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Abstract

We propose a method for forecasting individual outcomes and estimating random

effects in linear panel data models and value-added models when the panel has a short time

dimension. The method is robust, trivial to implement and requires minimal assumptions.

The idea is to take a weighted average of time series- and pooled forecasts/estimators,

with individual weights that are based on time series information. We show the forecast

optimality of individual weights, both in terms of minimax-regret and of mean squared

forecast error. We then provide feasible weights that ensure good performance under

weaker assumptions than those required by existing approaches. Unlike existing shrinkage

methods, our approach borrows the strength - but avoids the tyranny - of the majority,

by targeting individual (instead of group) accuracy and letting the data decide how much

strength each individual should borrow. Unlike existing empirical Bayesian methods, our

frequentist approach requires no distributional assumptions, and, in fact, it is particularly

advantageous in the presence of features such as heavy tails that would make a fully

nonparametric procedure problematic.
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1 Introduction

“Knowing when to borrow and when not to borrow is one of the key aspects of statistical practice”

(Mallows and Tukey [1982])

Estimation of individual effects (i.e., fixed or random effects) and microforecasting (i.e.,

forecasting individual outcomes using panel data with a short time dimension) are of prominent

interest in empirical economics. For example, Kline, Rose, and Walters [2022] estimate the

distribution of firm-specific effects in order to analyze bias in firms’ hiring decisions. Estimating

individual effects and forecasting are the goals of the literature using “value added models” to

capture institutional effects, e.g., the effect of teachers on students’ test scores [Kane and

Staiger, 2008, Chetty, Friedman, and Rockoff, 2014a,b, Angrist, Hull, Pathak, and Walters,

2017], the effect of neighborhoods on intergenerational mobility [Chetty and Hendren, 2018],

or the effect of physicians on patients’ outcomes [Fletcher, Horwitz, and Bradley, 2014]. As

discussed by Hull [2020], these estimates and forecasts play an important policy role in the

regulation of healthcare and education in the U.S. Other examples in microeconomics include

the literature on long-term treatment effects, which relies on forecasting the effects of treatments

such as early-childhood interventions [Garćıa, Heckman, Leaf, and Prados, 2020] or job-training

programs [Athey, Chetty, Imbens, and Kang, 2019], and the literature that forecasts individual

incomes for consumption/savings decisions [Chamberlain and Hirano, 1999]. Macroeconomic

panel forecasting also falls into this category if it uses short estimation windows to account for

parameter instability (e.g. Liu, Moon, and Schorfheide [2020] forecast banks’ revenues after a

regulatory change).

The short time dimension in the panel introduces a bias-variance tradeoff: estimators/fore-

casts based on individual time series capture individual effects but are noisy; pooling information

reduces the variance but results in bias. A leading approach in the literature (e.g., the value-

added literature discussed above, Kline et al. [2022], and Liu et al. [2020]) is to rely on Bayesian

methods that “borrow strength” from the majority in order to improve accuracy (Mallows and

Tukey [1982]). These approaches however present two main drawbacks: they suffer from the

“tyranny of the majority” or they impose distributional assumptions.

An example of the former are shrinkage estimators, such as the classical James and Stein

[1961]’s estimator (which assumes homogeneous variances of the random effects and of the

idiosyncratic shocks), or the extension considered by Kwon [2021] (which assumes homoge-

neous variance for the random effects but allows for heterogeneous variance of the idiosyncratic

shocks).1 Shrinkage estimators are typically adopted in the value-added literature discussed

above. Shrinkage estimators are known to suffer from what Efron [2010] calls the “tyranny of

the majority”. Intuitively, they shrink individuals by the same amount regardless of their ran-

1Pesaran, Pick, and Timmermann [2022] consider a shrinkage approach in a linear model with heterogeneous
parameters on covariates and similarly impose a homogeneous variance assumption for the parameters.
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dom effects, which penalizes individuals with random effects that are far away from the common

mean - outliers - as well as individuals with random effects near the common mean, as we show

in Section 6).2 At the core of the phenomenon lies the fact that existing shrinkage approaches

target group accuracy rather than individual accuracy. Since individual accuracy is typically

the object of interest in the empirical literature, we argue that it is crucial to consider methods

that deliver accuracy at the individual level first and foremost.3 An insight of this paper is that

overcoming the tyranny of the majority can be linked to relaxing the parameter homogeneity

assumption made by existing shrinkage approaches, which yields weights that implicitly relate

the amount of shrinkage to how far the random effect is from the common mean. Allowing

for fully heterogeneous parameters is thus a crucial ingredient for obtaining accuracy at the

individual level, as well as being empirically relevant (see, e.g., the discussion in Kwon [2021]

for the motivation behind allowing for heterogeneous variance of the idiosyncratic shocks).

A recent literature adopts a different approach to microforecasting and estimation of random

effect, based on empirical Bayes estimators. This approach is considered by, e.g., Gu and

Koenker [2017] and Liu et al. [2020] or in the application by Kline et al. [2022] using the empirical

Bayes deconvolution estimator proposed by Efron [2010]. These estimators rely on a parametric

distributional assumption for the idiosyncratic shocks. This can be considered restrictive and

can make it challenging to incorporate features such as distributions with heavy tails, which

are empirically relevant, e.g., in the case of wealth or earnings outcomes (Guvenen, Karahan,

Ozkan, and Song [2015], Browning, Ejrnaes, and Alvarez [2010]). In principle, it is possible to

relax the parametric assumption by considering nonparametric deconvolution estimators (e.g.

Delaigle, Hall, and Meister [2008]), however the convergence rate of these estimators depends on

tail behavior and tends to be slow (see, e.g., Fan [1991] and Fan and Truong [1993]). In addition,

the practical implementation of these estimators requires integration and regularization due to

the ill-posed inverse problem and is known to present considerable difficulties (see, e.g., Delaigle

and Gijbels [2007], Delaigle [2014] and Hall and Meister [2007]).4

In this paper, we instead go back to the classical approach and focus our attention on shrink-

age methods, which do not rely on distributional assumptions and are trivial to implement. We

present a method that overcomes the tyranny of the majority problem that affects existing

shrinkage approaches. The method also turns heavy tails from vice to virtue, in the sense that

it is particularly advantageous relative to existing methods in the presence of heavy tails.

We consider a frequentist, finite-sample setting under minimal assumptions and propose an

2Attempts to tackle the problem by first identifying and then not shrinking outliers (Efron and Morris [1971])
are complicated by the need to specify an arbitrary threshold and by the presence of different factors affecting
individual performance. For example, it is not just outliers in terms of the random effects who benefit less from
borrowing strength, but also “creatures of habit” - individuals with low variance of the idiosyncratic shocks for
whom the time-series forecast/estimator is therefore not very noisy.

3The value-added literature, for example, is often interested in identifying outliers and performing policy
counterfactuals that involve them.

4Regularization is also recommended by Efron [2010] to ensure accuracy, which introduces another element
of choice and a source of sensitivity even when the parametric assumption is correct.
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approach to microforecasting and estimation of random effects that targets individual accuracy.

The general idea is to consider a weighted average of estimators/forecasts in a given class, using

individual-specific weights that exploit the information contained in the time series dimension

(even if it is very short). We call our approach Individual Weighting (henceforth IW). When the

class includes time series- (TS) and pooled (Pool) estimators/forecasts, IW gives a shrinkage

estimator that differs from existing shrinkage approaches by leveraging the time series- instead

of the cross-sectional dimension to compute weights. This is what allows IW to borrow the

strength - but avoid the tyranny - of the majority, by letting past time-series data decide

how much strength each individual should borrow. The downside of leveraging only the small

time series dimension, instead of the potentially large cross-sectional dimension, is that we

cannot rely on asymptotic behaviour to judge the performance of our method and to construct

standard errors. Instead, we focus on finite-sample optimality of forecast performance and on

robustness, that is, on obtaining a method that performs well over the unknown parameter

space. Our approach is inspired by Manski [2021], who emphasizes evaluation of decision rules

by their performance across the parameter space and advocates the minimax regret criterion.5

We focus on a model with no distributional assumptions, where individual outcomes are

the sum of random effects and idiosyncratic shocks, both with heterogeneous variances. The

random effects have a common mean, which is a tuning parameter representing how we borrow

strength from the majority. It is assumed to be either known (if, for example, the outcomes

are demeaned) or it is approximated with the pooled mean over the panel. Outcomes can

be also redefined as residuals from the first-step estimation of a linear panel data model or a

value-added model with homogeneous coefficients for the covariates (possibly including lagged

outcomes). Our setting thus encompasses a large class of empirically relevant models. Random

effects and shocks are assumed to be independent of each other, however we do not restrict the

relationship between the parameters characterizing their distribution.

The theoretical results focus on forecasting and show conditions under which IW with

generic weights is optimal relative to using TS or Pool for all individuals. No forecast uniformly

dominates the others over the parameter space in terms of individual accuracy, as measured

by the Mean Squared Forecast Error (MSFE). The advantage of IW is however two-fold: it is

robust - it avoids large errors in regions of the parameter space where the accuracies of TS and

Pool are different - and it delivers improvements when TS and Pool are equally accurate.

Formally, we show that IW is minimax-regret optimal over the parameter space relative to

using either TS or Pool. In addition, IW is also MSFE optimal if we restrict attention to the

region of the parameter space where TS and Pool are equally accurate. The improvement of

IW in terms of both minimax-regret and MSFE is strict for any constant weight between 0 and

1. Furthermore, keeping all else equal, an additional improvement can be obtained when the

5There are a couple of papers that apply the minimax regret criterion to panel data: handling missing data
in sample design [Dominitz and Manski, 2021] and forecasting discrete outcomes under partial identification or
other concerns [Christensen, Moon, and Schorfheide, 2020]. Their focus is distinct from ours.
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weights satisfy a key assumption requiring that: 1) the weights are genuine functions of the

random effect; and 2) the weights are not “pathological”, in the sense that they do not shrink

outliers more than random effects near the mean of the distribution (which would exacerbate

the tyranny of the majority phenomenon). Existing shrinkage approaches, for example, deliver

weights that are strictly between 0 and 1 but that are based on cross-sectional information and

thus are not functions of the random effects. This means that shrinkage approaches outperform

using TS or Pool for all individuals, but can be outperformed by weights that satisfy the key

assumption. Finally, we show that the magnitude of the improvement over TS and Pool for

weights that satisfy the key assumption is larger the heavier the tails of the distribution of

random effects. In other words, heavy tails confer an advantage to shrinkage approaches that

are able to capture the random effect via individual-specific weights.

The robustness of our approach is rooted in the focus on individual- rather than group

accuracy. It is however worth noting that IW can end up dominating existing methods also in

terms of group accuracy. Whether this occurs in a given application depends on the distribu-

tion of the parameters across individuals - which our individual-level analysis purposely leaves

unrestricted - and also on the unknown tail properties of the distribution of the random effects.

We present three types of feasible weights that satisfy the key assumption discussed above.

The first type of feasible weights are based on oracle weights that are optimal in terms of the

individual MSFE. These oracle weights correspond to the classical Bates and Granger [1969]’s

weights applied here to the individual MSFE and are a function of the heterogeneous variance

parameters. Feasible weights can then be obtained by estimating these parameters using the

time series dimension. These “estimated oracle individual weights” (IW-O) are likely to per-

form poorly due to the short time dimension. In the search for feasible weights that perform

well, and that do so over the parameter space, we further consider a minimax regret analysis

where we condition the individual MSFE on the past. This analysis allows us to characterize

optimal weights as functions of certain conditional expectations. We then show that bounds

on a particular conditional expectation translate into optimal weights that have a feasible

counterpart. We call this second type of feasible weights “minimax-regret optimal individual

weights” (IW-MR). Finally, we consider alternative feasible weights based on the individual

inverse squared forecast error (IW-MSFE), which are equivalent to the weights considered in

some forecast combination time-series literature (e.g., Stock and Watson [1998]) but computed

on a very short time series. These weights offer additional robustness benefits because they do

not rely on correct specification of the model and can thus be applied in more general settings.

We compare the finite sample performance of all the feasible weights that we consider in this

paper, and conclude that IW-MR are the preferred weights. Additional simulations compare

IW to Bayesian shrinkage estimators. We illustrate how IW can overcome the tyranny of the

majority phenomenon that affects existing shrinkage approaches (specifically, the James-Stein

estimator): IW tends to deliver accuracy gains for individuals with random effects in the tails
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and near the mean of the distribution, the more so the heavier the tails and the larger the

variance of the distribution. This implies that IW can also outperform James-Stein in terms

of group accuracy, again depending on the tail properties of the random effects distribution, in

relation to its variance.

We consider two empirical illustrations. The first analyzes gender discrimination in firm

hiring as in Kline et al. [2022]. IW yields an estimated distribution of random effects that is

slightly more right-skewed and has a heavier right tail than the distribution obtained in the

paper (which is based on Efron [2010]), implying a similar measure of overall inequality but a

larger proportion of firms discriminating in favour of male applicants. IW also delivers more

accurate out-of-sample forecasts for firms near the center and in the right tail of the distribu-

tion, and also in terms of group accuracy. The second application forecasts individual earning

residuals out-of-sample using the Panel Study of Income Dynamics. We find that the forecast

with the best group accuracy is IW, which tends to assign high weights to pooling for indi-

viduals with earning residuals near the median of the distribution. This application illustrates

the usefulness of IW even in highly heterogeneous settings where only a few individuals really

benefit from borrowing strength from the majority.

The rest of the paper is organized as follows. Section 2 introduces IW in a general setting.

Section 3 considers a model with random effects and shows how to implement IW in practice.

Section 4 shows the optimality of IW, both in terms of minimax-regret and in terms of Mean

Squared Forecast Error. Section 5 derives the three different types of feasible weights that we

propose in the paper. Section 6 shows simulation results. Section 7 illustrates the performance

of IW in two empirical applications. Section 8 offers concluding remarks. Appendix A contains

the proofs and Appendix B derives the feasible weights under more general assumptions than

those considered in section 5 for illustrative purposes.

2 IW in General

We start by outlining the general problem. For each individual i, we have a class of K different

forecasts/estimators:

F = {Ŷk,i,T , k = 1, ..., K}.

Each forecast/estimator is a function of the information set at time T , YN,T := {Yi,t : i =

1, . . . , N, t = 1, . . . , T}.6 The panel has a short T .

For each i, IW considers a weighted average of the forecasts/estimators in the class with

6For simplicity of notation, we focus on a balanced panel, but the extension to unbalanced panels is straight-
forward.
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individual weights Wk,i,T that depend on YN,T :

Ŷ IW
i,T =

K∑
k=1

Ŷk,i,TWk,i,T . (1)

A byproduct of the procedure that may be of interest in some applications is a fuzzy clustering

of individuals, grouped according to which forecast/estimator receives the largest weight.

3 IW in a Model with Random Effects

In the remainder of the paper, we specialize the discussion to a model with random effects

where IW combines a time series forecast/estimator and a pooled forecast/estimator. Since

in this model the estimator of the random effect coincides with the forecast of the individual

outcome, for simplicity we focus the discussion in the rest of the paper on forecasting.

3.1 The Model

The baseline model assumes that the outcomes are the sum of individual random effects and

idiosyncratic shocks, both with heterogeneous variances:

Yi,t = Ai + Ui,t, i = 1, ..., N ; t = 1, ..., T, (2)

where Ai ∼ (µ, λ2
i ) and Ui,t ∼ (0, σ2

i ). Here, Ai, Ui,1, . . . , Ui,T are random variables, whereas µ,

λ2
i and σ2

i are parameters. In other words, we take the frequentist approach.

We make the following assumption.

Assumption 3.1 (Independence). Ai, Ui,1, . . . , Ui,T are mutually independent.

Remark 1 (Relationship of assumptions with Bayesian approaches). As a point of comparison,

we will relate our approach to two classes of Bayesian estimators: empirical Bayes deconvolution

estimators (in our simulations and empirical application we will focus on Efron [2010]) and

shrinkage estimators such as James and Stein [1961] and Kwon [2021]. In the context of the

model in (2), Efron [2010] amounts to imposing a normality assumption on the idiosyncratic

shocks, Ui,t ∼ N(0, σ2), whereas Ai ∼ GA(µ, λ
2), with GA flexibly parameterized by a spline.

James and Stein [1961] and Kwon [2021] do not require distributional assumptions but impose

homogeneity assumptions on the variance parameters, respectively assuming Ui,t ∼ (0, σ2),

Ai ∼ (µ, λ2) and Ui,t ∼ (0, σ2
i ), Ai ∼ (µ, λ2). Like existing approaches, we assume a common µ

across individuals, but we differ by allowing all other parameters to be individual-specific and

by making no distributional assumptions.
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Remark 2 (Interpretation of µ). The parameter µ represents how we “borrow strength” from

the majority. In practice, we do this by shrinking the time-series forecasts/estimators of the

random effects Ai towards their mean µ. µ plays a similar role in our analysis as in a classical

Bayesian setting, and we similarly consider it as a tuning parameter. As discussed by Kwon

[2021], in empirical work the outcomes are often first demeaned, in which case one simply

sets µ = 0 (for example if Yi,t are residuals from a first-stage estimation of a model with an

intercept, see remark 3 below). If µ is unknown, we replace it with the sample mean of Yi,t over

the panel. See remark 8 below for a discussion of how µ could be chosen in case of a known

group structure in parameters. The assumption of a common µ across individuals is thus only

needed when the point of shrinkage is not known, so that one can leverage the panel dimension

to estimate it. Treating the point of shrinkage as a tuning parameter means that, similarly to

existing approaches, our theoretical results do not take into account possible uncertainty in its

estimation.

Remark 3 (Extension: covariates). Covariates Xi,t can be incorporated by redefining Yi,t in

(2) as residuals from the first-step estimation of a model with homogeneous coefficients:

Yi,t = Ỹi,t −X ′
i,tβ̂, (3)

where Ỹi,t are the outcomes and β̂ is a consistent estimator of the homogeneous coefficients

as N → ∞.7 All the theoretical results discussed below then apply under the additional as-

sumption that N is large. Note that the assumption of consistency of β̂ could in principle

be relaxed, as in a finite-N setting there can be other, perhaps biased, estimators that im-

prove forecast accuracy. We leave this extension for future research. The extension to a model

with heterogeneous coefficients for the covariates would imply generalizing the problem of es-

timating/forecasting unobserved heterogeneity from the univariate case considered here to the

multivariate case. While a full treatment of this extension is beyond the scope of this paper,

we offer some remarks on this topic in the conclusion of the paper.

Remark 4 (Extension: value-added model). A value added model for an outcome Ỹi,j,t and

covariates Xi,j,t aims at estimating the random effect Ai in the model

Ỹi,j,t = X ′
i,j,tβ + Ai + Ui,j,t.

In the case of teacher value-added, for example, i is the teacher and j = 1, ..., ni,t (with ni,t

finite) are the students assigned to teacher i in year t. This model can also be nested in (2) if a

consistent estimator (as N → ∞) β̂ is available, in which case one defines Yi,t as residuals from

7For instance, if the covariates Xi,t include the lagged outcome, one could use the Arellano-Bond estimator
[Arellano and Bond, 1991] to estimate β.
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a first step estimation involving averaged outcomes and covariates, e.g.,

Yi,t =
1

ni,t

ni,t∑
j=1

Ỹi,j,t −
1

ni,t

ni,t∑
j=1

X ′
i,j,tβ̂. (4)

Remark 5 (Robustness to distributional assumptions). Note that we make no distributional

assumptions on the random effects and the idiosyncratic shocks. Heavy tails in both distribu-

tions are permitted, as long as the variances exist (i.e., the parameters λ2
i and σ2

i are finite).

Remark 6 (Robustness to dependence structure). The analysis below is carried out at the

individual level, and thus in principle does not require a large N nor any restriction on the

cross-sectional dependence of Yi,t. This is true as long as the point of shrinkage µ is known

(e.g., when the outcomes have been demeaned so that µ = 0). When the group mean µ

is unknown, in practice we will approximate it with the sample mean over the panel, which

implicitly requires a restriction on the cross-sectional dependence that ensures validity of a

law of large numbers. The incorporation of covariates discussed in remark 3 also implicitly

restricts the dependence structure by assuming availability of a consistent estimator of the

homogeneous coefficients. Time-series dependence can be accounted for by including lagged

dependent variables as covariates, as long as the autoregressive coefficients are homogeneous

across individuals.

Remark 7 (Robustness to distribution of parameters across individuals). Our analysis is car-

ried out at the individual level and is purposely agnostic about the distribution of λ2
i and σ2

i

across i. This implies that, in general, we cannot make any formal statement about the group

accuracy of our estimator. Nonetheless, we are able to provide some intuition for the impli-

cations of our findings for group accuracy, see Section 4.6 below. Another implication is that,

while we assume independence between individual random effects and shocks, we accommodate

any type of unknown relationship between their variances (e.g., there could be two groups of

individuals, one with low λ2
i and low (high) σ2

i and one with high λ2
i and high (low) σ2

i ). The

next remark highlights how the analysis can be modified if one is willing to assume a known

group structure in parameters.

Remark 8 (Known group structure in parameters). Our analysis assumes fully heterogeneous

parameters λ2
i and σ2

i , and shrinks the estimators/forecasts of the random effects towards the

mean µ of the random effects. Suppose there is a group structure in µ only, with a finite number

of subgroups and observable group membership (but with λ2
i and σ2

i still heterogeneous within

the subgroups). In this case, the only modification to our analysis is that the point of shrinkage

is the mean for the subgroup instead of the mean for the whole panel. If the homogeneity

assumption within subgroups extends to λ2
i and σ2

i , then our estimator becomes the James-

Stein estimator applied to each subgroup (and thus it is exactly the James Stein estimator if

there is only one group).
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Henceforth, we focus on model (2), with the understanding that Yi,t are either outcomes or

residuals such as (3) or (4) (in a large-N setting).

3.2 IW in Practice

In practice, for each individual i, we propose considering a weighted average of the time-series

and pooled forecasts at time T , with weights based on time series information. The forecasts

are:

Time series forecast (TS) : Ŷ TS
i,T = Ȳi,T = ΣT

t=1Yi,t/T, (5)

Pooled forecast (Pool) : Ŷ Pool
i,T = µ, (6)

Weighted forecast (IW) : Ŷ IW
i,T = Ŷ TS

i,T Wi,T + Ŷ Pool
i,T (1−Wi,T ), (7)

where Wi,T is one of the feasible individual weights reported below. The parameter µ is either

known (e.g. µ = 0 if the observations have been demeaned or if Yi,t are residuals from a

first step estimation that includes an intercept) or it is approximated with the pooled mean,

µ ≈ ΣN
i=1Σ

T
t=1Yi,t/NT .

We derive three classes of feasible individual weights in a simplified setting in Section 5 and

their generalizations in Appendix B. For convenience, we summarize here the three classes of

general feasible individual weights that we discuss in the paper.

3.2.1 Estimated Oracle Weights (IW-O)

These weights are based on estimated oracle weights, and are given by

W IW−O
i,T =

((
ΣT

t=1(Yi,t − µ)2/T − ΣT−1
t=1 (Yi,t − Yi,t+1)

2/2(T − 1)
)+

ΣT
t=1(Yi,t − µ)2/T − ΣT−1

t=1 (Yi,t − Yi,t+1)2/2T

)+

, (8)

where (·)+ denotes the positive part.
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3.2.2 Minimax Regret Optimal weights (IW-MR)

These weights are given by:8

W IW−MR
i,T = 1− 1√

max{(Yi,1−µ)2,...,(Yi,T−µ)2}
ΣT−1

t=1 (Yi,t−Yi,t+1)2/2T (T−1)
+ 1

. (9)

These are the weights that perform best in our simulations.

3.2.3 Inverse MSFE Weights (IW-MSFE)

These weights are based on the inverse MSFE. Since they do not rely on the model assumptions,

these weights are applicable in the general setting considered in section 2. The in-sample inverse

MSFE weights are:

W IW−MSFE−IS
i,T :=

1/
[
ΣT

t=1(Yi,t − Ŷ TS
i,T )2

]
1/
[
ΣT

t=1(Yi,t − Ŷ TS
i,T )2

]
+ 1/

[
ΣT

t=1(Yi,t − Ŷ Pool
i,T )2

] . (10)

For a given choice of P < T , the out-of-sample inverse MSFE weights are:

W IW−MSFE−OOS
i,T,P :=

1/
[
ΣT

t=T−P+1(Yi,t − Ŷ TS
i,t−1)

2
]

1/
[
ΣT

t=T−P+1(Yi,t − Ŷ TS
i,t−1)

2
]
+ 1/

[
ΣT

t=T−P+1(Yi,t − Ŷ Pool
i,t−1)

2
] , (11)

where Ŷ TS
i,t−1 is the time series mean using data up to time t− 1 (using all the data available or

just an arbitrary number of most recent data) and Ŷ Pool
i,t−1 = µ (with µ known or approximated

with the panel mean on data up to time t− 1).

4 Optimality of IW

In this section we show conditions under which IW is minimax regret optimal relative to using

the TS or Pool forecast for all individuals. We further show conditions under which IW is also

optimal in terms of MSFE.

8A similar performance in simulations and in the empirical applications is obtained by the IW-MR rule based
on an alternative unbiased estimator for σ2

i , as follows:

W IW−MR2
i,T = 1− 1√

max{(Yi,1−µ)2,...,(Yi,T−µ)2}
ΣT

t=1(Yi,t−Ȳi,T )2/T (T−1)
+ 1

.
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4.1 Set Up and Key Assumption

This section considers a simplified setting where the time series forecast is the time-T outcome

and IW is based on data available at time T −1. These assumptions imply that the weights and

the forecasts are independent, which makes the theoretical results transparent and intuitive.

This assumption does not affect the practical usefulness of the results, as the feasible weights

that we recommend to use and that we reported in section 3.2 above consider the general case

where TS is the time series mean and the weights are based on the information set at time T .

The simulations and empirical applications are also based on the general weights in section 3.2.

In this section we thus let:

Time series forecast (TS) : Ŷ TS
i,T = Yi,T , (12)

Pooled forecast (Pool) : Ŷ Pool
i,T = µ, (13)

Weighted forecast (IW) : Ŷ IW
i,T = Yi,TWi,T−1 + µ(1−Wi,T−1), (14)

where Wi,T−1 depends on data available at time T − 1.

Consider a situation where the user is uncertain about the parameter θi = (λ2
i , σ

2
i ). The

unconditional MSFE of forecast m for a given θi is

MSFE(m, θi) = E
[(

Yi,T+1 − Ŷ m
i,T

)2]
,

with m ∈ M.

The next lemma derives the MSFEs of TS, Pool and IW.

Lemma 4.1. Consider the forecasts in (12), (13), and (14). Then under Assumption 3.1 we

have

MSFE(TS, θi) = 2σ2
i ,

MSFE(Pool, θi) = λ2
i + σ2

i ,

MSFE(IW, θi) = σ2
i + σ2

iE
[
W 2

i,T−1

]
+ E

[
(Ai − µ)2 (1−Wi,T−1)

2] .
Lemma 4.1 suggests that the trade-off between TS and Pool depends on the “signal-to-noise”

ratio λ2
i /σ

2
i : Pool dominates when the ratio is less than 1 and TS dominates when it is greater

than 1. Knowledge of the parameters would allow one to choose the best forecast; however

in the presence of uncertainty about the parameters it is not possible to choose a forecast

optimally. We thus pursue an alternative route. We look for a robust rule that performs well

over the entire parameter space, in the sense of avoiding large errors when TS and Pool have

different accuracy and improving on both TS and Pool when they have similar accuracy. The

following two sections show that IW can accomplish both goals. We first formalize the notion

of robustness that we consider here, based on the minimax regret criterion.

12



Let M include TS, Pool, and IW. We define regret as

R(m, θi) := MSFE(m, θi)− min
h∈M

MSFE(h, θi). (15)

The minimax-regret (MMR) criterion selects the forecastm that minimizes the maximum regret

max
θi∈Θ

R(m, θi),

where Θ is the parameter space. The form of regret here is similar to that of regret in decision

theory without sample data (e.g., see equation (3) in Manski [2021]). The MMR criterion is

championed by Manski [2021].9 The regret in (15) is defined relative to the best MSFE out of

only three models because the goal in this section is to choose among IW, TS, and Pool.10

To derive analytical results for IW, we impose the following key regularity condition.

Assumption 4.1 (Individual Weight). The individual weight Wi,T−1 satisfies 0 ≤ Wi,T−1 ≤ 1

and

E
[
(Ai − µ)2 (1−Wi,T−1)

2] ≤ E
[
(Ai − µ)2

]
E
[
(1−Wi,T−1)

2] . (16)

Inequality (16) in Assumption 4.1 is equivalent to

Cov
{
(Ai − µ)2, (1−Wi,T−1)

2} ≤ 0.

Thus, Assumption 4.1 states that, as two random variables, (Ai − µ)2 and (1−Wi,T−1)
2 are

weakly negatively correlated. Intuitively, the assumption requires that larger values of (Ai −
µ)2 are associated with smaller weight attributed to the pooled forecast (or that the two are

uncorrelated). This is a mild and reasonable assumption, in that it only rules out “pathological”

weights that would shrink outliers more than individuals near the mean of the distribution, thus

exacerbating the tyranny of the majority phenomenon that we are seeking to overcome. If the

individual weight is a fixed constant, i.e., Wi,T−1 = ci for some constant 0 ≤ ci ≤ 1, then

Assumption 4.1 is satisfied with an equality in (16). Conversely, if the individual weight is

a genuine function of the random effect - instead of a fixed constant - the inequality in (16)

can be strict. We will see below that this strict inequality translates into improvements in the

performance of IW.

9See Section A.2 in Manski [2021] and references therein for a detailed discussion.
10If we had adopted the criterion of minimax instead of minimax regret, what would had mattered between TS

and Pool is which maxi σ
2
i or maxi λ

2
i is larger, resulting in an obvious but trivial solution that TS is preferred

to Pool if maxi σ
2
i < maxi λ

2
i and vice versa. In this setting, it is not necessarily the case that IW provides a

better performance in terms of minimizing the maximum MSFE.

13



4.2 Minimax Regret Optimality of IW

In this section, we show the conditions under which IW is optimal in terms of minimax regret.

We restrict our attention to the parameter space represented in Figure 1 below, where the

signal-to-noise ratio λ2
i /σ

2
i ranges from 1− ν to 1 + ν for some 0 ≤ ν < 1.

Θ = Θ(ν) := {(σ2
i , λ

2
i ) ∈ R2

+ : 1− ν ≤ λ2
i /σ

2
i ≤ 1 + ν}. (17)

0 1 2 3 4 5

0
1

2
3

4
5

Parameter Space for ν ≈ 1 

λi
2

σ i2

TS

Pool

λi
2=σi

2

Figure 1: Parameter space for ν ≈ 1

Considering a neighbourhood of 1 is a natural choice, as we saw that this point represents the

case where TS and Pool are equally accurate. The radius of the neighbourhood is constrained

by the fact that the signal-to-noise ratio cannot be negative, so in practice the parameter space

only excludes cases where Pool performs very poorly relative to TS, due to a large variance

of the random effects combined with low variance of the shocks. The adoption of a common

ν for the upper and lower bounds is only for convenience in deriving analytical results, and

Figures 2 and 3 below make it clear that we are being conservative, as increasing the upper

bound on λ2
i /σ

2
i well beyond the value of 2 would not change the conclusions of the minimax

regret analysis.

The next theorem shows that IW (uniquely) minimizes maximum regret among TS, Pool,

and IW under Assumptions 3.1 and 4.1.

14



Theorem 4.1. Let Assumptions 3.1 and 4.1 hold. Then,

max
θi∈Θ

R(IW, θi) ≤ min

{
max
θi∈Θ

R(TS, θi),max
θi∈Θ

R(Pool, θi)

}
,

where Θ is defined in (17). Furthermore, the inequality above is strict if either 0 < Wi,T−1 < 1

or the inequality in (16) is strict.

The theorem shows when the improvement of IW over TS and Pool in terms of regret

is strict. For example, any constant weight between 0 and 1 will provide an improvement.

Furthermore, keeping all else equal, a weight that is a genuine function of the random effect

that satisfies Assumption 4.1 with a strict inequality will deliver an additional improvement

in performance. Existing Bayesian shrinkage approaches such as the James-Stein estimator,

for example, deliver weights that are strictly between 0 and 1 but that do not depend on Ai.

This means that James-Stein outperforms (in terms of minimax regret) using TS or Pool for

all individuals, but it can be, in turn, outperformed by any weight satisfying Assumption 4.1

that is a genuine function of the random effect. The theorem thus illustrates the potential

benefits of individual weights that are based on information in the time series dimension, and

thus capture the random effect, relative to existing shrinkage approaches that leverage instead

the cross-sectional information.

We illustrate the findings of Theorem 4.1 in Figures 2 and 3. We consider one individual

(so we temporarily drop the subscript i) observed over 4 time periods, with shocks U1, ..., U4

drawn independently from a N(0, 1) and random effect A drawn from a N(0, λ2). Repeating

the simulation a large number of times allows us to approximate the individual MSFE and

regret when forecasting the outcome Y4 at time T = 3 using either TS, Pool or IW. The figures

plot these MSFEs and regrets as a function of the signal-to-noise ratio. For IW, we consider

the feasible minimax regret optimal rule (IW-MR) that we derive in equations (24) and (25)

below.11 Figure 2 shows that no forecast uniformly dominates in terms of MSFE over the

parameter space; however, IW is the most accurate over the majority of the parameter space,

except for very small values of the signal to noise ratio, when Pool dominates. Figure 3 shows

that IW is additionally minimax-regret optimal. To see why, note that the regret for TS (dashed

line) achieves a maximum value of around 1 when the signal to noise ratio is close to zero. The

regret for Pool (dotted line) obtains a maximum value of around 1.4 when the signal to noise

ratio is large. The regret for IW (solid line) achieves a maximum value of around 0.27, when

the signal to noise ratio is close to zero. Thus, over the parameter space, the minimax regret

optimal rule is IW, since it has the smallest maximum regret among the three rules.

11 Specifically, we have Ŷ TS
3 = Y3, Ŷ

Pool
3 = 0 and Ŷ IW−MR

3 = Y3W2, with W2 = 1− 1/
√

max{Y 2
1 ,Y 2

2 }
0.5(Y1−Y2)2

+ 1.
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Figure 2: MSFE of TS, Pool, and feasible IW

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Regret

λ2 σ2

R
eg

re
t

Regret(Pool)
Regret(TS)
Regret(IW−MR)

Figure 3: Regret of TS, Pool, and feasible IW

16



4.3 MSFE Optimality of IW

Figure 2 suggests that IW outperforms TS and Pool in terms of MSFE when the signal to

noise ratio is in a neighborhood of 1. One may wonder if this result holds regardless of the

data-generating process. The following theorem shows that, indeed, it is possible to show that

IW outperforms TS and Pool in terms of MSFE regardless of the data-generating process, if

we restrict attention to the case where the signal to noise ratio equals 1. This means that IW

is not only robust - i.e. optimal in terms of minimax regret - but it is also optimal in terms of

MSFE when TS and Pool are equally accurate and thus would be indistinguishable.

Theorem 4.2. Let Assumptions 3.1 and 4.1 hold. Suppose that λ2
i = σ2

i = 1. Then,

MSFE(IW, θi) ≤ MSFE(TS, θi) = MSFE(Pool, θi) = 2.

Furthermore, the inequality above is strict if either 0 < Wi,T−1 < 1 or the inequality in (16) is

strict.

The theorem shows that IW is weakly more accurate than TS and Pool when the two

forecasts have equal accuracy. Furthermore, as in the case of the minimax regret optimality

results in Theorem 4.1, a strict accuracy improvement can be obtained when the weights are

strictly between 0 and 1 or are genuine functions of the random effects. This shows that

considering individual weights that leverage time series information to capture the random

effect can deliver a strict improvement in accuracy.

4.4 Accuracy Gains and Tail Heaviness

In this section we perform a simulation exercise to illustrate the result of Theorem 4.2 and

further show how the accuracy gains of IW are linked to the heaviness in the tails of the

distribution of Ai. As for Figures 2 and 3, we consider one individual observed over 4 time

periods. We now however focus on the case σ2 = λ2 = 1 (making TS and Pool equally

accurate) with shocks U1, ..., U4 drawn independently from a N(0, 1) and random effect A drawn

from a Pareto distribution with different degrees of tail heaviness (in a way that ensures that

σ2 = λ2).12 Repeating the simulation a large number of times allows us to approximate the

individual MSFE when forecasting the outcome Y4 at time T = 3 using either TS, Pool or IW.

For IW we consider the feasible rule that we derive in equations (24) and (25) below (IW-MR),

12We consider the double Pareto distribution with pdf f(x; θ;β) = θ/(2β)

{
(x/β)θ−1, if 0 < x < β

(β/x)1−θ, if x ≥ β
with the

following parameter combinations for the shape (θ) and scale (β) parameters: (2.3, .5), (3, 1), (5, 2.45), (50, 34.5).
Note that population moments of order θ or greater do not exist; thus, in order to quantify the tail heaviness
of the distribution of Ai, we report a robust quantile based masure of kurtosis, the Crow-Siddiqui measure of
kurtosis (CSk = (Q0.975 − Q0.025)/(Q0.75 − Q0.25)), for each of the above four combinations: 7.58, 6.59, 5.51,
4.42.
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which in the simplified setting considered in this section is given in footnote 11. Figure 4 plots

these MSFEs of TS, Pool and IW as a function of the heaviness in the tails of the distribution

of A, as captured by the Crow-Siddiqui measure of kurtosis (on the x-axis). The figure shows

that IW improves on the performance of TS and Pool when TS and Pool are equally accurate,

confirming the findings of Theorem 4.2. Furthermore, the accuracy gains of IW are larger the

heavier the tails.
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M
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MSFE(Pool)=MSFE(TS)
MSFE(IW−MR)

Figure 4: MSFE of feasible IFW as a function of tail heaviness

4.5 Validity of Assumption 4.1 and Relationship with Tail Heaviness

It is easy to verify that all the feasible weights reported in Sections 3.2.2, 3.2.1 and 3.2.3

satisfy Assumption 4.1 with a strict inequality. For all weights, the term (Ai − µ)2 appears

in the denominator of 1 − Wi,T , whereas the remaining terms only depend on the U ′
i,ts. This

implies that large values of (Ai − µ)2 are associated with small values of the weight on Pool.

To illustrate how Assumption 4.1 is linked to tail heaviness, we consider the same simulation

design as that obtained to produce Figure 4 and compute the covariance in Assumption 4.1

(focusing for simplicity on IW-MR only). The four distributions have increasing tail heaviness,

while everything else that would otherwise affect the weights is kept fixed. We find that this

covariance becomes more negative as the tail heaviness increases (it respectively equals -0.134,

-0.168, -0.216, -0.254 for the four levels of tail heaviness). This implies that heavy tails make the

inequality in Assumption 4.1 ‘bite’ more, which, as shown by Theorems 4.2 and 4.1, translates

into larger gains of IW relative to TS and Pool.
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4.6 Implications for group accuracy

The findings in the previous sections show the benefits of IW in terms of individual performance,

but they also have implications for group accuracy. Figure 2, in particular, provides some

intuition for how the distribution of the signal to noise ratio λ2
i /σ

2
i across i (which we do not

restrict in any way) affects group accuracy as measured by the average MSFE. If there are

enough individuals for which the signal to noise ratio is in the range where IW dominates all

other forecasts in terms of individual MSFE, IW will dominate also in terms of average MSFE

across individuals. In addition, our simulations below will show how the tail properties of

the distribution of random effects can be linked to improved performance of IW (relative to

shrinkage estimators). Another simulation will show that IW can be beneficial not only for

outliers, but also for individuals that are near the mean of such distribution. This implies that

improvements in terms of group accuracy of our method relative to existing methods can be

linked to how many individuals fall in the tails and/or how many are clustered near the mean

of the random effects distribution.

5 Feasible Weights for IW

The results in the previous section show that individual weights are optimal under assumption

4.1, but do not directly provide a way to derive feasible weights. In this section, we show that

we can derive feasible weights that satisfy this assumption. Here we describe three types of

weights. For the first two, as in the previous section, we focus on the simplified setting in

section 4.1 for illustrative ease, but, again, the weights that we propose to use in practice and

that we consider in the simulations and empirical application are the general weights reported

in section 3.2. The third type of weights instead are not based on the model assumptions and,

thus, they are directly derived in the general case.

5.1 Estimated Oracle Weights (IW-O)

The first set of feasible weights are based on the oracle weights that minimize the individual

MSFE,

MSFE(Ŷ IW
i,T ) = E

[(
Yi,T+1 − Ŷ IW

i,T

)2]
,

which are functions of the individual variance parameters:

W o
i =

λ2
i

λ2
i + σ2

i

. (18)
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The oracle weights can be obtained by following Bates and Granger [1969] or Timmermann

[2006].13 W o
i could also be obtained by adapting to our context a similar reasoning as in

Efron and Morris [1973], who consider a theoretical generalization of James-Stein.14 The oracle

weights depend on the unknown parameters λ2
i and σ2

i . These parameters are identified in

panel data, so one could in principle estimate them using the time series dimension.15 To

our knowledge, feasible individual-specific weights have not been considered in practice in the

literature (Efron and Morris [1973] mention the generalized weights as a theoretical possibility

in a different context, without discussing feasibility). Estimated oracle weights at time T − 1

can be obtained as

W IW−O
i,T−1 =

ΣT−1
t=1 (Yi,t − µ)2/(T − 1)− ΣT−2

t=1 (Yi,t − Yi,t+1)
2/2(T − 2)

ΣT−1
t=1 (Yi,t − µ)2/(T − 1)

. (19)

These weights use the fact that: ΣT−1
t=1 (Yi,t−µ)2/(T − 1) is an unbiased estimator of λ2

i +σ2
i

and that σ̂2
i = ΣT−2

t=1 (Yi,t − Yi,t+1)
2/2(T − 2) is an unbiased estimator of σ2

i .
16

As one can expect, the short time dimension makes these parameters imprecisely estimated,

which is likely to result in poor performance of feasible oracle weights (and the subtraction at

the numerator can deliver negative weights that perform very poorly in simulations, see the

discussion in Appendix B.1). Our simulations will confirm this intuition and show that the

alternative feasible weights we discuss in the next section are preferable.

The above considerations on the likelihood of poor performance of feasible oracle weights

lead us to additionally focus on obtaining feasible weights that are robust. Specifically, we seek

to obtain weights that are minimax regret optimal over the unknown parameter space.

13The linear combination (14) and the weight (18) follow from equation (9) in Chapter 4 of Timmermann
[2006], using the fact that the joint distribution of Yi,T+1 and Yi,T is(

Yi,T+1

Yi,T

)
∼
((

µ
µ

)
,

(
λ2
i + σ2

i λ2
i

λ2
i λ2

i + σ2
i ,

))
which gives the optimal weight on Ŷ TS

i,T as the product between the inverse of the variance of the forecast and

the covariance between the outcome and the forecast, i.e.: W o
i =

λ2
i

λ2
i+σ2

i
.

14The “best linear rule” in equation (9.4), page 129 of Efron and Morris [1973] coincides with our equation
(14) with weight (18) when applied to Yi,T |Ai ∼ (Ai, σ

2
i ) and Ai ∼ (µ, λ2

i ).
15Note that existing shrinkage estimators obtain feasible weights under the assumption of homogeneous λ2

i

and σ2
i (James and Stein [1961]) or homogeneous λ2

i (Kwon [2021]), which can then be estimated using pooled
estimators that leverage the cross-sectional dimension.

16To see that σ̂2
i is an unbiased estimator of σ2

i note that:

E

[
T−2∑
t=1

(Yi,t − Yi,t+1)
2

]
= E

[
T−2∑
t=1

U2
i,t +

T−2∑
t=1

U2
i,t+1

]
= 2(T − 2)σ2

i .
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5.2 Minimax-Regret Optimal Weights (IW-MR)

In order to obtain feasible minimax-regret optimal weights we shift from unconditional MSFE

to MSFE that is conditional on the information set at time T − 1. The following lemma is the

analog of Lemma 4.1 for the conditional MSFE.

Lemma 5.1. Consider the forecasts in (12), (13), and (14). Let Assumption 3.1 hold. Then,

the mean squared forecast errors conditional on the information set at time T−1, {Yi,1, ..., Yi,T−1}
are

MSFE(TS, θi|{Yi,1, ..., Yi,T−1}) = 2σ2
i ,

MSFE(Pool, θi|Yi,1, ..., Yi,T−1) = κ2
i,T−1 + σ2

i ,

MSFE(IW, θi|Yi,1, ..., Yi,T−1) = σ2
i (1 +W 2

i,T−1) + κ2
i,T−1 (1−Wi,T−1)

2 ,

where

κ2
i,T−1 := E

[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
. (20)

It is easy to verify that the weights that minimize MSFE(IW, θi|Yi,1, ..., Yi,T−1) are given by:

W ∗
i,T−1 = κ2

i,T−1/(κ
2
i,T−1 + σ2

i ). (21)

In this section we consider a different type of regret, defined as the difference between the

conditional MSFE for a generic weight Wi,T−1 and the conditional MSFE that corresponds to

the conditionally optimal weights W ∗
i,T−1 in (21):

R∗(Wi,T−1, θi|Yi,1, ..., Yi,T−1)

:= MSFE(Wi,T−1, θi|Yi,1, ..., Yi,T−1)−MSFE(W ∗
i,T−1, θi|Yi,1, ..., Yi,T−1)

= σ2
iW

2
i,T−1 + κ2

i,T−1 (1−Wi,T−1)
2 −

σ2
i κ

2
i,T−1

κ2
i,T−1 + σ2

i

= σ2
i

[
W 2

i,T−1 + ζ2i,T−1 (1−Wi,T−1)
2 −

ζ2i,T−1

ζ2i,T−1 + 1

]
,

(22)

where

ζ2i,T−1 :=
κ2
i,T−1

σ2
i

=
E [(Ai − µ)2|Yi,1, ..., Yi,T−1]

σ2
i

. (23)

The form of regret in (22) is similar to that of regret in statistical decision theory (e.g., see

equation (6) in Manski [2021]).

The following theorem obtains the optimal minimax regret weights under the assumption
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that we can put bounds on the random variable ζ2i,T−1.

Theorem 5.1. Let Assumption 3.1 hold. Suppose that it is known that ζ2i,T−1 in (23) is such that

ζ2i,T−1 ∈ [0, ζ̃2i,T−1], where ζ̃
2
i,T−1 is large enough that maximum regret can occur at ζ2i,T−1 = ζ̃2i,T−1.

Consider maximum regret

max
θi∈Θ

R∗(Wi,T−1, θi|Yi,1, ..., Yi,T−1) = σ2
i max

[
W 2

i,T−1,

{
W 2

i,T−1 + ζ̃2i,T−1 (1−Wi,T−1)
2 −

ζ̃2i,T−1

ζ̃2i,T−1 + 1

}]
,

with R∗(Wi,T−1, θi|Yi,1, ..., Yi,T−1) defined as in (22). Then, the weight that minimizes maximum

regret is

W IW−MR
i,T−1 = 1− 1√

ζ̃2i,T−1 + 1
. (24)

In practice, the value of the bound ζ̃2i,T−1 is uncertain, but the following heuristic rule can

be used to obtain feasible weights: assuming T ≥ 3,

̂̃ζ2i,T−1 :=
max{(Yi,1 − µ)2, ..., (Yi,T−1 − µ)2}

ΣT−2
t=1 (Yi,t − Yi,t+1)2/2(T − 2)

, (25)

where, again, µ is either known or approximated by the pooled mean. Intuitively, the denom-

inator ΣT−2
t=1 (Yi,t − Yi,t+1)

2/2(T − 2) is an unbiased estimator of the denominator of ζ2i,T−1, σ
2
i .

The numerator is a proxy for the upper bound on κ2
i,T−1 in (20), which is the numerator of

ζ2i,T−1. One could also consider alternative proxies.17

5.3 Inverse MSFE Weights (IW-MSFE)

The weights we derive in this section do not rely on the model assumptions, and are thus appli-

cable in the general setting considered in section 2. The idea is to compute individual weights

by comparing the (in-sample or out-of-sample) MSFE at time T of the competing forecasts.

These weights are analogous to those considered in the time-series forecast combination litera-

ture (e.g., Stock and Watson [1998]), with the difference that the MSFE is computed here for

each individual over a very small time series sample (possibly containing only one observation).

As in Stock and Watson [1998], these inverse MSFE weights ignore any correlation between the

forecasts in the combination.18

17For example, one could multiply (25) by T−1
T based on the fact that, if ζ2i,T−1 in (23) is uniformly distributed

in [0, ζ̃2i,T−1], M̂ = max1≤t≤T-1(ζ
2
i,t) has bias E

[
M̂
]
=
∫ ζ̃2

i,T−1

0
T−1

(ζ̃2
i,T−1)

T−1
tT−1dt = T−1

T ζ̃2i,T−1. In practice, we

do not recommend doing so, given our focus on a distribution-free environment.
18In the time series literature, these weights are known to perform well even when the time dimension is large

because of the challenges in estimating correlations precisely. See, e.g., the discussion in Stock and Watson
[1998].
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The in-sample inverse MSFE weights are given by:

W IW−MSFE−IS
i,T :=

1/
[
ΣT

t=1(Yi,t − Ŷ TS
i,T )2

]
1/
[
ΣT

t=1(Yi,t − Ŷ TS
i,T )2

]
+ 1/

[
ΣT

t=1(Yi,t − Ŷ Pool
i,T )2

] . (26)

The out-of-sample inverse MSFE weights are given by:

W IW−MSFE−OOS
i,T :=

(Yi,T − Ŷ TS
i,T−1)

−2

(Yi,T − Ŷ TS
i,T−1)

−2 + (Yi,T − Ŷ Pool
i,T−1)

−2
. (27)

Note that here we base WOOS
i,T only on the out-of-sample forecast errors at time T corresponding

to TS and Pool forecasts computed on the sample up to time T−1. Depending on the magnitude

of T , one could also compute the out-of-sample MSFEs using more than just one out-of-sample

period. For example, one could select P < T and consider

W IW−MSFE−OOS
i,T,P :=

1/
[
ΣT

t=T−P+1(Yi,t − Ŷ TS
i,t−1)

2
]

1/
[
ΣT

t=T−P+1(Yi,t − Ŷ TS
i,t−1)

2
]
+ 1/

[
ΣT

t=T−P+1(Yi,t − Ŷ Pool
i,t−1)

2
] . (28)

Finally, we note that one could consider “rolling-window” forecasts, both as the original TS and

Pool forecasts and in the computation of the weights. In this case, both TS and Pool forecasts

at time t would be based only on the R < t most recent observations, rather than all available

observations up to time t.

6 Monte Carlo Simulations

In this section we first study the finite sample performance of alternative feasible IW weights.

Then, we compare IW to existing Bayesian shrinkage.

6.1 Alternative Feasible IW

We consider one individual (so we here drop the subscript i) observed over 3 time periods,

with shocks U1, ..., U3 drawn independently from a N(0, 1) and random effect A drawn from

a N(0, λ2
d), with λ2

d taking d = 50 equally-spaced values on the grid [0.001, 2]. Repeating the

simulation 10000 times allows us to approximate the individual MSFE when forecasting the

outcome Y3 at time T = 2 using the various different feasible weights for IW considered in

Section 3.2 (setting Ŷ Pool
i,T = 0). Figures 5 and 6 report the various MSFEs, divided by the

MSFE of IW-MR, and the minimax regret of different feasible IW rules as a function of the

signal-to-noise ratio (which here equals λ2). In Figure 5, a line above 1 means that the rule is

uniformly dominated by IW-MR over the parameter space.
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Figure 5: MSFE of alternative feasible IW rules.
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Figures 5 and 6 illustrate the dominance of IW-MR (black solid line) over the other feasible

rules, in terms of robustness over the parameter space. IW-MR is minimax regret optimal over

the considered parameter space. IW-MSFE-IS (blue dottted line) is uniformly dominated by

IW-MR, although not by a large amount. The performance of IW-MSFE-OOS (red dashed

line) and IW-O (green dashed-dotted line) is similar and depends on the signal to noise ratio,

outperforming IW-MR when the signal to noise ratio is very low, but performing poorly over

the rest of the parameter space.

6.2 IW vs. Bayesian Shrinkage

In this section we compare the performance of IW-MR to that of the James Stein forecast. The

draws in the following simulations can be interpreted in two different ways. First, they can be

seen as different possible draws of the random effect for one individual. Second, they can be

seen as draws for different individuals that have the same distribution of the random effect.

Averages across simulations accordingly have a different interpretation (e.g., they approximate

the individual MSFE in the first interpretation and the group MSFE in the second). The James-

Stein forecast in the first interpretation is just an individual weighting rule with constant weights

that do not depend on the individual random effect (see the discussion after Theorem 4.1). In

the second interpretation, the James-Stein is the forecast that exploits information from the

cross-sectional dimension, in contrast to IW, which leverages the time series dimension. Note

that the assumptions of parameter homogeneity made by James-Stein are satisfied in all the

designs considered below.

6.2.1 Tyranny of the Majority

We start by visually illustrating how IW overcomes the “tyranny of the majority” phenomenon

that affects existing Bayesian shrinkage methods. Henceforth, we focus on the IW-MR rule,

which we saw in the previous section generally outperforms the other feasible rules. We consider

10000 simulations of outcomes generated as Yt = A + Ut, with t = 1, ..., 3, Ut ∼ N(0, 1),

independent across t. For the random effects we consider the following designs:

• Design 1 (Normal): A ∼ N(0, λ2
d), with λd taking d = 2 values: [1, 3].

• Design 2 (Laplace): A ∼ Laplace with parameters (0,1), which implies mean 0 and

variance λ2 = 2.

• Design 3 (Double Pareto): A ∼ DoublePareto(θ, β), where θ = 3 and β = 1 (which

implies mean 0 and variance λ2 around 1.1).

These designs correspond to an increasing heaviness in the tails of the distribution of the

random effect A.
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We compare IW-MR as described in Section 3.2 (with Ŷ Pool
T = 0) to the James-Stein forecast

(JS):

Ŷ JS
T :=

λ2

λ2 + σ2/T
Ŷ TS
T , (29)

where σ2 = 1 in all designs and λ2 is indicated in each design.

Figures 7 - 10 report the difference ∆SFE between the squared forecast errors of forecasts

made at time T = 2 for IW-MR and those for JS, for the different designs. The horizontal

axis reports the value of A. The figures illustrate the tyranny of the majority phenomenon: JS

tends to make larger errors than IW-MR (the dots fall below zero) when the random effects fall

in the tails and also near the center of the distribution. This pattern is not yet visible in Figure

7 for the normal design with low variance, where the cloud appears symmetric relative to the

horizontal axis, but it is clear in the remaining figures. For example, in Figure 8 (the normal

design with larger variance) the cloud is heart-shaped, showing the superior performance of

IW-MR near the mean of the distribution. Figure 9 (the Laplace design) also shows the heart

shape but also the superior performance of IW in the tails. The improvement in the tails is

starkly evident in Figure 10 (the Double Pareto design), where the cloud has an inverted U-

shape. These results illustrate that what matters for the tyranny of the majority is not only

the tail heaviness of the distribution of random effects, but its relationship to the variance: the

design in Figure 8 shows that the phenomenon is present even when the distribution has thin

tails, but has a large variance. This is intuitive, as both a high variance and heavy tails make

it worthwhile to link the shrinkage to where the individual falls in the distribution of random

effects (IW) instead of shrinking every individual by the same amount (JS).
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Figure 7: Tyranny of the majority.
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6.2.2 Group Accuracy

The second interpretation of the simulation discussed above, which views the different draws

as different individuals, allows us to also analyze the group accuracy in the different designs.

Averaging the ∆SFE’s reported in each figure gives a measure of the relative group accuracy

of IW-MR and JS. This quantity equals 0.019, 0.025, -0.005 and -0.027, respectively in Figures

7 - 10. The relative group accuracy of JS and IW-MR for these designs thus depends on the

tail properties of the distribution of random effects, with JS dominating in the normal cases

and IW-MR dominating in the heavy-tailed cases.

7 Empirical Applications

We consider two applications of IW to estimation of random effects and to microforecasting.

7.1 Estimating and Forecasting Systemic Firm Discrimination

In this section we use IW to replicate and extend the analysis in Kline et al. [2022], assessing the

extent to which large U.S. employers systemically discriminate job applicants based on gender.

7.1.1 Data

We use the panel dataset in Kline et al. [2022] on an experiment that consisted of sending

fictitious applications to jobs posted by 108 of the largest U.S. employers. For each firm,

125 entry-level vacancies were sampled and, for each vacancy, 8 job applications with random

characteristics were sent to the employer. Sampling was organized in 5 waves (between October
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2019 and April 2021). Focusing on firms sampled in all waves yields a balanced panel of N = 72

firms over T = 5 waves.19

Applications were sent in pairs, one randomly assigned a distinctively female name and the

other a distinctively male name. For details on the other observables see Kline et al. [2022].

The primary outcome in Kline et al. [2022] is whether the employer attempted to contact

the applicant within 30 days of applying. The gender contact gap is defined as the firm-level

difference between the contact rate (the ratio of number of contacts and number of received

applications) for male and that for female applications.

Kline et al. [2022] estimate the cross-firm distribution of discrimination using the empirical

Bayes deconvolution estimator of Efron [2016], relying on a normality assumptions for the

idiosyncratic shocks. The estimator considers firm-specific studentized contact gaps, defined

as yi.t = Yi,t/si, where Yi,t is the contact gap and si is the standard deviation of contact gaps

across different job applications for firm i. These are modelled as

yi,t = ai + ui,t, ui,t ∼ N(0, 1) ai ∼ Ga, for i = 1, ..., 72.

The distribution Ga of the random effect is assumed to belong to an exponential family, flexibly

parameterized by a fifth-order spline. By pooling observations from all five waves, Efron [2016]’s

approach yields penalized Maximum Likelihood estimates of the spline parameters and thus an

implied distribution Ĝa of studentized contact gaps with corresponding density ĝa = dĜa. One

can then recover the distribution ĜY of the random effects for the unstudentized contact gaps

Yit under the assumption of independence between the random effects and si. In particular,

the density ĝY = dĜY at each point x is obtained as ĝY (x) =
1
N
ΣN

i=1
1
si
ĝa(

x
si
). 20

7.1.2 Estimating the Distribution of Firm Discrimination via IW

In this section, we estimate the cross-firm distribution of discrimination implied by IW, and

compare it to the estimate obtained by applying Efron [2016], as in Kline et al. [2022]. Because

IW does not rely on distributional assumptions, the findings can help assess the validity of the

normality assumption on the idiosyncratic shocks imposed by Kline et al. [2022].

For each t = 1, ..., 5 and firm i we model the unstudentized gender contact gaps Yi,t as:

Yi,t = Ai + Ui,t. (30)

At T = 5, we produce individual one-step-ahead forecasts using IW-MR as discussed in section

19Accounting for vacancy closures and the exclusion of some firms from some waves reduced the number of
applications to 65, 400.

20To perform the deconvolution, the choice of two tuning parameters is required: the order of the spline and
the penalization parameter of the first-step maximum likelihood procedure. The latter is optimally calibrated
to obtain a variance matching the bias-corrected estimate in Table IV of Kline et al. [2022].
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3.2. The distribution of these forecasts across firms can be viewed as an estimate of firm

discrimination, based on the information from all five waves. Figure 11 plots a non-parametric

estimate of the density.21 The figure also plots the density obtained by applying Efron [2016]’s

approach, also based on the information from all five waves.
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Figure 11: Density of gender contact gaps estimated using IW and Efron [2016]

We find that IW and Efron [2016] deliver densities that are visually not too different, but

the IW-implied density is slightly more right-skewed and has a heavier right tail. As a measure

of the overall inequality, we further compute the Gini coefficient as in Section IX of Kline et al.

[2022] and obtain similar coefficients of 0.489 using IW and 0.496 using Efron [2016]. For the

purpose of quantifying inequality, therefore, the two approaches deliver similar conclusions,

however IW suggests that a larger proportion of firms discriminate in favour of male applicants

(61% for IW vs. 54% for Efron [2016]).

7.1.3 Forecasting Performance

We then consider the forecasting performance of IW relative to that of Efron [2016]’s (henceforth

Efron) and James-Stein’s (henceforth JS) approaches. For each wave T = 3, 4, we produce

individual one-step-ahead forecasts of contact gaps by the following methods: TS, which uses

the time-series mean at time T ; Pool, which uses the pooled mean at time T ; the feasible rule

IW-MR from Section 3.2 and JS as in equation (29). For Efron [2016], we obtain individual

forecasts by the Empirical Bayes posterior mean estimates.22 We then compare the individual

21This is obtained by applying the default option in the “density” function from the Stats package in R, which
uses a kernel density estimator.

22We use the code provided by Kline et al. [2022] that produces Figure A13 in their paper, where they assess
the out-of-sample predictive power of the posterior means. We adapt the code to use data from waves 1, .., T
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out-of-sample forecasts from each method k, {ŷki,T} to the actual realizations {yi,T+1}, for the
waves 4, 5.

For each forecasting method k and each firm i, the mean squared forecast error over the

out-of-sample period is

MSFE(k, i) =
1

2

4∑
T=3

(yi,T+1 − ŷki,T )
2.

We report the average MSFE across i in Table 1.

Table 1: Out-of-sample Accuracy - Average MSFE

TS Pool JS Efron IW-MR

.00297 .00336 .00312 .00314 .00294

The table reveals that the IW-MR rules outperform Efron and JS (as well as TS and Pool)

in terms of group forecasting accuracy.

Figure 12 reports the difference ∆SFE between the squared forecast errors of forecasts

for IW-MR and those for Efron. The horizontal axis reports the value of the gender contact

gap at T = 4. The figure reveals that Efron - besides being less accurate than IW-MR on

average - tends to make larger errors (the dots fall below zero) for firms that at the time of

forecasting fell in the right tail and near the center of the distribution. Overall, these findings

could reflect a violation of the normality assumption and/or the effect of the data-dependent

choice of regularization parameter used by Kline et al. [2022] when implementing Efron.
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Figure 12: Difference in Squared Forecast Errors between IW-MR and Efron.

to produce the forecast at T = 3, 4.
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7.2 Microforecasting Earnings

This section considers an out-of-sample exercise that applies IW to forecasting earnings residuals

using the Panel Study of Income Dynamics (PSID).

7.2.1 Data

We consider earnings data from the PSID for 1968-1993.23 We follow the literature on income

dynamics (e.g., Meghir and Pistaferri [2004]) and select a sample of male workers, heads of

household, aged between 24 and 55 (inclusive). We drop individuals identifying as Latino, with

a spell of self-employment, with zero or top-coded wages and with missing records on race and

education. We also require that the change in log earnings is not greater than +5 or less than

−3. We consider earnings residuals obtained from a first stage panel data regression of log

labor income of an individual i at time t, Ỹi,t, on education, a quadratic polynomial in age, race

and year dummies. We denote by Yi,t the residuals from this regression. The goal is to obtain

individual one-year-ahead forecasts of earnings residuals Yi,t.
24

7.2.2 Forecasting Performance

We compare the out-of-sample group accuracy of IW-MR from Section 3.2, versus using TS or

Pool for all individuals.

We report results for the balanced samples of N = 164 (N = 790) individuals with con-

tinuous earnings in all consecutive years for 1968-1993 (1968-1980). We further consider an

unbalanced sample built using rolling windows of T = 3 time periods of balanced samples of

individuals (which delivers sample sizes ranging from 3960 to 7912). Forecasts are based on the

model:

Yi,t = Ai + Ui,t. (31)

We use rolling windows of T = 2 time periods and compare the out-of-sample forecasts from

each method k, ŷki,T , to the actual realizations yi,T+1, for t = 1972, ..., 1992, i = 1, ..., N .

For each forecasting method k and each individual i, the mean squared forecast error over

the out-of-sample period is

23We use data up to 1993 because from 1994 a major revision of the survey disrupted the continuity of PSID
files, see Kim, Loup, Lupton, and Stafford [2000]. Moreover, after 1997 the PSID switched from an annual to a
biannual data collection.

24Forecasting earnings residuals is of interest since they measure individual income risk. For instance, accu-
rate forecasting of individual earnings residuals might be useful for prospective lenders when deciding on loan
applications.
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MSFE(k, i) =
1

21

1992∑
T=1972

1

N

N∑
i=1

(yi,T+1 − ŷki,T )
2. (32)

Table 1 reports averages of MSFE(k, i) across i for each forecasting method k.

Table 2: Average out-of-sample MSFE

Sample Size TS Pool IW-MR
N
164 0.075 0.211 0.070
794 0.069 0.220 0.067

Unbal. 4-8000 0.117 0.265 0.108

Table 2 shows that, while TS clearly outperforms Pool in terms of average MSFE, IW further

improves accuracy.

To gain some insight into which individuals are given higher weights to pooling by IW, in

Figure 13 we divide the N=164 individuals of the balanced sample into ten quantiles according

to their lagged earnings (the vertical axis) for each year (the horizontal axis). Within each

quantile we compute the forecasts given the higher weights by IW-MR: the size of the dots

is proportional to the average weight attributed by IW-MR to Pool across individuals in that

year and in that quantile.25 Figure 13 shows that individuals near the median of the earnings

residuals distribution are those who benefit from larger weights to pooling.
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Figure 13: Average weights attributed to Pool by IW-MR by year and earnings quantiles

One possible interpretation of our findings is that in the PSID there is enough unobserved

25We set the size option of the R package ggplot equal to the mean of weights attributed to Pool by the
IW-MR rule for each quantile.
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heterogeneity to make the time series forecast outperform pooling (as indicated by Table 2).

However, an additional improvement in accuracy can be obtained by using IW, which tends

to attribute higher weight to pooling for individuals near the median of the distribution. This

finding confirms the usefulness of IW even when there is only a small fractions of individuals

that would benefit from pooling.

8 Conclusion

Estimating random effects and forecasting with micropanels is challenging due to the short

time dimension, and existing solutions have drawbacks. We presented an alternative method

that overcomes these drawbacks, while requiring minimal assumptions. In practice, the method

shrinks the time series mean towards the panel mean, using weights that are individual-specific

and are computed only using time series information. We offer three types of feasible weights:

minimax-regret optimal weights, estimated oracle weights and inverse MSFE weights, with

minimax-regret optimal weights generally displaying the best performance.

The method applies to linear panel data models and value-added models, provided the co-

variates have homogeneous coefficients. The extension to models with heterogeneous coefficients

for covariates (i.e., to multivariate unobserved heterogeneity) and to loss functions different from

the squared error considered here is straightforward for two of the feasible weights that we con-

sider. In particular, the inverse-MSFE error weights are directly applicable to models with

multivariate unobserved heterogeneity and to different loss functions. The estimated oracle

weights are also easily extended to multivariate unobserved heterogeneity by modifying the

analysis in Pesaran et al. [2022] to allow for heterogeneous variance of the parameters, which

in practice means estimating the weights that they propose using time series- instead of cross-

sectional information. Extending the derivation of minimax-regret optimal weights to more

general settings is less straightforward, and we thus leave this endeavour for future research.
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A Proofs

Proof of Lemma 4.1. The MSFEs for TS and Pool are immediate. For IW, first write

Yi,T+1 − Ŷ IW
i,T = (Yi,T+1 − Yi,T )Wi,T−1 + (Yi,T+1 − µ)(1−Wi,T−1).

Then, under assumption 3.1, we have that

MSFE(IW, θi)

= E
[(

Yi,T+1 − Ŷ IW
i,T

)2]
= E

[
(Yi,T+1 − Yi,T )

2]E [W 2
i,T−1

]
+ E

[
(Yi,T+1 − µ)2 (1−Wi,T−1)

2]
+ 2E [(Yi,T+1 − Yi,T ) (Yi,T+1 − µ)Wi,T−1 (1−Wi,T−1)]

= 2σ2
iE
[
W 2

i,T−1

]
+ E

[
(Ai − µ)2 (1−Wi,T−1)

2]+ σ2
iE
[
(1−Wi,T−1)

2]
+ 2E

[
(Ui,T+1)

2Wi,T−1 (1−Wi,T−1)
]

= 2σ2
iE
[
W 2

i,T−1

]
+ E

[
(Ai − µ)2 (1−Wi,T−1)

2]+ σ2
iE
[
(1−Wi,T−1)

2]
+ 2σ2

iE [Wi,T−1 (1−Wi,T−1)]

= σ2
i + σ2

iE
[
W 2

i,T−1

]
+ E

[
(Ai − µ)2 (1−Wi,T−1)

2] ,
which proves the lemma.

Lemma A.1 is used to prove Theorem 4.1.

Lemma A.1. Let M = {TS,Pool, IW}. Let Assumptions 3.1 and 4.1 hold. Then,

R(IW, θi) ≤ σ2
i ν

for each θi ∈ Θ, which is defined in (17). Furthermore, the inequality above is strict if either

0 < Wi,T−1 < 1 or the inequality in (16) is strict.

Proof of Lemma A.1. To bound MSFE(IW, θi), invoke Assumption 4.1 to write

E
[
(Ai − µ)2 (1−Wi,T−1)

2] ≤ λ2
iE
[
(1−Wi,T−1)

2] .
This implies that

MSFE(IW, θi) ≤ σ2
i + σ2

iE
[
W 2

i,T−1

]
+ λ2

iE
[
(1−Wi,T−1)

2] . (33)

Note that

R(IW, θi) = max
{
0,MSFE(IW, θi)− σ2

i −min{σ2
i , λ

2
i }
}
.
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If MSFE(IW, θi) < σ2
i +min{σ2

i , λ
2
i }, then R(IW, θi) = 0. In this case, there is nothing left to

prove. Hence, it suffices to assume that MSFE(IW, θi) ≥ σ2
i +min{σ2

i , λ
2
i }. It follows from (33)

and Assumption 4.1 that

MSFE(IW, θi)− σ2
i −min{σ2

i , λ
2
i }

≤ σ2
iE
[
W 2

i,T−1

]
+ λ2

iE
[
(1−Wi,T−1)

2]−min{σ2
i , λ

2
i }

≤ max{σ2
i , λ

2
i }
(
E
[
W 2

i,T−1

]
+ E

[
(1−Wi,T−1)

2])−min{σ2
i , λ

2
i }

≤ max{σ2
i , λ

2
i } −min{σ2

i , λ
2
i }

= (λ2
i − σ2

i )I(λ2
i > σ2

i ) + (σ2
i − λ2

i )I(λ2
i < σ2

i )

≤ σ2
i ν,

(34)

where I{·} denotes the indicator variable and the third inequality uses the fact that W 2
i,T−1 +

(1−Wi,T−1)
2 ≤ 1 if 0 ≤ Wi,T−1 ≤ 1. In conclusion, we have shown that R(IW, θi) ≤ σ2

i ν for

each θi ∈ Θ. This proves the first conclusion of the lemma. The second conclusion follows from

the facts that the inequality in (33) will be strict if the inequality in (16) is strict and that the

third inequality in (34) will be strict if 0 < Wi,T−1 < 1.

Proof of Theorem 4.1. We have

min
m∈M

MSFE(m, θi) ≤ min
m∈{TS,Pool}

MSFE(m, θi) = σ2
i +min{σ2

i , λ
2
i }.

Furthermore, the regrets for TS and Pool are

R(TS, θi) ≥ σ2
i −min{σ2

i , λ
2
i },

R(Pool, θi) ≥ λ2
i −min{σ2

i , λ
2
i }.

Note that

max
θi∈Θ

R(TS, θi) ≥ max
θi∈Θ

[
(σ2

i − λ2
i )I{σ2

i > λ2
i }
]
= σ2

i ν,

max
θi∈Θ

R(Pool, θi) ≥ max
θi∈Θ

[
(λ2

i − σ2
i )I{σ2

i < λ2
i }
]
= σ2

i ν,
(35)

where I{·} denotes the indicator variable as before. The claim in Theorem 4.1 then follows

directly from Lemma A.1 and the inequalities in (35).

Proof of Theorem 4.2. If λ2
i = σ2

i = 1, it follows from (34) that

MSFE(IW, θi)− 2 ≤ 0,

which proves the first conclusion of the theorem. As in Lemma A.1, the second conclusion

follows from the facts that the inequality in (33) will be strict if the inequality in (16) is strict
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and that the third inequality in (34) will be strict if 0 < Wi,T−1 < 1.

Proof of Lemma 5.1. First, consider the MSFE for the TS forecast. Write

E
[
(Yi,T+1 − Yi,T )

2 |Yi,1, ..., Yi,T−1

]
= E

[
(Ui,T+1 − Ui,T )

2 |Yi,1, ..., Yi,T−1

]
= E

[
(Ui,T+1 − Ui,T )

2] = 2σ2
i .

Now consider the MSFE for the Pool forecast. Note that

E
[
(Yi,T+1 − µ)2|Yi,1, ..., Yi,T−1

]
= E

[
(Ai − µ+ Ui,T+1)

2 |Yi,1, ..., Yi,T−1

]
= E

[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ E

[
U2
i,T+1|Yi,1, ..., Yi,T−1

]
+ 2E [AiUi,T+1|Yi,1, ..., Yi,T−1]

= E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ E

[
U2
i,T+1

]
+ 2E [AiE [Ui,T+1|Yi,1, ..., Yi,T−1, Ai]]

= E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ E

[
U2
i,T+1

]
+ 2E [AiE [Ui,T+1]]

= E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ σ2

i .

To obtain the MSFE for IW, first write

Yi,T+1 − Ŷ IW
i,T = (Yi,T+1 − Yi,T )Wi,T−1 + (Yi,T+1 − µ)(1−Wi,T−1).

Then, we have that

MSFE(IW, θi|Yi,1, ..., Yi,T−1)

= E
[(

Yi,T+1 − Ŷ IW
i,T

)2 ∣∣∣Yi,1, ..., Yi,T−1

]
= E

[
(Yi,T+1 − Yi,T )

2 |Yi,1, ..., Yi,T−1

]
W 2

i,T−1 + E
[
(Yi,T+1 − µ)2|Yi,1, ..., Yi,T−1

]
(1−Wi,T−1)

2

+ 2E [(Yi,T+1 − Yi,T ) (Yi,T+1 − µ)Wi,T−1 (1−Wi,T−1)]

= 2σ2
iW

2
i,T−1 +

{
E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ σ2

i

}
(1−Wi,T−1)

2

+ 2E [(Ui,T+1 − Ui,T ) (Ai + Ui,T+1) |Yi,1, ..., Yi,T−1]Wi,T−1 (1−Wi,T−1)

= 2σ2
iW

2
i,T−1 +

{
E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
+ σ2

i

}
(1−Wi,T−1)

2 + 2σ2
iWi,T−1 (1−Wi,T−1)

= σ2
i (1 +W 2

i,T−1) + E
[
(Ai − µ)2|Yi,1, ..., Yi,T−1

]
(1−Wi,T−1)

2 ,

which proves the lemma.

Proof of Theorem 5.1. To minimize maximum regret, we set

W̃ 2
i,T−1 = W̃ 2

i,T−1 + ζ̃2i,T−1

(
1− W̃i,T−1

)2
−

ζ̃2i,T−1

ζ̃2i,T−1 + 1
,

37



equivalently,

W̃i,T−1 = 1− 1√
ζ̃2i,T−1 + 1

.

To verify that W̃i is the solution, consider the case that

Wi,T−1 > 1− 1√
ζ̃2i,T−1 + 1

.

Then,

(1−Wi,T−1)
2 <

1

ζ̃2i,T−1 + 1
,

which in turns implies that

ζ̃2i,T−1(1−Wi,T−1)
2 <

ζ̃2i,T−1

ζ̃2i,T−1 + 1
.

Thus, maximum regret is σ2
iW

2
i,T−1, which is larger than the solution. Now consider the other

case that

Wi,T−1 < 1− 1√
ζ̃2i,T−1 + 1

.

Now maximum regret is

W 2
i,T−1 + ζ̃2i,T−1 (1−Wi,T−1)

2 −
ζ̃2i,T−1

ζ̃2i,T−1 + 1
.

It remains to show that if Wi,T−1 < 1− 1√
ζ̃2i,T−1+1

,

W 2
i,T−1 + ζ̃2i,T−1 (1−Wi,T−1)

2 −
ζ̃2i,T−1

ζ̃2i,T−1 + 1
−

1− 1√
ζ̃2i,T−1 + 1

2

> 0.

The left-hand side of the inequality above is minimized when Wi,T−1 = ζ̃2i,T−1/(ζ̃
2
i,T−1 +1), that

is, Wi,T−1 = 1 − 1√
ζ̃2i,T−1+1

. This is also the unique minimizer and plugging this value into the

left-hand side of the inequality above yields 0. Thus, the left-hand side of the inequality above

must be strictly positive if Wi,T−1 < 1− 1√
ζ̃2i,T−1+1

. Hence, we have proved the desired result.
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B Feasible Weights for the General Case

This appendix derives the feasible weights in sections 3.2.1 and 3.2.2 in the general case that

TS = Ȳi,T = ΣT
t=1Yi,t/T , Pool = µ and IW = Ȳi,TWi,T + µ(1−Wi,T ).

B.1 IW-O

It is easy to show that the oracle weights that minimize the unconditional MSFE of IW are

W o
i,T =

λ2
i

λ2
i + σ2

i /T
. (36)

These weights follow from equation (9) in Chapter 4 of Timmermann [2006], using the fact that

the joint distribution of Yi,T+1 and Ŷ TS
i,T is(

Yi,T+1

Ŷ TS
i,T

)
∼

((
µ

µ

)
,

(
λ2
i + σ2

i λ2
i

λ2
i λ2

i + σ2
i /T

))
,

which gives the optimal weight on Ŷ TS
i,T as the product between the inverse of the variance of

the forecast and the covariance between the outcome and the forecast, i.e.: W o
i,T =

λ2
i

λ2
i+σ2

i /T
.

The linear combination with W o
i as weight could also be obtained by applying the “best linear

rule” in equation (9.4), page 129 of Efron and Morris [1973], to Ŷ TS
i,T |Ai ∼ (Ai, σ

2
i /T ) and

Ai ∼ (µ, λ2
i ). Feasible oracle weights can for example be obtained as

ΣT
t=1(Yi,t − µ)2/T − ΣT−1

t=1 (Yi,t − Yi,t+1)
2/2(T − 1)

ΣT
t=1(Yi,t − µ)2/T − ΣT−1

t=1 (Yi,t − Yi,t+1)2/2T
, (37)

using the facts that: ΣT
t=1(Yi,t − µ)2/T is an unbiased estimator of λ2

i + σ2
i ; the denominator of

the oracle weights can be rewritten as λ2
i +σ2

i − T−1
T

σ2
i and that σ̂2

i = ΣT−1
t=1 (Yi,t−Yi,t+1)

2/2(T−1)

is an unbiased estimator of σ2
i . Since both the numerator and the denominator in (37) can be

negative, we found that these feasible weights perform very poorly in simulations. We thus

considered a number of alternatives and found that the best performance in simulations is

obtained by taking the positive part of the numerator in (37) and then again the positive part

of the resulting weights, delivering the following feasible weights:26

W IW−O
i,T =

((
ΣT

t=1(Yi,t − µ)2/T − ΣT−1
t=1 (Yi,t − Yi,t+1)

2/2(T − 1)
)+

ΣT
t=1(Yi,t − µ)2/T − ΣT−1

t=1 (Yi,t − Yi,t+1)2/2T

)+

. (38)

26Alternatives such as just taking the positive part of the weights in (37) or using the sample covariance
between Yi,t and Yi,t−1 as an estimator of λ2

i in the optimal weights numerator delivered very large errors in
simulations.
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B.2 IW-MR

To derive the IW-MR weights, we first derive the expression for the conditional MSFEs of TS,

Pool and IW.

Lemma B.1. Let Assumption 3.1 hold. The MSFEs conditional on the information set at time

T , YN,T , are

MSFE(TS, θi|YN,T ) = σ2
i,T + γ2

i,T ,

MSFE(Pool, θi|YN,T ) = σ2
i,T + κ2

i,T ,

MSFE(IW, θi|YN,T ) = σ2
i,T + γ2

i,TW
2
i,T + κ2

i,T (1−Wi,T )
2 − 2δi,TWi,T (1−Wi,T ) ,

where σ2
i,T = E

[
U2
i,T+1|YN,T

]
, γ2

i,T = E
[
Ū2
i,T |YN,T

]
, κ2

i,T = E [(Ai − µ)2|YN,T ] and δi,T =

E
[
(Ai − µ)Ūi,T |YN,T

]
, with Ūi,T = T−1ΣT

t=1Ui,t.

Proof of Lemma B.1. The MSFE for the TS forecast is given by

E
[(
Yi,T+1 − Ȳi,T

)2 |YN,T

]
= E

[(
Ui,T+1 − Ūi,T

)2 |YN,T

]
= E

[
U2
i,T+1|YN,T

]
+ E

[
Ū2
i,T |YN,T

]
− 2E

[
Ūi,TE

[
Ui,T+1|YN,T , Ūi,T

]
|YN,T

]
= σ2

i,T + γ2
i,T ,

where the last equality follows from

E
[
Ui,T+1|YN,T , Ūi,T

]
= E [Ui,T+1|YN,T , Ai] = 0. (39)

Now consider the MSFE for the Pool forecast. Note that

E
[
(Yi,T+1 − µ)2|YN,T

]
= E

[
(Ai − µ+ Ui,T+1)

2 |YN,T

]
= E

[
(Ai − µ)2|YN,T

]
+ E

[
U2
i,T+1|YN,T

]
+ 2E [(Ai − µ)Ui,T+1|YN,T ]

= E
[
(Ai − µ)2|YN,T

]
+ E

[
U2
i,T+1|YN,T

]
+ 2E [AiE [Ui,T+1|YN,T , Ai] |YN,T ]

= κ2
i,T + σ2

i,T ,

where the last equality again follows from (39). To obtain the MSFE for IW, first write

Yi,T+1 − Ŷ IW
i,T =

(
Yi,T+1 − Ȳi,T

)
Wi,T + (Yi,T+1 − µ)(1−Wi,T ).
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Then, we have that

MSFE(IW, θi|YN,T )

= E
[(

Yi,T+1 − Ŷ IW
i,T

)2 ∣∣∣YN,T

]
= E

[(
Yi,T+1 − Ȳi,T

)2 |YN,T

]
W 2

i,T + E
[
(Yi,T+1 − µ)2|YN,T

]
(1−Wi,T )

2

+ 2E
[(
Yi,T+1 − Ȳi,T

)
(Yi,T+1 − µ)Wi,T (1−Wi,T ) |YN,T

]
=
{
σ2
i,T + E

[
Ū2
i,T |YN,T

]}
W 2

i,T +
{
E
[
(Ai − µ)2|YN,T

]
+ σ2

i,T

}
(1−Wi,T )

2

+ 2E
[(
Ui,T+1 − Ūi,T

)
(Ai − µ+ Ui,T+1) |YN,T

]
Wi,T (1−Wi,T )

=
[
σ2
i,T + γ2

i,T

]
W 2

i,T +
[
κ2
i,T + σ2

i,T

]
(1−Wi,T )

2

+ 2
{
σ2
i,T − E

[
(Ai − µ)Ūi,T |YN,T

]}
Wi,T (1−Wi,T )

= σ2
i,T + γ2

i,TW
2
i,T + κ2

i,T (1−Wi,T )
2 − 2δi,TWi,T (1−Wi,T ) ,

which proves the lemma.

The optimal weights that minimize MSFE(IW, θi|YN,T ) are

W ∗
i,T =

κ2
i,T + δi,T

κ2
i,T + γ2

i,T + 2δi,T
. (40)

We henceforth set δi,T ≈ 0 (this can be seen as approximating E
[
(Ai − µ)Ūi,T |YN,T

]
with

the unconditional mean E
[
(Ai − µ)Ūi,T

]
= 0).

Define regret as the difference between the conditional MSFE for a generic weight Wi,T and

the conditional MSFE that corresponds to the optimal weights W ∗
i,T in (40):

R∗(Wi,T , θi,T |YN,T ) := MSFE(Wi,T , θi,T |YN,T )−MSFE(W ∗
i,T , θi,T |YN,T ) (41)

= γ2
i,TW

2
i,T + κ2

i,T (1−Wi,T )
2 −

γ2
i,Tκ

2
i,T

κ2
i,T + γ2

i,T

= γ2
i,T

[
W 2

i,T + ζ2i,T (1−Wi,T )
2 −

ζ2i,T
ζ2i,T + 1

]
,

where

ζ2i,T :=
κ2
i,T

γ2
i,T

=
E [(Ai − µ)2|YN,T ]

E
[
Ū2
i,T |YN,T

] . (42)

The following theorem obtains the optimal minimax regret weight under the assumption

that we can put bounds on the random variable ζ2i,T .

Theorem B.1. Suppose that it is known that ζ2i,T in (42) is such that ζ2i,T ∈ [0, ζ̃2i,T ], where ζ̃2i,T
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is large enough that maximum regret can occur at ζ2i,T = ζ̃2i,T . Consider maximum regret

max
θi∈Θ

R∗(Wi,T , θi|YN,T ) = γ2
i,T max

[
W 2

i,T ,

{
W 2

i,T + ζ̃2i,T (1−Wi,T )
2 −

ζ̃2i,T

ζ̃2i,T + 1

}]
,

with R∗(Wi,T , θi|YN,T ) defined as in (41). Then, the weight that minimizes maximum regret is

W̃i,T = 1− 1√
ζ̃2i,T + 1

. (43)

Proof of Theorem B.1. Same as proof of Theorem 5.1 (with subscript T instead of T−1).

In applications, the value of the upper bound ζ̃2i,T is uncertain. We thus propose the following

heuristic rule to obtain feasible minimax regret optimal weights for IW:

̂̃ζ2i,T :=
max{(Yi,1 − µ)2, ..., (Yi,T − µ)2}
ΣT−1

t=1 (Yi,t − Yi,t+1)2/2T (T − 1)
. (44)

Here, the denominator, ΣT−1
t=1 (Yi,t−Yi,t+1)

2/2T (T − 1), is an unbiased estimator of σ2
i /T , which

approximates γ2
i,T = E

[
Ū2
i,T |YN,T

]
with the unconditional mean E

[
Ū2
i,T

]
= σ2

i /T . The numera-

tor, max{(Yi,1−µ)2, ..., (Yi,T −µ)2}, is a proxy for the upper bound on κ2
i,T = E [(Ai − µ)2|YN,T ].
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