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Abstract

This paper studies inference in first-price or second-price sealed-bid auctions with a large number

of bidders that have symmetric independent private values. In this context, we propose an asymptotic

framework where the number of bidders diverges, while the number of auctions remains fixed. This frame-

work allows us to conduct asymptotically exact inference on several important features of the model based

exclusively on observations of the transaction prices. In particular, we study inference on the winner’s

expected utility, the seller’s expected revenue, and the tail properties of the valuation distribution. Our

simulations show that our inference method delivers excellent finite-sample performance. We illustrate

our inference method with an application to car license auctions in Hong Kong.
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1 Introduction

This paper considers inference in first-price or second-price sealed-bid auctions with symmetric independent

private values (IPV). Econometric analysis of such auctions has spawned an extensive literature, which

typically assumes that the researcher observes a sample of bids from a large number of independent and

identically distributed (i.i.d.) auctions. See Athey and Haile (2002); Haile and Tamer (2003); Athey and

Haile (2007); Guerre, Perrigne, and Vuong (2000), among many others. In contrast, this paper considers

inference in a setting in which the researcher observes a sample from a small number of auctions, each with

a large number of bidders. In accordance to this, we propose an asymptotic framework in which the number

of bidders diverges, while the number of auctions remains fixed. This setup allows us to conduct inference on

several important features of the model based exclusively on observations of the transaction price from each

auction. In particular, we study inference on the winner’s expected utility, the seller’s expected revenue, and

the tail properties of the valuation distribution.

Under the classic framework with a finite number of bidders and a large number of auctions, the existing

literature mainly focuses on identifying and estimating the valuation distribution. Within our sampling

framework, the valuation distribution is not necessarily identified. However, we can still conduct statistical

inference by exploiting the asymptotic device that the number of bidders is large. Consider the second-price

auction with IPV for example. In this case, the transaction price is the second largest order statistic of

the bidders’ valuations. Then under extreme value (EV) theory, the distribution of the transaction price

converges to the so-called EV distribution, which is uniquely characterized by a single parameter ξ after

location and scale normalization. This parameter is referred to as the tail index and characterizes the tail

heaviness of the valuation distribution. Given this convergence, we essentially observe a finite number of

transaction prices randomly generated from the EV distribution. Therefore, a likelihood-based inference

about ξ is feasible and becomes asymptotically exact when the number of bidders diverges. We formalize

this idea in Section 3.1. In addition, Section 4.1 considers the corresponding analysis for first-price auctions.

The key condition for EV theory is that the valuation distribution is within the domain of attraction of

the EV distribution. This is a very mild condition and is satisfied by many commonly used distributions

such as Pareto, Student-t, Gaussian, and uniform distribution. See Section 2 for more details. Together with

the EV distribution approximation, the parameter ξ can be informative about many features of the auction

fundamentals. We study the following three in specific. First, the existing literature commonly assumes

that the valuation distribution has a bounded support with a bounded density near the right end-point (e.g.,

Maskin and Riley, 1984; Guerre et al., 2000; Guerre and Luo, 2022). Lemma 3.1 in Section 3.2 shows that

these assumptions imply that ξ = −1. Then testing such a hypothesis is equivalent to testing a necessary

condition for the commonly adopted assumptions.

Second, we study the expected utility of the winner, which is defined as the expected value of the winner’s

valuation minus her bid. In the second-price auction, the expected utility is equivalent to the expected value

of the largest valuation minus the second-largest one. When the sample size is finite, this quantity depends

on the whole valuation distribution and hence can only be learned if multiple bids are observed. In our

asymptotic framework, both the largest and the second largest order statistics converge to the right end-

point of the support, which can be infinite if ξ is non-negative. In Section 3.3, we show that the expected
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utility can be written as a known function of ξ after location and scale transformation. Treating ξ as

a nuisance parameter, we then construct a confidence interval for the expected utility that is uniformly

valid over ξ. Moreover, the same derivation holds in the first-price auctions given the well-known revenue

equivalence result (e.g., Krishna, 2009, Chapter 2), and hence inference can be implemented similarly. See

Section 4.2 for more details.

Third, we study the expected revenue of the seller, which again can be expressed as a function of ξ after

a suitable location and scale normalization. Section 3.4 presents such derivation and constructs a confidence

interval with the asymptotically correct coverage. In addition, we also study the optimal reserve price that

maximizes the seller’s expected revenue. We note that the optimal reserve price is constant regardless of

the number of bidders in the classic setup where the seller’s own value of the good is constant (Riley and

Samuelson, 1981, Proposition 3). To recover a non-degenerate effect on the expected revenue, we consider

that the seller’s own valuation is of the same order as the transaction price. Then the optimal reserve price

can be derived as a function of ξ. We collect this result as Lemma 3.2.

The asymptotic framework with many bidders has been extensively employed in the economic theory

literature (e.g., Hong and Shum, 2004; Virág, 2013; Di Tillio, Ottaviani, and Sørensen, 2021) but less so in

econometrics. Hong, Paarsch, and Xu (2014) study the asymptotic distribution of the transaction price in

a clock model of a multi-unit, oral, ascending-price auction as the numbers of bidders and units increase.

William and Zachariadis (2021) study the asymptotic distribution of the transaction price in Buyer’s Bid

Double Auction. In comparison, much of the existing econometric literature has focused on identifying and

estimating the valuation distribution. When the number of bidders is small such as in timber auctions,

knowing the whole valuation distribution is indeed essential to learn about other objects of interest. The

seminal work by Athey and Haile (2002) derives general results about identifying the valuation distribution.

Haile and Tamer (2003) study English auctions and derive bounds on the valuation distribution and other

objects of interest with minimum structural assumption. Chesher and Rosen (2017) further extend these

bounds to the non-IPV setup. Aradillas-Lopez, Gandhi, and Quint (2013) nonparametric identify bounds

on seller profit and bidder surplus with variation in the number of bidders across auctions. Brendstrup and

Paarsch (2006) and Komarova (2013) derive nonparametric identification of the valuation distribution with

the transaction price and the winner’s identity. Brendstrup and Paarsch (2007) study multi-object English

auctions and derive semiparametric identification with the winning bids under the Archimedean copulas

assumption.

When the number of bidders is large, we show that the tail of the valuation distribution can be sufficient to

characterize some key features of the auctions as discussed above. Therefore, it provides a convenient device

to learn about these features without knowing the valuation distribution. Consequently, a major benefit of

our approach is that it requires minimum information from the data set. This is particularly useful when

the number of auctions is relatively small and/or the number of bidders is difficult to obtain. In particular,

the number of all bidders could be larger than the number of observed bids when there is a binding reserve

price (e.g., Hickman, Hubbard, and Paarsch, 2017) or the bidders selectively enter the auction (e.g., Li and

Zheng, 2009; Gentry and Li, 2014). To solve this issue, the existing methods typically require multiple bids

or additional information. For example, Li (2005) studies first-price auctions with both entry and binding

reservation prices and estimates the valuation distribution with the observed bids and the number of actual
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bidders. Adams (2007) studies eBay auctions and requires knowing the distribution of the potential bidders.

Without knowing the number of bidders, An, Hu, and Shum (2010) propose to use a proxy of the number of

bidders and an instrument variable. Kim and Lee (2014), Song (2015), Mbakop (2017), and Freyberger and

Larsen (2020) construct identification of the valuation distribution with two or more order statistics of bids.

Shneyerov and Wong (2011) derive nonparametric identification of model primitives based on a finitely many

groups of bidders. Recently, Luo and Xiao (2022) derive identification results with two consecutive order

statistics and an instrument or three consecutive ones. All these methods of identification, estimation, and

inference are based on the asymptotics with many auctions. We refer to Hickman, Hubbard, and Sağlam

(2012) and Gentry, Hubbard, Nekipelov, and Paarsch (2018) for recent surveys.

Third and more generally, existing methods inevitably rely on order statistics to nonparametrically

estimate the valuation distribution (e.g., Guerre et al., 2000; Athey and Haile, 2007) since the transaction

price is typically a function of the largest or second-largest order statistics. When the number of bidders

is large, the distribution of these extreme order statistics is uniquely determined by the right tail shape of

the valuation distribution as implied by EV theory. In this case, nonparametric estimation of the valuation

distribution might be irregular and hence performs poorly (Menzel and Morganti, 2013). In contrast, our

method explicitly relies on the extreme value approximation, which does not involve estimating the whole

valuation distribution. From this point of view, we would distinguish our increasing-K framework from the

class one with a finite K. The simulation study in Section 5 shows that our confidence intervals perform

excellently when the number of bidders is only ten. They could dominate the existing methods in terms of

coverage and length even if multiple bids and the number of bidders are observed.

In terms of data structure, our paper is closest to the recent work by Guerre and Luo (2022). They

focus on first-price auctions and provide a novel method to identify the valuation distribution with only

transaction prices. In particular, assuming that the number of the bidders K is random with a finite support

and observed by the bidders but not the econometrician, they show that the winning bid increases with K

and hence the density of the winning bid exhibits discontinuities as K varies. This key feature leads to the

identification of the support and distribution of K and the valuation distribution. In comparison, our paper

differs from Guerre and Luo (2022) in the following perspectives. First, the discontinuity in the winning

bid density does not hold in ascending auctions or when buyers do not observe K. Both of these scenarios

are allowed in our context. Second, the identification strategy in Guerre and Luo (2022) relies on a finite

support of K and hence its distribution is fully characterized by a finite number of probability masses. We

instead focus on a large and eventually infinite K, whose distribution does not have to be identified. Finally,

Guerre and Luo (2022) and many others allow for auction heterogeneity by requiring additional observations

or imposing additional assumptions, while our paper focuses on the IPV setup with homogeneous auctions.

Since the number of auctions is small, the homogeneity across auctions is more plausibly satisfied. We discuss

potential extensions in the concluding remarks.

To illustrate the empirical relevance, we apply the proposed method to the Hong Kong car license

auctions from 1997 to 2008. This auction is the standard ascending price auction and is equivalent to the

second-price auction under the symmetric IPV assumption. Each auction is for one license plate. Except

for the transaction price and the digits on the license plate, we do not observe other information from the

auction. Moreover, after dropping special plates that contain favorable digit combinations, the number of
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auctions/license plates is only approximately 30 each year. Given these restrictions, the existing methods

based on the classic asymptotic framework cannot be applied as the valuation distribution cannot be identified

or consistently estimated (cf. Athey and Haile, 2002). Applying our proposed method, we first find a

considerable winner’s expected utility. The middle values of the confidence intervals range from 1000 to

6800 Hong Kong dollars across years. Second, there is a sharp difference in the winner’s utility before and

after the year 2006, which reflects the structural change that special plates became available for auction in

that year. Third, we test whether the commonly imposed conditions about the valuation distribution are

satisfied and reject the null hypothesis in two out of 12 years.

The rest of the paper is organized as follows. Section 2 sets up the new asymptotic framework with

many bidders and reviews EV theory. Section 3 considers second-price auctions and presents the new

inference method. In particular, we introduce the auction format and derive the asymptotic distribution

of the transaction prices under the new asymptotic framework in Section 3.1. Then we construct tests

and confidence intervals for the tail index, the winner’s expected utility, and the seller’s expected revenue in

Sections 3.2 to 3.4, respectively. Section 4 extends the analysis to the first-price auctions. Section 5 conducts

simulation studies, and Section 6 studies the car licence plate application. Section 7 concludes with some

remarks with computational details and all the proofs in the Appendix.

2 Asymptotic framework with many bidders

We consider inference in the context of sealed-bid auctions of a single object for sale. We assume that

the data are composed of the transaction prices of n ≥ 3 independent and identically distributed (i.i.d.)

realizations of these auctions, given by {Pi : i = 1, . . . , n}. One distinctive feature of our methodology is

that we will not require n to diverge to infinity.

For each auction j = 1, . . . , n, the setup is as follows. There is a single object for sale, and Kj potential

buyers are bidding for the object. These bidders have independent private values {Vi,j : i = 1, . . . ,Kj}
distributed according to a common cumulative distribution function (CDF) FV with support on (−∞, v∗],
where v∗ = ∞ is allowed. We assume that FV is strictly increasing on (−∞, v∗] and admits a continuous

probability density function (PDF) fV = F ′V . As usual, bidders are assumed risk neutral and to maximize

expected profits without facing any liquidity or budget constrains. We assume that FV and Kj are common

knowledge to all bidders, but unknown to the researcher. Our inference methods rely on the asymptotics

with diverging numbers of bidders Kj and a finite number of auctions n. To this end, we assume that

K ≡ min{K1, . . . ,Kn} → ∞ and Ki/K → 1 for each i = 1, . . . , n. That is, all n auctions are assumed to

have approximately the same “large” number of bidders.1

We make an additional mild assumption about the valuation distribution FV . We assume that this

distribution is in the domain of attraction of the EV distribution Gξ, where ξ denotes the tail index. Formally,

this means that there is a sequence of normalizing constants {(aK , bK) ∈ R++ × R : K ∈ N} such that, for

1Allowing for an unknown number of bidders and Ki/K 6→ 1 for some i = 1, . . . , n significantly complicates our inference
problem. In particular, inference in that setup would require the researcher to observe more than the transaction prices on each
auction, which goes against the main premise of this paper.
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all x that is a continuity point of Gξ,

lim
K→∞

(FV (aKx+ bK))K = Gξ(x). (2.1)

We assume that this distribution is in the domain of attraction of the EV distribution Gξ, where ξ denotes

the tail index. Formally, this means that there is a sequence of normalizing constants {(aK , bK) ∈ R++×R :

K ∈ N} such that, for all x that is a continuity point of Gξ,

lim
K→∞

(FV (aKx+ bK))K = Gξ(x). (2.2)

See David and Nagaraja (2004, Chapter 10) or de Haan and Ferreira (2006, Chapter 1) for recent expositions

on this topic, including sufficient conditions for (2.2). In particular, David and Nagaraja (2004, Theorem

10.5.2) provides sufficient conditions for (2.2) when FV is absolutely continuous, which is the relevant case

for this paper. Under (2.2), standard asymptotic results imply that Gξ can only be one of three types:

Fréchet (if ξ > 0), Gumbel (if ξ = 0), or Weibull (if ξ < 0). Up to location and scale transformation, these

three types can be unified as the generalized EV distribution:

Gξ(x) =

exp
(
−(1 + ξx)−1/ξ

)
1 + ξx > 0, ξ 6= 0

exp
(
− exp(−x)

)
x ∈ R, ξ = 0.

(2.3)

See, e.g., David and Nagaraja (2004, Theorem 10.5.1) or de Haan and Ferreira (2006, Theorem 1.1.3).

Condition (2.2) is a very mild restriction, as is satisfied by commonly used valuation distributions FV .

First, the case with ξ > 0 covers distributions with unbounded support (i.e., v∗ = ∞) and polynomial

decaying (i.e., “heavy”) right tail. In this case, moments of order less than 1/ξ exist and moments of

order greater than 1/ξ do not (e.g, see de Haan and Ferreira (2006, Exercise 1.16)). Then, the restriction

to ξ ≤ 1/2 implies that FV has finite second moments. Examples include Pareto, Student’s t, and F

distributions. Second, the case with ξ = 0 also covers distributions with unbounded support (i.e., v∗ = ∞)

but with exponential decaying (i.e.,“light”) right tail and bounded moments of any order. This case includes

distributions such as Normal and log-Normal distributions. Finally, the case ξ < 0 covers distributions with

v∗ <∞ (i.e., bounded support), including Beta, Uniform, and triangular distributions.

For the purpose of this paper, the significance of (2.2) is that it allows us to characterize the joint

distribution of the extreme ordered valuations for all auctions as the number of bidders diverges. We now

introduce the relevant notation to this end. For each auction j = 1, . . . , n, let {V(i),j : i = 1, . . . ,Kj} denote

the order statistics of the valuations {Vi,j : i = 1, . . . ,Kj} expressed in decreasing order, i.e., V(1),j ≥ V(2),j ≥
· · · ≥ V(Kj),j . With this notation in place, Lemma 2.1 provides the joint distribution of the extreme order

statistics for all auctions.
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Lemma 2.1. Assume (2.2) holds. For any n ∈ N, and as K →∞,{(
V(1),j − bK

aK
,
V(2),j − bK

aK
, . . . ,

V(d),j − bK
aK

)
: j = 1, . . . , n

}
d→

(
Hξ(E1,j), Hξ(E1,j + E2,j), . . . , Hξ

(∑d

s=1
Es,j

))
: j = 1, . . . , n

 , (2.4)

where {(aK , bK) ∈ R++ × R : K ∈ N} are the normalizing constants in (2.2), {Es,j : s = 1, . . . , d, j =

1, . . . , n} are i.i.d. standard exponential random variables, and

Hξ(x) ≡

 (x−ξ − 1)/ξ if ξ 6= 0,

− ln(x) if ξ = 0.

Lemma 2.1 characterizes the asymptotic distribution of the largest order statistics. In this paper, we

consider first-price and second-price auction formats, which involve only V(1),j and V(2),j , respectively. We

assume that bidders follow a symmetric equilibrium strategy, which allows us to fully characterize the

mapping between private valuations and equilibrium bids and observed transaction prices {Pj : j = 1, . . . , n}.
This allows us to fully characterize the joint distribution of prices as a function the tail index ξ. In turn, there

are several hypotheses of interest that are exclusively a function of the tail index ξ. By linking these two

ideas, our framework allows us to develop inference for these hypotheses based on the observed transaction

prices.

3 Second-price auctions

3.1 Auction format

We first consider second-price sealed-bid actions, where the highest bidder gets the object and pays the

second-highest bid. By standard arguments, the weakly dominant strategy is that each bidder bids her

valuation. See, e.g., Krishna (2009, Proposition 2.1). As a consequence, the observed transaction price in

auction j = 1, . . . , n is equal to the second-highest bid, i.e.,

Pj = V(2),j . (3.1)

By Lemma 2.1 and (3.1), we conclude that K →∞,{
Pj − bK
aK

: j = 1, . . . , n

}
d→
{
Hξ(E1,j + E2,j) : j = 1, . . . , n

}
, (3.2)

where {(aK , bK) ∈ R++ × R : K ∈ N}, {(E1,j , E2,j) : j = 1, . . . , n}, and Hξ as in Lemma 2.1.

If the normalizing constants {(aK , bK) ∈ R++ ×R : K ∈ N} were known, (3.2) could be used to conduct

inference on functions of the EV index ξ. Unfortunately, these constants are unknown, and depend implicitly

on the underlying distribution of valuations. To sidestep this issue, we consider the following self-normalized
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statistics: for j = 1, . . . , n∗ ≡ n− 2,

P ∗j ≡
Pj − Pn
Pn−1 − Pn

. (3.3)

Note that (3.2) implies that observed prices are continuously distributed, which guarantees that the denom-

inator in (3.3) is non-zero almost surely. Therefore,

{
P ∗j : j = 1, . . . , n∗

}
d→

{
Hξ(E1,j + E2,j)−Hξ(E1,n + E2,n)

Hξ(E1,n−1 + E2,n−1)−Hξ(E1,n + E2,n)
: j = 1, . . . , n∗

}
, (3.4)

where {(E1,j , E2,j) : j = 1, . . . , n} and Hξ as in Lemma 2.1. As anticipated, (3.4) reveals that the asymptotic

distribution of {P ∗j : j = 1, . . . , n∗}, which further provides useful information about the tail index ξ.

Given the data (i.e., {P ∗j : j = 1, ..., n∗}), we now propose inference about the value of ξ, the expected

utility of the winner, and the seller’s expected revenue in second-price auctions in the following three sub-

sections.

3.2 Inference about the tail index

Given Lemma 2.1 and (3.4), the asymptotic distribution of
(
Pj − bK

)
/aK becomes that of Hξ

(
E1,j + E2,j

)
for all j = 1, ..., n. For notation simplicity, we introduce the short-hand notation that Zj = Hξ

(
E1,j + E2,j

)
for j = {1, ..., n} and

(P ∗1 , ..., P
∗
n∗)

d→
(

Z1 − Zn
Zn−1 − Zn

, ...,
Zn−2 − Zn
Zn−1 − Zn

, 1, 0

)
≡ (Z∗1 , ..., Z

∗
n∗).

Moreover, since {Zj : j = 1, ..., n} are independent, we can order them such that {Zn−1 ≥ Z1 ≥ Z2 ≥
. . . ≥ Zn−2 ≥ Zn}, whose joint density is n!

∏n
j=1 fZ|ξ(zj). This is the same density of the un-ordered

{Zj : j = 1, ..., n}, that is,
∏n
j=1 fZ|ξ(zj) multiplied by the constant n! (e.g., Krishna, 2009, p.283). By doing

so, we have that 1 ≥ P ∗1 ≥ . . . ≥ P ∗n∗ ≥ 0, which simplifies the numerical computation.

Using change of variables and the fact that

fZ|ξ (x) =

 (1 + ξx)
− 2+ξ

ξ exp
(
− (1 + ξx)

−1/ξ
)

if ξ 6= 0

exp (−2x) exp
(
− exp (−x)

)
if ξ = 0

 ,

we obtain that

fZ∗
1 ,...,Z

∗
n∗ |ξ (z∗1 , ..., z

∗
n∗) (3.5)

= n!Γ (2n)

∫ b(ξ)

0

sn−2 exp


−2n log

(∑n∗

j=1

(
1 + z∗j ξs

)−1/ξ

+ (1 + ξs)−1/ξ

)
−
(

1 + 2
ξ

)(∑n∗

j=1 log
(

1 + z∗j ξs
)

+ log(1 + ξs)

)
 ds,

where Γ (·) is the Gamma function, b (ξ) = −1/ξ for ξ < 0 and b (ξ) = ∞ otherwise. This den-

sity can be numerically calculated by Gaussian Quadrature. The case with ξ = 0 can be computed as
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limξ→0 fZ∗
1 ,...,Z

∗
n|ξ (z∗1 , ..., z

∗
n) given that fZ∗

1 ,...,Z
∗
n|ξ is continuous in ξ.

Now we are ready to conduct inference about ξ. Consider the following testing problem with the com-

peting hypotheses

H0 : ξ = ξ0 against H1 : ξ = ξ1.

By Neyman-Pearson Lemma, the optimal test with observations (Z∗1 , ..., Z
∗
n) that asymptotically controls

size is the likelihood ratio test, that is,

ϕ (z∗1 , ..., z
∗
n) = 1

[
fZ∗

1 ,...,Z
∗
n|ξ1 (z∗1 , ..., z

∗
n)

fZ∗
1 ,...,Z

∗
n|ξ0

(
z∗1 , ..., z

∗
n

) > cv (ξ0, ξ1, α, n)

]
,

where cv (ξ0, ξ1, α, n) denotes the critical value depending on (ξ0, ξ1), the number of auctions n, and the

significance level α.

In practice, we are often more interested in a hypothesis test with a composite alternative hypothesis.

Given a composite alternative space Ξ ⊂ R\{ξ0}, this test is given by

H0 : ξ = ξ0 against H1 : ξ ∈ Ξ.

To this end, we consider tests that maximize the weighted average power criterion (e.g. Andrews and

Ploberger, 1994). In particular, for any probability measure W (·) on Ξ, we construct the following gen-

eralized likelihood ratio test

ϕ (z∗1 , ..., z
∗
n) = 1

[∫
Ξ
fZ∗

1 ,...,Z
∗
n|ξ (z∗1 , ..., z

∗
n) dW (ξ)

fZ∗
1 ,...,Z

∗
n|ξ0

(
z∗1 , ..., z

∗
n

) > cv (ξ0,W, α, n)

]
,

where the critical value now depends on ξ0, α, n, and W (·). The weighting function W (·) transforms the

composite alternative into a simple one so that the above test maximizes the W -weighted average power∫
Ξ

Eξ
[
ϕ (Z∗1 , ..., Z

∗
n)
]
dW (ξ) ,

where Eξ [·] is the expectation w.r.t. the density fZ∗
1 ,...,Z

∗
n|ξ. In practice, W (·) is chosen by the econometrician

to reflect the importance attached to the ability of the test to reject for certain alternatives (e.g. Müller,

2011, pp. 400-401). In our auction problems, we set Ξ = [−1, 0.5] and W (·) as the uniform measure. We

rule out ξ > 0.5 to guarantee that the variance of valuation is finite. We rule out ξ < −1 since the density

of the valuation will diverge to infinity near the right end-point (see Section 3.2 ahead). Therefore, our test

is simplified as

ϕ (z∗1 , ..., z
∗
n) = 1

[∫
[−1,0.5]

fZ∗
1 ,...,Z

∗
n|ξ (z∗1 , ..., z

∗
n) dξ

fZ∗
1 ,...,Z

∗
n|ξ0

(
z∗1 , ..., z

∗
n

) > cv (ξ0, α, n)

]
, (3.6)

where the critical value is simulated as the 1−α quantile of the likelihood ratios with random draws from the

limiting density fZ|ξ0 . Then by the continuous mapping theorem, this test controls size at least asymptotically

such that limK→∞ E
[
ϕ (P ∗1 , ..., P

∗
n)
]

= E
[
ϕ (Z∗1 , ..., Z

∗
n)
]
≤ α for any fixed n ≥ 3. By inverting (3.6), we can

obtain the corresponding 1− α level confidence interval for ξ.

We close this subsection with a remark about the special case with ξ = −1, which characterizes a set of
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commonly adopted regularity assumptions in the existing literature. Specifically, von Mises’ condition (cf.

Embrechts, Klüpperberg, and Mikosch, 1997, Chapter 3.3) implies that there are only four cases for the limit

of the valuation distribution fV (v) as v → v∗ ≡ sup{v : FV (v) < 1}, namely

Case 1 ξ ≥ 0, v∗ ≤ ∞ and fV (v)→ 0 as v → v∗;

Case 2 ξ ∈ (−1, 0), v∗ <∞ and fV (v)→ 0 as v → v∗;

Case 3 ξ = −1, v∗ <∞ and fV (·) is uniformly bounded away from 0 and ∞;

Case 4 ξ < −1, v∗ <∞ and fV (·)→∞ as v → v∗.

The existing methods to analyze auction data sets typically assume that (i) the valuation has a bounded

support and (ii) the density of V is uniformly bounded away from 0 and ∞ near the upper bound. If both

assumptions are satisfied, the tail index has to be −1 as in Case 3 above. We formalize this result as the

following lemma.

Lemma 3.1. Suppose the following conditions holds that

(i) v∗ < ∞; (ii) 0 < C < infv∈[v∗−ε,v∗] fV (v) ≤ supv∈[v∗−ε,v∗] fV (v) < C̄ for some positive constants

ε, C, C̄; and (iii) fV (·) is continuous, then FV is in the domain of attraction of Gξ with ξ = −1.

Given Lemma 3.1, testing

H0 : ξ = −1 against H1 : ξ ∈ (−1, 0.5]

suffices to test a necessary condition of these regularity conditions. Figure 1 presents the asymptotic (as

K → ∞) rejection probabilities of the LR test (3.6) with data generated from the EV distribution under

different values of ξ. The significance level is 5%. As expected, this test controls size under the null hypothesis

and has more powers as ξ or n increase. The finite sample performance with small numbers of bidders is

presented in Section 5.

3.3 Inference about winner’s expected utility

This section considers inference about the winner’s expected utility, that is µK ≡ E[V(1),j −V(2),j ]. When K

is finite, this quantity depends on the whole valuation distribution. But under our asymptotics with K →∞,

Lemma 2.1 implies that
µK
aK
→ Γ (1− ξ) ,

which is now fully characterized by ξ. Since aK is unknown, we cannot simply implement the test (3.6) for

inference about µK .

Alternatively, we note that µK is invariant to location shift and shares the same scale as transaction

price. Therefore, denoting P = (P1, . . . , Pn), we aim to construct a confidence interval U(P) ⊂ R for µK

that satisfies U(aP + b) = aU(P) for any constants a 6= 0 and b, where aU(P) = {x : (x/a ∈ U(P)}.
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Figure 1: Asymptotic rejection probabilities of the LR test at 5% for ξ = −1. Based on 10,000 simulations.

To this end, we employ Lemma 2.1 and the continuous mapping theorem again to derive that(
µK

Pn−1 − Pn
, (P ∗1 , . . . , P

∗
n∗)

)
d→
(

Γ (1− ξ)
Zn−1 − Zn

, (Z∗1 , . . . , Z
∗
n∗)

)
≡
(
Y ∗µ ,Z

∗
)
.

The joint density of Y ∗µ and Z∗ can be derived similarly as in (3.5) by change of variables. We postpone the

details to the Appendix for readability.

Now we work with the asymptotic problem in which we observe Z ≡ (Z1, . . . , Zn). Note that ξ is unknown

even asymptotically since we have a finite number n of auctions. Therefore, we require the correct asymptotic

coverage uniformly over ξ ∈ Ξ. Specifically, using the equivariance/invariance restriction, we have that

P(µK ∈ U(P)) = P

(
µK

Pn−1 − Pn
∈ U

(
P− Pn

Pn−1 − Pn

))
→ Pξ

(
Y ∗µ ∈ U(Z∗)

)
,

where the notation Pξ (and Eξ below) indicates that the randomness is entirely characterized by ξ asymp-

totically. The asymptotic problem then is to construct a scale equivariant and location invariant U that

satisfies

Pξ
(
Y ∗µ ∈ U(Z∗)

)
≥ 1− α for all ξ ∈ Ξ. (3.7)
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Given Lemma 2.1 and the equivariance/invariance constraint, such an interval satisfies

lim
n→∞

P(µK ∈ U(P)) ≥ 1− α for all ξ ∈ Ξ.

In principle, there could still be many solutions that satisfy the asymptotic size constraint. To obtain

the optimal one, we consider the weighted average expected length criterion∫
Eξ[lgth(U(P))]dW (ξ), (3.8)

where W again denotes some weighting measure on Ξ, and lgth(A) =
∫
1[y ∈ A]dy for any Borel set A ⊂ R.

To solve the program of minimizing (3.8) subject to (3.7) among all equivariant/invariant intervals U ,

we write Eξ[lgth(U(Z))] = Eξ[(Zn−1−Zn)lgth(U(Z∗))] = Eξ[κξ(Z∗)lgth(U(Z∗))] with κξ(Z
∗) = Eξ[(Zn−1−

Zn)|Z∗]. Thus, our problem becomes

minU(·)
∫

Ξ
Eξ[κξ(Z∗)lgth(U(Z∗))]dW (ξ)

s.t. Pξ
(
Y ∗µ ∈ U(Z∗)

)
≥ 1− α for all ξ ∈ Ξ.

(3.9)

Note that any solution to (3.9)) also provides the form of U , that is, U(Z) = (Zn−1 − Zn)U(Z∗). So once

U(·) is determined, the confidence interval can be constructed in practice by plugging in (Pn−1−Pn)U(P∗).

To make further progress in solving (3.9), we follow Müller and Wang (2017) to write the problem in the

following Lagrangian form:

min
U(·)

∫
Ξ

Eξ[κξ(Z∗)lgth(U(Z∗))]dW (ξ) +

∫
Ξ

Pξ
(
Y ∗µ ∈ U(Z∗)

)
dΛ(ξ),

where the non-negative measure Λ denotes the Lagrangian weights that guarantee the asymptotic size con-

straint. These weights can be considered as the least favorable approximation in the inference problem with

a nuisance parameter under the null hypothesis (e.g., Lehmann and Romano, 2005, Chapter 3). By writing

the expectations above as integrals over the densities fZ∗|ξ of Z∗ and fY ∗
µ ,Z

∗|ξ of (Y ∗µ ,Z
∗), the solution of

the above problem is given by

U(z∗) =

{
y :

∫
Ξ

κξ(z
∗)fZ∗|ξ(z

∗)dW (ξ) <

∫
Ξ

fY ∗
µ ,Z

∗|ξ(y, z
∗)dΛ(ξ)

}
. (3.10)

The integrals can be numerically calculated by Gaussian quadrature, and then the only remaining challenge

is to find some suitable Lagrangian weights Λ. We solve this challenge by the numerical approach developed

in Elliott, Müller, and Watson (2015). Then by construction, the confidence interval (3.10) is nearly optimal

in the sense that it is a level 1-α equivariant set whose the W -weighted average length (3.8) is no more than

1% longer than any other equivariant set satisfying the coverage (3.7). See Appendix A.1 for further details.

The MATLAB program and the weights Λ are available at the author’s website. Of course Λ only needs to

be computed once and then is ready to use for practitioners. Figure 2 depicts the results for n = 30 and 50.

Then the most time-consuming part in solving the program (3.9) is the numerical integration, which costs

only a few seconds in a modern PC. Further details are provided in Appendix A.1.
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Figure 2: The weights Λ for n = 30 and 50. Based on 10,000 simulations.

3.4 Inference about the seller’s expected revenue

We now consider the seller’s expected revenue, that is, πK ≡ E[V(2),j ]. Employing Lemma 2.1, we have that

πK − bK
aK

→ E
[
Hξ(E1,j + E2,j)

]
=

Γ(2− ξ)− 1

ξ
≡ π∗ (3.11)

for ξ 6= 0. The case with ξ = 0 is obtained by taking the limit ξ → 0. See Lemma A.4 in Appendix A.2 for

details.

The derivation (3.11) yields that the seller’s expected revenue is asymptotically equivalent to π∗ after

the scale and location normalization. To sidestep the issue of not knowing aK and bK , we impose the

equivariance restriction such that our confidence interval U satisfies that U(aP + b) = aU(P) + b for any

a 6= 0 and b. Lemma 2.1 and the continuous mapping theorem yield that(
πK − Pn
Pn−1 − Pn

, (P ∗1 , . . . , P
∗
n∗)

)
d→
(

π∗ − Zn
Zn−1 − Zn

, (Z∗1 , . . . , Z
∗
n∗)

)
≡ (Y ∗π ,Z

∗) .

Then the equivariance restriction implies that

P(π∗K ∈ U(P)) = P

(
π∗K − Pn
Pn−1 − Pn

∈ U
(

P− Pn
Pn−1 − Pn

))
→ Pξ

(
Y ∗π ∈ U(Z∗)

)
.

12



Similarly as (3.9), we can construct the confidence interval for π∗K that minimizes the weighted average

length and satisfies the uniform asymptotic coverage restriction, that is,

minU(·)
∫

Ξ
Eξ[κξ(Z∗)lgth(U(Z∗))]dW (ξ)

s.t. Pξ
(
Y ∗π ∈ U(Z∗)

)
≥ 1− α for all ξ ∈ Ξ.

(3.12)

The solution of this problem is similarly written as

U(z∗) =

{
y :

∫
Ξ

κξ(z
∗)fZ∗|ξ(z

∗)dW (ξ) <

∫
Ξ

fY ∗
π ,Z

∗|ξ(y, z
∗)dΛ(ξ)

}
, (3.13)

where the density fY ∗
π ,Z

∗|ξ is given in Appendix A.1.

We finish this section by discussing the optimal reserve price and its effect on the seller’s expected

revenue. In the classic setup where the seller’s own value of the good, denoted as v0K , is a constant, Riley

and Samuelson (1981, Proposition 3) demonstrate that the optimal reserve price is also a constant regardless

of the number of bidders. As the number of bidders increases, the transaction price will surpass the reserve

price almost surely (cf. Wilson, 1977). As a consequence, the effect of the reserve price on the seller’s revenue

becomes degenerate asymptotically.

To construct the optimal reserve price that asymptotically affects the seller’s revenue, we can assume

that the seller’s value of the good is of the same order of magnitude as the transaction price. To this end, we

assume (v0K − bK) /aK → v0 for some v0 ∈ R. Denote γK as the reserve price and then the seller’s expected

revenue becomes

πK (γK) ≡ E
[
γK1

[
V(2),j ≤ γK ≤ V(1),j

]
+ V(2),j1

[
γK ≤ V(2),j

]
+ v0K1

[
V(1),j ≤ γK

]]
.

Now as K →∞, the optimal γK should have the same order of magnitude as the transaction price V(2),j .

Writing the normalization (γK − bK) /aK → γ, we employ Lemma 2.1 to derive the asymptotic expression

of the revenue as

πK (γK)− bK
aK

= E

[
(rK − bK)

aK
1

[
V(2),j − bK

aK
≤ γK − bK

aK
≤
V(1),j − bK

aK

]]

+E


(
V(2),j − bK

)
aK

1

[
γK − bK
aK

≤
V(2),j − bK

aK

]
+E

[
(V0K − bK)

aK
1

[
V(1),j − bK

aK
≤ γK − bK

aK

]]
→ γP

(
Hξ(E1,j + E2,j) ≤ γ ≤ Hξ(E1,j)

)
+ E

[
Hξ(E1,j + E2,j)1

[
γ ≤ Hξ(E1,j + E2,j)

]]
+v0P

(
Hξ(E1,j) ≤ γ

)
≡ π (γ) ,
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where Hξ(E1,j) and Hξ(E1,j + E2,j) are jointly EV distributed as in (2.4). Their joint density is given by

fH1,H2|ξ(x1, x2) =

 (1 + ξx1)
− 1+ξ

ξ (1 + ξx2)
− 1+ξ

ξ exp
(
− (1 + ξx2)

−1/ξ
)

if ξ 6= 0

exp(−x1) exp(−x2) exp
(
− exp(−x2)

)
if ξ = 0

(3.14)

on x2 ≤ x1 and zero otherwise, where H1 is short for Hξ(E1,j) and H2 is short for Hξ(E1,j + E2,j). The

following lemma derives the asymptotic expression of the optimal reserve price. Given the knowledge of v0,

say zero, one can construct the confidence interval for the optimal reserve price γ∗K similarly as in (3.13).

Lemma 3.2. Under (3.14), γ∗ ≡ arg maxγ π (γ) = (1 + v0)/(1− ξ).

4 First-price auctions

4.1 Auction format

We now consider first-price sealed-bid actions, where the highest bidder gets the object and pays the highest

bid. By standard arguments, the symmetric equilibrium strategy is that a bidder with valuation v in an

auction with K participants is to bid βK(v) ≡ E[V(1),−j |V(1),−j < v], where V(1),−j denotes the highest bid

among the remaining (K − 1) participants. See, e.g., Krishna (2009, Proposition 2.2) and Guerre et al.

(2000). If this argument is applied to auction j (with Kj bidders), the equilibrium bid becomes

βKj (v) =
Kj − 1

FV (v)Kj−1

∫ v

−∞
uFV (u)Kj−2fV (u)du = v −

∫ v
−∞ FV (u)Kj−1du

FV (v)Kj−1
, (4.1)

where the second equality holds by integration by parts. Since βKj (v) is increasing in v, the auction j is

won by the highest valuation bidder, who pays

Pj = V(1),j −
∫ V(1),j

−∞ FV (u)Kj−1du

FV (V(1),j)Kj−1
. (4.2)

In Lemma A.3 in the Appendix, we use (4.2) to deduce that{
Pj − bK
aK

: j = 1, . . . , n

}
d→
{
Xj : j = 1, . . . , n

}
, (4.3)

where

Xj ≡ Hξ

(
E1,j

)
−
∫Hξ(E1,j)
−∞ Gξ (h) dh

Gξ

(
Hξ

(
E1,j

)) , (4.4)

Gξ(·) is as in (2.3), and {(aK , bK) ∈ R++ × R : K ∈ N}, {E1,j : j = 1, . . . , n}, and Hξ(·) as in Lemma 2.1.

Once again, (4.3) cannot be directly used to conduct inference on the tail index ξ because the normalizing

constants {(aK , bK) ∈ R++ × R : K ∈ N} were unknown. To address this problem, we consider the self-
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normalized statistics in (3.3). In the case of a first-price auction, we have

{
P ∗j : j = 1, . . . , n∗

}
d→
{

Xj −Xn

Xn−1 −Xn
: j = 1, . . . , n∗

}
. (4.5)

Then (4.5) reveals that the asymptotic distribution of {P ∗j : j = 1, . . . , n∗}, which further provides useful

information about the tail index ξ and other tail-related features.

4.2 Inference about tail index, winner’s utility, and seller’s revenue

Given the asymptotic observation (4.4), the inference about ξ and other tail features follow analogously as

in Sections 3.2 to 3.4. We only highlight the difference here.

We start with testing ξ = −1. In this case, Gξ(h) is simplified as exp(h− 1) and then (4.4) becomes that

Xj = H−1(E1,j)− 1. By construction, the normalized prices P ∗j is invariant to the constant shift by −1 and

hence we can replace the joint density of P ∗j : j = 1, . . . , n∗ with that of Z∗j : j = 1, . . . , n∗. See Appendix

A.1 for the expression of fZ∗|ξ. Then the same test as in (3.6) is applicable and controls size asymptotically

under the null hypothesis.

Now we consider inference about the winner’s expected utility, which is given by µK = E[V(1),j − Pj ].
Under Lemma A.3 in the Appendix, we show that µK/aK → Γ(1 − ξ). See also Gabaix, Laibson, and Li

(2005, Proposition 8). Note that this expression is the same as in second-price auctions and coherent with

the well-known revenue equivalence principle across auction formats (e.g., Krishna, 2009, Proposition 3.1).

To perform a similar analysis in Section 3.3, we need to derive the density of X as in (4.4), which does

not have a closed-form expression. To see this, we again adopt the shorthand notation H1 = Hξ(E1,j) and

use (4.4) to write that

X = H1 −
1

Gξ(H1)

∫ H1

−∞
Gξ(h)dh

= H1 − Γ
(
−ξ, (1 + ξH1)

−1/ξ
)
/ exp(− (1 + ξH1)

−1/ξ
),

where we suppress the subscript j and denote Γ(a, x) =
∫∞
x
ta−1etdt as the incomplete gamma function. By

the change of variables H∗ = (1 + ξH1)
−1/ξ

and the fact that Γ (1 + s, x) = sΓ (s, x) + xse−x, we have

X̃ ≡ 1 + ξX

= 1 + ξH1 − ξΓ
(
−ξ, (1 + ξH1)

−1/ξ
)
/ exp(− (1 + ξH1)

−1/ξ
)

=
[
(H∗)

−ξ
exp (−H∗)− ξΓ (−ξ,H∗)

]
exp (H∗)

= Γ(1− ξ,H∗) exp (H∗)

and hence

X =
Γ(1− ξ,H∗) exp (H∗)− 1

ξ
≡ eξ(H∗),
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where the case with ξ = 0 is obtained by taking the limit.

Note that H∗ has the standard exponential distribution and eξ (x) is monotonically decreasing in x for

any ξ. Letting the inverse function of eξ as e−1
ξ , we then compute the density of X as

fX|ξ(x) = −
∂e−1
ξ (x)

∂x
exp

(
−e−1

ξ (x)
)
. (4.6)

Since eξ (·) does not a closed-form expression, evaluating this function and its inverse is challenging.

To find a tractable alternative, we propose a numerical approximation based on Taylor expansion of the

incomplete gamma function (e.g. Amore, 2005). Then we can construct approximations of the densities of

Y ∗µ ≡ Γ(1 − ξ)/(Xn−1 −Xn) and the self-normalized X, which are given in Appendix A.1. The confidence

intervals for the winner’s utility can be constructed in the same way as in Sections 3.3. Moreover, the seller’s

expected revenue as in Section 3.4 can be applied with Z replaced by X given the equivalence revenue

principle again.

5 Monte Carlo simulations

This section presents the finite sample performance of our proposed inference method and compares it with

other existing ones based on the standard asymptotic framework with a diverging number of auctions. Section

5.1 considers second-price auctions and Section 5.2 considers first-price auctions.

5.1 Second-price auctions

We start with testing ξ = −1. Table 1 depicts the finite sample rejection probabilities of with the LR test

(3.6). We generate i.i.d. values from four different distributions: the absolute value of standard Normal,

the absolute value of Student-t(20), the Pareto distribution with exponent 0.25, and the standard uniform

distribution over [0, 3]. The uniform distribution corresponds to the null hypothesis, and all other three

distributions are the alternatives. We choose W (·) as the uniform weight and Ξ = [−1, 0.5]. The significance

level is 5% and the results are based on 500 simulations. We set n = 10 or 100 and Kj = K to be 10,

100, or Kj independently and uniformly generated from {80, 81, . . . , 100}. The random K case examines the

sensitivity of our method to the homogeneity in K.

The new test (3.6) performs well as long as the number of bidders is not too small. In particular, the

new test overrejects when the number of bidders is only 10 since the EV convergence performs poorly. The

new test quickly achieves the nominal size as the number of bidders increases. The testing power increases

in the number of auctions.

In Table 2, we examine the confidence intervals of the winner’s expected utility by comparing the new

method with three other existing ones: (i) the parametric approach assuming Normal value distribution,

(ii) the infeasible approach that relies on observing both the largest and second largest bids, and (iii) the

nonparametric kernel estimation. In particular, if both the first and the second largest bids were observed,

then we observe Dj ≡ V(1),j − V(2),j and simply construct the t-statistic D/
√
n−1

∑n
j=1

(
Dj − D̄

)2
, where
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# Bidders 10 20 100 U{80,...,100}
# Auctions 10 100 10 100 10 100 10 100

Dist. Rejection Prob.∣∣N(0, 1)
∣∣ 0.18 1.00 0.19 1.00 0.19 0.99 0.16 1.00∣∣t(20)

∣∣ 0.19 0.99 0.18 0.99 0.16 0.98 0.17 0.98

Pa(0.25) 0.08 0.49 0.09 0.59 0.09 0.68 0.08 0.70

U[0,3] 0.08 0.29 0.06 0.10 0.05 0.05 0.04 0.05

Table 1: Finite sample rejection prob. of the LR test for ξ = −1 for second-price auctions

D = n−1
j=1

∑
Dj . Regarding the nonparametric kernel estimator, we suppose K is known. The value

distribution FV and its PDF fV can be nonparametrically estimated by first estimating FP and then inverting

the functional that

FP (x) = FV(2)
(x)

=

K∑
r=K−1

(
K

r

)
FV (x)r

(
1− FV (x

)
)K−r

= FV (x)K +KFV (x)K−1
(
1− FV (x)

)
. (5.1)

Assume V > 0. Then the expected utility is such that

E
[
V(1),j − V(2),j

]
= K

∫
xFV (x)

K−1
fV (x) dx− (K − 1)K

∫
x
(
fV (s)

(
1− FV (s)

)
FV (x)

K−2
)
dx

=

∫ ∞
0

(
1− FKV (x)

)
dx−K

∫ ∞
0

(
1− FK−1

V (x)
)
dx+ (K − 1)

∫ ∞
0

(
1− FKV (x)

)
dx

= K

(∫ ∞
0

(
1− FKV (x)

)
dx−

∫ ∞
0

(
1− FK−1

V (x)
)
dx

)
.

This quantity can be estimated by plugging in F̂V (·) and the confidence intervals can be constructed by

bootstrap. We use 500 simulation draws and 100 bootstrap samples. The significance level is 0.05.

Table 2 presents the coverage and length of these four intervals with the same choices of n and K as in

Table 1. In the case with a random Kj , the true expected utility is still generated with Kj = K = 100, so

that we allow for some misspecification.

We summarize the findings as follows. First, the new approach based on EV theory has excellent small

sample coverage and length properties. Second, if data are generated from the Student-t distribution with

20 degrees of freedom, which is very close to the standard Normal distribution, the parametric approach

based on Normal assumption still suffers severe undercoverage since the object of interest is in the tail.

Unreported results show that only if the degree of freedom is larger than 40, approximating Student-t with

Normal distribution leads to a satisfactory performance of the parametric approach. Third, comparing the

length, the new approach even dominates the infeasible sample average approach. This finding implies

that knowing the transaction price itself is good enough for learning the winner’s expected utility. Finally,

the nonparametric method works poorly because the sample size is not sufficiently large. The uniform
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# Bidders 10 100 U{80,81,. . . ,100}
# Auctions 10 100 10 100 10 100

Dist. Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

New approach based on EV theory∣∣N(0, 1)
∣∣ 0.94 1.46 0.94 0.24 0.95 1.17 0.98 0.18 0.95 1.22 0.94 0.18∣∣t(20)

∣∣ 0.94 1.68 0.92 0.28 0.94 1.45 0.94 0.27 0.94 1.52 0.96 0.27

Pa(0.25) 0.98 1.47 0.94 0.54 0.94 2.63 0.95 0.96 0.94 2.53 0.95 0.93

U[0,3] 0.97 0.77 0.93 0.08 0.96 0.31 0.96 0.11 0.98 0.34 0.98 0.12

Parametric approach based on Normal assumption∣∣N(0, 1)
∣∣ 0.93 0.21 0.75 0.07 0.92 0.15 0.93 0.05 0.92 0.15 0.84 0.05∣∣t(20)

∣∣ 0.81 0.22 0.72 0.07 0.53 0.17 0.00 0.06 0.54 0.17 0.00 0.06

Pa(0.25) 0.01 0.34 0.00 0.11 0.04 0.22 0.00 0.09 0.00 0.22 0.00 0.07

U[0,3] 0.00 0.34 0.00 0.11 0.00 0.28 0.00 0.09 0.00 0.06 0.00 0.02

Infeasible sample average approach∣∣N(0, 1)
∣∣ 0.89 0.47 0.94 0.17 0.90 0.45 0.95 0.16 0.89 0.35 0.96 0.12∣∣t(20)

∣∣ 0.90 0.70 0.92 0.19 0.89 0.63 0.94 0.22 0.86 0.48 0.92 0.17

Pa(0.25) 0.79 0.75 0.90 0.29 0.80 1.30 0.92 0.52 0.77 1.32 0.87 0.49

U[0,3] 0.87 0.28 0.94 0.10 0.86 0.03 0.93 0.01 0.88 0.04 0.86 0.01

Nonparametric kernel approach∣∣N(0, 1)
∣∣ 0.05 0.22 0.23 0.11 0.05 0.15 0.19 0.08 0.06 0.16 0.24 0.08∣∣t(20)

∣∣ 0.02 0.24 0.16 0.13 0.03 0.19 0.14 0.11 0.04 0.20 0.14 0.11

Pa(0.25) 0.00 0.17 0.06 0.15 0.01 0.30 0.06 0.25 0.01 0.30 0.04 0.24

U[0,3] 0.65 0.22 0.92 0.08 0.67 0.03 0.96 0.01 0.79 0.03 0.73 0.01

Table 2: Finite sample performance of inference about winner’s expected utility for second-price auctions.
Based on 500 simulation draws. The significance level is 0.05.

distribution seems exceptional when n is 100. This is potentially because the winner’s expected utility goes

to zero given the bounded support.

5.2 First-price auctions

We now consider first-price auctions and start with testing for ξ = −1. We implement the test (3.6) with

W (·) as the uniform weight and Ξ = [−1, 0.5]. We use the same DGPs as before. The simulation results are

depicted in Table 3. Recall that only the uniform distribution corresponds to the null hypothesis and all the

other three distributions correspond to the alternative hypothesis. Similarly as in the second-price auctions,

the LR test has excellent size and power properties as long as the number of bidders is not too small.

In Table 4, we construct the 95% confidence intervals for the winner’s expected utility. For easy imple-

mentation, we make the following miner modification. Regarding the parametric approach assuming Normal

value distribution, we assume V(1),j , the highest valuation is observed instead of the highest bid Pj (because
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# Bidders 10 20 100 U{80,...,100}
# Auctions 10 100 10 100 10 100 10 100

Dist. Rejection Prob.∣∣N(0, 1)
∣∣ 0.13 1.00 0.13 1.00 0.13 1.00 0.12 1.00∣∣t(20)

∣∣ 0.14 1.00 0.18 1.00 0.18 1.00 0.18 1.00

Pa(0.25) 0.20 1.00 0.19 1.00 0.18 1.00 0.19 1.00

U[0,3] 0.03 0.10 0.05 0.07 0.05 0.05 0.07 0.17

Table 3: Finite sample rejection prob. of the LR test for ξ = −1 in first-price auctions. Based on 500
simulation draws. The significance level is 0.05.

the density of Pj cannot be analytically solved). Then using

E
[
V(1),j − Pj

]
= E

∫ V(1)

0
FK−1
V (x) dx

FK−1
V (V(1))

 (5.2)

=

∫ ∫ v
0
FK−1
V (x) dx

FK−1
V (v)

d
(
FV (v)

)K
= K

∫ (∫ v

0

FK−1
V (x) dx

)
fV (v)dv,

we can estimate the expected utility by plugging in the pseudo maximum likelihood estimator. Since the

above expression does not have an analytic form, we construct the confidence intervals with 100 bootstrap

samples. Regarding the infeasible approach based on sample average, we assume both V(1),j and Pj are

observed, so that the t-statistics based on V(1),j−Pj can be easily constructed. Regarding the nonparametric

kernel estimator, suppose K is known and V(1),j instead of Pj is observed. Then the value distribution FV

can be nonparametrically estimated by first estimating FV(1)
and then using FV (·) = F

1/K
V(1)

(·). The expected

utility is further estimated by plugging F̂V (·) into (5.2) and the intervals can be constructed by bootstrap.

We use 500 simulation draws and 100 bootstrap samples.

Table 4 presents the coverage and length of the confidence intervals based on EV theory and the infeasible

sample average ones. The same pattern can be found as in Table 2. The other two approaches are strictly

dominated and hence not reported. In particular, the confidence intervals based on the Normal value

distribution assumption deliver almost zero coverage in all scenarios except when data are generated from

the Normal distribution. The kernel estimation performs poorly again given the small sample size.

6 Empirical application

We illustrate the new inference method with the car license plate auctions in Hong Kong. The data are

available from Ng, Chong, and Du (2010). The auction is implemented as the standard oral ascending

auction, which is equivalent to the second-price auction under the symmetric IPV setup. The number of

bidders is large and approximately the same across auctions. Plates are categorized into special and non-

special ones. The former can be individually designed and will not be tradable after the auction. The

non-special ones have random patterns and can be traded after their initial sales.
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# Bidders 10 100 U{80,81,. . . ,100}
# Auctions 10 100 10 100 10 100

Dist. Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth Cov Lgth

New approach based on EV theory∣∣N(0, 1)
∣∣ 0.94 1.05 0.98 0.38 0.96 1.17 0.99 0.29 0.97 1.12 1.00 0.46∣∣t(20)

∣∣ 0.94 1.08 0.96 0.42 0.97 1.09 0.99 0.38 0.96 1.10 1.00 0.62

Pa(0.25) 0.96 1.22 0.85 0.51 0.96 1.73 0.95 0.89 0.97 1.82 1.00 1.43

U[0,3] 0.89 0.98 0.99 0.24 0.93 0.20 0.98 0.13 0.95 0.23 0.86 0.17

Infeasible sample average approach∣∣N(0, 1)
∣∣ 0.86 0.31 0.94 0.11 0.86 0.24 0.93 0.09 0.86 0.25 0.95 0.09∣∣t(20)

∣∣ 0.88 0.40 0.93 0.14 0.83 0.37 0.92 0.13 0.83 0.36 0.92 0.13

Pa(0.25) 0.81 0.69 0.88 0.28 0.76 1.22 0.91 0.47 0.74 1.19 0.87 0.46

U[0,3] 0.89 0.03 0.95 0.01 0.85 0.00 0.95 0.00 0.00 0.00 0.00 0.00

Table 4: Finite sample performance of inference about winner’s expected utility for first-price auctions.
Based on 500 simulation draws. The significance level is 0.05.

In each auction, we observe the plate number, auction date, whether or not the plate was successfully

sold, and if so, the transaction price. We do not observe the reserve prices of the special plates, the number

of bidders, the bidder’s identities, or the bid increments. The reserve price for non-special plates is 1000

Hong Kong dollars (HKDs).

One may concern that some plate patterns are preferable to others. To control for this observed hetero-

geneity, we focus on the non-special plates that satisfy the following criteria: letters are not HK, letters are

not the same (e.g., not AA. BB, CC, etc.), the numbers on the plate are not in order (e.g. not 1369), or in

reverse order (e.g., not 9631), the number part of the plate has 4 digits, and none of these digits is either

an 8 or a 4 (indicating good or bad fortune in pronunciation), and the sold price is larger than the reserve

price.

Table 6 presents the confidence intervals for the expected utility of the winner and the p-values of the

test (3.6) for ξ = −1 using the data from each year. The significance level is 0.05. We can make several

interesting findings. First, the winner’s expected utility is very large in the economic sense since the middle

values of the confidence intervals range from 1000 to 6800 HKDs. Second, there is a sharp difference in

winner’s utility before and after the year of 2006, which reflects the structural change that special plates

became available for auction in that year. Third, the hypothesis that ξ = −1 is satisfied for most of the

years. But it is rejected at 10% level in the years 1997 and 2003, suggesting that existing inference methods

relying on the bounded support and positive density conditions might be unappropriate.

7 Concluding remarks

This paper studies inference in first-price or second-price sealed-bid auctions with a large number of sym-

metric independent private values. In this context, we propose an asymptotic framework where the number

of bidders diverges, while the number of auctions remains fixed. Under this new framework, we propose new
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year n 95% CI p-value year n 95% CI p-value

1997 26 2.24 9.20 0.06 2003 46 0.82 2.98 0.00

1998 27 1.81 6.96 >0.10 2004 12 0.74 4.94 >0.10

1999 32 1.28 5.07 >0.10 2005 22 0.61 3.80 >0.10

2000 29 1.72 6.18 >0.10 2006 17 0.13 1.61 >0.10

2001 34 1.29 4.52 >0.10 2007 31 0.81 2.71 >0.10

2002 18 1.13 5.56 >0.10 2008 24 0.59 3.47 >0.10

Table 5: 95% winner’s expected utility (measured in 1000 HKDs) and the p-values for testing ξ = −1 using
(3.6) in Hong Kong car license plate auctions. See the main text for more details.

inference methods for the winner’s expected utility, the seller’s expected revenue, and the tail properties of

the valuation distribution. We conclude with several remarks.

First, the new framework provides the asymptotically exact inference as the number of bidders diverges,

but is valid even if the number of observed auctions is small. This is in contrast with the existing methods

whose asymptotic derivations rely on a diverging number of auctions. If the number of auctions is also di-

verging, we could improve our method by consistently estimating the tail index ξ of the valuation distribution

and other features that can be expressed as functions of ξ. Second, the new framework requires observing

only the transaction price in each auction. This is in contrast with the existing methods that require multiple

bids in each auction. If multiple bids are available, we could use the joint asymptotic distributions of these

largest order statistics to improve the power of our test and shorten the length of our confidence intervals.

Third, the new framework does not requires observing the number of bidders, which can be difficult to obtain

in practice. This could happen when some bidders do not submit their bids as they are already below the

standing ask price. Our method sidesteps this issue as long as the true number of bidders is large and the

transaction price is above the reserve price.

Finally, our analysis has focused on the symmetric IPV setup but allows for extension to the cases

with asymmetric bidders and non-independent valuations provided additional conditions are imposed. One

possibility is the conditional IPV setup (e.g. Li, Perrigne, and Vuong, 2000), where in each auction the ith

bidder’s valuation Vi consists of a common component v plus an independent signal σi. The effect of v can

be eliminated by imposing the invariance restriction, and then the transaction price can be employed to

learn the tail features of the distribution of σi. Such extensions are investigated in other ongoing research

projects.
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A Appendix

Appendix A.1 provides computational details omitted from the main text. Appendix A.2 presents all mathematical

proofs.

A.1 Computational details

The following expressions are used in Section 3 for the second-price auctions:

fZ∗|ξ
(
z∗
)

= n!Γ (2n)

∫ b(ξ)

0

sn−2 exp

 −2n log
(∑n∗

j=1(1 + z∗j ξs)
−1/ξ + (1 + ξs)−1/ξ

)
−(1 + 2

ξ
)
(∑n∗

j=1 log
(
1 + z∗j ξs

)
+ log (1 + ξs)

)
 ds,

κξ
(
z∗
)
fZ∗|ξ

(
z∗
)

= n!Γ (2n− ξ)
∫ b(ξ)

0

sn−1 exp

 (ξ − 2n) log
(∑n∗

j=1(1 + z∗j ξs)
−1/ξ + (1 + ξs)−1/ξ

)
−(1 + 2

ξ
)
(∑n∗

j=1 log
(
1 + z∗j ξs

)
+ log (1 + ξs)

)
 ds,

where b (ξ) = −1/ξ for ξ < 0, and b (ξ) =∞ otherwise,

fY ∗
µ ,Z

∗|ξ(y, z
∗) = n!Γ (1− ξ)n−1 y−n

∫ c(ξ)

a(ξ)

exp

 −
∑n∗+2
j=1 (1 + ξs+ ξ

z∗j
y

Γ)−1/ξ

−(1 + 2
ξ
)
∑n∗+2
j=1 log

(
1 + ξs+ ξ

z∗j
y

Γ

)  ds

where Γ denotes Γ (1− ξ), z∗n−1 = 1, z∗n = 0, and a (ξ) and c (ξ) are such that for all s ∈
(
a (ξ) , c (ξ)

)
, 1+ξs+ξΓy−1 > 0

and 1 + ξs > 0, and

fY ∗
π ,Z

∗|ξ(y, z
∗) = n!y−n

∫ c1(ξ)

a1(ξ)

∣∣π∗ − s∣∣n−1
exp

 −
∑n∗+2
j=1 (1 + ξ(s+ z∗j (π∗ − s)/y)−1/ξ

−(1 + 2
ξ
)
∑n∗+2
j=1 log

(
1 + ξ(s+ z∗j (π∗ − s)/y

)
 ds,

where a1 (ξ) and c1 (ξ) are such that for all s ∈
(
a1 (ξ) , c1 (ξ)

)
, 1+ξ(s+(π∗−s)y−1 > 0, 1+ξs > 0 and (π∗−s)/y > 0.

For first-price auctions, we first employ the following numerical approximation for the function eξ (·) in Section

4.2. Consider the asymptotic series (e.g., Amore, 2005) that

Γ (a, x) ≈ xa−1 exp (−x)

[
1 +

a− 1

x
+

(a− 1) (a− 2)

x2
+ ...

]
,

Then taking the first order approximation Γ (a, x) ≈ xa−1 exp (−x) yields that eξ (x) ≈ (x−ξ − 1)/ξ.

The above approximation is more precise for large values of x. To obtain a better performance, we can ap-

proximate Γ (1− ξ, x) exp (x) by some polynomial function of x as motivated by the expressions in second-auction

prices. In particular, we approximate log
(
Γ (1− ξ, x) exp (x)

)
by −r1 log x+ r2, where r1 and r2 are some constants

depending on ξ. To this end, we obtain r1 and r2 for each ξ by first generating an equally-spaced grid of 50000 xi’s

within the 10−6 and 1− 10−6 quantiles of a standard exponentially distributed random variable and then regressing

log(r (1− ξ, xi) exp(xi)) on log(xi) and a constant. The regression coefficients serve as a good candidate for (−r1, r2).
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Given this approximation, we have that

eξ(x) ≈
exp

(
−r1 log(x) + r2

)
− 1

ξ
=
x−r1er2 − 1

ξ

e−1
ξ (x) ≈ (1 + ξx)−1/r1

(
e−r2

)−1/r1︸ ︷︷ ︸
≡r3

= r3(1 + ξx)−1/r1

∂e−1
ξ (x)

∂x
≈ −r3ξ

r1
(1 + ξx)−1/r1−1 .

Then using fX|ξ (x) = −
∂e−1
ξ

(x)

∂x
exp

(
−e−1

ξ (x)
)

, we approximate the joint distribution of X∗ as

fX∗|ξ
(
x∗
)

=
n!Γ (n) |r1|
|ξ|

∫ b(ξ)

0

sn−2 exp

 −n log
(
r3

∑n
j=1(1 + ξx∗js)

−1/r1
)

−(1 + 1
r1

)
∑n
j=1 log

(
1 + ξx∗js

)
+ n log

(∣∣∣ r3ξr1 ∣∣∣
)
 ds,

where x∗n−1 = 1, x∗n = 0, and n = n∗ + 2.

Similarly, we have

κξ
(
x∗
)
fX∗|ξ

(
x∗
)

= n! |r1|Γ (n− r1) |ξ|−1

∫ b(ξ)

0

sn−1 exp

 (r1 − n) log
(
r3

∑n
j=1(1 + ξx∗js)

−1/r1
)

−
∑n
j=1(1 + 1

r1
) log

(
1 + ξx∗js)

)
+ n log

(∣∣∣ r3ξr1 ∣∣∣
)
 ds,

and

fY ∗
µ ,X

∗|ξ(y,x
∗) = n!Γ (1− ξ)n−1 y−n

∫ c(ξ)

a(ξ)

exp

 −
∑n
j=1(1 + 1

r1
) log

(
1 + ξs+ ξ

z∗j
y

Γ(1− ξ)
)

+n log
(
r3ξ
r1

)
− r3

∑n
j=1(1 + ξs+ ξ

z∗j
y

Γ(1− ξ))−1/r1

 ds,

where a (ξ) and c (ξ) are such that for all s ∈
(
a (ξ) , c (ξ)

)
, 1 + ξs+ ξΓy−1 > 0 and 1 + ξs > 0.

All the above integrals are numerically approximated by Gaussian quadrature for implementation.

To determine the Lagrange multipliers Λ, we use the algorithm developed by Elliott et al. (2015). See also Müller

and Wang (2017). In particular, we implement the following steps for inference about the winner’s expected utility.

The program for the optimal reserve price is similar.

Step 1 Discretize the space Ξ into a fine grid ΞM ≡ {ξ1, . . . , ξM} and generate random draws Z from the EV

distribution with each ξj in this grid.

Step 2 Start with an arbitrary initial vector λ(0), say {1/M, . . . , 1/M}. Solve problem (3.9) numerically and evaluate

the coverage Pξj
(

Γ(1−ξj)
Zn−1−Zn

∈ U (Z∗)

)
numerically. Denote these estimated coverage as the vector P̂.

Step 3 Update the vector of λ by setting λ(s+1) = λ(s) + ε
(
P̂− (1− α)

)
where ε is some small step length, say

0.01, and α = 0.05 is the significance level. The idea is to increase the weight on ξj if the constructed interval

has overcoverage when ξj is the parameter generating the data and symmetrically to decrease the weight if the

interval has undercoverage.

Step 4 Iterate steps 2 and 3 for S times, say 2000, and record λ(S) and numerically compute the W -weighted average

length (3.8). Denote it as Vλ(S) .

Step 5 Numerically determine the constant c∗ such that Vc∗λ(S) = (1 + ε)Vλ(S) for ε = 0.01. The output c∗λ(S) is a

suitable candidates for the Lagrangian multipliers.
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Step 6 Generate a finer grid ΞM̃ with M̃ > M and estimate P̂ with λ(S). If all components of P̂ are larger than

or equal to 1 − α, stop and use λ(S). Otherwise, use ΞM̃ as the initial grid and repeat the above steps. Due

to continuity, the uniform size control can be nearly achieved over Ξ if the grid is fine enough. This is easily

checked numerically.

For any given n, the Lagrange multipliers only need to be determined once. The tables of the Lagrange multipliers

and the corresponding MATLAB code are provided on our website: https://sites.google.com/site/yulongwanghome/.

A.2 Proofs

Proof of Lemma 2.1. Since the n auctions are i.i.d., it suffices to show the marginal convergence result for any auction

j = 1, . . . n, i.e.,(
V(1),j − bK

aK
, . . . ,

V(d),j − bKj
aK

)
d→

(
Hξ(E1,j), . . . , Hξ

(∑d

s=1
Es,j

))
as K →∞, (A.1)

where {Es,j : s = 1, . . . , d} are i.i.d. standard exponential random variables. We fix j = 1, . . . n for the remainder of

the proof.

Let x be any continuity point of Gξ. Since Kj →∞ as K →∞, (2.2) implies that there is a sequence of constants

{(aKj , bKj ) ∈ R++ × R : Kj ∈ N} s.t.

F (aKjx+ bKj )
Kj → Gξ(x) as K →∞. (A.2)

Under (A.2), de Haan and Ferreira (2006, Theorem 2.1.1), implies that(
V(1),j − bKj

aKj
, . . . ,

V(d),j − bKj
aKj

)
d→

(
Hξ(E1,j), . . . , Hξ

(∑d

s=1
Es,j

))
as K →∞. (A.3)

Note that(
V(1),j − bK

aK
, . . . ,

V(d),j − bK
aK

)
=

(
V(1),j − bKj

aKj
, . . . ,

V(d),j − bKj
aKj

)
aKj
aK

+

(
bK − bKj

aK
, . . . ,

bK − bKj
aK

)
. (A.4)

under (A.3) and (A.4), (A.1) follows from showing that(
aKj
aK

,
bKj − bK

aK

)
→ (1, 0) as K →∞. (A.5)

We devote the remainder of this proof to establish (A.5).

Let x be any continuity point of Gξ. By (A.2) and Kj/K → 1 as K →∞,

F (aKjx+ bKj )
K → Gξ (x) as K →∞. (A.6)

Under (2.2) and (A.6), de Haan (1976, Lemma 1) implies that for all y ∈ R,

Gξ

 lim
K→∞

(
aKj
aK

y +
bKj − bK

aK

) = Gξ (y) . (A.7)

By de Haan and Ferreira (2006, Theorem 1.1.3), there are three possible specifications for Gξ. If ξ = 0, Gξ(y) =
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exp(− exp(−y)), which is strictly increasing. If ξ > 0, Gξ(y) = exp(−(1 + ξy)−1/ξ)1[1 + ξy > 0], which is strictly

increasing for y > −1/ξ. Finally, if ξ < 0, Gξ(y) = exp(−(1 + ξy)−1/ξ)1[1 + ξy > 0] + 1[1 + ξy ≤ 0], which is strictly

increasing for y < −1/ξ. Thus, in all three cases, there is a continuum of values of y, which we can denote by Sξ, s.t.

Gξ is is strictly increasing and, therefore, invertible. Then, (A.7) implies that for all y ∈ Sξ,

aKj
aK

y +
bKj − bK

aK
→ y as K →∞. (A.8)

Since Sξ includes a continuum of values, (A.8) implies (A.5), as desired.

Lemma A.1. Under (2.2),

sup
x∈R
|FV (aKx+ bK)K −Gξ(x)| → 0 as K →∞.

Proof. This proof is analogous to that of van der Vaart (1998, Lemma 2.11).

Lemma A.2. For any sequence {xK : K ∈ N} with xK → x ∈ Sξ ≡
{
s : Gξ (s) > 0

}
,

LK (xK)→ L (x) ,

where the sequence of functions {LK : K ∈ N} and the function L are defined as follows

LK (x) ≡ x−
∫ x
−∞ FV (haK + bK)Kdh

FV (xaK + bK)K

L (x) ≡ x−
∫ x
−∞Gξ (h) dh

Gξ (x)
.

Proof. As a preliminary step, we now show that for any x ∈ R,∫ x

−∞

(
FV (haK + bK)Kdh−Gξ (h)

)
dh→ 0 as K →∞. (A.9)

We begin by showing the result for x = 0, i.e.,∫ 0

−∞

(
FV (haK + bK)Kdh−Gξ (h)

)
dh→ 0 as K →∞. (A.10)

For a fixed K, consider the following argument:

∫ 0

−∞

(
FV (haK + bK)K −Gξ (h)

)
dh

(1)
= E

[
min {Zξ, 0}

]
− E

[
min

{
V(1),K − bK

aK
, 0

}]
(A.11)

where Zξ denotes a RV with CDF Gξ, and (1) holds by integration by parts,

limx→−∞ xFV (xaK + bK)K = limx→−∞ xGξ (x) = 0. Since ξ < 1, we have that E |Zξ| <∞. Under E |Zξ| <∞ and

the fact that valuations are non-negative, Pickands (1968, Theorem 2.1) shows that

lim
K→∞

E

[
min

{
V(1),K − bK

aK
, 0

}]
= E

[
min {Zξ, 0}

]
. (A.12)

By combining (A.11) and (A.12), (A.10) holds. Next, consider the following argument for x 6= 0:

∣∣∣∣∣
∫ x

−∞

(
FV (haK + bK)K −Gξ (h)

)
dh

∣∣∣∣∣ ≤

∣∣∣∣∫ 0

−∞

(
FV (haK + bK)K −Gξ (h)

)
dh

∣∣∣∣
+ |x| supy

∣∣∣FV (yaK + bK)K −Gξ (y)
∣∣∣


(1)→ 0 as K →∞.
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as desired, here (1) holds by (A.10) and Lemma A.1. Between both cases, we conclude that (A.9) holds, as desired.

As a second preliminary step, we now show that∫ x

−∞
Gξ (h) dh <∞. (A.13)

To show this, consider the following argument:∫ x

−∞
Gξ (h) dh =(1) xGξ (x)−

∫ x

−∞
hgξ (h) dh ≤ xGξ (x) + E

[
|Zξ|

] (2)
< ∞,

as desired, where Zξ denotes a RV with CDF Gξ, (1) holds by integration by parts and limx→−∞ xGξ (x) = 0, and

(2) holds by ξ < 1.

We are now ready to show the desired results. For any x ∈ Sξ, consider the following argument.

∣∣LK (xK)− L (x)
∣∣ =

∣∣∣∣∣
∫ xK
−∞ FV (haK + bK)Kdh

FV (xKaK + bK)K
−
∫ x
−∞Gξ (h) dh

Gξ (x)

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

Gξ (x)
(∫ xK
−∞ FV (haK + bK)Kdh−

∫ x
−∞ FV (haK + bK)Kdh

)
Gξ (x)

(∫ x
−∞ FV (haK + bK)Kdh−

∫ x
−∞Gξ (h) dh

)
−
(∫ x
−∞Gξ (h) dh

)(
FV (xKaK + bK)K −Gξ (xK)

)
−
(∫ x
−∞Gξ (h) dh

) (
Gξ (xK)−Gξ (x)

)

∣∣∣∣∣∣∣∣∣∣∣∣
Gξ (x)

[(
FV (xKaK + bK)K −Gξ (xK)

)
+
(
Gξ (xK)−Gξ (x)

)
+Gξ (x)

]

(1)

≤

∣∣∣∣∣∣∣∣∣∣∣
|xK − x|+

∣∣∣∣∫ x−∞ (FV (haK + bK)Kdh−Gξ (h)
)
dh

∣∣∣∣
+
(∫ x
−∞Gξ (h) dh

)
supy∈R

∣∣∣FV (yaK + bK)K −Gξ (y)
∣∣∣

+
(∫ x
−∞Gξ (h) dh

) ∣∣Gξ (xK)−Gξ (x)
∣∣

∣∣∣∣∣∣∣∣∣∣∣
Gξ (x)

[
Gξ (x)− supy∈R

∣∣∣FV (yaK + bK)K −Gξ (y)
∣∣∣− ∣∣Gξ (xK)−Gξ (x)

∣∣] , (A.14)

where (1) holds by Gξ (x) ≤ 1 and supy∈R FV (yaK + bK)K ≤ 1. As K → ∞, we can deduce that the numerator

and the denominator of the RHS of (A.14) converge to zero and Gξ (x)2 > 0, respectively. This conclusion relies on

x ∈ Sξ (and so Gξ (x)2 > 0), xK → x ∈ S as K → ∞, the continuity of Gξ, (A.9), (A.13), and Lemma A.1. From

this conclusion and (A.14), the desired result follows.

Lemma A.3. Under (A.2),

{
Pj − bK
aK

: j = 1, . . . , n

}
d→


Hξ (E1,j)−

∫ Hξ(E1,j)
−∞ Gξ (h) dh

Gξ
(
Hξ (E1,j)

)
 : j = 1, . . . , n

 ,

and {(aK , bK) ∈ R++ × R : K ∈ N}, {E1,j : j = 1, . . . , n}, and Hξ as in Lemma 2.1.

Proof. Since the n auctions are i.i.d., it suffices to show the marginal convergence result for any auction j, i.e.,

Pj − bK
aK

d→ Hξ (E1,j)−
∫ Hξ(E1,j)
−∞ Gξ (h) dh

Gξ
(
Hξ (E1,j)

) , (A.15)

where E1,j is a standard exponential random variable. We fix j = 1, . . . n for the remainder of the proof.
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Consider the following argument.

Pj − bK
aK

=
Pj − bKj−1

aKj−1

aKj−1

aK
+
bKj−1 − bK

aK

=

V(1),j − bKj−1

aKj−1
−

(∫ V(1),j

−∞ FV (u)Kj−1du
)
/aKj−1

FV (V(1),j)
Kj−1

 aKj−1

aK
+
bKj−1 − bK

aK

(1)
=

LKj−1

(
V(1),j − bKj−1

aKj−1

) aKj−1

aK
+
bKj−1 − bK

aK
, (A.16)

where (1) holds by the change of variable u = haKj−1 + bKj−1, and by defining {LK : K ∈ N} as in Lemma A.2.

Since (Kj − 1) /K → 1 as K →∞, the same argument as Lemma 2.1 shows that(
aKj−1

aK
,
bKj−1 − bK

aK

)
→ (1, 0) as K →∞. (A.17)

Next, notice that Lemma 2.1 and (A.17) imply that

V(1),j − bKj−1

aKj−1
=

V(1),j − bK
aK

aK
aKj−1

+
bK − bKj−1

aK

d→ Hξ (E1) as K →∞. (A.18)

In addition, Hξ (E1) ∈ Sξ ≡ {x ∈ R : Gξ(x) > 0}. Then, by (A.18) and the extended CMT (e.g. van der Vaart, 1998,

Theorem 1.11.1),

LKj−1

(
V(1),j − bKj−1

aKj−1

)
d→ L

(
Hξ (E1)

)
= Op (1) as K →∞, (A.19)

where L is defined as in Lemma A.2. Then, (A.15) follows from combining (A.16), (A.17), and (A.19).

Proof of Lemma 3.1. By de Haan and Ferreira (2006, Theorem 1.2.1), it suffices to establish that

lim
t↓0

1− FV (v∗ − tx)

1− FV (v∗ − t) = x

for all x > 0. Condition (iii) allows us to use L’Hospital rule to obtain that

lim
t↓0

1− FV (v∗ − tx)

1− FV (v∗ − t) = lim
t↓0

fV (v̇ − tx)

fV (v̈ − t) x

where v̇ and v̈ are both in the ε-neighborhood of v∗ if t is small enough. Then by the continuous mapping theorem

and Conditions (ii) and (iii), we have limt↓0
fV (v̇)
fV (v̈)

= 1, which yields the result.

Lemma A.4. π = (Γ(2− ξ)− 1)/ξ if ξ 6= 0, and −1 + γ̊ otherwise, where γ̊ ≈ 0.57721 is the Euler’s constant.

Proof of Lemma A.4. We introduce the shorthand notation π̃ = 1 + ξπ and H̃2 = Hξ (E1 + E2) where we suppress

the subscript j given the i.i.d.ness. Note that for 1 + ξx ≥ 0,

fH̃2|ξ (x) =


x−2/ξ−1 exp

(
−x−1/ξ

)
/ |ξ| if ξ 6= 0

exp (−2x) exp
(
− exp (−x)

)
otherwise
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When ξ 6= 0, we have that π̃ = 1 + ξπ (γ) = |ξ|−1 ∫∞
0
x−2/ξ exp

(
−x−1/ξ

)
dx = Γ (2− ξ), implying that π =(

Γ (2− ξ)− 1
)
/ξ.

When ξ = 0, we have that π =
∫∞
−∞ x exp (−2x) exp

(
− exp (−x)

)
dx = −1 + γ̊, which is equivalent to

limξ→0

(
Γ (2− ξ)− 1

)
/ξ.

Proof of Lemma 3.2. Recall that we impose ξ < 1. We divide the rest of the argument depending on the sign of ξ.

We introduce the short-hand notation that H1 = Hξ(E1,j) and H2 = Hξ(E1,j + E2,j).

Case 1: ξ ∈ (0, 1). In that case,

1 + ξπ(γ)
(1)
= (1 + ξγ)P(H2 ≤ γ ≤ H1) + E[1 + ξH2|γ ≤ H2]P(γ ≤ H2) + (1 + ξv0)P(H1 < γ)

(2)
= γ̃P (H̃2 ≤ γ̃ ≤ H̃1) + E[H̃2|γ̃ ≤ H̃2]P (γ̃ ≤ H̃2) + ṽ0P(H̃1 < γ̃)

(3)
= exp(−γ̃−1/ξ)γ̃1−1/ξ +

∫ γ̃−1/ξ

0

t1−ξ exp(−t)dt+ ṽ0 exp(−γ̃−1/ξ)

(4)
= exp(−(1 + ξγ)−1/ξ)(1 + ξγ)1−1/ξ +

∫ (1+ξγ)−1/ξ

0

t1−ξ exp(−t)dt+ (1 + ξv0) exp(−(1 + ξγ)−1/ξ),

(A.20)

where (1) holds by definition of π(γ), (2) holds by using γ̃ = 1 + ξγ, ṽ0 = (1 + ξv0) and H̃j = 1 + ξHj for j = 1, 2, (3)

holds by computation from (3.14), and (4) holds by replacing back γ̃ = 1 + ξγ. The computation that delivers (3) is

greatly simplified by the transformation of the random variables H̃j = 1 + ξHj for j = 1, 2, whose joint and marginal

PDFs are

fH̃1,H̃2
(x1, x2) = x

−1/ξ−1
1 x

−1/ξ−1
2 exp(−x−1/ξ

2 )ξ−21[x1 ≥ x2 ≥ 0],

fH̃j (x) = x−j/ξ−1 exp(−x−1/ξ)ξ−11[x ≥ 0] for j = 1, 2.

Since ξ > 0, maximizing π(γ) is equivalent to maximizing 1 + ξπ(γ). The corresponding first and second order

conditions imply Lemma 3.2.

Case 2: ξ < 0. Despite the change in sign, an analogous derivation shows that (A.20) also holds. Since ξ < 0,

maximizing π(γ) is equivalent to minimizing 1 + ξπ(γ). The corresponding first and second order conditions then

imply Lemma 3.2.

Case 3: ξ = 0. In that case,

π(γ)
(1)
= γP(H2 ≤ γ ≤ H1) + E[H2|γ ≤ H2]P(γ ≤ H2)

(2)
= γ exp(−γ) exp(− exp(−γ)) +

∫ ∞
γ

t exp(−2t) exp(− exp(−t))dt,

where (1) holds by definition of π(γ) and (2) holds by computation from (3.14). From here, the first and second order

conditions imply Lemma 3.2.
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