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Abstract

Suppose that an analyst observes inconsistent choices from either a single 
decision-maker, or a population of agents. Can the analyst determine whether 
this inconsistency arises from choice error (imperfect maximization of a sin-

gle preference) or from preference heterogeneity (deliberate maximization of 
multiple preferences)? I model choice data as generated from imperfect max-

imization of a small number of preferences. The main results show that (a) 
simultaneously minimizing the number of inferred preferences and the number 
of unexplained observations can exactly recover the number of underlying pref-

erences with high probability; (b) simultaneously minimizing the richness of 
the set of preferences and the number of unexplained observations can exactly 
recover the choice implications of the decision maker’s underlying preferences 
with high probability.

1 Introduction

Let X be a finite set of choice alternatives, and consider an analyst who observes

choices (by either a single decision-maker, or a population of subjects) from various

subsets of X. Empirical choice data of this nature is often inconsistent, and cannot

be explained as perfect maximization of a single preference.

There are two different perspectives for how to interpret such inconsistency. One

view is that inconsistency emerges from preference heterogeneity. There is abundant
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evidence that choices depend on details about the choice context—for example, Einav

et al. (2012) find that just over 30% of their subject pool makes decisions across six

different financial domains that can be rationalized using a common risk preference.

Additionally, choice data aggregated over a population of decision-makers often ex-

hibits cross-sectional heterogeneity in preferences—for example, Crawford and Pen-

dakur (2012) study household consumption decisions over different kinds of milk, and

find that no more than two-thirds of observations in their data set can be rational-

ized using a single utility function. In both of these cases, choice inconsistencies are

understood to reflect intentional maximization which is welfare-relevant.

Another view is that inconsistencies reflect errors. For example, the decision-

maker may be inattentive, or the analyst may make mistakes while recording obser-

vations. In these cases, inconsistency reflects choices that are welfare-reducing and

not indicative of genuine preference.

Preference heterogeneity and error are distinct sources of inconsistency, with dif-

ferent implications for welfare-assessment and for prediction. To take a stark example,

compare two hypothetical choice data sets: one generated by perfect maximization of

two different preferences, and one generated by maximization of a single preference

with trembling error. Application of classical approaches such as Houtman and Maks

(1985) can fail to distinguish between these data sets, especially if the same fraction of

both data sets is rationalizable using a single preference. Nevertheless, the underlying

choice mechanics are quite different: the inconsistency represented in the first data

set can be expected to be stable across future observations, while the inconsistency

represented in the second is idiosyncratic.

A basic question then is how many choice domains or subpopulations are present

in the data, where a special case of interest is whether there is evidence of multiple

preferences or a single preference with error. (The question of “how many prefer-

ences” is pursued, for example, in Crawford and Pendakur (2012) in the case of

household consumption decisions and Dean and Martin (2010) for individual choices

over lotteries.)

At two ends for interpreting the data are the classical approaches of Houtman and

Maks (1985) and Kalai et al. (2002), both of which rule out one of the two sources

of inconsistency described above. Specifically, we can find a “best-fit” single prefer-

ence (rationalizing the largest fraction of observations) and interpret the remaining

observations as choice errors (Houtman and Maks, 1985), or find the smallest number

of preferences that perfectly rationalizes the choice data (Kalai et al., 2002). When

preference multiplicity and choice errors are simultaneously present in the data, the

Houtman and Maks (1985) solution underestimates the number of preferences (since

by design it assumes a single preference), while the Kalai et al. (2002) solution overes-

2



timates (since choice errors are attributed preferences). These misinterpretations have

potentially large consequences both for welfare evaluation and also for out-of-sample

predictions.1

The purpose of this paper is to develop a method to determine the “best” in-

termediate solution. I consider data generated according to a (generalized) random

utility model. The decision-maker (DM) chooses from choice set A ⊆ X by sampling

a preference according to a distribution µA, and maximizing the sampled preference.

I suppose that each µA is in fact a perturbation of a “sparse” µ∗A, whose support is a

small number of preferences K that are constant across choice sets.2 The goal is to

recover from the choice data the underlying number of preferences K.

The proposed approach, presented in Section 4, minimizes a weighted sum of

the number of preferences attributed to the decision-maker, and the number of un-

explained observations (choices that cannot be rationalized by any of the recovered

preferences). Intuitively, the approach imposes a cost on each recovered preference, so

that a preference is recovered if and only if it explains sufficiently many observations

that would otherwise be considered error. The classic Houtman and Maks (1985)

and Kalai et al. (2002) solutions are returned for special choices of weights—the for-

mer is returned when the cost of preferences relative to unexplained observations is

sufficiently high, and the latter is returned when the cost of preferences relative to

unexplained observations is sufficiently low.

The main result in Section 5 provides a set of weights (which depend on prim-

itives of the choice model) given which the proposed approach exactly recovers the

“true” number of preferences with sufficiently many observations.3 Informally, these

conditions require that the K preferences are sufficiently differentiated in the sampled

data, so that choice inconsistencies that arise from genuine preference heterogeneity

resemble other inconsistencies in the choice data, whereas choice inconsistencies that

arise from error appear idiosyncratic. The Kalai et al. (2002) approach is shown to

recover the number of underlying preferences when the probability of choice error

is zero; to the best of my knowledge, this is the first statistical justification for the

Kalai et al. (2002) approach. Additionally, the special case of discerning between

choice data that is generated by imperfect maximization of a single preference, versus

choice data that reflects multiplicity of preference, is considered in Section 5.4.

The set of weights which allow for recovery depend on primitives of the choice

model. Next, I explain a way in which we can “test” particular assumptions about

1See Appendix A for examples in which use of these approaches to predict choice behaviors leads

to suboptimally prediction accuracy, and the magnitude of the potential gains is substantial.
2This paper takes a nonparametric, or “model-free” approach—see prior work in Varian (1982),

Famulari (1995), Houtman and Maks (1985), and Kalai et al. (2002)).
3I assume that the DM may be presented with the same choice problem multiple times.
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these unobservables based on the data. Intuitively, the main theorem provides an

interval of weights that recover the same solution. Thus, if our inferred solution is

the true number of underlying preferences, then it should be robust to nearby choices

of weights. We can determine from the data the actual range of values of weights over

which our inferred solution remains stable, and Corollary 1 shows how we can use

this range to bound the key primitives (the extent of differentiation of the underlying

preferences, and the probability of error).

Section 7 revisits an analysis conducted in Crawford and Pendakur (2012), in

which the Kalai et al. (2002) approach is used to discover the number of preference

types among 500 subjects. Crawford and Pendakur (2012) find that five preferences

are needed to perfectly rationalize their data set. I show how the proposed approach

can be used to identify some of these preferences as noise.

Section 8 turns to the question of recovering the preferences themselves. Infer-

ence of multiple preferences from choice data is an ill-posed problem, and Section 5.1

presents several negative results that help to clarify the reasons for this. In Proposi-

tion 1, I show that most sets of orderings are indistinguishable based on their choice

implications, so that even in the absence of choice error, most sets of multiple pref-

erences cannot be recovered. This result is very much in the spirit of Ambrus and

Rozen (2013), which studies a broad (but different) class of multi-self models and

shows that these models have no testable implications without prior restrictions on

the number of selves involved in a decision.4

In view of these results, I suggest that a more appropriate object of recovery is

the set of choice implications of the decision maker’s preferences—that is, the choice

observations that are consistent with maximization of one of these preferences. I

define equivalence classes for sets of preferences, where two sets belong to the same

equivalence class if they have the same choice implications, and ask whether we can

recover the equivalence class to which the true set of preferences belongs. Section

8.2 shows that this is indeed possible, but that penalizing the number of inferred

preferences is not the appropriate criterion for this goal. Intuitively, penalizing only

the number of preferences results in inference of sets of preferences whose choice

implications are as diverse as possible. I propose an alternative criterion, minimizing

a weighted sum of the number of unexplained observations and the richness of the

set of preferences, as measured through the number of unique choice implications.

Proposition 2 shows that under certain conditions on the choice model described

above, this approach will exactly recover the equivalence class of choice implications

4Ambrus and Rozen (2013) study several different choice-set independent aggregation rules over

preferences, whereas I consider a specific aggregation rule (in which one preference is assigned “dic-

tator”) that varies across choice problems.
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containing those of the true model.

Finally, Section 8.3 considers a richer kind of data set, which includes auxiliary

information on the choice contexts active during different observations. I show that

with this additional information, we can (under certain conditions) recover the exact

set of preferences.

Taken together, these results suggest that appropriately penalizing the complexity

of the inferred choice model—for example, via the number of preferences used or the

number of choice implications—can be leveraged towards recovering stable features

of preference from inconsistent choice data.

2 Example

In an adaptation on the Luce and Raiffa dinner (Luce and Raiffa, 1957), suppose that

a large number of consumers are observed to choose entrées from different restaurant

menus. Each menu includes at least two entrées from the set {x1, x2, . . . , xN}; addi-

tionally, a special of frog legs (denoted xN+1) is sometimes included.

As in Sen (1993), the presence of frog legs signals a high quality chef and encour-

ages consumers to choose entrées that are harder to prepare. Suppose that entrées

are ordered x1, x2, . . . , xN from least to most difficult to prepare. When frog legs are

present on the menu A, consumers choose each entrée x ∈ A with probability

c1(x|A) =
e−γu1(x)

∑
x′∈A e

−γu1(x′)
when x 6= xN+1

where γ ∈ R+ is a logit parameter, and the utility function u1(xk) = k assigns a

higher payoff to entrées that are more difficult to prepare. Fix c1(x|A) = 0 for every

x /∈ A and also c1(xN+1|A) = 0, so that frog legs are never themselves chosen.

When frog legs are not present on the menu, consumers’ choices follow the logit

choice rule

c2(x|A) =
e−γu2(x)

∑
x′∈A e

−γu2(x′)
∀x ∈ A

where the utility function u2(xk) = N − k + 1 assigns higher payoffs to entrées that

are easier to prepare. Fix c2(x|A) = 0 for every x /∈ A.

For concreteness, fix the logit parameter to be γ = 2, so that consumers choose

the most preferred alternatives (under respectively u1 or u2) with high probability.

For example, given the choice set {x1, x2, x3}, the most preferred alternative x1 is

chosen with probability 0.86, alternative x2 with probability 0.12, and alternative x3

with probability 0.02.
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Choices from n menus are observed, where menus are sampled uniformly at ran-

dom (with repetitions permitted) from the set of all menus that contain at least two

entrées from {x1, . . . , xN}. I make minimal assumptions about the analyst’s knowl-

edge about the consumers’ choice rule; in particular, he does not know c1 and c2,

and does not know that there are two choice rules. He simply observes, and seeks to

rationalize, the generated choices {(xi, Ai)}ni=1.

The key feature of this example is that there are two distinct reasons why ob-

served choices are unlikely to be consistent with maximization of any single ordering:

first, consumers use different choice rules in different observations; second, choice is

stochastic (i.e. maximization is imperfect). At extremes, we can interpret the data

in a way that rules out either of the two sources of inconsistency. For example, we

can insist on a single preference and find the “best-fit” preference, interpreting the

remaining choice observations as error. Another alternative is to ascribe to consumers

as many preferences as are needed to perfectly rationalize the data. Neither of these

choices matches our narrative above, and both lead to misinterpretations of the data

with consequences for welfare evaluation and prediction (discussed further below).

The key question for this paper is how to determine that there are two primary

preferences.

Consider N = 10, so that there are ten main entrées. The choice data can be

represented using an error-preference tradeoff graph: For each number of preferences

k, we find the percentage of the choice data that cannot be rationalized using k

preferences.5

Figure 1: Error-Preference Tradeoff Graph. The (expected) fraction of the choice

data that cannot be rationalized using any set of k preferences.

5In practice, we would use the fraction of the actual choice data that is unexplained (interpret

these as choice errors); for the purpose of this illustration, Figure 1 reports the expected fractions.
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From this figure, we see that it is possible to rationalize (in expectation) 47% of

the choice data using a single preference, while two preferences can rationalize al-

most all of the data (93%). In contrast, the addition of a third ordering increases

the completeness of explanation by only 3%, and the addition of the fourth prefer-

ence contributes even less.6 Thus, each preference up to the second preference helps

to rationalize a large fraction of the data, while each preference after the second

preference contributes only a marginal improvement in explanation. The substantial

drop in marginal explanation after the second ordering suggests the presence of two

structural preferences, with additional trembling noise.

This is not the interpretation of either the Houtman and Maks (1985) or the

Kalai et al. (2002) approaches. Direct application of Houtman and Maks (1985)

produces an (expected) inconsistency measure of 53%. This implies a quite irrational

DM, when in fact the DM perfectly maximizes in most choice observations. Direct

application of Kalai et al. (2002) errs in the other direction, overestimating the number

of active preferences as six. This can lead to errors in policy interventions: with high

probability, some (x,A) will be observed where x is neither �1- nor �2-maximal in A.

Prescription of alternative x for the DM is guaranteed not to be the optimal solution,

but the Kalai et al. (2002) approach does not reveal this.

We can also see, informally, that prediction of future choices based on these two

approaches can be misguided.7 The best single preference recovered under Houtman

and Maks (1985) predicts incorrectly in a majority of new choice problems, while some

of the six preferences recovered under the Kalai et al. (2002) approach may perform

worse than random guessing. A more rigorous treatment of the topic of out-of-sample

prediction accuracy is deferred to Appendix A.

This discussion highlights some cases in which the outputs of the Houtman and

Maks (1985) and Kalai et al. (2002) approaches are not well-suited to the analyst’s

goals. The key question is then how to identify an optimal solution intermediate to

the two approaches (in this case, identifying two preferences). The sections below

propose a method for doing this.

6The expected fraction of error given k preferences is: 0.5335 for k = 1, 0.0694 for k = 2, 0.0372

for k = 3, 0.0050 for k = 4, 0.0027 for k = 5, and 0.0004 for k = 6.
7This discussion is informal, since we have not fixed a model for choosing which preference to use

in predicting new choice observations, which is required for evaluating multiple-preference models.

The additional analysis pursued in Appendix A uses an extension described in Section 8.3 that

makes these out-of-sample comparisons possible.
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3 Conceptual Framework

3.1 Choice Model

Let X be a finite set of alternatives. A preference P is a strict linear ordering over

X, and the set of all preferences is denoted P. A choice set is a subset A ⊆ X, and

2X denotes the set of all possible choice sets. I will primarily use the interpretation

in which choices are generated by a single individual, although the framework applies

also to the setting in which choices are generated by a population of subjects.

The decision-maker (DM) chooses from choice set A by sampling a preference

according to a distribution µA ∈ ∆(P), and maximizing the sampled preference. This

corresponds to a standard generalization of the random utility model (RUM), where

the decision-maker’s distribution over preferences is permitted to vary across choice

sets. I refer to µ = (µA)A∈2X as the decision-maker’s RUM. Then, the probability

that alternative x is selected from choice set A is

c(x|A) = µA({P : x is P -maximal in A}). (1)

An analyst observes the decision-maker’s choices from n choice sets, sampled (with

replacement) from a distribution π ∈ ∆(2X). A choice observation is a pair (x,A),

corresponding to choice of alternative x from set A, and the observed data is a multiset

of choice observations D = {(xi, Ai)}ni=1. For simplicity, I will refer to D as simply a

set of choice observations, although it should be understood that the same observation

may appear multiple times. Finally, the ex-ante probability of observing any (x,A)

(taking into account both the randomness in which choice sets are presented to the

DM, and also the randomness in his choice) is

ν(x,A) = π(A)c(x|A). (2)

Notice that by explicitly modeling the sampling of choice sets, I depart from a

standard assumption that the analyst knows the stochastic choice rule c, and thus has

available to him an “idealized” data set where choices are made infinitely often from

each choice set. In this paper, the analyst observes only a finite number of choices. If

π assigns positive probability to every choice set, then the idealized data is returned

as a limiting case when we take the number of observations to infinity.

3.2 Separation of Preference from Error

Consider the general choice framework described in the previous section. When the

distributions µA are not degenerate, then violations of the Independence of Irrelevant
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Alternatives axiom are expected.8

There are two different perspectives for how to interpret these choice inconsisten-

cies. One view is that the inconsistencies emerge from preference heterogeneity. For

example, it may be that preference depends on unobserved features of the environ-

ment beyond the choice set, so that different preferences are cued in different choice

observations. A related explanation is that if choices are generated by a population

of decision-makers, then inconsistencies may reflect cross-sectional heterogeneity in

preferences across the population. According to both of these interpretations, the

randomness over outcomes is reflective of intentional maximization which is welfare-

relevant. A second view is that these inconsistencies describe measurement errors or

choice errors, which are welfare-reducing and not indicative of genuine preference.

The choice model described previously permits both kinds of inconsistency to be

simultaneously present.

In general, it will not always be possible to separate preference heterogeneity from

error; even conceptually. This paper studies a setting in which there is a small set of

preferences that are maximized most of the time, and suggests that preference het-

erogeneity and error can be meaningfully distinguished in this case. In particular, we

may think of the small stable set of preferences as the “true” preferences—reflecting,

for example, different sub-populations or different choice contexts—and the choices

that are inconsistent with these preferences as error.

3.3 Underlying “Sparse” Choice Model

Formally, I consider the setting in which the RUM µ is well-approximated by an

underlying µ∗, supported on a “sparse” set of preferences.

Specifically, suppose that the DM has a set P consisting of K preferences. In

the absence of choice error, his choice from set A corresponds to maximization of

a preference sampled from a distribution µ∗A, where µ∗A(P) = 1. (Interpret non-

degenerate distributions µ∗A as reflecting variation in the activation of preferences.

For example, if preferences correspond to different choice contexts, then µ∗A is the

empirical distribution of contexts for the choice problem A.) Thus, when K is small,

the RUM µ∗ = (µ∗A)A∈2X is supported on only a small number of preferences, relative

to the complete set of preference orderings P. In analogy to (1) and (2), define

c∗(x|A) = µ∗A({P : x is P -maximal in A}) for the stochastic choice rule associated

with µ∗, and ν∗(x,A) = π(A)c∗(x|A) for the frequency of observation of (x,A) under

RUM µ∗ and sampling distribution π.

8Here, and throughout the paper, I refer to the classic (deterministic) version of IIA. Naturally,

violations of the stochastic version of IIA may also be present.
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We do not observe choices generated under RUM µ∗, but rather choices generated

under its perturbation µ. The relationship between these RUMs is given as follows:

For each choice set A, there is a map gA : P → ∆(P) such that

µA = µ∗AGA

where µA and µ∗A are 1 × |P| vectors (choose an arbitrary indexing of preferences)

and GA is the |P| × |P| Markov matrix associated with gA.9 It is important that

choice errors do not occur frequently; formally, suppose there is a (uniform) bound on

probability of error p such that the diagonal entries in GA are at least 1−p (for every

choice set A). Informally, this guarantees that the “right” preference is maximized

most of the time. I will refer to p throughout as the probability of error.

When K and p are both small, as is the primary case of interest, then most choices

under the RUM µ correspond to maximization of a small number of preferences.

Section 5 provides conditions on the sampling distribution π, the probability of error

p, and the underlying RUM µ∗ under which recovery of the number of preferences K

is possible.10

Note the following special cases of the model:

Example 1. If K = 1, so that there is only one underlying preference, then each µ∗A is

degenerate on that preference and the observed choice data corresponds to imperfect

maximization of a single preference ordering.

Example 2. If K > 1 but each µ∗A is degenerate, then we return the multiple pref-

erence model introduced in Kalai et al. (2002), where different preferences are cued

in different choice problems.

Throughout, I will take the perspective that µ∗ is the DM’s true RUM, and K

describes the cardinality of the DM’s true set of preferences. An alternative inter-

pretation is that the DM’s “true” RUM is µ, but we prefer a more parsimonious

description—specifically, an approximate representation by an RUM which assigns

positive probability only to a small set of preferences. From this perspective, our

problem is that of how many preferences are needed to explain most of the choice

data generated under µ.

Another interpretation of the proposed framework, building on Rubinstein and

Salant (2008) and Bernheim and Rangel (2009), is the following. Let C be a set of

contexts that are relevant to the DM’s preference but unobserved by the analyst.11

9Index the preferences P1, . . . PN !. The i-th column of GA is gA(Pi).
10See Section 5.4 for application of the approach in an example in which the probability of p is

large.
11These are called frames in Rubinstein and Salant (2008) and ancillary conditions in Bernheim

and Rangel (2009).
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Each context is associated with a preference; in a slight abuse of notation, let PC be

the preference associated with context C ∈ C . Choice sets A are associated with a

distribution µA over contexts, and the probability of observation of choice of x from

A is given by

c(x|A) = µA({C : x is PC-maximal in A}).
The main question of this paper is whether it is possible to recover the number of

contexts, given observation of pairs (x,A), when the contexts i are hidden. Section

8.3 pursues this interpretation further, considering the case in which contexts are

observed.

4 Analysis of the Choice Data

Fix a data set D = {(xi, Ai)}ni=1. A multiple preference rationalization of this data is

any set of preference orderings P ⊆ P. The number of observations in D that are

inconsistent with all preferences in P is

ε(D,P) := #{(x,A) ∈ D : x is not P -maximal in A for any P ∈ P}.

I call this the number of implied choice errors.12 Say that P constitutes a perfect

rationalization of D if ε(D,P) = 0. If we restrict to rationalizations that consist of k

orderings, the minimal number of implied choice errors in D is

εk(D) := min
|P|=k

ε(D,P).

Say that the data set D is k-rationalizable (Kalai et al., 2002) if there is some set of

k orderings that perfectly rationalizes D, so that εk(D) = 0.

It is useful to represent D as the linear interpolation of points in {(k, εk(D))}k∈Z+ .

Henceforth, I will refer to this as an Error-Preference Tradeoff Graph. If we consider

the convex hull of this graph, then each point represents a particular weighted min-

imization of the number of orderings k (ascribed to the DM), and the number of

implied choice errors εk(D).

Formally, for every value λ (which defines a weighting over these objectives), there

is a corresponding solution:

Definition 4.1. For every λ ∈ R+ and data set D, define

K∗λ(D) = argmin
k∈Z+

[k + λεk(D)] . (3)

12Naturally, this is only one of many possible definitions for choice error. In particular, other

notions of error may be preferred assuming different models of preference aggregation (see e.g. the

multiple-ordering models of Rubinstein and Salant (2006), Fudenberg and Levine (2006), Green and

Hojman (2007), Manzini and Mariotti (2007, 2009)).
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This solution is depicted in the figure below. When there are multiple solutions to the

problem above, I will take K∗λ(D) to mean the smallest value of k in the minimizing

set.

"1(D)

"2(D)

1 2 3 4 5 6

"k(D)

k

(�1,��)

Figure 2: Define E to be the set of points lying above the linear interpolation of

{(k, εk(D))}k∈Z+ . Then, the problem in (3) returns a solution with k orderings if and

only if the line with normal vector (−1,−λ) properly supports E at (k, εk(D)).

Intuitively, 1/λ is the “cost” of each ordering, so that an ordering is attributed to

the DM if and only if it explains at least 1/λ observations that would otherwise be

interpreted as choice error. As λ → 0, the cost of errors becomes increasingly small

relative to the cost of orderings, so the analyst prefers to attribute a single ordering

to the DM and interpret the unexplained observations as choice errors. As λ → ∞,

the cost of choice errors becomes increasingly large relative to the cost of orderings,

so the analyst prefers to use as many orderings as necessary to perfectly rationalize

the data.

In particular, if λ < 1
ε1(D)

(where, recall, ε1(D) is the necessary number of unex-

plained observations if the DM is modeled with a single preference), then the approach

returns the Houtman and Maks (1985) solution, and if λ > 1, then the approach re-

turns the Kalai et al. (2002) solution.

Observation 1. For every data set D,

(a) K∗λ(D) = 1 for every λ < 1
ε1(D)

, and

(b) K∗λ(D) = L for every λ > 1, where L is the smallest integer such that D is

L-rationalizable.

The intervals provided in Observation 1 are sufficient but not necessary for recov-

ery of the Houtman and Maks (1985) and Kalai et al. (2002) solutions. In particular,
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it misleadingly suggests that different sets of choices for λ are persistently associated

with each of these approaches. Indeed, the same choice of λ can recover either solu-

tion, depending on the realized data. For example, choice of λ = 1/20 selects K∗λ = 1

(the Houtman and Maks (1985) solution) in panel (a) of the figure below, and selects

K∗λ = 2 (the Kalai et al. (2002) solution) in panel (b).

1 2 3 4 5 6 1 2 3 4 5 6

(a)

Number of preferences k

50

20

100 100

Number of preferences k

C
h
oi
ce

er
ro
rs

" k
(D

)

C
h
oi
ce

er
ro
rs

" k
(D

)

✓
�1,� 1

20

◆

(b)

✓
�1,� 1

20

◆

These selections align with a heuristic intuition that the data set in (a) corresponds

to imperfect maximization of a single ordering, while the data set in (b) corresponds

to perfect maximization of two orderings. The main results below formalize these

intuitions, relating the “optimal” choice(s) of λ to the primitives of the choice model

described in Section 3.

5 Recovering the Number of Preferences

5.1 No Error Baseline: µ = µ∗

Consider first the recovery problem for an idealized baseline in which the decision-

maker’s RUM is exactly µ∗, so that there are no choice errors. In fact, recovery of the

number of preferences K is not guaranteed even in this setting. The key condition

needed for recovery of K is that preferences are sufficiently differentiated in the data.

This differentiation depends jointly on the sampling procedure π and also on the

underlying RUM µ∗.

Basic challenges to recovery are illustrated in Examples 3-5 below. In Example 3,

recovery is not feasible because the DM’s preferences are not sufficiently differentiated

by their choice implications; in Example 4, recovery is not feasible because a preference

is insufficiently sampled; and in Example 5, recovery is not feasible because preferences
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agree on the sampled choice sets. The exercise of recovery is not obviously meaningful

in these cases, and such settings will be subsequently ruled out.

Example 3. The set of choice alternatives is X = {x1, x2, x3} and the DM’s prefer-

ences are P = {P1, P2, P3}, where

x1 P1 x2 P1 x3

x1 P2 x3 P2 x2

x3 P3 x2 P3 x1

Notice that every choice observation consistent with maximization of some ordering

in P is also consistent with maximization of an ordering in P ′ = {P1, P3}. Fix any

RUM µ∗ supported on P , and any sampling distribution π over choice sets. Then,

for all data sets D generated under this model, there is no value of λ given which

K∗λ(D) = 3.

Example 4. The DM’s preferences are P = {P1, P2}, but only the first preference

is sampled; that is, µ∗A(P1) = 1 for every choice set A. For all data sets D generated

under this model, there is no value of λ given which K∗λ(D) = 2.13

Example 5. The DM’s preferences are P = {P1, P2} where

x1 P1 x2 P1 x3

x1 P2 x3 P2 x2

The sampling procedure π puts probability 1 on the choice set {x1, x2, x3}. Since P1

and P2 agree on this choice set, for every RUM µ∗ (supported on P), every data set

D generated under this model, and every choice of λ, the proposed approach yields

K∗λ(D) = 1.

These examples highlight that sufficient differentiation of preferences in the data

requires first that preferences have different choice implications, and second that

there is opportunity for these choice implications to be observed (namely, that the

corresponding choice problems and preferences are sampled in the data). The previous

examples have the property that the number of underlying preferences cannot be

recovered from any number of choice observations. Each of these obstacles to recovery

may also appear in a more moderate degree: for example, some preference may be

rarely sampled, causing its choice implications to appear rarely in the data.

Following, I define a measure for how differentiated the K underlying preferences

are in the choice data. This measure is defined as a property of the primitives π and

13I am grateful to an anonymous referee for suggesting this example.
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µ∗. Sufficient differentiation in preferences serves a dual role: it simultaneously makes

recovery of the number of preferences possible, and it also justifies consideration of

this number as an object of interest. Note that in each of the previous examples,

recovery of the number of “true” preferences is an arguably misguided exercise—for

example, the set of three preferences P in Example 3 is a needlessly complex way to

rationalize choice data that can also be explained using P ′ ⊂ P .

As a preliminary step, I first define a generalization of IIA:14

Definition 5.1. For any integer k, say that choice observations {(xi, Ai)}ki=1 are in

k-violation of IIA if

(1) xi 6= xj for every i 6= j,

(2) xi ∈
⋂k
j=1Aj for every i = 1, . . . , k.

The first condition requires that every chosen alternative is different, and the second

condition requires that each of the chosen alternatives is available in all of the ob-

served choice sets. An immediate implication is that the set of choice observations

{(xi, Ai)}ki=1 cannot be rationalized using fewer than k orderings (without introduc-

ing choice error). Notice also that every pair of choice observations from {(xi, Ai)}ki=1

constitutes a (standard) violation of IIA. These observations suggest that the decision

maker possesses at least k different preferences.

Of special interest are the sets of choice observations that are in K-violation of IIA,

where K is the true number of underlying preferences. Below, I define differentiation

to be the (limiting) fraction of choice observations that can be partitioned into disjoint

K-violations of IIA.

Definition 5.2 (Differentiation). For each data set D, define g(D) to be the largest

number of disjoint subsets of choice observations in D that are in K-violation of IIA.

The differentiation parameter for primitives (π, µ∗) is

d(π, µ∗) = lim inf
n→∞

E(ν∗)n

[
1

n
g(Dn)

]
(4)

where (ν∗)n is the product measure corresponding to n i.i.d. draws from ν, and Dn ∼
(ν∗)n is a random data set of size n.

To interpret the differentiation parameter d(π, µ∗), suppose that n choice obser-

vations are generated from the choice model described by primitives π and µ∗. Then,

in expectation, there is a partitioning of the realized choice data such that at least

14Observations (x,A) and (x′, B) are in violation of the Independence of Irrelevant Alternatives

(IIA) axiom if x, x′ ∈ B and x, x′ ∈ A.
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n · d(π, µ∗) partition elements are in K-violation of IIA. Recalling that choice obser-

vations in K-violation of IIA require K preferences for perfect rationalization, large

values of d(π, µ∗) imply that use of fewer than K orderings cannot rationalize most

of the data, and thus encourages recovery of K preferences.

There are some intrinsic restrictions on the size of the differentiation parameter.

A basic bound is:

0 ≤ d(π, µ∗) ≤ 1/K (5)

for every π and µ∗. The lower bound was attained in Examples 3-5:

Observation 2. Fix any π and µ∗ obeying the restrictions described in Example 3,

4, or 5. Then, d(π, µ∗) = 0.

Generalizing from Example 3 in particular:

Definition 5.3. Let

C(P) =
{

(x,A) : x is P -maximal in A for some P ∈ P, A ∈ 2X
}

be the set of unique choice implications of preferences in P.

Observation 3. If C(P) does not contain any K-violations of IIA, then d(π, µ∗) = 0

for every sampling distribution π and every RUM µ∗ supported on P.

The upper bound d(π, µ∗) = 1/K is attained if the data can eventually be (ap-

proximately) completely partitioned into disjoint K-violations of IIA. For example:15

Example 6. The DM’s preferences are P = {P1, . . . , PK}. Define x∗i to be the Pi-

maximal element from X, and suppose that all x∗i are unique. Given any choice set A,

the DM samples uniformly over P . Only choice sets containing {x∗i }Ki=1 are sampled

with positive probability. Then, d(π, µ∗) = 1/K.

Example 7. Consider X = {x1, . . . , xN} and define P = {P1, P2} where

x1 P1 x2 P1 . . . P1 xN
xN P2 xN−1 P2 . . . P2 x1

Let each µA assign equal probability to both preferences, and let π be an arbitrary

distribution over non-singleton choice sets. Then, d(π, µ∗) = 1/2.

15In general, the value of d(π, µ∗) can vary significantly depending on the sampling distribution

π. For example, as long as there is a single choice set on which all of the preferences disagree, then

exclusive sampling of this choice set will result in d(π, µ∗) attaining the upper bound 1/K. Similarly,

as long as there is a single choice set on which all of the preferences agree, then exclusive sampling

of this choice set will result in d(π, µ∗) attaining the lower bound 0.
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The claim below says that so long as the differentiation parameter is strictly posi-

tive, then we can recover the number of orderings using any λ > 1 (which implements

the Kalai et al. (2002) solution).

Claim 1. Suppose d(π, µ∗) > 0 and µ = µ∗. Then,

Pr(K∗λ(Dn) = K)→ 1 as n→∞

for every λ > 1.

The proof is clear and omitted. If the DM imperfectly maximizes, however, then

λ > 1 will not generally be the best choice for recovery of K, and the size of the

differentiation parameter d(π, µ∗) will be important. I turn to this case now.

5.2 Main Case: µ 6= µ∗

When there are no choice errors, all choice “inconsistencies” are (by assumption)

representative of preference heterogeneity. Thus, the only obstacle to recovery is

identification—will all of the K preferences be represented in the data?

This identification problem is also present when there are choice errors. But in

addition, the possibility of choice error complicates our problem by introducing a

new source of inconsistency. Choice errors may artificially inflate the inferred number

of preferences (if we mistakenly interpret errors as preference), and they may also

artificially reduce the inferred number of preferences (since an imperfectly maximized

data set can in some cases be rationalized using fewer orderings than its perfectly

maximized counterpart).

The proposed approach separates error from preference by looking for structure

in the inconsistencies. A large set of choice inconsistencies that is “internally consis-

tent”—i.e. rationalizable using the same preference—are interpreted as preference.

Inconsistencies which are “internally inconsistent” are taken to represent error. This

distinction requires a commitment to a notion of a large set, which is governed by

choice of the parameter λ.

The main theorem provides values of λ under which the proposed approach re-

covers the true number of orderings as the number of observations grows large:

Theorem 1. Define

p = d(π, µ∗)(1− p)K . (6)

Choose any p̃ ∈ [p, p] and set λ = 1/(p̃n). Then,

Pr(K∗λ(Dn) = K)→ 1 as n→∞.
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The condition in (6) defines a value p that is increasing in the differentiation

parameter d(π, µ∗), decreasing in the probability of error p, and decreasing in the

number of preferences K. Theorem 1 says that if each ordering ascribed to the

DM is required to uniquely explain at least pn observations, but not more than

pn observations, then the proposed approach will recover the number of underlying

orderings given sufficiently many choice observations. Choosing λ < 1/(pn) may

result in an underestimate of the number of preferences, and choosing λ > 1/(pn)

may result in an overestimate.

If either the differentiation parameter d(π, µ∗) is too small, or the probability of

error p and number of preferences K too large, the condition in (6) will yield p < p,

in which case K∗λ(D) may not recover K for any value of λ. Specifically, it follows

from the bounds on the differentiation parameter described in (5) that Condition (6)

requires
1

K
>

p

(1− p)K .

For example, if the DM has more than ten underlying preferences, then the probability

of error cannot exceed p = 0.05, and if the DM has 5 underlying preferences, then

the probability of error cannot exceed p = 0.1.16

The proof of Theorem 1 is deferred to Appendix B.2, but a sketch of the main

ideas follows. The key idea is to identify every data set with an undirected hyper-

graph17 (henceforth graph) in the following way: every node corresponds to a choice

observation, and there is an edge between a set of nodes if and only if the correspond-

ing observations are not consistent with maximization of any single ordering. The

proof notes that a data set is k-rationalizable if and only if the corresponding graph

is k-colorable.18,19 Thus, the problem in (3) can be re-cast as finding the smallest

number of colors k such that a large subset of nodes are k-colorable.

Let us consider a data set generated by repeated sampling from ν∗ (which, recall,

corresponds to choice without errors) instead of the actual distribution ν. Since

by construction, this data set corresponds to perfect maximization of K orderings,

the corresponding graph must admit a K-coloring. Moreover, since every set of

observations in K-violation of IIA creates a complete K-partite subgraph, and at

least one such set exists,20 the corresponding graph cannot be colored by fewer than

K colors. The challenge is to show that even when the graph is perturbed by choice

16I have not made efforts to optimize this bound, and it can be improved in future work.
17A hypergraph is a generalization of a graph in which edges may connect more than two vertices.
18A k-coloring of a graph is a partition of its vertex set V into k color classes such that no edge

in E connects two nodes of the same color. A graph is k-colorable if it admits an k-coloring.
19This equivalence is shown by taking each color class to represent consistency with a distinct

ordering.
20This is implied by d(π, µ∗) > 0. If d(π, µ∗) = 0, then the interval [1/(pn), 1/(pn)] is empty, and
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error, with high probability it will remain the case that a large subset of the nodes

can be colored by K colors, but no fewer.

To show that K colors are sufficient to color most nodes, I use Hoeffding’s inequal-

ity to upper bound the number of imperfectly maximized choice observations by 1/λ

(with high probability) as n gets large. To show that K colors are needed, I use the

assumption in (6) and repeated applications of Hoeffding’s inequality to lower bound

the number of disjoint complete K-partite subgraphs by 1/λ (with high probability)

as n gets large. This relies crucially on the differentiation parameter d(π, µ∗) being

sufficiently large. Since each complete K-partite subgraph cannot be colored by fewer

than K colors, the number of such subgraphs provides an approximate21 lower bound

on the number of nodes that are uniquely colored by each of the first K colors. Thus,

each of the first K orderings uniquely explains at least 1/λ observations, and the

marginal (K+1)-st ordering explains strictly fewer than 1/λ additional observations,

so the proposed approach correctly returns K orderings.

5.3 Evaluating Assumptions

Since the number of orderings K, the probability of error p, and the differentiation

parameter d(π, µ∗) are not known, the expression in (6) cannot be directly computed

from the data. Nevertheless, we can infer properties of these unknowns. Theorem

1 provides an interval of values of λ that recover the same solution. If the inferred

K∗λ(D) is the “correct” number of underlying preferences, then we can use the range

of values of λ that induce this solution to bound d(π, µ∗) and p. To ease notation, d

is used throughout this section in place of d(π, µ∗).

Formally, for each number of preferences k, define

λk(D) = max {λ′ : K∗λ′(D) = k} λk(D) = min {λ′ : K∗λ′(D) = k} (7)

to be the largest and smallest values of λ′ that return the solution k. An implication

of Theorem 1 is that different choices of λ′ in the interval [1/(pn), 1/(pn)] eventually

yield the same solution.22 Thus:

Corollary 1. Choose any λ satisfying the condition in Theorem 1, and define λ(Dn)

the theorem is vacuously true.
21The proof considers the number of such subgraphs that are additionally perfectly maximized ;

this is a lower bound on the number of nodes that are uniquely colored by each of the first K colors.
22In fact, the proof of Theorem 1 in the appendix establishes a slightly stronger claim than stated:

not only does each K∗λ(Dn) converge to K for λ ∈ [1/(pn), 1/(pn)], but convergence is uniform in

this interval.
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and λ(Dn) as in (7). Then,

Pr

([
1

d(1− p)Kn,
1

pn

]
⊆
[
λK(Dn), λK(Dn)

])
→ 1 as n→∞ (8)

The set of values in (8) is loosely an “inversion” of our main result: Theorem 1 says

that if preferences are sufficiently differentiated and error is sufficiently small, then

we can recover the number of preferences with an appropriate choice of λ. Corollary

1 asks, if λ is the appropriate choice, how differentiated could the preferences have

been, and how high must the probability of error have been?

Given conjecture of any solution k, we can use (8) to back out implied properties

about the (unobservable) primitives d(π, µ∗) and p. Each of λk := λk(Dn), λk :=

λk(Dn), and n can be computed directly from the data; thus, we can use

{
(d′, p′) :

[
1

d′(1− p′)kn,
1

pn

]
⊆
[
λk, λk

]}
(9)

to (eventually) bound the possible values of d and p. Notice also that every d′ and p′

in the set (9) satisfy

1

λk(1− 1/(λkn))kn
≤ d′ ≤ 1

λk(1− 1/(λkn))kn
(10)

1

λkn
≤ p′ ≤ 1

λkn
(11)

Intuitively, when the differentiation parameter d is large, and the probability of error

p is small, then we expect the interval λK − λK (over which K is recovered) to be

large. Hence, if λk − λk is small, this implies either that k is not the underlying

number of preferences, or that in fact d is small and p is large.

These bounds are applied in Section 7 to arbitrate between different solutions k.

5.4 Testing Rationality (K = 1)

The main part of this paper seeks to recover the “true” number of underlying prefer-

ences, but an important special case (with long precedence in the literature) concerns

whether the choice data should be rationalized using a single preference.

Suppose that K = 1 in the proposed framework; then, the differentiation param-

eter d(π, µ∗) is trivially 1, since every choice observation constitutes a 1-violation of

IIA. An immediate corollary of Theorem 1 is:

Corollary 2. Set any λ satisfying 0 ≤ λ ≤ 1/(pn). Then, Pr(K∗λ(Dn) = 1) → 1 as

n→∞.
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It is interesting also to consider choice models that don’t naturally correspond to

maximization of a single preference, and see what the proposed approach recovers in

those cases. Ideally, the proposed approach should behave differently for choice mod-

els that are far from this description, versus those that are close. As one comparison,

I apply the proposed approach to a class of logit choice rules, where the probability

of error is allowed to vary.

Example 8 (Single Preference with Logit Error). Let X = {x1, x2, x3}. The DM

imperfectly maximizes the preference ordering x3Px2Px1. Specifically, his probability

of choosing alternative x from choice set A is given by

c(x|A) =
e−γu(x)

∑
x′∈A e

−γu(x′)
∀x ∈ A.

where γ > 0 and u(xk) = k assigns a higher payoff to alternatives that are higher

ranked by P .

Within this class of choice rules, the probability of choosing the most preferred

outcome is governed by the logit parameter γ. Lower choices of γ return higher

probabilities of error, with the extreme case γ = 0 corresponding to uniform selection

over the available alternatives. Intuitively, the choice rule is better described as

“imperfect maximization of a single preference” when γ is large. Claims 2 and 3

below formalize two senses in which the proposed solution aligns with this intuition.

Claim 2 says that the size of the set of values of λ that recover a single ordering

is monotonically increasing in γ, so that the more concentrated choice behaviors are,

the more “slack” there is in recovery of K = 1.

Claim 2. Define λ(D) := max{λ : K∗λ(D) = 1} and λ(D) := min{λ : K∗λ(D) = 1}.
Then, for every n, the expected size λ(Dn)− λ(Dn) is increasing in γ.23

This claim is illustrated below in Figure 3 for various choices of γ.

Thus, when γ is small, the proposed approach recovers K = 1 from a large set of

values of λ. Claim 3 provides a complementary result: it says for every fixed value of

λ, the recovered number of preferences is (weakly) decreasing with γ.

Claim 3. For each choice of λ and quantity of data n, the expected value of K∗λ(Dn)

(where the expectation is taken over data sets Dn) is weakly decreasing in γ.

23Note that λ(Dn) = 0 for every data set Dn, so a simpler statement of this result says that the

expected size of λ(Dn) is increasing in γ.

21



Figure 3: Error-Preference Tradeoff Graph for various choices of γ in Example 8

(assuming a uniform sampling rule over non-singleton choice sets, and simulating 100

choice observations). The set of choices of λ that recover one preference is larger for

the curves corresponding to higher γ.

Thus, within the class of logit choice rules described above, the conditions for recovery

of a single preference are least likely to be satisfied for γ = 0.

Another case that is conceptually distinct from “imperfect maximization of a

single ordering” is when the DM exhibits small trembles around multiple preferences.

As one such example, return to our setting from Section 2:

Example 9 (Two Preferences with Logit Error). Depending on the choice set, the

DM applies either of two logit choice rules (described in Section 2), each of which

imperfectly maximizes a single preference. The logit parameter for both choice rules is

γ = 2, so the probability of error is small for all choice sets. Given the idealized choice

data set (corresponding to an infinite number of observations), one can show that the

solution K∗λ(Dn) = 1 is recovered for all values of λ ≤ 1/(0.46n). This interval is in

fact smaller than the interval of values of λ that recover K∗λ(Dn) = 1 for uniformly

random choices (γ = 0 in Example 8), which is λ ≤ 1/(0.22n). Thus, imperfect

maximization of two preferences is less suggestive of a single underlying preference

(under the proposed approach), relative to if the choice data were completely random.

6 Extensions: Continuous Utility

So far, we have considered a decision maker whose preferences are orderings over a

discrete set X. I now show that the main results extend to the case in which (X, τ)
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is a topological space.

Formally, suppose that choice sets are compact subsetsA ⊆ X, repeatedly sampled

according to a distribution π.24 The set U = {uθ}θ∈Θ is a parametric family of

continuous utility functions uθ : X → R. Conditional on observation of choice set A,

the DM maximizes a utility function uθ, where θ is sampled from a (Borel-measurable)

distribution µA ∈ ∆(Θ). Write D for a typical outcome of the choice data.

As before, I assume that the DM possesses an underlying “sparse” set of utility

functions. Formally, each µA can be rewritten as

µA = µAGA

where GA is a Markov kernel on (Θ,B), and µA is supported on a finite set of utility

functions U ⊂ U . The goal is to determine the number of utility functions K := |U|.25

The proposed approach minimizes a weighted average of the number of inferred

utility functions and the number of unexplained observations. For every set of utility

functions U , let

ε(D,U) = #

{
(x,A) ∈ D : x 6= max

x′∈A
u(x′) for any u ∈ U

}

be the number of choice observations in D that are not consistent with maximization

of any utility function in U . Then,

εk(D) = min
|U|=k

ε(D,U)

is the minimal number of observations in D that are unexplained if we rationalize the

DM’s choices using k utility functions.

The solution below simultaneously minimizes the number of utility functions k

and the implied choice error εk(D):

Definition 6.1. For every λ ∈ R+, define

K∗λ(D) = argmin
k∈N

[k + λεk(D)] . (12)

As before, when there are multiple solutions, take K∗λ(D) to mean the minimal value.

Corollary 3 below shows that this solution recovers the “correct” number of utility

functions K under conditions that directly parallel the previous section. The state-

ment below follows as a corollary to Theorem 1 (where the differentiation parameter

d(π, µ∗) is defined as in Section 3.2):

24Some care is required in specifying the correct σ-algebra over choice sets; for example, one can

take the Borel σ-algebra associated with the product topology of τ .
25Observe that as before, no parametric assumptions are made regarding the distribution of error;

future work may include such assumptions to strengthen the recovery results.

23



Corollary 3. Define

p = d(π, µ∗)(1− p)K . (13)

Choose any p̃ ∈ [p, p] and set λ = 1/(p̃n). Then,

Pr(K∗λ(Dn) = K)→ 1 as n→∞.

Thus, the proposed approach recovers the number of underlying utility functions as

the number of observed choices gets large.

Why do the conditions of Theorem 1 extend to this more general setting? The

key observation is that choice data generated in this way can be mapped into discrete

choice data, where we reduce X to the finite set

X = {x ∈ X : (x,A) ∈ D for some A ⊆ X}.

This set consists of all choice alternatives that are observed to be chosen. For example,

take X = R, and suppose we observe

D := {(3, [0, 4]), (2, [1, 4]), (8, [0, 10])}.

Then, labelling ‘3’ as x1, ‘2’ as x2, and ‘8’ as x3, we can redefine the set of choice

alternatives as X = {x1, x2, x3}, and the choice data as

D := {(x1, {x1, x2}), (x2, {x1, x2}), (x3, {x1, x2, x3})}.

This is a standard mapping in the literature, and yields a data set of the form intro-

duced in Section 2.1.

A lemma in Appendix B.4 shows that the new problem posed in Definition 6.1

is equivalent to the original problem posed in Definition 4.1, in the sense that the

solution to

argmin
k∈Z+

[k + λεk(D)] ,

is the same as the solution to

argmin
k∈Z+

[k + λεk(D)] .

It immediately follows that the conditions for recovery stated in the previous section

are also the conditions needed in the present setting.
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7 Application

This section describes an example application of the proposed approach, which builds

on an analysis from Crawford and Pendakur (2012) (henceforth CP). CP study the

consumption decisions of Danish households over six different kinds of milk, where

the purchases are aggregated over a month. The relevant choice information is the

quantity of each kind of milk purchased during this time (written as a quantity vector

q ∈ R6), and also the price index at which these purchases were made (written as

a price vector p ∈ R6). The main sample in CP consists of 500 households, so the

choice data is {(p1,q1), . . . , (p500,q500)}.26

Let us map these choice observations into the present framework, using the rela-

belling described in Section 6. Index the observations by i = 1, . . . , 500, and define

xi = (pi,qi). Take X = {x1, . . . ,x500} to be the set of choice alternatives. For each

observation i, the set

Ai = {xj : pi · qi ≥ pj · qj}
consists of every alternative xj that is less costly than the selected alternative xi.

These are the alternatives in X that could have been chosen when the alternative xi
was chosen.27 The observed data from CP is now rewritten

D = {(x1, A1), . . . , (x500, A500)}.

This data set is equivalent to the original data in the sense described in the previous

section.28

There are many ways to rationalize the choice data D. For example, following

the proposal of Houtman and Maks (1985), we can find the single ordering that

explains the largest fraction of the data, and interpret the remaining observations as

choice error. CP find that no single preference explains more than two-thirds of the

observations.

Alternatively—and this is the main approach taken in CP—we can seek the mini-

mal set of preferences that explains every observation (thus following the proposal of

26Their data also includes a household indicator and covariates describing each household, but

these are outside of the proposed framework.
27That is, if pi · qi ≥ pj · qj , then xj ∈ Ai.
28Suppose there exists a set of k utility functions such that m observations in the original data

are consistent with maximization of a utility function from this set; that is,

u(qi) > u(q)

for all quantity vectors q satisfying pTi qi ≥ pTi qi. Then we can find a set of k preference orderings on

X such that m observations in the relabelled data are consistent with maximization of a preference

from this set, and vice versa.
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Kalai et al. (2002)). CP find that no more than five orderings are needed to perfectly

rationalize the data.

The present paper interprets the two solutions above as edge cases among a set of

rationalizations of the data, each of which entails a different tradeoff between maxi-

mization of fit to the data and minimization of the number of orderings used. Figure 4

provides approximations from CP for the fraction of unexplained observations εk(D)

(for the purpose of illustration of the approach, I will treat these approximations as

the exact values of εk(D)).29 For example, with a single ordering, we must leave 179

(of the 500) observations unexplained; using two orderings, we must leave 79 obser-

vations unexplained; and with five orderings, we can explain all of the observations.

The intuition that this paper formalizes is that there is significant variation in the

degree of evidence for each of the five orderings, and this variation can be used to

evaluate them.

Figure 4: Error-Preference Tradeoff Graph for the Crawford and Pendakur (2012)

data set.

There are five possible solutions to (3) given this data set, each of which holds for

a range of choices of λ, as shown below:

29These values correspond to an algorithm that computes an upper bound on the number of types

needed to explain a given number of observations, so the true values of εk(D) are weakly smaller

than those reported below. Crawford and Pendakur (2012) provide also lower bounds that show

that the errors in this approximation are not large.
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1 2 3 4 5

λ ∈ [0, 0.01] [0.01, 0.019] [0.019, 0.056] [0.056, 0.125] [0.125,∞)

Table 1: Different numbers of preferences k (first row) are induced by different inter-

vals of λ.

One rule-of-thumb is to set λ = 1/(p̃n), where p̃ is a slight overestimate of the

probability of error. For example, if the analyst believes that subjects have ap-

proximately a 5% probability of error, then the proposed approach recovers three

preferences under λ = 0.04.

We can also take a more agnostic approach following the discussion in Section

5.3. For each potential solution k, the expression in (9) delivers bounds on the

differentiation parameter and probability of error. Figure 5 below shows the sets of

(p, d(π, µ∗)) values that corresponds to different solutions k.30

Figure 5: For each potential solution k ∈ {2, 3, 4, 5}, the figure shows the possible set

of (p, d(π, µ∗)) values (given the observed choice data).

We can additionally use the bounds in (10) and (11) to bound the probability of

error p and the differentiation parameter d, given conjecture of the different solutions

k. Table 2 reports these bounds.

30The set of values for k = 1 can be similarly computed but is not shown in Figure 5.
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d(π, µ∗) p

k Lower Bound Upper Bound Lower Bound Upper Bound

1 0.25 1 0.2 1

2 0.13 0.31 0.106 0.2

3 0.04 0.15 0.036 0.106

4 0.017 0.04 0.016 0.036

5 0 0.017 0 0.016

Table 2: Bounds for the differentiation parameter d(π, µ∗) and probability of error p.

Notice that the regions of values corresponding to the solutions k = 4 and k = 5

are quite small. Specifically, for the candidate solution k = 5, the implied bounds

are p ∈ [0, 0.016] and d(π, µ∗) ∈ [0, 0.017], so that no more than 1.6% of choice

observations are in error, and no more than 1.7% of choice observations provide

evidence of five orderings. For the candidate solution k = 4, the implied bounds

are p ∈ [0.016, 0.036] and d(π, µ∗) ∈ [0.017, 0.04], so that no more than 3.6% of

observations are in error, and no more than 4% of choice observations provide evidence

of four orderings. To the extent that an analyst considers these restrictions too severe,

the analysis suggests that the solutions k = 4 and k = 5 should not be favored.

Specifically, the final two Kalai et al. (2002) preferences recovered in Crawford and

Pendakur (2012) are better understood as capturing choice errors.

8 Can we Recover More?

Section 5 described conditions under which the problem in (3) recovers the number

of underlying preferences with high probability. This section now asks whether it is

possible to recover the preferences themselves.

8.1 Non-Identifiability of Sets of Preferences

Say that the set of preferences P is identifiable if there is at least one data set D such

that P is the unique set of |P| preferences that perfectly explains every observation

in D.

Definition 8.1. The set of orderings P is identifiable if there exists some data set D

such that ε(D,P) = 0, and moreover ε(D,P ′) > 0 for every P ′ 6= P with |P ′| ≤ |P|.

The following proposition says that most sets of orderings are not identifiable.
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Proposition 1. No set of orderings P with |P| ≥ 3 is identifiable. Suppose P =

{P1, P2}; then, P is identifiable if and only if the P1-maximal alternative in X is

the P2-minimal alternative in X, and vice versa. Every singleton set P = {P} is

(trivially) identifiable.

The difficulty of recovery is not specific to the nonparametric nature of the exer-

cise, but to basic issues concerning identifiability for multiple preferences. Consider

any set that includes a pair of preferences P1, P2, where some alternative x1 is ranked

first under one ordering (say, P1) and not ranked last under the other; for example,

x1P1x2P1x3

x2P2x1P2x3

We can construct then a new preference P ′2 based on P2, with the single difference

that x1 is ranked last:
x1P1x2P1x3

x2P
′
2x3P

′
2x1

Every choice that can be rationalized using a preference from {P1, P2} can also be

rationalized using a preference from the set {P1, P
′
2}; this is easily verified for the

example above, and the proof of Proposition 1 shows that this follows more generally.

Thus, {P1, P
′
2} will be a solution whenever {P1, P2} is.

The obstacle to recovery is loosely that sets of preferences differ in the “richness” of

their choice implications. A set of preferences can (strictly) encompass all the choice

implications of another set of the same size. Thus, any approach that penalizes only

the size of a set of orderings, as both the proposed approach in (3) and the approach

suggested in Kalai et al. (2002) do, will be biased towards elicitation of sets with

richer choice implications.

I outline below two paths forward. Section 8.2 suggests a modification of the

proposed approach which allows for recovery of the choice implications of the set of

preferences. This is generally understood to be the real content of a set of preferences.

Section 8.3 considers a richer kind of data set, which includes auxiliary information

on the choice contexts active during different observations. I show that with this

additional information, we can (under conditions that I characterize) recover the set

of preferences.

8.2 Recovery of Choice Implications

One approach is to change the “complexity” penalty from number of preferences to

number of choice implications.
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Formally, define the function l : P → Z+ such that l(P) counts the number of

unique choice observations (x,A) that are consistent with P ; that is,

l(P) = #{(x,A) : x is P -maximal in A for some P ∈ P}.

Some properties of l can be found in Appendix 8.2. The following definition modifies

the proposed approach in Definition 4.1 by replacing the metric |P| with the metric

l(P). This solution minimizes a weighted average of the number of choice implications

and the number of unexplained choice observations.

Definition 8.2. For every λ ∈ R+, define

P∗λ(D) = argmin
P∈P

[l(P) + λε(D,P)] . (14)

In this case, 1/λ can be understood as the cost of each new choice implication, so

that a choice implication is attributed to the DM only if it appears at least 1/λ times

in the data. As λ → 0, the cost of errors becomes increasingly small relative to the

cost of new choice implications, so that the analyst prefers to attribute to the DM

as few choice implications as possible. As λ→∞, the cost of choice errors becomes

increasingly large relative to the cost of new choice implications, so that the analyst

prefers to ascribe to the DM as many choice implications as is necessary to perfectly

rationalize the data.

The proposition below says that for certain choices of λ, we can recover the choice

implications of P (denoted C(P) as in Definition 5.3) with probability arbitrarily

close to 1 as the quantity of data increases.

Proposition 2. Define α to be the smallest nonzero frequency with which any choice

observation occurs under ν∗.31 Choose any p̃ ∈ [p, α(1 − p)] and set λ = 1/(p̃n).

Then,

Pr(C(P∗λ(Dn)) = C(P))→ 1 as n→∞.

Above, the cost 1/λ of recovering an additional choice observation is chosen to

satisfy 1/λ = p̃n < α(1 − p)n. Thus, every choice implication (x,A) ∈ C(P) is

observed sufficiently many times to not be mistaken as error. To see that no choice

implication (x,A) /∈ C(P) will be incorrectly recovered, observe that the number of

instances of (x,A) /∈ C(P) in the data is upper bounded by the number of choice

errors. With high probability, the number of choice errors concentrates below pn <

1/λ, from which it follows that C(P∗λ) will include as few choice implications outside

of C(P) as possible.

31That is, let α = min(x,A) : ν∗(x,A)>0 ν
∗(x,A).

30



8.3 Auxiliary Data on Contexts

As an alternative approach to recovery of preference, we may turn to richer data sets.

Specifically, suppose that there is a set of observable choice contexts C = {1, . . . ,M}.
Each context is associated with a preference, and multiple contexts may be associated

with the same preference. (For example, suppose that choice data is aggregated over

various kinds of financial decisions, and the contexts correspond to different financial

domains. Individuals may have the same risk preference over all types of insurance

decisions, but a different risk preference over 401(k) savings.)

Formally, there is an unknown map

m : C →P,

which assigns each choice context a preference. The key assumption is that the image

of m is a sparse set of preferences P ⊂P.

For each choice set A, let the empirical distribution over contexts be given by

φA ∈ ∆(C ). The RUM µ∗A introduced in Section 3.3 can be given the following

foundation:

µ∗A(P ) = φA(m−1(P )).

That is, the probability with which P is sampled (in the absence of choice error) is

the probability that a context emerges which cues preference P . As before, there is a

sampling distribution π ∈ ∆(2X) over choice sets. When there is no choice error, we

can write

ν∗((x,A), C) =

{
π(A)φA(C) if x is m(C)-optimal in A

0 otherwise

for the probability that choice observation (x,A) is observed in context C. Notice

that in this case, the outcome x is deterministic conditional on the choice context C

and choice set A.

In the main model, which allows for choice errors, observations are instead sampled

from

ν((x,A), C) = π(A)φA(C)qC(x|A)

where each qC(·|A) ∈ ∆(A) is a distribution over choice alternatives, associated with

the context C. Assume that each qC(·|A) assigns probability at least 1 − p to the

m(C)-optimal alternative in A.

Example 10. There are four kinds of subjects: males over the age of 65, males

under the age of 65, females over the age of 65, and females under the age of 65.

These categories are indexed (in that order) using C = {1, 2, 3, 4}. In reality, only
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age determines preference, so that m(1) = m(3) = P and m(2) = m(4) = P ′. The

analyst does not know this. He observes tuples ((x,A), C) indicating that alternative

x was chosen from choice set A by a subject of type i. The goal is to back out from

the data that there are only two active preferences, and to determine which these are.

For this framework, we can modify the approach in Section 4 to search for assign-

ments of preferences to contexts. Define

ε(D,m) = #{((x,A), C) ∈ D : x is not m(C)-maximal in A}

to be the number of implied choice errors when m is the mapping from contexts to

preferences, and define

m∗λ := min
m:C→P

[|m(C )|+ kε(D,m)] (15)

where |m(C )| is the number of (unique) preferences assigned under m, and the de-

pendence of m∗λ on the data D is suppressed for notational convenience. Thus, m∗λ
is the assignment of preferences to contexts that minimizes the number of distinct

preferences, and also the associated number of choice errors.

In the proposition below, define α to be the smallest nonzero frequency with which

any observation ((x,A), C) occurs under ν∗.32

Proposition 3. Choose any λ = 1/(p̃n) where p̃ ∈ [p, α(1− p)/2]. Then,

Pr(m∗λ = m)→ 1 as n→∞.

Thus, recovery of the exact set of preferences is possible if there is auxiliary in-

formation about choice contexts, and sufficient observation of the choice implications

for each choice context. See Appendix A for an application of this approach.

9 Related Literature

9.1 Nonparametric Preference Recovery

This paper builds on a literature regarding nonparametric identification of multiple

preferences from choice data. Most directly, it extends Kalai et al. (2002), which

defines a set of orderings P to be a rationalization by multiple rationales if for every

observation (x,A), the choice alternative x is P -maximal in A for some ordering

P ∈ P . Kalai et al. (2002) search for the smallest L such that some set P with

32That is, α = minC∈C , (x,A)∈C({m(C)}) ν
∗((x,A), i).
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|P| = L is a rationalization by multiple rationales. Any such set of preferences

P is a perfect rationalization of the data, but it may not correspond to a “best”

rationalization of the data as defined in (3). In particular, I suggest that the analyst

may prefer an imperfect rationalization of the data using some K < L orderings. The

key conceptual difference is that Kalai et al. (2002) is agnostic towards the degree

of evidence for orderings, whereas the approach in this paper insists on sufficient

evidence for each ordering in order to separate error from preference variation.

Ambrus and Rozen (2013) study multiple preference models in which choice is

determined through maximization of a choice-set independent aggregation rule over

preferences. They find that without prior restriction on the number of selves involved

in a decision, many multiple preference (“multi-self”) models have no testable impli-

cations. Although the class of models considered in their paper is different from the

class studied in the present paper,33 their lesson that restricting the number of pref-

erences is necessary for recovery holds here as well (relating especially to the results

in Section 8.1), and motivates in part the suggested criterion in (3).

Other nonparametric approaches for preference identification include Houtman

and Maks (1985) and Varian (1982). These approaches differ from the present pa-

per, and from Kalai et al. (2002), in finding a single best-fit ordering. A separate

and sizable literature studies related questions under various parametric assump-

tions—see, for example, Quandt (1956), McFadden and Richter (1970), and Train

(1986)). Finally, Crawford and Pendakur (2012) and Dean and Martin (2010) apply

the approaches of Kalai et al. (2002) and Houtman and Maks (1985) towards recovery

of preferences from real choice data.34

9.2 Testing Rationality

When choice data is inconsistent—meaning that it is incompatible with perfect ra-

tionalization by a single ordering—how should we measure the inconsistency of the

observed choices? Solutions have been proposed by Afriat (1967), Varian (1982),

Echenique et al. (2011), Houtman and Maks (1985), Gross (1989), Famulari (1995),

Apesteguia and Ballester (2012), and Dean and Martin (2016) among others. See

Apesteguia and Ballester (2012) for a summary and comparison of these approaches.

In view of this literature, one goal of the present paper is to distinguish be-

tween choice data that is inconsistent because of choice error, and choice data that

is inconsistent because of multiplicity in preference. These two sources for error are

confounded in many of the measures above.

33In the present paper, the aggregation rule varies across choice problems.
34See Deb (2009) and Dean and Martin (2010) for computationally efficient approaches for ap-

proximating the Kalai et al. (2002) solution.
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The proposed approach offers a new perspective on this question. If the choice

data D is generated via approximately perfect rationalization of multiple preferences,

the recovered number of preferences K∗λ(D) will be large for most choices of λ (and

the number of unexplained choice observations εK∗λ(D) will be small); see Section 5.4

for details.

Finally, Halevy et al. (2015) proposes a novel decomposition of error into two

sources: choice inconsistency and preference misspecification. The present paper is

related to these ideas at a high level; in particular, the proposed approach also pro-

vides a decomposition of error. The sources of error considered in the two papers are

different, however. For example, Halevy et al. (2015) considers a single (continuous)

utility function and measures misspecification that arises from parametric restric-

tions. The present paper takes a nonparametric approach and considers multiple

preferences.

10 Conclusion

Inconsistencies in choice data may emerge both from (unintentional) choice error and

also from (intentional) maximization of different preferences. Classic approaches such

as the Houtman and Maks (1985) and Kalai et al. (2002) solution focus on either

of these sources of error, but—for reasons of welfare evaluation, and out-of-sample

prediction—we may prefer interpretations of the data that accommodate both.

This paper proposes identification of underlying “structural” preferences that are

maximized in the data. The proposed approach looks for the multiple preference

rationalization of the data that simultaneously minimizes the number of preferences

and also the number of unexplained observations. Different choices of tradeoffs be-

tween these objectives yield different solutions, and the main results relate the optimal

choice of tradeoff to primitives of an underlying choice model.

Some of the techniques proposed in this paper may be useful towards other goals as

well. For example, suppose an analyst wants to know whether choice inconsistencies

in the data can be explained via preference indifferences. Specifically, the analyst

hypothesizes that the DM has a single partial ordering, and chooses uniformly from

the those alternatives (potentially multiple) that he most prefers. Such a model

is outside the scope of the current paper. Nevertheless, we can test the analyst’s

hypothesis by examining the error-preference tradeoff graph, as we did in this paper.

If all choice inconsistencies can be attributed to indifferences, then the error-preference

tradeoff graph should take a particular shape—similar to Figure 3, and different from

Figure 1. This discussion suggests that the basic analysis of the choice data used in

this paper may be amenable for evaluating other models of choice as well.
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Appendix

A Out-of-Sample Prediction Accuracy

One reason the number of preferences attributed to a data set matters is that it affects

prediction of choice behaviors. As mentioned in the main text, the Houtman and Maks

(1985) approach can underfit the data, missing important structural preferences, while

the Kalai et al. (2002) approach can overfit the data, interpreting errors as preference.

These problems can result in substantial reductions in prediction accuracy, and I use

two simple examples below to illustrate this. Since out-of-sample predictions are of

interest, these examples follow the extension described in Section 15, where choice

contexts are observed, and the goal is to correctly assign contexts to preferences.

In both examples below, a training set (of 20 choice observations) is generated

from a fixed choice rule, and the respective approaches are applied to this data. I then

generate a new test set (of 100 choice observations) on which to evaluate the estimated

models.35 Prediction accuracy is measured as the fraction of test observations for

which the chosen alternative is correctly predicted. This procedure is repeated ten

times (with new training and test data), and I report an average of the out-of-sample

prediction accuracies.

In Example 11, a DM maximizes a different preference in each of two choice

contexts, and I show that application of the proposed approach improves on Houtman

and Maks (1985). In Example 12, the DM imperfectly maximizes a single preference

in all choice contexts, and I show that application of the proposed approach improves

upon Kalai et al. (2002). In both cases, the magnitude of the gain in prediction

accuracy from use of the proposed approach is substantial.

To keep these examples as simple as possible, both examples have the feature

that one of Houtman and Maks (1985) or Kalai et al. (2002) would achieve the

performance of the proposed approach. More complex examples can be constructed

in which both perform poorly out-of-sample (in the spirit of Section 2).

Example 11. There are four choice alternatives X = {x1, x2, x3, x4}. Choice sets

A ⊆ X are generated uniformly at random (excluding singleton choice sets). There

are two different choice contexts, indexed C = {1, 2}, both observable.

The DM maximizes a different choice rule in each context. In the first, his prob-

35That is, new observations (x,A) are generated, and the estimated models are applied to predict

the chosen alternative x given the choice set A.

35



ability of choosing alternative x from choice set A is given by

c(x|A) =
e−γu(x)

∑
x′∈A e

−γu(x′)

where γ = 10 and u(xk) = k (so that higher indexed alternatives are more preferred).

In the second, his probability of choosing alternative x from choice setA is given by the

same expression, also with γ = 10 but with a different utility function u(xk) = 5− k
(so that higher indexed alternatives are less preferred).

Consider two approaches for making out-of-sample predictions: First, following

Houtman and Maks (1985), find the best single preference that maximizes the number

of rationalized choice observations. Second, following the proposed approach in this

paper, identify the solution that solves (15)—that is, the assignment that minimizes

a weighted average of the number of unique preferences assigned to contexts, and also

the number of unexplained observations. For robustness, I show below the prediction

accuracies for a couple of different choices for the tradeoff parameter λ.

Out-of-sample performance accuracies are reported and compared in the table

below. The proposed approach improves upon Houtman and Maks (1985) by up to

48%.

Prediction accuracy

Kalai et al. (2002) 47%

(5.8)

Proposed approach using λ = 1/(0.1n) 95%

(5.6)

Proposed approach using λ = 1/(0.2n) 93%

(6.2)

Proposed approach using λ = 1/(0.3n) 78%

(2.2)

Example 12. Again, there are four choice alternatives X = {x1, x2, x3, x4}, and

choice sets A ⊆ X are generated uniformly at random (excluding singleton choice

sets). There are five different choice contexts indexed C = {1, 2, . . . , 5}, all observable.

In all contexts, the DM uses the same choice rule in which the probability of

choosing alternative x from choice set A is given by

c(x|A) =
e−γu(x)

∑
x′∈A e

−γu(x′)

where γ = 1.5 and u(xk) = k (so that higher indexed alternatives are more preferred).
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I consider two approaches for making out-of-sample predictions. First, following

Kalai et al. (2002), I find an assignment of preferences to contexts that minimizes

the number of unexplained choice observations.36,37 Second, following the proposed

approach in this paper, I identify the solution that solves (15)—that is, the assignment

that minimizes a weighted average of the number of unique preferences assigned to

contexts, and also the number of unexplained observations. For robustness, orediction

accuracies are shown for a couple of different choices for the tradeoff parameter λ.

The table below reports and compares out-of-sample performance accuracies for

these two approaches. Again, the proposed approach leads to significant improve-

ments in predictive accuracy (up to 20%).

Prediction accuracy

Kalai et al. (2002) 64%

(9.8)

Proposed approach using λ = 1/(0.1n) 77%

(10.7)

Proposed approach using λ = 1/(0.2n) 83%

(7.1)

Proposed approach using λ = 1/(0.3n) 84%

(6.0)

B Proofs from Main Text

B.1 Preliminaries

Following, I collect definitions and results that are used in the proofs of Theorem 1

and Proposition 1.

Let G : D 7→ GD be a map that identifies every data set D with a (hyper-) graph

GD = (VD, ED), where VD = {1, . . . , n} indexes choice observations, and ED consists

of every set T ⊆ VD with the property that: (1) the observations {(xi, Ai)}i∈T are

not 1-rationalizable, and (2) every proper subset of {(xi, Ai)}i∈T is 1-rationalizable.

These concepts are related to our problem as follows.

36Note that unlike in the usual setting in which Kalai et al. (2002) is applied, here it may not be

possible to achieve a perfect rationalization, because we require preferences to be constant within

choice contexts.
37When there are multiple assignments that achieve the minimal error, we select from these

uniformly at random.
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Observation 4. D is k-rationalizable ⇐⇒ GD is k-colorable.

Take each color class to represent consistency with a distinct ordering, and the equiv-

alence follows directly.

This observation further implies that εk is the minimum number of vertices that

must be removed from GD in order for the graph to be k-colorable. From here on, I

will refer to the vertices of GD and the observations they represent interchangeably.

B.2 Proof of Theorem 1

First, observe that K is the (unique) solution to the problem in (3) if and only if

K + λεK(D) < k + λεk(D) for every integer k 6= K.

We can break this condition up into two parts. For k > K, the inequality

εK(D)− εk(D) < (k −K)/λ

requires that preferences beyond the best set of K each rationalize no more than 1/λ

choice observations (beyond what would already be rationalized using the best K).

For k < K, the inequality

εk(D)− εK(D) > (k −K)/λ

requires that each of the best K preferences uniquely rationalizes at least 1/λ choice

observations (beyond what would be rationalized using the best k). Lemmas 1 and 2

bound the probability of each of these events.

Lemma 1. There exists a constant c1 > 0 (uniform across n) such that

νn
({

Dn : εK(Dn)− εk(Dn) <
k −K
λ

∀ k > K

})
≥ 1− e−c1n ∀n

Proof. Suppose some k > K is selected as the solution to (3), so that there are k−K
preferences (beyond the best set of K preferences) that together rationalize (k−K)/λ

additional choice observations. Clearly, a necessary condition for such a k to exist

is that the best K preferences leave at least 1/λ observations unexplained; that is,

εK(D) ≥ 1/λ. Equivalently, a sufficient condition for

εK(D)− εk(D) > (k −K)/λ ∀k > K (16)

is that the best K preferences leave fewer than 1/λ observations unexplained; that

is, εK(D) < 1/λ. The probability of this event lower bounds the probability of (16).
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Recall that P is the DM’s “true” set of K preferences, and define T (D) to be

the number of realized choice observations in data set D that cannot be rationalized

by any preference in P . Removing these T (D) “bad” observations from D results in

a K-rationalizable data set; thus, εK(D) cannot exceed T (D). By assumption, the

probability of error in any given observation is no more than p. Thus, the random

variable Yn ∼ Bin(n, p) first-order stochastically dominates T (Dn).

These observations imply that

νn({Dn : εK(D)− εk(D) > (k −K)/λ ∀ k > K}) ≥ νn({Dn : εK(D) < 1/λ})
≥ νn(T (Dn) < 1/λ)

≥ Pr(Yn < 1/λ)

Since λ is chosen to satisfy 1/λ < pn, it follows from Hoeffding’s Inequality that

Pr(Yn ≤ 1/λ) = Pr(Yn − pn ≤ 1/λ− pn) ≤ exp

(
−2(1/λ− pn)2

n

)
= e−2(p̃−p)2n

Thus

νn
({

Dn : εK(Dn)− εk(Dn) <
k −K
λ

∀ k > K

})
≥ 1− e−c1n

with c1 := 2 (p̃− p)2 > 0, and we are done.

Lemma 2. νn
({
Dn : εk(Dn)− εK(Dn) > K−k

λ
∀ k < K

})
→ 1 as n→∞.

Proof. The basic approach is to study the induced graph GD, and lower bound the

number of disjoint complete K-partite subgraphs.38 With some imprecision, a suffi-

cient condition for

εk(Dn)− εK(Dn) >
K − k
λ

∀ k < K (17)

is that the number of disjoint complete K-partite subgraphs in the induced graph

GD is at least 1/λ. Roughly, the argument is as follows: Consider use of any k < K

colors to color the graph GD. Clearly, only k nodes in each complete K-partite graph

can be colored. Moreover, each of the additional K − k colors permits the coloring

of at least one more node per complete K-partite subgraph, and hence (K − k)/λ

more nodes in the graph in total. Thus, going from k colors to K colors reduces

the number of uncolored nodes by at least (K − k)/λ. Using Observation 4, this is

equivalent to the statement that going from k preferences to K preferences leaves at

least (K − k)/λ fewer observations unexplained, and this implies the desired (17).

38Recall that a complete K-partite subgraph is a graph whose nodes can be partitioned into K

sets, where nodes in the same set are not connected by an edge.

39



Instead of directly working with the distribution over graphs induced by ν, it is

simpler to first study the related “perfect maximization” graph-generating process,

where choice observations are sampled from ν∗. Call the typical such graph G∗D, and

let T (G∗D) denote the number of disjoint complete K-partite subgraphs. By definition

of the differentiation parameter,

Pr(T (G∗Dn) > d(π, µ∗))→ 1 as n→∞.

Moreover, since the measure (ν∗)n assigns probability 1 to data sets that are K-

rationalizable, any graph induced by a data set generated under sampling from (ν∗)n

is K-colorable. Thus, each additional color permits the coloring of at least d(π, µ∗)

additional colors. By assumption that 1/λ < pn and by the definition of p, the

differentiation parameter satisfies d(π, µ∗) > 1
λ(1−p)K . So

Pr

(
T (G∗Dn) >

1

λ(1− p)K
)
→ 1 as n→∞. (18)

Suppose now that each node in G∗Dn is removed from all of its edges with prob-

ability p, and call the resulting graph G̃∗Dn . The number of complete K-partite

subgraphs first-order stochastically dominates the number of complete K-partite

subgraphs in GD, generated under sampling from ν∗. Because each complete K-

partite subgraph of GD′ is preserved with independent probability (1 − p)K , the

random variable T (G̃∗Dn) has distribution Bin(T (G∗Dn), (1− p)K), and its expectation

is E(T (G̃∗Dn)) = E(T (G∗Dn) · (1− p)K). Thus, (18) implies

Pr

(
T
(
G̃∗Dn

)
>

1

λ

)
→ 1 as n→∞. (19)

Finally, since T (GDn) first-order stochastically dominates T (G̃∗Dn), (19) further im-

plies that

Pr

(
T (GDn) >

1

λ

)
→ 1 as n→∞

and we are done.

B.3 Proof of Corollary 1

Let Z be the set of possible choice observations, with typical element (x,A). Write

Gn for the (random) graph induced by n i.i.d. samples from the distribution ν ∈
∆(Z). Fix k ∈ Z+, and let ckn be the (random) maximum cardinality of a k-colorable

subgraph of Gn.

Claim 4. With probability 1, ckn/n converges.
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Proof. Let G0 be the graph induced by the data set Z (which includes each distinct

observation exactly once). For each k-colorable subgraph H of G0, define Hn to be

the subgraph of Gn that includes all repetitions of z ∈ H, and assigns to each such

observation its color in H. By the strong law of large numbers, |Hn|/n converges, for

each H, to a number c(H) that depends only on H and ν.

Observe that εk(Dn)/n = 1− ckn/n. Thus, Claim 4 implies that each k + λεk(Dn)/n

converges, implying that λk(Dn) and λk(Dn) converge for every k.

B.4 Proof of Corollary 3

Fix any data set D = {(xi, Ai)}ni=1. Define X = {xi}ni=1 to include all chosen alterna-

tives, and define each Ai = X ∩ Ai. Set D = {(xi, Ai)}ni=1.

Lemma 3. For every λ ∈ R+,

min
k∈Z+

[k + λεk(D)] = min
k∈Z+

[k + λεk(D)]

Proof. I will show that ε(D,P) = δ for some set of preference orderings P = {Pj}kj=1

if and only if ε(D,U) = δ for some set of utility functions U = {uj}kj=1.

Fix any set P = {Pj}kj=1 of k orderings defined on X, and take δ := ε(D,P). Every

ordering Pj admits representation via a utility function uj : X → R.39 Moreover, we

can extend each uj to a continuous function uj on X satisfying argmaxx∈X uj(x) =

argmaxx∈X uj(x). Then, xj = argmaxx∈A uj(x) if and only if xj is Pj-maximal in A.

Set U = {uj}; then,

ε(D,U) = #

{
(x,A) ∈ D : x 6= argmax

x′∈A
uj(x

′) for all j = 1, . . . , k

}
= δ.

Thus, choice error δ is attainable using a set of k utility functions. It follows that

min
k∈Z+

[k + λεk(D)] ≥ min
k∈Z+

[k + λεk(D)] . (20)

In the other direction, fix a set U = {uj}kj=1 of k continuous functions defined on

X, and take δ = ε(D,U). For every utility function uj, let Pj be the ordering on X

that satisfies

xPjx
′ ⇐⇒ uj(x) > uj(x

′).

39That is, there exists a utility function uj such that for every x, x′ ∈ X, xPjx
′ if and only if

uj(x) > uj(x
′).

41



Then, xj = argmaxx∈A uj(x) if and only if xj is Pj-maximal in A. Setting P =

{Pj}kj=1, we have that

ε(D,P) = #{(x,A) ∈ D : x is not Pj-maximal in A for any j = 1, . . . , k} = δ.

Thus, also

min
k∈Z+

[k + λεk(D)] ≤ min
k∈Z+

[k + λεk(D)]

as desired.

It follows from this lemma that K∗λ(D) = K∗λ(D) for every choice of λ, so the

problem posed in Section 6.2 can be mapped directly into a corresponding problem

involving choice over a discrete set. Apply Theorem 1, and the desired result follows.

B.5 Proof of Claim 2

It can be shown that for every n, the single preference that minimizes the expected

value of ε1(Dn) is x3Px2Px1. The pair of preferences that minimizes the expected

value of ε2(Dn) is {P, P ′} with x3Px2Px1 and x1P
′x2P

′x3. The associated expected

errors are

E(ε1(Dn)) =
1

4

(
eγ + e2γ

eγ + e2γ + e3γ

)
+

1

4

(
eγ

eγ + e2γ

)

+
1

4

(
eγ

eγ + e3γ

)
+

1

4

(
e2γ

e2γ + e3γ

)

E(ε2(Dn)) =
1

4

(
e2γ

eγ + e2γ + e3γ

)
(21)

while ε3(Dn) = 0 for every data set Dn. From this, we see that the (expected) error-

preference tradeoff curve is convex, and thus it is sufficient to show that E(ε1(Dn))−
E(ε2(Dn)) is decreasing in γ.

Using the above displays,

E(ε1(Dn))− E(ε2(Dn)) =
1

4

(
eγ

eγ + e2γ + e3γ

)
+

1

4

(
eγ

eγ + e2γ

)

+
1

4

(
eγ

eγ + e3γ

)
+

1

4

(
e2γ

e2γ + e3γ

)

Each component of this sum is decreasing in γ, so the sum is as well. The desired

result follows.
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B.6 Proof of Claim 3

From the proof of Claim 2 above, we already have that E(ε1(Dn)) − E(ε2(Dn)) is

decreasing in γ. It will be sufficient to show additionally that E(ε2(Dn))−E(ε3(Dn))

is decreasing in γ. Using (21), and that ε3(Dn) = 0 for every data set Dn, we have

E(ε2(Dn))− E(ε3(Dn)) =
1

4

(
e2γ

eγ + e2γ + e3γ

)

which is indeed decreasing in γ for all γ > 0.

B.7 Proof of Proposition 1

First, I will show the following:

Claim 5. If there exist orderings P1, P2 ∈ P such that a choice alternative x is ranked

first according to P1, and not last according to P2, then P is not identifiable.

Proof. Consider any set of orderings P including the preferences P1, P2, where x1 is

ranked first according to P1, x2 is ranked last according to P2, and the alternatives

x1 and x2 are not the same. Fix any data set D that can be perfectly rationalized

using P (that is, ε(D,P) = 0). I will show by construction that there exists another

set of preferences P ′ 6= P with |P ′| ≤ |P| such that also ε(D,P ′) = 0.

Define the ordering P ′2 to agree with P2 everywhere, except that it ranks x1 last.

Let P ′ = P − {P2}+ {P ′2}, where the operators denote set addition and subtraction.

I will now show that ε(D,P ′) = 0.

Suppose towards contradiction that there is some choice observation (x,A) ∈ D
where x is not P -maximal in A for any P ∈ P ′. By assumption, there is some

ordering P ∗ ∈ P such that x is P ∗-maximal in A. If P ∗ 6= P2, then also P ∗ ∈ P ′,
which yields a contradiction. So it must be that x is P2-maximal in A. Now, there

are two possibilities: if x 6= x1, then x must also be P ′2-maximal in A, and we are

done. If instead x = x1, then x is P1-maximal in A (by definition of x1). So we are

again done.

Since every set of three or more orderings satisfies the condition in Claim 5, it imme-

diately follows that every set P with |P| ≥ 3 fails to be identifiable.

Now let us consider an arbitrary set P = {P1, P2}. Index the alternatives such

that x1 is ranked first according to P1 and x2 is ranked first according to P2. If the

condition in Claim 5 is satisfied, it again follows that P is not identifiable. Suppose

otherwise, so that x1 is ranked last according to P2 and x2 is ranked last according
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to P1. Define

D = {(x,A) : x is P1-maximal in A, A ∈ 2X
}
∪{

(x,A) : x is P2-maximal in A, A ∈ 2X
}
.

Clearly there is no singleton set P ′ such that ε(D,P ′) = 0. Suppose towards contra-

diction that there exists some set P ′ = {P ′1, P ′2} 6= P such that ε(D,P ′) = 0. It must

be that x1 is ranked first according to P ′1 and last according to P ′2, and that x2 is

ranked first according to P ′2 and last according to P ′1 (otherwise relabel P ′1 and P ′2).

Without loss of generality, suppose that P ′1 6= P1.40 Then there exist alternatives

xi, xj such that xi is preferred to xj under P1 but not under P ′1:

xiP1xj and xjP
′
1xi.

Take A := {x : xiP1x} ∪ {xi} to be the set of all alternatives that P1 ranks weakly

lower than xi. Then (xi, A) ∈ D. But xi cannot be P ′1-maximal in A, since xj ∈ A,

and x1 cannot be P ′2-maximal in A, since x2 ∈ A. So ε(D,P ′) > 0 as desired.

Finally, every singleton set P = {P} is trivially identifiable, taking

D =
{

(x,A) : is P -maximal in A, A ∈ 2X
}
.

B.8 Proof of Proposition 2

Consider any choice observation (x,A) ∈ C(P). By definition of α, ν∗(x,A) > α, so

also ν(x,A) > α(1− p). Thus, the random variable Zn ∼ Bin (n, α(1− p)) first-order

stochastically dominates the number of occurrences of (x,A) in the observed data.

Since by assumption, 1/λ = p̃n < α(1 − p)n, it follows from Hoeffding’s inequality

that

Pr

(
Zn <

1

λ

)
= Pr (Zn − α(1− p)n < 1/λ− α(1− p)n)

≤ exp
(
−2 (p̃− α(1− p))2 n

)

Setting c1 = 2 (p̃− α(1− p))2 > 0, it follows that

Pr

(
Z <

1

λ

)
≤ e−c1n.

so the probability that (x,A) appears fewer than 1/λ times in the realized data set is

no more than e−c1n. Taking a union bound, the probability that any (x,A) ∈ C(P)

40Otherwise, P ′2 6= P2 and the remainder of the proof is mirrored.
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appears fewer than 1/λ times in the data is no more than |C(P)|e−c1n. Thus, the

probability that every (x,A) ∈ C(P) appears at least 1/λ times in the realized data

set is at least

1− |C(P)|e−c1n

which converges to 1 as the quantity of data n increases. This immediately implies

that

Pr (C (P) ⊆ C(P∗λ(Dn)))→ 1 as n→∞. (22)

In the other direction, the random variable Yn ∼ Bin(n, p) first-order stochastically

dominates the number of observations of all (x,A) /∈ C(P). (Informally, Yn is the

number of choice observations “in error.”) Thus, Pr(Yn ≤ 1/λ) is an upper bound

on the probability that there are 1/λ realized observations outside of the set C(P).

Since by assumption 1/λ = p̃n > pn,

Pr(Yn ≥ 1/λ)→ 0. (23)

Combining this with (22), when feasible, it is optimal to recover preferences whose

choice implications are exactly C(P). But by construction, C(P) is the set of choice

implications corresponding to the set of preferences P , and P is a valid solution to

the problem in (14). Thus,

Pr(C(P∗λ(Dn)) = C(P))→ 1 as n→∞

as desired.

B.9 Proof of Proposition 3

The following lemma demonstrates a sufficient condition given which the recovered

mapping m∗λ is the true mapping m.

Lemma 4. Suppose that

(a) for every context C and every (x,A) ∈ C(m(C)), the observation ((x,A), C)

appears at least 2/λ times in the data, and

(b) there are fewer than 1/λ observations ((x,A), C) where (x,A) /∈ C(m(C)).

Then m∗λ = m.

Proof. Suppose to the contrary that (a) and (b) are satisfied, but the recovered map-

ping is some m′ 6= m. First consider the case in which

|m′(C )| ≥ |m(C )|. (24)

45



There is some choice context C for which the preference P assigned by mapping m

is different from the preference P ′ assigned by mapping m′. Consider any (x,A) ∈
C({P})\C({P ′}). By (a), the observation ((x,A), C) appears at least 2/λ times in

the choice data. These observations can be rationalized using m but not by m′.

Moreover, by (b), the number of observations that can be rationalized using m′ but

not by m is no more than 1/λ. So ε(D,m) < ε(D,m′). Combining this with (24),

we have that |m′(C )| + λε(D,m′) > |m(C )| + λε(D,m), and hence m′ is not the

recovered mapping.

Now suppose that

|m′(C )| < |m(C )|.
But then there must be at least |m(C )| − |m′(C )| contexts where the preference as-

signed by m is different from the preference assigned by m′. Call the set of such con-

texts C ∗. For each C ∈ C ∗, there is some (x,A) ∈ C(m(C)) but (x,A) /∈ C(m′(C)).

Thus, by (a), there are at least 2/λ·(|m(C )| − |m′(C )|) observations that can be ratio-

nalized under m but not under m′. So ε(D,m)−ε(D,m′) < −2/λ · |m(C )|− |m′(C )|.
Moreover, again by (b), the number of observations that can be rationalized using m′

but not by m is no more than 1/λ. Thus,

ε(D,m′)− ε(D,m) >
2

λ
(|m(C )| − |m′(C )|)− 1

λ

>
1

λ
(|m(C )| − |m′(C )|)

using that |m(C )| − |m′(C )| ≥ 1. This implies that |m′(C )|+ λε(D,m′) > |m(C )|+
λε(D,m), so m′ is not the recovered mapping.

Now I will show that conditions (a) and (b) are satisfied with probability con-

verging to 1 as the number of observations gets large. By assumption, every choice

observation ((x,A), C) with (x,A) ∈ C(m(C)) is observed with probability at least

α(1− p). Let E((x,A),C) be the event that ((x,A), C) is observed fewer than 1/λ = p̃n

times. Then, application of Hoeffding’s inequality gives

Pr(E((x,A),C)) ≤ e−2(α(1−p)−p̃)2n.

Using a union bound, the probability that any E((x,A),C) occurs is no more than

κ · e−2(α(1−p)−p̃)2n, where κ = |C | · |⋃P∈P C(P )| is a constant. Or equivalently, the

probability that every ((x,A), C) is observed at least 1/λ times is

1− κ · e−2(α(1−p)−p̃)2n. (25)

Thus, the probability that the condition in (a) is satisfied converges to 1 as n→∞.
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To show that the condition in (b) also converges to 1, define Zn to be the number

of observations of tuples ((x,A), C) where (x,A) /∈ C(m(C)). By assumption, Zn
is first-order stochastically dominated by the random variable Z ∼ Bin(n, p). Since

E(Z) = pn > p̃n = 1/λ, it follows that

Pr(Z ≥ 1/λ)→ 0 as n→∞ (26)

implying the same for Zn. Combining (25) and (26), the desired result directly follows

from Lemma 4.
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