetary prize and t is the time in which it is received.3

First, we show that one can accommodate more flexible attitudes toward time lotter-
ies, including RATL, while maintaining the main properties used to motivate EDU.

1Choices of this type are analyzed in Chesson and Viscusi (2003) and Onay and Öncüler (2007).
We discuss them below.

2While there exist surveys about attitudes towards time lotteries on humans (Chesson and Vis-
cusi, 2003; Onay and Öncüler, 2007) and other animals (Kacelnik and Bateson, 1996), to our knowl-
edge ours is the first incentivized experiment to investigate it. See below for a discussion.

3We focus on this setup for simplicity. In Appendix B we show that our main results extend to
preferences over lotteries of consumption streams.
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EDU can be seen as merging the functional form of Discounted Utility without risk
with the one of Expected Utility. Instead of merging their functional forms, we in-
stead impose the axioms that are known to guarantee Discounted Utility without
risk (Outcome Monotonicity, Impatience, and Stationarity) with those of Expected
Utility (Independence and Continuity). We show that these axioms do not charac-
terize EDU: rather, they lead to a more general model, which we call Generalized
EDU (GEDU), in which there is a strictly increasing utility function over prizes u,
a discount factor β, and a strictly increasing function φ, such that preferences are
represented by

E
[
φ
(
βtu(x)

)]
.

GEDU is similar to models that have been adopted in the literature (in particular,
Kihlstrom and Mirman 1974 applied to time). Importantly, this shows how merging
the functional forms adds implicit assumptions and in particular eliminates the addi-
tional curvature given by φ. In GEDU, intertemporal substitution is regulated by u
and β, while risk preferences are regulated by a combination of φ, u, and β.

Unlike EDU, GEDU can accommodate different attitudes towards time lotteries.
We show that the individual is RATL if and only if φ is more concave than the log
function. This result implies that one can easily accommodate violations of RSTL
without having to drop the key motivations behind EDU. In fact, we show that,
together with a strengthening of Stationarity to risk, RSTL is the additional property
needed to obtain EDU from GEDU. Thus, RSTL is the implicit assumption that is
made when one merges the functional forms from Discounted Utility and Expected
Utility.

The second part of our analysis considers a new property, called Stochastic Impa-
tience, and presents a number of impossibility results that highlight a fundamental
incompatibility between this property and even a single instance of RATL (or, equiv-
alently, any violation of RSTL). Intuitively, Stochastic Impatience states that, when
facing lotteries that pay in different periods with the same probability, the individ-
ual prefers receiving higher payments earlier. Consider, for example, two prizes, say
$100 and $20, and two time periods, say a day and a month. Stochastic Impatience
requires the individual to prefer the 50/50 lottery that pays either $100 in a day or
$20 in a month, over the 50/50 lottery that pays either $100 in a month or $20 in
a day. More generally, the individual is Stochastically Impatient if, for any uniform
distribution over dated rewards, he prefers to pair the ith highest outcome with the ith

earliest time. This property may be seen as a counterpart of the standard Impatience
assumption under risk. Indeed, the two notions coincide under EDU.

We then examine the relationship between violations of RSTL and Stochastic
Impatience. We first show that, within GEDU, Stochastic Impatience holds if and
only if the individual is RSTL. Intuitively, RATL and Stochastic Impatience push
in opposite directions: in terms of discounted utils, the distribution of the 50/50
lottery between $100 in a day and $20 in a month has a higher mean but is also
more spread out than the distribution of the 50/50 lottery between $100 in a month
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or $20 in a day; in particular, it contains in its support the worst possible outcome,
$20 in a month, meaning that the individual cannot be too risk averse — again, over
discounted utils— to prefer it. The theorem shows that, under GEDU, the additional
concavity imposed by the function φ to accommodate RATL is exactly the one that
tilts preferences against Stochastic Impatience, leading to an equivalence result.

This relationship, in fact, holds much more generally. We show that within a very
broad class of models, observing a single violation of RSTL is enough to allow us to
construct a violation of Stochastic Impatience. This class of models further generalizes
GEDU by allowing general forms of non-Expected Utility (local bi-linearity, which
includes many popular models such as Rank-Dependent Utility, Cumulative Prospect
Theory, and Disappointment Aversion) and general forms of discounting. Thus, the
fundamental tension between even an instance of RATL and Stochastic Impatience
cannot be resolved within a very broad class of models. In Appendix C we show that
a similar impossibility holds also for the model of Epstein and Zin (1989), which can
accommodate local versions of RATL, but in those cases must also violate Stochastic
Impatience.4

To test the relationship between RSTL and Stochastic Impatience, we conducted
one further experiment on Amazon Mechanical Turk. Most subjects exhibit RATL,
replicating our results in the lab. Crucially, an even larger majority (85%) did not
violate Stochastic Impatience, and there is no relationship between RATL and the
tendency to satisfy Stochastic Impatience. While this evidence is only suggestive –
as we tested only specific instances of Stochastic Impatience – it indicates the joint
presence of two behaviors, RATL and Stochastic Impatience, that should not coexist
under very general assumptions.

To summarize, our incentivized experiment indicates that violations of RSTL are
widespread, and we investigate models that can accommodate them. If one is not
concerned with Stochastic Impatience, we propose a model that allows for this pattern
while maintaining the key properties at the base of EDU – except that it is built
starting from axioms instead of merging functional forms. However, if one also wishes
to maintain Stochastic Impatience, we show that it is impossible to accommodate any
instance of RATL within a very broad class of models. The take-home message is
therefore that if one believes that preferences may exhibit even a single instance
of RATL-type behavior – as almost universally true in our experimental data – then
either Stochastic Impatience must be violated, or one needs to consider models beyond
commonly used ones.

We conclude the introduction with a discussion of the literature. To our knowl-
edge, the first study of time lotteries appears in Chesson and Viscusi (2003), who
show that EDU implies a preference for uncertain timing. They hypothesize that
risk aversion over time may be due to high risk aversion or hyperbolic discounting.
The latter is proven impossible by Onay and Öncüler (2007), who generalize their

4A companion paper, Dillenberger et al. (2018) discusses the broader relation between the
Epstein-Zin model and Stochastic Impatience.
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theoretical results, pointing out that (what we call) RSTL holds for any convex dis-
count function. They link this to probability distortions. Ebert (2017) extends the
analysis to higher-order risk preferences (prudence and temperance).5 We show that
RATL can be accommodated within Expected Utility, but if one wants to preserve
Stochastic Impatience, then not even allowing for probability distortions is sufficient.

For experimental evidence, to our knowledge there are no incentivized experiments
testing the attitude towards time lotteries. Chesson and Viscusi (2003) conduct a hy-
pothetical survey with business owners and find that about a third of them are RATL.
Onay and Öncüler (2007) run a non-incentivized survey with large hypothetical pay-
ments and find that most subjects are RATL. By contrast, Kacelnik and Bateson
(1996) show evidence that animals in foraging decisions tend to be RSTL. Eliaz and
Ortoleva (2016) show that subjects are ambiguity averse when timing is ambiguous.

The remainder of the paper is organized as follows. Section 2 formalizes risk
attitudes towards time lotteries and briefly describes the results of the experiment.
Section 3 includes the analysis of GEDU and how it accommodates RATL. Section 4
defines Stochastic Impatience and presents the impossibility results. Section 5 con-
cludes. The Appendices include the proofs of the results in the text, the extension
to consumption streams and to the model of Epstein and Zin (1989), and further ex-
perimental analysis and details. The Supplementary Appendix contains a discussion
of local notions of RATL, the proofs of the results in the Appendix, and screenshots
of the experiment.

2 Risk Aversion over Time Lotteries

Consider an interval of monetary prizes [w, b] ⊂ R++ and a set of dates T that is
either a set of non-negative integers (“discrete time”) or an interval of non-negative
numbers (“continuous time”), with 0 ∈ T in both cases. We interpret each element of
[w, b]× T as a dated reward, where (x, t) indicates receiving the monetary prize x in
t periods (or at time t; the distinction is irrelevant here). Let ∆ be the set of simple
lotteries over [w, b] × T endowed with the topology of weak convergence, and δ(x,t)

denote the degenerate lottery that gives (x, t) with certainty.6 We study a complete
and transitive preference relation % over ∆, where ∼ and � denote its symmetric and
asymmetric parts, respectively.

Throughout the paper, both in the theoretical part and in the experiment, we focus
on lotteries in which the resolution of uncertainty is immediate: once the individual
chooses a lottery, it will be immediately acted out and the prize (and time) will
be known. Therefore, preferences in our setting will not stem from any planning
considerations.

A time lottery is a lottery that pays a fixed monetary prize x at a random date. For
example, a lottery that pays $10 in either ten or twenty periods with equal probability

5Chen (2013) also shows that EDU implies RSTL.
6We focus on monetary prizes for simplicity. It is easy to generalize the results to arbitrary sets.
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is a time lottery. For any x ∈ [w, b], we say that px ∈ ∆ is a time lottery with prize x
if y = x for any (y, t) in its support.

We start by defining attitudes towards time lotteries:

Definition 1. % is Risk Averse over Time Lotteries (RATL) if for all x ∈ [w, b] and
all time lotteries px with prize x, if t̄ =

∑
τ px(x, τ)× τ then

δ(x,t̄) % px.

Analogously, % is Risk Seeking over Time Lotteries (RSTL) or Risk Neutral over
Time Lotteries (RNTL) if the above holds with � or ∼, respectively.

In words, the individual is RATL if he always prefers to receive a certain amount
in a sure time to receiving the same amount on a random time with the same mean.
RSTL and RNTL are defined analogously.7

The standard model to study risk and time is the Expected Discounted Utility
model (EDU), according to which lotteries are evaluated by

V (p) = Ep
[
βtu(x)

]
, (1)

where u is a positive valued utility function over monetary outcomes and β ∈ (0, 1)
is a discount factor. Note that for any fixed x, EDU evaluates a time lottery with
prize x as Ep

[
βt
]
u(x). Since βt is a convex function of t, it follows from Jensen’s

inequality that, independently of u, any preference relation in EDU must be RSTL.
In fact, since this argument only relies on the convexity of the discount function,
it holds more generally than for exponential discounting. Suppose preferences are
represented by

V (p) = Ep
[
D(t)u(x)

]
, (2)

where D is a strictly positive and strictly decreasing function with D(0) = 1. Then,
preferences are RSTL if and only if D is convex.8 Notice that all discount functions
used in practice – including exponential, hyperbolic, and quasi-hyperbolic – are con-
vex.9 Moreover, when T is unbounded, no strictly decreasing function D : T → (0, 1]
can be concave. Thus, in this case no preference relation represented by (2) can be
RATL.10

7More generally, one can define attitudes towards time lotteries in terms of preferences for mean-
preserving spreads in time. In the GEDU model described in Section 3, RATL coincides with an
aversion to mean-preserving spreads, so these definitions are equivalent.

8See Supplementary Appendix A for the definition of convexity when T is discrete.
9We also test convexity in our experiment (below) and find that the vast majority of subjects

satisfy it. Note that convex discounting is implied by requiring Diminishing Impatience (or no future

bias), a property that holds if for any τ > 0, the ratio D(t)
D(t+τ) is not increasing in t.

10The risk attitudes towards time lotteries in Definition 1 are defined for arbitrary periods and
prizes. In Supplementary Appendix A, we introduce their local counterparts, relate it to the local
convexity/concavity of the discount function, and show that preferences represented by (2) must be
locally-RSTL in all but a finite number of periods.
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The impossibility of EDU to accommodate different attitudes towards time lotter-
ies can be understood with an analogy to the classic work of Yaari (1987). Within the
(atemporal) Expected Utility framework, diminishing marginal utility of income and
risk aversion are bound together via the curvature of the utility function over prizes.
But, as Yaari argues, these two properties are “horses of different colors” and hence,
as a fundamental principle, a theory that keeps them separate may be desirable. In
our setting, convex discounting, which is a property of deterministic settings, implies
RSTL, a property of stochastic settings. There is no fundamental reason why the two
should be related. Moreover, in Yaari’s analysis even though diminishing marginal
utility of income and risk aversion relate to two different phenomena, they are both
reasonable and documented properties. In our case, however, while convex discount-
ing is a plausible and documented behavioral property, we now provide evidence that
most people violate RSTL.

2.1 Experimental evidence of RATL

We now describe the results of an experiment that measures attitudes towards time
lotteries using incentivized questions. Because the purpose of this section is primarily
to motivate the theoretical results that will be presented later, we postpone many of
the details and additional analyses to Appendix E.

A total of 197 subjects took part in an experiment run at the Wharton Behavioral
Lab. The experiment has three parts. Part I asks subjects to choose between different
time lotteries: they were offered two options that paid the same prize at different
dates, where the distribution of payment dates of one option was a mean preserving
spread of that of the other. For example, the first question asked them to choose
between i) $15 in 2 weeks or ii) $15 in 1 week with probability .75 and in 5 weeks
with probability .25. Subjects answered five questions of this kind. In three of them,
one of the options had a known date; in the others, both options had random payment
dates. Table 3 in Appendix E lists the questions.11

Parts II and III use the multiple price list (MPL) method to measure time and risk
preferences separately. Part II measures standard time preferences as well as attitudes
towards time lotteries. Part III measures atemporal risk preferences, with payments
taking place immediately at the end of the session. These include measures of regular
risk aversion, as well as Allais’ common-ratio-type questions to test and quantify
violations of Expected Utility. Procedures in this part follow standard practice.

At the end of the experiment, one question was randomly selected for payment.

11A recent literature has discussed concerns with using monetary rewards to study intertemporal
choice in experiments (Augenblick et al., 2015). Here, however, typical issues do not apply (e.g., the
curvature of the utility function is inconsequential for time lotteries as the prize is fixed). Moreover,
we are interested in studying the relation between attitude towards time lotteries and atemporal
risk aversion. Since the latter is defined for monetary lotteries, we focus on monetary prizes and
leave for future research an investigation of time lotteries involving different objects, noting that the
same intuition applies more in general.
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Table 1: Attitude Towards Time Lotteries in Part I

% of RATL choices Long Short

Question 1 65.7 56.0
All questions 60.6 47.9

Both dates random 69.0 45.6

# of RATL
choices

Long Short

Percent Cum. Percent Cum.

0 2.9 2.9 9.9 9.9
1 9.5 12.4 16.4 26.3
2 22.9 35.2 24.3 50.6
3 23.8 59.0 26.4 76.9
4 28.6 87.6 19.8 96.7
5 12.4 100.0 3.3 100.0

The order of parts and of questions was partly randomized, except that all subjects
received Part I first, and all subjects received the same first question in a separate
sheet of paper. The answer to this question is a key indication of the subjects’
preferences, as it captures their immediate reaction to this choice, uncontaminated
by other questions.

We ran two treatments: a long delay treatment (‘Long’) with 105 subjects and a
short delay treatment (‘Short’) with 91 subjects. The only difference between them
is the length of the delay in payments. In the Long treatment, some payments were
delayed by up to 12 weeks; in the Short, the maximum delay was 5 weeks.

Our main results pertain to the attitude towards time lotteries in Part I. Table 1
presents the percentage of RATL choices in (i) Question 1 of Part I, (ii) all questions,
and (iii) only questions in which both lotteries pay at random dates. It also shows the
distribution of the number of RATL answers that each subject gave (where 0 means
never RATL, 5 means always RATL).

Only a minuscule (2.86% or 9.89%) fraction of subjects are consistently RSTL,
whereas the majority of subjects choose according to RATL in the majority of ques-
tions. This pattern holds also in the first question and when both options are risky.
Moreover, in most questions RATL is stronger in the Long rather than in the Short
treatment.12 This difference makes intuitive sense since, when the time horizon is
relatively short, the two options are closer in value and thus the choices are closer to
an even split. As the time horizon increases, as in the Long treatment, the options
become less similar, and subjects move away from an even split and become more
RATL. This contrasts with EDU, which not only predicts that individuals must al-

12For example, the proportion of subjects who exhibit a majority of RATL choices is about 65%
in the Long vs. about 50% in the Short (test of proportion, p-value 0.015). Overall, the proportion
of RATL answers are 60.6 vs. 47.9 (p-value <0.001).
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ways pick the RSTL option, but also that the premium that they would be willing to
pay to avoid the RATL option would increase in the time horizon.

We then analyze the relationship between RATL, convexity of discounting (mea-
sured using the questions on time preferences), atemporal risk aversion, and violations
of Expected Utility (see Appendix E.2 for details and statistical analysis). In line
with previous findings, 82% of our subjects exhibit convex discounting. We also find
that 39.89% choose approximately according to Expected Utility throughout. Even
focusing on subjects in either of these two groups, RATL is still prevalent, with al-
most identical proportions as in the entire sample. Regression analysis confirms that
certainty bias or convexity of discounting are generally uncorrelated with RATL.13

Lastly, we test the relation between the tendency to exhibit RATL and atemporal
risk aversion. Here we find a significant correlation: subjects who are more (atempo-
rally) risk averse, also tend to be more RATL (see Table 9 in Appendix E.2). While
this is intuitive since they are both forms of risk aversion, it is hard to reconcile this
connection within EDU.

3 Modeling RATL under Expected Utility

We have seen that even a single violation of RSTL cannot be accommodated by
EDU; we now explore whether it is possible to do so with a model that maintains the
two core motivations behind EDU: 1) coincide with exponentially discounted utility
when there is no risk; and 2) evaluate risk by calculating ‘expected utility’. EDU
is obtained by merging the two functional forms – simply taking the expectation of
the discounted utility. Here, instead, we will characterize the model that satisfies the
(known and simple) axioms underlying discounted utility without risk and expected
utility with risk. Combining these axioms leads to a strictly more general model than
EDU. Importantly, this will allow for more flexibility with respect to attitude towards
time lotteries.

To posit exponentially discounted utility without risk, consider the following con-
ditions over degenerate lotteries (sure outcomes):

Axiom 1 (Outcome Monotonicity). For all x, y ∈ [w, b], and s ∈ T, if x > y then
δ(x,s) � δ(y,s).

Axiom 2 (Impatience). For all x ∈ [w, b] and s, t ∈ T , if s < t then δ(x,s) � δ(x,t).

Axiom 3 (Stationarity). For all x, y ∈ [w, b], s, t ∈ T , τ ∈ R with s + τ, t + τ ∈ T ,
if δ(x,t) ∼ δ(y,t+τ) then δ(x,s) ∼ δ(y,s+τ).

13As shown in Section 2, this is not compatible with EDU, where RSTL is connected with the
convexity of discounting. These results also indicate that RATL may not be due to violations of
Expected Utility, as opposed to what has been suggested by Chesson and Viscusi (2003) and Onay
and Öncüler (2007).
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Outcome Monotonicity states that, holding the time fixed, higher prizes are better.
Impatience states that earlier payments of the same prize are better. Stationarity
posits that the preference between x in t periods and y in t + τ periods does not
depend on t, a standard condition known to lead to exponential discounting. Fishburn
and Rubinstein (1982) show that these axioms, together with continuity (below), are
necessary and sufficient to guarantee that the restriction of % to degenerate lotteries
is represented by Discounted Utility: V (δ(x,t)) = βtu(x).

Next, we posit the key postulate for Expected Utility, Independence,14 as well as
a continuity assumption:

Axiom 4 (Independence). For all p, q, r ∈ ∆ and λ ∈ (0, 1),

p % q ⇔ λp+ (1− λ)r % λq + (1− λ)r.

Axiom 5 (Continuity). For all (y, s) ∈ [w, b] × T the sets {(x, t) ∈ [w, b] × T :
δ(x,t) % δ(y,s)} and {(x, t) ∈ [w, b] × T : δ(y,s) % δ(x,t)} are closed. Moreover, for all
p, q, r ∈ ∆, if p � q � r, than there exist a, b ∈ (0, 1) such that ap+ (1− a)r � q and
q � bp+ (1− b)r.

By standard arguments, these last two postulates ensure that the individual eval-
uates lotteries according to the Expected Utility criterion.

The following theorem characterizes the model that satisfy the postulates above.

Proposition 1. The following are equivalent:

1. % satisfies Outcome Monotonicity, Impatience, Stationarity, Independence, and
Continuity;

2. There exist β ∈ (0, 1), u : [w, b]→ R++ strictly increasing and continuous, and
φ : Im

(
(β(·)u(·)

)
→ R strictly increasing,15 such that % is represented by

V (p) = Ep(φ(βtu(x))),

We call this representation a Generalized Expected Discounted Utility model (GEDU)
and identify it with the triple (u, β, φ). GEDU is similar to existing models in the lit-
erature. In particular, it can be seen as an application of the multi-attribute function
of Kihlstrom and Mirman (1974) to the context of time.16

14Note that Independence is imposed on all lotteries, and not only on lotteries with a fixed
payment date. While weaker versions have been proposed, we focus on this complete version since
it is satisfied by EDU, and is often necessary for desired results (e.g., to guarantee the existence of
Nash equilibria).

15Im((β(·)u(·)) is the image of βtu(x) over [w, b]× T .
16A similar functional form was used, but not derived, by Andersen et al. (2017), to study in-

tertemporal utility and correlation aversion, by Abdellaoui et al. (2017), to study different questions
on time and risk, as well as by Edmans and Gabaix (2011) and Garrett and Pavan (2011).
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Proposition 1 shows that combining the axioms that lead to exponential discount-
ing without risk with the axioms that lead to Expected Utility does not generate
EDU. Rather, it leads to a model that includes one additional curvature, captured by
the function φ, applied after discounting has taken place. The model only coincides
with EDU when φ is affine. It is important to highlight that the Proposition follows
immediately from entirely standard arguments: it is a consequence of the fact that
one cannot assume that the Bernoulli utility used in the Expected Utility form is,
cardinally, the discounted utility.17

Under EDU, time and risk preferences are both governed solely by the curvature
of u. This is no longer the case for GEDU. Intertemporal substitution is governed
by u and β: without risk, the individual evaluates a prize x payed at time t by
βtu(x).18 Atemporal risk preferences, for lotteries with only immediate payments,
are instead governed by φ ◦ u: a lottery p that pays only at time 0 is evaluated by
Ep(φ(u(x))). Thus, under GEDU, intertemporal substitution and risk aversion differ
– the difference captured by the curvature of φ. One possible interpretation is that
u represents the individual’s utility function over deterministic payments, while φ
represents risk attitude towards variations in ‘discounted utils.’

The significance of this model is that, unlike EDU, GEDU does not constrain
preferences to be RSTL.

Proposition 2. Consider % that admits a GEDU representation (u, β, φ). Then:

1. % is RSTL if and only if φ is a convex transformation of ln;

2. % is RNTL if and only if φ is an affine transformation of ln;

3. % is RATL if and only if φ is a concave transformation of ln.

Proposition 2 follows from noticing that if φ = ln, then φ(βtu(x)) = t ln [β] +
ln [u(x)], an affine function of t, implying risk neutrality over time lotteries. If φ
is “more concave than the log,” preferences are RATL; if it is “more convex than
the log,” preferences are RSTL. Note also that the curvature of φ affects both risk
attitudes towards time lotteries and atemporal risk aversion. As discussed in Sec-
tion 2, the connection between these two forms of risk aversion is supported by our
experimental results.

17 From Fishburn and Rubinstein (1982) we know that Axioms 1-3 and Continuity guarantee that
there exist a utility function u and a discount factor β such that degenerate lotteries are ranked
according to Discounted Utility. Independence and Continuity guarantee that there exists a utility
function over prize-dates pairs, v : [w, b]×T → R, such that preferences over lotteries follow Expected
Utility using Bernoulli utility v. The key observation is that v(x, t) need not coincide with βtu(x):
they must be ordinally, but not necessarily cardinally, equivalent. Thus, there must exist a strictly
increasing function φ such that v(x, t) = φ(βtu(x)). Put differently, the function φ is needed because
the curvature emerging from Discounted Utility, βtu(x), may not be the correct one to capture the
risk preferences.

18According to the model, he evaluates (x, t) by φ(βtu(x)), which is a strictly increasing transfor-
mation of βtu(x).
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It is worth mentioning that RSTL is not only a property implied by EDU. In
Appendix A we show that, in addition to Risk Stationarity – a stationarity assumption
on risky prospects – RSTL is the characterizing feature of EDU among the class of
preferences that admit a GEDU representation. In Appendix A we also show that,
adding Risk Stationarity, RATL characterizes preferences that admit a “Negative
EDU” representation: EDU except that the discount factor β exceeds 1 and the
utility function over outcomes u takes negative values (such as, for example, CRRA
functions more concave than the log). Since u is negative, earlier payments are better
despite the fact that β > 1 (so this model also satisfies Impatience). This is a simple
modification of the EDU model that can easily accommodate RATL and satisfies all
properties above.19

Since RSTL is implicitly assumed whenever one uses EDU, it is natural to ask if
this is a reasonable property. From a positive point of view, we saw that most subjects
violate RSTL. From a normative point of view, we contend that this assumption does
not have the same appeal of the postulates imposed above: while Outcome Mono-
tonicity, Impatience, and Independence have well-known normative justifications, and
while both Stationarity and Risk Stationarity can be justified based on dynamic con-
sistency, we find no equivalent arguments to justify why individuals should necessarily
be risk seeking over time lotteries.

4 RATL and Stochastic Impatience: Impossibility

Results

Thus far we have analyzed the extent to which we can relax RSTL by properly combin-
ing the postulates of Discounted Utility over sure outcomes with the ones of Expected
Utility under risk. In this section, we show that relaxing RSTL generally comes at
the ‘cost’ of violating a plausible novel property we term Stochastic Impatience. We
establish this result first within the context of GEDU; then, we show that it holds in
a much more general class of models, highlighting a fundamental connection between
RSTL and Stochastic Impatience.

4.1 Stochastic Impatience

Suppose that an individual is asked to choose between the following two alternatives:

A Receive either $100 today or $20 in a month, with probability 0.5 each;

B Receive either $20 today or $100 in a month, with probability 0.5 each.

Both options involve the same prizes, probabilities, and dates, but in the first one
the higher prize is paid earlier, keeping the same odds. One could imagine that, to the

19Indeed this is a special case of GEDU. It is easy to see that whenever φ(x) = − 1
xα for α > 1,

then GEDU can be re-written as a Negative EDU model.
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extent that the individual prefers higher payments sooner, this latter option should be
preferred. A related argument could be made by decomposing each alternative into
two parts. Observe that both A and B offer the exact same basic lottery in which the
agent receives $20 either today or in a month. The difference between them is when
an increment of $80 is received: option A yields it today, while option B yields it in
a month. Insofar as the agent prefers obtaining it sooner, then option A should be
preferred. Therefore, Stochastic Impatience can be seen as an analogue of Impatience
for risky environments.

We formalize this in the following axiom, which we call Stochastic Impatience. A
companion paper, Dillenberger et al. (2018), discusses its relation with models that
separate risk and time preferences. To our knowledge, this is a novel condition.

Axiom 6 (Stochastic Impatience). Let t = (t1, t2, ..., tn) and x = (x1, x2, ..., xn)
be finite collections of n time periods and outcomes, with t1 < t2 <, ... < tn and
x1 > x2 >, ... > xn. Let ι(t) be a permutation of t and ι′(x) be a permutation of
x. Preferences satisfy Stochastic Impatience if for any n-ordered sequences t, x with
corresponding perturbations ι(t) and ι′(x),

n∑
i=1

1

n
δ(xi,ti) %

n∑
i=1

1

n
δ(xι′(i),tι(i))

.

In words, the individual is Stochastically Impatient if and only if for any uniform
distribution over dated rewards, he always prefers to pair the ith highest outcome
with the ith earliest time.

Impatience and Stochastic Impatience are equivalent when lotteries are evaluated
by E[D(t)u(x)] for some weakly decreasing (but not constant) D.20 Thus, in the
particular case of EDU, these are also equivalent conditions.

4.2 RATL and Stochastic Impatience under GEDU

Our next result shows that in the context of GEDU, Stochastic Impatience is incom-
patible with RATL; in fact, it is equivalent to RSTL.

Theorem 1. Suppose that % admits a GEDU representation (u, φ, β). The following
are equivalent:

1. The relation % satisfies Stochastic Impatience;

2. The relation % satisfies Risk Seeking over Time Lotteries.

20Let A :=
∑n
i=1D(ti), and set u (xn+1) = 0 and

∑n
j=n+1D(tj) = 0. Note that

∑n
i=1u(xi)D(ti) =∑n

i=1

[
A−

∑n
j=i+1D(tj)

]
[u (xi)− u (xi+1)] ≥

∑n
i=1

[
A−

∑n
j=i+1D(tι(j))

]
[u (xi)− u (xi+1)] =∑n

i=1u(xι′(i))D(tι(i)), with equality if and only if D(t) = 1 for all t.
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This result shows a fundamental incompatibility between any violation of RSTL
and Stochastic Impatience. To get intuition, recall Options A and B in the previous
example, and observe that the two prizes offered by Option B ($20 today or $100 in
a month) are, in terms of desirability, strictly in between the two prizes offered by
Option A ($100 today or $20 in a month). There is a sense in which Option A is ‘more
spread out,’ in discounted utility terms, although it has a higher mean. Under EDU,
this spread does not matter, and Option A is preferred. Under GEDU the additional
curvature through φ adds a layer of intertemporal risk aversion – precisely what
allowed it to capture RATL. But this is also what makes the individual sensitive to
the spread in utilities of Option A. In particular, if the curvature of φ is very high, then
the value of each option will be close to that of its worst possible outcome, in which
case Option B will be preferred, violating Stochastic Impatience. Put differently,
the same additional curvature that allowed us to capture RATL also pushes against
satisfying Stochastic Impatience.

In fact, Theorem 1 shows not only that RATL and Stochastic Impatience push
in opposite directions, but that the latter is equivalent to the opposite of the former
under GEDU. To see why, recall that we have already seen how, when φ = ln, GEDU
becomes linear with respect to time; higher concavity leads to RATL, lower to RSTL.
Similarly, if φ = ln, the individual is indifferent between Options A and B above, since
0.5 ln [u(100)] + 0.5 ln [βu(20)] = 0.5 ln [u(20)] + 0.5 ln [βu(100)]. But the distribution
of the 50/50 lottery between ln [βu(20)] and ln [u(100)] is a mean-preserving spread
of that between ln [u(20)] and ln [βu(100)]. Thus, any expected utility maximizer
with utility function φ = g ◦ ln for some convex (resp., concave) function g will prefer
Option A over Option B (resp., B over A). Thus Stochastic Impatience goes hand in
hand with RSTL, whereas the opposite property corresponds to RATL.

The equivalence in Theorem 1 can also be understood through the lens of match-
ing theory; in fact, our general proof is an application of a familiar result about
supermodular functions.21 Consider a general two-sided matching model with equal
number of participants in each side, sorted according to a one-dimensional character-
istic that represents their type. Denote by f(a, b) the match output between type a
and type b, where f is increasing. It is well-known (e.g., Becker 1973) that positive
assortative matching — where the ith-highest type a pairs with the ith-highest type b
— maximizes the sum of match outputs when f is supermodular, i.e., ∂2f

∂a∂b
(a, b) ≥ 0.

In our context, let a = u(x), b = βt, and f (u(x), βt) = φ(u(x)βt) = g(ln (u(x)βt)),

and note that ∂2f
∂u(x)∂βt

(u(x), βt) = g′′(ln(u(x)βt))
u(x)βt

, which is positive if and only if g is con-
vex – thus when φ is more convex than ln, which is equivalent to preferences being
RSTL. Put differently, both Stochastic Impatience and RSTL imply, and are implied
by, supermodularity between the size of the prize (as captured by the utility function)
and the time it is received (as captured by the discount factor).

21We thank Rakesh Vohra for pointing out this connection.
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4.3 Beyond Expected Utility: still an impossibility

Having seen that any violation of RSTL is incompatible with Stochastic Impatience
under GEDU, it is natural to ask whether they can be simultaneously accommodated
in a more general model. If possible, this result would suggest that one should move
beyond GEDU to allow for both properties. As we have mentioned, previous papers
have suggested that RATL is related to non-expected utility. We show below, however,
that accommodating both remains impossible in a much larger class of models.

To prove our general result, we consider a model that we call Generalized Local
Bilinear Discounted Utility (GL-BDU). This model generalizes GEDU in two ways.
First, it posits that dated prizes are evaluated by φ

(
D(t)u(x)

)
, where φ is as in

GEDU, and D is a strictly decreasing discount function (with D(0) = 1) that satisfies

Diminishing Impatience, i.e., D(t)
D(t+τ)

≥ D(t′)
D(t′+τ)

if t′ > t and τ > 0. This version of the
discount function includes as special cases not only exponential discounting, but also
many well-known alternative specifications, such as hyperbolic and quasi-hyperbolic
discounting.

Second, it replaces Expected Utility with the assumption that 50/50 lotteries
between (x, t) and (x′, t′), where (x, t) is better than (x′, t′), are evaluated by weighting
the utility of (x, t) by π(0.5) and that of (x′, t′) by (1 − π(0.5)). When π(0.5) =
0.5, the model coincides with Expected Utility (for 50/50 lotteries); but if π(0.5) <
0.5, the agent underweights the better option. This very general model includes as
special cases popular ones such as those of probability weighting (Rank-Dependent
Utility, Quiggin 1982, and Cumulative Prospect Theory, Tversky and Kahneman
1992) and Disappointment Aversion (Gul, 1991), and restricts preferences only for
50/50 lotteries.22

Definition 2. We say that % admits a Generalized Local Bilinear Discounted Utility
(GL-BDU) representation if there are continuous, increasing functions u : X → R and
φ : Im

(
D(·)u(·)

)
→ R, and a strictly decreasing function D : T → (0, 1] satisfying

Diminishing Impatience, such that for π(0.5) ∈ (0, 1), p = 0.5δ(x,t) + 0.5δ(x′,t′) with
D(t)u(x) ≥ D(t′)u(x′) is evaluated according to:

V (p) = π(0.5)φ
(
D(t)u(x)

)
+ (1− π(0.5))φ

(
D(t′)u(x′)

)
.

To reiterate, a GL-BDU representation is a very general class that subsumes the
vast majority of commonly used models. For risk preferences, it restricts only how the
individual evaluates 50/50 prospects, generalizing both Cumulative Prospect Theory
and Disappointment Aversion. For time preferences, it allows for any discount func-
tion with Diminishing Impatience, allowing, for example, for hyperbolic and quasi-

22This specification also allows for generalizations of Rank-Dependent Expected Utility, e.g., the
minimum from a set of probability distortions (Dean and Ortoleva, 2017). On the other hand,
it does not encompass all known models of risk preferences (e.g., it does not encompass Cautious
Expected Utility, Cerreia-Vioglio et al. 2015). Formally, this model is a local specification (at 0.5)
of the bilinear (or biseparable) model of Ghirardato and Marinacci (2001).
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hyperbolic discounting. And, for the interaction between time and risk, it includes
the distortion φ, which we have seen under GEDU.23

The main result of this section is that even in this very general class of models,
violations of RSTL are still incompatible with Stochastic Impatience. As GL-BDU
only restricts preferences over binary and equal-chance lotteries, we will focus on this
type of lotteries.

Theorem 2. Suppose % admits a GL-BDU representation. If δ(x,t2) � 0.5δ(x,t1) +
0.5δ(x,t3) for some x and t2 = t1+t3

2
, and D(t3)u(b) > D(t1)u(w), then % violates

Stochastic Impatience.

The intuition for this result is the same as the one for Proposition 1: the additional
‘risk aversion’ that leads to RATL – through the additional curvature φ, the proba-
bility distortion π, or a combination of both – must lead to a violation of Stochastic
Impatience. Unlike Theorem 1, in this case RSTL and Stochastic Impatience are not
equivalent: there exist instances of the model above that violate Stochastic Impa-
tience and still satisfy RSTL. Nevertheless, the most interesting part of Theorem 1
(the fact that Stochastic Impatience implies RSTL) still holds.

We should also highlight that the proof of Theorem 2 is constructive and only re-
quires a minimal richness condition on the space of prizes.24 If we observe an instance
of RATL, we can design a choice problem involving binary lotteries, with similar out-
comes and delivery times, in which the individual violates Stochastic Impatience.

In light of the results above, a natural question is whether it is possible to reconcile
violations of RSTL with Stochastic Impatience by considering more complex setups.
In Appendix B we show that the same results hold when preferences are defined over
lotteries over streams. One may then wish to consider the space of temporal lotteries,
as in Kreps and Porteus (1978) or Epstein and Zin (1989). It is well-known that this
richer setup allows more freedom to accommodate otherwise conflicting properties.
The following remark partly addresses this question.

Remark 1. In Appendix C we show that a similar impossibility holds also for the
common specification of Epstein and Zin (1989) — with CRRA Expected Utility pref-
erences and a CES aggregator. While this model can accommodate local versions of
RATL, in those cases it must also violate Stochastic Impatience. That is, we have the
same impossibility as in Theorem 2.25

Similar to the discussion at the end of Section 2, the results in this section empha-
size that the seemingly obvious link between Impatience and Stochastic Impatience

23The only similar generalization we are aware of appears in Abdellaoui et al. (2017) that study
preferences over risk and time using a model that generalizes GEDU (for streams) allowing for
cumulative probability weighting (following Rank-Dependent Expected Utility).

24This is the condition D(t3)u(b) > D(t1)u(w) in the theorem, which guarantees that, at least for
the t1 and t3 considered, the utility of the worst and best prizes are distant enough. This would be
always satisfied were we to include a zero element (u(w) = 0).

25We refer to Dillenberger et al. (2018) for a discussion of the broader relation between Epstein
and Zin (1989) and Stochastic Impatience.
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Table 2: Attitude Towards Time Lotteries and Stochastic Impatience, MTurk

SI=0 SI=1 Total

RATL=0 12 (7.6%) 55 (35.0%) 67 (42.7%)
RATL=1 14 (8.9%) 76 (48.4%) 90 (57.3%)

Total 26 (16.6%) 131 (83.4%) 157

could be more subtle, due to the presence of risk. Recall the intuition given right after
the statement of Theorem 1. In the context of risk and time, Stochastic Impatience
not only sorts the time-payoff pairs in a way that is most consistent with Impatience,
but it also maximizes the spread, in terms of discounted utils, among all other pos-
sible combinations. This additional spread is inconsequential in EDU because of its
additively separable structure, but it may matter if there is complementary between
outcomes.26 To the extent that the individual cares about such spread, the descriptive
validity of Stochastic Impatience may not be obvious.

4.4 Additional Experimental Evidence

The results above show that, within a very general class of models, it is impossible
to allow for any violation of RSTL while keeping Stochastic Impatience. We have
documented that RATL is widespread. Do preferences satisfy Stochastic Impatience,
in general and in conjunction with RATL?

As an initial attempt to shed some light on this issue, we ran an incentivized ex-
periment on Amazon’s Mechanical Turk (March 2018, 157 subjects from the US). The
experiment consisted of two simple questions. The first question concerned attitudes
towards time lotteries. Subjects were offered a choice between receiving $5 in 2 weeks
for sure (RATL=1), and receiving $5 in either 1 or 3 weeks with 50% chance each
(RATL=0). The second question concerned Stochastic Impatience. In this question,
subjects had to choose between receiving either $5 in 1 week or $1 in 3 weeks with
50% chance each (SI=1), and receiving either $1 in 1 week or $5 in 3 weeks with 50%
chance each (SI=0).

Table 2 presents the main findings of this experiment. In line with our lab exper-
iment, a majority of subjects chose the RATL option (57.3%). More importantly, we
found that the vast majority of subjects do not violate Stochastic Impatience (only
16.5% do); and that the few subjects who violate Stochastic Impatience are not more
likely to choose the RATL option.27

26This resembles the idea in Machina (2009) of seeing ambiguity aversion as a manifestation of
event-nonseparability.

27Stochastic Impatience is violated by 12 out of the 90 subjects who choose the RATL option and
by 14 out of the 67 subjects who choose the RSTL option (correlation of 0.031 with a p-value of
0.697).
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These results are naturally only suggestive, as they test only one instance of
Stochastic Impatience. It does not rule out the possibility that the same subjects
would violate Stochastic Impatience if we choose different amounts. (As usual, this
axiom cannot be tested in finite time but only falsified.) Nevertheless they support
the possibility that a sizable fraction of subjects satisfies Stochastic Impatience while
at the same time being RATL – a combination that, as we have seen, is ruled out by
a large class of models.

5 Conclusion

This paper studies time lotteries and makes three contributions. First, as a motiva-
tion, it shows in an incentivized experiment that subjects typically violate RSTL, a
behavior that is not compatible with the standard Expected Discounted Utility model
(EDU).

Second, it shows that this behavior can be accommodated by a model that pre-
serves many of the motivating features of EDU, reducing to exponentially discounted
utility without risk and using Expected Utility for risk, but adding an additional cur-
vature. This model, which we refer to the Generalized Expected Discounted Utility
model (GEDU), is characterized by the axioms of Discounted and Expected Utility,
with no other assumptions.

Third, it shows a fundamental tension between any instance of RATL and a new
property called Stochastic Impatience. Within GEDU, individuals satisfy one if and
only if they violate the other. But this incompatibility extends well beyond GEDU.
We provide a similar impossibility result for a much larger class of preferences that
allows for a broad class of non-Expected Utility behavior and non-exponential dis-
counting.

Overall, the message of the paper can be summarized as follows. Despite what is
predicted by EDU, most subjects exhibit violations of RSTL. If maintaining Stochas-
tic Impatience is not a concern, then one can preserve the main features of EDU in
a model that allows for this pattern of behavior. If, however, maintaining Stochas-
tic Impatience is important, then even if we consider large generalizations, it is not
possible to allow for any instance of RATL, unless one is willing to abandon even
more fundamental properties that underline Theorem 2, such as no future bias or
monotonicity of the utility function over monetary outcomes.
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Appendices
These appendices contain some extensions, as well as the proofs of the results in
the main text. The proofs of results from the appendices are in the Supplementary
Appendix.28

A Obtaining EDU via RSTL

In the characterization of GEDU in Section 3 we imposed stationarity only on trade-
offs involving deterministic payments (Axiom 3). One may consider a stronger notion
that includes risky prospects, so that the ranking between two lotteries would not
change if we move all payments in the support of the lotteries by the same number
of periods. Formally, for any p ∈ ∆, let p+τ denote the lottery in which each prize is
shifted by τ periods: p+τ ((x, t+ τ)) = p((x, t)) for all (x, t) ∈ [w, b]× T .

Axiom 7 (Risk Stationarity). For every p, q ∈ ∆ and τ such that p+τ , q+τ ∈ T ,

p % q ⇔ p+τ % q+τ .

It is not obvious that Risk Stationarity is a desirable property: its normative
appeal, linked to dynamic consistency, is to be contrasted with robust evidence of its
violations.29

It is easy to see that Risk Stationarity is satisfied by EDU. As the next proposition
shows, however, EDU is not the only case of GEDU preferences that satisfies Risk
Stationarity. Rather, starting from GEDU, EDU is characterized by imposing both
Risk Stationarity and RSTL.

Proposition 3. Suppose T is an interval and consider % that admits a GEDU rep-
resentation and satisfies Risk Stationarity. Then:

1. % is RSTL (and not RNTL) if and only if it admits an EDU representation.

28The Supplementary Appendix is available online here.
29Typical findings are that subjects are more risk tolerant for delayed payments (Shelley, 1994;

Sagristano et al., 2002; Noussair and Wu, 2006; Baucells and Heukamp, 2010; Coble and Lusk, 2010;
Abdellaoui et al., 2011), a pattern that violates Risk Stationarity but is compatible with GEDU: if
φ exhibits (strictly) increasing relative risk aversion, then < exhibits (strictly) higher risk tolerance
for delayed rewards, i.e., if p ∼ (x, t) then for all τ we have p+τ (�) % (x, t + τ). Intuitively, under
GEDU pushing all rewards to the future is akin to “shrinking them” by the discount factor β; and
if the individual has a increasing relative risk aversion he should have higher risk tolerance for these
smaller amounts. A natural functional form for this is φ(x) = 1 − e−γx for some γ ∈ R++. With
this functional form, the individual would be averse to time lotteries with large enough prizes (since,
in this case, the exponential function is more risk averse than the log). Note that if u is CRRA
and φ is CARA, then their combination φ ◦u exhibits increasing relative risk aversion, which, under
GEDU, must be the case for atemporal risk preferences. This prediction appears to be supported by
recent experimental evidence (Binswanger, 1981; Kachelmeier and Shehata, 1992; Bosch-Domènech
and Silvestre, 1999; Holt and Laury, 2002; Fehr-Duda et al., 2010).
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2. % is RATL (and not RNTL) if and only if there exists β > 1 and a strictly
increasing u : [w, b] → R−− such that % is represented by V (p) = Ep(βtu(x)).
We call this a Negative-EDU representation.

The proposition above shows that RSTL is not only implied by EDU: it is the
characterizing feature of EDU in the class of preferences that satisfy the axioms of
Expected Utility, Discounted Utility, and Risk Stationarity.

The proposition also shows that there are other GEDU preferences that allow for
RATL while maintaining Risk Stationarity: the Negative-EDU model, which takes
β > 1 and a negative utility (such as, for example, any CRRA function more concave
than the log) – a minor twist over EDU and probably just as tractable. It is easy to
see that earlier payments are still preferred, despite the fact that β > 1, because u is
negative (thus, the model still satisfies Impatience).

B Extension to consumption streams

We now extend our results to lotteries over consumption streams.
Consider the interval [w, b] of prizes and a set of dates T = N.30 A consumption

program x = (x0, x1, . . . ) yields consumption xt ∈ [w, b] in period t ∈ T . A program x
is ultimately constant if there exist a ∈ [w, b] and t ∈ N such that xt = a for all t > t.
Let Xt denote the set of all ultimately constant program that are constant starting

from period t + 1, and let X denote the set of all ultimately constant programs.31

Let ∆(X ) be the set of all simple probability measures over X . Our primitive is a
complete and transitive preference relation %′ over ∆(X ).

We focus on the following representation, that extends GEDU to streams: there
exist a continuous and strictly increasing u : [w, b] → R, β ∈ (0, 1), and a strictly
increasing φ : R+ → R such that %′ is represented by

V (P ) = Ep

[
φ

(
∞∑
t=0

βtu(xt)

)]
.

This model is precisely the model in Kihlstrom and Mirman (1974) applied to time.
It can be easily characterized like we did for GEDU, by imposing the axioms for
Discounted Utility and Expected Utility. The only difference is that, to obtain Dis-
counted Utility without risk, instead of the postulates of Fishburn and Rubinstein
(1982), one should posit only on degenerate lotteries over streams those in Bleichrodt
et al. (2008) (based on Koopmans 1960). See also Dillenberger et al. (2018).

30For brevity, we focus on discrete time and infinite horizon here. The case of continuous time is
identical with the adapted formalism. For the finite horizon case, we would need to adapt to this
framework the axioms in Fishburn (1970, Th. 7.5), which is an easy exercise.

31The restriction to ultimately constant programs guarantees that the discounted utility is well-
defined.
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We now consider our other results in this setup of streams: first, we show that
this model can accommodate RATL; then, we show that even if we generalize it
by allowing for non-Expected Utility, we have an incompatibility between Stochastic
Impatience and RATL.

To discuss these results, we need to extend our notions of RATL and Stochastic
Impatience to consumption streams. To do so, let c ∈ [w, b] denote the consumption
in the absence of any prizes (“background consumption”). In this context, a binary
lottery α×δ(x1, t1)+(1− α)×δ(x2, t2) gives with probability α the stream of consump-
tion {c, c, ..., c+ x1︸ ︷︷ ︸

t1

, c, ...}, and with probability 1−α the stream {c, c, ..., c+ x2︸ ︷︷ ︸
t2

, c, ...},

where c + xi ∈ [w, b]. (We will omit the requirement that all c + xi ∈ [w, b] in the
definitions below). A time lottery px with prize x is to be understood as a lottery
over such objects. Our preference relation over lotteries over consumption streams %′

would then induce a preference over such lotteries, one for any given background con-
sumption c. We denote this induced preference relation by %′c. Our main properties
extend to this domain as follows:

Definition 3. We say that %
′

is Risk Averse over Time Lotteries’ (RATL’) if for all
x, c ∈ [w, b] and all time lotteries px with prize x, if t̄ =

∑
τ px(x, τ)× τ then

δ(x,t̄) %
′
c px.

Definition 4. Let t = (t1, t2, ..., tn) be any finite collection of n time periods, with
t1 < t2 <, ... < tn, and x = (x1, x2, ..., xn) be any collection of n outcomes such that
x1 > x2 >, ... > xn. Let ι(t) be a permutation of t and ι′(x) be a permutation of
x. We say that %′ satisfies Stochastic Impatience if for any n-ordered sequences t, x
with corresponding perturbations ι(t) and ι′(x) and for any c ∈ [w, b],

n∑
i=1

1

n
δ(xi,ti) %

′
c

n∑
i=1

1

n
δ(xι′(i),tι(i))

.

It is easy to see that the model above can accommodate RATL. In particular,
if φ is concave enough then the value of the non-degenerate lottery gets arbitrary
close to the value of the worst consumption stream in the support (that is, the one
in which the prize x is received in the latest possible time), compared to which the
individual would prefer to receive x instead in the average time t̄. In the case of
lotteries over streams, however, risk attitude towards time lotteries may — due to
the additive terms — depend on the magnitude of x and c (and not only on the
curvature of φ). Therefore, there is no counterpart to Theorem 1. Theorem 2, on
the other hand, is readily extended to this domain. To see this, first note that the
GL-BDU representation becomes:

Definition 5. We say that %′ admits a Generalized Local Bilinear Discounted Util-
ity (GL-BDU) representation, if for any c ∈ [w, b] there are continuous increasing
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functions u : X → R, φ : R+ → R, and a strictly decreasing D : T → (0, 1] which
exhibits Diminishing Impatience, such that for π(0.5) ∈ (0, 1), 0.5δ(x,t) + 0.5δ(x′,t′)

with D(t)u(x+ c) +
∑

τ 6=tD(t)u(c) ≥ D(t′)u(x′+ c) +
∑

τ 6=t′D(t)u(c) is evaluated by:

π(0.5)φ
(
D(t)u(x+c)+

∑
τ 6=tD(τ)u(c)

)
+(1−π(0.5))φ

(
D(t′)u(x′+c)+

∑
τ 6=t′D(τ)u(c)

)
.

Theorem 3. Suppose %′ admits a GL-BDU representation. If δ(x,t2) �′c 0.5δ(x,t1) +
0.5δ(x,t3) for some x, c ∈ [w, b] and t2 = t1+t3

2
, and if either

D(t1)(u(w + c)− u(c)) < D(t2)(u(x+ c)− u(c))

or
D(t3)(u(b)− u(c)) > D(t2)(u(x+ c)− u(c)),

then %c violates Stochastic Impatience.

The constructive proof follows the exact same steps as in the case for lotteries over
dated rewards, and the richness condition (that is now written in a weaker version as
two separate inequalities) plays the exact same role in it.

C Epstein-Zin 1989 preferences

In this appendix we show that the model of Epstein and Zin (1989) (henceforth, EZ)
with CRRA Expected Utility preferences and CES aggregator cannot accommodate
violations of RSTL without also violating Stochastic Impatience. We adopt the same
formal recursive setup of their paper, which we do not discuss here for brevity. Con-
sider a preference relation %̂ over the recursive framework that admits a recursive
representation of the form:

Vt =
{

(1− β)C1−ρ
t + β

[
Et
(
V 1−α
t+1

)] 1−ρ
1−α
} 1

1−ρ
, (3)

where Ct denotes consumption at time t, α ≥ 0 is the coefficient of relative risk
aversion, and ρ ≥ 0 is the inverse of the elasticity of intertemporal substitution (with
α 6= 1 and ρ 6= 1, so that the formula is well-defined). EZ coincides with EDU when
α = ρ.

We now turn to discuss whether EZ can simultaneously accommodate Stochastic
Impatience and RATL. Since this model is defined over consumption streams, we
use the definitions of Stochastic Impatience and RATL for streams as introduced in
Appendix B. In this setup we also need to specify when the uncertainty is resolved: for
all the lotteries in question, we assume that the uncertainty is resolved immediately
after the current period.

We first show that EZ allows for violations of RSTL although it cannot accom-
modate (global) RATL:
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Proposition 4. Under EZ, for any β, ρ, and x, there exists ᾱρ,β,x > max{ρ, 1} such
that δ(x,t)�̂0.5δ(x,t−1) + 0.5δ(x,t+1) if and only if α > ᾱρ,β,x. Moreover, limx↘0 ᾱρ,β,x =
+∞.

Proposition 4 shows that, controlling for discounting β, elasticity of intertemporal
substitution 1/ρ, and the size of the prize x, more risk averse individuals are more
likely to prefer the safe lottery.32 That is, as with GEDU, there is also a connection
between risk aversion over time lotteries and risk aversion over temporal lotteries in
EZ. Moreover, the risky lottery is always preferred if the utility function is less concave
than a logarithmic function (α < 1) and if α ≤ ρ,33. Proposition 4 also shows that
limx↘0 ᾱρ,β,x = +∞, which means that, when the prize x is small enough, the risky
time lottery is always preferred. That is, EZ preferences cannot be (globally) RATL.

Our main result is that EZ cannot accommodate violations of RSTL without also
violating Stochastic Impatience:

Proposition 5. Suppose that %̂ admits an EZ representation. Then, if %̂ satisfies
Stochastic Impatience, it also satisfies RSTL.

This result shows that even in this richer setting, the impossibility result estab-
lished with Theorem 2 continues to hold. The intuition is very similar to the one
previously given: the extra “intertemporal” risk aversion needed to accommodate
RATL is going to generate a violation of Stochastic Impatience. We refer to Dil-
lenberger et al. (2018) for an in-depth discussion of the implications of Stochastic
Impatience for EZ.

D Proofs of the Results in the text

D.1 Proof of Proposition 1

Necessity is immediate. To show sufficiency, note that by Continuity, for all (x, t) ∈
[w, b]× T the sets {(x, t) ∈ [w, b]× T : δ(x,t) % δ(y,s)} and {(x, t) ∈ [w, b]× T : δ(y,s) %
δ(x,t)} are closed in the product topology on [w, b] × T . Define %′ on [w, b] × T by
(x, s) %′ (y, t) if and only if δ(x,s) % δ(y,t), and note that %′ satisfies Axioms A0-A5
in Fishburn and Rubinstein (1982). Then, by Theorem 2 in that paper, there exist
β ∈ (0, 1) and a strictly increasing and continuous u : [w, b]→ R++ such that

δ(x,s) % δ(y,t) ⇔ (x, s) %′ (y, t) ⇔ βsu(y) ≥ βtu(x).34

32That is, α′ > α implies that if the decision maker with coefficient of risk aversion α prefers the
safe lottery over the risky one, so does the decision maker with α′ (holding other parameters fixed).

33Starting with Kreps and Porteus (1978), a large literature has studied preferences over the
timing of resolution of uncertainty. With EZ, early resolution of uncertainty is preferred if and only
if α > ρ (Epstein et al., 2014). Proposition 4 then implies that this condition is also needed for the
safe time lottery to be preferred.

34Recall that our domain includes only strictly positive prizes, so that we do not add the require-
ments for u on weakly negative outcomes.
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By Independence and Continuity there exists U : [w, b]× T → R such that

p % q ⇔ Ep(U) ≥ Ep(U).

By Continuity, U is also continuous.
It follows that for all (x, s), (y, t) ∈ [w, b] × T , βsu(x) ≥ βtu(y) if and only if

U(x, s) ≥ U(y, t). Let F (x, t) = βtu(x). The existence of φ : F ([w, b]× T )→ R such
that U(x, t) = φ(F (x, t)) follows from standard arguments, as both U and F represent
the same preferences. The continuity of φ is also immediate. We are left with showing
that such φ is strictly increasing. If not, then there exist a, b ∈ F ([w, b]×T ) such that
a > b but φ(a) = φ(b). Since a, b ∈ F ([w, b]× T ), there exist (x, t), (y, s) ∈ [w, b]× T
such that F (x, t) = a > b = F (y, s), thus δ(x,t) � δ(y,s). But since φ(a) = φ(b) we
have U(x, t) = U(y, s), thus δ(x,t) ∼ δ(y,s), a contradiction. �

D.2 Proof of Proposition 2

Let rx be a time lottery which yields x in a random time t with Er (t) = t̄. Then

V (δ(x,t̄)) = φ
(
β t̄u (x)

)
and

V (rx) = Erφ
(
βtu (x)

)
.

Note that if φ = ln, then V (δ(x,t̄)) = V (rx) = t̄ ln β+ lnu(x). Since the distribution of
t is a mean-preserving spread of the distribution of t̄, Jensen inequality implies that
V (δ(x,t̄)) > (resp., <) V (rx) whenever there is a concave (resp., convex) function h
such that φ = h ◦ log .

Since rx was arbitrary, the concavity (resp., convexity) of g should be global to
ensure no violation of RATL (resp., RSTL). �

D.3 Proof of Theorem 1

That % is RSTL if an only if φ is a convex transformation of ln has been established
in Proposition 2 of Section 3. We now show that % displays Stochastic Impatience
if an only if φ is a convex transformation of ln. To see this, let t′ = (βt1 , βt2 , ..., βtn)
for β ∈ (0, 1) and t1 < t2 < ... < tn, and x′ = (u (x1) , u (x2) , ..., u (xn)) for strictly
increasing and positive-valued u over X and x1 > x2 >, ... > xn. Let ιt(t

′) be a
permutation of t′ and ιx(x

′) be a permutation of x′. If φ = ln then, and only then,∑n
i=1

1
n
δ(xi,ti) ∼

∑n
i=1

1
n
δ(xι′(i),tι(i))

. But note that f (u(x), βt) := g(ln (u(x), βt)) is

supermodular if and only if g is convex. By Becker (1973), supermodularity of f is
both a necessary and sufficient condition for the positive assortative pairing — that
is, a positive correlation in sorting between the values of u(x) and βt —- to maximize
the sum of the f (u(x), βt) terms across all possible permutations. �
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D.4 Proof of Theorem 2

Let t1 < t2 < t3 with t2 = t1+t3
2

and for some prize x consider the two time lotteries
δ(x,t2) and rx = 0.5δ(x,t1) + 0.5δ(x,t3). According to the GL-BDU representation we
have

V (δ(x,t2)) = φ(D(t2)u(x))

and
V (rx) = π(0.5)φ(D(t1)u(x)) + (1− π(0.5))φ(D(t3)u(x)).

Let π(0.5) be the value such that V (δ(x,t2)) = V (rx), or

π(0.5) =
φ(D(t2)u(x))− φ(D(t3)u(x))

φ(D(t1)u(x))− φ(D(t3)u(x))
∈ (0, 1).

The richness condition D(t1)u(w) < D(t3)u(b) guarantees that either (i) there is
x′ < x such that D(t1)u(x′) = D(t2)u(x); or (ii) there is x′ > x such that D(t3)u(x′) =
D(t2)u(x); or both.

Consider first case (1 ). Take x′ < x such that D(t1)u(x′) = D(t2)u(x). Let
p = 0.5δ(x,t1) + 0.5δ(x′,t2) and q = 0.5δ(x′,t1) + 0.5δ(x,t2). We have

V (p) = π(0.5)φ(D(t1)u(x)) + (1− π(0.5))φ(D(t2)u(x′))

and
V (q) = φ(D(t2)u(x)).

Let π̂(0.5) be the value such that V (p) = V (q), or

π̂(0.5) =
φ(D(t2)u(x))− φ(D(t2)u(x′))

φ(D(t1)u(x))− φ(D(t2)u(x′))
∈ (0, 1).

Note that π(0.5) > π̂(0.5) implies V (p) > V (q) while π(0.5) < π(0.5) implies
V (δ(x,t2)) > V (r). Since φ is strictly increasing, we will be done if we show that

D(t2)u(x′) ≤ D(t3)u(x), since this implies that π̂(0.5) ≥ π(0.5), so that Stochastic
Impatience and RATL contradict one another. But by Diminishing Impatience and
the definition of x′ we have

D(t2)

D(t3)
5
D(t1)

D(t2)
=
u(x)

u(x′)

or D(t2)u(x′) ≤ D(t3)u(x).

If case (i) is not satisfied, then consider now case (ii). Take x′ > x such that
D(t3)u(x′) = D(t2)u(x). Let p = 0.5δ(x′,t2) + 0.5δ(x,t3) and q = 0.5δ(x,t2) + 0.5δ(x′,t3).
We have

V (p) = π(0.5)φ(D(t2)u(x′)) + (1− π(0.5))φ(D(t3)u(x))
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and
V (q) = φ(D(t2)u(x)).

Let π̂(0.5) be the value such that V (p) = V (q), or

π̂(0.5) =
φ(D(t2)u(x))− φ(D(t3)u(x))

φ(D(t2)u(x′))− φ(D(t3)u(x))
∈ (0, 1).

If D(t2)u(x′) ≤ D(t1)u(x) then we have π̂(0.5) ≥ π(0.5). By Diminishing Impa-
tience and the definition of x′ we have

D(t1)

D(t2)
≥ D(t2)

D(t3)
=
u(x′)

u(x)

or D(t2)u(x′) ≤ D(t1)u(x). This completes the proof. �

E Experiment: additional information

A total of 197 subjects took part in an experiment run at the Wharton Behavioral
Lab at the Wharton School of the University of Pennsylvania. We used a paper-and-
pencil questionnaire. Some questions involved immediate payments, that were made
at the end of each session. Others involved payments to be made in the future; for
these, subjects were told that their payment would be available to pick up from the
lab starting from the date indicated.35

We ran two treatments: ‘long delay’ and ‘short delay,’ labeled Long and Short in
what follows. A total of 105 and 91 subjects participated in each, respectively. The
only difference was the length of delays in some of the questions: in the Long treat-
ment, some payments were delayed by up to 12 weeks, while in the Short treatment
the maximum delay was 5 weeks.36

35All payment dates were expressed in weeks, with the goal of reducing heterogeneity in transaction
costs between the dates, under the assumption that students have a regular schedule each week during
the semester. An email was then sent to remind them of the approaching date (they were told they
would receive it). Subjects were also given the contact details of one of the authors, at the time
a full-time faculty at Wharton. Returning to the lab to collect the payment involve transaction
costs, a typical concern. However, in our experiment all payments related to time lotteries were
designed to take place in future dates, thus holding constant the transaction cost. We have already
mentioned that a second concern may relate to the use of monetary prizes, which could be seen as
problematic to study intertemporal choice (Augenblick et al., 2015). As we have seen, typical issues
do not apply here (for example, the curvature of the utility function is inconsequential on ranking
of time lotteries). Moreover, since are interested in studying the relation between risk aversion over
time lotteries and atemporal risk aversion, and the latter is defined for monetary lotteries, we focus
our experiment on monetary prizes. Our broad intuition would naturally apply more in general; we
leave its experimental investigations to future research.

36Testing both treatments allows us to study long times spans, where differences between time
lotteries become more pronounced; as well as shorter ones, where students’ schedules are more stable,
reducing heterogeneous sources of variation. In the Short version all payments were scheduled before
the end of the semester; no payment was scheduled during exam week.
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Table 3: Questions in Part I

Long Delay Short Delay

Q. $$ Option 1 vs. Option 2 $$ Option 1 vs. Option 2

1 $20 2 wk 75% 1 wk, 25% 5 wk $20 2 wk 75% 1 wk, 25% 5 wk
2 $15 3 wk 90% 2 wk, 10% 12 wk $15 3 wk 50% 1 wk, 50% 5 wk
3 $10 2 wk 50% 1 wk, 50% 3 wk $10 2 wk 50% 1 wk, 50% 3 wk
4 $20 50% 2 wk, 50% 3 wk 50% 1 wk, 50% 4 wk $20 50% 2 wk, 50% 3 wk 75% 2 wk, 25% 4 wk
5 $15 50% 2 wk, 50% 5 wk 75% 1 wk, 25% 11 wk $10 50% 2 wk, 50% 5 wk 75% 3 wk, 25% 5 wk

Notes. Each lottery pays the same prize with different delays (in weeks). Subjects in the long delay

treatment chose between ‘Option 1’ and ‘Option 2, Long Delay.’ Those in the short delay treatment

chose between ‘Option 1’ and ‘Option 2, Short Delay.’

The experiment has three parts.37 Part I asks subjects to choose between different
time lotteries and it is the main part of our experiment. For example, the first question
asked them to choose between $15 in 2 weeks or $15 in 1 week with probability .75 and
in 5 weeks with probability .25. Subjects answered five questions of this kind. Table
3 lists the questions asked in each treatment. All questions offered two options that
paid the same prize at different dates, where the distribution of payment dates of one
option was a mean preserving spread of that of the other. In three questions, one of
the options had a known date; in the others, both options had random payment dates.
All subjects received the same first question (Question 1 in Table 3) in a separate
sheet of paper. The answer to this question is a key indication of the subjects’
preferences, as it captures their immediate reaction to this choice, uncontaminated
by other questions.38

Parts II and III use the multiple price list (MPL) method of Holt and Laury (2002)
to measure time and risk preferences separately.39 Part II measures standard time

37Subjects received general instructions and specific instructions about the first part when they
entered the room. Separate instructions were distributed before each of the following parts. The
order of parts and of questions was partly randomized, as we discuss below.

38One potential concern with offering a list of similar questions is that subjects may ‘try’ different
answers even if they have a mild preference in one direction with some hedging concern in mind
(Agranov and Ortoleva, 2017).

39In a MPL, each question has a table with two columns and multiple rows. The subject is asked
to make a choice in each row. One of the options is always the same, while the other gets better and
better as we proceed down the rows. These questions are typically interpreted as follows: if a subject
chooses the option on the left for all rows above a point, and the option on the right below that point,
then the indifference point should be where the switching takes place. Subjects who understand the
procedure should not switch more than once. This is indeed the case for the large majority of
answers: 13% of subjects gave a non-monotone answer in at least one of the 12 MPL questions, and
only 4.6% gave non-monotone answers in more than one. These are substantially lower numbers (i.e.,
fewer violations) than what previous studies have found (Holt and Laury, 2002). The non-monotone
behavior did not concentrate in any specific question. Following the typical approach, these answers
are disregarded. Alternatively, we could have dropped any subject that exhibits a non-monotone
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Table 4: Questions in Part II

Long Delay Short Delay

Q. Option 1 vs. Option 2 Option 1 vs. Option 2

6 $10 today x in 2 wk $10 today x in 2 wk
7 $10 in 1 wk x in 2 wk $10 in 1 wk x in 2 wk
8 $10 in 1 wk x in 5 wk $10 in 1 wk x in 3 wk
9 $10 in 1 wk x in 12 wk $10 in 1 wk x in 4 wk
10 $20 in 4 wk $20, x% in 2wk, (1-x)% in 12wk $25 in 3 wk $25, x% in 2wk, (1-x)% in 5wk
11 $25 in 2 wk $25, x% in 1wk, (1-x)% in 5wk $25 in 2 wk $25, x% in 1wk, (1-x)% in 5wk

Notes. Questions 6-9 ask the amount $x that would make subjects indifferent between each option.

Questions 10-11 ask the probability x% that would make subjects indifferent between each option. These

amounts were determined using MPL.

Table 5: Questions in Part III

Q. Option 1 vs. Option 2

12 $15 x% of $20, (1-x)% of $8
13 50% of $15, 50% of $8 x% of $20, (1-x)% of $8
14 20% of $15, 80% of $8 x% of $20, (1-x)% of $8
15 $20 x% of $30, (1-x)% of $5
16 50% of $20, 50% of $5 x% of $30, (1-x)% of $3
17 10% of $20, 90% of $5 x% of $30, (1-x)% of $3

Notes. Questions ask the probability x% that would make subjects indifferent between each option,

determined using MPL. All payments were scheduled for the day of the experiment.

preferences as well as attitudes towards time lotteries (Question 10 and 11). Part III
measures atemporal risk preferences, with payments taking place immediately at the
end of the session. These include questions to measure regular risk aversion, as well
as Allais’ common-ratio-type questions, that allow us to test and quantify violations
of Expected Utility theory. Tables 4 and 5 include the list of questions asked in these
two parts.

At the end of the experiment one question was randomly selected from Parts I, II,
and III for payment. The randomization of the question selected for payment, as well
as the outcome of any lottery, was resolved with dice.40 Crucially, all uncertainty was
resolved at the end of the experiment, including the one regarding payment dates.
The instructions explicitly stated that subjects would know all payment dates before

behavior at least once; this leave our results essentially unchanged.
40 Specifically, one participant was selected as ‘the assistant,’ using the roll of a die. This subject

was then in charge of rolling the die and checking the outcomes. This was done to reduce the fear
that the experimenter could manipulate the outcome. All was clearly explained beforehand.
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leaving the room.
The order of parts and of questions within parts was partly randomized at a session

level. Because Part I is the key one, all subjects saw it first to avoid contamination.
For the same reason, within Part I, Question 1 was always the same. All other
elements were randomized.41 We find no significant effects of ordering.42

We conclude by noting that our incentive scheme, the random payment mecha-
nism, as well as the multiple price list method, are incentive compatible for Expected
Utility maximizers, but not necessarily for more general preferences over risk.43 Since
this is the procedure used by most studies, a significant methodological work has
been done to examine whether this creates relevant differences, with some reassuring
results.44

E.1 Results

We start from the main variable of interest: risk attitude towards time lotteries. This
can be measured in three different ways. First, we can measure it using Question 1
of Part I, the first question that subjects see. Second, we can look at the answers to
all five questions in Part I and ask whether subjects exhibited RATL in the majority
of them (for the purpose of this section, we say that subjects are RATL in a given
question if, in that question, they chose the option with the smallest variance of the
payment date). A third way is to look at the answers given in Questions 10 and 11

41Specifically: for questions in Part I other than the first, half of the subjects answered questions
in one specific order (the one used above), while the other half used a randomized order. In each of
them, which option appears on the left and which on the right was also determined randomly. The
order of Parts II and III was randomized. For both parts, it was determined randomly whether in the
MPL the constant option would appear on the left or on the right. This was done (independently)
for each part, but not for each question within a part: in Part II or III the constant option of
the MPL was either on the left or on the right for all questions of that part. This is typical for
experiments that use the MPL method, as it makes the procedure easier to explain.

42The only exception is that out of the five questions in the first part, subjects have a significant
(moderate) preference for the option on the right in the second question. While this is most likely a
spurious significance (due to the large number of tests run), the order was randomized for all sessions
and thus this should have no impact on our analysis.

43Holt (1986) points out that a subject who obeys the Reduction of compound lotteries but
violates the Independence axiom may make different choices under a randomly incentivized elicitation
procedure than he would make in each choice in isolation. Conversely, if the decision maker treats
compound lotteries by first assessing the certainty equivalents of all first stage lotteries and then
plugging these numbers into a second stage lottery (as in Segal, 1990), then this procedure is incentive
compatible. Karni and Safra (1987) prove the non-existence of an incentive compatible mechanism
for general non-Expected Utility preferences.

44Beattie and Loomes (1997), Cubitt et al. (1998) and Hey and Lee (2005) all compare the behavior
of subjects in randomly incentivized treatments to those that answer just one choice, and find little
difference. Also encouragingly, Kurata et al. (2009) compare the behavior of subjects that do and
do not violate Expected Utility in the Becker-DeGroot-Marschak procedure (which is strategically
equivalent to MPL) and find no difference. On the other hand, Freeman et al. (2015) find that
subjects tend to choose the riskier lottery more often in choices from lists than in pairwise choices.
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of Part II, that compute RATL using MPL.
Table 6 presents the percentage of RATL answers for each of these measures.

The results are consistent: in most questions, especially in the Long treatment, the
majority of subjects are RATL. Note that most subjects are still RATL when both
options are risky but one of the options is a mean preserving spread of the other
(Questions 4 and 5). Thus, the data suggest an aversion to mean preserving spreads,
not simply an attraction towards certainty.

Table 6: Percentage of RATL in
each question

Question Long Short

1 65.71 56.04
2 50.48 54.95
3 48.57 37.36
4 64.76 38.46
5 73.33 52.75

Majority in 1-5 64.76 49.45

10 44.23 54.44
11 57.28 41.11

Either in 10 or 11 64.07 66.66

Table 7: Frequency of RATL answers in Part I

Frequency of
RATL

Long Delay Short Delay

Percent Cum. Percent Cum.

0 2.86 2.86 9.89 9.89
1 9.52 12.38 16.48 26.37
2 22.86 35.24 24.28 50.55
3 23.81 59.05 26.37 76.92
4 28.57 87.62 19.78 96.70
5 12.38 100.00 3.30 100

In most questions, RATL is stronger in the Long rather than in the Short treat-
ment.45 This is intuitive: when the time horizon is relatively short, the difference
between the options decreases and subjects should become closer to being indifferent
– and their choices closer to an even split. In the Long treatment the difference in
time horizon increases, and so does the differences between the options. While the
standard model suggests that this should push more strongly towards RSTL, the
opposite holds in our data.

While most answers are consistent with RATL, it could be that a non-trivial
fraction of our subjects still consistently chooses the risky option, as predicted by
EDU. Table 7 shows that this is not the case: the fraction of subjects who does so is
minuscule in the Long treatment (2.86%) and very small in the Short one (9.89 %).
By contrast, in the Long treatment almost 41% give risk averse answers at least 4 out
of 5 times, and 59% at least three times. (These numbers are about 23% and 48.45%
in the Short treatment.)

Overall, these finding are not compatible with RSTL and thus with EDU: only
a minuscule fraction of subjects is consistently risk seeking over time lotteries, while
the majority is tends to be risk averse over time lotteries. Thus, the assumption of

45The proportion of subjects who exhibit a majority of RATL choices is about 65% in the Long
vs. about 50% in the Short (test of proportion, p-value 0.015). Overall, the proportion of RATL
answers are 60.6 vs. 47.9 (p-value <0.001).
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risk seeking overt time lotteries, implicitly present when using EDU, does not seem
to be have a positive appeal.

E.2 RATL, Convexity, Expected Utility, and Risk Aversion

We now turn to analyze the relationship between RATL and convex discounting,
violations of Expected Utility, and atemporal risk aversion. Under EDU, all subjects
with convex discounting should be RSTL; in turn, this means that such tendency
should be negatively related to convexity of the discount function. Under GEDU,
RATL should be positively correlated with atemporal risk aversion. Finally, if RATL
were due to violations of Expected Utility, as suggested by Chesson and Viscusi (2003)
and Onay and Öncüler (2007), then it should be linked to certainty bias and violations
of Expected Utility.

We quantify convexity of the discount function, violations of Expected Utility,
and atemporal risk aversion using the MPL measures collected in Parts II and III.
We determine which subjects have convex discounting based on their answers in
Part II (see Questions 7, 8, and 9 in Table 4). Unsurprisingly, we find that 82% of
our subjects exhibit it (this is an established finding). From the questions in Part
III we can construct two related measures of violations of Expected Utility. First,
we can determine if subjects exhibit certainty bias (Kahneman and Tversky, 1979),
which is implied by pessimistic probability weighting.46 We find that a small number
of subjects exhibit it (15.71%).47 Second, we can use the same three questions to
determine whether the subjects give answers that are jointly consistent with Expected
Utility. Since this is a very demanding requirement – it is well-known that these
measures are very noisy –, we consider as “approximately Expected Utility” those
subjects who would abide by Independence across all three questions if we changed
their answer in at most one of the lines. These are 39.89% of the pool.

Table 8 shows that, based on the four different measures, subjects are still RATL
in each of the subsamples above. The table also shows the results of Chi-squared
tests on whether subjects in each of subsample are statistically different from those

46 This could be done using Questions 12 and 13, or 12 and 14 (see Table 5). Suppose that in
Question 12 the subject switches at x12, while in Question 13 he switches at x13. If the subject
follows Expected Utility, we should have 2x13 = x12. A certainty-biased subject would instead have
x12 > 2x13; because he is attracted by the certainty of Option 1 in Question 12, he demands a
high probability of receiving the high prize in Option 2 to be indifferent. Thus, the answers to
Question 12 and 13 allow us to identify subjects who are certainty biased and to quantify it. In
what follows, when we need to identify subjects who are certainty biased, we use this measure. A
similar measure can be obtained from the answers to Questions 12 and 14: the results using it are
essentially identical and are reported in Section E.3. When we need to quantify certainty bias (in
the regression analysis), we use instead the principal component of the two measures, which should
reduce the observation error (essentially identical results hold using either of the two measures or
their average).

47These small numbers are not surprising: it is a stylized fact that certainty bias is less frequent
when stakes are small, as in this part of our experiment (Conlisk, 1989; Camerer, 1989; Burke et al.,
1996; Fan, 2002; Huck and Müller, 2012). See the discussion in Cerreia-Vioglio et al. (2015).
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Table 8: Proportion of RATL subjects

Sample Convex Discounting Approximately Exp. Ut. No Certainty Bias

Treatment Long Short Long Short Long Short

Question 1 67.78 50.70∗ 66.67 60.61 67.50 55.00
Majority in Q1-5 65.56 43.66∗∗ 64.29 60.61∗ 68.75∗ 50.00
Question 10 46.07 52.86 54.76∗ 68.75∗∗ 47.50 51.90
Question 11 57.95 44.29∗∗ 64.29 56.25 54.43 48.10

Observations 90 71 42 33 80 80

Notes. The first row measures RATL using Question 1. The second row identifies as RATL subjects

who chose the safe option in the majority of Questions 1-5. The third and fourth rows use answers

to MPL Questions 10 and 11. Columns present the proportion of RATL subjects in the subsamples

of subjects with convex discounting, approximately Expected Utility, and those with no Certainty

Bias as measured using Questions 12 and 13. ∗ and ∗∗ denote significance at the 10% and 5% level

in a Chi-squared test of whether each subset is different from its complement.

outside of it. We find a majority of RATL among subjects who either have convex
discounting, or who have no certainty bias, or who are “approximately Expected
Utility.” In most cases there is no significant difference in the proportions of RATL
between these groups and their complement. These results are in direct contrast with
the predictions of EDU, and with the explanation of RATL suggested by Chesson
and Viscusi (2003) and Onay and Öncüler (2007) based on probability weighting:
according to the former, there should be no RATL with convex discounting; according
to the latter, there should be no RATL without certainty bias, or for subjects that
(approximately) follow Expected Utility. In Section E.3 we present regression analysis
to confirm these results, where we show how certainty bias or convexity of discounting
is generally not related, or poorly related, to the tendency to exhibit RATL: see Table
11.

All our findings thus far are compatible with the GEDU model. However, as we
pointed out, GEDU makes one additional prediction, which allows us to test it in
our data: RATL should be related to standard atemporal risk aversion. Table 9
presents the coefficients from a Probit regression with our four RATL measures as
dependent variables and the degree of risk aversion (as measured in Question 12) as
the independent variable. Consistently with the model, the coefficients are positive
and, with the exception of the Short treatment in Question 1, they are all statistically
significant at the 5% level. (Similar results hold constructing risk aversion from other
questions, e.g., Question 15, or using a linear probability model.)

To summarize, we find that subjects who are either (i) approximately Expected
Utility maximizers, or (ii) satisfy either convex discounting, or (iii) satisfy no certainty
bias, also have a tendency to be RATL. In fact, the proportions in these groups are
almost identical to the one in the overall population. Regression analysis shows
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Table 9: Probit Regressions: RATL and Atemporal Risk Aversion

Dep. Variable RATL Q.1 RATL Majority Q.1-5 RATL Q.10 RATL Q.11

Treatment Long Short Long Short Long Short Long Short
(Probit) (1) (2) (3) (4) (5) (6) (7) (8)

Risk Aversion, .336∗∗ .175 .308∗∗ .341∗∗ .459∗∗∗ .435∗∗∗ .571∗∗∗ .239∗∗∗

Atemporal (2.41) (1.30) (2.27) (2.40) (3.27) (2.91) (3.81) (1.75)

Constant .07 -.01 .07 -.34∗ -.60∗∗∗ -.27 -.37∗∗∗ -.19

(0.38) (-0.07) (0.38) (-1.79) (-3.01) (-1.47) (-1.87) (-1.08)

Pseudo-R2 0.047 0.014 0.040 0.049 0.083 0.076 0.121 0.025

Observations 101 90 101 90 101 89 100 89

Notes. Dependent variables are indicated in the first row. Atemporal risk aversion measure is

obtained from Question 12. RATL measures were obtained from Question 1 (Regressions 1 and 2),

having chosen the safe option in the majority of Questions 1-5 (Regressions 3 and 4), and MPL

Questions 10 and 11 (Regressions 5-8). Coefficients in brackets are z-statistics. ∗, ∗∗, and ∗∗∗ denote

significance at the 10%, 5% and 1% level.

that RATL is unrelated to violations of Expected Utility and generally unrelated to
convexity. It is, however, related to (atemporal) risk aversion. These findings are not
compatible with RSTL, EDU, or to explanations based on probability weighting, but
they are compatible with GEDU.

E.3 Additional Analysis

Table 10: Proportion of RATL subjects

Sample No Cert. Bias (12-13) No Cert. Bias (12-14)

Treatment Long Short Long Short

Question 1 67.50 55.00 62.50 54.17
Majority in Q1-5 68.75∗ 50.00 63.89 47.22
MPL in Q10 47.50 51.90 45.83 50.00
MPL in Q11 54.43 48.10 56.94 48.61

Observations 80 80 72 72

Notes. Same as Table 8, including certainty bias measure from Questions 12 and 14 (see footnote

46).
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Table 11: Probit Regressions: RATL and Convexity and Certainty Bias

Dep. Variable RATL Q1 RATL Majority Q1-5 RATL Q10 RATL Q11

Treatment Long Short Long Short Long Short Long Short

(Probit) (1) (2) (3) (4) (5) (6) (7) (8)

Certainty Bias -.25∗ .18 -.20 .18 -.03 .44∗∗∗ .16 .23

(-1.94) (1.17) (-1.60) (1.20) (-.25) (2.77) (1.42) (1.52)

Convexity 4.27∗ -4.45 .06 -11.10∗∗∗ 3.47 -1.77 .99 -7.73∗∗

(1.82) (-1.29) (.03) (-2.86) (1.64) (-1.29) (.46) (-2.16)

Constant .19 .28∗ .39∗∗ .19 -.26 .16 .19 .12

(1.07) (1.82) (2.15) (1.20) (-1.52) (1.03) (1.08) (.79)

Pseudo-R2 .06 .02 .02 .01 .02 .07 .02 .06

Obs. 92 86 92 86 92 85 92 85

Notes. Dependent variables are indicated in the first row. Coefficients in brackets are z-statistics. ∗,
∗∗, and ∗∗∗ denote significance at the 10%, 5% and 1% level.

Table 12: Probit Regressions: RATL and Atemporal Risk Aversion

Dep. Var. RATL Q.1 RATL Majority Q.1-5

Treatment Long Short Long Short

(Probit) (1) (2) (3) (4) (5) (6) (7) (8)

Cert. Bias -.19 .18 -.21 .12
(-1.56) (1.20) (-1.71) (0.82)

Convexity 3.73∗ -4.17 -.39 -10.60∗∗∗

(1.68) (-1.25) (-0.19) (-2.83)

Constant .22 .40∗∗∗ .25∗ .19 .41∗∗ .37∗∗∗ .15 .01
(1.35) (2.93) (1.67) (1.41) (2.50) (2.75) (1.02) (.09)

Pseudo-R2 .02 .02 .01 .01 .01 .03 .07 .01
Obs. 101 95 88 88 101 95 88 88

Notes. Same as Table 11. Each regression excludes one dependent variable.
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Table 13: Probit Regressions: RATL and Convexity and Certainty Bias

Dep. Var. RATL Q.10 RATL Q.11

Treatment Long Short Long Short

(Probit) (1) (2) (3) (4) (5) (6) (7) (8)

Convexity 3.63∗ -1.59 1.13 -7.59∗∗

(1.73) (-2.83) (-0.53) (-2.20)

Cert. Bias -.06 .45∗∗∗ .19∗ .18
(-0.52) (2.84) (1.71) (1.23)

Constant -.29∗ -.11 .13 .13 .12 .24∗ .12 .18
(-1.79) (-.88) (.88) (.92) (0.75) (1.80) (.81) (1.23)

Pseudo-R2 .02 .01 .01 .07 .01 .02 .04 .01
Obs. 101 95 87 87 101 95 87 87

Notes. Same as Table 11. Each regression excludes one dependent variable.
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Abdellaoui, M., E. Diecidue, and A. Öncüler (2011): “Risk preferences at different time
periods: An experimental investigation,” Management Science, 57, 975–987.

Abdellaoui, M., E. Kemel, A. Panin, and F. Vieider (2017): “Take your Time or Take your
Chance. On the Impact of Risk on Time Discounting,” Mimeo HEC.

Agranov, M. and P. Ortoleva (2017): “Stochastic Choice and Preferences for Randomization,”
Journal of Political Economy, 125, 40–68.

Andersen, S., G. W. Harrison, M. Lau, and E. E. Rutstroem (2017): “Intertemporal Utility
and Correlation Aversion,” International Economic Review, forthcoming.

Augenblick, N., M. Niederle, and C. Sprenger (2015): “Working Over Time: Dynamic
Inconsistency in Real Effort Tasks,” Quarterly Journal of Economics, 130, 1067–1115.

Baucells, M. and F. H. Heukamp (2010): “Common ratio using delay,” Theory and Decision,
68, 149–158.

Beattie, J. and G. Loomes (1997): “The Impact of Incentives upon Risky Choice Experiments,”
Journal of Risk and Uncertainty, 14, 155–68.

Becker, G. S. (1973): “A theory of marriage: Part I,” Journal of Political economy, 81, 813–846.

Binswanger, H. P. (1981): “Attitudes toward risk: Theoretical implications of an experiment in
rural India,” The Economic Journal, 867–890.

Bleichrodt, H., K. I. Rohde, and P. P. Wakker (2008): “Koopmans’ constant discounting for
intertemporal choice: A simplification and a generalization,” Journal of Mathematical Psychology,
52, 341–347.

Bosch-Domènech, A. and J. Silvestre (1999): “Does risk aversion or attraction depend on
income? An experiment,” Economics Letters, 65, 265–273.

Burke, M. S., J. R. Carter, R. D. Gominiak, and D. F. Ohl (1996): “An experimental note
on the allais paradox and monetary incentives,” Empirical Economics, 21, 617–632.

Camerer, C. F. (1989): “Does the Basketball Market Believe in the ‘Hot Hand’?” American
Economic Review, 79, pp. 1257–1261.

Cerreia-Vioglio, S., D. Dillenberger, and P. Ortoleva (2015): “Cautious Expected Utility
and the Certainty Effect,” Econometrica, 83, 693–728.

Chen, M. K. (2013): “The effect of language on economic behavior: Evidence from savings rates,
health behaviors, and retirement assets,” The American Economic Review, 103, 690–731.

Chesson, H. W. and W. K. Viscusi (2003): “Commonalities in Time and Ambiguity Aversion
for Long-Term Risks,” Theory and Decision, 54, 57–71.

Coble, K. H. and J. L. Lusk (2010): “At the nexus of risk and time preferences: An experimental
investigation,” Journal of Risk and Uncertainty, 41, 67–79.

Conlisk, J. (1989): “Three variants on the Allais example,” American Economic Review, 79, 392–
407.

35



Cubitt, R., C. Starmer, and R. Sugden (1998): “On the Validity of the Random Lottery
Incentive System,” Experimental Economics, 1, 115–131.

Dean, M. and P. Ortoleva (2017): “Allais, Ellsberg, and Preferences for Hedging,” Theoretical
Economics, 12, 377–424.

Dillenberger, D., D. Gottlieb, and P. Ortoleva (2018): “Stochastic Impatience and the
Separation of Time and Risk Preferences,” Mimeo, Princeton University.

Ebert, S. (2017): “Decision Making When Things Are Only a Matter of Time,” Mimeo Tilburg
University.

Edmans, A. and X. Gabaix (2011): “Tractability in incentive contracting,” Review of Financial
Studies, 24, 2865–2894.

Eliaz, K. and P. Ortoleva (2016): “Multidimensional Ellsberg,” Management Science, 62, 2179–
2197.

Epstein, L. and S. Zin (1989): “Substitution, risk aversion, and the temporal behavior of con-
sumption and asset returns: A theoretical framework,” Econometrica, 57, 937–969.

Epstein, L. G., E. Farhi, and T. Strzalecki (2014): “How Much Would You Pay to Resolve
Long-Run Risk?” American Economic Review, 104, 2680–97.

Fan, C.-P. (2002): “Allais paradox in the small,” Journal of Economic Behavior & Organization,
49, 411–421.

Fehr-Duda, H., A. Bruhin, T. Epper, and R. Schubert (2010): “Rationality on the rise: Why
relative risk aversion increases with stake size,” Journal of Risk and Uncertainty, 40, 147–180.

Fishburn, P. C. (1970): Utility theory for decision making, John Wiley & Sons.

Fishburn, P. C. and A. Rubinstein (1982): “Time preference,” International Economic Review,
677–694.

Freeman, D., Y. Halevy, and T. Kneeland (2015): “Eliciting risk preferences using choice
lists,” Mimeo, University of British Columbia.

Garrett, D. and A. Pavan (2011): “Dynamic Managerial Compensation: On the Optimality of
Seniority-based Schemes,” Mimeo Northwestern University.

Ghirardato, P. and M. Marinacci (2001): “Risk, ambiguity, and the separation of utility and
beliefs,” Mathematics of Operations Research, 864–890.

Gul, F. (1991): “A theory of disappointment aversion,” Econometrica, 59, 667–686.

Hey, J. and J. Lee (2005): “Do Subjects Separate (or Are They Sophisticated)?” Experimental
Economics, 8, 233–265.

Holt, C. and S. Laury (2002): “Risk aversion and incentive effects,” American Economic Review,
92, 1644–1655.

Holt, C. A. (1986): “Preference Reversals and the Independence Axiom,” American Economic
Review, 76, 508–15.

36



Huck, S. and W. Müller (2012): “Allais for all: Revisiting the paradox in a large representative
sample,” Journal of Risk and Uncertainty, 44, 261–293.

Kacelnik, A. and M. Bateson (1996): “Risky theories—the effects of variance on foraging
decisions,” American Zoologist, 36, 402–434.

Kachelmeier, S. J. and M. Shehata (1992): “Examining risk preferences under high monetary
incentives: Experimental evidence from the People’s Republic of China,” The American Economic
Review, 1120–1141.

Kahneman, D. and A. Tversky (1979): “Prospect theory: an analysis of choice under risk,”
Econometrica, 47, 263–291.

Karni, E. and Z. Safra (1987): ““Preference reversal” and the observability of preferences by
experimental methods,” Econometrica, 55, 675–685.

Kihlstrom, R. E. and L. J. Mirman (1974): “Risk aversion with many commodities,” Journal
of Economic Theory, 8, 361–388.

Koopmans, T. C. (1960): “Stationary ordinal utility and impatience,” Econometrica: Journal of
the Econometric Society, 287–309.

Kreps, D. and E. Porteus (1978): “Temporal resolution of uncertainty and dynamic choice
theory,” Econometrica, 46, 185–200.

Kurata, H., H. Izawa, and M. Okamura (2009): “Non-expected utility maximizers behave as if
expected utility maximizers: An experimental test,” Journal of Socio-Economics, 38, 622 – 629.

Machina, M. J. (2009): “Risk, ambiguity, and the rank-dependence axioms,” The American Eco-
nomic Review, 99, 385–392.

Noussair, C. and P. Wu (2006): “Risk tolerance in the present and the future: an experimental
study,” Managerial and Decision Economics, 27, 401–412.
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