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Abstract

A recent literature addresses endogeneity utilizing assumptions restricting agents’ in-

formation sets when they chose endogenous variables. We consider using these identifying

assumptions to identify a structural function (e.g. a demand or production function) in

a fully nonparametric context. Using Imbens and Newey (2009)’s control function frame-

work we show identification and illustrate how our model’s structure permits weaker sup-

port conditions than used by Imbens and Newey. We apply our results to production

function estimation, finding non-Hicks neutral shocks that generate interesting hetero-

geneity in output elasticities and biased technological change as defined in Acemoglu

(2002) and studied in Doraszelski and Jaumandreu (2018).

1 Introduction

In panel data contexts, one often desires to make inferences about the effects of an endogenously

chosen variable xit on an outcome variable yit. Since assuming orthogonality between xit and

econometric unobservables seems strong, researchers have looked for weaker assumptions on

which to base identification and estimation (we loosely interpret orthogonality here to mean

either independence, mean independence, or zero correlation, depending on the situation).

One general approach is to, instead of assuming that all unobservables are orthogonal to xit,

assume that only a portion of the unobservables are orthogonal to xit. The classic linear

∗ This paper is a combination of two earlier drafts “Some Nonparametric Identification Results using Timing

and Information Set Assumptions” by the first two coauthors (Ackerberg and Hahn (2015)), and “Support

Conditions in Control Function Approaches” by the third coauthor (Pan (2021)). All errors are our own.
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fixed effects model is perhaps the best known example of this - the unobservable is divided

into two components, a time invariant fixed effect component that can be correlated with the

xit’s, and a time varying mean zero component that is assumed uncorrelated with xit. The

panel data literature, e.g., Chamberlain (1982), Anderson and Hsiao (1982), Arellano and

Bond (1991), Blundell and Bond (1998) and Blundell and Bond (2000), contains a number of

generalizations of this assumption. For example, one can estimate models under a sequential

exogeneity assumption whereby the time varying component of the unobservable is allowed

to be correlated with future xit’s. Another example is Blundell and Bond (2000), who allow

the time varying component of the unobservable to contain an AR(1) process, where only the

innovation in the AR(1) process is assumed uncorrelated with specific xit’s.

A recent literature focused on estimating production functions in a panel context, i.e., Olley

and Pakes (1996), Levinsohn and Petrin (2003), Ackerberg, Caves, and Frazer (2015), also use

this general strategy to address endogeneity issues, but with a different decomposition of the

unobservables. Olley and Pakes (1996) assume that the unobservable causing the endogeneity

problem, ωit, follows a nonparametric first order Markov process, i.e., ωit = g (ωit−1) + ξit,

where E [ξit|ωit−1] = 0. To identify the production function coefficient on capital kit, they use

the assumption that ξit (but not ωit−1) is mean independent of kit. Loosely speaking, this allows

firms’ choices of kit to depend on ωit−1, but not ξit. Ackerberg, Benkard, et al. (2007) describe

these as timing and information set assumptions, i.e., as assumptions regarding 1) the point in

time at which the agent chooses xit, and 2) the agents’ information sets at that point in time.

Specifically, one interpretation of this assumption is that kit is chosen by firms at time t − 1

(i.e. a time-to-build assumption) and that ξit is not in firms’ information sets at time t − 1

(while ωit−1 is permitted to be in the firms’ information sets at t− 1).

The timing and information set assumptions of Olley and Pakes (1996) have been used in

thousands of research papers in the recent production function literature, and the same general

identification strategy is increasingly being used in other contexts. For example some recent

work on estimation of demand systems, e.g., Berry, Levinsohn, and Pakes (1995), Sweeting

(2013), Grennan (2013), Lee (2013), and Sullivan (2017), have used timing and information

set assumptions to address the problem of endogenously chosen product characteristics and/or

prices. Bajari, Fruehwirth, Timmins, et al. (2012) utilize them in hedonic pricing models, and

Pan (2022) uses them to estimate an input demand function. So these timing and information

set assumptions can be thought of as a general approach to dealing with endogeneity problems

across a variety of literatures.

This literature using these Olley and Pakes timing and information set assumptions has

worked under the assumption that the relationship between yit and xit is parametrically speci-

fied, and that there is an additive separable unobservable term. A few exceptions, in particular

Gandhi, Navarro, and Rivers (2020) and Demirer (2020), allow some nonparametric structure,
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but continue to maintain an additively separable unobservable term. The goal of this paper is

to show that, at least under certain assumptions, these timing and information set assumptions

also have identifying power in a nonparametric model with a nonadditively separable unob-

served term, i.e., where the scalar unobserved term enters the model completely flexibly (up to

a strict monotonicity restriction). In other words, we show conditions under which these timing

and information set assumptions allow us to identify a nonparametric structural relationship

yit = ft (xit, ωit).

We use a control function approach to show identification of our model, following, e.g.,

Heckman (1977), Blundell and Smith (1989), Blundell and Powell (2001), Matzkin (2004), and

Imbens and Newey (2009). We first show how the timing and information set assumptions of

our model generate a conditional independence result that allows us to put the model in the

framework of Imbens and Newey (2009). However, our model imposes additional structure

than their general model. In particular, in relation to the canonical “triangular” example of

Imbens and Newey (2009), what is akin to the “first stage” equation at one t is simultaneously

the “outcome equation” at another t. This means that Imbens and Newey’s assumption

of a (strictly monotone) scalar unobservable in the first stage equation also implies a scalar

unobservable in our outcome equation. We show that this additional structure allows us to

substantially relax the “common support” condition required by Imbens and Newey (2009),

a condition that Imbens and Newey recognize as quite strong. In particular, we show that

interesting structural objects can be identified with very “local” support conditions, and that

the full model can be identified under conditions considerably weaker than the common support

condition in Imbens and Newey (2009). Of course, these results do rely on the above scalar

and strict monotonicity assumptions on ωit, but this is a limitation of much of the literature

on nonparametric identification when one places no parametric restrictions on the structural

function (see, e.g., Matzkin (2007)).

We then apply our approach to study properties of production functions. We feel our the-

oretical extension of timing and information set approaches to models that are not additively

separable in the unobservables is particularly important here. This is because in a production

function context, a model with only an additively separable unobservable (in log output) cor-

responds to the assumption of a “Hicks neutral” productivity shock. Such shocks are known

to be quite restrictive, and there is both direct and indirect evidence that suggests that there

are non-Hicks neutral aspects to productivity shocks (e.g., Balat, Brambilla, and Sasaki (2016),

Kasahara, Schrimpf, and Suzuki (2015), Doraszelski and Jaumandreu (2018), Raval (2019),

Zhang (2019), Demirer (2020), Raval (2020), Oberfield and Raval (2021)). Our methodology

relaxes this assumption, and we apply it to study production functions in three large industries

in each of Chile and Colombia. Our estimates also imply non-Hicks neutral productivity shocks,

and we examine how these shocks enter our production functions. We find differential patterns
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with which how they interact with capital and labor inputs, and, interestingly, these patterns

appear to be relatively consistent across the industries we consider. For example, heterogeneity

in elasticities of output w.r.t. labor are substantially driven by the non-Hicks neutral productiv-

ity shock, while heterogeneity in elasticities of output w.r.t. capital are relatively more driven

by variation in observed inputs. Other recent papers have also relaxed the assumption of Hicks

neutral productivity shocks - including some of the papers mentioned above. However, we

do it in a different way. Other approaches have typically added additional shocks within a

parametric structure (e.g., Doraszelski and Jaumandreu (2018) add a labor-augmenting shock

in a CES production function). In contrast, we keep a scalar productivity shock, but allow it

to enter in a nonparametric way. Ideally, one would want both multidimensional shocks and

nonparametric structure, but this is likely not possible while preserving point identification.

Hence, we see our approach as complementary to existing approaches. For example, similar to

Doraszelski and Jaumandreu (2018), we find evidence that our non-Hicks neutral shocks gener-

ate substantial capital bias in technological change, which has important implications on labor

markets and wages. The fact that we also find this bias, under quite different assumptions as

Doraszelski and Jaumandreu (2018), lends further support to their conclusions.

Our theoretical identification results are directly related to at least three other recent papers.

Altonji and Matzkin (2005) also study nonparametric identification in panel situations. They

consider nonparametric analogues to fixed and random effects estimators. In their setup, the

primary endogeneity problem is generated by an unobservable that is fixed over time. This

contrasts with our model that follows the spirit of Olley and Pakes (1996), where the problematic

unobservable follows a Markov process with timing and information set assumptions like those

described above. It is important to note that while these models are different, neither is a

generalization of the other. Hu and Shum (2012) and Hu and Shum (2013) also consider

nonparametric identification in a panel setting with Markov structure. Like our paper, the

problematic unobservable is assumed to be a scalar and follow a finite Mth order Markov

process. In contrast to our quantile based, control function approach to identification, these

papers use deconvolution approaches. Our data requirements are weaker than these papers.

Specifically, we only require the number of observed time periods T to be at least one greater

than the dimension of the Markov process (i.e., T = M + 1), i.e., we need to observe at least

as many lags as the assumed order of the Markov process. In contrast, Hu and Shum’s results

require T > M + 1, in some cases requiring T = 3M + 2. So unlike Hu and Shum, we can

estimate a model with a first order Markov process using only two periods of data. On the

other hand, Hu and Shum’s results apply to models broader than ours in that they allow the

outcome variable yit to have a dynamic effects (i.e., yit−1 can structurally determine yit).
1 We

1Kasahara, Schrimpf, and Suzuki (2015) also use deconvolution techniques to study identification of a pro-

duction function with extensive time invariant unobserved heterogeneity, but where the productivity shock is
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only consider models without such a dynamic effect. Lastly, work by Navarro and Rivers (2018)

is related to our work both in theory and in empirics. Independently of the prior version of

this paper Ackerberg and Hahn (2015), Navarro and Rivers (2018) take a different approach to

identification of a non-separable production function. By utilizing an assumption that firms are

price takers in output markets along with an assumption of firm profit maximization, they are

able to consider gross output production functions. Like Doraszelski and Jaumandreu (2018),

they find evidence of capital biased technological change in these gross output production

functions, so our empirical finding of similar patterns in value added production functions is

also consistent with theirs.

2 Setup

Our goal is to use panel data on observables {xit, yit}, i = 1, ..., N , t = 1, ..., T to identify the

structural equation

yit = ft (xit, ωit) , (1)

where ft : Sx
t × Sω

t → R is differentiable in (xit, ωit) and strictly increasing in ωit, Sx
t ∈ Rdx is

the support of xit, Sω
t ∈ R is the support of ωit, xit has a continuous distribution,2 and ωit is a

scalar unobservable term that is also continuously distributed.3

The scalar and strict monotonicity restrictions on ωit are assumptions that are commonly

used in the nonparametric identification literature when one treats a scalar valued structural

function ft completely nonparametrically. Note that with auxiliary data, one could potentially

add additional unobservables to the model that are identified in a preliminary stage. For

example, in a production function context Ackerberg, Caves, and Frazer (2015) show how, with

additional assumptions and data mit, one can identify ϵit in the model ỹit = ft (xit, ωit)+ϵit in a

preliminary stage, hence reducing the model to the one above, i.e., yit = ỹit− ϵit = ft (xit, ωit).
4

Note that we allow the structural functions ft to change in arbitrary ways over time, but the

model is not “dynamic” in the sense that yit−1 does not directly determine yit. We consider

identification of the structural functions ft under the assumption that N → ∞ and T is fixed.

We consider a situation where the vector of observables xit is endogenously chosen by an

economic agent. We start with our key timing and information set assumption:

still Hicks neutral. They require T = 4 for identification of a model where the productivity shock follows a first

order Markov process.
2With some slight adaptations, our approach also applies to the case where xit is discrete.
3Throughout the paper, for the convenience of exposition, we assume all the distributions (joint or marginal)

have positive densities over their respective support.
4They actually consider the model ỹit = ft (xit) + ωit + ϵit, but the process would be the same with ωit

entering non-linearly.
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Assumption 1 (Timing and Information Set) At the time xit is chosen, the agent’s informa-

tion set is Iit−1 =
{
{yiτ}t−1

τ=1 , {xiτ}
t−1
τ=1 , {ωiτ}t−1

τ=1 , {ηiτ}
t−1
τ=1

}
, where ηit are additional unobserv-

ables that we describe below.

This assumption implies that our economic agents are choosing xit without knowledge of

the period t structural unobservable ωit, but with knowledge of ωit−1 (and yit−1 and xit−1, and

histories of these variables).5 Since we will allow serial correlation in ωit, xit and ωit can be

correlated in this model even though xit is chosen before the agent observes ωit. This is because

xit may be chosen as a function of ωit−1 and ωit−1 may be correlated with ωit.

The agent’s information set when choosing xit, Iit−1, also includes econometric unobservables

ηit−1. These are other factors that may affect the agent’s payoffs and thus the optimal choice

of xit. Note that other than the timing and informational set assumptions, our model is quite

general. One nice attribute of our approach is that we will not need to explicitly specify agents’

payoffs for our identification results. For example, xit = ht (Iit−1) may be the solution to a

dynamic programming problem that would require many other auxiliary assumptions to solve.

We will not need to specify ht, and thus can essentially be agnostic about these auxiliary

assumptions.

A good example of these types of assumptions being used in practice is the widely cited and

applied Olley and Pakes (1996) approach to estimating production functions. In this context,

yit is output (or revenue), xit are inputs chosen by the firm (e.g., capital, labor, R&D) and ωit is

an unobservable “productivity” shock. Typically in this literature, at least some of the inputs

in xit are assumed to satisfy Assumption (1), i.e., to be chosen prior to the firm learning ωit.

For example, in Olley and Pakes (1996) the capital input is assumed to satisfy Assumption

(1), while in Gandhi, Navarro, and Rivers (2020) both capital and labor are assumed to satisfy

Assumption (1). This is described as a “timing and information set” assumption because, e.g. in

Olley and Pakes (1996), it involves both an assumption that firms must commit to their period

t capital stock at t − 1 (a timing assumption)6 and the assumption that ωit is not observed

by firms until period t (an information set assumption). Note that different combinations of

timing and information set assumptions can also be consistent with (1). For example, if one

assumed that agents do not observe ωit until period t+1, then xit could be chosen at t.7 In the

production function context, the unobservable ηit−1 could represent a multidimensional set of

5We will discuss how one might relax the timing and information set assumptions in section (5).
6This reflects a “time-to-build” assumption on capital or an assumption that labor requires time to adjust.

The appropriability of these timing assumptions will depend on the industry being studied and the time frame

of the data (e.g., annual vs quarterly vs daily).
7Analagously, if ωit was for some reason observed ahead of time at period t − 1, then xit could need to be

chosen at t − 2. See Ackerberg (2020) for more discussion of this. Also note that the related panel data

literature described in the introduction, which makes similar assumptions, might describe this assumption as

one of xit being “predetermined”.
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factors affecting input and output prices (or those prices themselves if they are competitively

set). Typically, such factors will impact optimal choices of xit.
8

These timing and information set assumptions have also been used for identification in

demand models with endogenous product characteristics, e.g., Sweeting (2013), Grennan (2013),

Lee (2013), and Sullivan (2017). These papers assume that product characteristics take time

for a firm to design and change so that they must be decided before the firm observes the period

t demand shock. In other words, they assume that while period t product characteristics xit

can be chosen as a function of prior periods demand shocks ωit−1, they cannot be chosen as a

function of the current period demand shock ωit. In this case, ηit−1 might represent cost shocks

that affect firms’ choices of product characteristics and prices. Other applications using these

types of assumptions include Bajari, Fruehwirth, Timmins, et al. (2012), who apply them in

hedonic pricing models, and Pan (2022), who uses the techniques here in a situation where

equation (1) is an input demand function for a variable input yit conditional on a fixed input

xit.

For our nonparametric identification arguments we make the following additional assump-

tion on the structural unobservable ωit.

Assumption 2 (M th Order Markov Process) pt (ωit | Iit−1) = pt
(
ωit | {ωiτ}t−1

τ=t−M

)
, where

T ≥M + 1.

Assumption (2) allows the distribution of ωit vary across time and be specified nonpara-

metrically. On the other hand, Assumption (2) may be argued to be restrictive because we

assume that ωit evolves “exogenously” in the sense that conditional on ωit and past values of

ωit, the distribution of ωit+1 does not depend on values of the other variables in the model

dated t and earlier.9 We also assume that ωit follows a finite Mth order Markov process.10 So

unlike Arellano and Bond (1991), Blundell and Bond (1998), Blundell and Bond (2000), and

Altonji and Matzkin (2005), our assumption does not allow there to be a component of ωit that

is fixed over time (e.g. a fixed or random effect). On the other hand, we do not require the the

exchangeability assumption of Altonji and Matzkin (2005).

We only need one more period of data than the order of the Markov process (T = M + 1)

to obtain identification, i.e., we need to observe a number of lags equal to the assumed order

8In this formulation, we are using ηit−1 to denote the price paid for (or factors influencing the price paid

for) inputs xit. But the indexing of η is irrelevant. For example, if one prefers to index these instead by t (i.e.

ηit), one can simply include ηit in Iit−1.
9However, our approach can be generalized to allow for a controlled Markov process as in Doraszelski and

Jaumandreu (2013), as long as the control variable is observed.
10When M = 0, we define {ωiτ}t−1

τ=t−M = ∅. Obviously this is not a particularly interesting case, because in

this case, our assumptions imply that ωit is independent of xit, and identification of ft is trivial using Matzkin

(2003).
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of the Markov process. This is less than what is required by Hu and Shum (2012) and Hu and

Shum (2013) in their deconvolution approaches to identification in related models - they require

more than M +1 periods (in some cases they require up to T = 3M +2). This is because these

deconvolution approaches use restrictions the Markov structure places on correlations between

data in time periods that are further apart than the assumed length of the Markov process (e.g.

correlations between t = 1 and t = 3 variables with a first order Markov process). In contrast,

in our approach, e.g., if ωit follows a first order Markov process, then we only need two periods

of data.

Note that ft is permitted to vary by t in our model. In our main approach based on control

functions, we need to observe all M lags to identify ft at a particular t. For example, when

M = 1, we cannot identify ft for t = 1, but we can identify ft for all the later periods. However,

in section (6) we detail a related identification approach that can identify ft for the initial time

periods in the data (i.e., for t ≤M).

Given Assumption (2), our model places very few restrictions on the other econometric

unobservables, the ηit. We do not need to limit the dimension of ηit, and the ηit’s can be

contemporaneously correlated with ωit, and ηit’s can be correlated in any way with Iit−1 (which

includes past values of η). In addition, the distribution of ηit can change over time. The

key restriction of the model, embodied in Assumption (2), is that the distribution of ωit given

{ωiτ}t−1
τ=t−M does not depend on any past η’s. While this assumption may be strong, it is an

essential element of basically all the literature stemming from Olley and Pakes (1996). As

detailed at length later, we also require support conditions - essentially that there is “enough”

variation in ηit−1 to generate sufficient variation in xit given ωit−1.

Given Assumption (2), we can express

ωit = gt
(
{ωiτ}t−1

τ=t−M , ξit
)
, (2)

where gt is strictly increasing in ξit, a scalar unobservable that is independent of Iit−1. We

make the additional assumptions that

Assumption 3 gt is differentiable in its arguments and strictly increasing in ξit.

These regularity conditions require the conditional density pt to be sufficiently smooth - for

example, for gt to be strictly increasing in ξit, pt cannot have mass points. Then, by Matzkin

(2007), we without loss of generality make the following normalizations:

Assumption 4 (Normalizations) At each t, ωit and ξit have U(0, 1) marginal distributions.

Before proceeding with our formal identification arguments, we describe the intuition behind

identification in this model. This intuition is actually quite simple. Substituting in lagged (2)

into (1) results in

yit = ft
(
xit, gt

(
{ωiτ}t−1

τ=t−M , ξit
))
.
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Assumption (1) implies that xit is chosen as a function of only Iit−1, and ξit is a scalar unob-

servable that, given Assumption (2) is independent of Iit−1. Therefore, xit is independent of

ξit (in fact, (xit, Iit−1) is jointly independent of ξit). Because ft is strictly monotone in ωit for

all t, conditioning on M lags of {xit, yit} is equivalent to conditioning on M past values of ωit.

Hence, conditional on {xiτ , yiτ}t−1
τ=t−M , variation in xit that is independent of ξit can be used to

identify aspects of ft.

3 Control Function Approach

More formally, focus attention on one particular t ≥ M + 1. Let x1it be the first component of

xit and define the random variable

ς1it = Fx1
it|{yiτ}

t−1
τ=t−M ,{xiτ}t−1

τ=t−M

(
x1it, {yiτ}

t−1
τ=t−M , {xiτ}t−1

τ=t−M

)
.

Now, we consider the second element of xit conditional on {yiτ}t−1
τ=t−M , {xiτ}t−1

τ=t−M , and ς1it, i.e.,

Fx2
it|{yiτ}

t−1
τ=t−M ,{xiτ}t−1

τ=t−M ,ς1it
. Define the random variable

ς2it = Fx2
it|{yiτ}

t−1
τ=t−M ,{xiτ}t−1

τ=t−M ,ς1it

(
x2it, {yiτ}

t−1
τ=t−M , {xiτ}t−1

τ=t−M , ς1it
)
.

By iterating this process, we can create ςt =
(
ς1t , . . . , ς

J
t

)
.

Theorem 1 xit is independent of ωit given
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
.

Proof. Lemma (6) in the Appendix uses Assumptions (1) and (2) to show that ξit and ςit are

independent of each other given ({yiτ}t−1
τ=t−M , {xiτ}t−1

τ=t−M). Now note that xit can be written

as a function of
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
and ςit, say xit = φt

((
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
, ςit

)
.

Also, since ωit = f−1
t (xit, yit), we can see that ωit = gt

(
{ωiτ}t−1

τ=t−M , ξit
)
can be written as a

function of
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
and ξit, say ωit = ϕt

((
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
, ξit

)
.

Theorem (1) establishes that in our model based on timing and information set assumptions,

Assumption 1 of Imbens and Newey (2009) holds. This allows us to identify yit = ft(xit, ωit)

using vit−1 =
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
as a control function. More specifically, consider the

same support condition as Imbens and Newey, i.e.,

Assumption 5 (Assumption 2 of Imbens and Newey (2009): Common Support) For all xit in

the support, the support of vit−1 conditional on xit equals the support of vit−1.

Since ft is strictly monotone in ωit, to identify yit = ft(xit, ωit) it suffices to identify the

inverse function of ft, i.e., to identify the ω0 corresponding to any value of (xit, yit) = (x0, y0).
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With fvit−1
denoting the density function of vit−1 =

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
we can obtain

this ω0 using the following equation:

ω0 = Pr(ft(x
0, ωit) ≤ y0) (3)

=

∫
Pr(ft(x

0, ωit) ≤ y0|vit−1 = v)fvit−1
(v)dv

=

∫
Pr(ft(x

0, ωit) ≤ y0|xit = x0, vit−1 = v)fvit−1
(v)dv

=

∫
Pr(yit ≤ y0|xit = x0, vit−1 = v)fvit−1

(v)dv.

The first equality follows from the normalization ωit ∼ U(0, 1). The second equality follows

from law of iterated expectation. The third equality follows because conditional on vit−1 = v,

ωit is independent from of xit so we can further condition on xit = x0. The last line follows

from the fact that the observed yit is generated by ft.

Focusing on the last line of (3), the marginal density of vit−1, fvit−1
, can be directly identified

by the data. Pr(yit ≤ y0|xit = x0, vit−1 = v0) is also directly identified at every point (x0, v0)

on the joint support of (xit, vit−1). So as long as the Imbens and Newey support condition, i.e.,

Assumption (5), holds, ft is identified for all t > M . It is also clear why this approach doesn’t

work for t ≤M (e.g., the first period of data when M = 1), as for these early time periods we

do not observe vit−1.
11

4 Relaxing Support Conditions

As discussed by Imbens and Newey (2009), the support condition in Assumption (5) might be

considered strong. As a result, they investigate bounds on objects of interest when the condition

does not hold. The informativeness of these bounds can vary widely depending on the model

and the object of interest. In contrast, the additional structure of our specific model allows us

to significantly relax this support condition yet still obtain point identification of many objects

of interest. The additional structure in our model that allows us to do this - that the scalar

unobservable ωit follows an Mth order Markov process - is already an integral component of

the Olley and Pakes (1996) related literature that we are aiming to extend. In other words,

we do this by leveraging assumptions that are often already being made in these contexts. It

is also interesting to relate our additional structure to the triangular model that Imbens and

Newey (2009) consider as a leading example of their control function methods. In that model,

the control function (first stage) equation is assumed to have a scalar unobservable (though the

11Later we illustrate an alternative identification strategy that can be used to identify ft for t ≤ M in our

model.
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second stage structural equation of interest can have multidimensional unobservables). In our

model, the control function is essentially a lagged version of the structural equation of interest,

so in a sense a single scalar unobservable assumption results in a scalar unobservable in both

the control function and the structural function.

We denote the joint support of (xit, vit−1, yit) as Sxvy
t (similarly for Sxv

t , Sxy
t , Sv

t , etc.), and

the conditional support of xit given v ∈ Sv
t as Sx|v

t (similarly for Sv|x
t , Sy|xv

t , etc.) While we

relax Imbens and Newey’s support condition, i.e., Assumption (5), all the results below use

Assumptions (1), (2), (3), and (4) (unless otherwise indicated). Together with the structural

equation (1), these five Assumptions constitute our model. For the rest of the paper, we

assume ωit follows a first order Markov process for notational convenience, but our results can

be generalized to higher order Markov processes.

4.1 Partial Identification Result With Relaxed Support Condition

We start with a very simple result that makes very limited, local, support assumptions on

the distribution of (xit, vit−1). It is only a partial identification result in that we will not

identify the full structural function yit = ft (xit, ωit) (we do identify the full structural function

momentarily). However, aspects of ft that we do identify are point identified.

Assumption 6 (Small Local Support at (x0, v0)) For some ϵ > 0, the conditional distribution

of xit given vit−1 = v0 has positive density on all x satisfying ∥x− x0∥ < ϵ.

If the joint distribution of the data satisfies Assumption (6) at (x0, v0), it means that there

is some local variation in xit given vit−1 = v0 - this is necessary to identify derivatives w.r.t.

xit. Denoting by f−1
t (xit, yit) the inverse of ft (xit, ωit) w.r.t. its second argument, we have

Theorem 2 If the density of (xit, vit−1) satisfies Assumption (6) at some (x0, v0), then
∂ft(xit,ωit)

∂xit
is identified at the points xit = x0 and ωit = gt(f

−1
t−1(v

0), ξ0) for any ξ0 ∈ (0, 1).

Proof. Plugging in gt for ωit and substituting ωit−1 with f−1
t−1(xit−1, yit−1), we have

yit = ft(xit, ωit)

= ft(xit, gt(f
−1
t−1(xit−1, yit−1), ξit))

= ft(xit, gt(f
−1
t−1(vit−1), ξit))

= f̄t(xit, vit−1, ξit). (4)

This implies that the derivative of f̄t with respect to xit evaluated at (x0, v0, ξ0) is equal to

the derivative of ft with respect to xit evaluated at (x0, gt(f
−1
t−1(v

0), ξ0)). Since (xit, vit−1) are

independent of the scalar ξit, under our normalization ξit ∼ U(0, 1) we can identify the reduced

11



form function f̄t at vit−1 = v0 and all x satisfying ∥x− x0∥ < ϵ. For any ξ0 ∈ (0, 1), this

identifies the derivatives of f̄t w.r.t. xit at (x
0, v0, ξ0) and hence the derivatives of ft w.r.t. xit

at
(
x0, gt(f

−1
t−1(v

0), ξ0)
)
.

It is important to note that this result does not identify ft(xit, ωit) (or its derivative) at any

specific point (xit, ωit). What it is essentially doing is identifying ∂ft
∂xit

at x0 and an “unknown”

point in the support of ωit - the point gt(f
−1
t−1(v

0), ξ0) (for v0 and any value of ξ0). It is an

“unknown” point because we do not assume knowledge of the functions f−1
t−1 or gt. In other

words, we cannot answer some counterfactual questions with this result - e.g., what would y

be given xit = x0 and ωit equals some candidate value ∈ (0, 1) (recall the normalization ωit

∼ U(0, 1)).

However, we can answer other interesting counterfactual questions with this result. In

particular, it allows us to identify the derivative of the outcome yit with respect to a change

in xit for any observation in the data who have (x0, v0) such that the local support condition

holds. In other words, we can answer questions about counterfactual yit’s for observations in

the data, if their xit were changed locally.12 Note that we are able to obtain this result (unlike

Imbens and Newey) because the scalar unobservable assumption on ωit allows us to identify ξit

for each observation in the data (as a byproduct of identifying f̄t(xit, vit−1, ξit)). These can be

important counterfactuals. For example, in our application to production functions, Theorem

(2) implies we can identify the input elasticities of output for each firm in the data under only

local regularity conditions.

4.2 Full Identification Results with Relaxed Support Conditions

We now turn to identifying the full ft(x, ω) at any specific point (xit, ωit). Again, we will show

how, in our model, this can be done with weaker support conditions than used by Imbens and

Newey (2009). We start with the following observation that will be useful. Since the scalar ωit

can only be identified up to a monotone transformation in our model (hence our normalization

ωit ∼ U(0, 1)), to identify ft(x, ω) it suffices to be able to order any pair of points (xA, yA) and

(xB, yB) in the support Sxy
t in terms of their associated ω, i.e., to be able to compare

ωA = f−1
t (xA, yA) vs ωB = f−1

t (xB, yB).

We formalize this observation in the following lemma based on Debreu (1954).

Lemma 1 ft(x, ω) is identified if and only if for any two points (xA, yA), (xB, yB) ∈ Sxy
t , we

can order f−1
t (xA, yA) and f−1

t (xB, yB) (i.e. we can identify whether f−1
t (xA, yA) > f−1

t (xB, yB),

f−1
t (xA, yA) < f−1

t (xB, yB), or f−1
t (xA, yA) = f−1

t (xB, yB)).

12Or more than locally depending on the support of xit|v0.

12



Proof. It is easy to prove the “only if” part. If ft(x, ω) is identified, then f
−1
t (x, y) is identi-

fied. Thus, given any two points (xA, yA), (xB, yB) ∈ Sxy
t , f−1

t (xA, yA) and f−1
t (xB, yB) can be

ordered.

For the “if” part, the proof can be borrowed from the classic proof for the existence of a con-

tinuous utility function by Debreu (1954). Since for any two points (xA, yA), (xB, yB) ∈ Sxy
t we

can order f−1
t (xA, yA) vs f−1

t (xB, yB), we can identify the binary relation≿= {((xA, yA), (xB, yB))
∈ Sxy

t × Sxy
t : f−1

t (xA, yA) ≥ f−1
t (xB, yB)} on Sxy

t . It is easy to see that ≿ is complete and

transitive. Since ft(x, ω) is continuous in (x, ω) and strictly monotone in ω, by the implicit

function theorem, f−1
t (x, y) is continuous in (x, y). As a result, the upper and lower contour

sets are closed. Finally, note that Sxy
t is a subspace of the Euclidean space, so it is perfectly

separable.

Then, by Theorem II of Debreu (1954), there exists a continuous functionMt(x, y) such that

Mt(x
A, yA) ≥ Mt(x

B, yB) ⇔ (xA, yA) ≿ (xB, yB). It is straightforward to use the identified ≿

to construct such an Mt(x, y), see e.g., Jaffray (1975) and Rubinstein (2012).13 We know

the identified Mt(x, y) is a monotone transformation of f−1
t (x, y) since (xA, yA) ≿ (xB, yB) ⇔

f−1
t (xA, yA) ≥ f−1

t (xB, yB) (by definition of ≿), and therefore f−1
t (xA, yA) ≥ f−1

t (xB, yB) ⇔
Mt(x

A, yA) ≥ Mt(x
B, yB). To recover f−1

t (x, y) from Mt(x, y), define eit = Mt(x, y). Since

the joint density of (x, y) is identified and Mt(x, y) is identified, the cumulative distribution of

eit, i.e., Feit , is identified. Thus, given our normalization ωit ∼ U(0, 1), we know f−1
t (x, y) =

Feit (Mt(x, y)). This identifies f
−1
t (x, y), and thus ft(x, ω) is identified.

With this Lemma in hand we now consider a sequence of successive support conditions, each

progressively less restrictive than the previous one, which illustrate various support conditions

that ensure that f−1
t (xA, yA) and f−1

t (xB, yB) can be ordered.

First consider

Assumption 7 There is a x0 such that for any v ∈ Sv
t , x

0 ∈ Sx|v
t .

Assumption (7) weakens Imbens and Newey’s Assumption (5). While Imbens and Newey

require vit−1 to have full support conditional on any x, Assumption (7) only requires vit−1 to

have full support at one particular x0.

Assumption (7) allows us to order any f−1
t (xA, yA) and f−1

t (xB, yB) by using the “special”

point x0. Specifically, it means we can find two points (x0, y0A) and (x0, y0B) that are “iso-

omegic” to the original points, i.e., such that f−1
t

(
x0, y0A

)
= f−1

t (xA, yA) and f−1
t

(
x0, y0B

)
=

f−1
t (xB, yB). It assures we can find these iso-omegic points at x0 since for any vA and vB

s.t. (xA, yA, vA) and (xB, yB, vB) are in Sxyv
t , Assumption (7) ensures (x0, vA) and (x0, vB) are

13Since monotone transformations preserve ordering, there is not a unique Mt(x, y) such that Mt(x
A, yA) ≥

Mt(x
B , yB) ⇔ (xA, yA) ≿ (xB , yB). In other words, we have identified just one continuous function Mt(x, y)

representative of the binary relation ≿.
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in Sxv
t . This means that we can use objects identified from the data, the conditional CDF

Fyit|xit,vit and its inverse F−1
yit|xit,vit

to “translate” the implied ξA and ξB at (xA, yA, vA) and

(xB, yB, vB) to (x0, vA) and (x0, vB) to determine the iso-omegic points
(
x0, y0A

)
and

(
x0, y0B

)
,

i.e.,

y0A = F−1
yit|x0,vA

(
Fyit|xA,vA

(
yA

))
and y0B = F−1

yit|x0,vB

(
Fyit|xB ,vB

(
yB

))
.14

Then, since f−1
t is strictly monotone in its second argument, whether f−1

t (xA, yA) > f−1
t (xB, yB)

depends on whether y0A > y0B. Clearly, the ability to do this again depends crucially on the

scalar ωit in our model.

We can relax the support condition further with the following:

Assumption 8 For any v0, v1 ∈ Sv
t , S

x|v0
t and Sx|v1

t have a common support point x01.

Relative to Assumption (7), Assumption (8) allows the common support point (before x0,

now x01) to potentially be different for each pair of (v0, v1). One can construct simple examples

of Sxv
t where Assumption (8) is satisfied but not Assumption (7). Given the common support

point, an argument similar to the above can order any f−1
t (xA, yA) and f−1

t (xB, yB).

Next, observe that to order any pair f−1
t (xA, yA) and f−1

t (xB, yB), we do not necessarily

need every pair (vA, vB) (consistent with (xA, yA) and (xB, yB) respectively) to have a common

support point - we only need some (vA, vB) to have a common support point. Specifically,

consider the weaker condition

Assumption 9 For any (xA, yA) and (xB, yB) ∈ Sxy
t , there exists vA ∈ Sv|xA,yA

t , vB ∈ Sv|xB ,yB

t

and some xAB such that (xAB, vA), (xAB, vB) ∈ Sxv

This condition also allows us to order any f−1
t (xA, yA) and f−1

t (xB, yB) using the “pair-

specific” common support points xAB. Note that Assumption (9) is dependent on Sxvy. This

differs from Assumptions (5),(7), and (8) which only put restrictions on Sxv. However, Condi-

tion (9) is implied by the prior conditions and hence weaker.15

But we can also do indirect orderings - i.e., order (xA, yA) and (xB, yB) “through” other

points. For example if we can find a point (xC , yC) that is iso-omegic to (xA, yA) and a point

(xD, yD) that is iso-omegic to point (xB, yB), then instead of comparing (xA, yA) to (xB, yB),

we can compare (xC , yC) to (xD, yD). To consider this, define the following set of points:

W(xA, yA) =
{
(x, y) : ∃v0 s.t. (xA, yA, v0) ∈ Sxyv

t , x ∈ Sx|v0
t , y = F−1

yit|v0,x
(
Fyit|v0,xA

(
yA

))}
.

14This presumes that the inverse function F−1
yit|x,v exists, which should be the case because of our assumptions

that 1) ft(x, ω) is strictly increasing in ω, 2) gt

(
{ωiτ}t−1

τ=t−M , ξit

)
is strictly monotone in ξit, and 3) ξit ∼ U(0, 1).

15Assumption (9) is implied by Assumption (8), because if (xA, yA) and (xB , yB) ∈ Sxy
t , there must exist

some vA and vB s.t. (xA, yA, vA) and (xB , yB , vB) ∈ Sxvy
t , and Assumption (8) assures these vA and vB have

a common x support point.
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W(xA, yA) is a set of points that is iso-omegic to (xA, yA). These points are found by 1)

considering all the v0 that are on the support that are consistent with (xA, yA), 2) finding the

implied ξ at those values using the identified cumulative distribution Fyit|v0,xA

(
yA

)
, 3) finding

other x’s that are on the support that are consistent with v0, i.e., x ∈ Sx|v0
t , and 4) using

F−1
yit|v0,x

(
Fyit|v0,xA

(
yA

))
to compute the y implied by v0 from step 1), the implied ξ from step

2), and each of those other x’s from step 3).

Note that W(xA, yA) does not necesarily contain all the points in Sxy
t that are iso-omegic

to (xA, yA) - it only contains those we can “find” with v0’s that are observed with (xA, yA) and

x’s associated with those v0’s. How much of the set of iso-omegic points W(xA, yA) contains

will depend on the joint support. If the support Sv|xA,yA

t is very small, e.g., because the Sv|xA

t

is small, then W(xA, yA) may not capture many of the iso-omegic points.

We can potentially find more iso-omegic points by iteratively applying W . To do this,

extend the above operator to work on subsets rather than just points, i.e.,

W(S) =

{
(x, y) : for some (xA, yA) ∈ S ∃v0 s.t. (xA, yA, v0) ∈ Sxyv

t , x ∈ Sx|v0
t ,

y = F−1
yit|v0,x

(
Fyit|v0,xA

(
yA

)) }

where S ⊆ Sxy
t . Then, for example W2(xA, yA) = W(W(xA, yA)) can find new points that

are iso-omegic to (xA, yA) (in addition to those in W(xA, yA)) . These new points could not

be directly linked to (xA, yA) through a v, but could be linked indirectly through points in

W(xA, yA). One could also iteratively apply W some number N times, i.e., WN(xA, yA). But

even if this were done infinitely, it would not necessarily contain all points in Sxy
t that are

iso-omegic to W(xA, yA) - again, it depends on the support of the data. But we can consider

Assumption 10 For any (xA, yA) and (xB, yB) ∈ Sxy
t there is a value x0 that is in both the

sets WN(xA, yA) and WN(xB, yB) (for some N ∈ N).

Assumption (10) further weakens Assumption (8) and is also sufficient to order any f−1
t (xA, yA)

and f−1
t (xB, yB). Intuitively, Assumption (10) implies that for any (xA, yA) and (xB, yB), we

can find iso-omegic sets that have a common support point x0. Like above, we can then order

f−1
t (xA, yA) and f−1

t (xB, yB) by comparing the y values corresponding to x0 in those two sets.

But this can be generalized as well. It is possible that even if Assumption (10) does not hold,

we can order f−1
t (xA, yA) and f−1

t (xB, yB) by finding some (xC , yC) for which Assumption (10)

holds pairwise, e.g., f−1
t (xA, yA) < f−1

t (xC , yC) and f−1
t (xC , yC) < f−1

t (xB, yB). To utilize this

logic, define a sequence of points (x0, y0), ..., (xJ+1, yJ+1) as an omegically monotone sequence

if either f−1
t (x0, y0) ≥ ... ≥ f−1

t (xJ+1, yJ+1) or f−1
t (x0, y0) ≤ ... ≤ f−1

t (xJ+1, yJ+1) is true (for

J ≥ 0). Then consider:
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Assumption 11 For any (xA, yA) and (xB, yB) ∈ Sxy
t there is an omegically monotone se-

quence (x0, y0), ..., (xJ+1, yJ+1) in Sxy
t such that each consecutive pair in the sequence, denoted

by ((xj, yj), (xj+1, yj+1)), is such that WN(xj, yj) and WN(xj+1, yj+1) contain a common value

xCj, for j = 0, ..., J and (x0, y0) = (xA, yA), (xJ+1, yJ+1) = (xB, yB).

Condition (11) is weaker than Assumption (10) since Assumption (10) implies that As-

sumption (11) holds for all (xA, yA) and (xB, yB) with J = 0, i.e., no intermediate points

are necessary. Assumption (11) may be helpful in relaxing Assumption (10), especially when

(xA, yA) and (xB, yB) are relatively distant. In this case it might be hard for WN(xA, yA) and

WN(xB, yB) to overlap, i.e., Assumption (10) to hold, but Assumption (11) can still hold as

long as there is a “chain” of overlapping points that can connect (xA, yA) to (xB, yB) indirectly.

Lastly, note the need for the sequence in Assumption (11) to be omegically monotone - if, e.g.,

f−1
t (xA, yA) ≥ f−1

t (x1, y1) and f−1
t (x1, y1) ≤ f−1

t (xB, yB), then (x1, y1) is not helpful at ordering

(xA, yA) and (xB, yB).

Theorem 3 Under the assumptions of our model and Assumption (11), ft(x, ω) is identified

for all t > M .

Proof. See Appendix B.

Theorem (3) clearly also implies that ft(x, ω) is identified under any of the stronger support

Assumptions (7), (8), (9), and (10). This is useful since the former conditions, while stronger,

may be more economically interpretable. We can also consider other types of support conditions

on Sxvy
t that are sufficient for identification. Assumptions (7) and (8) are interesting because

they only place restrictions on Sxv
t , and assume nothing about Sy|xv

t . One can also approach

the problem from the “opposite” direction, i.e., starting with more restrictions on Sy|xv
t and

less restrictions on Sxv
t . While this approach does not generalize Imbens and Newey’s support

condition, we feel they are also interesting. An additional condition on the primitives of our

model that helps do this is the following:

Assumption 12 The conditional distribution of the unobservable ωit, i.e., pt
(
ωit | {ωiτ}t−1

τ=t−M

)
,

has support that does not depend on {ωiτ}t−1
τ=t−M .

With our normalization, Assumption (12) implies that ωit has support (0, 1) regardless

of prior ωit’s (though the distribution over that support will generally depend on prior ωit’s).

What this assumption does is restrict Sy|xv
t to not depend on v. Regarding the above discussion,

this means that any point (xA, yA) is consistent with any v ∈ Sv
t , i.e., (x

A, v, yA) ∈ Sxvy
t for all

v ∈ Sv
t . This eases restrictions on Sxv

t required to order any two points (xA, yA) and (xB, yB),

and means we can obtain identification with only a convex support condition. We also utilize

the following regularity conditions. Let Int(S) denote the interior of set S.
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Assumption 13 The boundary of Sxy
t has probability measure zero. For any xit ∈ Int(Sx

t )

there exists a vit such that (xit, vit) ∈ Int(Sxv
t ).

These make the proof of the following theorem easier as we can work with open sets.

Theorem 4 Under the assumptions of our model, assumption 12, and assumption 13, then if

Sxv
t is convex, ft(x, ω) is identified for all t > M .

Proof. See Appendix B

Theorem (4) shows that under this relatively strong condition on pt
(
ωit | {ωiτ}t−1

τ=t−M

)
, con-

vexity (together with a regularity condition) is sufficient to identify ft. Intuitively, Assumption

(12) and convexity of Sxv
t allow one to order any (xA, yA) and (xB, yB) by moving in steps along

a straight line from xA to xB. For small enough “step-size” along the line (depending on the

size of the support of v) we can always find a common v and an iso-omegic point at the next

step (using Assumption (12)), eventually arriving at a (xB, yiso) that is iso-omegic to (xA, yA).

Then a comparison of yiso to yB orders the two relevant points.

Sxv
t being convex seems quite weak in relation to Imbens and Newey’s support condition.

It can hold even if the distribution of v|x (or vice versa) has very small support at each x. For

example, it holds if the marginal support of x is an interval [x, x̄] and the support of v|x is just

[x− ϵ, x + ϵ] for any small ϵ. And intuitively, at minimum we clearly need some independent

variation in v and x to have any hope for identifying ft(x, ω). But again, this is not strictly

weaker than Imbens and Newey’s condition because of it additionally requires Assumption

(12). We lastly note that under Assumption (12), convexity is sufficient but not necessary for

identification. One needs only to be able to move on some path between any xA and xB such

that for small enough steps, the support of v|x is large enough to find a sequence of iso-omegic

points. Convexity assures that this can be done very simply, i.e., with straight line.

4.3 Partial Identification Revisited

In section (4.1) we showed one type of partial identification results for our model - those related

to identifying derivatives of ft at certain points. With the results in the prior section, we can

generate some additional, broader, partial identification results. Assumptions (9), (10), and

(11) are stated as holding for any (xA, yA) and (xB, yB) ∈ Sxy
t . We now consider the situation

where (9), (10), or (11) hold over some subset S̃xy
t ⊆ Sxy

t . We can show

Theorem 5 Under the assumptions of our model, if Assumption (11) holds for all (xA, yA)

and (xB, yB) in some subset S̃xy
t ⊆ Sxy

t , then ft(x, ω) is identified for all t > M on S̃xy
t under

the normalization that ωit ∼ U(0, 1) on S̃xy
t .16

16To be more precise, maybe we should say f−1
t (x, ω) is identified on S̃xy

t and the normalization is made on

the distribution of ωit that is implied by the distribution of (xit, yit) on S̃xy
t .
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Proof. Identical to the proof of Theorem 3, with the normalization and identification only on

the set S̃xy
t .

The intuition behind Theorem (5) is that if Assumption (11) (or Assumption (9) or (10))

holds on some subset S̃xy
t ⊆ Sxy

t , then all points (xA, yA) and (xB, yB) in that subset can be

ordered - in exactly the same way as the prior section. And again analogous to the above,

given the ordering on this set, ωit’s are identified up to a normalization on this set. The caveat

is that this alternative normalization does not permit one to compare the identified ft on this

set S̃xy
t to ft at other places on Sxy

t (e.g., perhaps some other partially identified set).

But even with this caveat, Theorem (5) seems economically important because it allows one

to identify answers to interesting counterfactual questions within the subset S̃xy
t . For any point

in the set, (xA, yA), it allows us to identify counterfactual outcomes if xA were changed to xAlt,

holding ωA constant, as long as the resulting (xAlt, yAlt) ∈ S̃xy
t . So, for example, in a production

function context one could consider the classic counterfactual reallocation question, i.e., what

happens if inputs x are reallocated across firms in alternative ways (holding ω’s constant), as

long as those reallocations stay within the set. The restriction that the reallocations stay within

S̃xy
t is not innoculus, but it is not surprising that one cannot identify outcomes outside of the

identified set (and one might be able to put one-sided bounds on outcomes from reallocations

that end up outside the set). In any case, this result shows that the identification conditions

above have some “localness” to them.

5 Relaxing Timing and Information Set Assumptions

5.1 A Nonidentification Result

Our control function approach to identifying ft relies crucially on the timing and informa-

tion set Assumption (1). Because xit is chosen at t − 1, prior to the realization of ωit, xit

is independent of ξit, and thus also independent of ωit given the control variables vit−1 =(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
. These are strong assumptions, though they are frequently used in

the empirical literature. For example, much of the production function literature following

Olley and Pakes (1996) makes this assumption w.r.t. capital input. Some papers also make

this assumptions when xit includes labor input choice, e.g., Gandhi, Navarro, and Rivers (2020).

Ideally, one might like to relax this assumption, i.e. allow xit to be chosen as a function of

ωit. However, we now show that this is not possible without further assumptions. We briefly

illustrate with a simple counterexample based on the nonidentification result from Ackerberg,

Frazer, et al. (2020). Suppose for T = 2, and we have the following data generating process
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(DGP):

xi1 = θ1 + θ2ωi1 + ηi1, (5)

yi1 = θ3 + θ4xi1 + ωi1,

xi2 = θ5 + θ6ωi2 + ηi2,

yi2 = θ7 + θ8xi2 + ωi2,

where

ηi2 = ρxηi1 + ui2 with ηi1 ∼ N(0, σ1), ui2 ∼ N(0, σ2),

ωi2 = ρωωi1 + ξi2 with ωi1 ∼ N(0, σ3), ξi2 ∼ N(0, σ4),

and (κi1, ui2, ωi1, ξi2) are mutually independent. Observe that in the model (5) xi1 (xi2) is set

as a function of ωi1 (ωi2), i.e., xit does not satisfy the timing and information set assumption.

Solving out for the observables in terms of the primitive shocks κi1, ui2, ωi1, ξi2, we obtain
xi1

yi1

xi2

yi2

 =


θ1

(θ3 + θ4θ1)

θ5

(θ7 + θ8θ5)

+


θ2 1 0 0

(θ4θ2 + 1) θ4 0 0

θ6ρω ρx θ6 1

(θ8θ6 + 1) ρω θ8ρx (θ8θ6 + 1) θ8



ωi1

ηi1

ξi2

ui2

 = µ+Σ


ωi1

ηi1

ξi2

ui2


so, for example, if σ1 = σ2 = σ3 = σ4 = 1, the observed data (xi0, yi0, xi1, yi1) ∼ N(µ,ΣΣ′).

Following Ackerberg, Frazer, et al. (2020), one can easily construct examples of nonidentification

in this setup. For example, if true DGP is where all the θ’s = 1, ρω = 0.7, and ρx = 0.5, then

µ =


1

2

1

2

 , Σ =


1 1 0 0

2 1 0 0

0.7 0.5 1 1

1.4 0.5 2 1

 . (6)

But at alternative parameter values θ1 = 1, θ2 = −1, θ3 = 0, θ4 = 2, θ5 = 1, θ6 = −1, θ7 = 0,

θ8 = 2, ρω = 0.5, ρx = 0.7,

µ̃ =


1

2

1

2

 , Σ̃ =


−1 1 0 0

−1 2 0 0

−0.5 0.7 −1 1

−0.5 1.4 −1 2

 . (7)

Since the columns of Σ̃ relative to Σ are just swapped and/or multiplied by −1, one can easily

verify that ΣΣ′ = Σ̃Σ̃′, i.e., these two parameter values generate the exact same distribution

of the data. Ackerberg, Frazer, et al. (2020) show that, in a linear model like this, this finite

underidentification problem (see also Sentana (2015)) arises generally where ρω and ρx are

switched, and the signs of θ2 and θ6 are negated.
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5.2 Additional Restrictions

The above example implies that when the timing and information set is relaxed in this way,

our nonparametric model is also not identified without further restrictions.17 There are a few

existing alternatives for such further restrictions. For example, in the parametric linear case,

Ackerberg, Frazer, et al. (2020) augment the above model with a sign restriction (on θ2 and

θ6) to generate identification. As discussed earlier, Hu and Shum (2012) and Hu and Shum

(2013) use deconvolution techniques to identify a nonparametric model similar to ours. These

deconvolution approaches can accommodate xit depending on ωit, but, unlike our approach,

they cannot identify ft unless one assumes the Markov process is shorter than the number

of observed lags (i.e., they require M < T + 1). And building on Gandhi, Navarro, and

Rivers (2020) in a production function context, Navarro and Rivers (2018) use a first order

condition approach based on price taking firms (plus a multiplicative separability assumption)

to accomodate a material input that depends on ωit.

Another interesting approach concerns a situation where one is only willing to assume some

of the elements of xit satisfy the timing/information set Assumption (1), but where one observes

traditional “excluded instruments” zit for the elements of xit that are chosen as a function of ωit.

These instrumental variables zit determine those latter elements of xit, but satisfy traditional

IV exclusion restrictions. In this case, one could think of combining the timing/information

set assumptions described above with traditional IV restrictions for identification. This has

been done in the parametric case by De Roux et al. (2021) in the production function context.

They assume the capital input is chosen at t − 1, but observe external “input price shifter”

instruments for the inputs assumed to be chosen at t.

To extend this to our nonparametric, nonseparable context, denote the two types of inputs

as xFit and xVit . The object of interest is now yit = ft(x
F
it , x

V
it , ωit). As in our base model,

assume xFit is chosen as a function of only Iit−1 (note that with the additional variable zit,

Iit−1 is now
{
{yiτ}t−1

τ=1 , {xiτ}
t−1
τ=1 , {ωiτ}t−1

τ=1 , {ηiτ}
t−1
τ=1 , , {ziτ}

t−1
τ=1

}
). In contrast, suppose that xVit

is chosen with the additional knowledge of ωit, ηit, and zit - according to

xVit = ψt

(
xFit , ωit, zit, ηit

)
(8)

= ψt

(
xFit , gt (ωit−1, ξit) , zit, ηit

)
Note how this model of xVit corresponds to a variable, non-dynamic (see Ackerberg, Benkard,

et al. (2007)) input in a production function context. In that case, xVit will generally depend on

xFit and ωit (since they determine the marginal product of xVit in ft(x
F
it , x

V
it , ωit)). We require

17In contrast, it is straightforward to allow xit to be chosen with less information, e.g., xit is chosen by the

agent at time t−2, i.e., according to xit = ht (Iit−2) . In that case, one could use
(
{yiτ}t−2

τ=t−M−1 , {xiτ}t−2
τ=t−M−1

)
as control variables (note that using t−1 lags as control variables would also work, but this would likely preserve

more variation).
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xVit to depend the observed instruments zit - presumably these are variables related to the price

the firm pays for inputs xVit . We also allow xVit to depend on unobservables ηit - also perhaps

related to input markets.

In our base model, our assumptions implied that (xit, vit−1) was jointly independent of ξit.

With xVit chosen at t, this no longer holds, i.e. we only have that (xFit , vit−1) is jointly independent

of ξit. Therefore we require the additional assumption that (xFit , vit−1, zit) is jointly independent

of ξit. This is the analogue of a traditional IV restriction w.r.t. zit, though there are a couple

of differences. First, note that we require full joint independence, i.e. nothing in the joint

distribution between zit and (xFit , vit−1) can be related to ξit. Second, note that because of

our control variable vit−1, we only need independence of zit from the innovation term ξit. In

other words, zit can be correlated with ωit through ωit−1.
18 Appendix (C) shows that given

this setup, we can use the framework of Chernozhukov and Hansen (2005) to identify ft.
19

Intuitively, this works by again considering the following reduced form expression

yit = ft(x
F
it , x

V
it , ωit)

= ft(x
F
it , x

V
it , gt(f

−1
t−1(xit−1, yit−1), ξit))

= ft(x
F
it , x

V
it , gt(f

−1
t−1(vit−1), ξit))

= f̄t(x
F
it , x

V
it , vit−1, ξit). (9)

and, given independence of (xFit , vit−1, zit) and ξit, applying the results of Chernozhukov and

Hansen (2005) to identify f̄t. Once f̄t is identified, we can rely on one of our support conditions

(Conditions (7), (8), (9), (10), and (11)) to identify ft. An important caveat is that using this

nonparametric IV approach to identify f̄t requires completeness conditions on the instruments

zit that can be hard to interpret in practice.

6 Identification for t ≤M

One limitation of the control function approach is that it cannot identify f1 with a first order

Markov assumption (since for t = 1 there is no observed (x0, y0) to use for the control function).

More generally, when ωit follows an Mth order Markov process, the control function approach

18As well known in the parametric production function literature, if zit is literally the price of inputs xV
it , then

use of zit as instruments will require firms to be price takers in input markets. This wouldn’t be required if

zit are measured input supply shocks. In the former case, given we only need independence from ξit, one could

speculate that using lagged zit could alleviate requiring this assumption, though we have not fully investigated

this possibility.
19An alternative to using Chernozhukov and Hansen (2005) would be to re-apply Imbens and Newey (2009)

and create another control variable to address the “endogeneity” of xV
it . However, this would require additional

restrictions on the ηit entering equation (8), e.g. that it is scalar, and additional independence conditions.
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only identifies ft for t > M . We now illustrate an alternative approach can be used to identify

ft for t ≤ M. Like section (4.1), we show that under local regularity conditions, this approach

identifies aspects of ft - in particular, derivatives of ft w.r.t. xit at certain points.20 One caveat

is that these identification results rely on ωit in fact being serially correlated. While this does

not seem like a strong assumption, it highlights that how this identification result is somewhat

“indirect”, and that the precision of estimates based on it may be sensitive to the level of serial

correlation in the model.

We show this for f1 in the first order Markov case, but our approach can be straightforwardly

extended to identify ft in the first M periods in the Mth order Markov case. The intuition of

the approach can be illustrated in a simple linear model. Suppose T = 2 and that

yi1 = θ1 + θ2xi1 + ωi1 (10)

yi2 = θ3 + θ4xi2 + ωi2 (11)

and

ωi2 = ρωi1 + ξi2 (12)

Our goal is to identify θ2 (θ4 can be identified with the control function method). To do this,

substitute the inverted (10) into (12), and this into (11) to get

yi2 = (θ3 − ρθ1) + θ4xi2 + ρyi1 + ρθ2xi1 + ξi2 (13)

Our timing, information set, and first order Markov assumptions imply that ξi2 is independent

of (xi2, yi1, xi1). So as long as ρ > 0, we can simply run, e.g., OLS on (13) and recover θ2 by

dividing the coefficient on xi1 by that on yi1. Note that the identification here comes from

comparing the relative effect of yi1 and xi1, through the implied ωi1, on yi2.

We now extend this argument to our nonparametric model. What we will be able to identify

is ∂f1
∂xi1

evaluated at the point xi1 and the implied omega corresponding to xi1 and yi1. Like

in section (4.1), this is a bit of hard result to interpret, as we do not know the actual numeric

value of this implied ω. But since xi1 and yi1 are observed for each data point, it does allow us

to identify ∂f1
∂xi1

for observations in the data evaluated at their existing xi1 and ωit. We utilize

the following conditions.

Assumption 14 For some ϵ > 0, the conditional distribution of vit−1 given xit = x0t has

positive support on all v satisfying
∥∥v − v0t−1

∥∥ < ϵ.

Assumption 15
∂gt(ω0

t−1,ξ
0
t )

∂ωit−1
is nonzero at ω0

t−1 = f−1
t−1(v

0
t−1) = f−1

t−1(x
0
t−1, y

0
t−1) for some ξ0t ∈

(0, 1).

20To identify ωit and thus the entire ft function following this identification strategy, we need similar support

conditions as discussed in section (4.2).

22



The local support Assumption (14) is needed to identify derivatives and is very similar to

Assumption (6) - the conditioning is reversed since with this strategy we are leveraging variation

in yit in response to vit−1 conditional on xit (whereas the control function approach looks at the

reverse conditioning). Assumption (15) is the requirement discussed above that there needs

to be some serial correlation in ωit - the analogue of requiring ρ > 0 in the simple linear model

(12).

Theorem 6 If the model satisfies Assumptions (14) and (15) at some
(
x0t , v

0
t−1

)
, then

∂ft−1(xit−1,ωit−1)
∂xit−1

is identified at the points xit−1 = x0t−1 and ωit−1 = f−1
t−1(v

0
t−1) = f−1

t−1(x
0
t−1, y

0
t−1).

Proof. See Appendix B.

Theorem (6) uses the fact that the observed ξ0t th quantile of yit conditional on (xit, xit−1, yit−1) =(
x0t , x

0
t−1, y

0
t−1

)
can be written as

qyit|xit,vit−1
(ξ0t |x0t , x0t−1, y

0
t−1) = ft(x

0
t , g(f

−1
t−1(x

0
t−1, y

0
t−1), ξ

0
t )) (14)

As a result, we can use the implicit function theorem to identify derivatives of ft−1 by taking

the ratios of the derivatives of the conditional quantile of yit with respect to xit−1 and yit−1.

Note that the variation used in this identification result is quite distinct from that used in

the control function approach of Theorem (2). The latter uses variation in yit in response to

xit to identify derivatives of ft, while Theorem (6) uses variation in yit in response to xit−1 and

yit−1 to identify derivatives of ft−1. This also indicates overidentification in this model, e.g.,

with T = 3 (and M = 1), aspects of f2 could potentially be estimated in two distinct ways - 1)

using the control function approach with data in periods t = 1, 2, and 2) using the alternative

approach with data in periods t = 2, 3. Also note that crucial to this identification strategy is

that the model implies that xit−1 and yit−1 affect yit through a single index - Hahn, Liao, and

Ridder (2021) examine other implications of the single index structure of these types of models.

7 Application to Production Function Estimation

We apply these identification results to the estimation of production functions. Our main goal

is to examine the implications of relaxing the typical assumption of Hicks neutral productivity

shocks. In other words, we relax the assumption of many production function empirical models

that (log) output yi is linear in the unobserved, firm-specific, productivity shock ωit, e.g.

yit = f(xit) + ωit

where xit are observed inputs like capital and labor.
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We are not the first to do this. A large set of recent papers, including Balat, Brambilla,

and Sasaki (2016), Fox et al. (2017), Kasahara, Nishida, and Suzuki (2017), Doraszelski and

Jaumandreu (2018), Raval (2019), Zhang (2019), Demirer (2020), Raval (2020), and Oberfield

and Raval (2021), also relax this restriction. However, we do it in a quite different way. The

above papers augment the above model with additional unobservables that enter f , but under

specific functional form assumptions. In other words, they consider models that look like

yit = f(xit, ω
2
it; θ) + ω1

it

where ω2
it represents one (or more) additional unobservable technology shocks and where there

are functional form restrictions on f , i.e., f is known up to the finite dimensional parameter vec-

tor θ. For example, in Doraszelski and Jaumandreu (2018) ω2
it is a scalar, “labor-augmenting”

shock that directly multiplies the labor input in levels in the context of a CES production

function. As another example, in Oberfield and Raval (2021) ω2
it is a three-vector of factor

augmenting shocks in a nested CES production function (with ω1
it ≡ 0).

Our approach, based on our identification results, makes a very different set of restrictions.

We keep the assumption of a scalar ωit, but we are completely flexible with regards to f except

for our strict monotonicity restriction, i.e.,

yit = f(xit, ωit).

In other words, while we keep the scalar unobservable assumption, we allow ωit to interact in

very general ways with the various inputs in the vector xit.

Since these two approaches to relaxing Hicks neutrality are clearly non-nested, we believe

they are complementary to each other, especially to the extent that they find evidence of

similar economic phenomena. Ideally one would of course prefer to relax both assumptions,

i.e., neither make the functional form restrictions on f (as in the other approaches) nor the

scalar dimensionality restriction on ωit (as in our approach). But this would be challenging -

as illustrated by the fact that in a simpler model y = f(x, ϵ) where ϵ is independent of x, one

can explain any observed joint distribution p(y, x) with a model with a scalar unobservable ϵ.

In other words, models that are both flexible in terms of functional form (like our approach)

and flexible in terms of number of unobservables (like the other approach) are going to be

challenging to point identify.21

Given this complementarity, it seems interesting to see what our approach finds regarding

evidence of Hicksian non-neutrality and compare them to the results in the above work. We fo-

cus on different aspects of this Hicksian non-neutrality - its implication on production function

21One could take a partial identification approach to the situation, but we leave this for future work, and

think that various point identification results are still informative and useful.
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elasticities, heterogeneity in these elasticities, and the bias (in terms of capital vs labor) of tech-

nological change. Interestingly, we find many patterns that are similar to the aforementioned

work, which is supportive of their conclusions.

7.1 Data and Model

We use the same Chilean and Colombian data sets as do Levinsohn and Petrin (2003), Gandhi,

Navarro, and Rivers (2020) and many others, and focus on three largest industries in both

countries. The Chilean data set comes from the census of Chilean manufacturing plants con-

ducted by Chile’s Instituto Nacional de Estad́ıstica.. It covers all firms from 1979 to 1996 with

more than 10 employees. The Colombian data set comes from the Colombian manufacturing

census, covering all manufacturing plants with more than 10 employees from 1981 to 1991.

The empirical work in Levinsohn and Petrin (2003) assumes a Cobb-Douglas production

function and a Hicks neutral productivity shock, while Gandhi, Navarro, and Rivers (2020)

identify a nonparametric production function, though also with a Hicks neutral productivity

shock. Again, our non-Hicks neutral model relaxes these assumptions while controlling for the

endogeneity of input choices using the type of timing and information set assumptions that

are common in this literature. Note that to utilize our nonparametric framework, we follow

Gandhi, Navarro, and Rivers (2020) and assume that lit is chosen by firms before ωit is realized.

The hope is that labor market frictions (e.g. unions, other government policy, training) make

this assumption reasonable. This labor timing assumption is stronger than that of Levinsohn

and Petrin (2003), who allow lit to be chosen as a function of ωit (all three papers assume that

kit is determined before ωit is realized). On the other hand, we are more flexible in regards

to other aspects of the labor choice than are Levinsohn and Petrin - for example, their setup

rules out the possibility of firms facing unobserved, firm-specific, serially correlated labor price

shocks, while we allow such shocks (ηit in our general model).

We estimate our nonparametric model using a sieve maximum likelihood strategy based on

polynomial approximations. Specifically, we specify the nonseparable production function ft

as

yit = β0 + (βk + σkuit)kit + (βl + σluit)lit + (βkk + σkkuit)k
2
it + (βkl + σkluit)kitlit (15)

+ (βll + σlluit)l
2
it + uit,

where the productivity term uit = β1t + β2t
2 + β3t

3 + ωit and the unobserved component ωit

follows the following first order Markov process g:

ωit = ρ1ωit−1 + ρ2ω
2
it−1 + ρ3ω

3
it−1 + ξit. (16)

We approximate the distribution of the innovation term ξit with a mixture of two normal
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distributions.22 This results in a model with a total of 21 parameters to be estimated.23 Note

that the model does not satisfy our strict monotonicity assumption for all values of the sieve

parameters. Strict monotonicity requires that

1 + σkkit + σllit + σkkk
2
it + σklkitlit + σlll

2
it > 0 ∀i, t.

However, in our estimation routines, we did not have problems with our non-linear searches

ending up in problematic parts of the parameter space. Hence, we were able to estimate the

models without formally enforcing these restrictions on the parameters, and our final estimates

are such that the strict monotonicity assumption holds (and is not binding) for all i and t.

For estimation we maximize the following partial log likelihood function:

I∑
i=1

T∑
t=2

ln (P (yit|kit, lit, kit−1, lit−1, yit−1; θ)) .

Conditioning on (kit−1, lit−1, yit−1) in our model is equivalent to conditioning on ωit. Hence,

given parameters and (kit, lit, kit−1, lit−1, yit−1), the distribution of yit is determined by only ξit,

which is independent of (kit, lit, kit−1, lit−1, yit−1). Thus, the conditional density P (yit|kit, lit, kit−1,

lit−1, yit−1; θ) is easy to calculate at each data point - given a guess at parameters, the implied

ωit’s can be calculated by inverting (15), and the implied ξit can be calculated using (16).

The above likelihood is a partial likelihood because it only considers the conditional density

of yit. In our model kit and lit are endogenous variables, determined as a potential function of

past productivity shocks (both at t− 1 and prior). A full likelihood would need to consider the

joint likelihood of all the endogenous variables (over time). Our partial likelihood approach

does not require fully specifying a model of kit and lit, which is an advantage since these inputs

may be chosen as part of compex dynamic, optimization problems that depend on many other

factors and parameters (Olley and Pakes (1996) and much of the related literature, which tend

to instead use GMM for estimation, share this advantage). Our partial maximum likelihood

estimator is consistent, and satisfies the property of “dynamic completeness” discussed by

Wooldridge (2010). For inference we follow Newey (1994) and Ackerberg, Chen, and Hahn

(2012) and calculate standard errors under the presumption that (15) and (16) constitutes a

parametric model. They show that such calculations often produce consistent standard errors

22As noted in our theoretical results, if we were completely flexible with f and g we could normalize ξ ∼ U(0, 1).

But since in our finite sample we are not being completely flexible, our modelling of ξ as a mixture of normals

as a way of adding flexibility to our model in a way that is fairly easily interpretable.
23Note that this formulation make it quite easy to invert uit and construct our likelihood function. If one

wanted to allow uit to enter more flexibly, one could either enforce restictions that impose monoticity, or one

could directly estimate the inverse function of the production function. In the latter case, the function value

is the unobserved productivity shock (up to a monotone transformation), and the output elasticities can be

calculated using the implict function theorem.
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taking into account that parts of the problem are nonparametric. But an alternative is to

consider what we are doing as a “flexible” parametric model whose identification is ensured

by the arguments in the first half of this paper. And given our nonparametric identification

arguments, this estimation approach could allow for more flexible production functions, more

general first order Markov processes, and higher order Markov processes - to the extent that a

data set is sufficiently large.

7.2 Output Elasticities

Table (1) presents our estimates of average output elasticities of capital and labor, average

(local) returns to scale (measured by the sum of the output elasticities of labor and capital ),

and capital intensity (measured by the ratio of the average output elasticities of capital and

labor) for each country-industry pair, respectively. These are averages (across all firms in the

data) because unlike in a Cobb-Douglas production function with a Hicks neutral productivity

shock, firms in our model have different output elasticities - they depend not only on their

capital and labor levels, but also their productivity shocks.

For comparison purposes, in the first column of each panel we report simple OLS estimates

of a Hicks neutral translog production function ignoring the endogeneity problem, and in the

second column we report the results of estimation of a Hicks neutral translog production func-

tion with the endogeneity problem addressed by our timing and information set assumptions.

The changes in estimates moving from the first column to the second column, despite in the

anticipated direction, are not particularly large. However, when we move to the third column,

our full model where we allow the productivity shock to enter in a non-Hicks neutral way, we do

see quite large changes. Interestingly, the average output elasticity of labor decreases substan-

tially for all the industries. We also see large decreases in the estimates of returns to scale, even

though the average output elasticity of capital goes up in most industries. These results suggest

that Hicks neutral models may be misspecified when it comes to estimating output elasticities

and returns to scale. Since output elasticities are proportional to marginal products, the results

in table (1) also suggest Hicks neutral models may substantially overestimate the marginal pro-

ductivity of labor, and thus overestimate labor market power.24 A model with a Hicks neutral

productivity shock implies that the shock has no impact on output elasticities, i.e. all the het-

erogeneity in output elasticities is generated by different levels of labor and capital. Given that

results in table (1) suggest Hicks neutral models may be misspecified, we next investigate how

much of the heterogeneity in output elasticites is generated by the productivity shocks in our

24For a recent literature about identification of labor market power (markdowns) using production function

estimation approaches, see, e.g., Dobbelaere and Mairesse (2013), Lu, Sugita, and Zhu (2019), Kirov and Traina

(2021). See also e.g., Azar, Berry, and Marinescu (2019) and Rubens (2019) for using discrete choice model

estimation approaches to identify input market power.
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non-Hicks model. We decompose this heterogeneity in Table (2), where we report the mean,

standard error, and coefficient of variation of output elasticities for both labor and capital (EL

and EK). In the first two columns, we report these estimates fixing labor and capital at their

mean and the median levels, respectively. Thus, the non-zero standard deviations and coeffi-

cients of variation in the first two columns arise from the non Hicksian neutral aspects of the

productivity shock. In other words, in Hicks neutral models the standard error and coefficient

of variation for these two columns would be zero. The results in the first two columns are very

similar - the standard errors and coefficients of variation tend to be large in magnitude and sig-

nificantly different from zero. We conclude that the productivity shock generates a significant

amount of heterogeneity in both EL and EK. If we compare the coefficients of variation of EL

and EK in the first two columns, in most industries, the productivity shock generates slightly

more heterogeneity in EL than in EK.

In the third column of each panel in Table (2), we report the same distributional statistics

evaluated at firms’ actual values of labor and capital. Thus, the heterogeneity (measured by

the standard deviation and coefficient of variation) in this column comes from variation in both

the productivity shock and in input levels across firms. A first observation is that, while in the

first two columns, the coefficients of variation tend to be somewhat higher for EL, in column

three it reverses, i.e. the coefficient of variation tends to be higher for EK. In other words,

much of the heterogeneity in EK is driven by across firm variation in the observed input levels.

In a sense, heterogeneity in EK is relatively more driven by variation in observed inputs than

is heterogeneity in EL, and heterogeneity in EL is relatively more driven by the non-Hicks

neutral productivity shock. This suggests that Hicks neutral models may do worse at capturing

heterogeneity in EL (than in EK), and seems supportive of the specification choice in some of

the related literature to parameterize additional shocks as directly impacting labor, e.g., the

“labor-augmenting” shocks of Doraszelski and Jaumandreu (2018), Raval (2019), and Demirer

(2020).
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7.3 Biased Technological Change

By definition, Hicks neutrality implies that an increase in the productivity shock increases

the marginal productivity of capital and labor by the same proportion. Since Tables (1) and

(2) have provided strong evidence against Hicks neutrality of the productivity shock, the next

question that we examine is whether this non-neutrality favors one factor of production over

another. This determines whether technological change in the form of increased productivity

shocks is “biased” toward capital or toward labor. As argued by Acemoglu (2002), for many

problems in macroeconomics, development economics, labor economics, and international trade,

whether technological change is biased toward particular factors is of central importance. In

their work that utilizes a CES production function with a labor augmenting shock to “break”

Hicks neutrality, Doraszelski and Jaumandreu (2018) find that technological change is capital

biased.25 So it is interesting to assess the same question with our alternative non-Hicks neutral

model. Following Acemoglu (2002), we first formally define the notion of “biased technological

change”.

Definition 7 Technological change is biased toward input x1 over x2 if

∂ ∂F (x,u)/∂x1

∂F (x,u)/∂x2

∂u
≥ 0, (17)

i.e., if an increase in the productivity shock u increases the marginal productivity of x1 relatively

more than it increases the marginal productivity of x2.

We show the bias in our estimated non-Hicks neutral production functions in figures (1)

and (2). In figure (1), we graph the ratio of the marginal productivity of capital (MPK) to the

marginal productivity of labor (MPL) as a function of productivity shock (u), holding capital

and labor constant at their median levels.26 If technological change is Hicks neutral, then

the graph will be a horizontal line. However, as one can see, the graphs are upward sloping

for all industries, meaning technological change is capital biased. This is not a small effect

- in most cases, the ratio more than doubles when productivity shock moves from the 10th

percentile (the left end) to the 90th percentile (the right end). Figure (2) examines the effect in

a slightly different way. Holding capital and labor at the median levels, we graph both MPK

and MPL as a function of the productivity shock - normalizing the starting point for both to

one to account for different units of measurement. For all the industries, MPK increases above

25More precisely, they estimate a CES production function, and their estimated elasticity of substitution is

less than one, so the labor-augmenting productivity shock is biased toward capital (and intermediate inputs).
26We find similar patterns when holding capital and labor at other representative values, e.g., 25th and 75th

percentiles.
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MPL as u increases, with confidence intervals at most barely overlapping, suggesting again that

technological change in these industries is biased toward capital.

Capital-biased technological change has important economic implications. A series of pa-

pers in the recent literature, including Doraszelski and Jaumandreu (2018), Zhang (2019), and

Oberfield and Raval (2021), argue that biased technological change is one of the primary driving

forces behind the recent secular trend of declining labor share in national income. The logic

goes as follows: if relative prices of inputs remain constant, capital-biased technological change

will tend to increase firms’ demand for capital relative to labor, i.e., capital-biased technological

change is, as also pointed out by Van Biesebroeck (2003), labor-saving. Our finding of capital-

biased technological change under a nonseparable model is supportive of their conclusions.

Second, capital-biased technological change implies that high-productivity firms have a “com-

parative advantage” in using capital compared to low-productivity firms, i.e., high-productivity

firms are relatively more efficient in using capital than low-productivity firms. This can have

important implications on allocative efficiency.

In sum, we believe our results suggesting capital-biased technological change across multiple

industries in two countries are interesting in relation to the recent literature concerning factor-

augmenting productivity shocks, e.g., Doraszelski and Jaumandreu (2018), Raval (2019), Zhang

(2019), and Oberfield and Raval (2021). As described above, one major difference is that they

typically assume a CES production function with an additional labor-augmenting productivity

shock, while we allow a more flexible production function with a scalar productivity shock. But

there are other differences. Those papers typically assume that labor is fully flexible but has no

dynamic implications. On the other hand, we make a stronger timing assumption that labor is

predetermined, but allow labor to have dynamic effects. Unlike these other papers, we also do

not need to observe measures of input prices, which can be hard to obtain (in our model, any

firm specific input costs are in the unobservables η). In addition, they need to assume labor

markets are competitive, but we can allow firms to have monopsony power in labor markets.

Given the distinctiveness of the assumptions, we hope the two approaches are complementary -

empirical conclusions robust to both approaches and sets of assumptions would seem to be more

convincing than those using only one. So our finding of capital-biased technological change is

supportive of the findings of the factor-augmenting literature.
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Figure 1: Bias of Technological Change

Note.—The graphs show the ratios of marginal productivity of capital (MPK) to marginal productivity of

labor (MPL), as functions of the productivity shock (u). The shaded areas are 95% confidence bands. The ticks

on the horizontal axis are the quantiles of the distributions of uit.
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Figure 2: MPK vs MPL

Note.—The graphs show marginal productivity of labor (MPL) and capital (MPK) as functions of the produc-

tivity shock (u). The shaded areas are 95% confidence bands. The ticks on the horizontal axis are the quantiles

of the distributions of uit.

8 Conclusion

We have illustrated that the “timing and information set assumption” approach to solving

endogeneity problems has identification power in a fully nonparametric model with a nonsepa-

rable error term. This means that empirical researchers can be quite flexible in these contexts,

and perhaps be more comfortable that results are not driven by functional form assumptions.

We apply this result to a variety of production datasets using a sieve (partial) maximum like-

lihood estimator, finding evidence of non-Hicks neutral technology shocks. These results are

supportive of other recent empirical papers examining these phenomena.
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A Lemmas

Lemma 2 ς1it is independent of
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
.

Proof. By construction,

p
(
ς1it
∣∣ {yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
∼ U(0, 1)

regardless of the realization of {yiτ}t−1
τ=t−M , {xiτ}t−1

τ=t−M .

Lemma 3 ξit, ς
1
it, and

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
are independent of each other.

Proof. Since ς1it = F−1

xj
it|{yiτ}

t−1
τ=t−M ,{xiτ}t−1

τ=t−M

(
x1it, {yiτ}

t−1
τ=t−M , {xiτ}t−1

τ=t−M

)
, and since xit = ht (Iit−1)

by Assumption (1), we can conclude that the ς1it is a function of Iit−1. Therefore, both ς
1
it and(

{yiτ}t−1
τ=t−M , {xiτ}t−1

τ=t−M

)
are functions of Iit−1. Because ξit is independent of Iit−1 by construc-

tion, we can conclude that ξit is independent of
(
ς1it,

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

))
. By Lemma (2),

we have ς1it and
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
independent of each other. We therefore conclude

that ξit, ς
1
it, and

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
are independent of each other.

Lemma 4 (ς1it, ς
2
it) is independent of

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
, and ς1it and ς

2
it are independent

of each other.

Proof. By construction,

p
(
ς2it
∣∣ {yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M , ς1it

)
∼ U(0, 1)

regardless of the realization of
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M , ς1it

)
. By Lemma (2), we know that ς1it is

independent of
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
. The conclusion follows from these two observations.

Lemma 5 ξit, (ς
1
it, ς

2
it), and

(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
are independent of each other.

Proof. since ς2it = F−1

xj
it|{yiτ}

t−1
τ=t−M ,{xiτ}t−1

τ=t−M ,ς1t

(
x2it, {yiτ}

t−1
τ=t−M , {xiτ}t−1

τ=t−M , ς1it
)
, and since xit =

ht (Iit−1) by Condition 1, we can conclude that the ς2it is a function of Iit−1. Therefore, both
(ς1it, ς

2
it) and {ωiτ}t−1

τ=t−M are functions of Iit−1. Because ξit is independent of Iit−1, we can

conclude that ξit is independent of
(
(ς1it, ς

2
it) , {ωiτ}t−1

τ=t−M

)
. By Lemma (4), we have (ς1it, ς

2
it) and(

{yiτ}t−1
τ=t−M , {xiτ}t−1

τ=t−M

)
independent of each other, from which the conclusion follows.

Lemma 6 ξit and ςit are independent of each other given
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
.

Proof. By iterating Lemmas (2) - (5), we obtain ξit, ςit, and
(
{yiτ}t−1

τ=t−M , {xiτ}t−1
τ=t−M

)
are

independent of each other, from which the conclusion follows.
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B Additional Proofs

B.1 Proof of Theorem (3)

Proof. Given Lemma (1), it is sufficient to prove that for any two points (xA, yA), (xB, yB) ∈
Sxy
t , we can order f−1

t (xA, yA) vs f−1
t (xB, yB).

To do that, first we prove the statement: given two points (xA, yA), (xB, yB) ∈ Sxy
t , if

WN(xA, yA) and WN(xB, yB) have a common support point x0, then we can order f−1
t (xA, yA)

vs f−1
t (xB, yB). By definition of WN(xA, yA) and WN(xB, yB), we can find some y0A and y0B

such that (x0, y0A) ∈ WN(xA, yA), (x0, y0B) ∈ WN(xB, yB), and f−1
t (x0, y0A) = f−1

t (xA, yA),
f−1
t (x0, y0B) = f−1

t (xB, yB). Since we assume ft(x, ω) is strictly monotone in ω, y0A ⋛ y0B ⇔
f−1
t (xA, yA) ⋛ f−1

t (xB, yB).
Now we know under Assumption (11), for each consecutive pairs of points ((xj, yj), (xj+1, yj+1))

in the sequence, we can order f−1
t (xj, yj) vs f−1

t (xj+1, yj+1). Since either f−1
t (x0, y0) ≥ ... ≥

f−1
t (xJ+1, yJ+1) or f−1

t (x0, y0) ≤ ... ≤ f−1
t (xJ+1, yJ+1) is true, we can order f−1

t (xA, yA) vs
f−1
t (xB, yB).

B.2 Proof of Theorem (4)

Proof. Given Lemma (1), we only need to order any f−1
t (xA, yA) vs f−1

t (xB, yB), and because
the boundary of Sxy

t has probability measure zero, we only need to consider (xA, yA), (xB, yB) ∈
Int (Sxy

t ). Given Assumption (13), we can find some vA and vB such that (xA, vA), (xB, vB) ∈
Int(Sxv

t ). And under Assumption (12), we also know (xA, vA, yA), (xB, vB, yB) ∈ Sxvy
t . Now

consider a straight line connecting (xA, vA) and (xB, vB) defined by p(z) = (x (z) , v (z)) and
indexed by z ∈ [0, 1] s.t. p(0) = (xA, vA) and p(1) = (xB, vB). Because Int(Sxv

t ) is open and
convex, every point on the line p(z) is in Int(Sxv

t ). In addition we can find an ϵ s.t. every
point within distance ϵ of the line p(z) is also in Int(Sxv

t ), i.e., ∃ ϵ s.t. if ∥p− p(z)∥ ≤ ϵ for
some z ∈ [0, 1], then p ∈ Int(Sxv

t ).
Now consider the following contructive algorithm that orders f−1

t (xA, yA) and f−1
t (xB, yB) :

1) Start at (xA, vA).
2) Travel distance ϵ along p(z). Denote the new point (xnew, vnew). We know (xnew, vnew) ∈

Int(Sxv
t ). Also consider the point (xA, vnew). Since

∥∥(xA, vnew)− (xnew, vnew)
∥∥ ≤ ϵ, it must

also be the case that (xA, vnew) ∈ Int(Sxv
t ).

3) By Assumption (12), since (xA, vA, yA) ∈ Sxvy
t it must also be the case that (xA, vnew, yA) ∈

Sxvy
t .
4) Using the identified f̄t(x, v, ξ), determine the ξA corresponding to (xA, vnew, yA), i.e.,

ξA = f̄−1
t (xA, vnew, yA).

5) Determine ynew corresponding to (xnew, vnew) and ξA, i.e., ynew = f̄t(x
new, vnew, ξA).

6) By construction, f−1
t (xnew, ynew) = f−1

t (xA, yA), i.e. the points have the same ω
7) Go to step 2. Continue moving along path p(z) distance ϵ each step until get to xnew = xB

.
8) Compare the resulting ynew to yB. ynew ⋛ yB → f−1

t (xA, yA) ⋛ f−1
t (xB, yB).
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B.3 Proof of Theorem (6)

Proof. Plugging in gt and substituting ωit with f
−1
t , we can write the observed ξ0t th quantile

of yit conditional on (xit, xit−1, yit−1) =
(
x0t , x

0
t−1, y

0
t−1

)
as

qyit|xit,vit−1
(ξ0t |x0t , x0t−1, y

0
t−1) = ft(x

0
t , gt(f

−1
t−1(x

0
t−1, y

0
t−1), ξ

0
t )).

We know this equality holds because ft is strictly monotone in ωit, gt is strictly monotone in
ξit, and ξit is independent from (xit, xit−1, yit−1). We can see from the above equation that
(xit−1, yit−1) affects the conditional quantile of yit only through f−1

t−1, so we can rely on this
structural variation to identify aspects of ft−1. Taking the negative ratios of derivatives of the
conditional quantile w.r.t. xit−1 and yit−1 at

(
x0t , x

0
t−1, y

0
t−1

)
gives

−
∂qyit|xit,vit−1

(ξ0t |x0t , x0t−1, y
0
t−1)

∂xit−1

/
∂qyit|xit,vit−1

(ξ0t |x0t , x0t−1, y
0
t−1)

∂yit−1

= −
(
∂ft(x

0
t , ω

0
t )

∂ωit

∂gt(ω
0
t−1, ξ

0
t )

∂ωit−1

∂f−1
t−1(x

0
t−1, y

0
t−1)

∂xit−1

)
/

(
∂ft(x

0
t , ω

0
t )

∂ωit

∂gt(ω
0
t−1, ξ

0
t )

∂ωit−1

∂f−1
t−1(x

0
t−1, y

0
t−1)

∂yit−1

)
= −

∂f−1
t−1(x

0
t−1, y

0
t−1)

∂xit−1

/
∂f−1

t−1(x
0
t−1, y

0
t−1)

∂yit−1

=
∂ft−1(x

0
t−1, ω

0
t−1)

∂xit−1

,

where ω0
t−1 = f−1

t−1(x
0
t−1, y

0
t−1), ω

0
t = gt(ω

0
t−1, ξ

0
t ), and the last equality follows from the implicit

function theorem.

C IV Approach to Relaxing the Timing Assumption

In section (5.1), we have shown that when the timing and information set assumption of xit
is relaxed, our model is not identified without additional restrictions. In this section we build
on Chernozhukov and Hansen (2005) and use an IV approach to establish identification while
allowing xit and ξit to be correlated. Without causing confusion, we suppress the subscript t of
functions in this section.

Recall the reduced form function y = f̄(xit, vit−1, ξit) from equation (4). Our IV strategy
has two steps: first, we rely on a conditional quantile restrictions to identify the reduced form
function f̄ ; second, we make use of one of the support conditions (7), (8), (9), (10), and (11)
to identify the structural function f . In relation to the discussion in the main text regarding
xFit , x

V
it , and y = f̄(xFit , x

V
it , vit−1, ξit), note that for the purpose of identification of f̄ , the xFit

(the subset of xit’s that satisfy our timing assumption) can be treated the same as vit−1. So
we define ṽit−1 =

(
vit−1, x

F
it

)
and define x̃it = xVit to be the elements of xit that are correlated

with ξit. To make use of instrument variables, we make the following assumption.

Assumption 16 We observe a vector of instrument variables zit such that (zit, ṽit−1) are jointly
independent from ξit.
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Following Chernozhukov and Hansen (2005), because f̄(x̃it, ṽit−1, ξit) is strictly monotone in
ξit ∼ U(0, 1), independence of ξit and (zit, ṽit−1) implies that for each τ ∈ (0, 1),

Pr(yit ≤ f̄(x̃it, ṽit−1, τ)|ṽit−1, zit) = τ. (18)

This is because Pr(yit ≤ f̄(x̃it, ṽit−1, τ)|ṽit−1, zit) = Pr(f̄(x̃it, ṽit−1, ξit) ≤ f̄(x̃it, ṽit−1, τ)|ṽit−1, zit)
= Pr(ξit ≤ τ |ṽit−1, zit) = Pr(ξit ≤ τ) = τ . Equation (18) is the conditional quantile restric-
tion that we rely on to identify f̄(x̃it, ṽit−1, ξit). Identification requires showing that if there
is some function m(x̃it, ṽit−1, τ) that solves equation (18), it must be that m(x̃it, ṽit−1, τ) =
f̄(x̃it, ṽit−1, τ) with probability one, i.e., almost surely (a.s.). Note that if we can identify the
quantile response function f̄(x̃it, ṽit−1, τ) for each τ ∈ (0, 1), then we can identify the function
f̄(x̃it, ṽit−1, ξit). It is also worth noting that, as pointed out by Chernozhukov, Imbens, and
Newey (2007), the conditional quantile restriction is not the only restriction that is implied by
our model. For example, our model imposes that f̄(x̃it, ṽit−1, τ) is strictly monotone in τ , which
is not implied by the conditional quantile restriction.

Again following Chernozhukov and Hansen (2005), for each τ ∈ (0, 1), fix some small con-
stant δτ > 0, define the relevant parameter space Lτ as the convex hull of functions m(., τ)
that satisfy (i) for each (ṽ, z) ∈ S ṽz

t , Pr(yit ≤ m(x̃it, ṽit−1, τ)|ṽ, z) ∈ [τ − δτ , τ + δτ ] and (ii) for

each (x̃, ṽ) ∈ S x̃ṽ
t , m(x̃, ṽ, τ) ∈ Sy|x̃ṽz

t for all z such that (x̃, ṽ, z) ∈ S x̃ṽz
t .27 For any bounded

∆(x̃, ṽ, τ) = m(x̃, ṽ, τ) − f̄(x̃, ṽ, τ) with m(., τ) ∈ Lτ and ϵτit = yit − f̄(x̃it, ṽit, τ), consider two
conditions:

Condition 1 E(∆(x̃it, ṽit−1, τ).wτ (x̃it, ṽit−1, zit)|ṽit−1, zit) = 0 a.s. ⇒ ∆(x̃it, ṽit−1, τ) = 0 a.s.,

for wτ (x̃it, ṽit−1, zit) =
∫ 1

0
fϵτit(δ∆(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)dδ > 0.

Condition 2 For each ṽ0 ∈ S ṽ
t , conditional on ṽ = ṽ0, φτ (x̃|ṽ0, z) ≡ cτ (ṽ

0, z)wτ (x̃, ṽ
0, z)fx̃it

(x̃|ṽ0, z)
is a full rank exponential or other boundedly-complete family.28 29

Condition (1) is a bounded completeness condition, which is sufficient for global identifica-
tion of f̄(x̃it, ṽit−1, τ). By definition of φτ (x̃|ṽ0, z), for each ṽ0 ∈ Sv

t , E(∆(x̃it, ṽ
0, τ).wτ (x̃it, ṽ

0, zit)
|ṽ0, zit) ∝ Eφτ (.|ṽ0,z)(∆(x̃it, ṽ

0, τ)). Here Eφτ (.|ṽ0,z) denotes the expectation with φτ (x̃|ṽ0, z) used
as a density. It follows by Lehmann, Romano, and Casella (2005) that Condition (2) suffices for
Condition (1). Condition (2) might be reasonable because the exponential families includes a
broad variety of distributions. The “full rank” restriction requires that the impact of instrument
zit on the distribution of x̃it is sufficiently rich. Corresponding to Theorem 4 of Chernozhukov
and Hansen (2005), the following theorem establishes the identification of our reduced form
function f̄ .

27(ii) is another restriction we impose on the relevant parameter space and thus on f̄(x̃, ṽ, τ). See Theorem
(8) below and the discussion that follows.

28The constant cτ (ṽ
0, z) > 0 is chosen so that φτ (x̃|ṽ0, z) integrates to one over the support of x̃it given

(ṽit−1, zit) = (ṽ0, z).
29Note φτ (x̃|ṽ0, z) depends on ∆(x̃, ṽ0, τ), so Condition (2) (or analogously Condition (1)) puts a restriction

on all the candidate parameters, i.e., m(x̃, ṽ, τ)’s in the parameter space Lτ . This sufficient condition for global
identification is stronger than that for local identification, which only puts a restriction on the true parameter
f̄(x̃, ṽ, τ). See Chernozhukov, Imbens, and Newey (2007).
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Theorem 8 Under the assumptions of our model, suppose supports Sy
t and S x̃ṽ

t are bounded,

and for all (x̃, ṽ, z) ∈ S x̃ṽz
t , Sξ|x̃ṽz

t = Sξ
t . For each τ ∈ (0, 1), assume that the density of

fϵτit(e|x̃it, ṽit−1, zit) is continuous and bounded in e over R a.s.. Then the function f̄(x̃it, ṽit−1, ϵit)
is identified if Condition (1) (or Condition (2)) holds for each τ ∈ (0, 1).

In our case, we can transform yit and (x̃it, ṽit−1) to have bounded supports, without loss of
generality. Boundedness of Sy

t implies, under our conditions, thatm(x̃it, ṽit−1, τ) and f̄(x̃it, ṽit−1, τ)

are bounded, which in turn implies ∆(x̃it, ṽit−1, τ) is bounded. The condition Sξ|x̃ṽz
t = Sξ

t is
not innocuous. It requires the other determinants of x̃it to generate sufficient variation in x̃it
conditional on (ṽit−1, zit, ξit). This condition guarantees that for each τ ∈ (0, 1) and for each

(x̃, ṽ) ∈ S x̃ṽ
t , f̄(x̃, ṽ, τ) ∈ Sy|x̃ṽz

t for all z such that (x̃, ṽ, z) ∈ S x̃ṽz
t , which implies that for each

τ ∈ (0, 1), f̄(., τ) ∈ Lτ . Hence, to show identification of f̄(x̃it, ṽit−1, τ), we only need to show
that f̄(x̃it, ṽit−1, τ) is the only solution to equation (18) in Lτ . Continuity and boundedness
of fϵτit(e|x̃it, ṽit−1, zit) ensures that the integration in the definition of wτ (x̃it, ṽit−1, zit) is well
defined. Below is the formal proof of Theorem (8).
Proof. For each τ ∈ (0, 1), we know f̄(., τ) solves equation (18). This condition guarantees

that for each τ ∈ (0, 1) and for each (x̃, ṽ) ∈ S x̃ṽ
t , f̄(x̃, ṽ, τ) ∈ Sy|x̃ṽz

t , for all z such that
(x̃, ṽ, z) ∈ S x̃ṽz

t , which implies that for each τ ∈ (0, 1), f̄(., τ) ∈ Lτ . Hence, for each τ ∈
(0, 1), to show identification of f̄(x̃it, ṽit−1, τ), we only need to show f̄(x̃it, ṽit−1, τ) is the only
solution to equation (18) in Lτ . Suppose there is m(., τ) that solves equation (18) a.s.. Define
∆(x̃it, ṽit−1, τ) = f̄(x̃it, ṽit−1, τ)−m(x̃it, ṽit−1, τ), and we have

0 = Pr(yit ≤ m(x̃it, ṽit−1, τ)|ṽit−1, zit)− Pr(yit ≤ f̄(x̃it, ṽit−1, τ)|ṽit−1, zit) (19)

= E(Pr(yit ≤ m(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)|ṽit−1, zit)

− E(Pr(yit ≤ f̄(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)|ṽit−1, zit)

= E(Pr(yit − f̄(x̃it, ṽit−1, τ) ≤ m(x̃it, ṽit−1, τ)− f̄(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)|ṽit−1, zit)

− E(Pr(yit − f̄(x̃it, ṽit−1, τ) ≤ 0|x̃it, ṽit−1, zit)|ṽit−1, zit)

= E(Pr(ϵτit ≤ ∆(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)|ṽit−1, zit)

− E(Pr(ϵτit ≤ 0|x̃it, ṽit−1, zit)|ṽit−1, zit)

= E(E(

∫ 1

0

fϵτit(δ∆(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)∆(x̃it, ṽit−1, τ)dδ|x̃it, ṽit−1, zit)|ṽit−1, zit)

= E(

∫ 1

0

fϵτit(δ∆(x̃it, ṽit−1, τ)|x̃it, ṽit−1, zit)∆(x̃it, ṽit−1, τ)dδ|ṽit−1, zit)

= E(∆(x̃it, ṽit−1, τ)wτ (x̃it, ṽit−1, zit)|ṽit−1, zit). a.s.

(20)

The second equality holds by the law of iterated expectation. Note our conditions guarantee for
each (x̃, ṽ) ∈ S x̃ṽ

t , f̄(x̃, ṽ, τ) and m(x̃, ṽ, τ) are within Sy|x̃ṽz
t and ∆(x̃it, ṽit−1, τ) is within Sϵτ |x̃ṽz

t ,
for all z such that (x̃, ṽ, z) ∈ S x̃ṽz

t .30 By continuity and boundedness of fϵτit(e|x̃it, ṽit−1, zit), the
integration after the fifth equality is defined, so the fifth equality holds.

30This ensures the conditional quantile restriction is “binding” in a sense, and rules out the case where both

f̄(x̃, ṽ, τ) and m(x̃, ṽ, τ) are out of Sy|x̃ṽz
t for all (x̃, ṽ, z). In that case, it is easy to see equation (19) does not

imply ∆(x̃it, ṽit−1, τ) = 0 a.s..
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Since Condition (1) holds for each τ ∈ (0, 1), for each τ ∈ (0, 1) f̄(x̃it, ṽit−1, τ) is identified.
Thus, function f̄(x̃it, ṽit−1, ξit) is identified.

With f̄ identified, we can establish identification of f under one of our support conditions.

Theorem 9 If f̄(x̃it, ṽit−1, ξit) is identified, under Assumption (11), f(xit, ωit) is identified.

Proof. Rewrite theW operator by replacing F−1
yit|ṽ0,x̃

(
Fyit|ṽ0,x̃A

(
yA

))
with f̄(x̃, ṽ0, f̄−1(x̃A, ṽ0, yA)),

i.e.

W(S) =
{

(x, y) : for some (xA, yA) ∈ S ∃v0 s.t. (xA, yA, v0) ∈ Sxyv
t , x ∈ Sx|v0

t ,
y = f̄(x̃, ṽ0, f̄−1(x̃A, ṽ0, yA))

}
.31

Note that with our notation, y = f̄(x̃, ṽ0, f̄−1(x̃A, ṽ0, yA)) is equivalent to y = f̄(x, v0, f̄−1(xA, v0, yA)).
The Theorem then follows from the proof of Theorem (3).

31This is equivalent to the definition of W in section (4.2) when xit is independent of ξit.
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