
                                                                                                        
The Ronald O. Perelman Center for 
Political Science and Economics (PCPSE)                                                            
133 South 36th Street                                                                                                                                               
Philadelphia, PA 19104-6297 

pier@econ.upenn.edu                                            
http://economics.sas.upenn.edu/pier 

 

PIER Working Paper   
18-010 

 

 

The Theory is Predictive, but is it 
Complete? An Application to Human 

Perception of Randomness 
 

 

JON KLEINBERG      ANNIE LIANG                         
Cornell University                                   University of Pennsylvania 
Department of Computer Science    Department of Economics  

      

SENDHIL MULLAINATHAN                         
Harvard University                                            
Department of Economics    

 

 

August 9, 2017 

 

https://ssrn.com/abstract=3018785 

mailto:pier@econ.upenn.edu
http://economics.sas.upenn.edu/pier
https://ssrn.com/abstract=3018785


 Electronic copy available at: https://ssrn.com/abstract=3018785 

The Theory is Predictive, but is it Complete?

An Application to Human Perception of

Randomness

Jon Kleinberg∗ Annie Liang† Sendhil Mullainathan‡

August 9, 2017

Abstract

When testing a theory, we should ask not just whether its predictions match

what we see in the data, but also about its “completeness”: how much of the

predictable variation in the data does the theory capture? Defining complete-

ness is conceptually challenging, but we show how methods based on machine

learning can provide tractable measures of completeness. We also identify a

model domain—the human perception and generation of randomness—where

measures of completeness can be feasibly analyzed; from these measures we

discover there is significant structure in the problem that existing theories have

yet to capture.

When we test theories, it is common to focus on what one might call their pre-

dictiveness: do the predictions of the theory match what we see in the data? For

example, suppose we have a theory of the labor market that says that a person’s

wages depend on their knowledge and capabilities. We can test this theory by look-

ing at whether more education indeed predicts higher wages in labor data. Finding

this relationship would provide evidence in support of the theory, but little guidance

∗Department of Computer Science, Cornell University
†Department of Economics, University of Pennsylvania
‡Department of Economics, Harvard University

1



 Electronic copy available at: https://ssrn.com/abstract=3018785 

towards whether an alternative theory may be even more predictive. The question of

whether more predictive theories might exist—and how much more predictive they

might be—points toward a second issue, distinct from predictiveness, which we will

refer to as completeness: how close is the performance of a given theory to the best

performance that is achievable in the domain? In other words, how much of the

predictable variation in the data is captured by the theory?

At a conceptual level, completeness is an important construct because it lets us

ask how much room there is for improving the predictive performance of existing

theories. Simultaneously, it helps us to evaluate the predictive performance that has

already been achieved. This evaluation is not straightforward, because the same level

of predictive accuracy can have very different meanings in different problems—for

example, an accuracy of 55% is strikingly successful for predicting a (discretized) stock

movement based on past returns, but extremely weak for predicting the (discretized)

movement of a planet based on the relevant physical measurements.1 These two

problems differ in the best achievable prediction performance they permit, and so the

same quantitative level of predictive accuracy must be interpreted differently in the

two domains.

One way to view the contrast between these two problem domains is as follows. In

each case, an instance i of the prediction problem consists of a vector xi of measured

features, and a hidden label yi that must be predicted. In the case of astronomi-

cal bodies, we believe that the measured features—mass, position, velocity, and the

corresponding values for nearby bodies—are sufficient to make highly accurate predic-

tions over short time scales. In the case of stock prices, the measured features—past

prices and returns—are only a small fraction of the information that we believe may

be relevant to future prices. Thus, the variation in stock movements conditioned on

the features we know is large, while planetary motions are well predicted by known

features.

The point then is that prediction error represents a composite of two things: first,

the opportunity for a better model; and second, intrinsic noise in the problem due

to the limitations of the feature set. If we want to understand how much room

there is for improving the predictive performance of existing theories within a given

1For example, the planet’s mass and position, and the masses and positions of all large nearby

bodies.

2



domain—holding constant the set of features that we know how to measure—we need

a way to separate these two effects.

The challenge is that it is generally very difficult to evaluate the best predictive

performance achievable in a given domain. Are there non-trivial problem domains in

which this activity is feasible? In other words, are there settings that simultaneously

(i) contain complex structure and a rich line of published theories but (ii) are also

tractable enough that we can establish a benchmark of optimal predictive accuracy

for purposes of comparison?

0.1 A Model Domain: Human Generation of Randomness

In this paper, we identify such a domain and study theories in it from the perspective

of completeness. The problem we consider is one with a long history of research in

psychology and behavioral economics: human generation of random sequences. It

is well documented that humans misperceive randomness (Bar-Hillel and Wagenaar,

1991; Tversky and Kahneman, 1971), and that this fact is significant not only for

its basic psychological interest, but also for the ways in which misperception of ran-

domness manifests itself in a variety of contexts: for example, investors’ judgment of

sequences of (random) stock returns (Barberis et al., 1998), and professional decision-

makers’ reluctance to choose the same (correct) option multiple times in succession

(Chen et al., 2016).

A common experimental framework in this area is to ask human participants to

generate fixed-length strings of k (pseudo-)random coin flips, for some small value

of k (e.g. k = 8), and then to compare the produced distribution over length-k

strings to the output of a Bernoulli process that generates realizations from {H,T}
independently and uniformly at random (Rapaport and Budescu, 1997; Nickerson and

Butler, 2009). We consider the following two natural prediction tasks:

• Continuation: We take a string of k coin flips created by a human participant

trying to simulate a Bernoulli process, reveal the first k − 1 flips, and ask for a

prediction of the kth flip.

• Classification: We take a set of n strings created by a human participant trying

to simulate a Bernoulli process, and n strings created by a Bernoulli process,

3



and try to classify each string based on the source (human or Bernoulli) that

produced it.

A number of influential theories in behavioral economics provide methods for esti-

mating the probability that different strings are generated by a human source, and

hence lead to predictions for these problems (Rabin, 2002; Rabin and Vayanos, 2010).

What is striking is that despite the richness of the underlying questions, the

Continuation and Classification problems are behavioral-science questions where the

benchmark of optimal prediction can in fact be feasibly computed. Optimal predic-

tions for this problem can be made via table lookup, in which we enumerate all 2k

strings s consisting of 0’s and 1’s, and for each such string s we record the empirical

fraction g(s) of human-generated strings in our sample that are equal to s. With

enough samples, this converges to the human distribution over the full set of strings.

And from this table of empirical frequencies, it is easy to derive optimal predictions

for both the Continuation and Classification problems. For Continuation, this is

based on looking at the relative frequency of s followed by 0 versus s followed by 1,

where s is the length-(k − 1) prefix we observe; for Classification, this is based on

looking at the human frequency g(s) relative to the Bernoulli probability 2−k for a

given length-k string s.

Our analysis in this paper, based on table lookup as a benchmark for optimal

prediction, thus has a dual motivation. First, we will uncover a number of new

findings about our substantive domain, the human perception of randomness. Second,

we are able to undertake a case study of theory completeness for a rich problem, as

discussed at the outset of the paper: given existing theories and a benchmark for

optimal prediction, we can see how close to optimality the existing theories come,

and how this gap varies for different settings of the question. We believe that there

are a number of domains in the behavioral sciences where “narrow” feature sets will

make this type of baseline possible. The concurrent work of Peysakhovich and Naecker

(2017), which uses machine learning as a benchmark for behavioral theories of risk

and ambiguity, points to further potential for this argument.

4



0.2 Overview of the Analysis

We begin by considering a set of human-generated strings of length-8 over the alpha-

bet {H,T} (for “heads” and “tails”), produced by participants on Mechanical Turk.

For both the Continuation and Classification prediction problems, we consider meth-

ods that output predictions consisting of probabilities in the interval [0, 1], which are

then evaluated relative to the true label of 0 or 1. We use mean-squared error as our

evaluation; thus, predicting a probability of 0.5 for all instances would yield an error

of 0.25.

We find that the existing behavioral models are predictive: they attain a mean-

squared error of 0.249, which improves (to a statistically significant extent) on the

error of 0.250 that we would obtain by random guessing. They are not, however,

complete. Table lookup attains an error of 0.243, and relative to this benchmark,

the existing models achieve roughly 15% of the maximum achievable gain over naive

guessing for the problem. Thus, there is predictable structure in the problem that

has not been fully captured by the existing models.

We then use this domain to consider two broad lines of questions related to our

notion of theory completeness. The first is a question of what explains the improve-

ment of table lookup over the behavioral models. In particular, when we say that

human-constructed theories only achieve a relatively small fraction of the available

performance gain over naive guessing, is this (a) because they are not using crucial

features of the problem, or (b) because they are not combining them effectively? To

separate these possibilities, we take a set of human-constructed features based on

research in the area, and apply standard machine algorithms to learn combinations

of these features for prediction. We find that in fact these algorithms come close to

the performance of table lookup. Moreover, a substantial amount of the improvement

over the behavioral models persists even when these algorithms are restricted to use

of only a small number of features (comparable to the number of free parameters

in the behavioral models). These results suggest that the answer to the question

above may be more (b) than (a)—the research community approximately knows the

“right” features for the problem, but may not be combining them as effectively as the

machine learning algorithms for the goal of prediction.

These results bear also on the feasibility of the table lookup benchmark. While

this set of tasks related to the human perception of randomness made it possible to

5



construct the benchmark of optimal prediction explicitly, in many domains it will be

infeasible in general to construct a perfect benchmark. The performance of machine

learning methods such as Lasso regression and decision trees for our task suggests

that in some domains, scalable algorithms come close to the performance of table

lookup, and may serve as reasonable proxies for the optimal benchmark. (Here too

we find support in the results of Peysakhovich and Naecker (2017).)

The second question pertains to the robustness of these results to small variations

in the framing of the task. In particular, does table lookup succeed by capturing spe-

cific features of the generation of length-8 strings of heads/tails that do not generalize

even to closely related problems? To address this question, we build a table-lookup

predictor using the original data of length-8 coin flips, and then we use this predictor

for strings generated in a set of related but non-identical domains. Specifically, we

set up prediction problems using binary alphabets other than H and T , and strings

of different lengths (using seven flips to predict one additional flip at different indices

in the string). We find that in these modified prediction problems, the existing mod-

els produce up to 22% of the improvement in prediction error obtained using table

lookup, suggesting that the benchmark and ratio discovered previously are indeed

stable across local problem domains.

0.3 Applications to Field Data

Finally, we ask whether our methodology can also be used to evaluate theory com-

pleteness in real-life settings where human perception of randomness is believed to

play a role. We focus principally on two such settings.

The first is a task involving sequential decision-making—specifically, data on base-

ball umpires calling balls and strikes. Chen et al. (2016) find that umpire calls are

negatively auto-correlated: in aggregate, umpires tend to avoid long runs of the same

call (i.e. calling many strikes in a row or many balls in a row). Within this setting,

we ask: knowing only an umpire’s most recent k − 1 calls, how well can we predict

the current call?

Our second field study uses data from repeated play of Rock-Paper-Scissors on

the Facebook app Roshambull, which was collected by Batzilis et al. (2016). Each

unit of observation is a game, where a game consists of a sequence of matches that

6



conclude when one of the players wins two matches. In this setting, we ask: knowing

only the choices (rock, paper, or scissors) that a player made in his or her first k − 1

matches, how well can we predict the choice in the current match?

In both problems, we find that table lookup can achieve significant gains over naive

guessing. Moreover, when we evaluate the completeness of the model based on Rabin

and Vayanos (2010), we find its completeness in both domains to be qualitatively

similar to what we obtained in our basic experimental framework. This shows that the

completeness of the model is relatively stable across domains that are quite different,

and in all cases there is significant room for theories to achieve stronger predictive

gains.

Taken together, our results suggest that (1) there is a significant amount of struc-

ture in the problem of predicting human generation of randomness that existing

models have yet to capture, and (2) our approach via the optimal predictive bench-

mark allows for evaluation of the completeness of theories in the given domain. Such

an approach can be applied more generally in settings where this benchmark can be

feasibly determined or approximated.

1 Main Testbed: Human Generation of Coin Flips

1.1 Data

We use the platform Mechanical Turk to collect a large dataset of human-generated

strings designed to simulate the output of a Bernoulli(0.5) process, in which each

symbol in the string is generated from {H,T} independently and uniformly at ran-

dom. Our main experiment includes 537 subjects, each of whom produced 50 binary

strings of length eight, attempting to generate them as if these strings were the real-

izations of 50 experiments in which a fair coin was flipped eight times. In a second

experiment, an additional 101 subjects were asked to each generate 25 binary strings

of length eight. The task was described to subjects using the text below:

We are researchers interested in how well humans can produce randomness. A coin

flip, as you know, is about as random as it gets. Your job is to mimic a coin. We will

ask you to generate 8 flips of a coin. You are to simply give us a sequence of Heads

(H) and Tails (T) just like what we would get if we flipped a coin.

7



Important: We are interested in how people do at this task. So it is important to us

that you not actually flip a coin or use some other randomizing device.

To discourage use of an external randomizing device, we gave subjects 30 seconds

to generate each string. To incentive effort, we told subjects that payment would

be approved only if their (set of) strings could not be identified as human-generated

with high confidence.2 The complete set of directions can be found in Appendix A.

Despite these incentives, some subjects did not attempt to mimic a random pro-

cess, generating for example the same string in each of the fifty rounds. In response to

this, we removed all subjects who repeated any string in more than five rounds.3 This

selection eliminated 167 subjects and 7,400 strings, yielding a final dataset with 471

subjects and 21,975 strings. We check that our main results are not too sensitive to

this selection criteria by considering two alternative choices in Appendix C.1—first,

keeping only the initial 25 strings generated by all subjects, and then, removing the

subjects whose strings are “most different” from a Bernoulli process under a χ2-test.

We find very similar results under these alternative criteria.

Throughout this paper, we identify Heads with ‘1’ and Tails with ‘0,’ so that each

string is an object in {1, 0}8. The 21,975 strings are aggregated into a single dataset,

which induces an empirical distribution over {1, 0}8. This observed human distri-

bution over strings turns out to be statistically different from a true Bernoulli(0.5)

process: we can reject the hypothesis that the data is generated from a uniform

distribution over {1, 0}8 under a χ2-test with p ≈ 0.4

Moreover, the ways in which the observed distribution over strings differs from

a Bernoulli process are consistent with the literature (Rapaport and Budescu, 1997;

Nickerson and Butler, 2009). For example, subjects exhibit an over-tendency to

alternate (52.68% of flips are different from the previous flip, as compared to an

2Subjects were informed: “To encourage effort in this task, we have developed an algorithm

(based on previous Mechanical Turkers) that detects human-generated coin flips from computer-

generated coin flips. You are approved for payment only if our computer is not able to identify your

flips as human-generated with high confidence.”
3This cutoff was selected by looking at how often each subject generated any given string, and

finding the average “highest frequency” across subjects. This turned out to be 10% of the strings,

or five strings. Thus, our selection criteria removes all subjects whose highest frequency was above

average.
4This suggests also that our subjects are not in fact using external randomizing devices.

8



Figure 1: (a) Top row: the fraction of generated strings that include m Heads, where m is the

label on the x-axis. Left—comparison of MTurk data (purple) with simulated Bernoulli strings

(yellow); Right—comparison of Nickerson & Butler (2009) data (purple) with simulated Bernoulli

strings (yellow). (b) Bottom row: the fraction of runs that are of length m, where m is the label

on the x-axis. Left—comparison of MTurk data (purple) with simulated Bernoulli strings (yellow);

Right—comparison of Nickerson & Butler (2009) data (purple) with simulated Bernoulli strings

(yellow).

expected 50% in a Bernoulli(0.5) process), an under-tendency to generate strings

with “extreme” ratios of Heads to Tails (see the top row of Figure 1), and an under-

tendency to generate strings with long runs (see the bottom row of Figure 1).5

1.2 Existing Models

Several frameworks have been proposed for modeling human misperception of ran-

domness, and we will consider two influential approaches proposed in Rabin (2002)

and Rabin and Vayanos (2010). Although both of these frameworks are models of

mistaken inference from data, and not directly models of human generation of random

5See Section A.1 in the online appendix for further comparisons with the literature.

9



sequences, they are easily adapted to our setting, as we will discuss below.6

In Rabin (2002), subjects in the underlying model observe independent, identically

distributed (i.i.d.) signals, but mistakenly believe the signals to be negatively auto-

correlated. Specifically, subjects observe a sequence of i.i.d. draws from a Bernoulli(θ)

distribution, where θ ∈ [0, 1] is an unknown rate drawn from distribution π. Although

subjects know the correct distribution π over the Bernoulli parameter θ, they have

a mistaken belief about the way in which the realized rate θ determines the signal

process. Subjects believe that the observed signals are instead drawn without replace-

ment from an urn containing θN ‘1’ signals and (1− θ)N ‘0’ signals, so that a signal

of ‘1’ is less likely following observation of ‘0’, and vice versa. For tractability, it is

additionally assumed that the urn is “refreshed” every other round, meaning that the

composition is returned to its original composition of θN ‘1’ signals and (1− θ)N ‘0’

signals.

To use this model in our setting, we modify it in two ways: first, since subjects

are informed that the coin they should mimic is fair, we fix the prior distribution

π over rates so that subjects believe θ = 0.5 with certainty; second, we relax the

assumption that the urn is refreshed deterministically every other round, adding a

second parameter p ∈ [0, 1], which determines the probability that the urn is refreshed.

Thus, in the revised model, subjects generate random sequences by drawing without

replacement from an urn that is initially composed of 0.5N ‘1’ balls and 0.5N ‘0’

balls, and is subsequently refreshed with probability p before every draw.

Rabin and Vayanos (2010) introduces a second framework for modeling human

misperception of randomness. The following simple version of their model can be

applied to predicting generation of random sequences: each subject generates flip s1

according a Bernoulli(0.5) distribution, and then each subsequent flip sk according to

sk ∼ Ber

(
0.5− α

k−2∑
t=0

δt(2 · sk−t−1 − 1)

)
,

where the parameter δ ∈ R+ captures a (decaying) influence of past flips, and the pa-

rameter α ∈ R+ measures the strength of negative autocorrelation.7 Notice that past

6These adaptations are consistent with comments made in the original papers, in the context of

relating these models to the empirical literature discussed in Section 1.1.
7We make a small modification on the Rabin and Vayanos (2010) model, allowing α, δ ∈ R+

instead of α, δ ∈ [0, 1).

10



realizations of ‘1’ reduce the probability that the k-th flip is ‘1’, and past realizations

of ‘0’ increase this probability. Thus, like the previous model, Rabin and Vayanos

(2010) predicts generation of negatively autocorrelated sequences.

1.3 Prediction Tasks

We test these theories by looking at how well they predict the dataset of human-

generated strings described in Section 1.1. We consider two tests. In the first test,

which we call Continuation, we ask how well we can predict a subject’s eighth flip

given the first seven flips. A prediction rule for this problem is any function

f : {0, 1}7 → [0, 1] (1)

that maps the initial seven flips into a probability that the next flip is ‘1’. Given a

test dataset {si}ni=1 of n strings, we evaluate the error of the prediction rule f using:

1

n

n∑
i=1

(
si8 − f(si1:7)

)2
.

where s8 is the eighth flip in string s, and f(s1:7) is the predicted probability that the

eighth flip is ‘1’ given initial sequence s1:7. This loss function, mean-squared error,

penalizes (quadratic) distance from the best prediction. Notice that if subjects are

truly generating strings from an i.i.d. Bernoulli(0.5) distribution, then no prediction

rule can improve in expectation upon a prediction error of 0.25.

In the second test, which we call Classification, we seek to separate strings gen-

erated by human subjects from strings generated by a Bernoulli(0.5) process. A

prediction rule in this problem is any map

c : {0, 1}8 → [0, 1] (2)

from strings of length eight into a probability that the string was generated by a hu-

man subject. Given a test dataset {si}ni=1 of n strings, we evaluate error by producing

an equal number of Bernoulli strings, and finding

1

2n

2n∑
i=1

(
ci − c

(
si
))2

,

11



where ci = 1 if the true source of generation for string si was a human subject, and

ci = 0 otherwise. As above, if the human-generated strings are consistent with a

Bernoulli(0.5) process, then we cannot improve on an expected prediction error of

0.25.

As a brief remark, we note that these tests are different from one another: a model

of human generation can perform well on one prediction problem and poorly on the

other. This is because Continuation asks how well we can predict the probability

that a string ends in ‘1,’ conditional on the first seven entries in the string, while

Classification asks how well we can predict the unconditional distribution over entire

strings. For example, if the human distribution over strings were to contain non-

Bernoulli structure in its first few entries, but were essentially uniform over the final

entry independently of what had preceded it, then it would be possible to perform

well in Classification but not in Continuation.

If we assume that strings are generated according to either of the models described

in Section 1.2, then there is a “best” prediction rule that minimizes expected predic-

tion error (see Appendix B for more detail). We can therefore test these models by

examining how well their prediction rules perform in Continuation and Classification.

Specifically, we estimate the free parameters of these models on training data and

report their out-of-sample prediction errors (tenfold cross-validated) in Table 1.8

Throughout, we compare these errors with a naive baseline that corresponds to

random guessing—that is, we predict that the next flip is ‘1’ with probability 0.5 for

all initial substrings in the Continuation task, and we classify each string as human-

generated with probability 0.5 in the Classification task. We find that the Rabin

(2002) and Rabin and Vayanos (2010) models are predictive: their prediction errors

are between 0.2486 and 0.2494, all of which improve on the error of 0.250 that we

would obtain by random guessing. This improvement is statistically significant in

both problems for the model based on Rabin and Vayanos (2010).

8We randomly partition the data into ten equally-sized subsets, estimate the free parameters of

the model on nine subsets (the training set), and predict the strings in the tenth (the test set). The

reported prediction error is an average over the ten possible choices of the test set (from the ten

folds), and the reported standard error is the standard deviation of the prediction errors across the

test sets. This is a common approximation to the standard error for a cross-validated loss.

12



Table 1: Rabin (2002) and Rabin and Vayanos (2010) are predictive: they improve upon

the prediction error achieved by guessing at random.

Continuation Classification

Naive 0.25 0.25

Rabin (2002) 0.2494 0.2489
(0.0007) (0.0008)

Rabin and Vayanos (2010) 0.2492 0.2488
(0.0007) (0.0006)

But the margin of improvement over guessing at random is very small (no larger

than 0.0014), and the gap between the best prediction errors and a perfect zero is

large. Based on the numbers in Table 1 alone, it is difficult to evaluate the significance

of these improvements. How should we interpret the achieved reductions in prediction

error?

To answer this, we need a benchmark against which to evaluate the prediction

errors. Crucially, this benchmark should not be perfect prediction: deviations from a

true i.i.d. process make it possible to improve upon the naive baseline of 0.25, but the

observed process is far from deterministic. Conditioning on initial flips alone, there

is a limit to how well we can hope to predict in these problems. A more suitable

benchmark is then the best possible prediction error—we propose now an approach

for finding this.

1.4 Benchmark

Our proposed approach for constructing a benchmark for this problem is to use a

table lookup algorithm, in which we enumerate all 2k binary strings and record the

empirical frequency of each string. Given enough samples, this table of empirical

frequencies approximates the “human distribution” over the full set of strings. And

from this table, we can derive optimal predictions for both the Continuation and

Classification problems.9

9The table lookup prediction error is a consistent estimator for the irreducible error in the

problem, also known as the Bayes error rate.

13



Definition 1 (Table Lookup). Let g be the empirical distribution over strings in the

training data. The table lookup continuation rule is

fTL(s) =
g(s1)

g(s)
∀ s ∈ {1, 0}7. (3)

where ‘s1’ is the concatenation of the string s and the outcome ‘1’. The table lookup

classification rule is

cTL(s) =
g(s)

g(s) + 1/256
∀ s ∈ {1, 0}8.

In the Continuation task, the table lookup prediction rule assigns to every string

s ∈ {1, 0}7 the empirical frequency with which s is followed by ‘1’ in the training data.

In the Classification task, the table lookup prediction rule compares the empirical

frequency of generation of string s to the theoretical frequency of generation of string

s in a Bernoulli process.

Notice that the table lookup Continuation rule has 27 free parameters (correspond-

ing to the 27 unique strings of length seven), and the table lookup Classification rule

has 28 free parameters (corresponding to the 28 unique strings of length eight). With

over 21,000 observed strings, we have enough observations per unique string to densely

populate each cell of the lookup table. Thus, the table lookup prediction errors ap-

proximate the best possible prediction errors in these problems. See Section A.3 in

the online appendix for more detail.

We emphasize that these are the best possible prediction errors conditioning on

initial flips alone; for example, if subject ids are available, then prediction error can

be reduced by learning different models for different subjects, and if timing data is

available, then prediction error can be further reduced by conditioning on speed of

response. In the main text, we focus on the question of how to construct a benchmark

for a fixed feature set (initial flips).10 We discuss subsequently in Section 5 how to

compare and interpret benchmarks across different feature sets.

Table 2 reports the (tenfold cross-validated) prediction errors achieved by table

lookup. These errors are then used as benchmarks against which to compare the

prediction errors achieved using the behavioral models discussed above.

10This is a natural choice for evaluating the completeness of the Rabin (2002) and Rabin and

Vayanos (2010) models, which also condition only on initial flips.

14



Table 2: Comparison of prediction errors achieved using existing models with prediction

errors achieved using table lookup. The behavioral models explain up to 15% of the ex-

plainable variation in the data.

Continuation Classification

Error Completeness Error Completeness

Bernoulli 0.25 0 0.25 0

Rabin (2002) 0.2494 0.10 0.2489 0.14
(0.0007) (0.0008)

Rabin & Vayanos (2010) 0.2492 0.13 0.2488 0.15
(0.0007) (0.0006)

Table Lookup 0.2439 1 0.2422 1
(0.0019) (0.0010)

We find that table lookup achieves a prediction error of 0.2439 in the Continuation

task and 0.2422 in the Classification task. The performance of table lookup is far

worse than perfect prediction, showing that there is a large amount of irreducible

noise in the problem of predicting human-generated coin flips. This emphasizes that

naively comparing achieved prediction error to perfect prediction can, and in this case

does, misrepresent the performance of the existing theories.

A more appropriate notion of the achievable performance in this problem is the

error achieved using table lookup. The errors of 0.2439 and 0.2422 above represent the

predictive limits of the problems: conditioning only on initial flips, it is not possible to

reduce prediction error from the naive baseline by more than 0.0061 in Continuation

and 0.0078 in Classification. We propose as a simple measure of the completeness of

the existing theories, then, the ratio of the reduction in prediction error achieved by

the best behavioral model (relative to the naive baseline) to the reduction achieved by

table lookup (again relative to the naive baseline). In the Continuation task, we find

the completeness of the Rabin (2002) and Rabin and Vayanos (2010) models to be up

to 13%, and in the Classification task, we find the completeness of these models to

be up to 15%.11 These results suggest that existing models produce between 13-15%

11For example, the completeness of the Rabin and Vayanos (2010) model in the Continuation task

is computed as (0.25− 0.2492)/(0.25− 0.2439) = 0.13.

15



of the achievable improvement in prediction error.12

2 Features Versus Combination Rules

The previous section found that human-constructed theories achieve only a fraction

of the achievable performance gain over naive guessing. We ask now whether the

limitations of existing behavioral models relative to table lookup arise because: (a)

the behavioral models miss crucial predictive properties of the initial flips, or (b) they

use the “right” features, but do not combine them as effectively for prediction.

To distinguish between these possibilities, we construct a feature space based

on the existing models and related literature, and apply standard machine learning

algorithms (Lasso regression and decision trees) to learn rules for combining these

known features. We find that these algorithms predict significantly better than the

behavioral models, and in fact closely approximate the performance of table lookup.

Moreover, a substantial amount of the improvement over the behavioral models per-

sists even when these scalable algorithms are restricted to use of only a small number

of features (comparable to the number of free parameters in the behavioral models).

This suggests that the reason in (b) accounts for at least a part of the gap between

the behavioral models and table lookup: alternative models based on similar features

can substantially improve performance.

We then ask whether the use of additional properties of the initial flips, not yet

captured in existing models, can further improve predictive performance. Towards

this goal, we define a rich set of “atheoretical” features. Each binary feature corre-

sponds to a possible substring pattern, and takes value ‘1’ when the pattern appears

in the initial flips. We use machine learning algorithms to discover the most predic-

tive features from this rich set of patterns, and then predict based on combinations

of these features. Use of the decision tree algorithm with this feature space repre-

12As a robustness check, we repeat this exercise in Section A.2 of the online appendix for different

string lengths. For Continuation, this means using flips 1 through k − 1 to predict the k-th flip,

where k varies from 2 to 7. For Classification, this means separating length-k Bernoulli strings from

the first k flips generated by a human, where k varies from 2 to 7. We find that prediction accuracy

roughly increases in the length of the string (so that conditioning on a larger number of initial

flips results in better prediction of the subsequent flip), but neither the errors nor the measures of

completeness vary significantly for lengths near k = 8.

16



sents a compression of the table lookup predictor—instead of assigning a prediction

to each unique binary string, it partitions the space of strings, and learns a constant

prediction for each partition element.

We find that prediction rules based on behavioral features are substantially more

predictive than prediction rules based on an equal number of (best) atheoretical

patterns. Moreover, when we combine the set of features, but continue to impose a

restriction on the number of features, we find that only behavioral features are selected

by the algorithms. This suggests that the behavioral features are more predictive than

the best (small) subset of atheoretical patterns.13

These results collectively suggest that gap between table lookup and the behavioral

models in our domain is better explained by (b) than (a)—the research community

approximately knows the “right” features for the problem, but may not combine them

as effectively for prediction as the machine learning algorithms.

2.1 Prediction Rules Based on Behavioral Features

We begin by constructing a feature space based on the relevant literature, including

the following features: the proportion of alternation in the string (averaged across

all flips); the total number of runs of length k in the string (for Classification, we

allow k to vary from 2 to 8, and for Continuation, we allow k to vary from 2 to 7);

the number of Heads in the string; the length of the longest run at the beginning

of the string; the length of the longest run at the end of the string; and all of their

pairwise interactions. This makes for 55 features in the Continuation task, and 66

features in the Classification task. Every binary string is recoded as a feature vector

for each of the prediction tasks, so that prediction rules are maps from feature vectors

to probabilities.14

We use two standard machine learning algorithms—Lasso regression and decision

13This comparison is not precise: the atheoretical features are binary-valued, while the behavioral

features take values from a larger set, so the information content in the latter features is intrinsically

larger.
14In the Continuation task, a prediction rule is a map from the set of feature vectors describing

length-7 strings to a probability that the final flip is Heads. In the Classification task, a prediction

rule is a map from the set of feature vectors describing length-8 strings to a probability that the

string was generated by a human.

17



trees (see e.g. Hastie et al. (2009))—to select a prediction function based on the above

features. From Table 3, we see that the cross-validated prediction errors obtained

using these approaches closely approximate the table lookup prediction errors. In

both problems, the best algorithm achieves 80-90% of the achievable reduction in

prediction error. This means that for our domain, there is relatively little loss in

using the best scalable machine learning algorithm (trained on behavioral features)

as a substitute benchmark for table lookup.

Table 3: The performance of scalable algorithms approximates table lookup.

Continuation Classification

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

Lasso 0.2475 0.41 0.2444 0.72
(0.0007) (0.0003)

Decision Tree 0.2443 0.93 0.2437 0.81
(<0.0000) (<0.0000)

Table Lookup 0.2439 1 0.2422 1
(0.0019) (0.0010)

These results suggest that new combinations of known features can yield large im-

provements in prediction. We turn next to considering whether combinations of small

numbers of known features can also yield large improvements in prediction.

2.2 Restriction to a Small Number of Features

We again train prediction rules using the set of features described above, under a

new constraint on the number of parameters. Below, we show the prediction errors

obtained by decision trees that are restricted to k splits, where we consider k = 2 (thus

comparing to the behavioral models), k = 3 and k = 5. (The k = 2 split decision

trees can be found in Section B of the online appendix.) With some looseness, we

will refer to “splits,” “parameters,” and “features” interchangeably.15

15The algorithm that we use constrains the number of “splits” in the decision tree; that is, the

number of non-terminal nodes that branch according to a decision criterion. The greater the number

of splits, the more dependencies are permitted, and hence the greater the number of degrees of

18



With two parameters, the best decision tree achieves 38-53% of the possible reduc-

tion in prediction error, and with five parameters, the best decision tree achieves up

to 64% of the possible improvement. These results suggest that scalable algorithms

can attain a substantial improvement on prediction error even when restricted to use

of a very small number of features. (Recall for comparison that the best behavioral

models achieved up to 15% of the table lookup improvement in these problems.)

Table 4: Machine learning algorithms built on behavioral features predict well even when

restricted to use of a small number of features.

Continuation Classification

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

2 parameters 0.2477 0.38 0.2459 0.53
(<0.0000) (<0.0000)

3 parameters 0.2470 0.49 0.2457 0.55
(<0.0000) (<0.0000)

5 parameters 0.2461 0.64 0.2451 0.63
(<0.0000) (<0.0000)

Table Lookup 0.2439 1 0.2422 1
(0.0019) (0.0010)

Previously, we considered use of the best unrestricted machine learning algorithm

as a substitute benchmark for table lookup. If we instead construct a benchmark using

the performance of the best two-parameter decision tree—thus, comparing the exist-

ing models against a relatively interpretable model—we find that the completeness of

the behavioral models is 35% in the Continuation task and 30% in the Classification

task.16 These results suggest that there is room for improvement in prediction error

even when we condition on only a small number of interpretable features.

freedom in the model. The number of splits need not equal the number of features used in the

model, since for example a single feature can be used to determine the decision criteria at multiple

nodes. In the decision trees that we estimate for this problem, different features are in fact used at

different branching nodes.
16Continuation: (0.25 − 0.2492)/(0.25 − 0.2477) = 0.35; Classification: (0.25 − 0.2488)/(0.25 −

0.2459) = 0.29.

19



2.3 Comparison with Algorithmic Features

We turn next to the question of whether it is possible to improve upon the performance

of the algorithms above by discovering new features from a rich set of algorithmic

patterns. To study this, we build a second feature space using features corresponding

to the presence of specific patterns in the sequences of coin flips. We define a pattern p

to be a length-k binary sequence over the alphabet {1, ∗}, and we say that the length-

k string s ∈ {1, 0}k contains the length-k pattern p ∈ {1, ∗}k if si = pi at every index

i where pi = 1. Thus, for example, the string 1011011 contains the patterns 1∗1∗∗∗∗
and ∗∗∗∗∗11, but not the pattern 11∗∗∗∗∗.

We construct this second feature space by enumerating each substring pattern p

(where p ∈ {1, ∗}7 for the Continuation task and p ∈ {1, ∗}8 for the Classification

task), and defining indicator variables for the appearance of that pattern in each pos-

sible input string s (where s ∈ {1, 0}7 for Continuation s ∈ {1, 0}8 for Classification).

We allow machine learning algorithms to select the k = 2, 3, and 5 most useful such

features for prediction from among this set of pattern indicators, and we show the

resulting prediction errors in Table 5. Again, the decision trees for k = 2 can be

found in the appendix (see Figure 3).

Table 5: Prediction rules using a small number of algorithmic features perform worse than

prediction rules using the same number of behavioral features.

Continuation Classification

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

2 parameters 0.2488 0.20 0.2492 0.10
(0.0001) (0.0001)

3 parameters 0.2483 0.28 0.2491 0.11
(0.0001) (0.0001)

5 parameters 0.2479 0.34 0.2486 0.18
(0.0001) (0.0001)

Table Lookup 0.2439 1 0.2422 1
(0.0019) (0.0010)

Table 5 shows that these prediction errors are higher than the corresponding errors

in Table 4 for every prediction task and restriction on number of parameters that we

20



consider. These results provide further evidence that the gap between table lookup

and the behavioral models does not necessarily imply that researchers are missing

key predictive features—searching over a space of new syntactic patterns for strings

does not produce improvements over the combinations of known features that we

considered in Section 2.1.

3 Robustness of the Benchmark

In Section 1, we introduced table lookup as a means of approximating the best possible

prediction error, and found that relative to the table lookup performance, existing

models achieve approximately 13-15% of the achievable improvement in prediction

error. Because table lookup is extremely flexible, however, it is possible that it learns

a highly precise, but highly specific, model of human generation of coin flips of length-

8. For example, it turns out that 57% of the strings in our dataset begin with “Heads.”

Table lookup learns this (domain-specific) asymmetry and uses it for prediction, but

the probability of ‘1’ in the first flip is fixed to be 0.5 in both the Rabin (2002) and

Rabin and Vayanos (2010) models. This raises the question of to what extent the

improvement of table lookup over existing models can be attributed to idiosyncratic

features related to generation of length-8 coin flips.

To test the robustness of the table lookup predictor across domains, we ask how

well this predictor can predict strings generated in a different but neighboring domain.

We focus on small changes in the prediction domain, across which we would expect

the behavioral models to be stable. If indeed table lookup adapts sensitively to fine

details of the original context, we would expect its performance in these transfer

prediction tasks to be weak, despite the similarity of the domains. This kind of

“conceptual overfitting” represents the possibility for a richly-parametrized model to

generalize poorly not because of insufficient data within-domain, but because of an

insufficient sampling of contexts across which the parameters vary.

The new problem domains we consider are the following: first, we change the

alphabet from which the realizations are drawn; second, we change the length of the

flips to be predicted; finally, we consider prediction of the strings generated in the

work of Nickerson and Butler (2009), which were produced under different conditions

and by a different subject pool from our main dataset. For each of these, we train

21



prediction rules on the original dataset of length-8 coin flips, and then ask how well

these rules predict strings that are generated under the new framing. We find that

the transfer performance of table lookup is comparable to its “within-domain” perfor-

mance in the previous section, in which the test and training data were generated from

the same context. Moreover, the measure of completeness is also stable across local

problem domains: existing models produce no more than 22% of the improvement in

prediction error obtained by using table lookup for transfer prediction.

3.1 New Datasets

We briefly describe below strings generated in these new domains (see Appendix 3.2

for summary statistics describing these datasets).

New alphabet. The first transfer domain re-labels the outcome space from {H,T}
to {r, 2}. We asked 124 subjects on Mechanical Turk to generate 50 binary strings of

length eight as if these strings were the realizations of 50 experiments in which a fair

coin labelled ‘r’ on one side and ‘2’ on another was flipped 8 times. This yielded a

total of 6,200 strings. As in the main experiment, subjects were given only 30 seconds

to complete each string, and payment was conditioned on whether their strings looked

plausibly random. These properties of the experimental design are consistent across

all of the experiments, so we will not repeat them below.

New length. The second domain changes the string length from eight to 15. We

asked 120 subjects on Mechanical Turk to generate 25 binary strings of length fifteen

as if these strings were the realizations of 25 experiments in which a fair coin was

flipped 15 times. This yielded a total of 3,000 strings. We use these length-15 strings

to construct seven datasets of length-8 strings, each including only flips k through

k + 7, where k ∈ {2, . . . , 8}.17

New subject pool. The final prediction problem uses data from Nickerson and

Butler (2009), in which thirty Tufts undergraduates were asked to each produce 100

binary sequences, “as if 100 people had each tossed a coin 10 times, and the results

had been recorded in a table of 100 rows and 10 columns, with each row corresponding

to an individual.”18 As above, we construct truncated datasets of length-8 strings,

17We leave out k = 1, which would correspond to the original setting.
18We use a public version of this dataset that includes the responses of 28 subjects and a total of

2,800 strings.

22



including flips k through k + 7, this time taking k = 1, 2, 3.

3.2 Transfer Prediction

We build a table lookup predictor from the original coin flip data described in Section

1.1, and use this to predict strings generated in the related domains described above.

For prediction of strings from {r, 2}8, the transfer Continuation task is to predict the

final outcome from {r, 2} given the first seven, and the transfer Classification task is to

separate the human-generated strings from {r, 2}8 from an equal number of Bernoulli

strings. For prediction of substrings from the {H,T}15 data, we treat each set of

truncated strings as a different dataset, and define separate transfer Continuation

and Classification problems for each cut. The prediction errors we report in these

problems are averaged across the seven truncated datasets.

Throughout, we use the arbitrary convention that ‘H’ (in the original coin flip

data) is identified with ‘r’ in the first transfer problem, and with ‘H’ in others.19

Prediction errors obtained assuming the reverse mappings are presented in Tables 11-

13 of the appendix, and do not differ substantially from those shown below. All errors

presented in Tables 6 and 7 are mean-squared errors with bootstrapped standard

errors.

Since the strings used for training and testing are generated from different dis-

tributions, it is possible for the prediction rules we consider to perform worse than

guessing at random.20 This turns out not to be the case: across each of the new

prediction domains, the prediction rules we consider are predictive. Additionally, the

prediction errors are comparable in absolute terms across domains: for example, ta-

ble lookup achieves prediction errors ranging from 0.2325 to 0.2434 in these transfer

problems. These prediction errors are similar to the previous errors of 0.2422 and

0.2439 in the original task.21

19Thus, the strings ‘HTHTHTHT’ and ‘r2r2r2r2’ are identically coded as ‘10101010’.
20For example, it may be that while strings exhibit negative autocorrelation in our primary setting,

they exhibit positive autocorrelation in one of the new prediction domains.
21The lower prediction errors in the transfer tasks reflect settings in which there is less randomness

in the strings to be predicted.

23



Table 6: Prediction errors in the transfer Continuation problem

{r, 2}8 {H,T}15 N-B (2009)

Error Completeness Error Completeness Error Completeness

Naive 0.25 0 0.25 0 0.25 0

Rabin (2002) 0.2497 0.05 0.2481 0.14 0.2474 0.15
(0.0005) (0.0007) (0.0010)

R-V (2010) 0.2496 0.06 0.2472 0.20 0.2491 0.05
(0.0004) (0.0005) (0.0003)

Table Lookup 0.2434 1 0.2361 1 0.2325 1
(0.0011) (0.0018) (0.0023)

Table 7: Prediction errors in the transfer Classification problem

{r, 2}8 {H,T}15 N-B (2009)

Error Completeness Error Completeness Error Completeness

Naive 0.25 0 0.25 0 0.25 0

Rabin (2002) 0.2497 0.02 0.2476 0.22 0.2496 0.03
(0.0009) (0.0006) (0.0003)

R-V (2010) 0.2495 0.06 0.2479 0.19 0.2497 0.02
(0.0003) (0.0006) (0.0004)

Table Lookup 0.2415 1 0.2392 1 0.2377 1
(0.0003) (0.0013) (0.0015)

Finally, the measures of completeness that we find in these transfer problems (not

exceeding 22%) are not much larger than the within-domain estimates, as we would

expect them to be if table lookup were indeed much less robust than the existing

models. Thus, the table lookup benchmark and induced measures of completeness do

appear to generalize across local changes in the problem domain.

4 Application of Approach in Field Domains

We now consider application of the proposed approach to testing theory completeness

in two field domains. Our first field study uses data from Chen et al. (2016), and

24



consists of the sequential judgments made by baseball umpires regarding whether to

call a pitch a strike. Our second field study uses data from Batzilis et al. (2016) and

consists of the repeated decisions by Facebook players in online games of rock-papers-

scissors. We represent the umpire data as binary sequences, where the outcome is

whether the pitch is called as a strike or a ball. We represent the Rock-Paper-Scissors

data as ternary sequences of sequential throws, where the outcome corresponds to

whether the player chose rock, paper, or scissors.

In these settings, we study questions close to those considered in this paper so far:

Given an initial set of calls by an umpire (or throws in Rock-Paper-Scissors), can we

predict subsequent calls (throws)? And, as a classification task, given a set of strings,

half of which correspond to sequences of umpire calls (or Rock-Paper-Scissors throws),

and half of which correspond to independent realizations of a random variable, can

we determine the source of generation?

We find that table lookup achieves a non-trivial improvement over naive guessing

in both of these domains, and can again be used to construct a benchmark for at-

tainable predictive accuracy in these problems. Interestingly, in both field domains,

the model of Rabin and Vayanos (2010) achieves levels of predictive gain relative to

this table lookup benchmark that are qualitatively similar to what we observed in our

experimental data in Section 1.4. This suggests that the completeness of this theory

is relatively stable despite wide differences in the nature of the domains.

4.1 Datasets

We now describe each of these datasets in greater detail.

Baseball Umpires. An important role of baseball umpires is to determine whether

pitches should be called as balls or strikes when the batter does not swing. A desig-

nated strike zone takes the shape of a vertical right pentagonal prism located above

home plate, and the umpire should call “strike” whenever the ball is within the strike

zone as it passes the location of home plate, and “ball” otherwise. While the defini-

tion of a strike is objective, the judgment of whether or not the pitch constitutes a

strike is not.

Chen et al. (2016) demonstrate that umpire calls exhibit negative auto-correlation:

in aggregate, umpires are less likely to call a pitch a strike after calling the previous

25



pitch a strike, and even less likely if they called the last two pitches strikes—thus,

umpire calls are predictable based on their past calls. We explore further context-

dependencies, asking how well one can hope to predict umpire calls using the five

immediately prior calls. (Compared to Chen et al. (2016), our focus is on finding the

limits of predictability, as opposed to characterizing the nature of this predictability.)

We build a dataset of umpire calls from Chen et al. (2016)’s original dataset of 1.5

million pitches over 12,564 games by 127 different umpires, using all non-overlapping

sequences of consecutive calls of length 6 that occurred within the same game.22 This

dataset includes 15,127 strings, where the frequency of strikes (across all pitches) is

approximately 27%, and the mean frequency of strikes in the final call is 33%.

Rock-Paper Scissors. In 2007, a Facebook app called Roshambull allowed Face-

book users to play games of Rock-Paper-Scissors against one another. Each game

consisted of two players and lasted until either player had won two matches.23 Batzilis

et al. (2016) consider a large dataset of play on this app (2,636,417 matches) and study

how behavior in these matches deviates from Nash play—one of their key findings

is that information shown to players at the start of a game regarding the history of

opponent play is predictive of their first throw.

In a different predictive exercise, we focus on the question of how well one can

predict a player’s subsequent throws based on his initial throws (without conditioning

on rich features such as information provided to players). To do this, we extract from

Batzilis et al. (2016)’s dataset the initial consecutive six choices (for a given player) in

all games that lasted at least six matches, and consider each of these a string.24 This

selection yields a total of 29,864 strings, where the overall frequency of Rock is 37.42%,

Paper is 33.58%, and Scissors is 29.00%. Unlike the other domains studied in this

paper, the Rock-Paper-Scissors strings in our dataset exhibit positive autocorrelation:

the probability that a throw is followed by a different throw is 0.64, which is slightly

less than the expected level of alternation given independent throws. When we apply

Rabin and Vayanos (2010) for prediction, we therefore relax the constraint that the

free parameters α, δ have positive values, so that the model serves as a general model

of autocorrelated strings.

22Consecutive calls are not separated by uncalled pitches.
23The two winning matches need not be consecutive.
24The average game lasted 4.29 matches.

26



Within these new domains, where strings are generated by people making sequen-

tial decisions in real environments, we return to the question of the previous sections:

how well can we predict individual entries in these human-generated strings, and how

well can we distinguish them from Bernoulli strings with corresponding parameters?

4.2 Establishing a Benchmark

Following the approach outlined in Section 1, we use table lookup to construct a

benchmark for the achievable level of prediction in these new field domains.

In the umpire setting, the objects of prediction are binary strings of length 6. The

Continuation task in this domain is to predict the final flip given the first five, and

the Classification task is to separate strings of umpire calls from synthetic Bernoulli

strings, with the probability of ‘1’ set to equal the average flip in the umpire data

(0.27). As before, the naive prediction error in the Classification problem is found by

predicting 0.50 unconditionally. Because of the asymmetry in ‘1’s and ‘0’s, the naive

prediction rule in the Continuation problem is different: we learn the average final

flip in the training data, and predict this average unconditionally in the test data.

These naive rules yield prediction errors of 0.2213 in the Continuation task and 0.25

in the Classification task.25

Using Rabin and Vayanos (2010) to predict in this setting, we find cross-validated

prediction errors of 0.2204 in the Continuation task and 0.2489 in the Classification

task. Thus, as in our main setting, the behavioral models are predictive.26 We ask

next how complete they are, and answer this again by using table lookup to establish

a benchmark for the best achievable predictive accuracy in this domain. We find that

the table lookup prediction errors are 0.2171 in the Continuation task and 0.2433 in

the Classification task. Comparing the improvement upon the naive baseline achieved

by the Rabin and Vayanos (2010) prediction rule, and by the table lookup rule, we

find that Rabin and Vayanos (2010) achieves 17-21% of the attainable improvement

in this problem. Robustness checks are reported in Appendix E, in which we vary

the length of the strings, predicting instead strings of length 5 and length 4.

25The naive prediction error in Continuation is less than 0.25 because of the asymmetry of ‘1’s

and ‘0’s.
26In the Classification task, the improvement in prediction error is statistically significant, although

it is not for Continuation.

27



Table 8: Predicting umpire calls: Rabin and Vayanos (2010) explains 17-21% of the ex-

plainable variation in the data.

Continuation Classification

Error Completeness Error Completeness

Naive 0.2213a 0 0.25 0

Rabin and Vayanos (2010) 0.2204 0.21 0.2489 0.17
(0.0044) (0.0005)

Table Lookup 0.2171 1 0.2433 1
(0.0039) (0.0024)

aThe standard error of the above estimate is 0.0030.

Turning now to the Rock-Paper-Scissors data, the objects of prediction become

ternary strings of length 6. The Continuation task in this domain is to predict the

final throw given the first five, and the Classification task is to separate strings of

Rock-Paper-Scissors throws from synthetic strings of length 6, where each element

is randomly drawn from {r, p, s}. In the former problem, a prediction rule is a map

from strings in {r, p, s}5 to probability vectors in [0, 1]3, where each coordinate cor-

responds (in order) to the probability of realization of r, p, or s. The realized throw

is represented as a binary vector of length 3, which takes value ‘1’ in the coordinate

corresponding to the throw in observation i (so that for example, throw of r is rep-

resented by (1, 0, 0)). We use the loss function 1
n

∑n
i=1 ‖yi − qi‖2, where qi is the

predicted probability vector for observation i and yi is the outcome. Naively guess-

ing a probability of 1/3 for each outcome yields a prediction error of 0.8165 in the

Continuation task, and guessing 1/2 unconditionally yields a prediction error of 0.25

in Classification.

Using the relaxed Rabin and Vayanos (2010) prediction model (which allows α, δ <

0), we obtain a cross-validated prediction error of 0.8160 in the Continuation task and

0.2491 in the Classification task. Thus, these models are again predictive. Turning

to the question of how complete they are, we find that the table lookup errors are

0.8129 in the Continuation task and 0.2417 in the Classification task. Comparing

the improvement upon the naive baseline achieved by the Rabin and Vayanos (2010)

prediction rule, and by table lookup, we find that Rabin and Vayanos (2010) achieves

28



6-11% of the attainable improvement in this problem. Again, see Appendix E for

robustness checks in which we predict strings of length 4 and 5.

Table 9: Predicting Rock-Paper-Scissors throws: Rabin and Vayanos (2010) explains 6-11%

of the explainable variation in the data.

Continuation Classification

Error Completeness Error Completeness

Naive 0.8165 0 0.25 0

Rabin and Vayanos (2010) 0.8160 0.06 0.2491 0.11
(0.0005) (0.0003)

Table Lookup 0.8129 1 0.2417 1
(0.0019) (0.0013)

Notice from Tables 8 and 9 that the measures of completeness in these field settings

(which vary from 6 to 21%) do not differ substantially from the measure of complete-

ness elicited using the experimental data in Section 1.4 (approximately 15%). This

suggests that the extent to which the Rabin and Vayanos (2010) model captures pre-

dictable structure is stable across the different domains we have considered. Notice

that this stability holds despite substantial differences in the nature of these domains:

the experimental setting can be understood as one of pure generation, whereas the

baseball umpire setting involves inference about an underlying state, and the Rock-

Paper-Scissors setting involves beliefs about the random sequences generated by other

players.

Although the completeness measure is stable within a range, the variations across

the settings are revealing. Compare, for example, the table lookup prediction errors

attained in the Classification problem in each of the domains.27 This error is 0.2433

in the baseball umpire setting, 0.2422 in the experimental setting, and 0.2419 in

the Rock-Paper-Scissors setting. Recalling that the table lookup prediction error

represents the lowest achievable prediction error, this comparison suggests that there

is less predictable structure in the sequences of baseball umpire calls, relative to the

other two domains.28

27Comparisons of absolute levels in the Continuation task are harder to interpret, since the average

flip varies across each of the domains.
28An interesting feature of the baseball domain — and a contrast with our other domains — is that

29



Additionally, the contrast between Tables 8 and 9 shows that the model based on

Rabin and Vayanos (2010) is a more complete predictor of umpire calls than of Rock-

Paper-Scissors throws. Although this difference is intuitive—sequences of umpire

calls are approximately a direct test of the Rabin and Vayanos (2010) model, while

Rock-Paper-Scissors involves (un-modeled) strategic considerations—illustration of

this difference requires a notion such as our proposed measure of completeness. In

particular, notice that the Rabin and Vayanos (2010) model is not only predictive in

both domains, but reduces the naive prediction error by similar margins. A straight-

forward comparison of prediction errors, therefore, does not reveal that the improve-

ment is more substantial in one domain than the other. Having table lookup as a

baseline in both settings makes it possible to demonstrate this and to quantify the

difference.

5 Discussion: Feature Sets

So far, we have emphasized the usefulness of table lookup as a tool towards the goal of

evaluating the completeness of a model. We can alternatively focus on the benchmark

itself as a way of quantifying the predictive power of a feature set. Recall that table

lookup quantifies the best achievable accuracy for a fixed feature set ; thus, the gap

between this benchmark and perfect prediction reflects the limitations of that feature

set. As we vary the feature set, the “best possible predictive accuracies” changes also.

Formally, consider a comparison between the lookup table we currently have, with

columns corresponding to features from set X, and a larger lookup table in which we

there is a “true” answer for each pitch (ball or strike) that the umpire is trying to judge as accurately

as possible. As a result, the sequence of umpire calls depends both on this sequence of true answers,

and on the sequence of umpire judgments. Since the data of Chen et al. (2016) contained the true

answer for each pitch, we investigated the extent to which table lookup could be used to predict

this true answer from the sequence of prior true answers (independently of the umpire’s call), and

we found that for this Continuation task on true answers there is very little predictable structure in

the sequence. Thus, the prediction performance on the sequence of umpire calls obtained by table

lookup in this domain (at least for the Continuation task) appears to be coming primarily from the

stucture in the sequence of calls themselves, rather than from the sequence of true answers. This is

consistent with analysis of Chen et al. (2016), who argued that the auto-correlation in the sequence

of calls arises principally from the umpire’s decisions.

30



add a new set of currently unmeasured features from set Z, with a new column for

each of these new features. Write X∪Z for the combined set of features, with a feature

vector over this set of features denoted by (x, z). Focusing on prediction of a binary

outcome, write pX∪Z(x, z) for the probability that an instance with features (x, z)

will result in an outcome of ‘1’. Using the larger lookup table, we would approximate

the prediction of pX∪Z(x, z) for each observed instance with features (x, z). If instead

we observe only features from X, then the smaller lookup table would predict

pX(x) =
∑
z

pX∪Z(x, z) Pr(z|x)

for each instance with features x, where Pr(z|x) is the conditional probability that the

unmeasured features take values z when the observed features take values x. With

sufficient data, the larger table provides (weakly) better predictive accuracy than the

original smaller table, and the limitations in using the smaller table for prediction can

be thought of as the consequence of implicitly averaging over all the possible values

for the unmeasured features.

The extent of this limitation is determined by the power of the unmeasured fea-

tures Z, and how they interact with the measured features X. Below, we provide one

illustration of this comparison on the Continuation task, by predicting flip 8 using

the k flips immediately prior to flip 8, where k is taken to vary from 1 to 7. Since

each feature set with k prior flips nests any feature set with k′ < k prior flips, we

can understand the difference in their table lookup errors as the value of uncovering

k− k′ flips beyond the k′ immediately previous.29 For example, uncovering two more

flips beyond flip seven, we can decrease prediction error from 0.2494 to 0.2482.30

The above comparison of different subsets of initial flips illustrates how table

lookup can be used to compare the power of different feature sets. This comparison

can be conducted for other sets of features as well. For example, in the Continuation

task, we can ask how the best achievable prediction accuracy changes if we add

subject ids as a feature (so that each row corresponds to a subject id and sequence

29This differs from the exercise in Appendix A.2, where we vary instead the flip to be predicted.
30This comparison need not be restricted to nested subsets. Figure 5 in Section C of the online

appendix repeats this exercise for all possible features sets constructed from the previous seven flips;

that is, all subsets of the first seven flips.

31



Table 10: Variation in the table lookup Continuation error for different choices of (nested)

feature sets: the k flips immediately prior to flip 8.

Feature Set Prediction Error

s7 0.2494
(0.0007)

s6, s7 0.2493
(0.0008)

s5, s6, s7 0.2482
(0.0013)

s4, s5, s6, s7 0.2478
(0.0013)

s3, s4, s5, s6, s7 0.2470
(0.0009)

s2, s3, s4, s5, s6, s7 0.2455
(0.0018)

s1, s2, s3, s4, s5, s6, s7 0.2439
(0.0019)

of seven flips), or descriptions of the age and education level of the subject.31 In the

context of the generation and perception of randomness, it becomes interesting—both

as a goal in itself and as a perspective on the limitations of our current feature

set—to consider what might constitute a set of unmeasured features of the human

participant’s behavior that would significantly improve predictive accuracy if we chose

to add them as columns to the table.

Our main exercise of finding the best possible prediction error for a fixed feature

set, and this second exercise of asking how the best possible prediction error varies

across feature sets, thus represent two conceptually distinct ways to improve predic-

tion: measuring completeness helps us to understand how far prediction error can be

reduced without the discovery or addition of new features.

31It is also interesting to note that certain feature sets, even if they were not of substantive interest

for the domain, might reduce the error of the best predictive model by a very large amount: e.g.

extremely detailed timing data on the keystrokes of the subject as they perform the task.

32



6 Conclusion

When evaluating the predictive performance of a theory, it is important to know not

just whether the theory is predictive, but also how complete its predictive performance

is. To assess theory completeness, we need a notion of what constitutes the best

achievable predictive performance for a given problem. This is difficult to assess in

general, but we introduce a social science domain—human perception and generation

of randomness—in which it is possible to search the space of predictive models to

optimality. This permits construction of a benchmark for the best achievable level of

prediction, which we use to evaluate the predictive performances of leading economic

theories in the domain: We find that these theories explain roughly 13-15% of the

explainable variation in experimental data, and show moreover that table lookup

can be used to construct benchmarks for prediction of field data that correspond to

natural instantiations of human generation of randomness.

Two additional future directions are of interest: first, are there other social science

problems in which brute force techniques such as table lookup might apply? Second,

when brute force techniques are not be feasible, can we still use approaches from

machine learning to construct a benchmark for the attainable level of prediction,

and how do such approaches perform in practice? Our analyses here, together with

results in the contemporaneous work of Peysakhovich and Naecker (2017), suggest

that “approximate” benchmarks based on scalable machine learing algorithms may

be effective practical solutions.

33



References

Bar-Hillel, M. and W. Wagenaar (1991): “The Perception of Randomness,”

Advances in Applied Mathematics.

Barberis, N., A. Shleifer, and R. Vishny (1998): “A Model of Investor Senti-

ment,” Journal of Financial Economics.

Batzilis, D., S. Jaffe, S. Levitt, J. A. List, and J. Picel (2016): “How Face-

book Can Deepen our Understanding of Behavior in Strategic Settings: Evidence

from a Million Rock-Paper-Scissors Games,” Working Paper.

Chen, D., K. Shue, and T. Moskowitz (2016): “Decision-Making under the

Gambler’s Fallacy: Evidence from Asylum Judges, Loan Officers, and Baseball

Umpires,” Quarterly Journal of Economics.

Hastie, T., R. Tibshirani, and J. Friedman (2009): The Elements of Statistical

Learning, Springer.

Nickerson, R. and S. Butler (2009): “On Producing Random Sequences,”

American Journal of Psychology.

Peysakhovich, A. and J. Naecker (2017): “Using Methods from Machine Learn-

ing to Evaluate Behavioral Models of Choice Under Risk and Ambiguity,” Journal

of Economic Behavior and Organization.

Rabin, M. (2002): “Inference by Believers in the Law of Small Numbers,” The

Quarterly Journal of Economics.

Rabin, M. and D. Vayanos (2010): “The Gambler’s and Hot-Hand Fallacies:

Theory and Applications,” Review of Economic Studies.

Rapaport, A. and D. Budescu (1997): “Randomization in Individual Choice

Behavior,” Psychological Review.

Tversky, A. and D. Kahneman (1971): “The Belief in the Law of Small Num-

bers,” Psychological Bulletin.

34



Appendix I

A Supplementary Materials to Section 1.1

Subjects on Mechanical Turk were presented with the following introduction screen:

Following a trial round and statement of consent, subjects were presented with 50 identical screens

that looked like the following:

35



Subjects were given 30 seconds to complete each string, and a timer displayed their remaining time.

Other versions of the experiment used similar instructions with small variations.

B Supplementary Materials to Section 1.2

The prediction rules based on Rabin (2002) include free parameters p ∈ [0, 1] and N ∈ N. For

Continuation, the probability that string s ∈ {1, 0}7 is followed by ‘1’ is predicted to be

fR(s) = 0.5p+

6∑
k=0

p(1− p)k
(

0.5N −
∑7

j=7−k sk

)
/N.

where sk is the k-th flip in string s. For Classification, first define

q(s|r) = 0.5 · rk +
1− rk
N

(
0.5N −

∑min {j : rk−j=1}
j=1 1(sk−j = sk)

)
to be the probability of generation of string s, when the urn is refreshed at every ‘1’ in r ∈ {1, 0}8.

Averaging over the distribution over refresh patterns, the probability of generation of s ∈ {1, 0}8 is

gR(s) =
∑

r∈{0,1}8

(
p‖r‖1(1− p)8−‖r‖1

)
q(s|r).

Finally, the probability that string s was generated by a human is predicted to be

cR(s) =
gR(s)

gR(s) + 1/256
.

The prediction rules based on Rabin and Vayanos (2010) have free parameters δ, α ∈ R+. For

Continuation, the probability that string s ∈ {1, 0}7 is followed by ‘1’ is predicted to be

fRV (s) = 0.5− α
6∑

t=0

δt(2s7−t − 1).

36



For Classification, define

gRV (s) = 0.5 ·
8∏

k=2

(
0.5− α

k−2∑
t=0

δt1 (sk−t−1 = sk)

)
.

The probability that string s ∈ {1, 0}8 was generated by a human is predicted to be

cRV (s) =
gRV (s)

gRV (s) + 1/256
.

C Supplementary Material to Section 1.4

C.1 Different Cuts of the Data

We repeat the main analysis in Section 1 using alternative cuts of the data.

Only initial strings. We consider a cut of the data in which we keep all subjects, but use only

their first 25 strings. This selection accounts for potential fatigue in generation of the final strings,

and leaves a total of 638 subjects and 15,950 strings. Prediction results for our main exercise are

shown below using this alternative selection.

Continuation Classification

Error Completeness Error Completeness

Bernoulli 0.25 0 0.25 0

Rabin & Vayanos (2010) 0.2491 0.05 0.2480 0.15
(0.0008) (0.0006)

Table Lookup 0.2326 1 0.2367 1
(0.0030) (0.0030)

Chi-Squared Test. For each subject, we conduct a Chi-squared test for the null hypothesis that

their strings were generated under a Bernoulli process. We order subjects by p-values and remove

the 100 subjects with the lowest p-values (subjects whose generated strings were most different from

what we would expect under a Bernoulli process). This leaves a total of 538 subjects and 24,550

strings. Prediction results for our main exercise are shown below using this alternative selection.

Continuation Classification

Error Completeness Error Completeness

Bernoulli 0.25 0 0.25 0

Rabin & Vayanos (2010) 0.2491 0.12 0.2487 0.15
(0.0005) (0.0005)

Table Lookup 0.2427 1 0.2415 1
(0.0016) (0.0009)

37



D Supplementary Material to Section 3.2

D.1 Summary Statistics

Below, we briefly compare summary statistics of these new datasets with the original coin flip data.

The basic distributional facts are similar: in the original coin flip data, Heads was produced in

52.61% of flips; under the new framings, the symbol ‘r’ is produced in 50.91% of flips in the {r, 2}8

data, and Heads is produced in between 50.53%-51.73% of flips in the different cuts of the {H,T}15

data. The features of misperception of randomness discussed previously in Section 1.1 appear also in

the new data. As we show in Figure 2, subjects under-generate long runs and over-generate balanced

strings in all of these settings.32

Figure 2: (a) Top row: the fraction of strings that include at least one run of length m, where m is

the label on the x-axis. Left—comparison of {r, 2}8 data (purple) with simulated Bernoulli strings

(yellow); Right—comparison of the {H,T}15 data (purple) with simulated Bernoulli strings (yellow).

(b) Bottom row: the fraction of generated strings that include m Heads, where m is the label on

the x-axis. Left—comparison of {r, 2}8 data (purple) with simulated Bernoulli strings (yellow);

Right—comparison of the {H,T}15 data (purple) with simulated Bernoulli strings (yellow).

32The fractions of strings shown for the {H,T}15 data are averaged across the seven datasets of

flips k through k+ 7. The comparison Bernoulli distributions are found by simulating a dataset for

each of k = 2, . . . , 8, where the probability of Heads is set to the mean flip in the dataset of strings

k through k + 7.

38



D.2 Alternative Mappings

Table 11: Map ‘H’ in the original coin flip data to ‘2’ in {r, 2} and ‘T ’ in {H,T}. How do the

Continuation prediction errors change from Table 6?

{r, 2}8 {H,T}15

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

Rabin and Vayanos (2010) 0.2496 0.06 0.2480 0.15
(0.0004) (0.0006)

Table Lookup 0.2437 1 0.2370 1
(0.0011) (0.0024)

Table 12: Map ‘H’ in the original coin flip data to ‘2’ in {r, 2} and ‘T ’ in {H,T}. How do the

Classification prediction errors change from Table 7?

{r, 2}8 {H,T}15

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

Rabin and Vayanos (2010) 0.2494 0.21 0.2488 0.12
(0.0007) (0.0006)

Table Lookup 0.2471 1 0.2401 1
(0.0012) (0.0014)

Table 13: Map ‘H’ in the original coin flip data to ‘T’ in {H,T} for the Nickerson and Butler

(2009) data. How do the prediction errors change from Tables 6 and 7?

Continuation Classification

Error Completeness Error Completeness

Naive 0.25 0 0.25 0

Rabin and Vayanos (2010) 0.2491 0.05 0.2497 0.03
(0.0004) (0.0004)

Table Lookup 0.2336 1 0.2413 1
(0.0017) (0.0015)

39



E Supplementary Material to Section 4.2

E.1 Baseball Umpires

In the main text, we predicted consecutive strings of umpire calls of length 6. Below we repeat

the exercise, using consecutive strings of length 5 and length 4. There are 27,763 non-overlapping

consecutive strings of length 5, and 56,312 non-overlapping consecutive strings of length 4.

Table 14: Predicting sequences of umpire calls of length 5: the model based on Rabin and Vayanos

(2010) achieves 9-11% of the attainable reduction in prediction error

Continuation Classification

Error Completeness Error Completeness

Naive 0.2071 0 0.25 0
(0.0020) (—) 0

Rabin and Vayanos (2010) 0.2066 0.11 0.2494 0.09
(0.0037) (0.0003)

Table Lookup 0.2027 1 0.2436 1
(0.0027) (0.0011)

Table 15: Predicting sequences of umpire calls of length 4: the model based on Rabin and Vayanos

(2010) achieves 34-46% of the attainable reduction in prediction error

Continuation Classification

Error Completeness Error Completeness

Naive 0.2237 0 0.25 0
(0.0027) (—) 0

Rabin and Vayanos (2010) 0.2209 0.34 0.2483 0.46
(0.0010) (0.0004)

Table Lookup 0.2154 1 0.2463 1
(0.0029) (0.0005)

E.2 Rock-Paper-Scissors

In the main text, we predicted consecutive strings of rock-paper-scissors throws of length 6. Below

we repeat this exercise, using consecutive strings of length 4 and 5. There are 61,335 non-overlapping

consecutive strings of length 5, and 117,522 non-overlapping consecutive strings of length 4.

40



Table 16: Predicting Rock-Paper-Scissors throws of length 5: the model based on Rabin and

Vayanos (2010) achieves 11-13% of the attainable reduction in prediction error

Continuation Classification

Error Completeness Error Completeness

Naive 0.8165 0 0.25 0

Rabin and Vayanos (2010) 0.8160 0.11 0.2492 0.13
(0.0006) (0.0002)

Table Lookup 0.8120 1 0.2438 1
(0.0006) (0.0008)

Table 17: Predicting Rock-Paper-Scissors throws of length 4: the model based on Rabin and

Vayanos (2010) achieves 15-18% of the attainable reduction in prediction error

Continuation Classification

Error Completeness Error Completeness

Naive 0.8165 0 0.25 0

Rabin and Vayanos (2010) 0.8159 0.15 0.2494 0.18
(0.0002) (0.0002)

Table Lookup 0.8125 1 0.2466 1
(0.0005) (0.0004)

41



Appendix II

For Online Publication

A Supplementary Material to Section 1

A.1 Context-Dependency

Subjects exhibit strong context-dependency: the probability of reversal depends not only

on the immediately previous flip, but on the pattern of several prior. Table 18 lists the

frequencies with which each possible three-flip pattern is followed by ‘1,’ where the strings

are sorted according to this quantity in decreasing order. These frequencies are compared

with the data in Rapaport and Budescu (1997) (using Table 1 from Rabin and Vayanos

(2010)).

Table 18: The empirical probability of Heads conditional on the three previous flips.

Our data Rapaport and Budescu (1997) Bernoulli

0 1 0 0.5995 0.588 0.5
1 0 0 0.5406 0.62 0.5
0 0 1 0.5189 0.513 0.5
0 0 0 0.5185 0.70 0.5

1 1 1 0.4811 0.30 0.5
0 1 1 0.4595 0.38 0.5
1 1 0 0.4528 0.487 0.5
1 0 1 0.4415 0.412 0.5

The difference between the probabilities with which ‘000’ and ‘111’ are followed by ‘1’

is significantly smaller in our data than in Rapaport and Budescu (1997); besides this,

however, we find that these conditional probabilities are similar. Notably, the strings that

are more likely to be followed by ‘1’ in our data are also more likely to be followed by ‘1’ in

the Rapaport and Budescu (1997) data (compare the top four rows and bottom four rows

in Table 18).

42



A.2 Predict Different Flips

Table 19: Continuation—Predict the k-th flip from the first k − 1 realizations

Continuation Classification

k TL RV2010 Completeness TL RV2010 Completeness

2 0.2499 0.2500 0 0.2494 0.2500 0
(0.0004) (<0.0000) (0.0001) (<0.0000)

3 0.2489 0.2490 0.09 0.2489 0.2500 0
(0.0005) (0.0004) (0.0001) (<0.0000)

4 0.2473 0.2482 0.67 0.2484 0.2497 0.19
(0.0012) (0.0011) (0.0002) (0.0003)

5 0.2433 0.2475 0.37 0.2467 0.2491 0.27
(0.0031) (0.0008) (0.0002) (0.0002)

6 0.2461 0.2495 0.13 0.2463 0.2492 0.22
(0.0024) (0.0004) (0.0004) (0.0004)

7 0.2424 0.2488 0.16 0.2436 0.2489 0.18
(0.0034) (0.0006) (0.0007) (0.0004)

8 0.2439 0.2492 0.13 0.2422 0.2488 0.15
(0.0019) (0.0007) (0.0010) (0.0006)

A.3 Table Lookup Error

How close is the table lookup prediction error, estimated from n samples, to the best possible

prediction error?

Continuation. For each string s ∈ {1, 0}7, let ps ∈ [0, 1] be the true probability with

which string s is followed by ‘1.’ Table lookup estimates this probability using the sample

mean pns (the frequency with which s is followed by ‘1’ in the training data). Notice that

pns ∼ Ber(ns, ps), where ns is the number of times string s is observed in the training data.

The expected prediction error for string s can be shown to be

EX [(X − ps)2]︸ ︷︷ ︸
irreducible error

+ED[(ps − pns )2]

where D is the (random) training data, and X ∼ Ber(ps) is the eighth flip. This expression

is the sum of the irreducible error (which we want to estimate) and the variance of the table

lookup estimator. Writing qs as the frequency with which string s is generated as the initial

43



substring, the expected table lookup prediction error is∑
s∈{1,0}7

qs ·
(
EX [(X − ps)2] + ED[(ps − pns )2]

)
,

and the approximation error is∑
s∈{1,0}7

qs ·
(
ED[(ps − pns )2]

)
=

∑
s∈{1,0}7

qs ·
ps(1− ps)

ns
.

Substituting the empirical frequency q̂s for the true frequency qs in the expression above,

the approximation error for our main dataset is estimated to be 0.0014. Moreover, we can

upper bound this quantity, using that
∑

s qs ·
ps(1−ps)

ns
≤ mins

(
ps(1−ps)

ns

)
= 0.0033.

Classification. For each string s ∈ {1, 0}8, let ps ∈ [0, 1] be the true probability that

string s was generated by a human source, and let pns be the proportion of instances of s in

the data that were generated by a human source. Using arguments similar to those above,

the approximation error is∑
s∈{1,0}8

qs ·
(
ED[(ps − pns )2]

)
=

∑
s∈{1,0}8

qs ·
ps(1− ps)

ns
.

noting that E(qs) = n · ps. Again substituting the empirical frequency q̂s for the true

frequency qs in the expression above, the approximation error for our main dataset is esti-

mated to be 0.0031. An upper bound can be found using
∑

s qs·
ps(1−ps)

ns
≤ mins

(
ps(1−ps)

ns

)
=

0.0066.

B Supplementary Material to Section 2.2

Two-Split Decision Trees Trained On Algorithmic Features

Flip 7 is Tails

Flips 1-4 are all 
Heads

0.37 0.54

0.48

Flip 7 is Heads

Flips 1-4 are not all 
Heads

Flip 1 is Tails

Flips 2, 5, 6 and 7 
are all Heads

0.38 0.48

0.53

Flip 1 is Heads

Flips 2, 5, 6 and 7 are 
not all Heads

Figure 3: Left : Continuation—If flip 7 is Heads, predict that the next flip is Heads with probability

0.48. Otherwise, if flips 1-4 are all Heads, predict 0.37, and if not, predict 0.54; Right: Classifica-

tion—If the first flip is Heads, predict that the string was generated with a human with probability

0.53. Otherwise, if flips 2, 5, 6, and 7 are all Heads, predict 0.38, and if not, predict 0.48.

44



Two-Split Decision Trees Trained On Behavioral Features

Number of Heads 
generated > 3.5

Number of runs of 
length 2 < 5.5

Number of Heads 
generated < 3.5

0.45 0.68

0.55Number of runs of 
length 2 > 5.5

Proportion of alternation
x number of runs of length 4 < 0.36

Proportion of alternation
x number of runs of 

length 2 < 0.43

0.73 0.52

0.40

Proportion of alternation
x number of runs of length 4 > 0.36

Proportion of alternation
x number of runs of 

length 2 > 0.43

Figure 4: Left: Continuation—If the number of Heads generated in the first seven flips is less

than 3.5, predict that the final flip is Heads with probability 0.55. Otherwise, look at the number

of runs generated of length 2; if this is less than 5.5, predict 0.45; otherwise, predict 0.68; Right:

Clasification —If the product of the proportion of alternation, and the number of runs of length

four in the string, exceeds 0.36, then predict that the string is generated by a human subject with

probability 0.40. Otherwise, predict 0.52 if the product of the proportion of alternation, and the

number of runs of length two in the string, exceeds 0.43; if not, predict 0.73.

C Supplementary Material to Section 5

Figure 5: Table Lookup prediction errors for all possible feature sets constructed from the initial

seven flips. Different observations above for fixed k correspond to different feature sets of size k.

45


	Cover Page 18-010
	SSRN-id3018785
	A Model Domain: Human Generation of Randomness
	Overview of the Analysis
	Applications to Field Data
	Main Testbed: Human Generation of Coin Flips
	Data
	Existing Models
	Prediction Tasks
	Benchmark

	Features Versus Combination Rules
	Prediction Rules Based on Behavioral Features
	Restriction to a Small Number of Features
	Comparison with Algorithmic Features

	Robustness of the Benchmark
	New Datasets
	Transfer Prediction

	Application of Approach in Field Domains
	Datasets
	Establishing a Benchmark

	Discussion: Feature Sets
	Conclusion
	I 
	Supplementary Materials to Section 1.1
	Supplementary Materials to Section 1.2
	Supplementary Material to Section 1.4
	Different Cuts of the Data

	Supplementary Material to Section 3.2
	Summary Statistics
	Alternative Mappings


	Supplementary Material to Section 4.2
	Baseball Umpires
	Rock-Paper-Scissors

	II 
	Supplementary Material to Section 1
	Context-Dependency
	Predict Different Flips
	Table Lookup Error

	Supplementary Material to Section 2.2
	Supplementary Material to Section 5




