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Abstract

Group heterogeneity has recently been introduced in the panel data model. We de-
velop a constrained Bayesian grouped estimator that effectively exploits researchers’
prior belief on the latent group structure to uncover group partitioning and generate
forecasts for panel data. This framework allows for specifying grouped structures in
both slope coefficients and error variances of the cross-sectional units, and flexibly incor-
porating prior knowledge in the form of pairwise constraints. To utilize the pairwise con-
straints, we revise the standard nonparametric Bayesian prior and propose an intuitive
and coherent prior to guide the posterior inference. Notably, the resulting Gibbs sam-
ple is closely related to the constrained KMeans algorithm, which foreshadows the con-
strained version of the grouped fixed-effects estimator (Bonhomme and Manresa, 2015).
In Monte Carlo experiments, we demonstrate that adding prior knowledge yields more
accurate estimates and scores predictive gains over unconstrained grouped estimators
and standard panel data estimators, even when a portion of the constraints are incorrect.
We apply our method to two empirical applications. An application to the inflation rate
of the U.S. CPI sub-indices demonstrates that prior knowledge on group structure aids
the algorithm in optimally forming the group structure when the data may not be en-
tirely informative and improves density forecasts. In the second application, we revisit
the relationship between a country’s income and its democratic transition and identify
heterogeneous income effects on democracy with a reasonable grouping pattern.

JEL CLASSIFICATION: C11, C14, C23, C53, E37

KEY WORDS: Panel Data; Grouped Heterogeneity; Bayesian Nonparametric; Dirichlet Pro-
cess; Pairwise Constraints; Density Forecast; Inflation Rate; Democracy.

;Please check here for the latest version.
:Department of Economics, Perelman Center for Political Science and Economics, University of Pennsyl-

vania, 133 S. 36th St., Philadelphia, PA 19104-6297. Email: boyuanz@sas.upenn.edu. I am extremely grateful
to my advisors Francis X. Diebold and Frank Schorfheide, and my dissertation committee, Xu Cheng and
Minchul Shin, for their invaluable guidance and support. I would like to thank Karun Adusumilli, Siddhartha
Chib, Wayne Yuan Gao, Philippe Goulet Coulombe, and Daniel Lewis for helpful comments and suggestions.
I further benefited from many helpful discussions with econometric lunch seminar participants at University
of Pennsylvania, as well as conference participants at the 2022 North American Summer Meeting of the Econo-
metric Society, the 2022 IAAE Annual Conference, the 42nd International Symposium on Forecasting, the 2022
Asian Meeting of the Econometric Society in China, the 2022 Australasia Meeting of the Econometric Society,
NBER-NSF Seminar on Bayesian Inference in Econometrics and Statistics. All remaining errors are my own.

https://www.dropbox.com/s/pjz8awsd3fiyim0/CBG_latest.pdf?dl=0
mailto:boyuanz@sas.upenn.edu


1 Introduction

Numerous studies have examined and demonstrated the important role of panel data mod-
els in empirical research throughout the social and business sciences, as the availability of
panel data has increased. Using fixed effects, panel data permits researchers to model het-
erogeneity among individuals, firms, regions, and countries as well as possible structural
changes over time. Researchers typically estimate a large number of fixed effects, such as
one for every firm in an economy. However, the effective sample size available for any calcu-
lation of a fixed effect is quite small: the United States has hundreds of publicly traded star-
tups, each with limited data points. Formally, the number of fixed effects in an asymptotic
experiment can reach infinity, but the sample size for each fixed effect is limited, resulting in
the incidental parameter problem. When the researcher applies the least squares estimator
for the fixed-effects, a significant number of noisy estimates are produced. New methods
are needed to alleviate this issue.

Recent research addresses this issue by focusing on grouped heterogeneity in panel data
for which the group structure is unknown in advance. Several approaches have been de-
veloped to blend machine learning algorithms with conventional econometric models in
order to estimate parameters and identify the unknown group structure (e.g., Bonhomme
and Manresa (2015), Su et al. (2016), Bonhomme et al. (2022)). The majority of these pro-
posed methods implicitly or explicitly include a clustering step, which is a classic topic of
dividing N units into K groups. The objective is to find a partition that optimizes an ob-
jective function, such as minimizing the within-cluster sum of squares or maximizing the
penalized likelihood function. However, such broad clustering procedures may not be com-
patible with the notion of separation for a particular task and may disregard information
from other sources that is informative to the latent group.

In this paper, we focus on the group heterogeneity in the linear panel data model and
improve the clustering procedure in two directions: (1) leveraging prior knowledge of the
group structure that is available to economists; (2) exploiting information from the cross-
sectional heteroskedasticity and heterogeneous slope coefficients (including fixed-effects).
Meanwhile, the parameters in the model are estimated together with the group structure.

Economists typically have prior knowledge of the underlying group structure for all or
a portion of the units, based on their expertise and theoretical and empirical findings. In a
cross-country application, it is reasonable to believe that countries on the same continent are
more likely to belong to the same group. In such a scenario, using continent fixed-effects
would be an option; however, this method overlooks heterogeneity inside the continent,
making it a less attractive choice. The grouped fixed-effects estimator, on the other hand, is
another candidate approach which leaves group structure entirely unrestricted and recovers
it endogenously. An eclectic and preferred way is to balance the strengths of the available
information (such as geographical information and economic situation) and the data infor-
mation. This results in a more desired strategy that utilizes a preliminary group to assist

1



clustering as opposed to clustering based solely on data. Other examples include states in
the same region, firms in the same industry, countries in the same trade bloc, etc. The avail-
ability of this information drives us to formalize such prior knowledge and utilize it to guide
the clustering procedure toward the optimal partition.

However, the available approaches that are able to include prior knowledge are limited,
and all are plagued by practical issues to some extent. Bonhomme and Manresa (2015, BM
hereafter) add a collection of individual group probabilities as a penalty term in the objec-
tive function, which is a N by K matrix describing the probability of assigning each unit to
all potential groups. This additional penalty term balances the respective weights attached
to prior and data information in estimation. The main challenge is providing the set of in-
dividual group probabilities for each potential value of K. It is rather cumbersome to assess
these probabilities for each possible K and to adjust for modest changes in reallocating prob-
abilities across possible K. In addition, model selection is required, the finite-sample results
of which might be unreliable, especially when facing a short panel with noisy groups. Pa-
ganin et al. (2021), on the other hand, provide a novel Bayesian framework for avoid model
selection, however the method is inflexible for a broad range of applications. Their pro-
posed method shrinks the prior distribution of group partitioning toward a full target group
structure, which is an initial clustering of all units provided by experts. This is demand-
ing since not every application can have a full target group structure, as their birth defects
epidemiology study did. This approach cannot handle an initial clustering in a subset of
units or multiple plausible prior partitions.

Meanwhile, assuming a grouped pattern in the heterogeneity of panel data models is
prevailing in the literature. It was only until recently that researchers start to exploit cross-
sectional heteroskedasticity in the panel data to uncover group patterns. In a concurrent
study, Aguilar and Boot (2022) extend BM’s grouped fixed-effects (GFE) estimator to allow
for group-specific error variances. They modify the objective function to avoid the singular-
ity issue in pseudo-likelihood. Despite the fact that their work paves the way for identifying
groups in the error variance, their framework is not ready to incorporate prior knowledge
satisfactorily because they face the same issue as BM.

With these facts in mind, we propose a Bayesian framework that overcomes the afore-
mentioned challenges. It has four distinguishing features. First, we allow for grouped pat-
tern in fixed-effects, slope coefficients, and error variances in a linear panel data model. We
estimate the model by employing a nonparametric Bayesian prior, specifically the Dirichlet
process (DP) (Ferguson, 1973, 1974) prior with stick-breaking representation (Sethuraman,
1994). In this framework, the number of groups is considered as a random variable and is
subject to posterior inference. As a result, we do not impose a restriction on K and are hence
not required to perform model selection. In addition, adopting conjugate priors enables
us to draw directly from posteriors using a computationally efficient Gibbs sampler. We
demonstrate that the resulting Bayesian Grouped Fixed Effects (BGFE) estimator performs
exceptionally well in both in-sample estimation and point, set, and density forecasting.
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Second, we modify the Dirichlet process prior and propose a new prior that incorpo-
rates prior belief in the form of pairwise must-link and cannot-link constraints (Wagstaff and
Cardie, 2000). These constraints describe whether two units must be members of the same
group or distinct groups. In general, supervision in the form of pairwise constraints is more
practical than providing a complete set of prior probabilities because it eliminates the need
to predetermine the number of groups and focuses on the bilateral relationships in any sub-
set of units. These constraints can be easily applied to the standard Dirichlet process prior
by adding an additional term to the prior distribution of group indices. Instead of impos-
ing constraints, each pairwise constraint is attached with a level of accuracy, reflecting the
researchers’ confidence in assigning this constraint. As a result, incorporating pairwise con-
straints modifies the prior distribution of the group indices, shrinking the group structure
toward our prior knowledge. Notice that, these constraints allow the Gibbs sampler to se-
lect group structures that an unconstrained Gibbs sampler would seldom visit due to their
relatively low posterior probability. With properly specified soft pairwise constraints, we
demonstrate that the modified Dirichlet process prior is comparable to the stochastic block
model (Holland et al., 1983) in the field of network science. We essentially design a prior
network structure and update it with panel data to recover the “community” structure.

Third, we propose a constrained version of the BGFE estimator with a modified prior
(which is referred to the BGFE-cstr estimator) and a posterior sampling algorithm for non-
parametric estimation under pairwise constraints. We demonstrate that, relative to the ap-
proach without pairwise constraints, a simple modification to the posterior of the group
indices is sufficient to account for the constraints. According to the results of the simulation,
these modifications have no effect on computation expenses. Consequently, the computing
advantage of employing a conjugate prior remains unchanged.

Fourth, our constraint-based BGFE framework is closely related and applicable to other
models where the group structure plays a role. Although we concentrate primarily on the
panel data model, the DP prior with soft pairwise constraints also applies to the clustering
problem utilizing mixture models, estimate of heterogeneous treatment effects, and the de-
velopment of Granger networks based on panel VARs (Holland et al., 1983). Moreover, the
proposed Gibbs sampler with pairwise constraints is connected to the KMeans-type algo-
rithm, motivating a frequentist’s counterpart of our estimator with a fixed K. Essentially, the
assignment step in the PC-KMeans algorithm (Basu et al., 2004), a constrained version of the
KMeans algorithm (MacQueen et al., 1967), is remarkably similar to the step of drawing a
group membership indicator from its posterior. The same exact equivalence can be achieved
by applying small-variance asymptotics to the posterior densities under certain conditions.
To obtain the frequentist’s analog of our pairwise constrained Bayesian estimators, one can
utilize the same approach in BM with the PC-KMeans algorithm.

We compare the performance of the BGFE and BGFE-cstr estimators to that of other well-
known estimators using simulated and real data. According to the Monte Carlo simulation,
we demonstrate that both the BGFE and BGFE-cstr estimators give more accurate estimates.
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The improved performance is mostly attributable to the precise group structure estimation.
Unsurprisingly, the accurate estimates translate into the predictive power of the underly-
ing model; both estimators excel at point, set, and density forecasting. Incorporating prior
information further enhances the performance. In the presence of erroneous constraints,
we demonstrate that the BGFE-cstr estimator can still increase forecast accuracy by using
relevant and correct prior knowledge.

We conclude by applying our methods to two empirical applications. An application
to the inflation of the U.S. CPI sub-indices demonstrates that the suggested predictor yields
more accurate density predictions. The better forecasting performance is mostly attributable
to three key characteristics: nonparametric Bayesian prior, prior belief on group structure,
and grouped cross-sectional heteroskedasticity. The method proposed in this paper is ap-
plicable beyond forecasting. In a second application, we revisit the relationship between a
country’s income and its democratic transition, where estimation of heterogeneous parame-
ters is the object of interest. We recover a reasonable cluster pattern with a moderate number
of groups and identify heterogeneous income effects on democracy.

LITERATURE. Our paper relates to the econometric literature on clustering in panel data
model. Early contributions include Sun (2005) and Buchinsky et al. (2005). Hahn and Moon
(2010) provide economic foundations for fixed effects with a finite support. Most recent
work focus on linear1 panel data models with discrete unobserved group heterogeneity. Lin
and Ng (2012) and Sarafidis and Weber (2015) apply the KMeans algorithm to identify the
unobserved group structure of slope coefficients. Bonhomme and Manresa (2015) also use
the KMeans algorithm to recover the group pattern but they assume group structure in the
additive fixed effects. Bonhomme et al. (2022) modify this method and split the procedure
into two steps. They first classify individuals into groups using KMeans algorithm and then
estimate the coefficients. Ando and Bai (2016) improved on BM’s approach by allowing for
group structure among the interactive fixed effects. The underlying factor structure in the
interactive fixed effects is the key to forming groups. Su et al. (2016) develop a new variant
of Lasso to shrink individual slope coefficients to the unknown group-specific coefficients.
This method is then extended by Su and Ju (2018) and Su et al. (2019). Freeman and Weid-
ner (2022) consider two-way grouped fixed effects that allows for different group patterns
in time and cross-sectional dimensions. Okui and Wang (2021) and Lumsdaine et al. (2022)
identify structure breaks in parameters along with grouped patterns. From the Bayesian per-
spective, Kim and Wang (2019), Zhang (2020), and Liu (2022) adopt Dirichlet process prior to
estimate grouped heterogeneous intercepts in linear panel data models in the semiparamet-
ric Bayesian framework. Others methods such as binary segmentation (Wang et al., 2018)
and other assumptions such as multiple latent groups structure (Cytrynbaum, 2021) have
also been explored to flourish group heterogeneity literature. Notice that, none but Aguilar
and Boot (2022) explore heterogeneous error variance, and they extend BM’s grouped fixed-

1See Wang and Su (2021); Bonhomme et al. (2022), among others, for procedures to identify latent group struc-
tures in nonlinear panel data models.
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effects (GFE) estimator to allow for group-specific error variances. Building upon these
works, we step further and examine the value of the prior knowledge on group structure
that comes from empirical and theoretical findings in a linear environment.

This paper also relates to the literature of constraint-based semi-supervised clustering
in statistics and computer science. Pairwise constraints have been widely implemented in
numerous models and have been shown to improve clustering performance. In the past
two decades, various pairwise constrained KMeans algorithms using prior information have
been suggested (Wagstaff et al., 2001; Basu et al., 2002, 2004; Bilenko et al., 2004; Davidson
and Ravi, 2005; Pelleg and Baras, 2007; Yoder and Priebe, 2017). Prior information is also
introduced in the model-based method. Shental et al. (2003) develop a framework to in-
corporate prior information for the density estimation with Gaussian Mixture Models. The
Dirichlet process mixture model with pairwise constraints has been discussed in Vlachos
et al. (2008), Vlachos et al. (2009), Orbanz and Buhmann (2008), Vlachos et al. (2010), Ross
and Dy (2013). Lu and Leen (2004), Lu (2007) and Lu and Leen (2007) assume the knowl-
edge on constraints is incomplete and penalize the constraints in accordance to their weights.
Law et al. (2004) extents Shental et al. (2003) to allow for soft constraints in mixture model by
adding another layer of latent variables for the group label. Nelson and Cohen (2007) pro-
pose a new framework that samples pairwise constraints given a set of probabilities related
to the weights of constraints.

Our paper is closely related to Paganin et al. (2021), who address a similar problem. As
discussed above, their framework requires a complete prior clustering structure, which is
unusual in practice. Our framework circumvents this problem by eliciting prior information
of pairwise constraints. In addition, the induced shrinkage of their framework is produced
by the distance function defined by Variation of Information. It can be demonstrated that
a partition can readily become caught in local modes, preventing it from ever shrinking
toward the prior partition. The use of pairwise relationships in this paper circumvents this
issue. By fixing the group indices of other pairs, our framework ensures that the partition
containing a specific pair that satisfies our prior belief has a strictly greater prior probability
than the partition containing a pair that contradicts our prior belief.

OUTLINE. In section 2, we present the specification of the dynamic panel data model with
grouped pattern in slope coefficients and error variances, and provide details on nonpara-
metric Bayesian prior without prior knowledge which is then extended to accommodate soft
pairwise constraints. Section 3 focus on the posterior analysis, where the posterior sampling
algorithm is provided. We also highlight the posterior estimate of group structure and dis-
cuss the connection to constrained KMeans models. We briefly discussion the extensions of
the baseline model in section 4. In section 5, we present empirical analysis in which we fore-
cast the inflation rate of the U.S. CPI sub-indices and estimate the country’s income effect
on its democracy. Finally, we conclude in section 6. Monte Carlo simulations, additional
empirical results, and proofs are relegated to the appendix.
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2 Model and Prior Specification

We begin our analysis by setting up a linear panel data model with group heterogeneity
in fixed-effects, slope coefficients, and cross-sectional heteroskedasticity. We then discuss a
nonparametric Bayesian prior for the unknown parameters without considering any prior
beliefs about the group pattern, which is modified in the next section to integrate prior be-
liefs.

2.1 A Basic Linear Panel Data Model

We consider a panel with observations for cross-sectional units i = 1, . . . , N in periods t =
1, . . . , T. Given the panel data set (yit, x1it), a simple linear panel data model with grouped
heterogeneous slope coefficients and grouped heteroskedasticity takes the following form:

yit = α1gi
xit + εit, εit „ N

(
0, σ2

gi

)
, (2.1)

where xit are a p ˆ 1 vector of covariates, which may contain intercept, lagged yit, covari-
ates and lagged covariates. αgi denote the group-specific slope coefficients (including fixed
effects). σ2

gi
are the group-specific variance. gi P t1, ..., Ku is the latent group index with an

unknown number of groups K. εit are the idiosyncratic errors that are independent across i
and t conditional on gi. They feature by zero mean and grouped heteroskedasticity σ2

gi
, with

cross-sectional homoskedasticity being a special case where σ2
gi
= σ2. This setting leads to a

heterogeneous panel with group pattern modeled through both αgi and σ2
gi

.

It is convenient to reformulate the model in (2.1) is the matrix form by stacking all obser-
vations for unit i:

yi = xiαgi + εi, εi „ N
(

0, σ2
gi

IT

)
, (2.2)

where yi = [yi1, yi2, . . . , yiT]
1, xi = [xi1, xi2, . . . , xiT]

1, εi = [εi1, εi2, . . . , εiT]
1, and G = [g1, . . . , gN]

is a vector of group indices.

Group structure is the key element in our approach. It can be either represented as a
vector of group indices G describing to which group each unit belongs or as a collection of
disjoint blocks B = tB1, B2, . . . , BKu induced by G, where Bk contains all the units in the k-th
group and K is the number of group in the sample of size N. |Bk| denotes the cardinality of
the set Bk with

řK
k=1 |Bk| = N.

Remark 2.1. Identification issues may arise in certain specifications. If the grouped fixed-effects in
αgi are allowed to vary over time, for example, σ2

gi
cannot be identified when the group g = gi contains

only one unit. This problem is beyond the scope of this work, but Aguilar and Boot (2022) suggest
revising the likelihood function to solve it. Additionally, the effects of fixed-effects and the categorical
variable cannot be distinguished when all units in one group have the same level for one or more
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categorical variables in xi. By controlling for categorical variables but not assuming they have group
effects, one may effectively avoid this issue.

Following Sun (2005), Lin and Ng (2012) and BM, we assume that the composition of groups
does not change over time. In addition, for any group k ‰ k1, we assume that they have dif-
ferent slope coefficients, e.g., αk ‰ αk1 , and no single unit can simultaneously belong to these
two groups: Bk

Ş

Bk1 = H. It is possible to generate overlapping groups using the Indian
Buffet Process, but this is beyond the scope of this study.

The primary objective of this paper is to estimate the grouped heterogeneity αgi , grouped
heteroskedasticity σ2

gi
and group membership G using full sample and prior knowledge on

the group structure. We also offer the point, set, and density forecasts of yit+h for each unit i.
Throughout this paper, we will concentrate on the one-step ahead forecast where h = 1. For
multiple-step forecasting, the procedure can be extended by iterating yiT+h in accordance
with (2.1) given the estimates of parameters or estimating the model in the style of direct
forecasting.

2.2 Nonparametric Bayesian Prior

The baseline model contains the parameters listed below: (α, σ2, π, ξ, a, φ). We rely mostly
on nonparametric Bayesian models.2 Bayesian nonparametric models have emerged as rig-
orous and principled paradigms to bypass the model selection problem in parametric mod-
els by introducing a nonparametric prior distribution on the unknown parameters. The
prior assumes that a collection of α and σ2 is drawn from the Dirichlet process,

(
αi, σ2

i
)
„

DP (a, B0(φ)). π is a vector of mixture probabilities in Dirichlet process that is produced
by the stick-breaking approach with stick length ξ. a is the concentration parameter in the
Dirichlet process, whereas φ is a collection of hyperparameters in the base measure B0. We
consider prior distributions in the partially separable form,3

p(α, σ2
|a, φ, ξ)p(ξ|a)p(a).

We tentatively focus on the random coefficients model where, conditional on G, αgi and
σ2

gi
are independent to the conditional set that includes initial value of each unit yi0, the ini-

tial values of predetermined variables, and the whole history of exogenous variables. The
assumption guarantees that αgi and σgi can be sampled separately and simplifies the infer-
ence of the underlying distribution of αgi and σgi to an unconditional density estimation
problem, therefore lowering computational complexity. The joint distribution of heteroge-
neous parameters as a function of the conditioning variables can then be modeled to extend

2For a more comprehensive review of the nonparametric Bayesian literature, see Ghosal and Van der Vaart
(2017) and Müeller et al. (2018)

3The joint prior includes ξ but not π. Because the stick-breaking formulation of ξ is a deterministic transfor-
mation of ξ, knowing ξ is identical to knowing π.
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the model to the correlated random coefficient model. A full explanation and derivation for
the correlated random coefficient model are provided in the online appendix.

2.2.1 Prior on Group-Specific Parameters

In the nonparametric Bayesian literature, the Dirichlet Process (DP) prior (Ferguson, 1973,
1974; Sethuraman, 1994) is a canonical choice, notable for its capacity to construct group
structure and accommodate an infinite number of possible group components. The DP mix-
ture is also known as a “infinite” mixture model due to the fact that the data indicate a fi-
nite number of components, but fresh data can uncover previously undetected components
(Neal, 2000). When the model is estimated, it chooses automatically an appropriate subset
of groups to characterize any finite data set. Therefore, there is no need to determine the
”proper” number of groups.

The Dirichlet process defines a distribution over distributions, which is denoted as

B „ DP (a, B0) , (2.3)

where B is a random distribution. There are two parameters. The base distribution B0 is a
distribution over the same space as B. For example, if B0 is a distribution on reals then B
must be a distribution on reals too. The concentration parameter a is a positive scalar. One
property of the DP is that random distributions B are discrete, and each places its mass on a
countably infinite collection of atoms drawn from B0.

We next define a typical DP prior for (α, σ2):

(αi, σ2
i ) „ B,

B „ DP (a, B0) , (2.4)

where we adopt an Independent Normal Inverse-Gamma (INIG) distribution for the base
distribution B0:

B0(φ) := INIG
(

µα, Σα,
νσ

2
,

δσ

2

)
, (2.5)

with a set of hyperparameters φ =
(

µα, Σα, νσ
2 , δσ

2

)
.

In fact, the DP prior in (2.4) exhibits an important clustering property, such that the draws
(αi, σ2

i ) are generally not distinct. To explicitly see the property, we marginalize out the
random distribution B and get the joint distribution of (αi, σ2

i ),

p
(

α1:N, σ2
1:N|a, B0

)
=

ż

(
n
ź

i=1

B
(

αi, σ2
i

))
P(B)dB. (2.6)
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Blackwell and MacQueen (1973) show that conditional distribution of (αi, σ2
i ) given (α1:i´1, σ2

1:i´1)

follows a Polya urn distribution,

αi, σ2
i |α1:i´1, σ2

1:i´1, a, B0 „
1

a + i´ 1

i´1
ÿ

j=1

δ(αj,σ2
j )
+

a
a + i´ 1

B0. (2.7)

Equation (2.7) reveals the clustering nature of the DP prior: there is a positive probability
that each (αi, σ2

i ) will take on the value of another (αj, σ2
j ), leading some of the variables to

share values. This equation also reveals the roles of scaling parameter a and base distribution
B0. The unique values contained in (α1:N, σ2

1:N) are drawn independently from B0, and the
parameter a determines how likely αi, σ2

i is to be a newly drawn value from B0 rather than
take on one of the values from α1:i´1, σ2

1:i´1.

To facilitate posterior sampling, the DP prior is rewritten as an infinite mixture of point
mass with the probability mass function(

αi, σ2
i

)
„

8
ÿ

k=1

πkδ(αk,σ2
k )

with
(

αk, σ2
k

)
„ B0(φ), (2.8)

where δx denotes the Dirac-delta function concentrated at x. The group probabilities πk are
constructed by an infinite-dimensional stick-breaking process (Sethuraman, 1994) governed
by the concentration parameter a,

πk ” ξk
ź

jăk

(1´ ξ j) for k ą 1, and π1 = ξ1, (2.9)

where stick lengths ξk are independent random variables drawn from the beta distribution
Beta(1, a). The group probability will be random, but will satisfy

ř8
k=1 πk = 1 almost surely.

Equation (2.9) is essential to understanding how the DP prior controls the number of
groups. The building of group probabilities is compared to the breaking of a stick of unit
length, in which the length of each break is assigned to the current value of πk. As the num-
ber of groups increases, the probability created by the stochastic process decreases because
the remaining stick becomes shorter with each break. In practice, the number of groups does
not increase as fast as N due to the characteristic of the stick-breaking process that leads the
group probability to soon approach zero.

Although in principle we do not restrict the maximum number of groups and allow the
number to rise as N increases, a finite number of instances will only occupy a finite number
of K components. The concentration parameter a in the prior of ξk determines the degree
of discretization – the complexity of the mixture and, consequently, K, as also revealed in
(2.7). As a Ñ 0, the realizations are all concentrated at a single value, however as a Ñ 8,
the realizations become continuous-valued as its based distribution. Specifically, Antoniak
(1974) derives the relationship between a and the number of unique groups,

E (K|a) « a log
(

a + N
a

)
and Var (K|a) « α

[
log
(

α + N
α

)
´ 1
]

,
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that is, the expected number of unique groups is increasing in both a and the number of
units N.

Escobar and West (1995) highlights the importance of specifying a when imposing prior
smoothness on an unknown density and demonstrates that the number of estimated groups
under a DP prior is sensitive to a. This suggests that a data-driven estimate of a is more rea-
sonable. Moreover, Ascolani et al. (2022) emphasizes the importance of introducing a prior
for a as it is crucial for learning the true number of groups as N increases and hence estab-
lishing the posterior consistency. We define a gamma hyperprior for a and update it based
on the observed data in order to alter the smoothness level. This step generates a posterior
estimate of a, which indirectly determines the number of groups K without reestimating the
models with different group sizes. Essentially, this represents “automated” model selection.

Collectively, we specify a DP prior for
(
αi, σ2

i
)
. The DP prior is a mixture of an infi-

nite number of possible point masses, which can be constructed through the stick-breaking
process. The discretization of the underlying distribution is governed by the concentration
parameter a. With a hyerprior on a, we permit the data to determine the number of groups
K present in the data, which can expand unboundedly along with the data.

2.2.2 Prior on Group Partitions

In a formal Bayesian formulation, a prior distribution is specified to partition B with asso-
ciated indices G. Despite the fact that DP prior does not specify this prior distribution ex-
plicitly, we can characterize it using the exchangeable partition probability function (EPPF)
(Pitman, 1995).

The EPPF characterizes the distribution of a partition B = tB1, B2, . . . , BKu induced by
G. As the Dirichlet process assumes units are exchangeable, any permutation has no effect
on the joint probability distribution of G; hence, the EPPF is determined entirely by the
number of groups and the size of each group. Pitman (1995) demonstrates that the EPPF of
the Dirichlet process has the closed form,

p(G) =
Γ(a)

Γ(a + N)
aK

K
ź

k=1

Γ (|Bk|) , (2.10)

where a is the concentration parameter and Γ(x) = (x ´ 1)! denotes the Gamma function.
Noting that the partition B is conceived as a random object and hence the group number K
is not predetermined, but rather is a function of G, K = K(G).

A predominant feature of the EPPF in (2.10) is that it defines a prior distribution over G.
To obtain the prior from EPPF, we must first identify all possible group partitions of N units.
This problem can be recast as a prototypical “balls and urns” problem: what are the ways of
putting N distinguishable balls into N indistinguishable urns if empty urns are allowed?

10



Example 2.1. Consider a simple case in which N = 3 and a = 1. It is easy to show that
there are five ways to group three units. Then the prior distribution over G under Dirichlet
process is given by,

Pr(g1 = g2 = g3 = 1) =
Γ(1)
Γ(4)

Γ(3) =
1
3

,

Pr(g1 = g2 = 1, g3 = 2) =
Γ(1)
Γ(4)

Γ(2)Γ(1) =
1
6

,

Pr(g1 = g3 = 1, g2 = 2) =
Γ(1)
Γ(4)

Γ(2)Γ(1) =
1
6

,

Pr(g2 = g3 = 1, g1 = 2) =
Γ(1)
Γ(4)

Γ(2)Γ(1) =
1
6

,

Pr(g1 = 1, g2 = 2, g3 = 3) =
Γ(1)
Γ(4)

Γ(1)Γ(1)Γ(1) =
1
6

.

Finding all solutions to the ”balls and urns” problem with big N is computationally im-
possible in general. For a certain number of groups K, the number of ways to assign N unit
to K groups is described by the Stirling number of the second kind,

SN,K =
1
K!

K
ÿ

j=0

(´1)jCj
K(K´ j)N. (2.11)

The sum of SN,K over all possible K, also known as the N-th Bell number, BN =
řN

K=1 SN,K

describes the number of all possible partitions of N balls. Owing to the rapid growth of
the space, listing all feasible partitions becomes computationally impossible. For example
from a moderate N = 12 to 15, the number of partitions increases from B12 = 4, 213, 597 to
B15 = 1, 382, 958, 545. Sethuraman (1994) and Pitman (1996) constructively show that group
indices/partitions can be drawn from the EPPF for DP using the stick-breaking process de-
fined in (2.9). As a result, the EPPF does not explicitly appear in the posterior analysis in the
current setting so long as the priors for the stick lengths are included.

Furthermore, as we shall demonstrate in the following section, the EPPF plays a sig-
nificant role in connecting the prior belief on group structure to the DP prior when prior
information on the grouping is provided and included in the prior.

2.3 Nonparametric Bayesian Prior with Knowledge on G

We briefly discuss the drawbacks of existing models that incorporate prior knowledge of
G. Then, to address all those issues, we introduce the concept of pairwise constraint and
propose a novel constrained Bayesian grouped estimator with soft constraints. Finally, we
demonstrate the effect of soft constraints and hyperparameters on the group structure.

11



2.3.1 Drawbacks of Existing Methods

Bonhomme and Manresa (2015) incorporates prior knowledge of group membership by
adding a penalty term to the objective function. They assume that prior information is in
the form of probabilities which describe the prior probability of unit i belonging to group k
with at most K groups as ω

(K)
ik . Consequently, the estimated group index is given by:

pgi(β, α) = argmin
kPt1,...,Ku

T
ÿ

t=1

(
yit ´ β(K)1xit ´ α

(K)
kt

)2
´ C ln ω

(K)
ik , (2.12)

where C ą 0 is a hyperparameter need to be tuned further and K is the predetermined
number of groups.

The penalty determines the weights assigned to prior and data information in estima-
tion. Due to the fact that K is frequently unknown in advance, this method requires model
selection to determine the ideal number of groups. Assume we have nK alternative options
for K. We have a N ˆ K matrix ω(K) =

!

ω
(K)
ik

)

for prior information for a given K. As a re-
sult, in order to pick a model, we must therefore provide nK sets of prior probability matrix
ω(K), which is cumbersome and inconvenient. For instance, if K has values ranging from
3, 5, 10 and N = 200, there are 3,600 entries for ω, none of which can be missing or unde-
fined. In addition, the information criteria may be unreliable in the finite-sample results,
necessitating further care when selecting an appropriate variant for empirical application.

Paganin et al. (2021) offer a statistical framework for including concrete prior knowledge
on the partition. Their proposed method aims to shrink the prior distribution towards a
complete prior clustering structure, which is an initial clustering involving all units provided
by experts. Specifically, they suggest a prior on group partition that is proportional to a
baseline EPPF of the DP prior multiplied by a penalization term,

p (G|G0, ψ) 9 p(G)e´Cd(G,G0) (2.13)

with C ą 0 a penalization parameter, d (G, G0) a suitable distance measuring how far G is
from G0 and p(G) indicates a baseline EPPF define in (2.10). Because of the penalization
term, the resulting group indices G shrink toward the initial target G0.

This framework is parsimonious and easy to implement, but it comes with a price. The
method is incapable of coping with an initial clustering in a subset of the units under study
or multiple plausible prior partitions; otherwise, the distance measure is not well-defined. In
addition, the authors suggest utilizing Variation of Information (Meilă, 2007) as the distance
measure. It can be shown that the resulting partition can easily become trapped in local
modes, leading the partition to never shrink toward G0. They also argue that other available
distance methods have flaws. As a result, the penalty term does not function as anticipated.
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2.3.2 Soft Pairwise Constraints

Having the aforementioned practical issues in mind, we offer a new Bayesian framework
based on pairwise constraints. Pairwise constraints are bilateral relationships that reflect and
summarize the prior knowledge on group pattern, which has been wildly used in the com-
puter science literature for constrained clustering.

According to the literature on semi-supervised learning (Wagstaff and Cardie, 2000), we
consider two types of pairwise constraints that represent econometricians’ prior knowledge
on the group structure: (1) must-link (ML) constraints M, and (2) cannot-link (CL) con-
straints C. A must-link constraint specifies that two units should be assigned to the same
group, whereas a cannot-link constraint indicates that the units should be assigned to sepa-
rate groups.

Summarizing prior knowledge through such a bilateral connection is often more practi-
cal than the aforementioned framework and is by far the most common constraint utilized
in clustering algorithms. It is more preferable than providing individual group probabilities
since researchers do not need to know the number of groups or group membership a priori.
Pairwise relationships can be derived intuitively from researchers’ input without requiring
in-depth knowledge of the underlying groups - one only needs to specify pairs of units be-
longing to the same or different groups. Moreover, pairwise relationships are more flexible
than adopting a target partition. Essentially, the target partition in Paganin et al. (2021) can
be viewed as a special case of the pairwise constants, in which every unit must be involved
in at least one ML constraint. Our framework could manage partitions involving arbitrary
subsets of the units by tactically specifying pairwise constraints. Most importantly, when
the group indices of other pairs are fixed, this framework ensures that the partition con-
taining a specific pair that is consistent with our prior belief would receive a strictly greater
prior probability than the partition that is inconsistent with our prior belief. This ensure the
generated G shrinks in the direction of our prior belief.

The structure of pairwise constraints alone is insufficient to fulfill all practical require-
ments, given that we may have different degrees of confidence in constraints. To explicitly
define our confidence and provide a flexible framework, we specify two characteristics for
pairwise constraints : accuracy and type. Accuracy ψij P [0.5, 1) describes the user-specified
probability of assigning a constraint for unit i and j being correct given our prior preference.
Specifically, ψij = 1 implies the constraint between i and j must be imposed since we con-
fident that it is accurate, while specifying ψij = 0.5 is equivalent to a random guess or no
information is provided. ψij is bounded below by 0.5, following the assumption that leaving
the pair unrestricted is more rational than setting a less likely constraint. The type of con-
straints is denoted by Tij. Tij = 1 if unit i and j are specified to be must-linked, and Tij = ´1
for a CL constraints. If the pair (i, j) doesn’t involve any constraint, we assume Tij = 0. With
(ψ, T), we are able to describe the relationship between any pair of units with any degree of
confidence, and hence we refer to these constraints as soft pairwise constraints.
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2.3.3 A New Prior with Soft Pairwise Constraints

We now formally characterize our prior belief in the form of soft pairwise constraints. To in-
corporate these constraints into the prior, we propose modifying the exchangeable partition
probability function, p(G), of the baseline Dirichlet process so that the induced group parti-
tion has a strictly higher (lower) probability if it is (in)consistent with pairwise constraints.
Thus, the induced prior on the group indices G should directly depend on the characteristics
of user-specific pairwise constraints and be able to increase or decrease the likelihood of a
certain G.

In the presence of soft constraints, we modify the EPPF defined in (2.10) by multiplying
a function of characteristics of constraints,

p(G|ψ, T) 9 p(G)p(ψ, T|G) = p(G)
ź

i,j

(
ψij

1´ ψij

)cTijδij

, (2.14)

where ψij/(1´ ψij) is the prior odds for the constraint between unit i and j, δij is a trans-
formed Kronecker delta function such that

δij =

$

&

%

1 if gi = gj

´1 if gi ‰ gj
, (2.15)

and c is a positive number that controls the overall strength of prior belief. For c Ñ 0,
p(G|ψ, T) corresponds to the baseline EPPF p(G), while for c Ñ 8, p (G = G˚|ψ, T) Ñ 1,
where G˚ satisfies all pairwise constraints.

Remark 2.2. Due to the presence of pairwise constraints, the partition probability function presented
in (2.14) no longer satisfies the exchangeable assumption as we now distinguish units within each
group.

Remark 2.3. The current framework enables us to impose some constraints. It is an extreme case
of soft constraint and thus handy to implement, requiring only setting ψij Ñ 1 for the pair (i, j).
Intuitively, any group partition violating the pairwise constraint between i and j (i.e., Tijδij = ´1)
will have zero probability, since for such partition,(

ψij

1´ ψij

)cTijδij

Ñ

(
1
8

)c
= 0, this imples p(G|ψ, T) = 0,

and hence the constraint on (i, j) is imposed and referred to as a hard constraint as opposed to soft con-
straint. By assigning proper ψij for the pairs (i, j), we can flexibly combine soft and hard constraints
inside a single specification.

Remark 2.4. Soft pairwise constraints solve the transitivity issue that might be a problem for hard
pairwise constraints. For instance, if we have (1, 2) PM and (2, 3) PM, we can still have (1, 3) P C
in the framework of soft pairwise constraints since it preserves the possibility of violating any of these
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constraints. This is not the case in hard pairwise constraints, as (1, 2) PM and (2, 3) PM implies
(1, 3) PM by transitivity.

Intriguingly, the partition probability function suggested is strongly related to the penal-
ized probabilistic clustering proposed by Lu and Leen (2004) and Lu and Leen (2007). They
introduce a weighting factor to penalize the objective function to incorporate the clustering
preferences. In fact, motivated by their work, we combine the accuracy ψij and the type Tij

into a single characteristic Wij, termed weights, which takes the following form,

Wij = log

(
ψij

1´ ψij

)Tij

. (2.16)

As depicted in Figure 1, Wij is continuously valued on the real line, representing hard
CL, soft CL, no prior information, soft ML, and hard ML as Wij goes from ´8 to 8. Conse-
quently, Wij is sufficient to summarize all the information for a constraint: the absolute value
of Wij reflects the certainty of the prior knowledge and the sign of Wij specifies the type of
the constraint. Detailed discussion and derivation are documented in Appendix D.2.

Figure 1: The Relationship Between Wij and Pairwise Constraints

Soft CL Soft ML

Wij = ´8

Hard CL

Wij = 0

No Info

Wij = +8

Hard ML

With the definition of Wij, we rewrite the partition probability function defined in (2.14)
in terms of Wij to ease notation,

p(G|ψ, T) = p(G|W) 9 p(G) exp

c
ÿ

i,j

Wijδij

 , (2.17)

and we will use the this specification hereinafter. In practice, we will first specify (Tij, ψij) =

(type, accuracy) for the constraint between unit i and j and then construct the corresponding
weight Wij via the equation (2.16).

Remark 2.5. In the particular case where we don’t have any constraint information, exp
(

c
ř

i,j Wijδij

)
reduces to 1 as Wij = 0 for all i and j, and recovers the original DP prior. Hence, our method can
cater to all levels of supervision, ranging from hard constraints to a complete lack of constraints.

Our proposed partition probability function in (2.14) defines a prior on group indices in
a similar fashion as the baseline DP prior in Section 2.2.2.
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Example 2.2. Consider again the three-unit case in Example 2.1 with a = 1. Assume there is
a must-link constraint between units 1 and 2 and that is the only constraint in this example.
Then the prior probabilities of the five partitions are adjusted to account for the effect of W12:

Pr(g1 = g2 = g3 = 1) =
1
3
¨

2 exp(4cW12)

exp(4cW12) + 1
ą

1
3

,

Pr(g1 = g2 = 1, g3 = 2) =
1
3
¨

exp(4cW12)

exp(4cW12) + 1
ą

1
6

,

Pr(g1 = g3 = 1, g2 = 2) =
1
3
¨

1
exp(4cW12) + 1

ă
1
6

,

Pr(g2 = g3 = 1, g1 = 2) =
1
3
¨

1
exp(4cW12) + 1

ă
1
6

,

Pr(g1 = 1, g2 = 2, g3 = 3) =
1
3
¨

1
exp(4cW12) + 1

ă
1
6

,

Note that c ą 0 and W12 ą 0. Comparing to the results in Example 2.1, the probabilities of
the first two partitions become higher since they all meet the ML constraint between units 1
and 2, while the rest of the partitions violate the constraint and hence the probabilities drop.

Figure 2 depicts the procedure for incorporating soft constraints within a Bayesian frame-
work. Both the ML and CL constraints are associated with accuracy - how confidence we
are when assigning a particular constraint. The information about constraints is then sum-
marized in weights W. The weights are immediately included in the original prior of G as
an additional factor and form a new prior.

Figure 2: Graphical Representation of Group Assignment with Soft Constraints

αgiGπ p(G)

WijML & CL: (Tij, ψij)
Data

ξ

Prior Knowledge
Combine

Construct prior

likelihood

Soft Pairwise Constraints

Stick-Breaking Process

2.3.4 The Effect of Constraints and Scaling Constant

The function p(ψ, T|G) is crucial in shifting the prior probability of G. It is straightforward
to show that Tijδij = 1 when the constraint between i and j is met in a group partitioning
defined by G. The prior probability for G is therefore increased since

[
ψij/(1´ ψij)

]c
ě 1.

Similarly, if a group partitioning G violates the constraint between i and j, then Tijδij = ´1
and the prior probability for G drops due to

[
ψij/(1´ ψij)

]´c
ď 1. Therefore, with p(ψ, T|G),
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the resulting group partition is shrunk toward our prior knowledge without imposing any
constraint.

We then examine the effect of constraints on the prior distribution with fixed c. Let’s
consider a simplified scenario with N = 2 units where there are at most two groups. We re-
peatedly draw samples from the DP prior utilizing the stick-breaking procedure and record
the group indices and number of groups. For illustrative purpose, we fix the concentration
parameter a = 1 so that Pr(g1 = g2) = Pr(g1 ‰ g2) = 0.54 when there is no constraints. We
specify ML and CL constraints with two different levels of accuracy each. The units are then
randomly assigned to each group according to (2.14).

Figure 3 illustrates the effect of soft constraints on group assignment when c = 0.5.
We consider five distinct scenarios where (T12, ψ12) are different. We record the number
of groups and then calculate the fraction of one group or two groups. In the baseline sce-
nario ”No Cstr”, there is no prior belief, therefore the probability of K = 1 and K = 2 are
equal. Next, we employ two distinct level of accuracy for each type of soft constraint. For
each soft constraint, we have ψ12 = 0.75 in the first case (#1) while ψ12 = 0.55 in the second
case (#2), indicating that we are confident and relatively less confident in our prior knowl-
edge, respectively. The bars in the figures depict the fraction of group partitions containing
one or two groups. As demonstrated by the black dashed lines, the theoretical value for the
probability of having one or two groups in the absence of constraints is 0.5.

In this example, we demonstrate how a soft ML constraint between units 1 and 2 consid-
erably decreases the number of groups by assigning both units to the same group. A higher
ψ12, in particular, results in a greater proportion of the single group. In contrast, the soft
CL constraint separates and assigns these two units to different groups. A more precise CL
constraint increases the likelihood of forming two groups. Notably, even with a large ψ12,
the soft constraint framework maintains the possibility of breaching the constraint, which
is another important feature that preserves the chance of correctly assigning group indices
even if the constraint is erroneous. Lastly, ML and CL constraints affect group partitioning
symmetrically.

Next, we explore the role of the scaling constant c given (ψ, T). We are able to derive the
analytical formulae for Pr(K = 1) and Pr(K = 2) in this example. When N = 2, listing all
partitions G is possible and we can calculate the probabilities for each G using (2.17). It is
straightforward to express Pr(K = 1) as a function of c and (ψ12, T12):

Pr(K = 1) =
1

1 + exp(´4cW12)
=

1

1 +
(

ψ12
1´ψ12

)´4cTij
(2.18)

Figure 4 traces out the equation (2.18) for a range of c values. The left panel (a) displays
the curve for an ML constraint. Firstly, observe that when c = 0, Pr(K = 1) remains un-

4Antoniak (1974) provides analytical formulas for probabilities of more general events with larger N. In this
example, Pr(g1 = g2) = 1

a+1 .
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Figure 3: Impacts of Soft Must-Link and Cannot-Link Constraints on the Group Partitioning

Notes: The results are based on 50,000 draws. In the cases with soft constraints, we draw samples using
rejection sampling in which the target distribution is p(G|W) and proposal distribution is p(G).

changed at 0.5 regardless of the value of ψ. This is the situation in which c eliminates the
constraint’s effect on the prior. Next, given a particular c, Pr(K = 1) increases in ψ, which
agrees with the example in 3. When ψ is fixed, increasing c can easily result in a higher
Pr(K = 1), indicating that a larger c value magnifies the effect of the ML constraint. In con-
trast, panel (b) depicts the curve for a CL constraint. It is evident that c has a similar effect
to that of ML constraint, but in the other direction. Pr(K = 1) reduces significantly as c
increases. Overall, a large c augments the influence of constraints on G, whereas a small c
diminishes it.

In the general case where numerous ML and CL constraints are enforced, c concurrently
affects all constraints. In other words, the value of c determines the “strength” of the prior
belief regarding G. If the prior belief is coherent with the real group partition, it would be
preferable to have a large c to intensify the effect on constraints, allowing prior information
to take precedence over data information, and vice versa.

Figure 4: Pr(K = 1) as a Function of Accuracy ψij and c

(a) Must-Link (b) Cannot-Link
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2.3.5 Specification of Soft Pairwise Constraints

In reality, it is practical to establish soft pairwise constraints based on existing information
on group, even if it is not the genuine group partitioning. In the empirical analysis, for
instance, we use the official expenditure categories of CPI sub-indices to construct soft pair-
wise constraints. When information on group partitioning is insufficient, especially when
the number of units is large, these official spending categories may serve as a trustwor-
thy starting point. Before formalizing the idea, we first introduce the prior similarity matrix
C which is a N ˆ N symmetric matrix describing the prior probability of any two units be-
longing to the same group, i.e., Cij = Pr(gi = gj) conditional on all hyperparameters in the
prior.

The general idea to derive soft pairwise constraints using the existing information on
a preliminary group partitioning sG. We start with the type of constraints Tij between any
two units. Given the preliminary group structure, such as geographic classifications, we
specify ML constraints for all pairs of units within the same group and CL constraints for
all pairs of units from different groups. This means that we believe the preliminary group
structure is correct apriori. Despite the fact that more elaborate and subtle constraints might
be implemented, this rough specification is usually a great starting point.

The accuracy psii j for constraints is then specified. When our prior knowledge is limited
or the number of units is large, we cannot specify ψij for all pairs with solid knowledge of
them. Instead, one desirable yet simple choice is to assume ψij again based on preliminary
group partitioning sG. More specifically, all units in the same group are must-linked with
identical ψML

ij , i.e., for units i and j from the group ḡi = ḡj = ḡ, we have ψML
ij = cḡ. Units

from different groups are assumed to be cannot-linked with identical ψCL
ij , i.e., for units i

and j from distinct groups, we assume ψCL
ij = cḡi ḡj and cḡi ḡj = cḡj ḡi . Following this strategy,

ψij depends solely on sG and hence two units from the same group would have identical soft
pairwise constraints with other units. Notice that the number of possible distinct ψij reduces
from N(N ´ 1)/2 to sK(sK + 1)/2, where sK is the number of groups in sG and sK ! N.

The aforementioned specification strategy induces a block prior similarity matrix, i.e., for
an unit i, Cij = Cik if ḡj = ḡk. Intuitively, if two units have identical soft pairwise constraints
and hence posit an identical relationship with all other units, they are equivalent and ex-
changeable. As a result, these units should have an equal prior probability of sharing the
same group index with any other units. More formally,

Theorem 1 (Stochastic Equivalence). Given two units j, k from the same prior group, if ψjm = ψkm

for all m = 1, 2, .., N, then Pr(gi = gj) = Pr(gi = gk) for all unit i.

Theorem 1 echos the concept of stochastic equivalence (Nowicki and Snijders, 2001) in
stochastic block model5 (SBM) (Holland et al., 1983). In less technical terms, for nodes p

5For a more comprehensive review of the stochastic block model, see Lee and Wilkinson (2019).
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and q in the same group, p has the same (and independent) probability of connecting with
node r, as q does. Interestingly, this relationship is not coincidental. The prior draw of group
membership with the aforementioned specification of Tij and ψij can be viewed as a simula-
tion of a simple SBM. In a simple SBM, there are two essential components: a vector of group
memberships and a block matrix, each element of which represents the edge probability of
two nodes, given their group memberships. In our case, the preliminary group structure
serves as the group membership in SBM. The DP prior and the weight (or Tij and ψij) of
each constraint induce a prior similarity probability comparable to the block matrix.

Figure 5: Prior Similarity Matrix under Stochastic Equivalence

Figure 5 shows the prior similarity matrix of an example of 90 units. The preliminary
group structure divides units into 3 groups, with groups 1, 2 and 3 containing 25, 30 and 35
units, respectively. This prior similarity matrix is based on the aforementioned specification
strategy, so it becomes a block matrix with equal entries in each of nine blocks. Units within
the same group are stochastically equivalent, as their prior probabilities of being grouped
not only with each other but also with units from other groups are the same. As a result, the
similarity probability of each pair depends solely on their preliminary membership (and ψ).

3 Posterior Analysis

This section describes the procedure for analyzing posterior distributions for the baseline
model described in (2.1) with the priors specified in Section 2.3.3. The joint posterior distri-
bution of model parameters is

p(α, σ2, Ξ, a, G|Y, X, W, φ)

9 p(Y|X, α, σ2, G)p(α, σ2
|φ)p(G|Ξ)p(W|G)p(Ξ|a)p(a), (3.1)
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where p(Y|X, α, σ2, G) is the likelihood function given by equation (2.1) for an i.i.d. model
conditional on group indices G, and p(W|G) is the additional term of pairwise constraints
with the form p(W|G) =

śN
i=1

śN
j=1 exp

(
cWijδij

)
.

3.1 Posterior Sampling

Draws from the joint posterior distribution can be obtained by using blocked Gibbs sam-
pling. The algorithm is derived from Ishwaran and James (2001) and Walker (2007). Due
to the use of a finite-dimensional prior and truncation, the method described in Ishwaran
and James (2001) cannot truly address our demand for estimating the number of groups
without a predetermined value or upper bound. We employ the slice sampler (Walker,
2007), which is the exact block Gibbs sampler for the posterior computation in infinite-
dimensional Dirichlet process models, modifying the block Gibbs sampler of Ishwaran and
James (2001) to avoid truncation approximations. Walker (2007) augments the posterior
distribution with a set of auxiliary variables consisting of i.i.d. standard uniform random

variables, i.e., ui
iid
„ U(0, 1) for i = 1, 2, .., N. The augmented posterior is then represented as

p(α, σ2, Ξ, a, G, u|Y, X, W, φ)

9 p(Y|X, α, σ2, G)p(α, σ2
|φ)p(W|G)p(Ξ|a)p(a)

ź

i

1(ui ď πgi). (3.2)

where
ś

i 1(ui ď πgi) is substituted for p(G|Ξ) in the equation (3.1).

There are two advantages to incorporating the auxiliary variable u into the model. First
and foremost, u directly determines the largest possible number of groups in each sampling
iteration. This reduces the support of G and Ξ to a finite space, enabling us to solve a
problem of finite dimensions without truncation. Furthermore, u have no effect on the joint
posterior of other parameters because the original posterior can be restored by integrating
out ui for i = 1, 2, ..., N.

The Gibbs sampler in Algorithm 1 below simulates the joint posterior distribution of(
α, σ2, Ξ, a, G, u

)
, by breaking this vector into blocks and sequentially sampling for each

block conditional on the current draws for the other parameters and the data. The full con-
ditional distributions for each block are easily derived using the conjugate priors specified
in Section 2.

Algorithm 1. (Gibbs Sampler for Random Coefficients Model with Soft Pairwise Constraints)
For each iteration s = 1, 2, .., Nsim,

(i) Calculate number of active groups: Ka = max1ďiďN g(s´1)
i .

(ii) Group heterogeneity: draw α
(s)
k from p

(
αk|σ

2(s´1), G(s´1), Y, X
)

for k = 1, 2, ..., Ka.

(iii) Group heteroscedasticity: draw σ2(s)
k from p

(
σ2

k |α
(s), G(s´1), Y, X

)
for k = 1, 2, ..., Ka.
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(iv) Group “stick length”: draw ξ
(s)
k from p

(
ξk|a(s´1), G(s´1)

)
for k = 1, 2, ..., Ka and update

group probability in accordance to the stick-breaking procedure.

(v) Label Switching.

(vi) Auxiliary variable: draw u(s)
i from p

(
ui|Ξ(s), G(s´1)

)
for i = 1, 2, ..., N and calculate u˚ =

min1ďiďN ui.

(vii) DP concentration parameter: draw a latent variable η from Beta(a + 1, N) and draw a(s) from
p (a|η, Ka).

(viii) Generate potential groups based on u˚ and find the maximal number of group K˚.

(xi) Group indices: draw gi from p
(

gi = k|α(s), σ2(s), G(i), u, Y, X, W
)

for i = 1, 2, ..., N and
k = 1, 2, ..., K˚.

For illustrative purposes, we focus primarily on the posterior densities of major parame-
ters and omit details on steps (v) and (viii). In short, step (v) is an additional step to increase
numerical convergence and facilitate mixing. Step (viii) creates potential groups if the cur-
rent iteration permits more groups. Detailed derivations and explanation of each step are
provided in Appendix C.2.

It is worth noting that the steps for implementing the DP prior with or without soft
pairwise constraints are the same, except for the last step for group indices. This is due to
the fact that soft pairwise constraints only affect other parameters through the group indices.
Without soft pairwise constraints, the conditional posterior of G is given by,

p
(

gi = k|α, σ2, G(i), u, Y, X
)
9 p

(
yi|αk, σ2

k , Y, X
)

1 (ui ă πk) . (3.3)

In this framework, adding soft pairwise constraints merely requires including additional
term p(Wi|G) =

ś

j‰i,gj=k exp
(
2cWijδij

)
to rewards (penalizes) the abidance (violation) of

constraints,

p
(

gi = k|α, σ2, G(i), u, Y, X, W
)
9 p

(
yi|αk, σ2

k , Y, X
)

1 (ui ă πk) p(Wi|G). (3.4)

which is fairly handy to implement.

3.2 Determining Partition

In contrast to popular algorithms such as agglomerative hierarchical clustering or the KMeans
algorithm, which return a single clustering solution, Bayesian nonparametric models pro-
vide a posterior over the entire space of partitions, enabling the assessment of statistical
properties, such as the uncertainty on the number of groups.

However, when the group structure is part of the major conclusion of an empirical anal-
ysis, the point estimate of group structure becomes crucial. Wade and Ghahramani (2018)
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discuss in detail an appropriate point estimate of the group partitioning based on the poste-
rior draws. From the decision theory, the point estimate G˚ minimizes the posterior expected
loss,

G˚ = argmin
pG

E
[

L(G, pG)|Y
]
= argmin

pG

ÿ

G

L(G, pG)p (G|Y)

where the loss function L(G, pG) is the variation of information by Meilă (2007), which com-
pares the total information in two partitions with the information shared between the two
partitions. Specifically, they show that the optimal group partitioning can be identified based
on the posterior similarity matrix,

g˚ = argmin
pg

N
ÿ

i=1

log

 N
ÿ

j=1

1
(
pgj = pgi

)´ 2
N
ÿ

i=1

log

 N
ÿ

j=1

P
(

gj = gi|Y, X, W
)

1
(
pgj = pgi

)
(3.5)

where P
(

gj = gi|Y, X, W
)

is the (i, j) entry of the posterior similarity matrix. We refer to
Wade and Ghahramani (2018) for additional properties and empirical evaluations.

3.3 Connection to Constrained KMeans Algorithm

The procedure of Gibbs sampling with soft constraints in Algorithm 1 is closely related to
constrained clustering in the computer science literature. In this parallel literature, con-
strained clustering refers to the process of introducing prior knowledge to guide a clustering
algorithm. For a subset of the data, the prior knowledge takes the form of constraints that
supplement the information derived from the data via a distance metric.

We start with a brief review of the Pairwise Constrained KMeans (PC-KMeans) cluster-
ing algorithm by Basu et al. (2004), which is a well-known clustering algorithm in the field
of semi-supervised machine learning. It’s a pairwise constrained variant of the standard
KMeans algorithm in which an augmented objective function is used in the assignment step.
Given a collection of observations (y1, y2, . . . , yN), a set of must-link constraints M, a set of
cannot-link constraints C, the cost of violating constraints w = twm

ij , wc
iju and the number of

groups K, the PC-KMeans algorithm divides N observations into K groups (the assignment
step) so as to minimize the following objective function,

1
2

K
ÿ

k=1

ÿ

iPBk

}yi ´ µk}
2

looooooooooomooooooooooon

within-cluster sum of squares

+
ÿ

(i,j)PM
ωm

ij 1
(

gi ‰ gj
)
+

ÿ

(i,j)PC
ωc

ij1
(

gi = gj
)

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

cost of violation

, (3.6)

where µk is the centroid of group k, i.e., µk = 1
|Bk|

ř

iPBk
yi, Bk is the set of units assigned to

group k, and |Bk| is the size of group k. The first part is the objective function for the conven-
tional KMeans algorithm, while the second part accounts for the incurred cost of violating
either ML constraints (wm

ij ) or CL constraints (wc
ij).
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Similar to KMeans, PC-KMeans alternates between reassigning units to groups and re-
computing the means. In the assignment step, it determines a disjoint K partitioning that
minimizes (3.6). Then the update step of the algorithm recalculates centroids of observa-
tions assigned to each cluster and updates µk for all k.

By applying asymptotics to the variance of distributions within the model, we demon-
strate linkages between the posterior sampler of our constrained BGFE estimator and KMeans-
type algorithms in Theorem 2. We investigate small-variance asymptotics for posterior den-
sities, motivated by the asymptotic connection between the Gibbs sampling algorithm for
the Dirichlet process mixture model and KMeans (Kulis and Jordan, 2011), and demonstrate
that the Gibbs sampling algorithm for the CBG estimator with soft constraints encompasses
the constrained clustering algorithm PC-KMean in the limit.

Theorem 2. (Equivalency between BGFE with Soft Constraints and PC-KMeans)
If the following conditions hold,

(i) Grouped pattern is in fixed-effects but not in slope coefficients, i.e., xit = 1. Other covariates
might be introduced, but they cannot have grouped effects on yit;

(ii) The number of group is fixed at K;

(iii) Homoscedasticity: σ2
k = σ2 for all k = 1, 2, ..., K;

(iv) Constraint weights is scaled by the variance of errors: Wij Ñ Wij/σ2;

then the proposed Gibbs sampling algorithm for the BGFE estimator with soft constraint embodies
the PC-KMeans clustering algorithm in the limit as σ2 Ñ 0. In particular, the posterior draw of
group indices G is the solution to the PC-KMeans algorithm.

We return to the world of grouped fixed-effects models. In fact, the clustering algorithm
is essential for BM and Bonhomme et al. (2022), who use the KMeans algorithm to reveal
the group pattern in the fixed-effects. With the theorem described above, it motivates a con-
strained version of BM’s GFE estimator. We show that it is straightforward to incorporate
prior knowledge in the form of soft paired restrictions into the GFE estimator. The soft pair-
wise constrained grouped fixed-effects (SPC-GFE) estimator is defined as the solution to the
following minimization problem given the number of groups K:

(
pθ,pα, pG

)
= argmin

θ,α,G

N
ÿ

i=1

T
ÿ

t=1

(
yit ´ x1itθ ´ αgit

)2
+ c

 ÿ

(i,j)PM
wm

ij 1
(

gi ‰ gj
)
+

ÿ

(i,j)PC
wc

ij1
(

gi = gj
) , (3.7)

where the minimum is taken over all possible partitions G of the N units into K groups,
common parameters θ, and group-specific time effects α. wm

ij and wc
ij are the user-specified

costs on ML and CL constraints.
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For given values of θ and α, the optimal group assignment for each individual unit is

pgi(θ, α) = argmin
gPt1,...,Ku

N
ÿ

i=1

T
ÿ

t=1

(
yit ´ x1itθ ´ αgit

)2
+ c

 ÿ

(i,j)PM
wm

ij 1
(

gi ‰ gj
)
+

ÿ

(i,j)PC
wc

ij1
(

gi = gj
) , (3.8)

where we essentially apply the PC-KMeans algorithm to get the group partition. The SPC-
GFE estimator of (θ, α) in (3.7) can then be written as

(pθ,pα) = argmin
θ,α

N
ÿ

i=1

T
ÿ

t=1

(
yit ´ x1itθ ´ α

pgit

)2
, (3.9)

where pgi = pgi(θ, α) is given by (3.8). θ and α are computed using an OLS regression that
controls for interactions of group indices and time dummies. The SPC-GFE estimate of gi is
then simply pgi(pθ,pα).

Remark 3.1. While the SPC-GFE estimator takes use of soft constraints, it still requires a predeter-
mined number of group K and model selection.

4 Extensions

Within the domain of panel data models, the proposed constrained-based BGFE framework
can be extended in multiple directions to allow for more subtle group structures or more
covariates. In addition, the DP prior with soft pairwise constraints also applies to other
related topics and models, such as clustering problems, heterogeneous treatment effects,
and panel VARs.

4.1 Subtle Group Structure

Through the Dirichlet process defines a prior that possesses the clustering property and is
flexible enough to incorporate pairwise constraints, the group structure itself is elementary.
Aside from our prior belief on the group, the group structure, which is introduced in all αi

and σ2
i , is entirely governed by the stick-breaking process defined in Equation (2.9). The stick

length ξk, on which we have a prior, is independent of any regressors or time. Consequently,
each unit is associated with a single group, and the membership remains constant across
time.

To create an even more flexible and richer group structure, we provide insight into three
possible extensions, each of which requires a set of more distinctive nonparametric priors.
(1) overlapping group and (2) time-varying group and (3) dependent group.

Overlapping group structures allow for multi-dimensional grouping. This is a natural
extension without having to greatly modify the proposed DP prior. Following Cheng et al.
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(2019), each of αi’s and σ2
i may have its own group structure and a separate Dirichlet process

is specified to each of them. As a result, units simultaneously belong to multiple groups
based on the heterogeneous effects among regressors or cross-sectional heteroskedasticity.

Time-varying group structures allow the membership of the group to change over time.
We could replace the DP by variants of the hierarchical Dirichlet process (Teh et al., 2006)
to achieve this feature. In short, the hierarchical Dirichlet process (HDP), a nonparamet-
ric Bayesian approach to clustering grouped data, is now the foundation of the prior. The
time dimension naturally divides the panel data into T groups, and a Dirichlet process is as-
sumed for each group, with all Dirichlet processes having the same base distribution, which
is distributed according to a global base distribution. The HDP allows each group to have
its own cluster, but most importantly, these clusters are shared across groups. This lays the
groundwork for time-varying group structures, as it assumes that the number of clusters
remains constant over time, while cluster memberships are subject to change. Variants of
the HPD are then proposed to capture the time-persistence in group structures, including
dynamic HDP (Ren et al., 2008) and sticky HDP (Fox et al., 2008, 2011). A closely related
area in the frequentists’ methods is to identify structure breaks in parameters with grouped
patterns, see Okui and Wang (2021); Lumsdaine et al. (2022).

Dependent group structures allow the prior group probability to rely directly on a col-
lection of characteristics. The dependence is introduced through a modification of the stick-
breaking representation for DPs, where the group probabilities vary with the characteristics.
Rodriguez and Dunson (2011) introduced the probit-stick breaking (PSB) process where the
Beta random variables are replaced by normally distributed random variables transformed
using the standard normal CDF. The PSB is defined by,

πk (wi) = Φ (ζk (wi))
ź

jăk

[
1´Φ

(
ζ j (wi)

)]
, (4.1)

where stochastic function ζk is drawn from Gaussian process ζk „ GP (0, Vk) for k = 1, 2, ¨ ¨ ¨
and wi is the set of characteristics that are informative to the latent group. Other forms of
dependence are also available, see Quintana et al. (2022) for a comprehensive review. A
caveat of this approach is that analysis of group structure is confined to wi observed by the
researcher. The approach requires researchers to know possible key characteristics, be able to
observe them and ensure they are informative. In many cases, however, these characteristics
might be hard to justify by researchers.

4.2 More Covariates

The model in (2.1) can be combined with additive terms that capture individual and com-
mon effects of covariates,

yit = α1gitxit + β1iwit + γ1zit + εit, εit „ N
(

0, σ2
gi

)
, (4.2)
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where wit has individual-specific effect on yit and zit has common effect on yit. The Dirichlet
process prior shown in this section is straightforward to extend to the model in (4.2) by
specifying additional normal priors for both βi and γ. The framework nests several popular
approaches:

Example 4.1 (Grouped fixed-effects model). Bonhomme and Manresa (2015), Kim and Wang
(2019)

yit = αgit + β1xit + εit, εit „ N
(

0, σ2
)

. (4.3)

Example 4.2 (Linear panel with grouped slope coefficients). Lin and Ng (2012), Sarafidis and
Weber (2015) and Su et al. (2016)

yit = α1gi
wit + βi + εit. (4.4)

Example 4.3 (Interactive fixed-effects model with grouped slope coefficients). Su and Ju
(2018)

yit = α1gi
xit + β1iwt + εit. (4.5)

Example 4.4 (Dynamic panel data model).

yit = αgit + ρiyit´1 + γ1zit + εit. (4.6)

Example 4.5 (Standard fixed-effects model).

yit = αt + βi + γ1zit + εit. (4.7)

4.3 Beyond Panel Data Models

Although we concentrate on panel data model, our framework of the DP prior with soft
pairwise constraints applies to other models where the group structure are crucial.

Gaussian Mixture Model

If we ignore covariates and focus exclusively on group membership, we essentially face a
classical clustering problem with an infinite-dimensional mixture model. A typical prob-
abilistic model is the infinite Gaussian mixture model (Rasmussen, 1999), where the data
itself is assumed to be drawn from a mixture of Gaussian components

yi „

8
ÿ

k=1

πkN(µk, Σk), (4.8)

where πk are the mixture weights. With soft pairwise constraints, observations are clustered
in accordance with prior belief.

Heterogeneous Treatment Effects
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Following the potential outcomes framework of Rubin (1974), we posit the existence of
potential outcomes Yi(1) and Yi(0) corresponding respectively to the response the i th sub-
ject would have experienced with and without the treatment, and define the treatment effect
at x as

τ(x) = E [Yi(1)´Yi(0) | Xi = x] (4.9)

Existing methods estimate (4.9) by using several machine learning algorithms (Hill, 2011;
Athey and Imbens, 2016; Wager and Athey, 2018). These methods are built on the idea that
researchers find the subsamples across which the effect of a treatment differs out of all pos-
sible subsamples on the basis of the values of Xi. Instead of trying to discover valid subsets
of the data, Shiraito (2016) directly models the outcome as a function of the treatment and
pretreatment covariates and estimate of the distribution of CATE across units by employing
the Dirichlet process.

Yi = Diτgi + X1iγgi + εi, εi
iid
„ N

(
0, σ2

gi

)
. (4.10)

where D is the binary treatment variable. *** what can we do with constraints?

Panel VARs

Panel VARs (Holtz-Eakin et al., 1988; Canova and Ciccarelli, 2013, and references therein.)
has been widely used in macroeconomic analysis and policy evaluations to capture the in-
terdependency across sectors, markets, and countries. Nevertheless, the large dimension of
panel VARs typically makes the curse of dimensionality a severe problem. Billio et al. (2019)
propose nonparametric Bayesian priors that cluster the VAR coefficients and induce group-
level shrinkage. Our paradigm with the DP prior with soft pairwise constraints is applicable
to their method and injects prior information on groups into the underlying Granger causal
networks.

Panel VARs have the same structure as VAR models, in the sense that all variables are
assumed to be endogenous and interdependent, but a cross-sectional dimension is added to
the representation. Thus, let Yt be the stacked version of yit, the vector of J variables for each
unit i = 1, . . . , N, i.e., Yt = (y11t, y12t, . . . y1Nt)

1. Then a panel VAR is

Yt = A0 + A1Yt´1 + A2Yt´2 + ... + ApYt´p + ut, i = 1, . . . , N, (4.11)

where ut is a J ˆ 1 vector of idiosyncratic errors and A0 and Aj are NJ ˆ NJ matrices of
coefficients.

The main feature of Billio et al. (2019) is to specify a prior that blends the DP prior with
Lasso prior for each of A0 and Aj, such that the VAR coefficients are either shrunk toward
0 or clustered at multiple non-zero locations. Our proposed DP prior with soft pairwise
constraints, in the meantime, fit into their framework by replacing the original DP prior
and permitting richer structure within each coefficient matrix. As the values for nonzero
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coefficients form Granger causal networks, equipping with soft pairwise constraints may
result in a more plausible network by taking researchers’ expertise into account.

5 Empirical Applications

We apply our panel forecasting methods to the following two empirical applications: infla-
tion of the U.S. CPI sub-indices and the income effect on democracy. The first application
focuses mostly on predictive performance, whereas the second application focuses primarily
on parameter estimation and group structure.

5.1 Posterior Predictive Densities and Performance Evaluation

5.1.1 Posterior Predictive Densities

We generate one-step ahead forecasts of yi,T+1 for i = 1, ..., N conditional on the history of
observations

Y = [y1, y2, ..., yN], yi = [yi1, yi2, ..., yiT]
1,

X = [x1, x2, ..., xN], xi = [xi1, xi2, ..., xiT]
1,

and newly available variables xiT+1 at T + 1.

The posterior predictive distribution for unit i is given by

p(yiT+1|Y, X) =

ż

p(yiT+1|Y, X, Θ)p(Θ|Y, X)dΘ, (5.1)

where Θ is a vector of parameters Θ =
(

αgi , σ2
gi

, gi

)
. This density is the posterior expectation

of the following function:

p(yiT+1|Y, X, Θ) =

K(G)
ÿ

k=1

1(gi = k)p (yiT+1|Y, X, Θ) , (5.2)

which is invariant to relabeling the components of the mixture and K(G) is the number of
groups in G. Given S posterior draws, the posterior predictive distribution estimated from
the MCMC draws is

p̂(yiT+1|Y, X) =
1
S

S
ÿ

j=1

K(j)(G)
ÿ

k=1

1(gi = k)p
(

yiT+1|Y, X, Θ(j)
) . (5.3)

We can therefore draw samples from p̂(yiT+1|Y, X) by simulating (2.1) forward condi-
tional on the posterior draws of Θ and observations. Note that MCMC exhibits the true
Bayesian predictive distribution, implicitly integrating over the entire underlying parame-
ter space.
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5.1.2 Point Forecasts

We evaluate the point forecasts via the Root Mean Squared Forecast Error (RMSFE) under
the quadratic compound loss function averaged across units. Let ŷiT+1|T represent the pre-
dicted value conditional on the observed data up to period T, the loss function is written
as

L
(
py1:N,T+1|T, y1:N,T+1

)
=

1
N

N
ÿ

i=1

(
ŷiT+1|T ´ yiT+1

)2
=

1
N

N
ÿ

i=1

ε̂2
iT+1|T, (5.4)

where yi,T+1 is the realization at T + 1 and ε̂iT+1|T denote the forecast error.

The optimal posterior forecast under quadratic loss function is obtain by minimizing the
posterior risk,

ŷ1:N,T+1|T = argmin
ŷPRN

ż 8

´8

L (ŷ, y1:N,T+1) p(y1:N,T+1|Y)dy1:N,T+1

= argmin
ŷPRN

1
N

N
ÿ

i=1

E
[
(ŷ´ yiT+1)

2
|Y
]

. (5.5)

This implies optimal posterior forecast is the posterior mean,

ŷi,T+1|T = E (yiT+1|Y) , for i = 1, . . . , N. (5.6)

Conditional on posterior draws of parameters, the mean forecast can be approximated
by the Monte Carlo averaging,

ŷi,T+1|T «
1
S

S
ÿ

j=1

ŷ(j)
iT+1|T =

1
S

S
ÿ

j=1

α̂
(j)1
gi xiT+1. (5.7)

Finally, the RMSFE across units is given by

RMSFET+1 =

g

f

f

e

1
N

N
ÿ

i=1

(yi,T+1 ´ ŷi,T+1)
2. (5.8)

5.1.3 Density Forecasts

To compare the performance of density forecasts for various estimators, we report the av-
erage log predictive scores (LPS) to assess the performance of the density forecast from the
view of the probability distribution function. As suggested in Geweke and Amisano (2010),
the LPS for a panel reads as,

LPST+1 =´
1
N

N
ÿ

i=1

ln
ż

p (yiT+1|Y, X, Θ) p(Θ|Y, X)dΘ, (5.9)
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where the expectation can be approximated using posterior draws:
ż

p (yiT+1|Y, X, Θ) p(Θ|Y, X)dΘ «
1
S

S
ÿ

j=1

p
(

yiT+1|Y, X, Θ(j)
)

. (5.10)

The following results are also robust to other metrics such as the continuous ranked
probability score (Matheson and Winkler, 1976; Hersbach, 2000).

5.2 Inflation of the U.S. CPI Sub-Indices

Policymakers and market participants are very interested in the abilities to reliably predict
the future disaggregated inflation rate. Central banks predict future inflation trends to jus-
tify interest rate decisions, control and maintain inflation around their targets. The Federal
Reserve Board forecasts disaggregated price categories for short-term inflation forecasting
(Bernanke, 2007). They rely primarily on the bottom-up approach that focuses on estimating
and forecasting price behavior for the various categories of goods and services that make up
the aggregate price index. On the other hand, Investors in fixed-income markets in the pri-
vate sector wish to forecast future sectoral inflation in order to anticipate future trends in
discounted real returns. Also, some private firms need to predict specific inflation compo-
nents in order to forecast price dynamics and reduce risks accordingly.

In this section, we illustrate the use of constrained BGFE estimators with prior knowl-
edge on the group pattern to forecast inflation rates for sub-indices of the U.S. Consumer
Expenditure Index (CPI). We focus primarily on the one-step ahead point and density fore-
cast. Due to space constraints, we only report the group partitioning for the most recent
month in the main text.

5.2.1 Model Specification and Data

Model: We start by investigating the out-of-sample forecast performance of a simple, generic
Phillips curve model. It is an autoregressive distributed lag (ADL) model with a group
pattern in the intercept, coefficients, as well as error variance. The model is given by

yit+1 = αgi +

p´1
ÿ

j=0

ρgi,j yit´j + βgi ut + εit+1, εit+1 „ N(0, σ2
gi
). (5.11)

where yit is year-over-year inflation rate, i.e., yit = log(priceit/priceit´12). ut is the slack
measure for the labor market, the unemployment gap. We fix p at 3 as the benchmark model
would have the best predictive performance.

Data: We use the sub-indices of CPI for all urban consumer (CPI-U) that include food and
energy. The raw data is obtained from the U.S. Bureau of Labor Statistics (BLS), which is
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recorded on a monthly basis from January 1947 to August 2022. The CPI-U is a hierarchical
composite index system that partitions all consumer goods and services into a hierarchy of
increasingly detailed categories. It consists of eight major expenditure categories (1) Ap-
parel; (2) Education and Communication; (3) Food and beverages; (4) Housing; (5) Medical
Care; (6) Recreation; (7) Transportation; (8) Other goods and services. Each sector is com-
posed of finer and finer sub-indexes until the entry levels or “leaves” are reached. This
hierarchical structure can be represented as a tree structure, as shown in Figure 6. It is im-
portant to note that the parent series and its child series may be highly correlated and readily
form a group due to the fact that parent series are generated from child series. For instance,
the Energy Services is expected to correlated with its child series Utility gas service and Elec-
tricity. Due to our focus on group structure, it is vital to eliminate all parent series in order to
prevent not just double-counting but also dubious grouping results. More details regarding
the data are provided in Appendix F.1.

We focus on the CPI sub-indices after January 1990 for two reasons: (1) the number
of sub-indices before 1990 was relatively small, diminishing the importance of the group
structure; and (2) the consumption has been changed and more expenditure series were
introduced in the 1990s as a result of the popularity of electronic products, food care, etc.
After the elimination of all parent nodes, the unbalanced panel consists of 156 sub-indices in
eight major expenditure categories. We employ rolling estimation windows of 48 months6

and require each estimation sample to be balanced, removing individual series lacking a
complete set of observations in a given window. Finally, we generate 324 samples with the
first forecast computed for April 1995.

Figure 6: Hierarchical Structure of CPI

All Items

Housing

Shelter

Rent of primary residence

Owners’ equivalent rent of residences

Fuels and utilities

Water sewer and trash

Household energy

Fuel oil and other fuels

Fuel oil

Propane kerosene and firewood

Energy services

Electricity

Utility gas service

Transportation ...

Food and beverages ...

Estimators: We consider six estimators:

(i) BGFE-he: The baseline Bayesian grouped fixed-effects (BGFE) estimator. It assumes
true model exhibits time-invariant grouped heterogeneity and grouped heteroskedas-
ticity.

6The benchmark AR-he model has the best overall performance with a window size of 48.
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(ii) BGFE-ho: homoskedastic version of BGFE-he.

(iii) BGFE-he-cstr: BGFE-he + constraints. The official expenditure categories are used to
build ML and CL constraints: all units within the same categories are presumed to be
must-linked, while units from different categories are believed to be cannot-linked. We
specify equal accuracy for all ML and CL constraints, i.e., ψML

ij = 0.65 and ψCL
ij = 0.6,

following the method described in Section 2.3.5.

(iv) Pooled OLS: Bayesian pooled estimator that views αi as a common parameter and ignore
heteroskedasticity.

(v) AR-he: flat-prior estimator that assumes p(αi) 9 1 corresponds to standard AR model
with additional regressor ut in this environment.

(vi) AR-he-PC: AR-he + the lagged value of the first principal component.

5.2.2 Results

We begin the empirical analysis by comparing the performance of point and density fore-
casts across 324 samples.Throughout the analysis, the Flat-he estimator serves as the bench-
mark as it essentially assumes individual effects.

In Figure 7, we present the frequency of each estimator with the lowest RMSFE in the
panel (a) and the boxplot7 of the ratio of RMSFE relative to the AR-he estimator in the panel
(b). First, the AR-he and AR-he-PC estimators, which rely only on an individual’s own
past data, are not competitive in point forecasts and perform considerably worse than the
others. This implies that it is highly advantageous to explore cross-sectional information to
improve point forecasts. Moreover, there is no apparent victor in this setting despite the fact
that BGFE-he-cstr, BGFE-he, BGFE-ho, and pooled OLS estimators all utilize cross-sectional
information. Examining the box plot, we find that the BGFE-ho and pooled OLS estimators,
which overlook heteroskedasticity, can achieve greater performance in some samples, but
make poorer forecasts more often than the other estimators. BGFE-he-cstr and BGFE-h, on
the other hand, typically outperform the benchmark and provide less variable forecasts,
although they do not generally have the lowest RMSFE.

The revealing patterns of the density forecast are significantly distinct from those of the
point forecast. Figure 8 depicts the log predictive score (LPS) for density forecast. The most
notable pattern from the panel (a) is that our BGFE estimators are dominating and outper-
form the rest in over 90% of the samples. They emerge as the apparent winners in this case.
Furthermore, the superiority of BGFE-ho and pooled OLS in point forecast vanishes when
generating density forecast, as they never get the lowest LPS across samples. This also con-
forms that the heteroscedasticity is a well-known feature of the inflation time series (Clark

7The boundaries of the whiskers is based on the 1.5 IQR value. All other points outside the boundary of the
whiskers are plotted as outliers in red crosses.
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and Ravazzolo, 2015). We provide more results in Section 5.2.4 to explore the importance of
heteroskedasticity in density forecast for the inflation. In the boxplot, we ignore BGFE-ho
and pooled OLS and show the difference in LPS between the respective estimator and the
AR-he estimator. As LPS differences represent percentage point differences, BGFE-he-cstr
can provide density forecasts that are up to 30% more accurate comparing to the benchmark
model. Finally, despite the fact that BGFE-he-cstr and BGFE-he estimators are mainly based
on the same algorithm, the use of prior knowledge on group pattern further enhances the
performance, resulting in the BGFE-he-cstr estimator having lower LPS and scoring the best
model with the highest frequency.

With pairwise constraints across sub-indices, we provide a prior on G that shrinks the
group structure toward the eight official expenditure categories with equal accuracy for all
pairs inside each category. As Theorem 1 suggested, our prior specification essentially as-
sumes that the probability of any two units in the same expenditure category being in the
same group is equal and the prior group pattern is actually official expenditure category.
We now examine the posterior of group structure to demonstrate how the distribution of G
gets updated by data. In order to accomplish this, we construct a posterior similarity matrix
(PSM) that contains the marginal posterior probabilities of any two units being in the same
group. For illustrative purposes, we present the results for the last sample, in which we fore-
cast CPI in August 2022. Figure 9 depicts the PSM generated by BGFE-he-crst for the series
in the category of Food and Beverages and Transportation. A darker block indicates a higher
posterior probability of being in one group. A common pattern emerges: even though some
sub-indices join together more frequently, it is extremely unlikely that all series within the
category belong to the same group, indicating that the official expenditure categories do not
have the optimal group structure that would result in accurate forecasting. Instead, our sug-
gested framework uses information from both prior beliefs and data to reinvent the group
pattern, leading to improved forecasting performance.

Finally, we restrict our analysis to the point estimate of group partition, i.e., the single
grouping solution, rather than the posterior over the whole universe of partitions. Figure 10
depicts the posterior point estimate of G for the last sample ended in August 2022, derived
using the approach described in Section 3.2. Eight expenditure categories are divided into
twelve groups of varied sizes. Two different forms of groups are generated based on the
arrangement of their components. Groups 2, 3, 4, and 5 contain sub-indices from a variety of
categories, with no clear dominance. In contrast, the majority of the series in groups 1 and 8,
for example, belong to a certain category. Group 1 may refer to a Food group, whereas group
8 is a Transportation group. The detailed group 8 components are depicted in Figure 11. There
are seven sub-indices from Transportation, including car and truck rentals, gasoline (regular,
midgrade, and premium), other motor fuels, airline fares, and ship fares, and one series
from Housing - fuel oil (for residential heating). Clearly, all sub-indices share a common
trend and have a close relationship with energy and oil prices, which have increased since
the Pandemic. This is an example demonstrating that our proposed algorithm exploits cross-
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Figure 7: RMSFE - All Samples

(a) Freq. lowest RMSFE (b) Boxplot: RMSEm / RMSEAR´he

Figure 8: Log Predictive Scores - All Samples

(a) Freq. lowest LPS (b) Boxplot: LPSm - LPSAR

Figure 9: Posterior Similarity Matrices for Selected Categories

(a) Food and beverages (Category 3) (b) Transportation (Category 7)
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sectional information, not limited to our prior knowledge, and forms meaningful groups for
forecasting.

Figure 10: Posterior Point Estimate of the Group Partition, August 2022

Figure 11: Components in the Group #9, August 2022

5.2.3 Impact of the Accuracy of Constraints

We examine how the accuracy of pairwise constraints influences the point estimate of group
partitioning. For demonstration purposes, we restrict our analysis to ML constraints solely
by setting ψCL

ij = 0.5 and changing ψML
ij . We do not select the constant c in the setup since it

would balance the impact of the ML restrictions with a different level of accuracy. We set c
to 0.5. Again, ML constraints are derived from the official expenditure categories, with the
assumption that all units within the same category are must-linked with equal probability
of being in the same group.

Figure 12 presents the point estimates of the group structure with two different levels of
accuracy. The “weaker” ML constraints with ψML

ij = 0.55, as shown in panel (a), demon-
strate a limited influence of prior knowledge on the group structure. The eleven groups are
composites of CPI sub-indices from the various categories, which is diverse from the offi-
cial spending categories. Panel (b), on the other hand, illustrates the group structure with
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“stronger” ML constraints. By setting a high level of accuracy for ML constraints, such as
ψML

ij = 0.95, the prior knowledge dominates and pushes the group structure towards the
official expenditure categories. As anticipated, panel (b) shows fewer groups, and the ma-
jority of CPI sub-indices within each group belong to the same category, bringing the group
structure closer to that of the prior.

Figure 12: Impact of the Strength of Constraints

(a) Weaker ML
(

ψML
ij = 0.55

)
(b) Stronger ML

(
ψML

ij = 0.95
)

5.2.4 Heteroskedasticity vs. Homoskedasticity

We conclude by examining how grouped heteroskedasticity impacts forecast accuracy and
why this is important. For illustrative purposes, we focus on the two BGFE estimators,
BGFE-he and BGFE-ho, that do not involve pairwise constraints.

A distinguishing characteristic between BGFE-he and BGFE-ho is the estimated number
of groups. Figure 13 depicts the number of groups over samples. BGFE-he estimator forms
9 groups for the beginning of the sample, and increase it during the Great Recession and
the Pandemic. However, the estimated number of groups for BGFE-ho is rather low in the
1990s, and progressively increases to around seven by the end of the sample. It is noticeable
that when heteroskedasticity is allowed, there are more groups than when it is not. This
is intuitive. Two groups can be expected to have comparable estimates of grouped fixed-
effects and slope coefficients, but vastly different error variances. As a result, allowing for
heteroskedasticity would result in a more refined group structure and increase the overall
number of groups.

As seen in Figure 7 and 8, the grouped heteroskedasticity doesn’t improve the point fore-
cast but the density forecast. Figure 14 depicts a clear perspective of it and demonstrates the
performance of point and density forecasts through time. In panel (a), we observe that the
ratio of RMSE is generally around one over the whole sample, meaning that heteroskedas-
ticity cannot improve the point forecast in general. In panel (b), the difference in LPS is
consistently negative. This demonstrates that the improved density prediction performance
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Figure 13: Number of Groups

is not a fluke and that enabling heteroskedasticity improves the density forecast regardless
of sample. This is actually in line with the simulation results presented in Table E.4.

Figure 14: Results of BGFE-he vs. BGFE-ho

(a) RMSEhe / RMSEho

(b) LPShe - LPSho

Density forecasts vary substantially across categories. We pick three typical sub-categories
and plot their posterior predictive densities of August 2022 in Figure 15. The vertical dashed
black lines represent the actual values. Several insights emerge while comparing these three
subcategories. First, BGFE-he and BGFE-ho provide comparable posterior means for all
three subcategories - the posterior predictive densities concentrate around the similar price
levels. This explains why BGFE-he and BGFE-ho have comparable results in point forecast-
ing. Second, BGFE-he reveals different predictive variance. As the rolling sample size is
set to 4 years, all observations throughout the Pandemic are included, and it is anticipated
that the price levels of elementary and high school (basic education) tuition and fees, major
appliances, and airline prices would respond differently to the shock. Intuitively, education
tuition and fees should not fluctuate as much as other prices, while airline fares have been
strongly influenced by the fluctuating oil prices since the beginning of the Pandemic. Conse-
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quently, accounting for heteroskedasticity successfully captures this characteristic, such that
college tuition and fees have a smaller predictive variance than that of BGFE-ho, but airline
fares have a greater predictive variance.

Combing these two observations together reveals why BGFE-he has a better density fore-
cast: the capacity to optimally cluster units according to the error variance and accommodate
heteroskedasticity. For elementary and high tuition and fees, providing that both BGFE-he
and BGFE-ho yields accurate posterior mean, BGFE-he yields much lower predictive vari-
ance, decreasing the LPS dramatically. Both BGFE-he and BGFE-ho underestimate the infla-
tion rate for airline fares, but BGFE-he subtly creates a greater predicted variance to account
for the wild probable shift in this sub-category and hence reduces the LPS significantly. Ma-
jor appliances is an example to show that BGFE-he and BGFE-ho generate comparable den-
sity forecasts for some sub-categories.

Figure 15: Predictive Posteriors for Selected Series: BGFE-he vs. BGFE-ho

(a) Basic Edu. Tuition and Fees (b) Major Appliances (c) Airline Fares

5.3 Income and Democracy

An important stylized fact in political science and economics is the casual relationship be-
tween countries’ income and the level of democracy (Lipset, 1959; Sirowy and Inkeles, 1990;
Przeworski et al., 1995; Barro, 1999). When controlling for additive country- and time-effects,
Acemoglu et al. (2008) discover that the positive correlation between income and democ-
racy disappears. Bonhomme and Manresa (2015) introduce the grouped time-varying fixed-
effects into the panel data model and reach the same conclusions. In particular, their analysis
highlights the presence of diverse group-specific paths of democratization in the data. The
group pattern is consistent with the empirical finding that regime types and transitions tend
to cluster in time and space (Gleditsch and Ward, 2006; Ahlquist and Wibbels, 2012).

This section revisits the relationship between countries’ income and the level of democ-
racy, focusing primarily on the group pattern in the evolution of democratization. We exam-
ine several model specifications and, in particular, introduce group structure in time fixed-
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effects, slope coefficients and the variance of errors. We find richer group patterns when
prior knowledge on group is introduced in the model and heterogeneous income effects on
democracy.

5.3.1 Model Specification and Data

Model: Time effects are essential to this analysis as they capture highly persistent histor-
ical shocks. Following Bonhomme and Manresa (2015), we introduce group-specific time
patterns of heterogeneity αgit and consider the following two specifications:

SP1 Time-varying GFE

yit = αgit + ρyit´1 + βxit´1 + εit, εit „ N(0, σ2
gi
) (5.12)

SP2 Time-varying GFE + grouped slope coefficients

yit = αgit + ρgi yit´1 + βgi xit´1 + εit, εit „ N(0, σ2
gi
) (5.13)

where yit is the democracy score (measured by the Freedom House indicator) of country i
in period t. The lagged value of this variable on the right-hand side is included to capture
persistence in democracy and also potentially mean-reverting dynamics (i.e., the tendency
of the democracy score to return to some equilibrium value for the country). xit´1 is the
lagged value of log income (GDP) per capita. In addition, αgit denote a set of group-specific
time fixed-effects; εit is an error term with grouped variance σ2

gi
, capturing all other omitted

factors.

Specification 1 in (5.12) nests the linear dynamic panel data model in BM as a special
case. If we assume homoskedasticity, it is the equation (22) in BM. This specification enables
us to reproduce BM’s results and provide fresh insight into their framework. Specification
2 in (5.13), on the other hand, generalizes specification 1 by introducing group-dependent
slope coefficients. As we shall demonstrate in the following section, specification 2 yields a
more refined group structure and provides a clearer view of the income effects.

Data: All data in this section are taken from the replication files of BM8 . The data set contains
a balanced panel of 89 countries9 and 7 periods at a five-year interval over 1970-2000. The
summary statistics are reported in Table F.1. The main measure of democracy is the Freedom
House Political Rights Index. A country receives the highest score if its political rights come
closest to the ideals suggested by a checklist of questions. The countries’ income is measured
by the logarithm of GDP per capita.

Estimator: We consider three estimators:
8https://www.dropbox.com/s/ssjabvc2hxa5791/Bonhomme_Manresa_codes.zip?dl=0
9We remove a few regions that are not considered as countries in a general sense.
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(i) BGFE-he: The baseline BGFE estimator. It assumes true model exhibits time-varying
grouped heterogeneity and grouped heteroskedasticity.

(ii) BGFE-ho: homoskedastic version of BGFE-he.

(iii) BGFE-he-cstr: BGFE-he + constraints. We propose two prior grouping strategies as
specified below and assume all units within the same prior group are presumed to be
must-linked, while units from different prior groups are believed to be cannot-linked.
We specify equal accuracy for all ML and CL constraints, i.e., ψML

ij = 0.70 and ψCL
ij =

0.55, following the method described in Section 2.3.5.

Prior group structure: We propose two pre-grouping strategies

(i) Given the countries available in the dataset, we form six groups according to their geo-
graphic locations:10 (1) North America; (2) Europe; (3) Latin America and the Caribbean;
(4) Asia and Australasia; (5) Sub-Saharan Africa; (6) Middle East and North Africa. We
refer this prior to geo-prior.

(ii) Alternately, countries could be categorized according to their initial level of democracy
in year 1970. As the Freedom House Index has six possible values, we cluster coun-
tries into three primary groups with a reasonable number of countries in each: (1) low
democracy, yi,1970 = 0 or 0.166; (2) medium democracy, yi,1970 = 0.333, 0.5, or 0.667; (3)
high democracy, yi,1970 = 0.833 or 1. We refer this prior to demo-prior.

Figure 16 presents the world maps with countries colored differently according to their
respective groups. The panel on the left illustrates the geographic groups, while the panel
on the right depicts the democratic groups. All gray nations/regions are excluded from the
dataset. We concentrate primarily on the first pre-grouping strategy, as it needs no country-
specific knowledge beyond geographic information. We then compare the results using dif-
ferent pre-grouping strategies in Section 5.3.3.

5.3.2 Results

Specification 1: The results for specification 1 are reported in Appendix G.2. In short, the
results are comparable to the key findings in BM. BGFE-ho in specification 1 is identical to
the main model in BM; it produces eight groups, which is consistent with the upper bound
on the number of groups in BM based on BIC. BGFE-he-cstr, on the other hand, is more
preferable and has the highest marginal data density. The point estimate of group partition-
ing based on BGFE-he-cstr consists of four groups that all have the similar pattern as BM’s

10The regions are assigned by the Economist Intelligence Unit, and may slightly differ from conventional clas-
sifications.
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Figure 16: Specifications of Prior Grouping

(a) Geographic Location (b) Initial Level of Democracy

group structure. This justifies BM’s choice of four groups. Regarding the estimated coeffi-
cients, there is moderate persistence and a positive effect of income on democracy, but the
cumulative effect of income is quantitatively small: β/(1´ ρ) = 0.08.

Specification 2: We now turn to specification 2 where group-specific slope coefficients are
allowed and new findings emerge. Table 1 presents the posterior probability of the number
of groups utilizing various estimators. BGFE-ho creates more than 5 groups in all posterior
draws. Intriguingly, accounting for heteroskedasticity drastically reduces the number of
groups, with BGFE-he identifying four groups. Adding pairwise constraints based on geo-
graphic information increases the number of groups to five, whereas six groups are expected
in the prior.

Table 1: Probability for Number of Groups

BGFE-he-cstr BGFE-he BGFE-ho

Pr(K ă 4) 0.000 0.000 0.000
Pr(K = 4) 0.000 1.000 0.000
Pr(K = 5) 1.000 0.000 0.000
Pr(K ą 5) 0.000 0.000 1.000

The marginal data density (MDD) of each estimator in Table 2 provides some insight on
different models. Among all the estimators, the BGFE-ho estimator has the lowest MDD;
it is even lower than that of specification 1. BGFE-he-cstr and BGFE-he, on the other hand,
benefit from the introduction of group-specific slope coefficients, since both achieve sub-
stantially greater MDD than in specification 1. BGFE-he-cstr has the highest MDD since
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the pairwise constraints give direction on grouping and identify the ideal group structure,
which BGFE-he cannot uncover without our prior knowledge.

Table 2: Marginal Data Density

BGFE-he-cstr BGFE-he BGFE-ho

SP2 544.324 501.904 327.077

SP1 425.690 381.218 368.918

We concentrate on the BGFE-he-cstr estimator and use the approach outlined in Section
3.2 to identify the unique group partitioning pG. The left panel of Figure 17 presents the world
map colored by pG, while the right panel present the group-specific averages of democracy in-
dex over time. The estimated group structure pG features five distinct groups which we refer
to as the “high-democracy”, “low-democracy”, “flawed-democracy”, “late-transition” and
“progressive-transition” group, respectively. With the exception of the “flawed-democracy”
and “progressive-transition” group, the group-specific averages of the democracy index are
comparable to those in BM for all other groups. BGFE-he-cstr does not identify the ”early
transition” group in comparison to BM but instead produces two new groups. Group 3
(”flawed-democracy”) comprises primarily of relatively democratic but not the most demo-
cratic nations, including India, Sri Lanka, and Venezuela, among others. Group 5 (”pro-
gressive transition”) contains 30 countries that have had a steady expansion of democracy,
including Argentina, Greece, and Panama. Consequently, by incorporating group-specific
slope coefficients, we recover a more refined group structure than that of BM.

Figure 17: Posterior Point Estimate of Group Partitioning and Average Democracy

Table 3 presents the posterior mean and 90% credible set for each coefficient across all
groups, with G fixed at the point estimate pG. The key feature of using the specification 2 is
that we are able to see distinct (cumulative) income effects across groups as group-specific
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coefficients are allowed. The effect of income on democracy is negligible for group 1 (”full-
democracy”) and group 4 (”late-transition”) as the posterior means of β are close to 0 and
the associated credible intervals for β̂ contain 0. Countries in group 1 kept their democracy
index at the highest level throughout the time, demonstrating that income has no effect on
democracy. Moreover, the transition to democracy for countries in group 4 was primarily
driven by historical events11 captured by time fixed-effects, as the credible intervals for β̂

and ρ̂ cover zero. As the coefficient on income is positive and well above zero, the effect
of income on democracy is comparable small for group 2 (”low-democracy”) and group 3
(”flawed-democracy”). However, the cumulative income effects are different - it is negligible
for group 2 (0.079) and modest for group 3 (0.244). Group 5 (”progressive-transition”), on
the other hand, has the largest positive income coefficient, although the cumulative income
effect is quantitatively small (0.156).

Table 3: Coefficient estimates across groups

Lagged democracy (ρ) Lagged Income (β) Error variance (σ2)

Coef. Cred. Set Coef. Cred. Set Coef. Cred. Set

Group 1 (16) 0.058 [-0.263, 0.360] 0.000 [-0.012, 0.012] 0.001 [0.001, 0.001]
Group 2 (18) 0.484 [ 0.354, 0.606] 0.041 [ 0.019, 0.062] 0.010 [0.008, 0.011]
Group 3 (19) 0.775 [ 0.703, 0.850] 0.055 [ 0.031, 0.078] 0.013 [0.011, 0.016]
Group 4 (6) -0.178 [-0.468, 0.115] -0.025 [-0.066, 0.017] 0.008 [0.005, 0.011]
Group 5 (30) 0.206 [ 0.091, 0.310] 0.125 [ 0.090, 0.163] 0.057 [0.048, 0.066]

Pooled OLS 0.665 [ 0.616, 0.718] 0.082 [ 0.065, 0.100] 0.039 [0.035, 0.043]

5.3.3 Different Pre-Grouping Strategies

All results presented thus far are based on pairwise constraints derived from geospatial in-
formation. In this section, we implement the alternative pre-grouping strategy based on the
initial level of democracy. We stick with the BGFE-he-cstr estimator in exercise specification
2.

Figure 18 displays the point estimates of group partitioning under different pre-grouping
strategies. Countries that receive different group assignments are mostly encircled in the
black dashed rectangle, including Portugal, Spain, Romania, Mali, Niger, Central African
Republic, Benin, Malawi, and Jordan. Another country is South Korea.

Using the initial level of democracy as prior knowledge results in four groups, as indi-
cated in the right panel. The demo-prior has two major impacts comparing with the geo-
prior. It combines the ”late-transition” group (group 4 in geo-prior) with the “progressive-

11Group 4 consists of Benin, Central African Republic, Mali, Malawi, Niger, and Romania. Romania began a
transition towards democracy after the 1989 Revolution. All other countries involved in the third wave of
democratization in sub-Saharan Africa beginning in 1989.
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Figure 18: Posterior Point estimate of Group Structure

(a) Geographic Location (b) Initial Level of Democracy

transition” group (group 5 in geo-prior) to form a bigger and boarder “progressive-transition”
group. Furthermore, Portugal and Spain are no longer categorized as “flawed-democracy”
countries, but rather as “progressive-transition” group in a boarder sense.

6 Concluding Remarks

This paper proposes a Bayesian framework for estimating and forecasting in panel data
models when prior group knowledge is available and informative for the group pattern. We
include prior knowledge in the form of soft pairwise constraints into the Dirichlet process
prior. Then, an intuitive and coherent prior is presented. The constrained grouped esti-
mator proposed examines both heteroskedasticity and heterogeneous slope coefficients to
endogenously reveal group structure. Our framework immediately estimates the number
of groups as opposed to relying on ex-post model selection, and the structure of pairwise
restrictions circumvents the computational difficulties and limitations that afflict conven-
tional approaches. In addition, when utilizing small-variance asymptotics, the suggested
Gibbs sampler with pairwise constraint contains a clustering procedure comparable to that
of the constrained KMeans algorithm. In Monte Carlo simulations, we demonstrate that
constrained Bayesian grouped estimators outperform conventional estimators even in the
presence of incorrect prior knowledge. Our empirical application to forecasting sub-indices
of CPI inflation rates demonstrates that incorporating prior knowledge on the latent group
structure yields more accurate density predictions. The better forecasting performance is
mostly attributable to three key characteristics: nonparametric Bayesian prior, prior belief
on group structure, and grouped cross-sectional heteroskedasticity. The method proposed
in this paper is applicable beyond forecasting. In a second application, we revisit the re-
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lationship between a country’s income and its democratic transition, where estimation of
heterogeneous parameters is the object of interest. We recover a reasonable cluster pattern
with a moderate number of groups and identify heterogeneous income effects on democracy.

The current work raises exciting questions for future research. It is desirable to inves-
tigate overlapping group structures, in which a unit might belong to many groups. This
would allow us to increase the flexibility of a panel data model, potentially enhancing its
predictive performance. Second, the assumption that an individual cannot change its group
identity for the entire sample time can be amended, resulting in a specification that is even
more flexible. Thirdly, our method is applicable to other econometric models, such as panel
VARs with latent group structures in macro series.
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Supplemental Appendix to
“Unobserved Grouped Patterns in Panel Data

and Prior Wisdom”
Boyuan Zhang

A Definitions and Terminology

A.1 Dirichlet Process and Related Stochastic Processes

All unknown quantities in a model must be assigned prior distributions in Bayesian infer-
ence. A nonparametric prior can be used to reflect uncertainty about the parametric form
of the prior distribution. Because of its richness, computational ease, and interpretability,
the Dirichlet process (DP) is one of the most often used random probability measures. It
can be used to model the uncertainty about the functional form of the prior distribution for
parameters in a model.

The DP, which was first established using Kolmogorov consistency conditions (Ferguson,
1973), can be defined from a number of views. Ferguson (1973) shows that the DP can be
obtained by normalizing a gamma process. By using exchangeability, the Pólya urn method
leads to the GP (Blackwell and MacQueen, 1973). The Chinese restaurant process (CRP)
(Aldous, 1985; Pitman, 1996), a distribution over partitions, is a similarly related sequential
process that produces the DP when each partition is assigned an independent parameter
with a common distribution. Sethuraman (1994) provided a constructive definition of the
DP, which led to the characterization as a stick-breaking prior (Ishwaran and James, 2001).

Construction of the DP using a stick-breaking process or a gamma process represents the
DP as a countably infinite sum of atomic measures. These approaches suggest that a DPM
model can be seen as a mixture model with infinitely many components. The distribution of
parameters imposed by a DP can also be obtained as a limiting case of a parametric mixture
model (Neal, 1992; Rasmussen, 1999; Neal, 2000). This approach shows that a DPM can
easily be defined as an extension of a parametric mixture model without the need to do
model selection for determining the number of components to be used.

A.1.1 Dirichlet Process

Ferguson (1973) defines a DP with two parameters, a positive scalar a and a probability mea-
sure B0, referred to as the concentration parameter and the base measure, respectively. The
base distribution B0 is the parameter on which the nonparametric distribution is centered,
which can be thought of as the prior guess (Antoniak, 1974). The concentration parameter a
expresses the strength of belief in B0. For small values of a, samples from a DP is likely to be
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composed of a small number of atomic measures with large weights. For large values, most
samples are likely to be distinct, thus concentrated on B0.

Technically, a nonparametric prior is a probability distribution on P , the space of all
probability measures (say on the real line). Measurable sets in P are of the form tA : P(A) ă

1u. We could specify a prior distribution over (P (A1) , P (A2) , . . . , P (AK)) where A1, A2,...,
AK are measurable finite partition of the measurable set A. Denote

P „ DP (a, B0)

for all partition (A1, ¨ ¨ ¨ , AK), then,

(P (A1) , ¨ ¨ ¨ , P (AK)) „ Dir (aB0 (A1) , ¨ ¨ ¨ , aB0 (AK))

Dir (¨) stands for the Dirichlet distribution with probability distribution function being

f (x1, ¨ ¨ ¨ , xK; η1, ¨ ¨ ¨ , ηK) =
Γ
(
řK

k=1 ηk

)
śK

k=1 Γ (ηk)

K
ź

k=1

xηk´1
k

where xi P (0, 1) and
řK

i=1 xi = 1. This is a multivariate generalization of the Beta distribu-
tion and the infinite-dimensional generalization of the Dirichlet distribution is the Dirichlet
process.

The form of the base distribution and the value of the concentration parameter are crit-
ical aspects of model selection that influence modeling performance. Given a murky prior
distribution, the concentration parameter’s value can be derived from the data. It is more
difficult to choose the base distribution because the model’s performance is largely depen-
dent on its parametric form, even if it is constructed hierarchically for robustness. The choice
of the base distribution is determined largely by mathematical and practical convenience.
For computational ease, conjugate distributions are recommended.

A draw from DP is, by definition, a discrete distribution. In this sense, given the baseline
model, imposing a DP prior on the distribution of αgi entails limiting the intercepts to some
discrete values and assuming that intercepts within a group are identical, which may not be
appealing for some empirical applications. A natural extension is to suppose that αi has a
continuous parametric distribution f (αi; θ), with θ as parameters, and to use a DP prior for
the distribution of θ. The parameters θ are then discrete and has group structure, whereas
group heterogeneity αgi has a continuous distribution, i.e., αi within a group can be different,
but they are all derived from the same distribution. This additional layer of mixing is the
general idea of the Dirichlet Process Mixture (DPM) model.
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A.1.2 Stick Breaking Process

A nonparametric prior can also be defined as the distribution of a random variable P taking
values in P . A construction of DP follows the stick-breaking process (Sethuraman, 1994),

P(A) =
8
ÿ

k=1

πk1αk (A) ,

αk „ B0, k = 1, 2, ¨ ¨ ¨ ,

πk =

$

&

%

ζ1, k = 1
ś

jăk
(
1´ ζ j

)
ζk, k = 2, 3, ¨ ¨ ¨

where ζk „ Beta(1, a), k = 1, 2, ¨ ¨ ¨

The stick breaking process distinguishes the roles of B0 and a in that the former governs
component value αk while the latter guides the choice of component probability πk. Roughly
speaking, the DP concentration parameter a is linked to the number of unique components
in the mixture density and thus determines and reflects the flexibility of the mixture density.
Let K denote the number of unique components. As derived in Antoniak (1974), we have

E [K|a] « a log
(

a + N
a

)
Var [K|a] « a

[
log
(

a + N
a

)
´ 1
]

which indicates that a larger a induce more unique components and expected K is increasing
in the number of unit N. It is straightforward that using stick-breaking process implicitly
allows K increasing with N.

A.1.3 Chinese Restaurant Process / Pólya Urn Process

Another widely used representation of the DP prior is the Chinese restaurant process (CRP).
To set the stage, imagine that we have a Chinese restaurant that has infinitely many tables
that can each seat infinitely many customers. When a new customer, say the n-th, enters the
restaurant, the probability of them sitting at the table k with nk other customers proportional
to nk, and the probability of this customer sitting alone at a new table is related to a (the
concentration parameter in DP),

p (θn P Ak|θ1:n´1, a) 9

#

nk if k is an existing table
a if k is a new table.
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which can also be represented as

θn|θ1:n´1 „
a

a + n´ 1
B0(¨) +

1
a + n´ 1

n´1
ÿ

i=1

1θi(¨). (A.1)

Chinese restaurant process shares the same characteristics as the Pólya urn process which
can be extend to the two-parameter Pitman–Yor process (Pitman and Yor, 1997). Here is
the basic idea of Pólya urn process. Imagine that we have an urn with possibly infinitely
many colors. Let a (again, the concentration parameter in DP) be the initial number of balls
with each color. The urn evolves in discrete time steps - at each step, one ball is sampled
uniformly at random and put it back to the urn; The color of the withdrawn ball is observed,
and one additional ball with the same color is returned to the urn. This process is then
repeated.

Equation (A.1) is also called the Blackwell-MacQueen prediction rule - the conditional
distribution of θn given previous sampled θ1:n´1 from the Dirichlet process prior. It charac-
terizes the Chinese restaurant process/Pólya urn process and serves as the key component
in the Pólya urn Gibbs sampler (Ishwaran and James, 2001).

Prior literature shows the equivalence between Chinese restaurant process/Pólya urn
process and aforementioned processes. Blackwell and MacQueen (1973) present the equiva-
lence between Pólya urn process and Dirichlet process. Miller (2019) formally prove that the
Chinese restaurant process is equivalent to the stick breaking process.

The Chinese restaurant process (Pólya urn process) reveals that the Dirichlet process
prior has an important clustering property in terms of the group-dependent model parame-
ters: The probability that θn takes the same value of θi for i = 1, 2, . . . , n´ 1 is proportional
to

řn´1
i=1 1θi(.). This self-reinforcing property is sometimes expressed as the rich get richer.

A.2 Hierarchical Dirichlet Process

The hierarchical Dirichlet process (HDP) was developed by Teh et al. (2006). The HDP is a
nonparametric Bayesian approach to clustering grouped data, with the known group mem-
bership. It equips a Dirichlet process for each group of data, with the Dirichlet processes for
all groups sharing a base distribution which is itself drawn from a Dirichlet process. This
method allows groups to share statistical strength via sharing of clusters across groups. The
base distribution being drawn from a Dirichlet process is important, because draws from a
Dirichlet process are atomic probability measures, and the atoms will appear in all group-
level Dirichlet processes. Since each atom corresponds to a cluster, clusters are shared across
all groups.

The HDP is parameterized by a base distribution H that governs the prior distribution
over data items, and a number of concentration parameters that govern the prior number of
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clusters and amount of sharing across groups. Assume that we have J groups of data, each
consisting of Nj data points, yj1, . . . yjNj . The process defines a set of random probability

measures (Bj)
J
j=1, one for each group. The random probability measure Bj for the j-th group

is distributed as a Dirichlet process:

Bj|B0 „ DP (γ, B0) , (A.2)

where γ is the concentration parameter and B0 is the base distribution shared across all
groups. The distribution of the global random probability measure B0 is given by,

B0 „ DP (α0, H) , (A.3)

with concentration parameter α0 and base distribution H.

A hierarchical Dirichlet process can be used as the prior distribution over the parameters
for grouped data. For each j, let

(
φji
)nj

i=1 be i.i.d. random variables distributed as Bj. Each
φji is a parameter corresponding to a single observation yji. The likelihood is given by,

φji|Bj „ Bj,

yji|φji „ f
(
φji
)

. (A.4)

The resulting model above is called a HDP mixture model, with the HDP referring to the
hierarchically linked set of Dirichlet processes, and the mixture model referring to the way
the Dirichlet processes are related to the data items.

To understand how the HDP implements a clustering model, and how clusters become
shared across groups, recall that draws from a Dirichlet process are atomic probability mea-
sures with probability one. The base distribution B0 can be expressed using a stick-breaking
representation,

B0 =
8
ÿ

k=1

βkδθk , (A.5)

where there are an infinite number of atoms, θk „ H, k = 1, 2, . . .. Each atom is associated
with a mass βk and β = (βi)

8

i=1 „ Stick(γ) are mutually independent. Since B0 is the base
distribution for the group specific Dirichlet processes, each Bj has the same atoms as B0 and
can be written in the form,

Bj =
8
ÿ

k=1

πjkδθk . (A.6)

Let πj =
(
πjk
)8

k=1. Note that the weights πj are independent given β (since the Bj are
independent given B0). It can be shown that the connection between the weights πj and the
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global weights β is

πj | α0, β „ DP (α0, β) . (A.7)

Thus the set of atoms is shared across all groups, with each group having its own group-
specific atom masses. Relating this representation back to the observed data, we see that
each data item is described by a mixture model,

yji|Bj „

8
ÿ

k=1

πjk f (θk) , (A.8)

where the atoms θk play the role of the mixture component parameters, while the masses
πjk play the role of the mixing proportions. As a result, each group of data is modeled us-
ing a mixture model, with mixture components shared across all groups and group-specific
mixing weights.

Chinese Restaurant Franchise
Teh et al. (2006) have also described the marginal probabilities obtained from integrating
over the random measures B0 and (Bj)

J
j=1. They show that these marginals can be described

in terms of a Chinese restaurant franchise (CRF) that is an analog of the Chinese restaurant
process.

Recall that φji are random variables with distribution Bj. In the following discussion, we
will let θ1, . . . , θK denote K i.i.d. random variables distributed according to H, and, for each
j, we let ψj1, . . . , ψjTj denote Tj i.i.d. variables distributed according to B0.

Each φji is associated with one ψjt, while each ψjt (table id) is associated with one θk. Let
tji be the index of the ψjt associated with φji, and let k jt (dish id) be the index of θk associated
with ψjt. Let njt be the number of φji’s associated with ψjt, while mjk is the number of ψjt’s
associated with θk. Define mk =

ř

j mjk as the number of ψjt’s associated with θk over all j.
Notice that while the values taken on by the ψjt’s need not be distinct, they are distributed
according to a discrete random probability measure B0 „ DP(γ, H), we are denoting them
as distinct random variables.

First consider the conditional distribution for φji given φj1, . . . , φji´1 and B0, where Bj is
integrated out, we have,

φji|φj1, . . . , φji´1, α0, G0 „

Tj
ÿ

t=1

njt

i´ 1 + α0
δψjt +

α0

i´ 1 + α0
G0, (A.9)

This is a mixture, and a draw from this mixture can be obtained by drawing from the terms
on the right-hand side with probabilities given by the corresponding mixing proportions. If
a term in the first summation is chosen, then we set φji = ψjt and let tji = t for the chosen t.
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If the second term is chosen, then we increment Tj by one, draw ψjTj „ B0 and set φji = ψjTj

and tji = Tj.

Now we proceed to integrate out B0. Notice that B0 appears only in its role as the distri-
bution of the variables ψjt. Since B0 is distributed according to a Dirichlet process, we can
integrate it out and writing the conditional distribution of ψjt directly:

ψjt|ψ11, ψ12, . . . , ψ21, . . . , ψjt´1, γ, H „

K
ÿ

k=1

mk
ř

k mk + γ
δθk +

γ
ř

k mk + γ
H. (A.10)

If we draw ψjt via choosing a term in the summation on the right-hand side of this equation,
we set ψjt = θk and let k jt = k for the chosen k. If the second term is chosen, we increment K
by one, draw θK „ H and set ψjt = θK, k jt = K.

In short, the CRF is comprised of J restaurants with a shared menu across the restaurants.
Each restaurant corresponds to an HDP group, and an infinite buffet line of dishes common
to all restaurants. The process of seating customers at tables, however, is restaurant specific.
Each customer is preassigned to a given restaurant determined by that customer’s group j.
Upon entering the j th restaurant in the CRF, customer yji sits at currently occupied tables tji

with probability proportional to the number of currently seated customers, or starts a new
table Tj + 1 with probability proportional to α. The first customer to sit at a table goes to the
buffet line and picks a dish k jt for their table, choosing the dish with probability proportional
to the number of times that dish has been picked previously, or ordering a new dish θK+1

with probability proportional to γ. The intuition behind this predictive distribution is that
integrating over the global dish probabilities β results in customers making decisions based
on the observed popularity of the dishes throughout the entire franchise.

A.3 Random Effects vs. Fixed-Effects

Regarding the connection between Bayesian and frequentists’ panel data model, according
to Koop (2003), if we impose a

(i) non-hierarchical prior (such as Normal-Inverse-Gamma prior without hyperpriors) on
the intercept α0i, the resulting panel data model is equivalent to the frequentist fixed-
effects model. This is basically a Bayesian linear regression with standard priors on
parameters.

(ii) hierarchical prior on the intercept α0i, the resulting panel data model is equivalent to
the frequentists’ random effects model. A convenient hierarchical prior assumes that,
for i = 1, . . . , N,

α0i „ N (µα, Vα) .
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The hierarchical structure of the prior arises if we treat µα and Vα as unknown param-
eters which require their own prior. We assume µα and Vα to be independent of one
another with

µα „ N
(

µ
α
, σ2

α

)
,

and
V´1

α „ G
(

V´1
α , vα

)
.

This is analogous to the random effects model as αi are essentially assumed to draw
from the underlying distribution, and data are used to update our prior on the hyper-
parameters of the underlying distribution.

The discussion in Koop (2003) is in line with the hierarchical models discussed in Smith
(1973). The panel data model equipped with a non-hierarchical prior is a two-stage hierar-
chical model which results in a fixed effects model, while incorporating a hierarchical prior
forms a three-stage hierarchical model that corresponds to a random effects model.

Back to our settings, if the baseline prior for α0i is a DP (DPM) prior, then our proposed
nonparametric Bayesian prior is a type of non-hierarchical (hierarchical) prior with latent
group structure in intercepts and hence we call our proposed estimator as the constrained
grouped fixed (random) effects estimator.

B Priors

B.1 Dirichlet Process Priors

B.1.1 Prior on Parameters

Prior on Group-Specific Parameters

(
αi, σ2

i

)
„

8
ÿ

k=1

πkδ(αk,σ2
k )

with
(

αk, σ2
k

)
„ B0(φ), (B.1)

B0 is an Independent Normal Inverse-Gamma (INIG) distribution:

B0 := INIG
(

µα, Σα,
νσ

2
,

δσ

2

)
, (B.2)

with a set of hyperparameters φ =
(

µα, Σα, νσ
2 , δσ

2

)
= (0, 1, 6, 5).

Prior on Stick Lengths

ξk „ Beta (1, a) , (B.3)
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where a is the concentration parameter.

Hyper-prior on Concentration Parameter

a „ Gamma (m, n) , (B.4)

with (m, n) = (0.4, 10).

Prior on Common and Individual Slope Coefficients (if any) Finally, the prior distribution
for the common parameter ρ is chosen to be a normal distribution to stay close to the linear
regression framework,

ρ „ N(0, σ2
ρ ) with σ2

ρ = 1. (B.5)

The prior of heterogeneous parameter βi follows,

βi „ N(0, Σβ) with Σβ = 1ˆ Ip. (B.6)

B.1.2 Determining the Scaling Constant c

Given that the dimension of the space of group partitions increases exponentially with the
number of units N, attention must be given while selecting c across analyses with different
N. As suggested by Paganin et al. (2021), calibrating the modified prior is computationally
intensive. We are facing a trade-off between investing time to get the prior “exactly right”
and letting the constant c be an estimated model parameter. As such, we propose to find the
optimal c that maximizes marginal data density using grid search.

In the Monte Carlo simulation, the value of c is fixed for simplicity, but in the empirical
applications, c is determined by marginal data density (MDD). We calculate MDD using the
harmonic mean estimator (Newton and Raftery, 1994), which defined as

m̂HM(y) =

 1
S

S
ÿ

j=1

1
p
(
y|θ(j)

)
´1

, (B.7)

given a sample θ(j) from the posterior p(θ|y). The simplicity of the harmonic mean estimator
is its main advantage over other more specialized techniques. It uses only within-model
posterior samples and likelihood evaluations, which are often available anyway as part of
posterior sampling. We finally choose the optimal value for c that maximizes MDD.
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B.2 Dirichlet Process Mixture Priors

We also consider the Dirichlet Process Mixture (DPM) prior for αi as a natural extension to
the DP prior. Notice that a draw from DP is, by definition, a discrete distribution. In this
sense, given the baseline model, imposing a DP prior on the distribution of αi entails limit-
ing the intercepts to some discrete values and assuming that intercepts within a group are
identical, which may not be appealing for some empirical applications. DPM prior, on the
other hand, assumes αi has a continuous parametric distribution f (αi; µα), with µα as pa-
rameters, and uses a DP prior for the distribution of µα. The parameters µα are then discrete
and has group structure, whereas group heterogeneity αi has a continuous distribution, i.e.,
αi within a group can be different, but they are all sampled from the same distribution.

DPM prior adds additional layer of mixture by allowing for infinite Gaussian mixture,

αi „

8
ÿ

j=1

πjN
(

αj, σ2
j

)
where (αj, σ2

j ) „ INIG
(

µα, Σα,
νσ

2
,

δσ

2

)
,

where the base distribution is chosen to be a conjugate multivariate-normal-inverse-Wishart
distribution, or a normal-inverse-gamma distribution for scalar. It is worth noting that
σ2

gi
defining in the same manner doesn’t have a close-form posterior, we will resort to the

random-walk Metropolis-Hastings approach. See the detailed implementation in Liu (2022).

C Posterior Distributions and Algorithms

C.1 Blocked Gibbs Sampler and Algorithm

Initialization:
(i) Preset the initial number of active groups as Ka

0 = N.

(ii) Set concentration parameter a to its prior mean.

(iii) In ignorance of group heterogeneity (K = 1) and heteroskedasticity, use Anderson and
Hsiao (1982) IV approach to get α̂IV and Σ̂α,IV . These IV estimators serve as the mean
and covariance matrix in the related priors.

(iv) Generate Ka
0 random sample from the distribution N(α̂IV , Σ̂α,IV).

(v) Initialize group membership G by using assuming no group structure: G(0) = [1, 2, ..., N].

For each iteration s = 1, 2, .., Nsim
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(i) Number of active groups:

Ka = max
1ďiďN

g(s´1)
i .

(ii) Group “stick length”: for k = 1, 2, ..., Ka, draw ξk from a Beta distribution in (C.14):

ξk|a(s´1), G(s´1)
„ Beta

|Bk|+ 1, a +
N
ÿ

j=1

1(gj ą k)

 ,

and calculate group probability in accordance to (C.15).

(iii) Group heterogeneity: for k = 1, 2, ..., Ka, draw α
(s)
k from a normal distribution in (C.12):

αk|ρ
(s´1), β(s´1), Σ(s´1), G(s´1), Y, X „ N (µ̄αk , Σ̄αk) .

(iv) Group heteroscedasticity: for k = 1, 2, ..., Ka and t = 1, 2, ..., T, draw σ2(s)
k from an in-

verse Gamma distribution in (C.13):

σ2
k |ρ

(s´1), β(s´1), α(s), G(s´1), Y, X „ IG
(

v̄σ,k

2
,

δ̄σ,k

2

)
.

(v) Label switching:12 after each iteration an additional random permutation step is added
to the MCMC scheme which randomly permutes the current labeling of the compo-
nents. Random permutation ensures that the sampler explores all K! modes of the full
posterior distribution and avoids that the sampler is trapped around a single posterior
mode. Following Liu (2022),13 we update

!

α
(s)
k , σ2(s)

k , π
(s)
k , g(s´1)

i

)

by three Metropolis-
Hastings label-switching moves developed by Papaspiliopoulos and Roberts (2008)
(step (a) and (b)) and Hastie et al. (2015) (step (c)). All these label switching moves
aim to improve numerical convergence.

(a) Randomly select two nonempty groups i and j, swap group labels g(s´1)
i and g(s´1)

j
for all units in these groups, accept new label with probability:

min

1,
π

Nj
i π

Ni
j

π
Ni
i π

Nj
j

 = min
(

1, (πi/πj)
Nj´Ni

)
,

where Ni, Nj are the number of units in the group i and j respectively.

12Without this step, the one-at-a-time updates of the allocations mean that clusters rarely switch labels, and
consequentially the ordering will be largely determined by the (perhaps random) initialization of the sam-
pler.

13See Algorithm C.4 in the appendix.
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(b) Randomly select two adjacent groups l and l + 1 such that tl, l + 1u Ă t1, 2, ..., Kau,
swap group label g(s´1)

l and “stick length” ξ
(s)
l , accept new label and stick length

with probability:

min

(
1,

p̃Nl+1
l p̃Nl

l+1

π
Nl
l π

Nl+1
l+1

)
,

where p̃i and p̃j are new group probabilities derived with new ξ
(s)
l and ξ

(s)
l+1.

(c) Randomly select two adjacent groups k and k + 1 such that tk, k + 1u Ă t1, 2, ..., Kau,
swap group label g(s´1)

i , “stick length” ξ
(s)
k and update group-specific parameter

tα
(s)
k , σ2(s)

k u, accept new new label and stick length with probability

min
"

1,
(

R1/rR
)Nk+1

(
R2/rR

)Nk
*

,

where

R1 =
1 + a + Nk+1 +

ř

ląk+1 Nl

a + Nk+1 +
ř

ląk+1 Nl
,

R2 =
a + Nk +

ř

ląk+1 Nl

1 + a + Nk +
ř

ląk+1 Nl
,

rR =
πk+1R1 + πkR2

πk + πk+1
.

The new group probability is defined as p1k = πk+1R1/rR and p1k+1 = πkR2/rR.
Additionally, we update the “stick lengths”14 for group k and k + 1 such that

ξ1k =
p1k

ś

lăc(1´ ξl)
,

ξ1k+1 =
p1k+1

(1´ ξ1k)
ś

lăc(1´ ξl)
.

(vi) Auxiliary variables: for i = 1, 2, ..., N, draw ui from an uniform distribution in (C.18):

ui|Ξ(s), G(s´1)
„ Uni f (0, p(s)gi ).

Then calculate u˚ according to (C.9).

(vii) DP concentration parameter:

14This particular choices of ξ1k and ξ1k+1 ensure the group probabilities that are changed are those associated
with the the group k and k + 1, and the rest are unchanged. Moreover, it can be shown that (1´ ξ1k)(1´
ξ1k+1) = (1´ ξk)(1´ ξk+1). See more details in the appendices of Hastie et al. (2015).

A-12



(a) Draw latent variable η from a Beta distribution in (C.16):

η „ Beta(a + 1, N)

(b) Draw concentration parameter a from a mixture of Gamma distribution in (C.17):

a|η, Ka
„

#

Gamma (m + Ka, n´ log(η)) with prob. πa

Gamma (m + Ka ´ 1, n´ log(η)) with prob. 1´ πa
,

and πa is defined as

πa

1´ πa
=

m + Ka ´ 1
N(n´ log(η))

.

(viii) Potential groups: start with K̃ = Ka,

(a) Group probabilities:

(1) if
řK̃

j=1 π
(s)
j ą 1´ u˚, set K˚ = K̃ and stop.

(2) otherwise, let K̃ = K̃+ 1, draw ξK̃ „ Beta
(

1, α(s)
)

, update πK̃ = ξK̃
ś

jăK̃
(
1´ ξ j

)
and go to step (1).

(b) Group parameters: for k = K + 1, ¨ ¨ ¨ , K˚, draw α
(s)
k and σ

2(s)
k from their prior dis-

tributions.

(xi) Group membership: for j = 1, 2, ..., J and k = 1, 2, ..., Ka, draw gj from a multinomial
distribution in (C.19).

C.2 Random Coefficients Model with Soft Constraints

We present the conditional posterior distributions of parameters in the time-invariant ran-
dom effects model with heteroscedasticity, must-link constraints and cannot-link constraints,
which is the most complicated scenarios. For other models, such as its homoscedastic coun-
terparts, adjustment can be easily made by assuming common error variances.

C.2.1 Derivation

Model:

yit = α1gi
xit + εit, εit „ N

(
0, σ2

gi

)
. (C.1)
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To facilitate derivation, we stack observations and parameters,

Dependent variable: Y = [y1, y2, . . . , yN], yi = [yi1, yi2, . . . , yiT]
1,

Covariates: X = [x1, x2, . . . , xN], xi = [xi1, xi2, . . . , xiT]
1,

Grouped-specific parameters: α = [α1, α2, . . . , αN] ,

Error variance: Σ =
[
σ2

1 , σ2
2 , . . . , σ2

N

]
,

Stick length: Ξ = [ξ1, ξ2, . . .] ,

Group indices: G = [g1, . . . , gN] ,

Auxiliary variable: u = [u1, u2, ..., uN] ,

Hyper parameters: φ = [µα, Σα, νσ, δσ] .

In order to write down the posterior of unknown parameters given a set of pairwise con-
straints, a probabilistic model of how weights of constraints are obtained must be specified.
Inspired by Shental et al. (2003), we have the following assumptions:

Assumption 3. (Data)

(i) Data points are first sampled i.i.d from the full probability distribution conditional on G.

(ii) From this sample, pairs of points are randomly chosen according to a uniform distribution. In
case both points in a pair belong to the same source a must-link constraint is formed and a
cannot-link if formed when they belong to different sources.

The posterior of unknown objects in the random coefficients model is,

p(α, σ2, Ξ, a, G|Y, X, W, φ)

9 p(Y|X, α, σ2, G)p(α, σ2
|φ)p(G|Ξ, W)p(Ξ|a)p(a). (C.2)

All priors have been well-defined except for p(G|Ξ, W) - the prior for group indices G
conditional on stick lengths Ξ and the weights of constraints W.

Using the Bayes rule, the modified prior for the group indices is

p(G|Ξ, W) =
p(W|G)p(G|Ξ)

ř

G1 p(W|G1)p(G1|Ξ)
9 p(W|G)p(G|Ξ), (C.3)

where the sum in the denominator is taken over all possible group partitioning, p(W|G) is
the weighting function of the form:

p(W|G) =
ź

i,j

exp
(
cWijδij

)
,
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and p(G|Ξ) is the density of a categorical distribution with probabilities generated by the
stick-breaking process.

From (C.3), the prior of gi conditional on the group indices of the other G(´i) is

p(gi|Ξ, Wi, G(´i)) 9 p (Wi|G) p(gi|Ξ), (C.4)

where Wi = tWij|j = 1, ..., Nu and

p(Wi|G) =
N
ź

j=1

exp
(
2cWijδij

)
. (C.5)

Given the expression of p(gi|Ξ, Wi, G(´i)) and the DP prior specified in Appendix B.1,
the posterior of unknown objects in the random coefficients model can be written as,

p(α, σ2, Ξ, a, G|Y, X, W, φ)

9 p(Y|X, α, σ2, G)p(α, σ2
|φ)p(G|Ξ, W)p(Ξ|a)p(a)

9

N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

) 8
ź

j=1

p(αj, σ2
j |φ)

8
ź

j=1

p(ξ j|a)
N
ź

i=1

p
(

gi|Ξ, Wi, G(´i)
)

p(a)

=

[
N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

)
p
(

gi|Ξ, Wi, G(´i)
)]  8

ź

j=1

p(αj, σ2
j |φ)p(ξ j|a)

 p(a)

=

[
N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

)
p (Wi|G) p(gi|Ξ)

]  8
ź

j=1

p(αj, σ2
j |φ)p(ξ j|a)

 p(a). (C.6)

In the following derivation and algorithm, we adopt the slice sampler (Walker, 2007) that
avoids approximation in Ishwaran and James (2001). Walker (2007) augments the posterior
distribution with a set of auxiliary variables u = [u1, u2, ..., uN], which are i.i.d. standard

uniform random variables, i.e, ui
iid
„ U(0, 1). Then the augmented posterior is written as,

p(α, σ2, Ξ, a, G, u|Y, X, W, φ)

9

[
N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

)
1(ui ă πgi)p (Wi|G)

]  8
ź

j=1

p(αj, σ2
j |φ)p(ξ j|a)

 p(a)

=

[
N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

)
p(ui|πgi)πgi p (Wi|G)

]  8
ź

j=1

p(αj, σ2
j |φ)p(ξ j|a)

 p(a), (C.7)

where πgi = p(gi|Ξ), p(ui|πgi) is a uniform distribution defined on [0, πgi ], and 1(¨) is the
indicator function, which is equal to zero unless the specific condition is met. The original
posterior can be recovered by integrating out ui for i = 1, 2, ..., N. As we don’t limit the upper
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bound of the number of groups, it is impossible to sample from an infinite-dimensional
posterior density. The merit of slice-sampling is that it reduces the dimensions and allows
us to solve a manageable problem with finite dimensions, which we will see below.

With a set of auxiliary variables u = [u1, u2, ..., uN], we define the largest possible number
of potential components as

K˚ = min
k

$

&

%

u˚ ą 1´
k
ÿ

j=1

πj

,

.

-

, (C.8)

where

u˚ = min
1ďiďN

ui. (C.9)

Such a specification ensures that for any group k ą K˚ and any unit i P t1, 2, ..., Nu, we have
ui ą πk.15 This crucial property limits the dimension of (αk, σ2

k ) to K˚ as the densities of
(αk, σ2

k ) and equal 0 for k ą K˚ due to 1(ui ă πk) = 0, which will be clear in the subse-
quent posterior derivation. Intuitively, the latent variable ui has an effect of “dynamically
truncating” the number of groups needed to be sampled.

Next, we define the number of active groups

Ka = max
1ďiďN

gi. (C.10)

It can be shown that Ka ď K˚.16

As the base distribution B0 is the Independent-Normal-Inverse-Gamma distribution, the
prior density of αi and σ2

i are independent.

Conditional posterior of α (grouped coefficients).

p(α|σ2, G, Y, X, φ) 9

[
N
ź

i=1

p
(

yi|xi, αgi , σ2
gi

)]  8
ź

j=1

p(αj, σ2
j |φ)

 .

For k = 1, 2, ..., Ka, define a set of units that belong to the group k,

Bk = ti|gi = k, i P t1, 2, ..., Nuu , (C.11)

15See proof in theorem 4.
16See proof in theorem 4.
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then the posterior density for αk read as

p(αk|σ
2
k , G, Y, X, φ)

9

ź
iPBk

p(yi|xi, αgi , σ2
gi
)

 p(αk|φ)

9 exp

´ 1
2σ2

k

ÿ

iPBk

(yi ´ xiαk)
1 (yi ´ xiαk)

 exp
[
´

1
2
(αk ´ µα)

1 Σ´1
α (αk ´ µα)

]

9 exp
[
´

1
2
(αk ´ µ̄αk)

1 Σ̄´1
αk

(αk ´ µ̄αk)

]
.

Assuming an independent normal conjugate prior for αk, the posterior for αk is given by

αk|σ
2
k , G, Y, X, φ „ N (µ̄αk , Σ̄αk) . (C.12)

where

Σ̄αk =

Σ´1
α + σ´2

k

ÿ

iPBk

x1ixi

´1

,

µ̄αk = Σ̄αk

Σ´1
α µα + σ´2

k

ÿ

iPBk

x1iy
α
i

 ,

yα
i = yi ´ xiαgi .

Conditional posterior of σ2 (grouped variance). Under the cross-sectional independence,
for k = 1, 2, ..., Ka,

p(σ2
k |αk, G, Y, X, φ) 9

ź
iPBk

p
(

yi|xi, αgi , σ2
gi

) p(σ2
k |φ).

With a inverse-gamma prior σ2
k „ IG

(
vσ
2 , δσ

2

)
, the posterior distribution of σ2

k is

p(σ2
k |αk, G, Y, X, φ)

9
ź

iPBk

[(
σ2

k

)´ T
2 exp

(
´

1
2σ2

k
(yi ´ xiαk)

1 (yi ´ xiαk)

)](
1
σ2

k

) vσ
2 +1

exp

(
´

δσ

2σ2
k

)

=

(
1
σ2

k

) vσ+T|Bk|
2 +1

exp

[
´

δσ +
ř

iPBk
(yi ´ xiαk)

1 (yi ´ xiαk)

2σ2
k

]
.
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This implies

σ2
k |αk, G, Y, X, φ „ IG

(
v̄σ,k

2
,

δ̄σ,k

2

)
, (C.13)

where

v̄σ,k = vσ + T|Bk|,

δ̄σ,kt = δσ +
ÿ

iPBk

(yi ´ xiαk)
1 (yi ´ xiαk) ,

|Bk| = # of units in group k.

Conditional posterior of Ξ (stick length).

p(Ξ|a, G)

9

[
N
ź

i=1

p(ui|πgi)πgi

]  8
ź

j=1

p(ξ j|a)


9

 N
ź

i=1

p(ui|πgi)ξgi

ź

lăgi

(1´ ξl)

 8
ź

j=1

p(ξ j|a)

 .

For k = 1, 2, ..., Ka,

p(Ξ|a, G) 9

ź

iPBk

ξk

 (1´ ξk)

N
ř

j=1
1(gjąk)

(1´ ξk)
a´1,

9 ξ
|Bk|
k (1´ ξk)

a+
N
ř

j=1
1(gjąk)´1

.

where BK is the set of units that currently belong to group k, see equation (C.11).

Therefore, posterior distribution of ξk is

ξk|a, G „ Beta

|Bk|+ 1, a +
N
ÿ

j=1

1(gj ą k)

 . (C.14)

Give Ξ = [ξ1, ξ2, ..., ξKa ], update group probabilities π1, π2, ..., πKa :

πk|G, Ξ =

#

ξ1, k = 1
ξk

ś

jăk
(
1´ ξ j

)
, k = 2, . . . , Ka . (C.15)
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Conditional posterior of a (concentration parameter). Regarding the DP concentration pa-
rameter, the standard posterior derivation doesn’t work due to the unrestricted number of
components in the current sampler. Instead, we implement the 2-step procedure proposed
by Escobar and West (1995) (p.8-9). Following their approach, we first draw a latent variable
η,

η „ Beta (a + 1, J). (C.16)

Then, conditional on η and Ka, we draw a from a mixture of two Gamma distribution:

p(a|η, Ka) = πaGamma (m + Ka, n´ log(η)) + (1´ πa)Gamma (m + Ka
´ 1, n´ log(η)),

(C.17)

with the weights πa defined by

πa

1´ πa
=

m + Ka ´ 1
N[n´ log(η)]

.

Conditional posterior of u (auxiliary variable). Conditional on the group “stick lengths”
ξk and group indices G, it is straightforward to show that the posterior density of ui is a
uniform distribution defined on (0, πgi), that is

ui|Ξ, G „ Unif (0, πgi), (C.18)

where πgi = ξgi

ś

jăgj
(1´ ξ j). Moreover, it is worth noting that the values for K˚ and u˚

need to be updated according to equation (C.8) and (C.9) after this step.

Conditional posterior of G (group indices). We derive the posterior distribution of gi

consider on G(´i), where G(´i) is a set including all member indices except for gi, i.e.,
G(´i) = G\gi. As a result, for k = 1, 2, ..., K˚,

p
(

gi = k|yi, xi, αk, σ2
k , G(´i), ui

)
9 p

(
yi|xi, αk, σ2

k

)
1(ui ă πk)p (Wi|G)

= p
(

yi|xi, αk, σ2
k

)
1(ui ă πk)

N
ź

j=1

exp
(
2cWijδij

)
. (C.19)

Finally, we normalize the point mass to get a valid distribution.
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D Technical Proofs

D.1 Slice Sampling

Theorem 4. Suppose that we have a model with posterior as given in Appendix C.2. Given the
definition of the number of potential component K˚ in (C.8), the minimum of auxiliary variables u˚

in (C.9) and the number of active group K in (C.10), we have

(i) ui ą πk for @i = 1, 2, ..., n and @k ą K˚;

(ii) K ă K˚.

Proof. (i) By definition, u˚ = min
1ďiďN

ui for i = 1, 2, ..., n, then,

ui ě u˚ ą 1´
K˚
ÿ

j=1

πj =
8
ÿ

j=K˚
πj ě πk, @k ą K˚.

(ii) Let i1 be an unit i such that gi1 = K. According to the posterior of G, the group K exists
if ui1 ă πK, otherwise p(gi = K|¨) = 0. Then by definition,

u˚ ď ui1 ă πK ñ 1´ u˚ ą 1´ πK =
K´1
ÿ

j=1

πj.

Since K˚ is the smallest number s.t. 1´ u˚ ă
K˚
ř

j=1
πj, then K ď K˚.

D.2 Connection to Lu and Leen (2004) and Lu and Leen (2007)

In this section, we will first show the close connection between the modified prior in the
presence of soft constraints defined in (2.14) and the framework of penalized probabilistic
clustering proposed by Lu and Leen (2004) and Lu and Leen (2007). Then we will discuss
the properties of the weights Wij.

We start with joint prior odds in (2.14):

ź

i,j

(
ψij

1´ ψij

)cTijδij

=
ź

i,j

exp

cδij log

(
ψij

1´ ψij

)Tij
 . (D.1)
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Define the weight as Wij = log
(

ψij
1´ ψij

)Tij

. Then when Tij = 1, we have

Wij = log

(
ψij

1´ ψij

)
ô ψij =

exp
(
Wij
)

1 + exp
(
Wij
) . (D.2)

When Tij = ´1, we get

Wij = log

(
1´ ψij

ψij

)
ô 1´ ψij =

exp
(
Wij
)

1 + exp
(
Wij
) . (D.3)

Combining (D.2) and (D.3) yields that

exp
(
Wij
)

1 + exp
(
Wij
) = ψ

1
2 (1+Tij)

ij (1´ ψij)
1
2 (1´Tij). (D.4)

This is exactly the equation (7) in Lu and Leen (2007) with γij = ψij and Lij =
1
2

(
Tij + 1

)
,

which uniquely defines the expression for the weights associated with each pairwise con-
straint given γij and Lij. Since both Lij and Tij are indicators for the type of constraints, they
don’t affect the formula for Wij, thus the following formula weights coincides with the one
used in Lu and Leen (2007) and the both frameworks converge,

Wij =

$

’

’

’

&

’

’

’

%

log
(

ψij
1´ψij

)
if Tij = 1

log
(

1´ψij
ψij

)
if Tij = ´1

0 if Tij = 0.

(D.5)

Accordingly, the prior defined in (D.1) can be rewritten in term of Wij as

ź

i,j

(
ψij

1´ ψij

)cTijδij

=
ź

i,j

exp
(
cWijδij

)
. (D.6)

The weight Wij associated with the constraint between unit i and j as in (D.5) has the
following properties:

(a) Unboundedness: Wij P [´8,8];

(b) Symmetry: Wij = Wji;

(c) Sign reflects constraint’s type: If (i, j) P M or Lij = 1, then Wij = log
(

ψij
1´ψij

)
ą 0;

If (i, j) P C or Lij = ´1, then Wij = log
(

1´ψij
ψij

)
ă 0; If (i, j) doesn’t involve in any

constraint or Lij = 0, then Wij = 0.
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(d) Absolute value reflects constraint’s accuracy:

e|Wij|

1 + e|Wij|
= ψij.

It is straightforward to show that
ˇ

ˇWij
ˇ

ˇ is monotonically increasing in ψij.

D.3 Prior Similarity Matrix

Proof of Theorem 1. Given equation (2.10) and (2.17), the prior probability of unit i and j being
in the same group is

Pr(gi = gj|W)

=
ÿ

GPGij

1
M

p(G) exp

(
c
ÿ

m,n
Wmnδmn

)

=
ÿ

GPGij

1
M

Γ(a)
Γ(a + N)

[
K
ź

k=1

aΓ (|Bk|)

]
exp

(
c
ÿ

m,n
Wmnδmn

)

=
ÿ

GPGij

A(G) exp

(
c
ÿ

m,n
Wmnδmn

)
(D.7)

where Gij is the set of all possible group indices that satisfies gi = gj and M is the normal-
ization constant in (2.17).

Gij and Gik are closed related. It is straightforward to see that the numbers of element
in Gij and Gik are equal since they are all equal to the number of permutation of other N ´

2 units. Moreover, as unit j and k are exchangeable, Gik can be constructed from Gij by
swapping the group index of unit j and k.

As a result, we can find an one-on-one mapping between Gij and Gik. That is, for any
G P Gij, if we swap the group index of unit j and k, the resulting partition sjk(G) belongs to
Gik, and vice versa. As the constant A(G) depends only on the size of partitions, we have
A(G) = A(sjk(G)).

The properties between Gij and Gik enable we to compare each summand in Pr(gi =
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gj|W) and Pr(gi = gk|W). The difference between these two probabilities is

Pr(gi = gj|W)´ Pr(gi = gk|W)

=
ÿ

GPGij

A(G) exp

(
c
ÿ

m,n
Wmnδmn

)
´

ÿ

GPGik

A(G) exp

(
c
ÿ

m,n
Wmnδmn

)

=
ÿ

GPGij

A(G) exp

(
c
ÿ

m,n
Wmnδmn

)
´ A(sjk(G)) exp

(
c
ÿ

m,n
Wmnδ1mn

)

=
ÿ

GPGij

A(G)

[
exp

(
c
ÿ

m,n
Wmnδmn

)
´ exp

(
c
ÿ

m,n
Wmnδ1mn

)]
. (D.8)

where δ1mn is evaluated at sjk(G).

We can classify a group partitioning G into two cases:

(i) G = sjk(G). This happens when units j and k are assigned to the same group. Swap-
ping them doesn’t affect the group partitioning, which indicates that

ř

m,n Wmnδmn =
ř

m,n Wmnδ1mn and hence Pr(gi = gj|W) = Pr(gi = gk|W).

(ii) G ‰ sjk(G). These are the more common cases. We again compare
ř

m,n Wmnδmn with
ř

m,n Wmnδ1mn. Wmnδmn and Wmnδ1mn are equal when m ‰ j, k and n ‰ j, k as these terms
remain unchanged regardless of the group indices of units j and k. For m = j, k, note
that δjn = δ1kn and δkn = δ1jn for all n = 1, 2, .., N. Therefore, under the assumption that
Wjn = Wkn for @n , we have,

N
ÿ

n=1

Wjnδjn +
N
ÿ

n=1

Wknδkn =
N
ÿ

n=1

Wjnδ1kn +
N
ÿ

n=1

Wknδ1jn =
N
ÿ

n=1

Wknδ1kn +
N
ÿ

n=1

Wjnδ1jn, (D.9)

and hence

ÿ

m,n
Wmnδmn

=
ÿ

m,nR(j,k)

Wmnδmn + 2

(
N
ÿ

n=1

Wjnδjn +
N
ÿ

n=1

Wknδkn

)

=
ÿ

m,nR(j,k)

Wmnδ1mn + 2

(
N
ÿ

n=1

Wjnδ1jn +
N
ÿ

n=1

Wknδ1kn

)
=

ÿ

m,n
Wmnδ1mn.

where the first and third equalities use facts that Wmn = Wnm, δmn = δnm and Wnn = 0
for @n, m. The second equality follows the result in (D.9).
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In both cases, we have
ř

m,n Wmnδmn =
ř

m,n Wmnδ1mn for all G P Gij and therefore

Pr(gi = gj|W)´ Pr(gi = gk|W) = 0 (D.10)

D.4 PC-KMeans

Proof of Theorem 2. We start with a brief discussion of PC-KMeans algorithm (Basu et al.,
2004). Given a set of observations (y1, y2, . . . , yN), a set of must-link constraints M, a set
of cannot-link constraints C, the cost of violating constraints w = twm

ij , wc
iju and the number

of groups K, the PC-KMeans algorithm aims to partition the N units into K groups so as to
minimize the following objective function,

L(G) =
1
2

K
ÿ

k=1

ÿ

iPBk

}zi ´ µk}
2

looooooooooomooooooooooon

within-cluster sum of squares

+
ÿ

(i,j)PM
ωm

ij 1
(

gi ‰ gj
)
+

ÿ

(i,j)PC
ωc

ij1
(

gi = gj
)

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

cost of violation

, (D.11)

where µk is the centroid of group k, i.e., µk = 1
|Bk|

ř

iPBk
yi, Bk is the set of units that are

assigned to group k, and |Bk| is the size of group k. Equation (D.11) can be rewritten as

L(G) =
1
2

N
ÿ

i=1

›

›yi ´ µgi

›

›

2
´
ÿ

i,j

cWijδij + Const, (D.12)

where Const = c
(
ř

(i,j)PM Wij ´
ř

(i,j)PC Wij

)
is a constant, c is the scaling constant intro-

duced in (2.14), and

Wij =

$

’

’

’

&

’

’

’

%

ωm
ij

2c if (i, j) PM

´
ωc

ij
2c if (i, j) P C

0 otherwise.

(D.13)

The clustering process includes minimizing the objective function over both group partition
G (assignment step) and the model parameters µ = tµ1, µ2, . . . , µKu (update step). Next, we
will show that the PC-KMeans algorithm is embodied in our proposed Gibbs sampler with
soft constraints.

Under assumption (i), we can rewrite the baseline model with a set of variables zit that
don’t have grouped heterogeneous effects on yit,

yit = α1gi
xit + β1izit + εit = αgi + β1izit + εit,
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where the second equality holds due to the assumption of xit = 1. βi can be equal across
units, i.e., βi = β.

Under assumption (ii), we fix the number of groups upfront and thus we don’t rely on
slice sampling in which K is unknown and determined dynamically. Hereinafter, we focus
on posterior distribution without the auxiliary variable ui. Notice that the indicator function
1(ui ă πgi) in the posterior density reduces to πgi .

Part 1: Assignment Step

Assume we have soft pairwise constraints and weights are specified in (D.13). Under the
assumptions (iii) and (iv), the posterior density of the group membership indicators G is,

p(G|α, β, σ2, Y, X, Z, W)

=
1

ZS

N
ź

i=1

[
p(yi|βi, αgi , σ2

gi
, xi, zi)πgi

]
p(W|G)

=
1

ZS

N
ź

i=1

p(yi|βi, αgi , σ2
gi

, xi, zi)πgi

N
ź

i,j=1

exp
(

cWij

σ2 δij

)

=
1

ZS

N
ź

i=1

(2πσ2)´
T
2 πgi exp

[
´

1
2σ2

›

›ỹi ´ αgi

›

›

2
] N
ź

i,j=1

exp
(

cWij

σ2 δij

)
, (D.14)

where ỹi = yi ´ β1izi, zi = [zi1 zi2 . . . ziT]
1 and ZS is the normalization constant.

Next, we define the optimal group partition G˚ that minimizes the objective function of
PC-KMeans defined in (D.12) with xi = ỹi and µk = αk, that is,

G˚ ” arg min
G

L(G)

= arg min
G

1
2

N
ÿ

i=1

›

›ỹi ´ αgi

›

›

2
´
ÿ

i,j

cWijδij. (D.15)

Now we consider the asymptotic behavior of the posterior probability in (D.14). We will
show that as σ2 goes to 0, the posterior probability of G approaches 0 for all group partitions
except for G˚:

lim
σ2Ñ0

p(G|ρ, β, α, Σ, Y, X, W)Ñ

$

&

%

1 if G = G˚;

0 otherwise.
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We start with the log posterior density of G in (D.14),

l(G) ” log p(G|ρ, β, α, Σ, Y, X, W)

= ´
1

2σ2

N
ÿ

i=1

›

›ỹi ´ αgi

›

›

2
+

N
ÿ

i,j=1

(
cWij

σ2 δij

)

´
NT
2

log(2πσ2) +
N
ÿ

i=1

log(πgi)´ log ZS. (D.16)

The difference between two log posterior probabilities evaluated at G˚ and any other G
is

l(G˚)´ l(G)

=
1
σ2

1
2

N
ÿ

i=1

›

›ỹi ´ αgi

›

›

2
´

N
ÿ

i,j=1

cWijδij

´
1

2

N
ÿ

i=1

›

›

›
ỹi ´ αg˚i

›

›

›

2
´

N
ÿ

i,j=1

cWijδ
˚
ij


+

N
ÿ

i=1

[
log(πg˚i

)´ log(πgi)
]

. (D.17)

The first term is strictly positive according the definition of G˚ in (D.15). For simplicity, we
denote the expression within the first square brace as V and V ą 0. The second term is finite
since

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

i=1

[
log(πg˚i

)´ log(πgi)
]ˇˇ
ˇ

ˇ

ˇ

ď N
ˇ

ˇmax(πj)´min(πj)
ˇ

ˇ ă +8

Thus, for any G ‰ G˚, in the limit as σ2 Ñ 0, we have

lim
σ2Ñ0

l(G˚)´ l(G) = lim
σ2Ñ0

V
σ2 +

N
ÿ

i=1

[
log(πg˚i

)´ log(πgi)
]
= +8. (D.18)

This indicates that

lim
σ2Ñ0

p(G|α, σ2, Y, X, Z, W)

p(G˚|α, σ2, Y, X, Z, W)
= lim

σ2Ñ0
exp [l(G)´ l(G˚)] = exp(´8) = 0.
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We take the sum over all possible group partitions and get,

lim
σ2Ñ0

ř

G1 p(G1|α, σ2, Y, X, Z, W)

p(G˚|α, σ2, Y, X, Z, W)

= lim
σ2Ñ0

ř

G1‰G p(G1|α, σ2, Y, X, Z, W) + p(G˚|α, σ2, Y, X, Z, W)

p(G˚|α, σ2, Y, X, Z, W)

= 1.

Since
ř

G1 p(G1|α, σ2, Y, X, Z, W) = 1, we have

lim
σ2Ñ0

p(G˚|α, σ2, Y, X, Z, W) = 1. (D.19)

Therefore, when σ2 Ñ 0, every posterior draw of G from the proposed Gibbs sampler is
the solution to the assignment step of the PC-KMeans algorithm, conditional on the posterior
draws of other parameters.

Part 2: Update Step

During Gibbs sampling, once we have performed one complete set of Gibbs moves on
the group assignments and non-group-specific parameters including βi and σ2, we need to
sample the αk conditioned on all assignments and observations.

Let |Bk| be the number of units assigned to group k, then the posterior density for αk read
as

p(αk|β, σ2, Y, X, Z) 9 exp
[
´

1
2
(αk ´ µ̄αk)

1 Σ̄´1
αk

(αk ´ µ̄αk)

]
, (D.20)

where

Σ̄αk =
(

Σ´1
α + |Bk|σ

´2 IT

)´1
,

µ̄αk = Σ̄αk

Σ´1
α µα + σ´2

ÿ

iPBk

ỹi

 ,

ỹi = yi ´ ρy´1,i ´ xiβi.

We can see that the mass of the posterior distribution becomes concentrated around the
posterior group mean µ̄αk as σ2 Ñ 0. Meanwhile, the posterior group mean µ̄αk equals the

A-27



group “sample” mean in the limit:

lim
σ2Ñ0

µ̄αk = lim
σ2Ñ0

(
Σ´1

α + |Bk|σ
´2 IT

)´1

Σ´1
α µα + σ´2

ÿ

iPBk

ỹi


= lim

σ2Ñ0

(
σ2Σ´1

α + |Bk|IT

)´1

σ2Σ´1
α µα +

ÿ

iPBk

ỹi


= |Bk|

´1
ÿ

iPBk

ỹi.

In other words, after we determine the assignments of units to groups, we update the means
as the “sample” mean of the units in each group. This is equivalent to the standard KMeans
cluster update step in general. Of course, we need additional steps to draw βi and σ2 before
updating group means.

E Monte Carlo Simulation

In this section, we conducted Monte Carlo simulations to examine the performance of var-
ious constrained BGFE estimators under different data generating processes (DGPs) and
prior belief on G. Two sets of DGPs are considered. For the simple DGPs, we introduce var-
ious group pattern in the fixed-effects only. The general DGPs, on the other hand, include
more covariates with group-specific slope coefficients. Such designs enable us to investigate
not only how our proposed estimators perform under various DGPs with specific features,
but also the accuracy of estimating the number of groups.

We consider a short-panel environment in which the sample size is N = 200 and the time
span is T = 11. As we focus on one-step ahead forecasts, the last observation of each unit
serves as the hold-out sample for evaluation. A similar framework can be applied to H-step
ahead forecasts by generating additional H observations. The true number of groups is set
to K0 = 4. Given N and K0, we divide the entire sample into K0 balanced blocks with N/K0

units in each block.17 For each DGP, 1,000 datasets are generated, and we run the block
Gibbs samplers for each data set with M = 5, 000 iterations after a burn-in of 5,000 draws.

E.1 Data Generating Processes

17If N/K0 is not an integer, we assign tN/K0u units for group 1,2,..,K0 ´ 1 and the last group contains the
remainder.
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E.1.1 Simple DGPs

We begin with a simple dynamic panel data model with group pattern in the fixed-effects
and no covariates or heteroskedasticity.

DGP 1 & 2:

yit = αgi + ρyit´1 + εit, (E.1)

where ρ = 0.7 and εit „ N (0, 1). The distributions of initial values are selected to ensure the
simulation paths are stationary. Idiosyncratic error εit are independent across i and t, and
mutually independent. εit is also independent of all regressors.

We assume αk has zero mean and takes the form αk = m(k´ 2.5), where m controls the
cross-sectional variance of αi. Two sets of αk are specified: m = 1.79 such that var (αk) = 1/4
in DGP 1 and m = 0.51 such that var (αk) = 1/50 in DGP 2, see details in Appendix E.1.2.
The difference in αk between these two DGPs distinguishes their properties. As depicted
in Figure E.1, the group pattern is readily apparent in DGP 1. Different groups of units are
perfectly divided, and the simulated paths are pretty flat. DGP 2 has a less visible group
structure than DGP 1 because the difference between group means of αk is smaller. The
simulated pathways are considerably noisier and fluctuate around the unconditional mean.

Figure E.1: Simulated Paths for Units in Different DGPs

(a) DGP 1: Sharp Group (b) DGP 2: Noisy Group

E.1.2 Details of the Simple DGPs

We start with the mean of αk. Assume the values of αk for group k take the form of αk =

m(k´ c), where c is a shifting constant and m is a scaling constant. With loss of generality,
we fix the mean of αk to 0,

K0
ÿ

k=1

αk = m
K0
ÿ

k=1

(k´ c) = 0 (E.2)
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It immediately follows that c = K0+1
2 and

αk = m
(

k´
K0 + 1

2

)
, for k = 1, 2, .., K0. (E.3)

Next, m is the only unknown coefficient in the DGP. To find a reasonable value for m, we
connect it to the variance of αi. As αi are assume to be identical within a group, the sample
variance of αi is given by

V(αi) =
1
N

N
ÿ

i=1

α2
i =

1
N

N
K0

K0
ÿ

k=1

α2
k =

1
K0

K0
ÿ

k=1

α2
k

Plugging in the expression of αk in (E.3), we have

V(αi; m, K0) =
m2

K0

K0
ÿ

k=1

(
k´

K0 + 1
2

)2

. (E.4)

To make the DGPs more comparable as more groups are considered, we assume V(αi; m, K0)

is monotonically increasing in K2
0, e.g., V(αi; m, K0) = V0K2

0 for some constant V0. As a result,
we can deduct the value of m from (E.4),

m(K0, V0) =

 V0K0
řK0

k=1

(
k´ K0+1

2

)2


1
2

. (E.5)

It is straightforward to find V0 controls the dispersion of the underlying DGP. A larger V0

indicate αk are more separated and hence the group pattern become sharper, and vice versa.

E.1.3 General DGPs

The general DGP is based on the dynamic panel data model specified in (2.1) with an ex-
ogenous predictor zit that has common effect for all units. This DGP incorporates group
heterogeneity in the fixed-effects, the lagged term x(1)it = yit´1 and an exogenous predictor

x(2)it , as well as error variance σ2
gi

.

DGP 3:

yit = α1gi
xit + γzit + σgi εit, (E.6)

where xit = [1, x(1)it , x(2)it ]1, γ = 1.5, yi0 „ N(0, 1) and εit „ N(0, 1). For each i, the initial
value is specified to guarantee that the time series (yi0, yi1, ..., yiT) is strictly stationary. We
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assume there are K0 = 4 balanced groups, with the true grouped coefficients summarized in
Table (E.1). The AR(1) coefficients represent different degree of persistence persistence. The
exogenous variable x(2)it is drawn from N(0, 1) and zit is drawn from Gamma(1, 1), capped
by 10.

Table E.1: True Grouped Coefficients in the General DGP

α0,k α1,k α2,k σ2
k

(FE) (lagged) (exo var.) (variance)

Group 1 -0.15 0.4 0.16 0.500
Group 2 -0.05 0.8 0.14 0.375
Group 3 0.05 0.5 0.12 0.250
Group 4 0.15 0.7 0.10 0.125

E.2 Construction of Soft Pairwise Constraints

Number of constraints: We set the number of constraints NML and NCL as a function of N
and K0 to facilitate performance comparisons across different settings and to ensure that the
information of constraints does not vanish as N increases. Specifically, NML and NCL are a
predetermined proportion of the total number of correct constraints for each type which are
given by,

N˚
ML(N, K) = KC2

N/K = K
N/K(N/K´ 1)

2
=

N(N ´ K)
2K

, (E.7)

N˚
CL(N, K) =

(
N
K

)2

C2
K =

(
N
K

)2 K(K´ 1)
2

=
N2(K´ 1)

2K
. (E.8)

In the setting with (N, K0) = (200, 4), we have N˚
ML(200, 4) = 4, 900 and N˚

CL(200, 4) =
15, 000. We choose randomly select 5% of these constraints, leading to NML = 245 and
NCL = 750.

Type of pairwise constraints: The pairwise constraints are generated randomly. Given the
number of ML constraints NML, each ML constraint is generated by randomly selecting a
group and uniformly selecting two units within that group to be must-linked. Similarly,
for each of NCL CL constraints, two unique groups are chosen at random and one unit is
randomly selected from each. Regarding the remaining unselected units, we assume they
are not restricted and have no prior belief on them.

Accuracy of pairwise constraints: Each constraint is annotated with a level of accuracy ψ

generating from a transformed Beta distribution defined on [0.5, 1]. We begin by drawing ν

from a Beta distribution: if the constraint is correct, ν „ Beta(3, 2) for some α ą 1; otherwise,
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ν „ Beta(2, 3). Then the level of confidence is ψ = ν
2 + 0.5 so that its domain is [0.5, 1]. We

derive ψ in this manner to reflect the assumption that an expert should have less certainty
in erroneous constraints than in correct ones.

Perturbation in pairwise constraints: To examine the performance with soft constraints un-
der inaccurate prior belief, we artificially add errors to the randomly generated constraints.
A fraction e of the constraints are mislabeled – a must-link would be mislabeled as a cannot-
link and vice versa. We turn eNML true ML into CL and eNCL true CL into ML with e = 20%.

All DGPs are equipped with the same set of pairwise constraints, e.g., we only draw
pairwise constraints and weights once.

E.3 Alternative Estimators

We explore various types of estimators that differ in the prior belief on G.

(i) BGFE: The baseline Bayesian grouped fixed-effects (BGFE) estimator are correctly-specified,
i.e. assuming that the true model exhibits time-invariant grouped heterogeneity and
that variance of error term is constant (varying) across units in the simple (general)
DGPs. No prior belief on G is available for this estimator.

(ii) BGFE-cstr: The baseline BGFE estimator that takes pairwise constraints into considera-
tion.

(iii) BGFE-oracle: This estimator is a variant of the BGFE estimator equipped with known
true G.

We also evaluate the other Bayesian estimators with different prior assumptions on αi

that don’t model group structure.

(iv) Pooled: Bayesian pooled estimator views αi as a common parameter and, consequently,
all units have the same prior level of αi.

(v) Flat: flat-prior estimator assumes p(αi) 9 1. There is no pooling across units in this
case and αi’s are individually estimated using their own history. This also amounts to
sampling from a posterior whose mode is the MLE estimate.
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E.4 Posterior Predictive Densities and Performance Evaluation

E.4.1 Posterior Predictive Densities

Given S posterior draws, the posterior predictive distribution estimated from the MCMC
draws is

p̂(yiT+1|Y, X) =
1
S

S
ÿ

j=1

K(j)(G)
ÿ

k=1

1(gi = k)p
(

yiT+1|Y, X, Θ(j)
) . (E.9)

We can therefore draw samples from p̂(yiT+1|Y, X) by simulating (2.1) forward condi-
tional on the posterior draws of Θ and observations.

E.4.2 Point Forecasts

The optimal posterior forecast under quadratic loss function is obtain by minimizing the
posterior risk, with is the posterior mean. Conditional on posterior draws of parameters,
the mean forecast can be approximated by the Monte Carlo averaging,

ŷi,T+1|T «
1
S

S
ÿ

j=1

ŷ(j)
iT+1|T =

1
S

S
ÿ

j=1

α̂
(j)1
gi xiT+1, (E.10)

and the RMSFE across units is given by

RMSFET+1 =

g

f

f

e

1
N

N
ÿ

i=1

(yi,T+1 ´ ŷi,T+1)
2. (E.11)

E.4.3 Set Forecasts

We construct set forecasts CSiT+1 from the posterior predictive distribution of each unit. In
particular, we adopt a Bayesian approach and report the highest posterior density interval
(HPDI), which is the narrowest connected interval with coverage probability of 1 ´ α. In
other words, it requires that the probability of yiT+1 P CSiT+1 conditional on having ob-
served the history Y be at least 1´ α, i.e.,

P(yiT+1 P CSiT+1) ě 1´ α, for all i, (E.12)

and this interval is the shortest among all possible single connected candidate sets. Let δl be
the lower bound and δu be the upper bound, then CSiT+1 =

[
δl

i , δu
i
]
.
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The assessment of set forecasts in simulation studies and empirical applications is based
on two metrics: (1) the cross-sectional coverage frequency,

CovT+1 =
1
N

N
ÿ

i=1

1 (yiT+1 P CSiT+1) , (E.13)

and (2) the average length of the sets CiT+1,

AvgLT+1 =
1
N

N
ÿ

i=1

(
δu

i ´ δl
i

)
. (E.14)

E.4.4 Density Forecasts

To compare the performance of density forecasts for various estimators, we examine the con-
tinuous ranked probability score (Matheson and Winkler, 1976; Hersbach, 2000) across units.
The continuous ranked probability score (CRPS) is frequently used to assess the respective
accuracy of two probabilistic forecasting models. It is a quadratic measure of the difference
between the predictive cumulative distribution function, FT+1|T

i (y), and the empirical CDF
of the observation with the formula as follows,

CRPST+1 =
1
N

N
ÿ

i=1

CRPS(FT+1|T
i , yiT+1)

=
1
N

N
ÿ

i=1

ż 8

0

[
FT+1|T

i (y)´ 1 (yiT+1 ď y)
]2

dy, (E.15)

where yiT+1 is the realization at T + 1.

In practice, the true predictive cumulative distribution function FT+1|T
i (y) or the PIT of

yiT+1 is not available. We approximate it via the empirical distribution function for each unit
based on the posterior draws from the predictive density,

F̂T+1|T
i (y) =

1
S

S
ÿ

j=1

1
(

y(j)
iT+1|T ď y

)
, (E.16)

Based on sorted posterior draws ry(j)
iT+1, we can calculate CRPS using the below representa-

tion by Laio and Tamea (2007),

CRPS
(

F̂T+1|T
i , yiT+1

)
=

2
S2

S
ÿ

j=1

(
ry(j)

iT+1|T ´ yiT+1

)(
1
!

yiT+1 ă ry(j)
iT+1|T

)

s´ i +
1
2

)
. (E.17)
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Moreover, we report the average log predictive scores (LPS) to assess the performance of
the density forecast from the view of the probability distribution function. As suggested in
Geweke and Amisano (2010), the LPS for a panel reads as,

LPST+1 =´
1
N

N
ÿ

i=1

ln
ż

p (yiT+1|Y, X, Θ) p(Θ|Y, X)dΘ, (E.18)

where the expectation can be approximated using posterior draws,

ln p (yiT+1|Y, X, Θ) « ln

 1
S

S
ÿ

j=1

p
(

yiT+1|Y, X, Θ(j)
) . (E.19)

E.5 Simulation Results

E.5.1 Simple Dynamics Panel Data

To evaluate the advantage of pooling units into groups, we report the RMSE, bias, standard
deviation, average length of 95% credible set, and frequentist coverage of the posterior esti-
mate of ρ across Monte Carlo repetitions. For the fixed effects α, we only present the average
bias as it may not be of importance for most empirical study.

The comparison across alternative estimators is shown in Table E.2. In DGP 1,the BGFE-
cstr and BGFE estimators are equally accurate as the oracle estimator. This is not surprising
because the units are well-separated by design, and the data provide sufficient information
for the BGFE estimator to determine the group pattern. In this situation, prior knowledge of
G or the true group indices has quite marginal influence. The pooled estimator, on the other
hand, erroneously pools all groups together, resulting in inaccurate estimates of αi and ρ.
Despite the fact that the flat estimator treats units separately, it is still inferior to the BGFE-
type estimators. This is because it cannot utilize cross-sectional information to estimates
parameters in this short panel and hence bears much larger bias.

In DGP 2, where the group pattern is less apparent, the BGFE-cstr estimator is arguably
the most accurate. In contrast to the standard BGFE estimator, it uses cross-sectional data
and pairwise constraints to determine the group pattern. These properties substantially
reduce the biases of β̂ and α̂i, enabling the BGFE-cstr estimator to outperform the uncon-
strained estimator by a significant margin and to perform comparable to the oracle estima-
tor. Remember that we manually add 20% incorrect constraints into the prior knowledge.
Despite the presence of these misspecified constraints, the BGFE-cstr estimator is still able to
extract relevant information from constraints in order to enhance the overall performance.
The BGFE estimator, however, is unable to correctly reconstruct the group structure due
to the noisy data, which results in the algorithm improperly grouping the units and hence
generating inaccurate estimates.
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Table E.2: Monte Carlo: Estimates, Soft Constraint

ρ̂ α̂i Group

RMSE Bias Std AvgL Cov Bias Avg K

DGP 1

BGFE-oracle 0.0104 0.0037 0.0072 0.0276 0.92 0.0371 4
BGFE-cstr 0.0102 0.0030 0.0072 0.0282 0.94 0.0369 4.92
BGFE 0.0103 0.0037 0.0071 0.0274 0.92 0.0377 4.4
Pooled 0.3543 0.3543 0.0032 0.0125 0 1.7889 -
Flat 0.1713 0.1711 0.0073 0.0283 0 0.8668 -

DGP 2

BGFE-oracle 0.0186 0.0030 0.0137 0.0527 0.95 0.0235 4
BGFE-cstr 0.0202 0.0058 0.0143 0.0557 0.93 0.0373 5.06
BGFE 0.0546 0.0443 0.0212 0.0809 0.66 0.1357 4.78
Pooled 0.2920 0.2919 0.0077 0.0298 0 0.5060 -
Flat 0.1170 0.0834 0.0131 0.0509 0.14 0.2344 -

Table E.3 provides a summary of the prediction performance of each estimator. In gen-
eral, the conclusions of the one-step-ahead forecast agree with those of the estimation. In
DGP 1, the performance of the three BGFE estimators are quite similar, followed by the flat
and pooled estimators. In DGP 2, the BGFE-cstr estimator, which utilizes prior belief on G,
beats the other feasible estimators in point, set, and density forecast and is comparable to
the oracle estimator.

Table E.3: Monte Carlo: Forecast, Soft Constraint

Point Forecast Set Forecast Density Forecast

RMSFE Error Std AvgL Cov LPS CRPS

DGP 1

BGFE-oracle 0.4989 0.0001 0.4989 1.9627 0.95 0.7254 0.2818
BGFE-cstr 0.4991 0.0004 0.4990 1.9666 0.95 0.7256 0.2819
BGFE 0.4990 0.0001 0.4990 1.9616 0.95 0.7255 0.2818
Pooled 0.6401 0.0006 0.6404 3.0114 0.98 1.0064 0.3657
Flat 0.5620 0.0003 0.5622 2.4265 0.97 0.8544 0.3184

DGP 2

BGFE-oracle 0.4990 0.0001 0.4989 1.9629 0.95 0.7254 0.2819
BGFE-cstr 0.5021 0.0001 0.5021 1.9790 0.95 0.7314 0.2836
BGFE 0.5186 0.0002 0.5187 2.0546 0.95 0.7633 0.2930
Pooled 0.5396 0.0005 0.5395 2.2444 0.96 0.8079 0.3052
Flat 0.5286 0.0002 0.5287 2.1165 0.95 0.7841 0.2987

E.5.2 General Panel Data

As the number of parameters increases for DGP 3, we present the RMSE and absolute bias of
αgi = [α1,gi α2,gi α3,gi ]

1 and γ, as well as metrics for point and density prediction. In addition,
all BGFE estimators now account for heteroskedasticity because the cross-sectional variance
in DGP 3 is informative to group structure. As a result, we have the BGFE-he-oracle, BGFE-
he-cstr and BGFE-he estimators in this exercise, where ”he” denotes heteroskedasticity. For
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comparison, we also offer the BGFE-ho-cstr estimator, which assumes homoskedasticity, and
Flat-he estimator, which is the heteroskedastic flat estimator.

Table E.4: Results for Estimation, Point Forecast and Estimated K

Estimates Forecast Group

R(α̂0) B(α̂0) R(α̂1) B(α̂1) R(α̂2) B(α̂2) R(γ̂) B(γ̂) RMSFE LPS AvgK PctK

Flat-he 0.258 0.199 0.131 0.098 0.200 0.149 0.026 0.014 0.667 1.108 - -

BGFE-he-oracle 0.126 0.137 0.092 0.101 0.119 0.132 0.569 0.602 0.840 0.706 4 1
BGFE-he-cstr 0.171 0.164 0.290 0.179 0.125 0.135 0.566 0.608 0.847 0.716 4.087 0.914
BGFE-ho-cstr 0.218 0.198 0.328 0.220 0.140 0.144 0.625 0.671 0.850 0.769 4.342 0.682
BGFE-he 0.303 0.317 0.560 0.482 0.137 0.147 0.601 0.640 0.871 0.756 3.575 0.534
Pooled 0.444 0.503 1.262 1.527 0.131 0.148 0.734 0.805 0.993 0.910 - -

Notes: The first line gives the levels of the each metrics based on the Flat-he estimator, which is the benchmark model,
and the following lines in the columns head ”Estimates” and ”Forecast” present ratios of the respective method relative
those based on the flat-he estimator. In the columns head ”Group”, we show the average of number of groups (AvgK) and
the percentage of iterations that the posterior sampler selects K0 (PctK) averaged over 1,000 runs of algorithm. R(¨) is
RMSE of the posterior mean estimator. B(¨) is the absolute bias of the posterior mean estimator.

Table E.4 presents the relative performance of estimation and forecasting for DGP 3. The
benchmark model is Flat-he. Several findings arise. First, the gain from incorporating pair-
wise constraints is evident. It reduces the RMSE and bias for all parameters and improve
both point and density forecast, when comparing BGFE-he-cstr to BGFE-he. The percent-
age of the Gibbs sampler that visits the true number of groups K0 grows considerably from
53.4% to 91.4%. Even when pairwise constraints are taken into account, this percentage is
just 68.2% if heteroskedasticity is ignored. Second, when we include prior belief on G, the
improvement in α1,gi , the AR coefficient, is the greatest among all three grouped coefficients
with a bias reduction of more than 60%. This also suggests that the AR coefficient may be
more sensitive to the estimated group structure. Thirdly, BGFE-he-cstr and BGFE-ho-cstr
have comparable RMSFE values, but BGFE-he-cstr has a significantly lower LPS, showing
that modeling heteroskedasticity in the current setting is favorable for the density forecast.
The empirical results below also confirm this finding. Lastly, all BGFE-type estimators gen-
erate similar estimates for the exogenous variables that don’t have group effects on yit as the
improvement in α2,gi and γ are marginal when prior belief on group is included or when
true group is imposed.

F Data Description
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F.1 Inflation of the U.S. CPI Sub-Indices

The seasonally adjusted series of CPI for All Urban Consumers (CPI-U) for subcategories at
all display level are obtained from the BLS Online Databases.18 The raw data contains 318
series, which are recorded on a monthly basis and spanned the period from January 1947 to
August 2022. Notice that the raw dataset doesn’t include an indicator for the expenditure
categories. We manually merge the raw dataset with the table of content of CPI entry level
items19 by entry level item (ELI) code, the series description and universal classification
(UCC) codes, if necessary.20

Series can enter and exit the sample. The BLS discontinued and launched series on a
regular basis owing to changes in source data and methodology, for example, see the Post
for the updates on series since 2017. The measure of certain subcategories was impacted
by the Pandemic and hence missing. Since the Pandemic, the related activities and venues
(sports events, bars, schools) were canceled and close temporarily, such as admission to
sporting events (SS62032), distilled spirits away from home (SS20053), food at elementary
and secondary schools (SSFV031A), etc. We chose to not impute the missing values since
there was no clear benchmark to compare with, especially given the depressed economic
conditions.

The CPI-U consists of eight major expenditure categories (1) Apparel; (2) Education and
Communication; (3) Food and beverages; (4) Housing; (5) Medical Care; (6) Recreation; (7)
Transportation; (8) Other goods and services. Each major category contains multiple sub-
categories, resulting in a hierarchy of categories with increasing specificity. BLS provides a
detailed table21 that records the series code, series name, and display level. We resort to the
display level to build the tree structure of the CPI sub-indices and eliminate those parent
nodes, as illustrated in Figure F.1.

18https://data.bls.gov/PDQWeb/cu
19https://www.bls.gov/cpi/additional-resources/entry-level-item-descriptions.xlsx
20Some series are labeled by UCC rather than ELI. The concordance provided by the BLS can be found here:
https://www.bls.gov/cpi/additional-resources/ce-cpi-concordance.htm.

21https://download.bls.gov/pub/time.series/cu/cu.item.
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Figure F.1: Hierarchical Structure of CPI: Eliminating Parent Nodes
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Because all CPI data is available on a monthly basis, we use the unemployment gap as
labor market slack measures in the Phillips curve model. We use the seasonally adjusted un-
employment rate22 from FRED and construct the “gap” measures using the Hamilton filter
(Hamilton, 2018). The Hamilton filter has two parameters: number of lags p and number of
lookahead periods h. We follow Hamilton’s suggestion and set h = 24 and p = 12, or an
AR(12) process, additionally lagged by 24 lookahead periods for the monthly time series.

F.2 Income and Democracy

All data in this section are taken from the replication files of BM.23 The data set contains
a balanced panel of 89 countries and 7 periods at a five-year interval over 1970-2000. The
main measure of democracy is the Freedom House Political Rights Index. A country receives
the highest score if political rights come closest to the ideals suggested by a checklist of
questions, beginning with whether there are free and fair elections, whether those who are
elected rule, whether there are competitive parties or other political groupings, whether
the opposition plays an important role and has actual power, and whether minority groups
have reasonable self-government or can participate in the government through informal
consensus. See more details in Acemoglu et al. (2008), Section 1.

Table F.1: Summary Statistics for the Democracy Data Set

Mean Median S.E. Min Max

Democracy index 0.5760 0.6667 0.3712 0 1.0000
GDP per capita (in logarithm) 8.2981 8.3039 1.0685 6.0937 10.4450

22https://fred.stlouisfed.org/series/UNRATE
23https://www.dropbox.com/s/ssjabvc2hxa5791/Bonhomme_Manresa_codes.zip?dl=0
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G Additional Empirical Results

G.1 Inflation of the U.S. CPI Sub-Indices

Figure G.1 shows the number of active groups along with total number of available CPI
sub-indices.

Figure G.1: Number of Active Groups, BGFE-he-cstr

Figure G.2 shows the selected scaling constant c over time.

Figure G.2: Scaling Constant, BGFE-he-cstr

Figure G.3 shows the ratio of RMSE between BGFE-he-cstr and the benchmark AR-he.
Pink, blue and green shaded areas denote the period during which BGFE-he-cstr, BGFE-he
and all other estimators reach the lowest RMSE, respectively.
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Figure G.3: Relative RMSE, BGFE-he-cstr

Figure G.4 shows the difference of LPS between BGFE-he-cstr and the benchmark AR-he.
Pink, blue and green shaded areas denote the period during which BGFE-he-cstr, BGFE-he
and all other estimators reach the lowest LPS, respectively.

Figure G.4: Relative LPS, BGFE-he-cstr

Table G.1 and G.2 present the ratio of RMSE between each estimator and AR-he for each
expenditure category in five periods: 1995-1999, 2000-2004, 2005-2009, 2010-2014, 2015-2019,
2020-2022. Similar results for the difference of LPS are shown in Table G.3 and G.4.
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Table G.1: Relative RMSE by Expenditure Category and Period

Full 95 - 99 00 - 04 05 - 09 10 - 14 15 - 19 20 - 22

Average of All Series

BGFE-he-cstr 0.97 0.97 0.97 0.99 0.96 0.97 0.94
BGFE-he 0.98 0.98 0.98 1.00 0.97 0.98 0.95
BGFE-ho 1.00 1.04 0.98 1.00 0.98 0.99 1.00
AR-he-PC 1.01 1.02 1.03 0.99 1.00 1.01 1.04
Pooled 1.00 1.04 0.98 1.03 1.01 0.99 0.94

Category 1: Apparel

BGFE-he-cstr 0.97 0.98 0.99 0.97 0.96 0.98 0.91
BGFE-he 0.97 0.98 0.99 0.98 0.97 0.98 0.92
BGFE-ho 0.98 0.99 1.00 0.98 0.98 0.99 0.93
AR-he-PC 1.02 1.02 1.00 1.03 1.01 1.01 1.08
Pooled 0.99 1.00 0.97 0.99 1.03 1.03 0.90

Category 2: Education and Communication

BGFE-he-cstr 0.96 0.93 0.99 0.95 0.94 0.97 0.93
BGFE-he 0.95 0.95 1.00 0.94 0.95 0.97 0.92
BGFE-ho 1.08 2.18 1.02 1.00 1.00 0.97 0.91
AR-he-PC 1.01 1.03 0.99 1.00 0.95 1.01 1.08
Pooled 1.16 2.24 1.21 1.05 1.12 1.03 0.97

Category 3: Food and Beverages

BGFE-he-cstr 0.98 0.99 0.99 1.00 0.97 0.98 0.95
BGFE-he 0.98 0.99 1.00 1.00 0.97 0.98 0.95
BGFE-ho 0.99 1.03 0.99 0.97 0.97 0.98 0.95
AR-he-PC 1.00 1.01 1.02 0.99 1.00 1.01 0.98
Pooled 1.01 1.03 1.01 1.05 1.01 0.99 0.93

Category 4: Housing

BGFE-he-cstr 0.97 0.96 0.95 1.03 0.94 0.96 0.96
BGFE-he 0.96 0.97 0.93 1.03 0.94 0.96 0.96
BGFE-ho 0.98 1.14 0.93 1.02 0.96 0.97 0.95
AR-he-PC 1.03 1.03 1.04 1.04 0.99 1.01 1.07
Pooled 0.99 1.14 0.92 1.06 0.97 0.97 0.94

Notes: Benchmark model = AR-he.
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Table G.2: Relative RMSE by Expenditure Category and Period, cont.

Full 95 - 99 00 - 04 05 - 09 10 - 14 15 - 19 20 - 22

Category 5: Medical Care

BGFE-he-cstr 0.95 0.93 0.98 0.95 1.01 0.96 0.87
BGFE-he 0.95 0.93 0.98 0.95 1.01 0.96 0.85
BGFE-ho 1.06 1.32 1.15 1.07 1.09 0.99 0.86
AR-he-PC 1.03 1.04 0.99 1.02 1.03 1.02 1.07
Pooled 1.15 1.30 1.38 1.23 1.15 1.04 0.92

Category 6: Recreation

BGFE-he-cstr 0.97 0.97 0.99 0.99 0.98 0.96 0.94
BGFE-he 0.97 0.97 1.00 0.99 0.99 0.96 0.92
BGFE-ho 1.02 1.18 1.09 1.05 1.00 0.97 0.94
AR-he-PC 1.03 1.03 1.03 1.02 1.01 1.01 1.08
Pooled 1.12 1.17 1.24 1.31 1.17 0.99 0.96

Category 7: Transportation

BGFE-he-cstr 0.99 0.97 1.01 0.99 0.99 1.00 0.96
BGFE-he 0.99 0.97 1.01 0.98 0.99 1.00 0.96
BGFE-ho 1.03 1.07 1.02 1.00 1.01 1.02 1.07
AR-he-PC 1.02 1.04 1.05 0.97 1.01 0.99 1.07
Pooled 0.99 1.07 1.02 0.99 0.97 0.96 0.97

Category 8: Other Goods and Services

BGFE-he-cstr 0.97 0.98 0.99 1.02 0.89 0.96 0.93
BGFE-he 0.95 0.94 0.95 1.05 0.89 0.97 0.91
BGFE-ho 0.96 0.99 0.97 0.99 0.89 0.97 0.91
AR-he-PC 1.02 1.01 1.02 1.02 0.97 1.00 1.11
Pooled 0.98 0.99 1.04 0.99 0.89 0.99 0.94

Notes: Benchmark model = AR-he.
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Table G.3: Relative LPS, by Expenditure Category and Period

Full 95 - 99 00 - 04 05 - 09 10 - 14 15 - 19 20 - 22

Average of All Series

BGFE-he-cstr ´0.08 ´0.08 ´0.07 ´0.08 ´0.09 ´0.07 ´0.08
BGFE-he ´0.06 ´0.06 ´0.05 ´0.06 ´0.07 ´0.05 ´0.08
BGFE-ho 0.64 0.77 0.72 0.77 0.48 0.53 0.45
AR-he-PC 0.01 0.02 0.02 0.01 0.01 0.01 0.01
Pooled OLS 0.66 0.84 0.73 0.79 0.53 0.52 0.44

Category 1: Apparel

BGFE-he-cstr ´0.05 ´0.03 ´0.02 ´0.05 ´0.05 ´0.02 ´0.14
BGFE-he ´0.04 ´0.02 ´0.02 ´0.04 ´0.05 ´0.01 ´0.14
BGFE-ho 0.1 0.25 0.07 0.07 0.11 0.06 0.03
AR-he-PC 0.03 0.03 0.01 0.03 0.02 0.01 0.09
Pooled 0.12 0.25 0.07 0.10 0.18 0.11 ´0.05

Category 2: Education and Communication

BGFE-he-cstr ´0.12 ´0.06 ´0.07 ´0.19 ´0.17 ´0.10 ´0.11
BGFE-he ´0.13 ´0.08 ´0.11 ´0.20 ´0.16 ´0.09 ´0.12
BGFE-ho 0.92 1.44 1.04 0.87 0.91 0.56 0.56
AR-he-PC 0.01 0.00 0.01 0.02 0.00 0.01 0.07
Pooled 0.98 1.45 1.09 0.95 0.99 0.62 0.62

Category 3: Food and Beverages

BGFE-he-cstr ´0.04 ´0.03 ´0.02 ´0.06 ´0.05 ´0.05 ´0.07
BGFE-he ´0.04 ´0.04 ´0.02 ´0.05 ´0.05 ´0.05 ´0.08
BGFE-ho 0.37 0.66 0.36 0.34 0.27 0.39 0.03
AR-he-PC 0.00 0.01 0.03 ´0.01 0.01 0.00 ´0.08
Pooled 0.44 0.84 0.41 0.44 0.33 0.41 0.03

Category 4: Housing

BGFE-he-cstr ´0.12 ´0.13 ´0.14 ´0.10 ´0.11 ´0.12 ´0.07
BGFE-he ´0.11 ´0.12 ´0.13 ´0.10 ´0.11 ´0.12 ´0.07
BGFE-ho 0.81 0.96 1.13 0.83 0.60 0.60 0.70
AR-he-PC 0.02 0.00 0.03 0.04 0.01 0.01 0.06
Pooled 0.82 0.97 1.13 0.88 0.63 0.60 0.68

Notes: Benchmark model = AR-he.
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Table G.4: Relative LPS by Expenditure Category and Period, cont.

Full 95 - 99 00 - 04 05 - 09 10 - 14 15 - 19 20 - 22

Category 5: Medical Care

BGFE-he-cstr ´0.15 ´0.29 ´0.14 ´0.14 ´0.16 ´0.05 ´0.09
BGFE-he ´0.15 ´0.29 ´0.13 ´0.14 ´0.16 ´0.05 ´0.09
BGFE-ho 1.16 1.64 1.34 1.11 1.14 0.78 0.78
AR-he-PC 0.02 0.02 0.01 0.03 0.02 0.01 0.04
Pooled 1.21 1.64 1.39 1.20 1.20 0.84 0.84

Category 6: Recreation

BGFE-he-cstr ´0.04 ´0.04 ´0.05 ´0.02 ´0.02 ´0.05 ´0.05
BGFE-he ´0.03 ´0.03 ´0.05 ´0.01 ´0.01 ´0.04 ´0.07
BGFE-ho 0.55 0.91 0.79 0.58 0.49 0.25 0.12
AR-he-PC 0.02 0.03 0.03 0.02 0.01 0.01 0.06
Pooled 0.61 0.91 0.84 0.70 0.58 0.29 0.13

Category 7: Transportation

BGFE-he-cstr ´0.04 ´0.10 ´0.03 ´0.05 ´0.07 0.00 0.00
BGFE-he ´0.03 ´0.10 0.00 ´0.04 ´0.06 0.00 0.00
BGFE-ho 1.59 0.98 1.56 2.83 0.79 1.51 2.11
AR-he-PC 0.01 0.03 0.03 ´0.02 ´0.01 0.00 0.07
Pooled 1.42 0.98 1.41 2.38 0.75 1.24 1.98

Category 8: Other Goods and Services

BGFE-he-cstr ´0.03 0.22 ´0.09 ´0.07 ´0.14 ´0.06 ´0.05
BGFE-he ´0.03 0.25 ´0.09 ´0.06 ´0.13 ´0.06 ´0.06
BGFE-ho 0.64 0.59 0.66 0.69 0.83 0.53 0.49
AR-he-PC 0.01 0.02 0.00 0.03 0.00 0.01 0.04
Pooled 0.69 0.61 0.71 0.77 0.89 0.57 0.53

Notes: Benchmark model = AR-he.
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G.1.1 Network Visualization of Posterior Similarity Matrix

In our empirical work, we estimate the posterior similarity matrix (PSM) for 154 series for the
last sample (August 2022). Presenting and examining 154ˆ 154 = 23, 716 estimates pairwise
posterior probabilities in PSM would be thoroughly uninformative. Hence we characterize
the estimated PSM graphically as network graphs, which contain node names, node color,
and link size (one per link since the network is undirected).

• Node name shows the item names of CPI sub-indices.

• Node color indicates the group structure used in the prior, e.g, expenditure category.

• Link size represents the pairwise probabilities in the PSM.

We use the qgraph package in R for network visualization. Node locations are determined
using a modified version of a force-embedded algorithm that was proposed by Fruchterman
and Reingold (1991).

Figure G.5 show the full-sample CPI sub-index network graphs.
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G.2 Income and Democracy

G.2.1 Results of Specification 1

We start our analysis with the specification 1 in (5.12). Table G.5 demonstrates the posterior
probability of the number of groups utilizing various estimators. Notably, the BGFE-ho in
this specification is identical to the primary model in BM, allowing us to evaluate the optimal
number of groups. BGFE-ho creates 8 groups in all posterior draws, which is consistent with
BM’s conclusion of using BIC: the upper bound of the true number of groups is 10. Despite
the fact that BM is unable to validate the ideal number of groups for their study, our BGFE-ho
estimator provides an accurate estimate of it. Intriguingly, accounting for heteroskedasticity
drastically reduces the number of groups, with BGFE-he identifying three groups in 92.9%
of posterior draws. Adding pairwise constraints based on geographic information increase
the number groups. Two-third of posterior draws from BGFE-he-cstr generate 5 group.

Table G.5: Probability for the number of groups

BGFE-he-cstr BGFE-he BGFE-ho

Pr(K ă 3) 0.000 0.000 0.000
Pr(K = 3) 0.000 0.929 0.000
Pr(K = 4) 0.344 0.071 0.000
Pr(K = 5) 0.656 0.000 0.000
Pr(K ą 5) 0.000 0.000 1.000

The marginal data density (MDD) of each estimators in Table G.6 provides some insight
on different models. Even while BGFE-ho produces eight groups and has a tendency to
overfit, its MDD is the lowest of the three estimators. BGFE-he with fewer groups is superior
to BGFE-ho with higher MDD. BGFE-he-cstr has the highest MDD because the pairwise
constraints give direction on grouping and identify the ideal group structure, which BGFE-
he cannot uncover without our prior knowledge.

Table G.6: Marginal Data Density

BGFE-he-cstr BGFE-he BGFE-ho

425.690 381.218 368.918

We focus on the BGFE-he-cstr estimator and use the approach outlined in Section 3.2 to
identify the unique group partitioning pG. The left panel of Figure G.6 presents the world
map colored by pG, while the right panel present the group-specific averages of democracy
index over time. The estimated group structure pG features four distinct groups, which is
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coincident to the choice of BM. As described in BM, we refer to groups 1-4 as the “high-
democracy”, “low-democracy”, “early transition”, and “late transition” group, respectively.
With the exception of the “early transition” group that is slight at odd with the counterpart
in BM, the group-specific averages of the democracy index for all other groups are relatively
similar to those in BM. Notice that BM manually sets the number of groups to four, but we
discover that four is the optimal number. Consequently, by employing model specification
1 and accounting for heteroskedasticity, we find the support for BM’s main results.

Figure G.6: Point Estimation of Group Partitioning and Average Democracy

Table G.7 shows the posterior mean and 90% credible set for each coefficient, with G
fixing at the point estimate pG. Comparing to the pooled OLS, ρ̂ and β̂ once we incorporate
the group-specific time patterns. The results are essentially consistent with the conclusion
in BM: there is modest persistence and a positive effect of income on democracy, but the
cumulative income effect β/(1´ ρ) = 0.08 is quantitatively small.

Table G.7: Coefficient estimates across groups

Lagged democracy (ρ) Lagged Income (β)

Coef. Cred. Set Coef. Cred. Set

BGFE-he-cstr 0.499 [0.438, 0.558] 0.040 [0.027, 0.053]

Pooled OLS 0.665 [0.616, 0.718] 0.082 [0.065, 0.100]

G.2.2 Network Visualization of Posterior Similarity Matrix

Figure G.7 and G.8 show the full-sample country network graphs, for specification 1 and 2
respectively.
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