
Identification and Estimation of Average Partial Effects in

Semiparametric Binary Response Panel Models*

Laura Liu Alexandre Poirier Ji-Liang Shiu

September 11, 2022

Abstract

Average partial effects (APEs) are generally not point-identified in binary response panel models with
unrestricted unobserved heterogeneity. We show their point-identification under an index sufficiency
assumption on the unobserved heterogeneity, even when the error distribution is unspecified. This
assumption does not impose parametric restrictions on the unobserved heterogeneity. We then construct
a three-step semiparametric estimator for the APE. In the first step, we estimate the common parameters
using either a conditional logit or smoothed maximum score estimator. In the second step, we estimate
the conditional expectation of the outcomes given the indices and a generated regressor that depends on
first-step estimates. In the third step, we average derivatives of this conditional expectation to obtain a
partial mean that estimates the APE. We show that this proposed three-step APE estimator is consistent
and asymptotically normal. We evaluate its finite-sample properties in Monte Carlo simulations. We
then illustrate our estimator in a study of determinants of married women’s labor supply.

Keywords: Average partial effects, panel data, binary response models, semiparametric estimation,
unobserved heterogeneity

JEL classification: C13, C14, C23, C25

*Liu: Department of Economics, Indiana University, lauraliu@iu.edu. Poirier: Department of Economics, George-
town University, alexandre.poirier@georgetown.edu. Shiu: Institute for Economic and Social Research, Jinan University,
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1 Introduction

Binary response panel models with unobserved individual heterogeneity are commonly used in empirical

research. This paper is concerned with panels where the binary outcome is generated from the underlying

latent variable model

Yit = 1 (X ′itβ0 + Ci − Uit ≥ 0) , (1.1)

for units i = 1, . . . , N and time periods t = 1, . . . , T . Here, Xit are covariates, Ci is scalar unobserved

heterogeneity, and Uit are unobserved idiosyncratic errors. We assume N is large, but that T is small and

fixed, as is the case in many microeconomic datasets. This class of models includes fixed effects models,

random effects models, and models that impose various levels of structure on the conditional distribution of

Ci|Xi, where Xi = (Xi1, . . . , XiT ). See Wooldridge (2010) Chapter 15.8 for an exposition of such models.

Identification results for β0 are well-known and go back to the work of Rasch (1960) in the case where

Uit is assumed to be logistic and Manski (1987) when its distribution is not specified. However, in this

paper we focus on the average structural function (ASF) and average partial effects (APE) in model (1.1).

Introduced in Blundell and Powell (2003), the ASF at potential value x is the conditional response probability

P(Yit = 1|Xit = x,Ci = c) averaged over the marginal unobserved heterogeneity distribution FC . It is used

to assess the average impact of interventions in which the value of Xit is manipulated. The APE is a

derivative of the ASF with respect to one covariate, hence measuring the partial effect of this covariate on

the conditional response probability averaged over the marginal distribution of Ci. Both the ASF and APE

are commonly used to evaluate the causal impact of policies in binary outcome models.

When Ci|Xi is unrestricted, i.e., fixed effects are assumed, the ASF and APE are generally not point-

identified. In this paper, we show the point-identification of the ASF and APE under an index sufficiency

assumption on the unobserved heterogeneity that we propose. This assumption restricts this conditional dis-

tribution to depend on covariates only through v(Xi), a (multiple) index of Xi. It is related to an assumption

of Altonji and Matzkin (2005) and Bester and Hansen (2009) that they use to show the identification of the

local average response (LAR). The LAR is different from the APE since it conditions on covariate values

rather than average over the population: see the discussion below and in Section 2.2 for a comparison of these

estimands. Under our assumption, v(Xi) acts as a control function that does not require the specification

of a first-stage or the existence of an instrument. As in Imbens and Newey (2009), the support of this index

variable plays an important role, which we study in detail.

Note that the identification results in this paper do not rely on parametric assumptions on the conditional
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distribution of Ci|Xi, nor on the distribution of Uit. Both the ASF and APE depend directly on the

distribution of Ci, which is not specified. We show that even when this distribution is not identified, the

ASF and APE can be identified despite their dependence on FC .

In our second main contribution, we construct three-step semiparametric estimators for the ASF and

APE. In particular, we show the ASF is the partial mean of the conditional expectation of Yit given

(X ′itβ0, v(Xi)), integrated over the marginal distribution of v(Xi). The APE can be expressed as a deriva-

tive of the ASF. We use this partial mean structure to construct semiparametric estimators of the ASF and

APE. In a preliminary step, we estimate β0 using one of the many available estimators in the literature: e.g.,

the conditional maximum likelihood estimator (CMLE) of Rasch (1960) when Uit is logistic, the smoothed

panel maximum score of Charlier, Melenberg, and van Soest (1995) and Kyriazidou (1995) when Uit is non-

parametric, or other estimators we list in Section 3.1. In a second step, we estimate the above conditional

expectation, replacing unobserved X ′itβ0 by generated regressor X ′itβ̂. We then use a local polynomial re-

gression to recover this conditional mean. In a final step, we average this estimated conditional mean over

the empirical distribution of v(Xi). The APE estimator is analogous, replacing the conditional expectation

estimate with an estimate of its derivative, which is obtained directly via the local polynomial regression.

Next, we provide rate conditions on bandwidths, the convergence rate of β̂, and on the order of the

polynomial regression. These conditions allow us to establish the consistency and asymptotic normality of

both the ASF and APE estimators. Their rates of convergence do not depend on the dimension of Xi but

instead depend on the dimension of the index v(Xi) in the sufficiency assumption. Moreover, their rates of

convergence are fast relative to other nonparametric estimators since, after integrating over the distribution

of v(Xi), the ASF and APE are functions of one-dimensional X ′itβ0. For example, when the index is

one-dimensional, the ASF’s and APE’s rates of convergence are similar to standard rates of convergence

of univariate nonparametric kernel regression estimators, which are fast within the class of nonparametric

estimators.1

In an extension of our main results, we show that under additional support assumptions on (X ′itβ0, v(Xi)),

the marginal distribution of Ci is nonparametrically identified when Uit is logistic. Under slightly stronger

support assumptions, it can also be identified without specifying the distribution of Uit. This allows for the

identification of functionals of the conditional response probability beyond its mean, such as its quantiles.

We then discuss the connection between the local average response and the APE, and show the LAR is

identified under weaker versions of our main assumptions. We also discuss an extension of our identification

results to the ASF and APE in dynamic panel models (see, e.g., Honoré and Kyriazidou (2000)) in Section

1In particular, we show the ASF can converge at a rate faster than N2/5 when the index is one-dimensional.

3



4.3.

In the Monte Carlo simulation experiments, we compare the proposed semiparametric estimator with a

random effects (RE) estimator and a correlated random effects (CRE) estimator. Both of them are commonly

used parametric approaches which assume that Ci|Vi is Gaussian and that Uit is logistic (see the definitions

at the beginning of Section 5). Results show that the semiparametric estimator yields smaller biases and

larger standard deviations, and the former channel dominates when the true distribution of the unobserved

heterogeneity is non-Gaussian and the true distribution of the idiosyncratic errors is non-logistic.

In the empirical illustration, we study women’s labor force participation using our semiparametric ap-

proach. We see that the semiparametric APE estimates are closer to zero for lower husband’s incomes

and more negative for higher ones, while their parametric counterparts vary less with respect to husband’s

incomes. Additionally, the effects of the husband’s income are no longer significant once we allow for the

flexibility in the distributions of the unobserved heterogeneity and of the idiosyncratic errors.

Related Literature

We now review the related literature. While we focus on the ASF and APE, our work builds on a large

literature on the identification and estimation of β0 in model (1.1). This literature can further be subdivided

based on its distributional assumptions on Ci|Xi, and on those on Uit. The case where both Ci|Xi and Uit are

parametrized is studied in Chamberlain (1980). In this case, the distribution of Yi|Xi is fully parametrized

and β0 can be estimated via maximum likelihood. To compute the likelihood function, one integrates the

distribution of Yi|Xi, Ci over the parametric distribution of Ci|Xi. This case includes random effects, where

Ci|Xi
d
= Ci and Ci follows a parametric distribution. See Chapter 15.8 in Wooldridge (2010) for a review of

this approach.

With fixed effects, the identification of β0 in a binary panel with logit errors goes back to the work

of Rasch (Rasch, 1960, 1961). In this work, he finds a sufficient statistic for Ci that allows β0 to be

estimated by maximizing the observations’ likelihood conditional on this statistic. Andersen (1970) derives

the asymptotic properties of the
√
N -consistent conditional logit estimator. See also Chamberlain (1980).

In the case where errors are not logistic, Manski (1987) shows the identification of β0 up to scale. He

also presents a consistent maximum score estimator for β0 that does not converge at a
√
N -rate. Charlier,

Melenberg, and van Soest (1995) and Kyriazidou (1995) propose a smoothed version of Manski’s estimator

which converges at a faster rate. The impossibility of
√
N -estimation when the errors’ distribution are not

specified is described in Magnac (2004) and Chamberlain (2010). This impossibility can be overcome by

making additional assumptions though. For example, in the presence of a special regressor, Honoré and
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Lewbel (2002) show the
√
N -estimation of β0 without specifying Uit’s distribution. See also Lee (1999) and

Chen, Si, Zhang, and Zhou (2017) for alternative assumptions that restore
√
N -consistency.

In our paper, we consider an intermediate assumption on Ci|Xi, where we assume this distribution

depends on Xi only through a potentially multivariate index. We do not parametrize the distribution of

Ci|Xi, nor do we restrict how it depends on this index. As mentioned above, our primary focus is on the

ASF and APE rather than β0.

Due to our conditional independence assumption between the heterogeneity and covariates conditional

on an index, our work is also related to a large literature on control functions. Newey, Powell, and Vella

(1999) show the identification of structural functions in a triangular model, where a control variable Vi is

identified from a first stage. Blundell and Powell (2004) consider a binary response model with endogeneity,

and focus on the identification of the ASF. Imbens and Newey (2009) consider a nonseparable triangular

model and, like us, focus on the identification of functionals of the structural function, such as the ASF.

For results on the ASF in binary panels, Maurer, Klein, and Vella (2011) use a semiparametric maximum

likelihood approach and a control function assumption to identify and estimate the ASF. Also see Laage

(2020) for a panel data model with triangular endogeneity.

Although they consider a different estimand, the work of Altonji and Matzkin (2005) and Bester and

Hansen (2009) is closely related to ours. In Altonji and Matzkin (2005), they consider an exchangeability

assumption, where FC|X1,...,XT is invariant to relabeling of the time indices on the regressors. They then

assume that Ci|Xit, v(Xi)
d
= Ci|v(Xi) where v(Xi) are known symmetric functions of (Xi1, . . . , XiT ). They

consider a nonparametric outcome equation, and show the identification of the LAR, an object which averages

changes in the conditional response probability over the conditional distribution of the heterogeneity. This

object differs from the APE since it integrates over the conditional distribution of Ci|Xit rather than its

marginal distribution. We discuss in more detail in Remark 2.3 the difference in estimands, and related

differences in assumptions on the support of the index are discussed in Section 4.2. Unlike Altonji and

Matzkin (2005), our structural equation (1.1) depends on index X ′itβ0 which allows for much faster rates

of convergence for our APE when compared to the rates obtained for the LAR in their nonparametric

outcome equation. In particular, their rate of convergence for their LAR estimator decreases with the

dimension of Xit while the rate of convergence of our APE estimator is related to the dimension of X ′itβ0,

which is fixed. In Bester and Hansen (2009) they also consider an index sufficiency assumption where

v(Xi) = (v1(X
(1)
i ), . . . , vdX (X

(dX)
i )), but where the indices {vj(·)}dXj=1 are allowed to be unknown.2 Their

identification results are for the LAR of continuous regressors, which we view as complementary to our

2The dimension of Xit is denoted by dX , and X
(k)
i denotes a T × 1 vector with the kth components of Xit for t = 1, . . . , T .
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results on APEs.

Other identification approaches in these models have also been proposed. Chernozhukov, Fernández-

Val, Hahn, and Newey (2013) derive bounds on the ASF in fixed effects binary response models with

nonparametric distributions of Ci|Xi and of Uit. Davezies, D’Haultfoeuille, and Laage (2021) derive bounds

for average marginal effects when Uit is assumed to be logistic. Fernández-Val (2009) proposes bias-corrected

estimators of marginal effects when T is large and when Uit follows a normal distribution.

Our estimator is a three-step semiparametric estimator. The first step involves the estimation of the

common parameters β0, the second step is a nonparametric regression including a generated regressor,

and the third step marginalizes over a subset of the regressors. Such estimators are called partial means.

See Newey (1994) for seminal work on the estimation of partial means without generated regressors. The

estimation of partial means with generated regressors is studied in Mammen, Rothe, and Schienle (2012),

Mammen, Rothe, and Schienle (2016), and Lee (2018).

Finally, while we focus on the static case, there is a large literature on dynamic binary response models

going back to Cox (1958). In particular, see Chamberlain (1985), Magnac (2000), Honoré and Kyriazidou

(2000) and, more recently, Honoré and Weidner (2020) and Kitazawa (2021). These papers all focus on

the identification and estimation of common coefficients, rather than for the ASF or APE. In recent work,

Aguirregabiria and Carro (2020) show that the average marginal effect of changes in the lagged outcome are

point-identified when Uit follows a logistic distribution. Also under a logit assumption, Dobronyi, Gu, and

Kim (2021) characterize the identified set for the underlying distribution of individual effects and some of

its functionals.

The remainder of this paper is organized as follows. In Section 2 we present the baseline model and provide

our main identification results. In Section 3 we establish the asymptotic properties of our proposed ASF and

APE estimators. Section 4 extends some of our identification results to more general settings. In Section

5 we conduct Monte Carlo experiments to study the finite-sample properties of our estimators. Section 6

applies our APE estimator to an empirical illustration on female labor force participation. Finally, Section

7 concludes. The appendix contains the proofs for all propositions and theorems, as well as supplemental

tables and graphs.

2 Model and Identification

In this section, we describe the general binary response panel model of interest. We will consider two

sets of assumptions: one in which errors are logistic, and the other in which the error distribution is not
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parametrized. In both cases, the coefficients on regressors are known to be identified under standard condi-

tions. Then, we show the identification of the ASF and APE under an index sufficiency assumption on the

distribution of the heterogeneity.

2.1 General Model

Recall the baseline model in equation (1.1)

Yit = 1 (X ′itβ0 + Ci − Uit ≥ 0) ,

where i = 1, . . . , N , t = 1, . . . , T . Here, Xit ∈ Xt ⊆ RdX is a dX -vector of covariates and β0 ∈ B ⊆ RdX

is a dX -vector of unknown parameters. Let Xi ∈ X ⊆ RT×dX denote the observed covariate matrix which

has X ′it as its tth row. Let Ci ∈ C ⊆ R denote the unobserved individual-specific heterogeneity, and Uit are

idiosyncratic errors. Let Yi = (Yi1, . . . , YiT ) denote the vector of outcomes for unit i. The i subscript is

suppressed in the remainder of this section and when there is no confusion.

We make the following assumptions on the baseline model.

Assumption A1 (Model assumptions).

(i) Yt is generated according to equation (1.1);

(ii) (X, C) ⊥⊥ U1 ⊥⊥ · · · ⊥⊥ UT ;

(iii) For t = 1, . . . , T , Ut has a continuous density with respect to the Lebesgue measure that we denote by

fUt . This density is bounded.

Besides assuming model equation (1.1) holds, A1 also imposes that unobserved variables {Ut}Tt=1 are

independent from covariates and the individual-specific heterogeneity. This is a strict exogeneity assumption

on X given C. This rules out the presence of lagged dependent variables in X. We relax this assumption

and consider models with lagged dependent variables in Section 4.3. The relationship between C and X

is unrestricted by A1. We also assume {Ut}Tt=1 to be mutually independent, ruling out serial correlation.

Assumption A1.(iii) is a standard regularity condition.

Let FUt denote the cumulative distribution function of Ut. The conditional response probability is

P(Yt = 1|Xt = x,C = c) = P(Ut ≤ x′β0 + c|Xt = x,C = c) = FUt(x
′β0 + c).

For t = 1, . . . , T and x ∈ Xt, let the ASF be the conditional response probability integrated over the
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marginal distribution of the unobserved effect C:

ASFt(x) =

∫
C
P (Yt = 1|Xt = x,C = c) dFC(c) =

∫
C
FUt(x

′β0 + c) dFC(c). (2.1)

As defined in Blundell and Powell (2003), the ASF is the average conditional response probability, where

the averaging occurs over the marginal distribution of C. The ASF differs from the identified conditional

probability P(Yt = 1|Xt = x) due to the dependence between C and X. Note that under C ⊥⊥ X, a random

effects assumption, they are equal.

Our main object of interest is the APE, which measures the partial effect of changing one covariate,

averaged over the marginal distribution of C. If this covariate is continuously distributed, the APE will be

defined as the derivative of the ASF with respect to this covariate. If the covariate has a discrete distribution,

the APE will be defined as the difference between two ASFs evaluated at different support points.

More concretely, define the APE of the kth element of x ∈ Xt, denoted by x(k), as follows in the case

where x(k) is continuously distributed:

APEk,t(x) =
∂

∂x(k)

∫
C
P (Yt = 1|Xt = x,C = c) dFC(c) = β

(k)
0 ·

∫
C
fUt(x

′β0 + c) dFC(c), (2.2)

where β
(k)
0 is the kth element of β0.

In the case where X
(k)
t is discretely distributed, we let the APE be the difference between the ASF

at two values, which can be viewed as an average treatment effect. We denote these values by x and

x̃k = x+ ek(x̃(k)−x(k)), where ek denotes a vector of zeros with a 1 in position k, and where x̃(k) is another

value in the support of X
(k)
t . We let

APEk,t(x, x̃k) = ASFt(x̃k)−ASFt(x). (2.3)

2.1.1 Identification of β0

Before discussing the estimation of the ASF and APE, we first consider assumptions that lead to their point

identification. As a preliminary step, we focus on the identification of the coefficients β0, which itself relies

on previously established results. We now present two cases in which β0 is identified.

Logit Case. The leading special case we consider is one where Ut follows a standard logistic distribution,

as in Rasch (1960). Under minimal support constraints on X, assuming logistic errors entails the point

identification and
√
N -consistent estimation of β0, even with fixed effects. In fact, as shown in Chamberlain

(2010), the logistic error distribution is the only error family that allows for
√
N -consistent estimation
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without requiring further assumptions. Here we present assumptions which, together with A1, yield the

point identification of β0.

Assumption A2 (Logit case).

(i) For t = 1, . . . , T , Ut follows a standard Logistic distribution: FUt(u) = eu

1+eu ≡ Λ(u);

(ii) There exist s, s′ ∈ {1, . . . , T} such that Xs −Xs′ does not lie in a proper linear subspace of RdX .

Assumption A2.(ii) makes weak assumptions on the within-unit variation in covariates but does rule out

time-invariant regressors.

General Case: Nonparametric Errors. The most general case we consider is one where the distribution

of Ut is not specified. This case does not nest the logit case, since it requires the presence of continuous

regressors while the logit case does not. Hence we consider it separately. This case was studied in Manski

(1987), where the following assumption is made.

Assumption A2′ (General case) There exist s, s′ ∈ {1, . . . , T} such that

(i) Us and Us′ are continuously distributed with positive density everywhere on R;

(ii) The support of Xs −Xs′ does not lie in a proper linear subspace of RdX ;

(iii) For some k ∈ {1, . . . , dX}, β(k)
0 6= 0 and X

(k)
s −X(k)

s′ has positive density on R conditional on {X(1)
s −

X
(1)
s′ , . . . , X

(k−1)
s −X(k−1)

s′ , X
(k+1)
s −X(k+1)

s′ , . . . , X
(dX)
s −X(dX)

s′ } with probability one.

Like in Assumption A2.(i), the support of Ut is the entire real line. Assumption A2′.(iii) imposes that one

regressor has support on the entire real line, which was not required in A2. This full support assumption on

X
(k)
s −X(k)

s′ is key to this semiparametric identification result.

Before presenting a result on the identification of the ASF and APE, we first present a lemma that shows

the identification of β0 in the above two cases.

Lemma 2.1 (Identification of β0). Suppose A1 holds. Suppose the distribution of (Y,X) is known. If A2

holds, then β0 is point identified. If A2′ holds, then β0 is identified up to scale.

We mainly state this lemma for completeness, since it is a combination of results obtained in earlier work.

In particular, derivations for the first part of this lemma can be found in Chamberlain (1980). The second

part of this lemma is a restatement of Lemma 2 in Manski (1987). The identification of β0 is used in a

preliminary step to identify the ASF and APE, as we show below.
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2.2 Identification of the ASF and APE

Without further assumptions, it is generally impossible to point identify the ASF or the APE, even under

parametric assumptions on Ut.
3 Point identification is obtained if random effects are assumed: C ⊥⊥ X.

Under fixed effects, the ASF and APE are partially identified. To see this, denote by Gt(x
′β0,x) the

counterfactual conditional probability

Gt(x
′β0,x) ≡

∫
C
FUt(x

′β0 + c) dFC|X(c|x).

Note that we observe the following conditional probabilities:

P(Yt = 1|X = x) ≡ Gt(x′tβ0,x), for x ∈ X , t ∈ {1, . . . , T}.

By the law of total probability, the ASF for covariate value x is

ASFt(x) =

∫
C
FUt(x

′β0 + c) dFC(c)

=

∫
X
Gt(x

′β0,x) dFX(x) (2.4)

=

∫
X
Gt(x

′β0,x)1(x′tβ0 = x′β0)︸ ︷︷ ︸
=P(Yt=1|X=x)1(x′tβ0=x′β0)

dFX(x) +

∫
X
Gt(x

′β0,x)1(x′tβ0 6= x′β0)︸ ︷︷ ︸
not point-identified

dFX(x). (2.5)

We can see from equation (2.4) that the ASF is an average over the distribution of X of conditional probability

Gt(x
′β0,X). In order for the ASF to be point-identified, we need Gt(x

′β0,x) to be identified for x ∈ X ,

but this generally fails since, given X ′tβ0 = x′β0, the support of X does not equal its marginal support.

In equation (2.5), the Gt(x
′β0,x) where x′tβ0 6= x′β0 are counterfactual probabilities that are not point-

identified from the data since they do not correspond to any conditional probability of Yt given X = x.

Unless restrictions are imposed on the distribution of C|X, this causes the ASF, and therefore the APE

too, to be partially identified. For the logit case, see Davezies, D’Haultfoeuille, and Laage (2021) for partial

identification results for average marginal effects. In the nonparametric case, bounds on the ASF are obtained

in Chernozhukov, Fernández-Val, Hahn, and Newey (2013).

To achieve point identification, in this paper we instead consider an index sufficiency restriction that

imposes additional structure on the conditional distribution of the heterogeneity. Specifically, we make

assumptions such that Gt(x
′β0,x) depends on indices of x that have common support given X ′tβ0 = x′β0.

Assumption A3 (Index sufficiency).

(i) Let V ≡ v(X), where v : RT×dX → RdV is known. Let C | X d
= C | V ;

3One exception is the point identification of the average marginal effects associated with the lagged dependent variable in
the fixed effect logit AR(1) model, shown in Aguirregabiria and Carro (2020).
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(ii) Let x ∈ supp(Xt). One of the following two assumptions holds:

(a) Let X
(k)
t be continuously distributed in a neighborhood of x(k) given {X(−k)

t = x(−k)}.4 There exists

a neighborhood N of x′β0 such that N × supp(V ) ⊆ supp(X ′tβ0, V ).

(b) Let X
(k)
t be discretely distributed given {X(−k)

t = x(−k)}. Let x̃′kβ0 = x′β0 + (x̃(k) − x(k))β
(k)
0 . Let

{x′β0, x̃
′
kβ0} × supp(V ) ⊆ supp(X ′tβ0, V ).

Before proceeding with our identification result, we offer a discussion of this assumption.

Discussion of Assumption A3.(i)

Part (i) of this assumption is a correlated random effects assumption which restricts the conditional distri-

bution of C|X to depend solely on v(X), an index of X. The conditional distribution of C|v(X) remains

nonparametric though. Such index assumption is considered in Altonji and Matzkin (2005), and in Bester

and Hansen (2009).

In Altonji and Matzkin (2005), the exchangeability of fC|X(c|x1, . . . , xT ) in (x1, . . . , xT ) is assumed. In

the case where Xt is scalar, they consider symmetric polynomials as candidates for the index function, e.g.,

v(X) =
(∑T

t=1Xt,
∑

1≤t1<t2≤T Xt1Xt2

)
when the indices are the first two elementary symmetric functions.

Unlike us, Bester and Hansen (2009) do not assume v(·) is known, but they do not allow for the indices to

be arbitrary functions of X: each component on the index may only depend on one component of Xt. The

focus of these two papers is also different from ours: they identify the LAR rather than the ASF or APE,

and its identification is shown for continuous covariates. See Remark 2.3 for an explicit comparison between

the APE and LAR.

Treatment assignment models in panel data can be used to find candidate indices. This is explored in

Arkhangelsky and Imbens (2019). For example, consider the following treatment assignment model when

Xt is binary: Assume that Xt = 1(Et ≤ ν(C)) where Et are iid and independent of C, and ν is an arbitrary

function. In this case, (X1, . . . , XT )|C are iid Bernoulli variables, hence v(X) =
∑T
t=1Xt is a sufficient

statistic that satisfies X|C, v(X)
d
= X|v(X) which implies A3.(i) holds. This fact can be easily derived from

the Fisher-Neyman factorization theorem. This result is generalized in Arkhangelsky and Imbens (2019)

to cases where the distribution of X|C is from an exponential family with known sufficient statistic. For

example, if (X1, . . . , XT )|C are assumed iid Gaussian, then v(X) = (
∑T
t=1Xt,

∑T
t=1X

2
t ) would also form a

sufficient statistic.

4The notation X
(−k)
t is used to denote the Xt vector with its kth entry removed.
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In a special case where the indices are time-averages, i.e., v(X) = 1
T

∑T
t=1Xt, the index assumption is

consistent with C = ζ

((
1
T

∑T
t=1Xt

)′
γ0, η

)
where η ⊥⊥ X and ζ(·, ·) is any function. This is related to the

specification of the conditional distribution of C given X in Mundlak (1978), although we do not specify the

distribution of η, nor restrict the functional form of ζ(·, ·). In this specification for C, the one-dimensional

index ṽ(X) =
∑T
t=1X

′
tγ0 also satisfies A3.(i), but is unknown due to its dependence on unknown γ0. Lower-

dimensional indices usually lead to faster rates of convergence, but we show in Section 3 that the ASF rate

of convergence can be the standard nonparametric rate of N2/5 by letting the polynomial order in the local

polynomial regression be large enough. Therefore, we can see that multidimensional indices obviate the need

to identify and later estimate such γ0. Estimated and unknown indices could in principle be accommodated

by using the work of Ichimura and Lee (1991) on the identification and estimation of multiple index models.

We leave extensions to unknown v(·) for future research.

Discussion of Assumption A3.(ii)

Assumption A3.(ii).(a) implies that X ′tβ0 is continuously distributed in a neighborhood N of x′β0. This

allows for some components of Xt to be discretely distributed. Note that we also do not require X ′tβ0 to be

supported on the entire real line. We do require that the support of the sufficient statistic is independent

of the value of X ′tβ0 in a neighborhood of x′β0. Letting V = supp(V ) and Vt(u) = supp(V |X ′tβ0 = u), this

is stated as Vt(u) = V for u ∈ N . This support assumption is related to the common support assumption

of Imbens and Newey (2009), although we only restrict the support of V |X ′tβ0 rather than the support of

V |X. As opposed to Imbens and Newey (2009), we do not posit the existence of a first stage or of exogenous

excluded variables, since our indices are functions of X only.

Altonji and Matzkin (2005) do not require this support assumption to show the identification of the

LAR, since this object is conditional on Xt = x. To better see this difference, in their nonparamet-

ric setting, identification of the ASF or APE would require supp(v(X)|Xt = x) = supp(v(X)), which

is significantly stronger than our condition whenever more than one covariate is present. To see this,

assume dX = T = 2, X
(1)
t is continuously distributed on R, and that X

(2)
t ∈ {0, 1} is binary. Let

v(X) =
∑2
t=1Xt = (

∑2
t=1X

(1)
t ,

∑2
t=1X

(2)
t ). Then, under minimal assumptions, supp(v(X)) = R× {0, 1, 2}

but supp(v(X)|X1 = x) = R×{x(2), x(2) + 1} 6= supp(v(X)). On the other hand, the conditional support of

v(X) given {X ′tβ0 = x′tβ0} equals supp(v(X)) when β
(1)
0 6= 0. Therefore, in this example the ASF/APE will

be identified under our assumptions in the semiparametric model.

This important condition also has implications on the dimension of v(X). For example, this condition is

violated when v(X) = X, i.e., no index restriction are imposed and, equivalently, we have fixed effects. This
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is because the support of X does not equal its conditional support given X ′tβ0: supp(X|X ′tβ0 = x′β0) 6=

supp(X). In the case where v(X) =
∑T
t=1Xt ∈ RdX , this condition is written as supp(

∑T
t=1Xt|X ′tβ0 = u) =

supp(
∑T
t=1Xt). For example, we can see that this holds in the simple case where (X1, . . . , XT ) are jointly

normally distributed. In Remark 2.2 below we show that while this support condition may not always be

warranted, the ASF and APE are partially identified when it fails.

Assumption A3.(ii).(b) is used in when the covariate of interest is discrete, and ensures that the ASF is

identified at the two values x and x̃k. When these ASFs are identified, the APE, which is a difference in

ASF, is also identified.

Finally, we note that the validity of these assumptions depends on the value of unknown β0. However,

β0 is point identified from the data in the logit case, and point identified up to scale in the non-logistic case.

Assumption A3.(ii) does not depend on the scale normalization, therefore it only depends on observable

random variables and identified parameters. Hence, it is a falsifiable assumption.

With these assumptions, we can show that the ASF and APE are point identified.

Theorem 2.1. Suppose A1 and A3 hold. Suppose either A2 or A2′ hold. Suppose the distribution of (Y,X)

is known. Then, ASFt(x) and APEk,t(x) are point identified.

We now provide some intuition for this result. Since β0 is identified, P(Yt = 1|X ′tβ0 = x′β0, V = v) is

identified for all v ∈ V by A3. Then, we can write

ASFt(x) =

∫
C
FUt(x

′β0 + c) dFC(c)

=

∫
V

∫
C
FUt(x

′β0 + c) dFC|V (c|v) dFV (v)

=

∫
V
P(Yt = 1|X ′tβ0 = x′β0, V = v) dFV (v). (2.6)

The second equality follows from the law of total probability and the last one from the index restriction.

Equation (2.6) depends only on {P(Yt = 1|X ′tβ0 = x′β0, V = v) : v ∈ V} and on the marginal distribution of

V , which are both identified from the data.

To identify the APE for a continuous regressor, we note that A3.(ii).(a) implies the ASF is point identified

for values of Xt near x. Since the APE is a derivative of the ASF, we can identify the APE as a limit of

finite differences between ASFs. Formally, we can write

APEk,t(x) =
∂

∂x(k)

∫
V
P(Yt = 1|X ′tβ0 = x′β0, V = v) dFV (v)

= β
(k)
0 ·

∫
V

∂

∂u
P(Yt = 1|X ′tβ0 = u, V = v)|u=x′β0

dFV (v). (2.7)

13



All quantities in equation (2.7) are identified, hence the APE is identified. Note that the identification of

the ASF and APE bypasses the need to identify FC , the distribution of the heterogeneity. In Section 4.1

below, we show that FC is identified under stronger support assumptions on (X ′tβ0, V ).

Remark 2.1 (Excluded control variable). A more general version of A3 is that we can identify a variable

V such that C|X, V d
= C|V . This is a control variable assumption, where V may be an unobservable that is

not functionally related to X, as is the case in A3.(i). For example, it could be the residual in a first-stage

equation relating X to some excluded instruments, whose existence we do not assume in this paper. See

for example Imbens and Newey (2009) in the nonseparable cross-sectional case, or Laage (2020) for a panel

model with triangular endogeneity and control functions. If this control variable satisfies Assumption A3, our

identification results still apply. As for estimation, if V is identified from a first-stage equation, we should

substitute V̂i for Vi, where V̂i is a suitable estimator for the control variable. This generated regressor’s

impact on the limiting distribution would then have to be taken into account.5 In this paper, we focus on

the case where no such V is observed or identified from a first-stage model, and instead where V is an index

of X.

Remark 2.2 (Relaxing support assumptions). The validity of support assumption A3.(ii) depends intricately

on the support of X, and on the considered value x. For a given value of x, it is possible this assumption

fails. When it does, we can show that the ASF and APE are partially identified instead. Recall that

Vt(u) = supp(V |X ′tβ0 = u), and assume that Vt(x′β0) ( V. Then, the conditional probability P(Yt =

1|X ′tβ0 = x′β0, V = v) is identified for all v ∈ Vt(x′β0). Therefore, following Theorem 4 in Imbens and

Newey (2009), the identified set for the ASF is contained in

ASFt(x) ∈
[
ASFt(x),ASFt(x)

]
≡

[∫
Vt(x′β0)

P(Yt = 1|X ′tβ0 = x′β0, V = v) dFV (v),

∫
Vt(x′β0)

P(Yt = 1|X ′tβ0 = x′β0, V = v) dFV (v) + P(V ∈ V \ Vt(x′β0))

]
.

The width of these bounds depends only on the probability that V is outside of Vt(x′β0), which is small if

V is continuously distributed and the measure of V \ Vt(x′β0) is close to zero. Hence, small violations of the

support condition yield a narrow identified set. These bounds can be used to construct bounds on the APE

with discrete covariates as well:

APEk,t(x, x̃k) ∈
[
ASFt(x̃k)−ASFt(x),ASFt(x̃k)−ASFt(x)

]
.

5Note that we take into account the generated regressor X′tβ̂’s impact in this paper.
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To obtains bounds on the APE for a continuous covariate, an upper bound on the density fUt is needed.

While it may not be easy to postulate such a bound, in the logit case this density attains a maximal value

of 1 at the origin. Therefore, these bounds on fUt yield the following APE bounds:

APEk,t(x) ∈
[
β

(k)
0 ·

∫
V

∂

∂u
P(Yt = 1|X ′tβ0 = u, V = v)|u=x′β0

dFV (v),

β
(k)
0 ·

∫
V

∂

∂u
P(Yt = 1|X ′tβ0 = u, V = v)|u=x′β0

dFV (v) + β
(k)
0 · P(V ∈ V \ Vt(x′β0))

]
.

The estimation methods we provide below for the point-identified ASF or APE can easily be adapted to

estimate these bounds under violations of Assumption A3.(ii).

Remark 2.3 (LAR). The LAR is defined as

LARk,t(x) =

∫
∂

∂x(k)
P(Yt = 1|Xt = x,C = c) dFC|Xt(c|x), (2.8)

whereas the APE measures changes in the ASF, which is the average value of Yt whenXt has been exogenously

set to x. Thus, the APE is analogous to average treatment effects (ATE) in the causal inference literature,

which averages the difference between two potential outcomes over its unconditional distribution; meanwhile,

the LAR is analogous to a local treatment effect, where the averaging occurs over the conditional distribution

of the heterogeneity given Xt = x. Note that neither estimand is more general, since knowledge of the LAR

for all x ∈ Xt does not imply knowledge of APEs, and vice-versa. See Abrevaya and Hsu (2021) for a

comparison of various causal estimands in panel models with unobserved heterogeneity. Section 4.2 further

shows that the LAR can be identified under weaker index support assumptions than the APE.

3 Estimation

We now propose estimators for the ASF and APE, and establish their limiting distributions. The estimators

we construct are sample analogs of (2.6) for the ASF, and of (2.7) for the APE. We show that the rate of

convergence of the ASF estimator is similar to that of a kernel regression estimator with one continuous

regressor. The APE estimator converges at the same rate as a derivative of a kernel regression estimator

with one continuous regressor. In particular, we show the ASF converges at the rate
√
NbN and the APE

at the rate
√
Nb3N where bN is a scalar bandwidth used in the estimation of the conditional expectation of

Yt. We describe below in Assumption B6 what assumptions bN must satisfy. These rates of convergence are

obtained from our estimator being a partial mean, where we average over all components of the conditional

expectation of E[Yt|X ′tβ0, V ], except for one. The rate of convergence does not depend on dX or T , the

dimensions of X.
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Throughout this section, we assume that we observe a random sample of (Yi,Xi) of size N .

Assumption B1 (IID). {(Yi,Xi)}Ni=1 are iid.

We start by considering the estimation of β0, which forms the first step of our semiparametric estimator.

3.1 Estimation of β0

Here, we again consider two cases. In the first case, the distribution of Ut is assumed to be logistic and

the CMLE is used to estimate β0. In the second case, the distribution of Ut is not specified. In this

case, β0 can be estimated by the smoothed maximum score estimator, or using a variety of
√
N -consistent

estimators if stronger assumptions are made. The convergence of β̂ needs to be relatively fast to establish

the limiting distributions of the ASF and APE estimators. In particular, convergence rates equal to or

slower than N1/3 are not compatible with our rate assumption B6 below. This rules out the maximum score

estimator of Manski (1987), as Kim and Pollard (1990) show its cube-root convergence. These estimators’

rate of convergence and associated regularity conditions are analyzed in prior work, so we only offer a brief

description here.

Logit Case. In the case where Ut follows a logistic distribution, we can use the conditional maximum

likelihood estimator (CMLE) of Rasch (1960) and Andersen (1970). To define the estimator, let ni =∑T
t=1 Yit. Then, under equation (1.1) and Assumption A1,

P(Yi = (y1, . . . , yT ) | Xi, ni) =
exp(

∑T
t=1 ytX

′
itβ0)∑

d∈Dni
exp(

∑T
t=1 dtX

′
itβ0)

,

where

Dni =

{
d ∈ {0, 1}T :

T∑
t=1

dt = ni

}
.

We define the CMLE as follows:

β̂ = argmax
β∈B

N∏
i=1

exp(
∑T
t=1 YitX

′
itβ)∑

d∈Dni
exp(

∑T
t=1 dtX

′
itβ)

.

As is well known (Andersen, 1970), this estimator is
√
N -consistent for β0 under standard regularity condi-

tions.

General Case. When Ut is not assumed to be logistic, the CMLE is inconsistent. If Ut instead satisfies

Assumption A2′, there exist alternative estimators for β0. Without imposing further assumptions, these

estimators’ rate of convergence is slower than
√
N : See Chamberlain (2010).

16



One such estimator is the conditional smoothed maximum score estimator of Charlier, Melenberg, and

van Soest (1995) and Kyriazidou (1995), a generalization of Horowitz (1992) to the panel model of Manski

(1987). The estimator is defined by

β̂ = argmax
β∈B

1

N

N∑
i=1

∑
1≤s<t≤T

(Yis − Yit) · Ĩ
(

(Xis −Xit)
′β

hN

)
,

where Ĩ(·/hN ) is a smooth function that approximates the indicator function as hN → 0. Since β0 is only

identified up to scale, we can normalize the absolute value of the first element of β̂ to be unity. As in

Horowitz (1992), if Ĩ can be represented as the integral of a νth order kernel, ν ≥ 2, the rate of convergence

of β̂ is N
ν

2ν+1 .

While
√
N -estimation of β0 is generally not possible without specifying Ut’s distribution, there are alter-

native assumptions and estimators that allow for it. In particular, Lee (1999) considers an “index increment

sufficiency” assumption: (X ′tβ0, C)|Xt −Xs
d
= (X ′tβ0, C)|(Xt −Xs)

′β0. Honoré and Lewbel (2002) assume

the presence of a special regressor among Xt. Chen, Si, Zhang, and Zhou (2017) assume that C = v(X) + ζ,

where ζ satisfies (U1, . . . , UT , ζ) ⊥⊥ X. In all three papers,
√
N -consistent estimators for β0 are proposed.

Both Cases. To accommodate the above two cases, as well as the variety of estimators considered within

the general case, we make the following high-level assumption on the preliminary estimator β̂.

Assumption B2 (First-stage estimator). The estimator β̂ satisfies

aN‖β̂ − β0‖ = Op(1),

where aN = O(N ε) for some ε > 0.

This assumption holds with ε = 1/2 in the case where Ut has a logistic distribution and the CMLE is

used to estimate β0. When the smoothed maximum score estimator is used to estimate β0, this assumption

holds with ε = ν/(2ν + 1), where ν is the order of the kernel used to estimate β̂. The rate of convergence of

this preliminary estimator will play a role in Assumption B6 below.

3.2 A Semiparametric Estimator of the ASF

We now present the ASF estimator and show its consistency and asymptotic normality under our as-

sumptions. As mentioned earlier, this estimator is a three-step estimator. Section 3.1 examined the

first step, which estimates the common parameters using either a conditional logit or smoothed maximum

score estimator. We now describe the second and third steps, which estimate the ASF using a sample
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analog of equation (2.6). In the second step, we nonparametrically estimate the conditional expectation

E[Yt|X ′tβ0 = x′β0, V = v] using a local polynomial regression of Yt on generated regressor X ′tβ̂ and V . In the

final step, we evaluate the estimated conditional expectation at (x′β̂, Vi) for i = 1, . . . , N , and then average

over the empirical marginal distribution of Vi. To define this estimator, let Zt(β) = (X ′tβ, V ) ∈ R1+dV

and denote Zt = Zt(β0). Throughout the paper, we use z to denote z = (u, v) ∈ R1+dV where u ∈ R and

v ∈ RdV . In the rest of this section, we assume that V ’s components are all continuously distributed and

that V has dimension dV . In our analysis, the number of discrete components of V does not affect the rate

of convergence. When the number of support points for the discrete components is small, we can handle

these discrete components by performing a cell-by-cell analysis. Alternatively, they can be accommodated

through a discrete kernel, for example as in Racine and Li (2004) equation (2.3). We omit these cases for

notational simplicity.

We consider a local polynomial regression of order ` ≥ 0. The notation that follows is similar to that in

Masry (1996). For s ∈ {0, 1, . . . , `}, let Ns =
(
s+dV
dV

)
be the number of distinct (1 + dV )-tuples r ∈ R1+dV

such that |r| ≡
∑1+dV
k=1 |rk| = s. We arrange these (1 + dV )-tuples in a lexicographical order with the

highest priority given to the last position, so that (0, . . . , 0, s) is the first element and (s, 0, . . . , 0) is the

last element in this sequence. We let τs denote this one-to-one mapping. This mapping satisfies τs(1) =

(0, . . . , 0, s), . . . , τs(Ns) = (s, 0, . . . , 0). For each s ∈ {0, 1, . . . , `}, define Ns×1 vector ξs(a) by its kth element

aτs(k), where k ∈ {1, . . . , 1 + dV } and a ∈ R1+dV . Here we used the notation ab = ab11 × · · · × a
bdV
dV

. Let

ξ(a) = (1, ξ1(a)′, . . . , ξ`(a)′)′ ∈ RN̄ ,

where N̄ =
∑`
s=0Ns.

Let K : R1+dV → R denote a (1 + dV )-dimensional kernel. Let Kb(z) = b−(1+dV )K(z), where b > 0 is a

scalar bandwidth. Let bN denote a sequence of bandwidths that converges to zero.

Let

ĥ(z; β̂) = argmin
h∈RN̄

N∑
j=1

Yjt − ∑
0≤|r|≤`

(
Zjt(β̂)− z

bN

)r
hr

2

KbN

(
Zjt(β̂)− z

bN

)

= argmin
h∈RN̄

N∑
j=1

(
Yjt − ξ

(
Zjt(β̂)− z

bN

)′
h

)2

KbN

(
Zjt(β̂)− z

bN

)
.

As β̂
p−→ β0, the vector ĥ(z; β̂) estimates coefficients in a Taylor expansion of degree ` of the conditional

expectation of Yt given Zt(β0) = z. In particular, the first component of this vector, denoted by ĥ1(z; β̂) =

e′1ĥ(z; β̂), is an estimator of the conditional mean of Yt given (X ′tβ0, V ). This estimator is a least-squares
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estimator and can be written as

ĥ(z; β̂) = SN (z; β̂)−1TN (z; β̂),

where

SN (z;β) =
1

N

N∑
j=1

ξ

(
Zjt(β)− z

bN

)
ξ

(
Zjt(β)− z

bN

)′
KbN

(
Zjt(β)− z

bN

)

TN (z;β) =
1

N

N∑
j=1

ξ

(
Zjt(β)− z

bN

)
YjtKbN

(
Zjt(β)− z

bN

)
.

In analogy to equation (2.6), we average this conditional mean over the empirical marginal distribution

of Vi to obtain the ASF estimator:

ÂSFt(x) =
1

N

N∑
i=1

ĥ1(x′β̂, Vi; β̂)π̂it,

where ĥ1(z; β̂) = e′1ĥ(z; β̂) is the first component in ĥ(z; β̂), π̂it = 1((x′β̂, Vi) ∈ Zt) is a trimming function,

and Zt is an appropriately selected compact set in which the density fZt(β)(z) is bounded away from zero.

This trimming function prevents issues with the invertibility of SN (z; β̂). Since Zt is a fixed compact set,

the parameter that is consistently estimated by ÂSFt is a trimmed ASF defined by

ASFπt (x) ≡ E[E[Yt|X ′tβ0 = x′β0, V ]πt]

=

∫
C
FUt(x

′β0 + c)P((x′β0, V ) ∈ Zt|C = c) dFC(c).

Here we let πit = 1((x′β0, Vi) ∈ Zt). Note that if (x′β0, V ) ∈ Zt with probability 1, ASFπt (x) = ASFt(x)

and the trimming does not alter the estimand. By expanding Zt along with the sample size at a slow enough

rate,6 it is likely that ASFt(x) is consistently estimated by ÂSFt(x). Since fixed trimming is often employed

in the partial mean literature (see, for example, Newey (1994) or more recently Lee (2018)) we focus on this

approach.

To understand the effect of trimming on the estimand, note that FUt(x
′β0 + c) ∈ (0, 1) is bounded. This

means that if P((x′β0, V ) ∈ Zt|C = c) is close to 1, the trimmed ASF will be close to the ASF. In particular,

if P((x′β0, V ) ∈ Zt|C) ∈ [1− ε, 1] with probability 1, then

ASFt(x) ∈
[
ASFπt (x),

ASFπt (x)

1− ε

]
(3.1)

are bounds on the true ASF that collapse to a point as ε approaches zero.

To obtain the limiting distribution of the ASF, we make the following assumptions. We begin with a

6This is sometimes called a vanishing, or random, trimming approach.
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standard assumption on the kernel.

Assumption B3 (Kernel). The kernel K satisfies K(z) = K(u) ·
∏dV
k=1K(vk) where K : R → R≥0 is such

that (i) K(u) is equal to zero for all u outside of a compact set, (ii) K is twice continuously differentiable

on R with all these derivatives being Lipschitz continuous, (iii)
∫∞
−∞K(u) du = 1, (iv) K is symmetric.

Note that we do not require the use of higher-order kernels in this local polynomial regression.

To state the next assumption precisely, let Cm(A) denote the set of m-times continuously differentiable

functions f : A → R. Here m is an integer and A is a subset of R1+dV . Denote the differential operator by

∇λ =
∂|λ|

∂zλ1
1 · · · ∂z

λ1+dV

1+dV

,

where λ = (λ1, . . . , λ1+dV ) ∈ {0, 1, . . .}1+dV is comprised of nonnegative integers such that
∑1+dV
k=1 λk = |λ|.

For a given set A, let

‖f‖Am = max
|λ|≤m

sup
z∈int(A)

‖∇λf(z)‖.

We omit the A superscript when it does not cause confusion. Next, we impose smoothness and regularity

conditions on the distribution of (Yt, Zt(β)) for β in a neighborhood of β0.

Assumption B4 (Smoothness). Let Bε = {β ∈ B : ‖β − β0‖ ≤ ε}.

(i) There exists ε > 0 such that for all β ∈ Bε, Zt(β) has a density fZt(β)(z) with respect to the Lebesgue

measure;

(ii) fZt(β)(z) and
∥∥∥ ∂
∂β fZt(β)(z)

∥∥∥ are uniformly bounded and uniformly bounded away from zero for z ∈ Zt

and β ∈ Bε, where Zt is a compact set;

(iii)
∥∥fZt(β0)(z)

∥∥Zt
`+2

<∞ and ‖E[Yt|Zt(β0) = z]‖Zt`+2 <∞;

(iv) x′β0 is in the interior of Z1t ≡ {e′1z : z ∈ Zt};

(v) fZt(β0)|Yt(z|y) exists and is bounded for y ∈ {0, 1}.

Assumptions (i) and (ii) ensure the boundedness and sufficient smoothness of the distribution of fZt(β)

as a function of β in a neighborhood of β0. Assumption (iii) ensures additional smoothness in z for the

distribution of Zt(β0). The degree of smoothness is linked to the degree of the polynomial in the local

polynomial regression. Assumptions (iv) and (v) are standard technical assumptions. We also impose the

following moment existence condition.

Assumption B5 (Moment existence). Let E[‖Xt‖2] <∞.
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The following rate conditions govern the rate of convergence of the bandwidth bN to zero.

Assumption B6 (Bandwidth). For some κ, δ > 0, let bN = κ ·N−δ. When ` is odd, δ satisfies

max

{
1

2`+ 3
, 1− 2ε

}
< δ < min

{
2ε

3 + 2dV
,

1

1 + 2dV

}
.

When ` is even, δ satisfies

max

{
1

2`+ 5
, 1− 2ε

}
< δ < min

{
2ε

3 + 2dV
,

1

1 + 2dV

}
.

This assumption has joint implications on these four quantities: δ, the bandwidth’s rate of convergence to

zero; ε, the rate of convergence of β̂ to β0; dV , the dimension of V ; and `, the order of the local polynomial

regression. One of these implications is on the minimal value of ε, the rate of convergence of β̂. The

constraint 1− 2ε < δ < 2ε
3+2dV

implies that ε > 3+2dV
8+4dV

. This is satisfied for all dV when ε = 1/2, e.g., when

β̂ is estimated by the CMLE. In the case when dV = 1, it requires that ε > 5/12. These rate considerations

motivate our earlier discussion of the smoothed maximum score estimator’s convergence rate. This estimator

satisfies the rate assumption when ν > 3
2 + dV . Hence, a kernel of order ν = 4 for the smoothed maximum

score estimator satisfies our assumptions when dV ≤ 2.

Another consequence of this assumption is that ` must increase as dV increases. In particular, we require

` > dV when ε = 1/2, which corresponds to the rate of convergence of the CMLE. Thus we must consider

higher-order local polynomials if the dimension of V is large.

We can now state the main convergence result for the ASF.

Theorem 3.1 (ASF asymptotics). Suppose the assumptions of Theorem 2.1 hold. Suppose Assumptions

B1–B6 hold. Then,

√
NbN

(
ÂSFt(x)−ASFπt (x)

)
d−→ N (0, σ2

ASFt(x
′β0)),

where

σ2
ASFt(u) = E

[
Var(Yt|X ′tβ0 = u, V )

fV (V )

fZt(β0)(u, V )
1((u, V ) ∈ Zt)

]
· e′1
(∫

ξ(z)ξ(z)′K(z) dz

)−1 ∫ (∫
K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′
du

(∫
ξ(z)ξ(z)′K(z) dz

)−1

e1.

To understand the limiting distribution of this estimator, we break down its sampling variation into

four separate sources. The terms associated with three of these are asymptotically negligible under our
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assumptions. We can write

√
NbN

(
ÂSFt(x)−ASFπt (x)

)
=
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x′β̂, Vi; β̂)− ĥ1(x′β̂, Vi;β0)

)
π̂it

)

+
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x′β̂, Vi;β0)− ĥ1(x′β0, Vi;β0)

)
π̂it

)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)(π̂it − πit)

)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
.

The first term reflects the impact of the generated regressors X ′tβ̂ being used instead of X ′tβ0. The bandwidth

constraints involving ε—the rate of convergence of β̂ to β0—ensure this term is asymptotically negligible. The

second term reflects the impact of the approximation of the evaluation point x′β0 by x′β̂. Once again, ε plays

a crucial role and this term is asymptotically negligible as it is of asymptotic order Op(
√
NbNa

−1
N ) = op(1)

by our assumptions. The third term pertains to the estimation of the trimming function πit by π̂it. This

term is asymptotically dominated due to the superconsistency of π̂it to πit uniformly in i = 1, . . . , N . The

fourth and final term asymptotically dominates the other three and converges in distribution to a mean-

zero Gaussian variable at the
√
NbN rate. Some of the technical tools we use to show this convergence in

distribution build on Masry (1996) and Kong, Linton, and Xia (2010).

The rate of convergence of ÂSFt(x) when ε = 1/2 isN δ̃ASF , where δ̃ASF ranges in the interval
(

1+dV
3+2dV

, 1+`
3+2`

)
.

In the case where dV = 1 and ` = 2, this range corresponds to
(

2
5 ,

3
7

)
. Recall that 2/5 is the standard rate of

convergence of univariate kernel estimation when using second-order kernels. We again note that this rate

of convergence does not depend on either T or dX , the dimension of Xt.

3.3 Semiparametric Estimation of the APE

We focus here on the case where X
(k)
t is continuously distributed. When X

(k)
t is discretely distributed,

the APE is a difference between two ASFs, in which case Theorem 3.1 can be used to obtain its limiting

distribution.

Let ĥ2(z; β̂) = 1
bN
e′2+dV

ĥ(z; β̂) denote the (2 + dV )-th component of the local polynomial regression

coefficient vector. By the definition of the above lexicographical order, this is an estimator of the derivative

of the conditional mean of Yt given (X ′tβ0, V ) = (u, v) with respect to u. This estimated derivative is used
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in the APE estimator, which is defined as

ÂPEk,t(x) = β̂(k) · 1

N

N∑
i=1

ĥ2(x′β̂, Vi; β̂)π̂it,

where β̂(k) denotes the kth component of β̂.

As for the ASF, we use a trimming function in the estimator for technical reasons. Therefore, the

estimator is consistent for a trimmed APE. This trimmed APE is defined as

APEπk,t(x) ≡ E
[

∂

∂x(k)
E[Yt|X ′tβ0 = x′β0, V ] · πt

]
= β

(k)
0 · E

[
∂

∂u
E[Yt|X ′tβ0 = u, V ]|u=x′β0

· πt
]

= β
(k)
0 ·

∫
C
fUt(x

′β0 + c)P((x′β0, V ) ∈ Zt|C = c) dFC(c).

The difference between the trimmed and untrimmed APE depends solely on the probability P((x′β0, V ) ∈

Zt|C = c) ∈ [0, 1]. Therefore, the trimmed APE is attenuated relative to its untrimmed counterpart, and

the size of the bias depends on the discrepancy between the above probability and 1. An analogous result to

the ASF bounds in equation (3.1) can be easily constructed when knowledge of fUt is assumed, e.g., when

Ut has a logistic distribution.

The following theorem shows that the APE is
√
Nb3N -consistent, where bN is a bandwidth satisfying

Assumption B6. Like the ASF, the APE’s rate of convergence does not depend on the dimension of X.

Theorem 3.2 (APE asymptotics). Suppose the assumptions of Theorem 2.1 hold. Suppose Assumptions

B1–B6 hold. Suppose X
(k)
t is continuously distributed. Then,√
Nb3N

(
ÂPEk,t(x)−APEπk,t(x)

)
d−→ N

(
0, (β

(k)
0 )2 · σ2

APEt(x
′β0)

)
,

where

σ2
APEt(u) = E

[
Var(Yt|X ′tβ0 = u, V )

fV (V )

fZt(β0)(u, V )
1((u, V ) ∈ Zt)

]
· e′2+dV

(∫
ξ(z)ξ(z)′K(z) dz

)−1 ∫ (∫
K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′
du

(∫
ξ(z)ξ(z)′K(z) dz

)−1

e2+dV .

We can decompose the APE’s sample variation into five components. The first four components are

analogous to those in the earlier ASF decomposition. In particular, the fourth component is

β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)

and converges in distribution to a mean-zero Gaussian distribution while dominating the other components.
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The fifth component is due to the presence of β̂(k) and is of the same order as
√
Nb3N (β̂(k) − β

(k)
0 ) =

Op(
√
Nb3NaN ) = op(1) by B6.

The rate of convergence of ÂPEk,t(x) in the logit case is N δ̃APE , where δ̃APE ranges in the interval(
dV

3+2dV
, `

3+2`

)
. When dV = 1 and ` = 2, this range equals

(
1
5 ,

2
7

)
. Recall that 2/7 is the standard rate of

convergence of for derivatives of univariate kernel estimators when using second-order kernels. Our estimator

can approach and achieve this rate whenever ` ≥ 2, i.e., the local polynomial contains quadratic terms.

3.4 Implementation Details

Here are a few practical concerns related to the implementation of the ASF and APE estimators. We explore

some of these in more detail in our simulations (Section 5) and empirical illustration (Section 6).

Local polynomial regression. First, a common practice in kernel-based methods is the standardization

and orthogonalization of the conditioning variables, in our case Zt(β̂) = (X ′tβ̂, V ), before the nonparametric

estimation step. The standardization leads to more comparable scales across different components of Zt(β̂).

The orthogonalization, which can be done via a Cholesky decomposition, is performed on V alone rather

than all of Zt(β̂).7 This orthogonalization makes it sensible to use a product of one-dimensional kernels as

our joint kernel, as is done in Assumption B3.

Second, according to Assumption B6, the required polynomial order increases with dV , the number of

continuous index variables. When dV is 1 or 2, as in our Monte Carlo and empirical illustration, any ` ≥ 2

is sufficient. Larger values of ` improve the accuracy of the nonparametric approximation but may cause

overfitting, especially in small samples. In general, our estimates are not sensitive to ` around 2 to 4 in our

Monte Carlo simulations and empirical illustration. We use ` = 3 in the Monte Carlo simulations and ` = 2

in the empirical illustration. The smaller ` is adopted for the latter because there are discrete index variables

dividing the observations into cells, resulting in fewer observations in each cell: See Section 6.1.

Third, we modified the Gaussian kernel as follows to satisfy Assumption B3:

K(u) =


1√
2π

exp(−u2/2) for |u| ≤ 5,
1√
2π

exp(−52/2) ·
(
4(6− |u|)5 − 6(6− |u|)4 + 3(6− |u|)3

)
for 5 < |u| ≤ 6,

0 for |u| > 6.

This kernel is equivalent to the Gaussian kernel for |u| ≤ 5 and their results are generally indistinguishable.

The truncation at ±6 ensures the compact support assumption B3.(i) holds. The quintic polynomial for

5 < |u| ≤ 6 guarantees the twice continuous differentiability assumed in B3.(ii).

7This is for technical reasons that ensure that x′β̂ and V enter in the kernel as a product since the latter is averaged out
based on its empirical distribution: see the proofs in Appendix B, such as the proof of Lemma B.1.
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Bandwidth selection. In practice, one needs to select a bandwidth bN = κ·N−δ. First, we choose δ∗ that

satisfies our rate conditions in Assumption B6. Then, we find the scaling constant κ∗ using leave-one-out

cross-validation over a finite grid. In our simulations and empirical illustration, κ∗ usually ranges from 1 to

2, and the estimated ASF and APE are generally stable for scaling constants κ ranging in [κ∗−0.2, κ∗+0.2].

Trimming set. The compact set Zt in the trimming function π̂it = 1((x′β̂, Vi) ∈ Zt) helps bound fZt(β̂)(z)

away from zero. Candidate criteria could be: a lower bound directly on f̂Zt(β̂)(z) = 1
N

∑N
j=1KbN

(
Zjt(β̂)−z

bN

)
,

an upper bound on the condition number of SN (z; β̂) to ensure the accuracy of matrix inversion and, in a

similar sense, a lower bound on the determinant of SN (z; β̂). We combine all three criteria simultaneously

to construct the trimming set in our Monte Carlo simulations and empirical illustration.

Asymptotic variance estimation. To conduct inference on the ASF and APE, one could in princi-

ple estimate σASFt(x
′β0) and σAPEt(x

′β0) analytically. This can be done by estimating Var(Yt|X ′tβ0 =

x′β0, Vi) by ĥ1(x′β̂, Vi; β̂)(1 − ĥ1(x′β̂, Vi; β̂)), fZt(x
′β0, Vi) by 1

N

∑N
j=1KbN

(
Zjt(β̂)−(x′β̂,Vi)

bN

)
, and fV (Vi) by

1
N

∑N
j=1KVbN

(
Vj−Vi
bN

)
. For simplicity, we focus on bootstrap-based inference instead. Another benefit of the

bootstrap is that it may better capture higher-order terms in the asymptotic expansion of our estimator.

Multiple time periods. Finally, note that the above estimator is for the ASF (or APE), at period t, which

may vary with t in the population. Under a stationarity assumption, i.e., FUt = FUt′ for all t, t′ ∈ {1, . . . , T},

then ASFt(x) = ASFt′(x) for any pair of time periods. For example, this assumption was made in A2.(i) in

the logit case. When the ASF does not depend on t, we can combine ASF estimators from multiple time

periods to obtain a more precise estimator. A particularly simple combination consists of averaging the

estimated ASFs over time:

ASF(x) =
1

T

T∑
t=1

ÂSFt(x).

The asymptotic variance of the equally weighted average can be reduced by selecting weights that depend on

t. Weights that minimize the asymptotic variance of the weighted ASF depend on the inverse of an estimate

of the joint asymptotic covariance matrix of all T ASF estimators. For simplicity, we propose the simple

time average as our rule of thumb.
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4 Extensions

4.1 Identification of the Heterogeneity Distribution

In the logit case, we show that full support assumptions lead to the identification of the marginal distribu-

tion of the unobserved heterogeneity. In the general case, we also show that further support assumptions

point-identify FC even when Ut is not specified. Therefore, we can recover additional functionals of this

unconditional distribution. For example, the entire distribution of C or other nonlinear functionals of the

conditional response probability FUt(x
′
tβ0 +C) could be of interest, such as its variance or its quantiles: see

Chernozhukov, Fernández-Val, and Luo (2018). The following proposition formalizes the logit result.

Proposition 4.1 (Logit case). Suppose A1–A3 hold. Suppose supp(X ′tβ0, V ) = R × V. Suppose the

distribution of (Y,X) is known. Then, FC|V and FC are point-identified.

Note that this proposition applies only to the logit case. This result relies on a deconvolution, which

requires stronger support conditions than required by Theorem 2.1. In particular, the support restriction

implies that X ′tβ0 has full support on the real line. This is the case when at least one regressor, say X
(k)
t ,

has full support conditional on X
(−k)
t , and when β

(k)
0 6= 0, which is related to A2′.(iii). Under this support

assumption, it is possible to recover the conditional distribution of Ut − C|{V = v} over its entire support,

for all v ∈ V. Given that the distribution of Ut|V
d
= Ut is known, a conditional deconvolution argument

shows the point identification of the conditional distribution of C|V .

Since the distribution of V is identified, the marginal distribution of C is also identified. This implies the

identification of all functionals of (FC , FY,X, β0), such as quantiles of the conditional response probability

Λ(x′β0 + C). The estimation of FC and its functionals is beyond the scope of this paper.

Going further, under stronger support restrictions, we can also show the identification of the distributions

of Ut and C when neither are specified. This is described in the following proposition.

Proposition 4.2 (General case). Suppose A1, A2’, and A3 hold. For 1 ≤ s < t ≤ T , assume that

supp(X ′sβ0, X
′
tβ0, V ) = R2 × V. Assume the conditional characteristic functions of Us, Ut, and C have no

zeros. Suppose the distribution of (Y,X) is known. Then, FC , FUs and FUt are point-identified.

This result uses Kotlarski’s lemma (Kotlarski, 1967), which has also been used in panel data models by

Evdokimov (2009). It requires stronger support assumptions on the joint distribution of indices X ′sβ0 and

X ′tβ0 to ensure the nonparametric identification of the distribution of (Us−C,Ut−C)|V . The conditions for

the application of Kotlarski’s lemma, such as the characteristic function restrictions, can be relaxed following

Evdokimov and White (2012).
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4.2 Identification of the LAR

We now show that the LAR from equation (2.8) is identified under weaker assumptions than required for

the identification of the APE.

First, to obtain the identification of the LAR, we replace A3 with the following assumption. For simplicity,

we only consider the case where the covariate of interest, X
(k)
t , is continuously distributed.

Assumption A3∗ (Local average response)

(i) Let V ≡ v(X), where v : RT×dX → RdV is known. Let C | X d
= C | V ;

(ii) Let x ∈ supp(Xt). Let X
(k)
t be continuously distributed in a neighborhood of x(k) given {X(−k)

t = x(−k)}.

There exists a neighborhood N of x′β0 such that supp(V |X ′tβ0 = u) 6= ∅ for all u ∈ N .

Contrary to Assumption A3, supp(V |X ′tβ0 = u) does not need to equal the unconditional support V for

all u ∈ N to identify the LAR. We only require it to be nonempty for all u. This assumption allows us to

identify ∂
∂uE[Yt|X ′tβ0 = u, V = v] from the data. Similar to equation (2.4) in Altonji and Matzkin (2005),

the LAR is identified as

LARk,t(x) = β
(k)
0 ·

∫
supp(V |Xt=x)

∂

∂u
P(Yt = 1|X ′tβ0 = u, V = v)|u=x′β0

dFV |Xt(v|x).

Note that A3∗ only constrains the support of V |X ′tβ0, and not of V |Xt as is the case in Altonji and Matzkin

(2005). This is a weaker constraint since we condition on a single index X ′tβ0 rather than all regressors.

Estimation of the LAR could proceed by replacing the components of the above equation with sample

analogs. One such estimator is proposed in Altonji and Matzkin (2005) for the nonparametric case. One

could also propose an estimator based on a local polynomial regression, which is used in this paper, and

which uses the single-index structure of the outcome equation (1.1). We leave the asymptotic analysis of the

LAR estimator for future work.

4.3 Extension to a dynamic panel model

We now present an extension of our identification results to a dynamic panel model.8 Aguirregabiria and

Carro (2020) establish the identification of the average marginal effects for a change in Yt−1, and Dobronyi,

Gu, and Kim (2021) consider the (partial) identification of functionals of the underlying distribution of

individual effects. Both papers utilize the logistic error distribution. Relaxing the logistic assumption, but

making the index sufficiency assumption on the unobserved heterogeneity, we obtain identification results

8See Arellano and Bonhomme (2017) for a review of nonlinear dynamic panel data models.
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for the ASF and APE corresponding to exogenous changes in the components of either Xt or Yt−1. For

t = 1, . . . , T , assume that

Yit = 1(X ′itβ0 + γ0Yi t−1 + Ci − Uit ≥ 0). (4.1)

Assume the distribution of ({Yit}Tt=0, {Xit}Tt=1) is observed from the data. Also, assume that Ut is stationary:

FUt = FUs for 1 ≤ s < t ≤ T . Let θ0 = (β′0, γ0)′ and Wt = (X ′t, Yt−1)′. Let w ≡ (x, y) be a value in Xt×{0, 1},

and consider the following modified index assumption.

Assumption A3† (Index restriction for dynamic panels)

(i) Let V ≡ v(X), where v : RT×dX → RdV is known. Let C | (X, Y0)
d
= C | (V, Y0);

(ii) Let x ∈ supp(X1). One of the following two assumptions holds:

(a) let X
(k)
1 be continuously distributed in a neighborhood of x(k) given {X(−k)

1 = x(−k), Y0 = y}. There

exists a neighborhood N of w′θ0 such that N × supp(V, Y0) ⊆ supp(W ′1θ0, V, Y0).

(b) let X
(k)
1 be discretely distributed given {X(−k)

1 = x(−k), Y0 = y}. Let x̃′kβ0 = x′β0 + (x̃(k) − x(k))β
(k)
0 .

Let {w′θ0, (x̃
′
kβ0, yγ0)} × supp(V, Y0) ⊆ supp(W ′1θ0, V, Y0).

In dynamic panel models, this assumption replaces A3. The main difference is that we let the conditional

index restriction hold when conditioning on Y0, the initial value of the outcome variable. We make the

assumption that θ0 is point-identified. This is justified by the work of Chamberlain (1985) and Honoré and

Kyriazidou (2000), which show the identification of θ0 in this model. Identification of θ0 generally requires

the presence of units whose covariate values do not change over time, known as “stayers”. As shown in

Honoré and Kyriazidou (2000), identification of θ0 can be achieved even when Ut does not follow a logistic

distribution. Under these assumptions, we can point identify the average structural function:

ASF(w) =

∫
C
P(Y1 = 1|Xt = x, Y0 = y, C = c) dFC(c)

=

∫
C
FU1(w′θ0 + c) dFC(c)

=

∫
V×{0,1}

∫
C
FU1

(w′θ0 + c) dFC|V,Y0
(c|v, y0) dFV,Y0

(v, y0)

=

∫
V×{0,1}

P(U1 ≤ w′θ0 + C|(V, Y0) = (v, y0)) dFV,Y0(v, y0)

=

∫
V×{0,1}

P(U1 ≤ w′θ0 + C|(X ′1β0, V, Y0) = (w′θ0 − γ0y0, v, y0)) dFV,Y0(v, y0)

=

∫
V×{0,1}

P(U1 ≤ w′θ0 + C|(X ′1β0 + γ0Y0, V, Y0) = (w′θ0, v, y0)) dFV,Y0(v, y0)
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=

∫
V×{0,1}

P(Y1 = 1|W ′1θ0 = w′θ0, V = v, Y0 = y0) dFV,Y0
(v, y0).

The first equality follows from stationarity of Ut.
9 The fifth equality follows from the index restriction

C|(X, Y0)
d
= C|(V, Y0), which implies C|(X ′1β0, V, Y0)

d
= C|(V, Y0). The identification of the last line follows

from the support assumption A3†.(ii). The above derivation shows that the ASF is identified under the

above assumption, and under assumptions that are sufficient for the identification of θ0. The identification

of the APE in the continuous case follows from the identification of the ASF in a neighborhood of w, as per

A3†.(ii).(a). The discrete case follows from support assumption A3†.(ii).(b), guaranteeing the identification

of the ASF at values w and (x̃′k, y).

5 Monte Carlo Simulations

This section conducts two sets of Monte Carlo simulation experiments featuring the logit case and the general

case. We focus on APE estimation and defer corresponding ASF results to Appendix 3.2.10

We compare the proposed semiparametric estimator with two commonly used parametric alternatives:

the RE and CRE. See, for example, Wooldridge (2010). Both assume standard logistic distribution for the

error term Ut, which is correctly specified in the logit case but misspecified in the general case. They are

characterized by different assumptions on the distribution of individual effects C. For the RE,

C ∼ N (µc, σ
2
c )

and is independent of V . For the CRE,

C|V ∼ N (µc0 + µ′c1V, σ
2
c ).

Then, the CRE is equivalent to an augmented RE with V being additional regressors.

Following the standard practice in the literature, we use the MLE to jointly estimate β0 and the distri-

bution parameters (µc, σ
2
c ) or (µc0, µc1, σ

2
c ). In the same spirit as the semiparametric estimator in Sections

3.2 and 3.3, we allow the marginal distribution of V to be unrestricted. The conditional expectation of the

binary outcome and its derivative are calculated based on the MLE estimates, and the ASF and APE are

obtained by averaging out V .

9If stationarity fails, the ASF and APE at t = 1 remain point-identified.
10The ASF could be interesting by itself as a counterfactual probability, and the APE of discrete covariates could be obtained

by differencing corresponding ASFs.
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Table 1: Monte Carlo Design - Logit Case

Binary outcome: Yit = 1 (Xitβ0 + Ci − Uit ≥ 0)

Common param.: β0 =

{
1, for DGP L.1

2, for DGP L.2

Covariate: Xit ∼ N (0, 1)

Index: Vi = 1
T

∑T
t=1Xit

Error term: Uit ∼
√

3/π· standard logistic, so Var(Uit) = 1
Sample Size: N = 1500, T = 10
# Repetitions: Nsim = 100
fC|V :
DGP L.1, skewed: Ci|Vi ∼ (V 2

i + 1) · SN (0, 1, 10)
DGP L.2, bimodal: Ci|Vi ∼ 1

2N
(
V 2
i + 2, 1

42

)
+ 1

2N
(
−V 2

i − 2, 1
42

)
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Bimodal

Notes: SN (ξ, ω, α) denotes a skewed normal distribution with location parameter ξ, scale parameter ω, and shape parameter

α, and its pdf is given by f(x) = 2
ω
φ
(
x−ξ
ω

)
Φ
(
α
(
x−ξ
ω

))
, where φ(·) and Φ(·) denote the pdf and cdf of a standard normal

distribution. The graphs depict fC|V . Black solid and blue dashed lines are conditional on V = 0 and |V | = 0.5, respectively.

Since fC|V (c|v) is symmetric with respect to v, fC|V (c|0.5) = fC|V (c| − 0.5).

5.1 Logit Case

The Monte Carlo design is summarized in Table 1. Covariate Xt is drawn from a standard normal distribu-

tion, which satisfies the support conditions in Assumptions A2 and A3. Our choices of N = 1500 and T = 10

are directly comparable with the dataset in our empirical illustration on female labor force participation in

which N = 1461 and T = 9. There are two experiments with different true distributions of C|V , where fC|V

is skewed in data-generating process (DGP) L.1 and bimodal in DGP L.2.11

We evaluate the estimated ASF and APE based on a collection of x ranging from −1 to 1, which covers

68% of the distribution of Xt. For the semiparametric method, we first estimate β̂ via the CMLE approach,

11Many empirical applications feature skewed and/or multimodal distributions of unobserved individual heterogeneity. For
example, Liu (2020) estimated the latent productivity distribution of young firms, which exhibits a long right tail and thus
concurs with the intuition that good ideas are scarce. Also, Fisher, Jensen, and Tkac (2019) found three modes in the underlying
skill distribution of mutual fund management—a primary mode with average ability, a secondary mode with poor performance,
and a minor mode with exceptionally high skill.
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which simultaneously incorporates the information from a logistic error distribution and maintains the flexi-

bility in the distribution of individual effects. We then employ a local cubic regression (i.e., polynomial order

` = 3) to flexibly infer the conditional expectation of Yt evaluated at (x′β̂, V ).

Figure 1 compares the estimated APE versus the true APE in the first and third rows, and plots the

bias, standard deviation, and root mean square error (RMSE) across 100 Monte Carlo repetitions in the

second and fourth rows. Figure 5 in the appendix shows corresponding graphs for the ASF estimates.

We see that the semiparametric estimator better captures the peak in the skewed case and the valley in

the bimodal case, whereas the RE and CRE completely reverse the valley in the bimodal case due to

their parametric restrictions. As expected, the semiparametric estimator generates smaller biases and larger

standard deviations than the RE and CRE. The improvement in bias dominates the deterioration in standard

deviation around the peak in the skewed setup and most of the time in the bimodal setup. The difference

between the RE and CRE is relatively negligible—their parametric assumptions in fC|V seem too restrictive

and lead to considerable misspecification biases given current DGPs.

In Table 2, the first three columns summarize the APE estimation performance by computing weighted

average performance measures across the collection of evaluation points x ∈ [−1, 1] with weights proportional

to fXt(x). Similar to what we observed in Figure 1, all three estimators provide similar RMSEs in the skewed

case, and the semiparametric estimator yields the smallest RMSE in the bimodal case. The last three columns

present the minimum, median, and maximum of the ratios of RMSE(x) to the true APE(x). The minimum,

median, and maximum are taken over x. We see that the ratios range between 2% and 13% in the skewed

case and between 5% and 250% in the bimodal case. The differences across estimators are relatively small in

the skewed case. In the bimodal case, the RE and CRE have lower minimal ratios, which occurs at x = ±0.6

where the grey bands “intersect” with true APE curve; at the same time, the semiparametric estimator

reduces the median ratio from 47% to 13%, and the maximal ratio from 250% to 25%.

We also examine the performance for the common parameter and ASF in Table 6 in the appendix. The

structure of the ASF part of the table is the same as Table 2 for the APE. The ratios of RMSE(x) to the true

ASF(x) are generally smaller than their APE counterparts, and the semiparametric estimator dominates the

RE and CRE. For β̂, compared with the RE and CRE, the correctly-specified yet flexible CMLE provides

an estimator with a smaller bias, larger standard deviation, and smaller RMSE. Both a more precisely

estimated β̂ and a flexibly characterized conditional expectation of Yt contribute to the better performance

of the proposed semiparametric method for estimating the ASF and APE.
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Figure 1: APE Estimation - Logit Case
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Notes: X-axes are potential values x. In the first and third rows, black solid lines are the true APE, gray bands are collections

of lines where each line corresponds to the estimated APE based on one simulation repetition. In the second and fourth rows,

black solid / blue dotted / red dashed lines represent the RMSEs / biases / standard deviations of the APE estimates. Thin

dashed lines at the bottom of all panels show fXt (x).
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Table 2: APE Estimation - Logit Case

|Bias| SD RMSE Min Med. Max

DGP L.1
Semiparam. 0.011 0.011 0.013 3.8% 4.4% 12.8%
RE 0.013 0.005 0.014 1.9% 5.3% 10.0%
CRE 0.012 0.005 0.013 1.8% 5.2% 10.0%

DGP L.2
Semiparam. 0.025 0.018 0.029 7.4% 13.3% 25.0%
RE 0.137 0.004 0.137 5.2% 46.7% 251.5%
CRE 0.137 0.004 0.137 5.3% 46.7% 251.9%

Notes: |Bias| indicates the absolute value of the bias. The reported |Bias|, SD, and RMSE are weighted averages across the

collection of evaluation points x, where the weights are proportional to fXt (x). Bold entries indicate the best estimator (i.e., with

the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum of RMSE(x)/APE(x)× 100%

over x.

Table 3: Monte Carlo Design - General Case

Binary outcome: Yit = 1 (X ′itβ0 + Ci − Uit ≥ 0)

Common param.: β0 =

{
(1, 1)′, for DGP G.1y

(1, 2)′, for DGP G.2y

Covariate: Xit ∼ N (02×1, I2)

Index: Vi = 1
T

∑T
t=1Xit

Sample Size: N = 1500, T = 10
# Repetitions: Nsim = 100
fC|V :

DGP G.1y, skewed: Ci|Vi ∼
(∑2

ι=1 V
2
ι,i + 1

)
· SN (0, 1, 10)

DGP G.2y, bimodal: Ci|Vi ∼ 1
2N

(∑2
ι=1 V

2
ι,i + 2, 1

)
+ 1

2N
(
−
∑2
ι=1 V

2
ι,i − 2, 1

)
fUt , with E (Uit) = 0 and Var (Uit) = 1:
DGP G.x1, skewed: Uit ∼ 1

9N
(
2, 1

2

)
+ 8

9N
(
− 1

4 ,
1
2

)
DGP G.x2, fat-tailed: Uit ∼ 1

5N (0, 4) + 4
5N

(
0, 1

4

)

fUt

-2 0 2

0

0.2

0.4

0.6

0.8

Notes: The blue solid and red dashed lines depict fUt in DGPs G.x1 (skewed) and G.x2 (fat-tailed), respectively. For reference,

the thin gray line plots a rescaled logistic distribution with zero mean and unit variance.

5.2 General Case

The general case accounts for two key features: multidimensional index variables and general error distribu-

tions. The exact design is described in Table 3. Now, both Xt and V are 2-by-1 vectors. The distributions

of individual effects, fC|V , are modified from their counterparts in the logit case where V is a scalar. For

the error term, we consider error distributions fUt that exhibit skewness or fat-tails. We use “DGP G.xy”

to indicate the DGP with fC|V being type x and fUt being type y.

Regarding the evaluation points x = (x(1), x(2))′, we fix x(1) at its population mean (i.e., x(1) = 0) and

vary x(2) ∈ [−1, 1] as in the logit case. Since x(1) and x(2) enter symmetrically into the DGPs, similar

ASF and APE estimates obtain if we exchange x(1) and x(2). Given non-logistic error distributions, the
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Figure 2: Estimated APE vs True APE - General Case
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Table 4: APE Estimation - General Case

|Bias| SD RMSE Min Med. Max

DGP G.11
Semiparam. 0.013 0.012 0.016 4.2% 8.4% 15.7%
RE 0.028 0.005 0.029 2.7% 13.6% 39.1%
CRE 0.028 0.005 0.029 2.7% 13.3% 39.1%

DGP G.12
Semiparam. 0.018 0.012 0.020 3.3% 6.0% 35.2%
RE 0.047 0.006 0.047 2.6% 18.3% 107.5%
CRE 0.046 0.006 0.047 2.5% 18.4% 107.3%

DGP G.21
Semiparam. 0.020 0.015 0.023 6.2% 9.4% 20.4%
RE 0.071 0.004 0.071 3.1% 23.8% 81.5%
CRE 0.071 0.004 0.071 3.0% 23.7% 81.7%

DGP G.22
Semiparam. 0.022 0.019 0.026 7.4% 9.3% 26.6%
RE 0.086 0.004 0.086 6.3% 31.1% 116.9%
CRE 0.086 0.004 0.086 6.2% 31.0% 117.2%

Notes: |Bias| indicates the absolute value of the bias. The reported |Bias|, SD, and RMSE are weighted averages across the

collection of evaluation points x, where the weights are proportional to fXt (x). Bold entries indicate the best estimator (i.e., with

the smallest RMSE) for each DGP. The last three columns are the minimum/median/maximum of RMSE(x)/APE(x)× 100%

over x.

semiparametric approach estimates β0 using a smoothed maximum score estimator as in Charlier, Melenberg,

and van Soest (1995) and Kyriazidou (1995), and adopts a fourth order cdf kernel to satisfy the bandwidth

requirement in Assumption B6. We normalize |β̂(1)| = 1 since the identification of β0 is up to scale.

Figure 2 shows the estimated APEs based on all Monte Carlo repetitions. Table 4 reports the bias,

standard deviation, RMSE, and RMSE ratio statistics for the APE estimators. See Figures 6 to 8 and

Table 7 in the appendix for supplemental results evaluating the estimation performance for the common

parameter, ASF, and APE. For β̂, the nonparametric smoothed maximum score estimator produces less

biased but noisier estimates, and their RMSEs are larger than those of the RE and CRE. Nevertheless, the

semiparametric estimator still better traces the shape of the ASF and APE, and hence provides the most

accurate ASF/APE estimates, whose RMSEs are around half of its RE/CRE counterparts.12

In terms of the RMSE ratios in the last three columns in Table 4, the message is similar to the logit case:

the RMSEs are generally sizeable compared to the true APEs, so the more precise semiparametric estimator

is preferable; the RE and CRE exhibit smaller minimal ratios at x values where the grey bands “intersect”

with the true APEs, but the semiparametric estimator gives much smaller median and maximal ratios.

12To take a closer look at how the β0 estimation affects the APE estimation, we further examine an infeasible semiparametric
estimator with known β0 (see Table 8 in the appendix). Results show that the smoothed maximum score estimates of β0

slightly increase the absolute value of the bias, the standard deviation, and the RMSE, but the difference is minor—the flexible
semiparametric estimator of the APE partially absorbs the effect of the slightly imprecisely estimated β0.
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6 Empirical Illustration

6.1 Background and Specification

In this empirical illustration, we examine women’s participation in the labor market using our flexible

approach. See the handbook chapter by Killingsworth and Heckman (1986) for an extensive review of

the literature on female labor supply. For illustrative purposes, our analysis is based on the static setup in

Fernández-Val (2009), where covariates Xt include numbers of children in three age categories, log husband’s

income, a quadratic function of age, as well as time dummies.13

The sample consists of N = 1461 married women observed for T = 9 years from the PSID between

1980–1988. We use the dataset kindly made available on Iván Fernández-Val’s website. Figure 3 plots

the distributions of the covariates, and Table 9 in the appendix summarizes the corresponding descriptive

statistics. Roughly 45% of the women in the sample always participated in the labor market, less than 10%

never participated, and around 45% changed their status during the sample period. Movers tended to be

younger and have more children in all children age categories. Never participants were relatively uniformly

distributed between ages 30 to 50, whereas the women in other subgroups were generally younger. All

subgroups exhibited heavy tails in log husband’s income. If this kind of variation in the observables is also

present in the unobservables, we suspect the proposed flexible semiparametric estimators might fare better

than those requiring distributional assumptions, such as RE and CRE.

The unobserved individual effects C could be interpreted as an individual’s willingness to work. A

natural choice for the index V would be time-averages of covariates. Women’s ages and numbers of children

are discrete variables, and we consider a cell-by-cell analysis.14 These covariates generate over 1000 cells

in this sample, thus some cells do not contain sufficient observations to use a semiparametric estimator

within them. Therefore, we collapse the discrete index variables as follows. First, we sum over children age

categories and average the total number of children under 18 over time. Then, the total number of children

is collapsed into a trinary variable depending on whether it is below the 33rd quantile, between the 33rd and

67th quantiles, or above the 67th quantile, and the initial age is collapsed into a binary indicator depending

on whether it is above or below the median. This coarsening scheme results in 6 cells, and the number of

observations in each cell ranges from 88 to 401. Thus, we have three index variables: a trinary fertility

variable, a binary age variable, and a continuously distributed average log husband’s income. The number

13Charlier, Melenberg, and van Soest (1995) and Chen, Si, Zhang, and Zhou (2017), among others, also considered female
labor force participation in their empirical applications. They used similar model specifications, but most of these papers
focused on the estimation of common parameters β0 instead of the ASF or APE.

14For a more comprehensive empirical analysis, one could handle discrete index variables using a discrete kernel as suggested
in Racine and Li (2004), which would be outside the scope of the current illustration.
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Figure 3: Distributions of Observables - Female Labor Force Participation

Notes: The sample consists of N = 1461 married women observed for T = 9 years from the PSID between 1980–1988. See

Fernández-Val (2009) for details.

of continuous index variables is dV = 1. Alternative coarsening schemes are explored in Appendix D.2 and

the semiparametric estimator is generally robust to variations in coarsening.

6.2 Results

Table 5 reports the estimated common coefficients on key covariates.15 We see that women are more inclined

to withdraw from the labor force when they have more children, especially younger ones, and when their

husbands earn a higher income. Compared to the RE and CRE, the flexible smoothed maximum score

15Figure 9 in the appendix also plots the estimated coefficients on time dummies, which capture the time-variation in aggregate
participation rates.
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estimator provides slightly larger (in magnitude) estimates with larger standard errors.

In our illustration, we focus on the effects of the husband’s income, which is linked to the wife’s reservation

wage. We select evaluation points x such that the log husband’s income ranges from its 20th to 80th quantiles,

and other variables are equal to their means (if continuous) or medians (if discrete). These choices correspond

to hypothetical women who are 35 years old, have 0 children between 0 and 2, 0 children between 3 and 5,

1 child between 6 and 17, and whose husband’s income ranges from 21K to 55K. All time dummies are set

to zeros.

Figure 4 shows estimates of the ASF and APE across x together with the 95% bootstrap confidence

intervals based on 500 bootstrap samples.16 For the APE, the semiparametric estimates are closer to zero

for lower husband’s incomes and more negative for higher ones, while their RE and CRE counterparts are

rather flat. Note that for continuous x(k),

APEk,t(x) = β
(k)
0 · fUt−C (x′β0) = β

(k)
0 ·

∫
C
fUt(x

′β0 + c) dFC(c),

where fUt−C denotes the pdf of Ut − C, i.e., a convolution of −C and Ut. Then, the slope of the APE with

respect to x′β0 reflects the shapes of fC and fUt as well as the magnitude of β
(k)
0 . In this sense, the flatter

APE profile with respect to husband’s incomes in the RE and CRE could be due to the following three

sources:

(i) The RE and CRE feature a Gaussian fC|V and estimate the mean and variance of the Gaussian dis-

tribution. The estimated Gaussian variance could be fairly large to accommodate some non-Gaussian

heterogeneity in C|V , and the resulting f̂Ut−C could be flatter (around the peak) than the true distri-

bution.

(ii) The RE and CRE assume a logistic fUt , which could be incorrect.

(iii) The smaller magnitudes of β̂
(k)
0 for RE and CRE could be due to misspecification of the distributions

of Ut and C, and in turn further lead to a milder slope of the APE profile.17

In contrast, the semiparametric estimator does not require the parametrization of fC|V or fUt , thus reducing

potential biases due to misspecification.

When using our flexible semiparametric estimator which does not constrain the distributions of C or Ut,

16For the ASF, all bootstrap estimates are between 0 and 1, and so is the symmetric percentile-t confidence band based
on bootstrap standard deviations. In our model, the condition d

du
P(Yt = 1|X′tβ0 = u)|u=x′β0

≥ 0 holds, and we impose its
empirical counterpart in our estimation procedure. In the bootstrap, this constraint occasionally binds so we censor it at zero
and employ the percentile bootstrap to account for the possible non-standard distribution due to censoring.

17The discrepancy in
∣∣∣β̂(k)

0

∣∣∣ alone cannot explain all difference in the slopes of the APE profiles.
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Table 5: Estimated β0 - Female Labor Force Participation

Smoothed Max. Score RE CRE

textβ̂ textSD texttextβ̂ textSD texttextβ̂ textSD
Children 0–2 -1*** 0 -1*** 0 -1*** 0
Children 3–5 -0.83*** 0.18 -0.60*** 0.08 -0.60*** 0.09
Children 6–17 -0.19*** 0.17 -0.18*** 0.05 -0.17*** 0.06
Log Husband’s Income -0.54*** 0.22 -0.38*** 0.09 -0.35*** 0.10
Age/10 3.45*** 1.98 2.34*** 0.60 2.61*** 0.65

(Age/10)
2

-0.51*** 0.18 -0.35*** 0.08 -0.37*** 0.08

Notes: Standard deviations are calculated via the bootstrap. Significance levels are indicated by *: 10%, **: 5%, and ***:

1%. The first row follows from scale normalization |β̂(1)| = 1, and we rescale the RE and CRE estimates to allow comparisons

across estimators. β̂(1) is negative in all bootstrap samples for all three estimators so, after rescaling, their bootstrap standard

deviations all equal to 0. Considering that the support of β̂(1) is ±1, we do not put asterisks in the first row.

Figure 4: Estimated ASF and APE - Female Labor Force Participation

Notes: X-axes are potential values of log husband’s income. Black/blue/orange solid lines represent point estimates of the

ASF and APE using the semiparametric/RE/CRE estimators. Bands with corresponding colors indicate the 95% bootstrap

confidence intervals. Thin dashed lines at the bottom of both panels show the distribution of log husband’s income.
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APEs with respect to the husband’s income are no longer significant. Highly significant APEs estimated

via RE and CRE could partly be an artifact of their parametric restrictions. This is consistent with the

empirical observation that married women’s labor supply choices became less sensitive to their husbands’

income around 1980 when baby boomers started constituting a larger portion of the labor force, and both

partners contribute to housework and earnings more equally. Hence fewer married women were at the margin

of labor force participation that could be nudged by temporary fluctuations in husbands’ income.

For the ASF, all point estimates are downward sloping with respect to the husband’s income. The

semiparametric estimator yields slightly higher participation probabilities compared to the RE and CRE,

though differences across estimators are insignificant at the 5% level.

7 Conclusion

The distributions of the unobserved heterogeneity and of the idiosyncratic errors play a crucial role in the

identification of the ASF and APE in binary response models. In this paper we first show the identification

of the ASF and APE in semiparametric binary response models with potentially unspecified distributions

of the unobserved heterogeneity and of the idiosyncratic errors. To achieve this identification, we assume

that units with the same value of the index V have correspondingly similar distributions of their unobserved

heterogeneity C. We then develop three-step semiparametric estimators for the ASF and APE, and show

their consistency and asymptotic normality. After conducting simulation experiments, we illustrate our

semiparametric estimator in a study of determinants of women’s labor supply.

We explore in Section 4 several avenues for future research. In particular, we show the identification of

the unobserved heterogeneity’s distribution under stricter support conditions than those in Section 2.2. This

result can be used to show the identification of additional measures of treatment effects beyond the APE. We

also provide an identification result that applies to dynamic panel models in Section 4.3. The generalization

of our results to a wider class of dynamic models appears promising. We hope to pursue these ideas further

in future work.

40



References

Abrevaya, J., and Y.-C. Hsu (2021): “Partial effects in non-linear panel data models with correlated

random effects,” The Econometrics Journal, Forthcoming.

Aguirregabiria, V., and J. M. Carro (2020): “Identification of Average Marginal Effects in Fixed

Effects Dynamic Discrete Choice Models,” Working Paper.

Altonji, J., and R. Matzkin (2005): “Cross Section and Panel Data Estimators for Nonseparable Models

with Endogenous Regressors,” Econometrica, 73(4), 1053–1102.

Andersen, E. B. (1970): “Asymptotic Properties of Conditional Maximum-Likelihood Estimators,” Jour-

nal of the Royal Statistical Society. Series B (Methodological), 32(2), 283–301.

Arellano, M., and S. Bonhomme (2017): “Nonlinear Panel Data Methods for Dynamic Heterogeneous

Agent Models,” Annual Review of Economics, 9, 471–496.

Arkhangelsky, D., and G. Imbens (2019): “The Role of the Propensity Score in Fixed Effect Models,”

arXiv preprint arXiv:1807.02099v6.

Bester, C., and C. Hansen (2009): “Identification of Marginal Effects in a Nonparametric Correlated

Random Effects Model,” Journal of Business & Economic Statistics, 27(2), 235–250.

Blundell, R., and J. L. Powell (2003): Endogeneity in Nonparametric and Semiparametric Regression

Modelsvol. 2 of Econometric Society Monographs, p. 312–357. Cambridge University Press.

Blundell, R. W., and J. L. Powell (2004): “Endogeneity in semiparametric binary response models,”

The Review of Economic Studies, 71(3), 655–679.

Chamberlain, G. (1980): “Analysis of Covariance with Qualitative Data,” Review of Economic Studies,

47, 225–238.

Chamberlain, G. (1985): “Heterogeneity, omitted variable bias, and duration dependence,” in Longitudinal

Analysis of Labor Market Data, ed. by J. J. Heckman, and B. S. Singer, Econometric Society Monographs,

p. 3–38. Cambridge University Press.

Chamberlain, G. (2010): “Binary Response Models for Panel Data: Identification and Information,”

Econometrica, 78(1), 159–168.

41



Charlier, E., B. Melenberg, and A. H. van Soest (1995): “A smoothed maximum score estimator

for the binary choice panel data model with an application to labour force participation,” Statistica

Neerlandica, 49(3), 324–342.

Chen, S., J. Si, H. Zhang, and Y. Zhou (2017): “Root-N Consistent Estimation of a Panel Data Binary

Response Model With Unknown Correlated Random Effects,” Journal of Business & Economic Statistics,

35(4), 559–571.

Chernozhukov, V., I. Fernández-Val, J. Hahn, and W. Newey (2013): “Average and Quantile

Effects in Nonseparable Panel Models,” Econometrica, 81(2), 535–580.

Chernozhukov, V., I. Fernández-Val, and Y. Luo (2018): “The Sorted Effects Method: Discovering

Heterogeneous Effects Beyond Their Averages,” Econometrica, 86(6), 1911–1938.

Cox, D. R. (1958): “The Regression Analysis of Binary Sequences,” Journal of the Royal Statistical Society:

Series B (Methodological), 20(2), 215–232.

Davezies, L., X. D’Haultfoeuille, and L. Laage (2021): “Identification and Estimation of Average

Marginal Effects in Fixed Effect Logit Models,” arXiv preprint arXiv:2105.00879.

Dobronyi, C., J. Gu, and K. I. Kim (2021): “Identification of Dynamic Panel Logit Models with Fixed

Effects,” arXiv preprint arXiv:2104.04590.

Evdokimov, K. (2009): “Identification and Estimation of a Nonparametric Panel Data Model with Unob-

served Heterogeneity,” Mimeo.

Evdokimov, K., and H. White (2012): “Some Extensions of a Lemma of Kotlarski,” Econometric Theory,

28(4), 925–932.

Fan, J., M. Farmen, and I. Gijbels (1998): “Local maximum likelihood estimation and inference,”

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(3), 591–608.

Fernández-Val, I. (2009): “Fixed effects estimation of structural parameters and marginal effects in panel

probit models,” Journal of Econometrics, 150(1), 71–85.

Fisher, M., M. J. Jensen, and P. A. Tkac (2019): “Bayesian nonparametric learning of how skill is

distributed across the mutual fund industry,” FRB Atlanta Working Paper No. 2019-3.
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Appendix

This appendix is organized as follows. Appendices A-B-C contain proofs for results in Sections 2-3-4 respectively. Appendix D
contains additional figures and tables that supplement the results in the main text for the Monte Carlo simulation and empirical
illustration.

A Proofs for Section 2

Proof of Lemma 2.1. We first consider the logit case. Let s, s′ ∈ {1, . . . , T} satisfy A2.(ii). The probability P((Ys, Ys′ ) =
(1, 0)|Ys + Ys′ = 1,X = x) is identified from the joint distribution of (Y,X) when x ∈ X . By A1 and A2.(i), it equals

P((Ys, Ys′ ) = (1, 0)|X = x)

P(Ys + Ys′ = 1|X = x)

=
P((Ys, Ys′ ) = (1, 0)|X = x)

P((Ys, Ys′ ) = (1, 0)|X = x) + P((Ys, Ys′ ) = (0, 1)|X = x)

=

∫
C Λ(x′sβ0 + c)(1− Λ(x′

s′β0 + c)) dFC|X(c|x)∫
C Λ(x′sβ0 + c)(1− Λ(x′

s′β0 + c)) dFC|X(c|x) +
∫
C(1− Λ(x′sβ0 + c))Λ(x′

s′β0 + c) dFC|X(c|x)

=
ex
′
sβ0

ex
′
sβ0 + e

x′
s′β0

= Λ((xs − xs′ )′β0).

Since Λ is invertible, (xs − xs′ )′β0 is identified for all (xs, xs′ ) ∈ supp(Xs, Xs′ ). By A2.(ii), β0 is then point-identified.

The non-logistic case is shown in Lemma 2 of Manski (1987).

Proof of Theorem 2.1. We first show that the ASF and APE are point identified under A3.(ii).(a), i.e., when the covariate of
interest is continuously distributed. By Lemma 2.1, note that β0 is point identified when Ut is logistic. In the non-logistic case,
β0 is identified up to scale.

Note that the distribution of V , FV is identified from the data. Then,

ASFt(x) =

∫
C
P(Yt = 1|Xt = x,C = c) dFC(c)

=

∫
C
P(Ut ≤ x′β0 + c) dFC(c)

=

∫
C

∫
V
P(Ut ≤ x′β0 + c) dFC|V (c|v) dFV (v)

=

∫
V
P(Ut ≤ x′β0 + C|V = v) dFV (v)

=

∫
V
P(Ut ≤ x′β0 + C|X′tβ0 = x′β0, V = v) dFV (v)

=

∫
V
P(Yt = 1|X′tβ0 = x′β0, V = v) dFV (v).

The second equality follows from the independence between Ut and (X, C). The third equality follows from iterated expectations.
The fifth equality follows from index assumption A3.(i). The last expression is identified from the data by the identification of
P(Yt = 1|X′tβ0 = x′β0, V = v) for v ∈ V: see A3.(ii).(a). Hence, ASFt(x) is point identified. Note that this result does not
depend on the scale normalization imposed on β0 since the conditioning set {X′tβ0 = x′β0} is invariant to the scale of β0.

By the continuous support of X
(k)
t given X

(−k)
t = x(−k), ASFt(x + ũek) is identified for all ũ in a neighborhood of

zero. This is because for small enough ũ, (x + ũek)′β0 ∈ N by continuity. By the differentiability of FUt (see A1.(iii)),

APEk,t(x) = ∂
∂x(k) ASFt(x) = limũ→0

ASFt(x+ũek)−ASFt(x)
ũ

is also identified.

If X
(k)
t is discretely distributed, the result follows from the identification of ASFt(u) at u ∈ {x, x̃k} and by APEk,t(x, x̃k) =

ASFt(x̃k)−ASFt(x).

B Proofs for Section 3

We now present a sequence of lemmas which are used to prove our two main theorems of Section 3: Theorem 3.1 and Theorem
3.2. When applied to matrices, let ‖ · ‖ denote the spectral norm.
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Lemma B.1 (Convergence of SN ). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ = op

(
1

√
NbN

)
.

Proof of Lemma B.1. Select the same generic entry from matrices SN (z; β̂) and SN (z;β0). These entries can respectively be
written as

Sτ,τ
′

N (z; β̂) ≡
1

N

N∑
j=1

(
Zjt(β̂)− z

bN

)τ (
Zjt(β̂)− z

bN

)τ ′
KbN

(
Zjt(β̂)− z

bN

)

and

Sτ,τ
′

N (z;β0) ≡
1

N

N∑
j=1

(
Zjt(β0)− z

bN

)τ (Zjt(β0)− z
bN

)τ ′
KbN

(
Zjt(β0)− z

bN

)
,

where τ , τ ′ are vectors of exponents which satisfy 0 ≤ |τ |, |τ ′| ≤ `. Let τ1 and τ ′1 denote the first components of τ and τ ′, and
let τ−1 and τ ′−1 denote vectors with all other components of τ and τ ′. We can write

Sτ,τ
′

N (z; β̂)− Sτ,τ
′

N (z;β0)

=
1

N

N∑
j=1

(X′jtβ̂ − u
bN

)τ1+τ ′1
1

bN
K

(
X′jtβ̂ − u

bN

)
−
(
X′jtβ0 − u

bN

)τ1+τ ′1 1

bN
K

(
X′jtβ0 − u

bN

)
·
(
Vj − v
bN

)τ−1+τ ′−1

KVbN

(
Vj − v
bN

)

=
1

N

N∑
j=1

[
1

bN
Γ

(
X′jtβ̂ − u

bN

)
−

1

bN
Γ

(
X′jtβ0 − u

bN

)](
Vj − v
bN

)τ−1+τ ′−1

KVbN

(
Vj − v
bN

)

where KVbN (v) = b
−dV
N ·

∏dV
k=1 K(vk), and Γ(u) ≡ uτ1+τ ′1K(u) for generic u ∈ R.

By B3, Γ is continuously differentiable. A first-order Taylor expansion yields

Sτ,τ
′

N (z; β̂)− Sτ,τ
′

N (z;β0) =
1

N

N∑
j=1

1

b2N
γ

(
X′jtβ̃ − u

bN

)(
Vj − v
bN

)τ−1+τ ′−1

KVbN

(
Vj − v
bN

)
X′jt(β̂ − β0)

where β̃ is such that X′jtβ̃ is between X′jtβ̂ and X′jtβ0, and where γ(u) ≡ Γ′(u) = (τ1 + τ ′1)uτ1+τ ′1−1K(u) + uτ1+τ ′1K′(u).

Since P(β̂ ∈ Bε)→ 1 as N →∞, with probability arbitrarily close to 1, we have that

sup
z∈Zt

∣∣∣Sτ,τ ′N (z; β̂)− Sτ,τ
′

N (z;β0)
∣∣∣ ≤ 1

b2N
sup
z∈Zt

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X′jtβ̃ − u

bN

)(
Vj − v
bN

)τ−1+τ ′−1

KVbN

(
Vj − v
bN

)
Xjt

−E
[
γ

(
X′tβ̃ − u
bN

)(
V − v
bN

)τ−1+τ ′−1

KVbN

(
V − v
bN

)
Xt

]∥∥∥∥∥ ‖β̂ − β0‖

+ sup
z∈Zt

1

b2N

∥∥∥∥∥E
[
KVbN

(
V − v
bN

)(
V − v
bN

)τ−1+τ ′−1

γ

(
X′tβ̃ − u
bN

)
Xt

]∥∥∥∥∥ ‖β̂ − β0‖

≤
1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X′jtβ − u

b

)(
Vj − v
b

)τ−1+τ ′−1

KVb
(
Vj − v
b

)
Xjt

−E
[
γ

(
X′tβ − u

b

)(
V − v
b

)τ−1+τ ′−1

KVb
(
V − v
b

)
Xt

]∥∥∥∥∥ ‖β̂ − β0‖ (B.1)

+ sup
z∈Zt,β∈Bε

1

b2N

∥∥∥∥∥E
[
γ

(
X′tβ − u
bN

)(
V − v
bN

)τ−1+τ ′−1

KVbN

(
V − v
bN

)
Xt

]∥∥∥∥∥ ‖β̂ − β0‖, (B.2)

where b̄ > 0. To obtain the stochastic order of term (B.1), define the class of functions

F̃ =

{
γ

(
X′tβ − u

b

)
: u ∈ R, β ∈ Bε, b ∈ (0, b̄]

}
.

These functions are of the form γ(X′tc+d) where c = β/b and d = −u/b. Since K has bounded domain and is twice continuously
differentiable with bounded derivatives (Assumption B3), the function γ(u) is of bounded variation on R. By Nolan and Pollard
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(1987) Lemma 22.(ii), the above class of functions is Euclidean. It is also bounded since K is bounded. Similarly, the classes

FVk =

{(
Vk − vk

b

)τk+1+τ ′k+1

K

(
Vk − vk

b

)
: vk ∈ R, b ∈ (0, b̄]

}
are Euclidean and bounded for k = 1, . . . , dV by the same argument as above. Here τk+1 and τ ′k+1 denote the (k + 1)th

components of τ and τ ′. The product of bounded Euclidean classes is also bounded and Euclidean, hence

FV =

{
γ

(
X′tβ − u

b

)(
V − v
b

)τ−1+τ ′−1

KV
(
V − v
b

)
: z ∈ Zt, β ∈ Bε, b ∈ (0, b̄]

}

is bounded and Euclidean. By B5, E[‖Xt‖2] <∞. Hence, by Lemma 2.14 (ii) in Pakes and Pollard (1989), the class

F =

{
γ

(
X′tβ − u

b

)(
V − v
b

)τ−1+τ ′−1

KV
(
V − v
b

)
Xt : z ∈ Zt, β ∈ Bε, b ∈ (0, b̄]

}
is also Euclidean, and hence Donsker. Therefore, by the continuous mapping theorem,

1
√
Nb

2+dV
N

sup
z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1
√
N

N∑
j=1

{
γ

(
X′jtβ − u

b

)(
Vj − v
b

)τ−1+τ ′−1

KV
(
Vj − v
b

)
Xjt

−E
[
γ

(
X′tβ − u

b

)(
V − v
b

)τ−1+τ ′−1

KV
(
V − v
b

)
Xt

]}∥∥∥∥∥
=

1√
Nb

4+2dV
N

·Op(1)

= Op
(

(Nb
4+2dV
N )−1/2

)
.

Thus, term (B.1) can be written as

1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

γ

(
X′jtβ − u

b

)(
Vj − v
b

)τ−1+τ ′−1

KVb
(
Vj − v
b

)
Xjt

−E
[
γ

(
X′tβ − u

b

)(
V − v
b

)τ−1+τ ′−1

KVb
(
V − v
b

)
Xt

]∥∥∥∥∥ ‖β̂ − β0‖

= Op
(

(Nb
4+2dV
N )−1/2

)
·Op(a−1

N )

= op
(

(NbN )−1/2
)
,

where the last line follows from a2
N b

3+2dV
N →∞ as N →∞ (Assumption B6).

To bound term (B.2), we first note that

1

b2N

∥∥∥∥∥E
[
γ

(
X′tβ − u
bN

)(
V − v
bN

)τ−1+τ ′−1

KVbN

(
V − v
bN

)
Xt

]∥∥∥∥∥ =

∥∥∥∥∥E
[
∂

∂β

(
Zt(β)− z

bN

)τ+τ ′

KbN

(
Zt(β)− z

bN

)]∥∥∥∥∥
=

∥∥∥∥∥
∫

∂

∂β

(
z̃ − z
bN

)τ+τ ′

KbN

(
z̃ − z
bN

)
fZt(β)(z̃) dz̃

∥∥∥∥∥
=

∥∥∥∥∫ ∂

∂β
aτ+τ ′K (a) fZt(β)(z + abN ) da

∥∥∥∥ .
The last equality follows from the change of variables z̃ = z + abN . We then have that

sup
z∈Zt,β∈Bε

∥∥∥∥∫ ∂

∂β
aτ+τ ′K (a) fZt(β)(z + abN )da

∥∥∥∥ ≤ sup
z∈Zt,β∈Bε

∥∥∥∥ ∂∂β fZt(β)(z)

∥∥∥∥ ∣∣∣∣∫ aτ+τ ′K (a) da

∣∣∣∣
<∞.

To see that the last inequality holds, recall Assumption B4.(ii), and that K is a bounded function with compact support, hence

aτ+τ ′K(a) is bounded with compact support. Therefore, term (B.2) is of order O(1) · ‖β̂ − β0‖ = Op(a−1
N ) = op

(
(NbN )−1/2

)
since, by B6, NbNa

−2
N → 0 as N →∞.
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Combining the rates of convergence of terms (B.1) and (B.2), we obtain

sup
z∈Zt

∣∣∣Sτ,τ ′N (z; β̂)− Sτ,τ
′

N (z;β0)
∣∣∣ = op

(
1

√
NbN

)
Since this rate of convergence applies uniformly in z ∈ Zt to a generic element of Sτ,τ

′

N (z; β̂) − Sτ,τ
′

N (z;β0), it also applies

uniformly in z ∈ Zt to the matrix norm of SN (z; β̂)− SN (z;β0), which concludes the proof.

Define

S(z;β0) =

∫
ξ(a)ξ(a)′K(a) da · fZt(β0)(z).

Lemma B.2 (Convergence of SN to S). Suppose B1–B6 hold. Then,

sup
z∈Zt

‖SN (z;β0)− S(z;β0)‖ = Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN ).

Proof of Lemma B.2. This is Corollary 1.(ii) in Masry (1996) with θ = 1 (in his notation), therefore we verify its assumptions.
His condition 1(b) holds by B4.(iv). His conditions 2 and 3 hold by B3 and B4.(iii). Finally, the rate conditions of Theorem 2
in Masry (1996) hold by B6. Therefore, all assumptions of his corollary holds and the above result holds.

Lemma B.3 (Convergence of TN ). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥ = op

(
1

√
NbN

)
.

Proof of Lemma B.3. Select the same generic component from TN (z; β̂) and TN (z;β0). These components can respectively be
written as

T τN (z; β̂) ≡
1

N

N∑
j=1

(
Zjt(β̂)− z

bN

)τ
YjtKbN

(
Zjt(β̂)− z

bN

)

T τN (z;β0) ≡
1

N

N∑
j=1

(
Zjt(β0)− z

bN

)τ
YjtKbN

(
Zjt(β0)− z

bN

)
,

where τ is a vector of exponents which satisfies 0 ≤ |τ | ≤ `. Again let τ1 denote the first component of τ and let τ−1 denote
all other components of τ . Let Γ(u) ≡ uτ1K(u) and γ(u) ≡ Γ′(u) = τ1uτ1−1K(u) + uτ1K′(u). As in the proof of Lemma B.1,
we write

T τN (z; β̂)− T τN (z;β0)

=
1

N

N∑
j=1

Yjt

[
1

bN
Γ

(
X′jtβ̂ − u

bN

)
−

1

bN
Γ

(
X′jtβ0 − u

bN

)](
Vj − v
bN

)τ−1

KVbN

(
Vj − v
bN

)

=
1

N

N∑
j=1

Yjt
1

b2N
γ

(
X′jtβ̃ − u

bN

)(
Vj − v
bN

)τ−1

KVbN

(
Vj − v
bN

)
X′jt(β̂ − β0)

By the same arguments as in the proof of Lemma B.1, and by Yjt being bounded, we can show that

sup
z∈Zt

∣∣∣T τN (z; β̂)− T τN (z;β0)
∣∣∣ ≤ 1

b2N
sup

z∈Zt,β∈Bε,b∈(0,b̄]

∥∥∥∥∥∥ 1

N

N∑
j=1

YjtXjtγ

(
X′jtβ − u

b

)(
Vj − v
b

)τ−1

KVb
(
Vj − v
b

)

−E
[
YtXtγ

(
X′tβ − u

b

)(
V − v
b

)τ−1

KVb
(
V − v
b

)]∥∥∥∥ ‖β̂ − β0‖

+ sup
z∈Zt,β∈Bε

1

b2N

∥∥∥∥E [YtXtγ (X′tβ − ubN

)(
V − v
bN

)τ−1

KVbN

(
V − v
bN

)]∥∥∥∥ ‖β̂ − β0‖

= Op

 1√
Nb

4+2dV
N

 ·Op(a−1
N ) +O(1) ·Op(a−1

N )

= op

(
1

√
NbN

)
holds with probability arbitrarily close to 1 as N →∞ since P(β̂ ∈ Bε)→ 1. The last equality follows from B6.
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Since this rate of convergence applies uniformly in z ∈ Zt to generic components of the vector TN (z; β̂) − TN (z;β0), it
applies to its vector norm uniformly in z ∈ Zt as well, which concludes the proof.

Let

T (z;β0) =

∫
ξ(a)K(a) da · E[Yt|Zt(β0) = z]fZt(β0)(z).

Also, recall that Zt ≡ Zt(β0).

Lemma B.4 (Convergence of TN to T ). Suppose B1–B6 hold. Then,

sup
z∈Zt

‖TN (z;β0)− T (z;β0)‖ = Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN ).

Proof of Lemma B.4. By the triangle inequality,

sup
z∈Zt

‖TN (z;β0)− T (z;β0)‖ ≤ sup
z∈Zt

‖TN (z;β0)− E[TN (z;β0)]‖+ sup
z∈Zt

‖E[TN (z;β0)]− T (z;β0)‖ .

Generic components of TN (z;β0)− E[TN (z;β0)] can be written as

sup
z∈Zt

∣∣∣∣∣∣ 1

N

N∑
j=1

(
Zjt − z
bN

)τ
YjtKbN

(
Zjt − z
bN

)
− E

[(
Zt − z
bN

)τ
YtKbN

(
Zt − z
bN

)]∣∣∣∣∣∣ .
By an argument similar to that used in Corollary 1.(ii) in Masry (1996) or in Lemma B.ii.(2) in Rothe and Firpo (2019), this

term is of order Op

((
log(N)

Nb
1+dV
N

)1/2
)
.

Next, note that generic elements of E[TN (z;β0)] are of the form

E
[(

Zt − z
bN

)τ
YtKbN

(
Zt − z
bN

)]
=

∫ (
z̃ − z
bN

)τ
E[Yt|Zt = z̃]KbN

(
z̃ − z
bN

)
fZt (z̃) dz̃

=

∫
aτK(a)E[Yt|Zt = z + abN ]fZt (z + abN ) da

≤ E[Yt|Zt = z]fZt (z)

∫
aτK(a) da+ bN sup

z∈Zt

∥∥∥∥ ∂∂z (E[Yt|Zt = z]fZt (z))

∥∥∥∥ · ∥∥∥∥∫ aτK(a) · a da
∥∥∥∥ .

The second equality follows from a change in variables. Note that E[Yt|Zt = z]fZt (z)
∫
aτK(a) da is the corresponding element

of T (z;β0). Therefore,

sup
z∈Zt

∣∣∣∣∫ aτK(a)E[Yt|Zt = z + abN ]fZt (z + abN ) da− E[Yt|Zt = z]fZt (z)

∫
aτK(a) da

∣∣∣∣
≤ bN sup

z∈Zt

∥∥∥∥ ∂∂z (E[Yt|Zt = z]fZt (z))

∥∥∥∥ · ∥∥∥∥∫ aτK(a) · a da
∥∥∥∥ .

By B3,
∥∥∫ aτK(a) · a da

∥∥ <∞. By B4.(iii), we have that supz∈Zt

∥∥∥ ∂
∂z

(E[Yt|Zt = z]fZt (z))
∥∥∥ <∞. Therefore,

sup
z∈Zt

‖E[TN (z;β0)]− T (z;β0)‖ = O(bN )

and

sup
z∈Zt

‖TN (z;β0)− T (z;β0)‖ = Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN ).

Lemma B.5 (Convergence of SN part 2). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.

Proof of Lemma B.5. As in the proof of Lemma B.1, consider a generic entry of SN (z;β0), which we write as

Sτ,τ
′

N (z;β0) =
1

N

N∑
j=1

(
Zjt − z
bN

)τ+τ ′

KbN

(
Zjt − z
bN

)
.
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Its derivative with respect to u, the first element of z, is

∂

∂u
Sτ,τ

′

N (z;β0) =
−1

b
2+dV
N

1

N

N∑
j=1

γ

(
X′jtβ0 − u

bN

)(
Vj − v
bN

)τ−1+τ ′−1

KV
(
Vj − v
bN

)

where γ(u) = (τ1 + τ ′1)uτ1+τ ′1−1K(u) + uτ1+τ ′1K′(u).

Therefore, we have that

sup
z∈Zt

∣∣∣∣ ∂∂uSτ,τ ′N (z;β0)

∣∣∣∣ = sup
z∈Zt

∣∣∣∣∣∣ −1

b
2+dV
N

1

N

N∑
j=1

γ

(
X′jtβ0 − u

bN

)(
Vj − v
bN

)τ−1+τ ′−1

KV
(
Vj − v
bN

)∣∣∣∣∣∣
≤ sup
z∈Zt,b∈(0,b̄]

1
√
Nb

2+dV
N

∣∣∣∣∣∣ 1
√
N

N∑
j=1

{
γ

(
X′jtβ0 − u

b

)(
Vj − v
b

)τ−1+τ ′−1

KV
(
Vj − v
b

)

−E
[
γ

(
X′tβ0 − u

b

)(
V − v
b

)τ−1+τ ′−1

KV
(
V − v
b

)]}∣∣∣∣∣ (B.3)

+ sup
z∈Zt

1

b2N

∣∣∣∣∣E
[
γ

(
X′tβ0 − u

b

)(
V − v
b

)τ−1+τ ′−1

KVbN

(
V − v
b

)]∣∣∣∣∣ . (B.4)

The class {
γ

(
X′tβ0 − u

b

)(
V − v
b

)τ−1+τ ′−1

KV
(
V − v
b

)
: z ∈ Zt, b ∈ (0, b̄]

}
is a subset of FV which is Euclidean, therefore it is also Euclidean and hence Donsker. We therefore have that term (B.3) is of

order Op

(
1√

Nb
4+2dV
N

)
.

We can bound term (B.4) as follows,

sup
z∈Zt

1

b2N

∣∣∣∣∣E
[
γ

(
X′tβ0 − u

bN

)(
V − v
bN

)τ−1+τ ′−1

KVbN

(
V − v
bN

)]∣∣∣∣∣
= sup
z∈Zt

∣∣∣∣∣E
[
∂

∂u

(
Zt − z
bN

)τ+τ ′

KbN

(
Zt − z
bN

)]∣∣∣∣∣
= sup
z∈Zt

∣∣∣∣∣
∫

∂

∂u

(
z̃ − z
bN

)τ+τ ′

KbN

(
z̃ − z
bN

)
fZt(β0)(z̃) dz̃

∣∣∣∣∣
= sup
z∈Zt

∣∣∣∣∫ ∂

∂u
aτ+τ ′K (a) fZt (z + abN ) da

∣∣∣∣
≤ sup
z∈Zt

∣∣∣∣ ∂∂ufZt (z)
∣∣∣∣ ∣∣∣∣∫ aτ+τ ′K (a) da

∣∣∣∣
= O(1).

The third equality follows from the change of variables z̃ = z + abN . The final line follow from B3 and B4.(iii).

Therefore,

sup
z∈Zt

∣∣∣∣ ∂∂z1 Sτ,τ ′N (z;β0)

∣∣∣∣ = Op

 1√
Nb

4+2dV
N

+O(1)

= op

(
aN√
NbN

)
since, as N → ∞, 1√

Nb
4+2dV
N

·
√
NbN
aN

= O(Nε−δ(3/2+dV )) = o(1) by B6, and since

√
NbN
aN

· O(1) = O(N1/2−ε−δ/2) = o(1),

also by B6. Since this holds for a generic entry of the matrix ∂
∂u
SN (z;β0), it holds for its matrix norm as well, which concludes

this lemma.
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Lemma B.6 (Convergence of TN part 2). Suppose B1–B6 hold. Then,

sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.

Proof of Lemma B.6. As in the proof of Lemma B.3, consider a generic component the vector of TN (z;β0). Write this element
as

T τN (z;β0) =
1

N

N∑
j=1

(
Zjt − z
bN

)τ
YjtKbN

(
Zjt − z
bN

)
.

Its derivative with respect to u is

∂

∂u
T τN (z;β0) =

−1

b
2+dV
N

1

N

N∑
j=1

Yjtγ

(
X′jtβ − u

b

)(
Vj − v
b

)τ−1

KV
(
Vj − v
b

)
.

where γ(u) = τ1uτ1−1K(u) +uτ1K′(u). The rest of the proof follows directly from the arguments used in the proofs of Lemma
B.3 and B.5.

Lemma B.7 (Convergence of indicators). Suppose B1–B6 hold. Suppose β̃
p−→ β0. Let πit(β) ≡ 1((x′β, Vi) ∈ Zt). Then,

P

(
sup

i=1,...,N

∣∣∣πit(β̃)− πit(β0)
∣∣∣ = 0

)
→ 1

as N →∞.

Proof of Lemma B.7. We note that

sup
i=1,...,N

|πit(β̃)− πit(β0)| = sup
i=1,...,N

(
1((x′β̃, Vi) ∈ Zt, (x′β0, Vi) /∈ Zt) + 1((x′β̃, Vi) /∈ Zt, (x′β0, Vi) ∈ Zt)

)
≤ sup
i=1,...,N

(
1(x′β̃ ∈ Z1t, x

′β0 /∈ Z1t) + 1(x′β̃ /∈ Z1t, x
′β0 ∈ Z1t)

)
= 1(x′β̃ ∈ Z1t, x

′β0 /∈ Z1t) + 1(x′β̃ /∈ Z1t, x
′β0 ∈ Z1t),

where Z1t = {z1 = e′1z : z ∈ Zt}. By B4.(v), x′β0 ∈ Z1t, and therefore 1(x′β̃ ∈ Z1t, x′β0 /∈ Z1t) = 0, and 1(x′β̃ /∈ Z1t, x′β0 ∈
Z1t) = 1(x′β̃ /∈ Z1t).

By assumption, β̃ converges in probability to β0. By Theorem 18.9.(v) in Vaart (1998), P(x′β̃ ∈ Z1t)→ 1(x′β0 ∈ Z1t) = 1
since x′β0 is not in the boundary of Z1t by B4.(v).

Therefore,

P

(
sup

i=1,...,N
|πit(β̃)− πit(β0)| = 0

)
≥ P(1(x′β̃ /∈ Z1t) = 0) = P(x′β̃ ∈ Z1t)→ P(x′β0 ∈ Z1t) = 1

as N →∞.

Lemma B.8 (ASF convergence in distribution). Suppose B1–B6 hold. Then,

√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
d−→ N (0, σ2

ASFt
(x′β0)).

Proof of Lemma B.8. This proof builds on the proof of Corollary 2 in Kong, Linton, and Xia (2010) (KLX hereafter). First
we verify that Assumptions A1–A7 of KLX hold under ours. Their A1 holds with our squared-loss function, and we note that
ψ(εi) ≡ −2(Yit − E[Yt|Zit]) in their notation. Since Yit ∈ {0, 1}, E[|ψ(εi)|ν1 ] <∞ holds for arbitrary large ν1. Their A2 holds
immediately. A3 holds by Assumption B3. A4 and A5 holds by B4.(iii). A6 holds if

Nb
1+dV
N / log(N)→∞

Nb
1+dV +2(`+1)
N / log(N) = O(1)

Nν2/8−λ1−1/4b
(1+dV )(ν2/8−λ1+3/4)
N log(N)−ν2/8+5/4+λ1 →∞,
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for some 2 < ν2 ≤ ν1. Since bN = κ ·N−δ, these conditions are equivalent to

1− δ(1 + dV ) > 0

1− δ(3 + 2`+ dV ) ≤ 0

ν2/8− λ1 − 1/4− δ(1 + dV )(ν2/8− λ1 + 3/4) > 0.

Since ν1 can be made arbitrarily large, ν2 can also taken to be arbitrarily large, and the last inequality is equivalent to

δ <
1

1 + dV
.

By our B6, these rate conditions all hold. Finally, their A7 holds by B4.(v). Since these assumptions hold for λ1 = 1, we can
use equation (13) in KLX and their Corollary 1 to write

ĥ1(z;β0) = h1(z;β0) +B1,N (z) +
1

N

N∑
j=1

φ1,jN (z) +R1,N (z)

where B1,N (z) is a bias term satisfying supz∈Zt |B1,N (z)| = O(b`+1
N ) if ` is odd or O(b`+2

N ) if ` is even, where φ1,jN (z) are

mean-zero random variables, and where R1,N (z) is a higher-order term satisfying supz∈Zt |R1,N (z)| = Op

(
log(N)

Nb
1+dV
N

)
.

Second, we note that

√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
=
√
NbN

1

N

N∑
i=1

(
ĥ1(x′β0, Vi;β0)− h1(x′β0, Vi;β0)

)
πit (B.5)

+
√
bN ·

1
√
N

N∑
i=1

(
h1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
.

(B.6)

To analyze term (B.5), we use the fact that

√
NbN

1

N

N∑
i=1

(
ĥ1(x′β0, Vi;β0)− h1(x′β0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

B1,N (x′β0, Vi)πit +
√
NbN

1

N2

N∑
i=1

N∑
j=1

φ1,jN (x′β0, Vi)πit +
√
NbN

1

N

N∑
i=1

R1,N (x′β0, Vi)πit.

When ` is odd,
√
NbN

1
N

∑N
i=1 B1,N (x′β0, Vi)πit is o(1) because∣∣∣∣∣√NbN 1

N

N∑
i=1

B1,N (x′β0, Vi)πit

∣∣∣∣∣ ≤√NbN · sup
z∈Zt

∣∣B1,N (z)
∣∣

=
√
NbN ·O(b`+1

N )

= O(

√
Nb2`+3

N )

and by B6. A similar derivation applies when ` is even.

We now show that term
√
NbN

1
N2

∑N
i=1

∑N
j=1 φ1,jN (x′β0, Vi)πit converges in distribution to a normal distribution. By

standard arguments from Masry (1996), which are also referred to in the proof of Corollary 2 in KLX, we have that

1

N2

N∑
i=1

N∑
j=1

φ1,jN (x′β0, Vi)πit

=
−1

NbN

N∑
i=1

(Yit − E[Yt|Zit])fV (Vi)1((x′β0, Vi) ∈ Zt)

· e′1SN (x′β0, Vi;β0)−1

∫
K
(
X′itβ0 − x′β0

bN
, v

)
ξ

(
X′itβ0 − x′β0

bN
, v

)
dv

1 +Op

( log(N)

Nb
dV
N

)1/2


=
−1

NbN

N∑
i=1

(Yit − E[Yt|Zit])fV (Vi)1((x′β0, Vi) ∈ Zt)

· e′1SN (x′β0, Vi;β0)−1

∫
K
(
X′itβ0 − x′β0

bN
, v

)
ξ

(
X′itβ0 − x′β0

bN
, v

)
dv + op(1).

53



We now calculate the asymptotic variance of

−1

NbN

N∑
i=1

(Yit − E[Yt|Zit])fV (Vi)1((x′β0, Vi) ∈ Zt) · e′1SN (x′β0, Vi;β0)−1

∫
K
(
X′itβ0 − x′β0

bN
, v

)
ξ

(
X′itβ0 − x′β0

bN
, v

)
dv.

We have that

Var

(
−1

NbN

N∑
i=1

(Yt − E[Yt|Zt])fV (V )1((x′β0, V ) ∈ Zt) · e′1SN (x′β0, V ;β0)−1

∫
K
(
X′tβ0 − x′β0

bN
, v

)
ξ

(
X′tβ0 − x′β0

bN
, v

)
dv

)

=
1

Nb2N
E
[
(Yt − E[Yt|Zt])2fV (V )2

1((x′β0, V ) ∈ Zt)e′1SN (x′β0, V ;β0)−1

(∫
K
(
X′tβ0 − x′β0

bN
, v

)
ξ

(
X′tβ0 − x′β0

bN
, v

)
dv

)
(∫
K
(
X′tβ0 − x′β0

bN
, v

)
ξ

(
X′tβ0 − x′β0

bN
, v

)
dv

)′
SN (x′β0, V ;β0)−1e1

]
Recall that SN (z;β0) = S(z;β0)+op(1) =

∫
ξ(a)ξ(a)′K(a) da ·fZt(β0)(z)+op(1) uniformly in z ∈ Zt by Lemma B.2. Therefore,

=
1

Nb2N
E

[
Var(Yt|Zt(β0))

fV (V )2

fZt(β0)(x
′β0, V )2

1((x′β0, V ) ∈ Zt)e′1
(∫

ξ(a)ξ(a)′K(a) da

)−1 (∫
K
(
X′tβ0 − x′β0

bN
, v

)
ξ

(
X′tβ0 − x′β0

bN
, v

)
dv

)

·
(∫
K
(
X′tβ0 − x′β0

bN
, v

)
ξ

(
X′tβ0 − x′β0

bN
, v

)
dv

)′ (∫
ξ(a)ξ(a)′K(a) da

)−1

e1

]
+ o((NbN )−1)

=
1

Nb2N
E

[∫
Var(Yt|X′tβ0 = ũ, V )

fV (V )2

fZt(β0)(x
′β0, V )2

1((x′β0, V ) ∈ Zt)e′1
(∫

ξ(a)ξ(a)′K(a) da

)−1 (∫
K
(
ũ− x′β0

bN
, v

)
ξ

(
ũ− x′β0

bN
, v

)
dv

)

·
(∫
K
(
ũ− x′β0

bN
, v

)
ξ

(
ũ− x′β0

bN
, v

)
dv

)′ (∫
ξ(a)ξ(a)′K(a) da

)−1

e1 fX′tβ0|V (ũ|V ) dũ

]
+ o((NbN )−1)

=
1

NbN
E

[∫
Var(Yt|X′tβ0 = x′β0 + bNu, V )

fV (V )2

fZt(β0)(x
′β0, V )2

1((x′β0, V ) ∈ Zt)e′1
(∫

ξ(a)ξ(a)′K(a) da

)−1 (∫
K (z) ξ (z) dv

)

·
(∫
K (z) ξ (z) dv

)′ (∫
ξ(a)ξ(a)′K(a) da

)−1

e1fX′tβ0|V (x′β0 + bNu|V ) du

]
+ o((NbN )−1)

=
1

NbN
E

[
Var(Yt|X′tβ0 = x′β0, V )

fV (V )

fZt(β0)(x
′β0, V )

1((x′β0, V ) ∈ Zt)
]

· e′1
(∫

ξ(a)ξ(a)′K(a) da

)−1 ∫ (∫
K (z) ξ (z) dv

)(∫
K (z) ξ (z) dv

)′
du

(∫
ξ(a)ξ(a)′K(a) da

)−1

e1 + o((NbN )−1)

=
1

NbN
σ2

ASFt
(x′β0) + o((NbN )−1).

The third equality follows from the change of variables ũ = x′β0 + bNu. The above equations re-derive and fix a minor typo in
equation (A.42) in KLX. By the proof of Corollary 2 in KLX, we have that

√
NbN

1

N2

N∑
i=1

N∑
j=1

φ1,jN (x′β0, Vi)πit
d−→ N (0, σ2

ASFt
(x′β0)).

Also, the term
√
NbN

1
N

∑N
i=1 R1,N (x′β0, Vi)πit is op(1) because∣∣∣∣∣√NbN 1

N

N∑
i=1

R1,N (x′β0, Vi)πit

∣∣∣∣∣ ≤√NbN · sup
z∈Zt

∣∣R1,N (z)
∣∣

=
√
NbN ·Op

(
log(N)

Nb
1+dV
N

)

= Op

 log(N)√
Nb

1+2dV
N


= op(1)

by B6.

Third, term (B.6) above is of order Op(
√
bN ) = op(1) by an application of the central limit theorem.
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Finally, we obtain that

√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
=
√
NbN

1

N2

N∑
i=1

N∑
j=1

φjN (x′β0, Vi)πit + op(1)

d−→ N (0, σ2
ASFt

(x′β0)).

We use the following technical lemma in the proof of Theorem 3.1.

Lemma B.9. Let A and B be positive-definite, symmetric matrices. Let λmin(A) denote the minimum eigenvalue of A. Then,

|λmin(A)− λmin(B)| ≤ ‖A−B‖.

Proof of Lemma B.9. Since A and B are positive-definite and symmetric, they are invertible and λmin(A) = ‖A−1‖−1 > 0 and
λmin(B) = ‖B−1‖−1 > 0. We then have

|λmin(A)− λmin(B)| = |‖A−1‖−1 − ‖B−1‖−1|

= |‖A−1‖ − ‖B−1‖| ·
1

‖A−1‖‖B−1‖

≤ ‖A−1 −B−1‖ ·
1

‖A−1‖‖B−1‖

= ‖B−1(B −A)A−1‖ ·
1

‖A−1‖‖B−1‖

≤ ‖B−1‖‖A−B‖‖A−1‖ ·
1

‖A−1‖‖B−1‖
= ‖A−B‖.

The first inequality follows from the triangle inequality, and the second inequality from ‖CD‖ ≤ ‖C‖‖D‖ for the spectral norm
and square matrices C and D.

Proof of Theorem 3.1. We have the following decomposition:

√
NbN

(
ÂSFt(x)−ASFπt (x)

)
=
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x′β̂, Vi; β̂)− ĥ1(x′β̂, Vi;β0)

)
π̂it

)
(B.7)

+
√
NbN

(
1

N

N∑
i=1

(
ĥ1(x′β̂, Vi;β0)− ĥ1(x′β0, Vi;β0)

)
π̂it

)
(B.8)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)(π̂it − πit)
)

(B.9)

+
√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
. (B.10)

We break down the proof in four parts. In the first three parts, we show that terms (B.7)–(B.9) are op(1). In the fourth
and last part, we show that term (B.10) converges in distribution.

Part 1: Convergence of Term (B.7)
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We have that√
NbN ·

∣∣∣∣∣ 1

N

N∑
i=1

(
ĥ1(x′β̂, Vi; β̂)− ĥ1(x′β̂, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣∣ 1

N

N∑
j=1

e′1

(
SN (x′β̂, Vi; β̂)−1TN (x′β̂, Vi; β̂)− SN (x′β̂, Vi;β0)−1TN (x′β̂, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣∣ 1

N

N∑
j=1

e′1

(
SN (x′β̂, Vi; β̂)−1(TN (x′β̂, Vi; β̂)− TN (x′β̂, Vi;β0))

+SN (x′β̂, Vi; β̂)−1
(
SN (x′β̂, Vi;β0)− SN (x′β̂, Vi; β̂)

)
SN (x′β̂, Vi;β0)−1TN (x′β̂, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣
≤
√
NbN · ‖e1‖ sup

z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ sup
z∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥

+
√
NbN · ‖e1‖ sup

z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ sup
z∈Zt

∥∥SN (z;β0)−1
∥∥ sup
z∈Zt

‖TN (z;β0)‖ .

The terms in the previous expressions are of these asymptotic orders:

� ‖e1‖ = 1.

�

∥∥∥SN (z; β̂)−1
∥∥∥ = λmin

(
SN (z; β̂)

)−1
, where λmin(·) denotes the minimum eigenvalue of a symmetric matrix. We have

that

sup
z∈Zt

∣∣∣λmin

(
SN (z; β̂)

)
− λmin (S(z;β0))

∣∣∣ ≤ sup
z∈Zt

∥∥∥SN (z; β̂)− S(z;β0)
∥∥∥

≤ sup
z∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥+ sup

z∈Zt
‖SN (z;β0)− S(z;β0)‖

= op

(
1

√
NbN

)
+Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN )

= op(1).

The first line follows from Lemma B.9. The second line follows from the triangle inequality. The third line follows from
Lemma B.1 and B.2. The last line follows from B6. Also note that

inf
z∈Zt

λmin (S(z;β0)) = inf
z∈Zt

fZt (z) · λmin

(∫
ξ(a)ξ(a)′K(a) da

)
> 0.

This follows from the definition of the set Zt, which is such that infz∈Zt fZt (z) > 0: see B4.(ii).
∫
ξ(a)ξ(a)′K(a) da is

positive definite since, for c ∈ RN̄ such that c 6= 0,

c′
(∫

ξ(a)ξ(a)′K(a) da

)
c =

∫
(c′ξ(a))2K(a) da = 0

implies that c′ξ(a) = 0 for all a in the support of K(a). Since ξ(a) is comprised of products of powers of components
of a, c′ξ(a) = 0 over this entire support implies c = 0, a contradiction. Therefore λmin

(∫
ξ(a)ξ(a)′K(a) da

)
> 0 and

infz∈Zt λmin (S(z;β0)) > 0.

This implies that,

sup
z∈Zt

∥∥∥SN (z; β̂)−1
∥∥∥ =

1

infz∈Zt λmin

(
SN (z; β̂)

)
≤

1

infz∈Zt λmin (S(z;β0))− supz∈Zt

∣∣∣λmin

(
SN (z; β̂)

)
− λmin (S(z;β0))

∣∣∣
=

1

infz∈Zt λmin (S(z;β0))− op(1)

= Op(1).

� By Lemma B.1, we have that supz∈Zt

∥∥∥SN (z; β̂)− SN (z;β0)
∥∥∥ = op

(
1√
NbN

)
.

� By Lemma B.3, we have that supz∈Zt

∥∥∥TN (z; β̂)− TN (z;β0)
∥∥∥ = op

(
1√
NbN

)
� As above, we have that supz∈Zt

∥∥SN (z;β0)−1
∥∥ = Op(1).
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� We have that

sup
z∈Zt

‖TN (z;β0)‖ ≤ sup
z∈Zt

‖TN (z;β0)− T (z;β0)‖+ sup
z∈Zt

‖T (z;β0)‖

where

sup
z∈Zt

‖TN (z;β0)− T (z;β0)‖ = Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN )

by Lemma B.4. We also have that

sup
z∈Zt

‖T (z;β0)‖ = sup
z∈Zt

|E[Yt|Zt = z]fZt (z)| ·
∥∥∥∥∫ ξ(a)K(a) da

∥∥∥∥
≤ 1 · sup

z∈Zt
fZt (z) ·O(1)

= O(1)

by supz∈Zt fZt (z) <∞ (Assumption B4.(iii)), and by
∥∥∫ ξ(a)K(a) da

∥∥ <∞ (Assumption B3). Therefore,

sup
z∈Zt

‖TN (z;β0)‖ = Op

( log(N)

Nb
1+dV
N

)1/2
+O(bN ) +O(1)

= Op(1),

by B6.

Combining the asymptotic orders of the above six terms, we have

√
NbN ·

∣∣∣∣∣ 1

N

N∑
i=1

(
ĥ1(x′β̂, Vi; β̂)− ĥ1(x′β̂, Vi;β0)

)
π̂it

∣∣∣∣∣ ≤√NbN ·Op(1) · op
(

1
√
NbN

)

+
√
NbN ·Op(1) · op

(
1

√
NbN

)
·Op(1) ·Op(1)

= op(1).

Part 2: Convergence of Term (B.8)

We have that∣∣∣∣∣ 1

N

N∑
i=1

(
ĥ1(x′β̂, Vi;β0)− ĥ1(x′β0, Vi;β0)

)
π̂it

∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

N∑
j=1

e′1

(
SN (x′β̂, Vi;β0)−1TN (x′β̂, Vi;β0)− SN (x′β0, Vi;β0)−1TN (x′β0, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

N

N∑
j=1

e′1

(
SN (x′β̂, Vi;β0)−1(TN (x′β̂, Vi;β0)− TN (x′β0, Vi;β0))

+SN (x′β̂, Vi;β0)−1
(
SN (x′β0, Vi;β0)− SN (x′β̂, Vi;β0)

)
SN (x′β0, Vi;β0)−1TN (x′β0, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣
≤ ‖e1‖ sup

z∈Zt

∥∥SN (z;β0)−1
∥∥ sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥∥∥∥x′β̂ − x′β0

∥∥∥
+ ‖e1‖ sup

z∈Zt

∥∥SN (z;β0)−1
∥∥ sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥∥∥∥x′β̂ − x′β0

∥∥∥ sup
z∈Zt

∥∥SN (z;β0)−1
∥∥ sup
z∈Zt

‖TN (z;β0)‖ . (B.11)

The inequality follows from applications of the mean-value theorem and the Cauchy-Schwarz inequality. By Lemma B.3 and
B.5,

sup
z∈Zt

∥∥∥∥ ∂∂uSN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
sup
z∈Zt

∥∥∥∥ ∂∂uTN (z;β0)

∥∥∥∥ = op

(
aN√
NbN

)
.

By B2, ‖x′β̂ − x′β0‖ ≤ ‖x‖‖β̂ − β0‖ = Op(a−1
N ). The asymptotic order of all other terms in equation (B.11) were
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characterized in the analysis of the convergence of term (B.7). Therefore

√
NbN ·

∣∣∣∣∣ 1

N

N∑
i=1

(
ĥ1(x′β̂, Vi;β0)− ĥ1(x′β0, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·Op(1) · op

(
aN√
NbN

)
·Op(a−1

N ) +
√
NbN ·Op(1) · op

(
aN√
NbN

)
·Op(a−1

N ) ·Op(1) ·Op(1)

= op(1).

Part 3: Convergence of Term (B.9)

First note that ∣∣∣∣∣ 1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ ≤ 1

N

N∑
i=1

∣∣∣ĥ1(x′β0, Vi;β0)
∣∣∣ · sup
i=1,...,N

|π̂it − πit| .

Therefore

P

(√
NbN

∣∣∣∣∣ 1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ = 0

)
≥ P

(
1

N

N∑
i=1

∣∣∣ĥ1(x′β0, Vi;β0)
∣∣∣ · sup
i=1,...,N

|π̂it − πit| = 0

)

≥ P

(
sup

i=1,...,N
|π̂it − πit| = 0

)
→ 1

as N →∞ by Lemma B.7. Therefore

√
NbN

∣∣∣∣∣ 1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)(π̂it − πit)

∣∣∣∣∣ = op(1)

Part 4: Convergence of Term (B.10)

By Lemma B.8, this term converges in distribution:

√
NbN

(
1

N

N∑
i=1

ĥ1(x′β0, Vi;β0)πit − E[h1(x′β0, V ;β0)πt]

)
d−→ N (0, σ2

ASFt
(x′β0)).

The conclusion follows from an application of Slutsky’s Theorem.

Lemma B.10 (APE convergence in distribution). Suppose B1–B6 hold. Then,√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
d−→ N (0, σ2

APEt
(x′β0)).

Proof of Lemma B.10. This proof builds on that of Corollary 2 in KLX and our Lemma B.8. Recall that Assumptions A1–A7
of KLX hold under ours. We can then use equation (13) in KLX and their Corollary 1 to write

bN ĥ2(z;β0) = bNh2(z;β0) +B2,N (z) +
1

N

N∑
j=1

φ2,jN (z) +R2,N (z)

= e′2+dV
h(z;β0) +B2,N (z) +

1

N

N∑
j=1

φ2,jN (z) +R2,N (z),

where B2,N (z) is a bias term satisfying supz∈Zt |B2,N (z)| = O(b`+1
N ) if ` is odd or O(b`+2

N ) if ` is even, where φ2,jN (z) are

mean-zero random variables, and where R2,N (z) is a higher-order term satisfying supz∈Zt |R2,N (z)| = Op

(
log(N)

Nb
1+dV
N

)
.

Second, note that√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
=
√
Nb3N

1

N

N∑
i=1

(
ĥ2(x′β0, Vi;β0)− h2(x′β0, Vi;β0)

)
πit (B.12)

+
√
b3N ·

1
√
N

N∑
i=1

(
h2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
(B.13)
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To analyze term (B.12), we use the fact that√
Nb3N

1

N

N∑
i=1

(
ĥ2(x′β0, Vi;β0)− h2(x′β0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

e′2+dV

(
ĥ(x′β0, Vi;β0)− h(x′β0, Vi;β0)

)
πit

=
√
NbN

1

N

N∑
i=1

B2,N (x′β0, Vi)πit +
√
NbN

1

N2

N∑
i=1

N∑
j=1

φ2,jN (x′β0, Vi)πit +
√
NbN

1

N

N∑
i=1

R2,N (x′β0, Vi)πit.

The terms
√
NbN

1
N

∑N
i=1 B2,N (x′β0, Vi)πit and

√
NbN

1
N

∑N
i=1R2,N (x′β0, Vi)πit are op(1) from the same arguments used

in the proof of Lemma B.8.

The term
√
NbN

1
N2

∑N
i=1

∑N
j=1 φ2,jN (x′β0, Vi)πit converges in distribution to

√
NbN

1

N2

N∑
i=1

N∑
j=1

φ2,jN (x′β0, Vi)πit
d−→ N (0, σ2

APEt
(x′β0))

by standard arguments from Masry (1996) referred to in the proof of Corollary 2 in KLX.

Term (B.13) above is of order Op(b
3/2
N ) = op(1) by an application of the central limit theorem. Therefore,

√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
=
√
NbN

1

N2

N∑
i=1

N∑
j=1

φ2,jN (x′β0, Vi)πit + op(1)

d−→ N (0, σ2
APEt

(x′β0)).

Proof of Theorem 3.2. First, we write√
Nb3N

(
ÂPEk,t(x)−APEπk,t(x)

)
= β̂(k) ·

√
Nb3N

(
1

N

N∑
i=1

(
ĥ2(x′β̂, Vi; β̂)− ĥ2(x′β̂, Vi;β0)

)
π̂it

)
(B.14)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

(
ĥ2(x′β̂, Vi;β0)− ĥ2(x′β0, Vi;β0)

)
π̂it

)
(B.15)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)(π̂it − πit)
)

(B.16)

+ β̂(k) ·
√
Nb3N

(
1

N

N∑
i=1

ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
(B.17)

+
√
Nb3N (β̂(k) − β(k)

0 ) · E[h2(x′β0, V ;β0)πt]. (B.18)

We will show that terms (B.14)–(B.16) and (B.18) are op(1), and that term (B.17) converges in distribution.

Convergence of Term (B.14)

Note that√
Nb3N ·

∣∣∣∣∣ 1

N

N∑
i=1

(
ĥ2(x′β̂, Vi; β̂)− ĥ2(x′β̂, Vi;β0)

)
π̂it

∣∣∣∣∣
=
√
NbN ·

∣∣∣∣∣∣ 1

N

N∑
j=1

e′2+dV

(
SN (x′β̂, Vi; β̂)−1TN (x′β̂, Vi; β̂)− SN (x′β̂, Vi;β0)−1TN (x′β̂, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣∣∣∣
by the definition of ĥ2. Also note that β̂(k) = Op(1). Therefore, we can follow the same steps used in the proof of Theorem 3.1
to show term (B.7) is op(1).

Convergence of Term (B.15)
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We have that√
Nb3N ·

∣∣∣∣∣β̂(k) 1

N

N∑
i=1

(
ĥ2(x′β̂, Vi;β0)− ĥ2(x′β0, Vi;β0)

)
π̂it

∣∣∣∣∣
=
∣∣∣β̂(k)

∣∣∣ ·√NbN ·
∣∣∣∣∣∣ 1

N

N∑
j=1

e′2+dV

(
SN (x′β̂, Vi;β0)−1TN (x′β̂, Vi;β0)− SN (x′β0, Vi;β0)−1TN (x′β0, Vi;β0)

)
1((x′β̂, Vi) ∈ Zt)

∣∣∣∣∣∣ .
Again, we can follow the same steps used in the proof of Theorem 3.1 to show term (B.8) is op(1).

Convergence of Term (B.16)

The convergence of this term is shown in an identical manner to that of term (B.9).

Convergence of Term (B.17)

By Lemma B.10, we have that
√
Nb3N

(
1
N

∑N
i=1 ĥ2(x′β0, Vi;β0)πit − E[h2(x′β0, V ;β0)πt]

)
d−→ N (0, σ2

APEt
(x′β0)). By B2,

β̂(k) p−→ β
(k)
0 . Therefore, by Slutsky’s Theorem, term (B.17) converges in distribution to a mean-zero Gaussian distribution

with variance (β
(k)
0 )2 · σ2

APEt
(x′β0).

Convergence of Term (B.18)

Note that E[h2(x′β0, V ;β0)πt] = O(1). Term (B.18) is of order
√
Nb3N (β̂(k) − β(k)

0 ) ·O(1) = Op
(√

Nb3Na
−1
N

)
. By B2, the

order of this term is

Op
(
N

1
2

(1−3δ−2ε)
)

= op(1).

This equality follows from δ > 1−2ε
3

, which can be seen from δ > 1− 2ε and δ > 0: see B6.

Combining the convergence of terms (B.14)–(B.18) with Slutsky’s Theorem, we obtain our result.

C Proofs for Section 4

Proof of Proposition 4.1. By A1–A2 and Lemma 2.1, β0 is point-identified. Under supp(X′tβ0, V ) = R × V, the conditional
probability P(Yt = 1|X′tβ0 = u, V = v) is identified for all (u, v) ∈ R × V. Assumption A3.(i) and basic manipulations show
that this conditional probability equals FUt−C|V (u|v). Therefore, the conditional distribution of Ut − C conditional on V is
point identified. By A1.(ii), Ut and C are independent given V , and

E[exp(iζ(Ut − C))|V = v] = E[exp(iζUt)|V = v] · E[exp(−iζC)|V = v]

for any ζ ∈ R, where i =
√
−1.

By A1, we have that Ut|V
d
= Ut. By A2.(i), the distribution of Ut is known (standard logistic) and has a characteristic

function with no zeros. We can then write

E[exp(−iζC)|V = v] =
E[exp(iζ(Ut − C))|V = v]

E[exp(iζUt)]
,

where the right-hand side is identified from the data.

From the inversion formula for characteristic functions, this implies the conditional distribution of C|V = v is identified for
all v ∈ V. By the law of iterated expectations, the distribution of C is also identified.

Proof of Proposition 4.2. By A1, A2’, A3, and Lemma 2.1, β0 is identified up to scale. Under supp(X′sβ0, X′tβ0, V ) = R2 ×
V, the conditional probability P(Ys = 1, Yt = 1|X′sβ0 = u1, X′tβ0 = u2, V = v) is identified for all (u1, u2, v) ∈ R2 × V.
Assumption A3.(i) and basic manipulations show that this conditional probability equals FUs−C,Ut−C|V (u1, u2|v). Therefore,
the conditional distribution of (Us−C,Ut−C) conditional on V is identified. This implies the joint distribution of (Us−C,Ut−C)
is identified by the law of iterated expectations.

Note that (Us, Ut, C) are jointly independent by Assumption A1.(ii). Therefore, we can apply Kotlarski’s lemma (Kotlarski,
1967) to obtain the distributions of Us, Ut, and C.

D Additional Figures and Tables

This section presents additional figures and tables that supplement the main results in the text.
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D.1 Monte Carlo Simulation

In the logit case, Figure 5 shows the estimated ASFs and their corresponding performance statistics. In the general case,
Figure 6 depicts the APE performance statistics, and Figures 7 and 8 present the estimated ASFs and performance statistics,
respectively.

Table 6: Estimation of Common Parameter and ASF - Logit Case

β̂ ASF
Bias SD RMSE |Bias| SD RMSE Min Med. Max

DGP L.1
Semiparam. -0.001 0.023 0.023 0.006 0.007 0.007 0.5% 0.9% 2.3%
RE -0.094 0.019 0.096 0.010 0.005 0.012 1.0% 1.6% 2.4%
CRE -0.092 0.018 0.094 0.010 0.005 0.011 1.0% 1.6% 2.3%

DGP L.2
Semiparam. 0.002 0.049 0.049 0.012 0.013 0.015 1.6% 2.8% 4.6%
RE -0.502 0.025 0.502 0.061 0.009 0.062 2.0% 14.0% 22.8%
CRE -0.501 0.025 0.501 0.061 0.009 0.062 2.0% 14.0% 22.8%

Notes: In the true DGPs, the error term Ut ∼
√

3/π· standard logistic, so that Var(Ut) = 1, whereas the logit estimators are

based on standard logistic errors. Here we multiply the estimated β̂ by
√

3/π to be comparable to the true β0. |Bias| indicates

the absolute value of the bias. The |Bias|, SD, and RMSE of the ASF are weighted averages across the collection of evaluation

points x, where the weights are proportional to fXt (x). Bold entries indicate the best ASF estimator (i.e., with the smallest

RMSE) for each DGP. The last three columns are the minimum/median/maximum of RMSE(x)/ASF(x)× 100% over x.
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Figure 5: ASF Estimation - Logit Case
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Figure 6: Bias, Standard Deviation, and RMSE in APE Estimation - General Case
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Figure 7: Estimated ASF vs True ASF - General Case
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Figure 8: Bias, Standard Deviation, and RMSE in ASF Estimation - General Case
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Table 7: Estimation of Common Parameter and ASF - General Case

β̂(2) ASF
Bias SD RMSE |Bias| SD RMSE Min Med. Max

DGP G.11
Semiparam. 0.011 0.031 0.033 0.010 0.007 0.011 0.5% 1.7% 2.9%
RE 0.004 0.023 0.023 0.020 0.006 0.021 0.4% 2.8% 4.1%
CRE 0.005 0.022 0.023 0.020 0.006 0.021 0.4% 2.8% 4.2%

DGP G.12
Semiparam. 0.012 0.026 0.028 0.012 0.007 0.013 0.4% 2.2% 2.9%
RE 0.005 0.019 0.020 0.025 0.006 0.026 1.2% 3.4% 6.5%
CRE 0.006 0.019 0.020 0.025 0.006 0.026 1.2% 3.4% 6.3%

DGP G.21
Semiparam. 0.015 0.064 0.065 0.012 0.013 0.015 1.8% 3.0% 4.8%
RE 0.007 0.041 0.042 0.037 0.010 0.038 2.2% 7.7% 16.8%
CRE 0.008 0.043 0.043 0.037 0.010 0.039 2.2% 7.7% 16.9%

DGP G.22
Semiparam. 0.011 0.072 0.073 0.013 0.013 0.016 2.1% 3.2% 4.9%
RE 0.004 0.043 0.043 0.044 0.010 0.045 2.0% 9.5% 16.9%
CRE 0.005 0.044 0.044 0.044 0.010 0.045 2.0% 9.5% 17.0%

Notes: For the RE and CRE, we normalize β̂ such that |β̂(1)| = 1 to allow comparisons across estimators. |Bias| indicates the

absolute value of the bias. The |Bias|, SD, and RMSE of the ASF are weighted averages across the collection of evaluation

points x, where the weights are proportional to fXt (x). Bold entries indicate the best ASF estimator (i.e., with the smallest

RMSE) for each DGP. The last three columns are the minimum/median/maximum of RMSE(x)/ASF(x)× 100% over x.

Table 8: APE Estimation - General Case, Semiparametric Estimator

|Bias| SD RMSE

DGP G.11
Known β0 0.0125 0.0115 0.0151
Unknown β0 0.0133 0.0123 0.0161

DGP G.12
Known β0 0.0176 0.0117 0.0200
Unknown β0 0.0178 0.0123 0.0204

DGP G.21
Known β0 0.0199 0.0144 0.0232
Unknown β0 0.0199 0.0145 0.0233

DGP G.22
Known β0 0.0217 0.0185 0.0258
Unknown β0 0.0218 0.0187 0.0260

Notes: |Bias| indicates the absolute value of the bias. The reported |Bias|, SD, and RMSE are weighted averages across the

collection of evaluation points x, where the weights are proportional to fXt (x).
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D.2 Empirical Illustration

Alternative specifications. We collapse two discrete index variables into a binary variable and a trinary variable in our
benchmark specification to ensure a sufficient number of observations in each cell to implement the semiparametric estimator.
To explore the effects of the coarsening scheme on the empirical findings, we examined a range of alternative specifications,
and the semiparametric estimator is generally robust across different coarsening schemes. For conciseness, here we focus on two
alternatives (see Figure 10 below):

(i) Model “30”: The total number of children is collapsed into a trinary variable depending on whether it is below the 33rd
quantile, between the 33rd and 67th quantiles, or above the 67th quantile. Initial age is treated as a continuous index
variable. Then, the number of continuous index variables equals dV = 2.

(ii) Model “22”: Both the total number of children and initial age are collapsed into binary indicators depending on whether
the index variable is above or below its median. We have dV = 1 in this case.

Local logit. The local logit estimator is a special case of the local likelihood approach, which locally fits nonlinear parametric
models using the MLE (Tibshirani and Hastie, 1987; Fan, Farmen, and Gijbels, 1998; Frölich, 2006). With binary outcomes,
the logistic likelihood function becomes an appealing choice, yielding the “local logit” estimator. Let λ(·) and Λ(·) denote the
pdf and cdf of a standard logistic distribution. In the same spirit as the local-polynomial-regression-based estimator in Sections
3.2 and 3.3, we first replace the squared residuals with the logit likelihood in the optimization problem

ĥ(z; β̂) = argmax
h∈RN̄

N∑
j=1

[
Yjt log Λ

(
ξ

(
Zjt(β̂)− z

bN

)′
h

)
+ (1− Yjt) log

(
1− Λ

(
ξ

(
Zjt(β̂)− z

bN

)′
h

))]
KbN

(
Zjt(β̂)− z

bN

)
.

Then, we obtain the ASF and APE estimates by averaging over the empirical marginal distribution of Vi:

ÂSFt(x) =
1

N

N∑
i=1

Λ
(
ĥ1(x′β̂, Vi; β̂)

)
π̂it,

ÂPEk,t(x) = β̂(k) ·
1

N

N∑
i=1

λ
(
ĥ1(x′β̂, Vi; β̂)

)
ĥ2(x′β̂, Vi; β̂)π̂it.

Compared with local polynomial regression, one main advantage of local logit is that it is naturally tailored to the binary
nature of the outcome, and ensures the estimated ASF is between 0 and 1 (see its estimates based on Model “22” in the bottom
row in Figure 10). However, in our numerical experiments, the local logit estimate greatly worsens as the dimension of the

index increases given a finite sample. Besides, local logit calls for numerical optimization at each local point (x′β̂, Vi) and hence
requires more computational efforts than local polynomial regression, which is done using closed-form expressions. For example,
it takes around 10 seconds to estimate Model “22” using local polynomial regression but around 5 minutes using local logit
with the same polynomial order ` = 2. This difference in computation time is likely larger in models with higher-dimensional
indices.

Figures and tables. Table 9 summarizes descriptive statistics of the observables and supplements Figure 3 in the main
text.

Figure 9 depicts the estimated coefficients on time dummies which capture time-variation in aggregate participation rates.
Point estimates of the time profiles are generally parallel with each other (from top to bottom: the smoothed maximum score,
RE, and CRE) and show higher participation rates after 1983, which coincides with the beginning of the Great Moderation.
Most of the time-variation within each estimator and difference across estimators are insignificant at the 5% level, and standard
errors generally increase with time for all three estimators. The smoothed maximum score yields the widest confidence band,
as expected.

Figure 10 plots the estimated ASF and APE based on alternative specifications. Comparing with the benchmark specifi-
cation in Figure 4, we see that in general the local-polynomial-regression-based estimates do not change much as we vary the
coarsening scheme of the index variables. The local logit estimator helps narrow the bands in Model “22” (the second row
versus the third row in Figure 10). Yet, its estimates may perform poorly for multidimensional indices in a finite sample, and
it takes longer to compute, so we leave it out of the main analyses.
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Table 9: Descriptive Statistics - Female Labor Force Participation

25% Med. 75% Mean SD Skew. Kurt.
(a) Full Sample, #obs = N × T = 13,149
Participate - - - 0.72 0.45 - -
Children 0–2 0 0 0 0.23 0.47 1.99 6.79
Children 3–5 0 0 1 0.29 0.51 1.60 4.85
Children 6–17 0 1 2 1.05 1.10 0.91 3.46
Log Husband’s Income 10.09 10.51 10.83 10.43 0.69 -0.89 7.27
Age 30.00 35.00 43.00 37.30 9.22 0.56 2.50

(b) Always Participate, %obs = 46.27%
Children 0–2 0 0 0 0.18 0.41 2.25 7.56
Children 3–5 0 0 0 0.23 0.46 1.93 6.12
Children 6–17 0 1 2 1.00 1.06 0.91 3.47
Log Husband’s Income 10.08 10.47 10.77 10.37 0.65 -1.36 8.89
Age 31.00 36.00 44.00 37.98 9.04 0.51 2.45

(c) Never Participate, %obs = 8.28%
Children 0–2 0 0 0 0.21 0.47 2.35 8.50
Children 3–5 0 0 0 0.23 0.48 2.05 6.79
Children 6–17 0 1 2 0.99 1.19 1.30 4.54
Log Husband’s Income 10.13 10.62 11.04 10.53 0.85 -0.74 6.52
Age 35.00 43.00 52.00 42.98 10.09 -0.06 1.90

(d) Movers, %obs = 45.45%
Participate - - - 0.57 0.49 - -
Children 0–2 0 0 1 0.28 0.51 1.70 5.74
Children 3–5 0 0 1 0.36 0.56 1.27 3.82
Children 6–17 0 1 2 1.11 1.11 0.83 3.18
Log Husband’s Income 10.11 10.55 10.87 10.47 0.69 -0.59 5.81
Age 29.00 34.00 40.00 35.57 8.71 0.73 2.88

Notes: The sample consists of N = 1461 married women observed for T = 9 years from the PSID between 1980–1988. “Movers”

refers to women who participate in the labor market in some years but not all. See Fernández-Val (2009) for details.
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Figure 9: Estimated Coefficients on Time Dummies - Female Labor Force Participation

Notes: Black/blue/orange solid lines represent point estimates of the coefficients on time dummies using the smoothed maxi-

mum score/RE/CRE. Bands with corresponding colors indicate the 95% symmetric percentile-t confidence intervals based on

bootstrap standard deviations. The right panel further zooms in on y-axis values between −0.4 and 0.6.
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Figure 10: Estimated ASF and APE under Alternative Specifications - Female Labor Force Participation
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Notes: X-axes are potential values of log husband’s income. Blue/orange solid lines represent point estimates of the ASF and

APE using the RE/CRE. Bands with corresponding colors indicate the 95% bootstrap confidence intervals. Thin dashed lines

at the bottom of all panels show the distribution of log husband’s income.
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