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Abstract

Social and professional networks affect labor market dynamics, knowledge diffusion
and new business creation. To understand the determinants of how these networks
are formed in the first place, we analyze a unique dataset of business card exchanges
among a sample of over 240,000 users of the multi-platform contact management and
professional social networking tool for individuals Eight. We develop a structural model
of network formation with strategic interactions, and we estimate users’ payoffs that
depend on the composition of business relationships, as well as indirect business inter-
actions. We allow heterogeneity of users in both observable and unobservable charac-
teristics to affect how relationships form and are maintained. The model’s stationary
equilibrium delivers a likelihood that is a mixture of exponential random graph mod-
els that we can characterize in closed-form. We overcome several econometric and
computational challenges in estimation, by exploiting a two-step estimation procedure,
variational approximations and minorization-maximization methods. Our algorithm is
scalable, highly parallelizable and makes efficient use of computer memory to allow es-
timation in massive networks. We show that users payoffs display homophily in several
dimensions, e.g. location; furthermore, users unobservable characteristics also display
homophily.

1 Introduction

Encounters are a seed of business. Thomas Edison and Henry Ford became friends
after a chat at the convention of the Association of Edison Illuminating Companies in

∗We are grateful to Naoki Maejima and Michael Schweinberger for their valuable comments and to the
engineers at Sansan DSOC for their feedback and for provisioning the necessary infrastructure.
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New York. Steve Jobs and Steve Wozniak met through a mutual friend, Bill Fernandez.
Needless to say, these encounters eventually turned into great businesses, path-breaking
innovations, and new products. Social and business networks that ultimately stem from
such encounters create interesting economic phenomena, which has attracted many
scholars to explore the subject. Indeed, even if they do not cause the birth of new
businesses, professional networks play an important role in various economic activities
at both individual and firm levels.1 However, most of the existing studies presume that
there are already more-or-less established relationships among firms or persons, and
there are no many empirical studies about how these professional networks are formed
in the first place.

In this paper, we employ a unique dataset with over 240, 000 individuals and the
670, 000 business connections among them to estimate a business network formation
model, accounting for observable and unobservable individual characteristics that af-
fect the willingness to form professional relationships. The data is a subset of the
social network formed by users of Eight, a multi-platform contact management and
professional social networking tool for individuals, provided by the Japanese company
Sansan, Inc. In this social network, users connect with each other by exchanging busi-
ness cards, which allows us to analyze a network of mostly face-to-face connections
across a diverse spectrum of industries, occupations and locations in the whole Japan,
on a scale that has not been used in previous work in network economics.

The Japanese labor market is an ideal setting to study the very beginning of busi-
ness networks. Indeed, business cards are extensively used in Japan as a way of self-
introduction, information sharing and establishing business relationships. One nature
of business card exchanges is that when two persons exchange business cards, it is
very likely that they are meeting each other for the first time. This aspect is different
from other social networks such as Facebook and LinkedIn, where people are often
acquainted with each other before they become connected on the platform. The fact
that business card exchanges in many cases take place at the first meeting allows us to
answer the question of how business networks emerge to begin with.

Our approach overcomes many estimation and empirical challenges posed by the
scale of the network by carefully using the model’s equilibrium implications as well as
new and improved algorithms for estimation. We provide a theoretical framework for
understanding face-to-face professional networking, where agents have observable and
unobservable characteristics that affect their willingness to form professional connec-
tions. Their payoffs are also affected by link externalities such as popularity or common
business connections. The equilibrium of the model provides the likelihood of observing
a particular network of professional relationships at a particular point in time, that we
use as likelihood of the data (Mele, 2017, 2020b; Mele and Zhu, forthcoming; Boucher
and Mourifie, 2017). Unobserved heterogeneity is modeled as grouped random effects,

1Professional networks provide information about vacancies and quality of job applicants through referrals
in labor markets (Ioannides and Loury, 2004; Calvo-Armengol, 2004; Calvo-Armengol and Jackson, 2004;
Galeotti and Merlino, 2014; Galenianos, 2014) as documented in several empirical studies (Beaman, 2012;
Bayer et al., 2008). Firm-to-firm networks are suggested to catalyze aggregate fluctuations (Acemoglu et al.,
2012), performance heterogeneity among firms (Bernard et al., 2019), agglomeration (Miyauchi, 2021), and
knowledge creation and diffusion (König and Rogers, 2018).
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thus providing a mixture model of network formation in equilibrium. We exploit a
specification of the model with local externalities, inducing a likelihood that factorizes
in between- and within-blocks contributions. This in turn reduces the computational
challenge because links across unobserved types/blocks are conditionally independent.

To estimate the structural model with the massive Eight dataset, we develop a
scalable two-step estimation algorithm, improving methods from Vu et al. (2013) and
Babkin et al. (2020) and including observable covariates. In the first step, we recover
the unobservable heterogeneity by approximating the likelihood of the model with a
stochastic blockmodel, thus abstracting from externalities within blocks. As shown in
Babkin et al. (2020), this approximation works as long as the network is large and the
number of unobservable agents’ types (the size of the support for the random effect)
is relatively large. We derive mean-field variational approximations for the likelihood
of the model, and use an expectation-maximization algorithm to estimate the block
structure (Wainwright and Jordan, 2008; Bishop, 2006; Bickel et al., 2013; Babkin et al.,
2020). Furthermore, we use a minorization-maximization algorithm, which speeds up
computation by several magnitudes with respect to standard maximization (Babkin
et al., 2020; Vu et al., 2013). Our improved algorithm makes extensive use of the
sparsity of the network and efficient sparse matrix algebra routines, as well as a scalable
initialization algorithm (Rosvall et al., 2009), in order to further reduce the memory
and time requirements for estimation. In the second step of the algorithm, we estimate
the structural payoff parameters using a flexible pseudolikelihood estimator (Boucher
and Mourifie, 2017), conditioning on the estimated unobserved heterogeneity in the
first step. This two-step procedure allows us to obtain reliable estimates in such a
complex model using a large sample.

In the empirical implementation we allow parameters to be a function of between-
and within-blocks memberships. We control for homophily in the location, industry
and occupation of the users. Our results show that there is homophily in observable
characteristics and users prefer to network with users in the same industry-occupation
and location, other things being equal. We also find that users respond to popularity
and tend to form and maintain links to popular users as well as users that have common
connections.

Our estimated model can be used to improve the quality of recommendation sys-
tems and for counterfactual policy simulations of business networks, e.g. to assess the
impact of new services or exogenous events on the networking in equilibrium (Mele,
2020a).

We contribute to the network economics literature in three complementary ways.2

First, we use a tractable structural model of network formation to understand individ-
ual and aggregate networking on the job, where agents payoffs depend on observable
and unobservable characteristics, as well as linking externalities (Mele, 2017, 2020b;
Mele and Zhu, forthcoming; Boucher and Mourifie, 2017; Graham and dePaula, 2020).
The network formation process converges to a stationary equilibrium, corresponding

2For an extensive literature review please refer to Jackson (2008); Graham and dePaula (2020); DePaula
(2017); Chandrasekhar (2016) .
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to a mixture of exponential random graphs (Schweinberger and Handcock, 2015; Mele,
2020b; Babkin et al., 2020).

Second, we use unique data from a business card exchange platform to estimate the
model, in particular preferences for networking that depend on observables, unobserv-
ables and endogenous equilibrium network features (equilibrium externalities). Our
data contain digitized information about in-person business interactions, while most of
the literature relies on in-person data collected through surveys,3 or data from online
platforms, where interactions occur exclusively in the online media.

Third, we propose a scalable estimation algorithm for this class of models, by mixing
several approximation and estimation methods. Most of the literature on structural
network formation models has relied on small networks to estimate the models, be-
cause of the complexities of computing equilibria and the presence of externalities in
the model of network formation. In the current work, we also include unobserved het-
erogeneity in the model, thus increasing the computational complexity even further.
Previous work has approached estimation in different ways. Some authors do not in-
clude externalities Graham (2017), some use equilibrium properties and subnetworks
to reduce the computational burden (Sheng, 2020; DePaula et al., 2018), others exploit
pseudolikehood methods (Boucher and Mourifie, 2017) or incomplete information (Le-
ung, 2015). We exploit the fact that in equilibrium our model generates networks in the
class of hierarchical exponential random graph models (Schweinberger and Handcock,
2015; Mele, 2020b), a mixture model of network formation with complex dependencies
among links. Estimation of such models via Bayesian methods is intractable for large
networks (Schweinberger and Handcock, 2015; Mele, 2020b; Schweinberger and Stew-
art, 2020; Babkin et al., 2020). Maximum likelihood estimation also does not scale
well with the size of the network. We use variational approximations (Wainwright and
Jordan, 2008; Bishop, 2006; Bickel et al., 2013) and efficient algorithms to estimate
the unobserved heterogeneity; this is achieved by using state-of-the-art computational
algorithms (Vu et al., 2013; Babkin et al., 2020), reducing the memory usage and with
appropriate initialization of the maximization (Rosvall et al., 2009). The second step
of the algorithm uses pseudolikelihood methods, conditional on the estimated latent
block structure to estimate the structural payoff parameters (Boucher and Mourifie,
2017). Our two-step procedure is similar to ideas proposed in empirical industrial
organization or recent work by Bonhomme et al. (2019) for bipartite networks.

The remainder of the paper is organized as follows. In section 2 we briefly describe
the data from Eight. Section 3 develops and analyzes the theoretical model. Section 4
describes our two-steps estimation algorithm, and results are shown in Section 5. Sec-
tion 6 concludes. Additional details about the computations are provided in appendix
A.

3A very popular dataset is Add Health, containing a survey of high school friendship networks. Many
authors use this dataset, e.g. Mele (2020b); Boucher and Mourifie (2017). Similar datasets are collected in
development economics, e.g. Banerjee et al. (2013).
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2 Data

We employ data from Eight,4 a multi-platform contact management and professional
social networking tool for individuals launched in 2012 and provided by Sansan, Inc.
Founded in 2007, Sansan, Inc. is a Japanese company that offers business card-based
services for corporations and individuals. It is the largest provider in the Japanese
market, with its corporate service holding over 80% of the market share.5 With more
than 2.8 million registered users, Eight is the leading professional social network in
Japan. Centered on business cards, it acts as a contact manager, as well as a networking
tool, and offers functionality such as a home feed, user profiles, and instant messaging.
Users connect within the context of the Eight network by scanning each other’s business
cards or by sending online friendship requests. Other services by Eight include paid
premium plans for individuals and companies, and the direct recruiting platform Eight
Career Design.

Eight allows users to scan business cards with a smartphone’s camera, and to set the
date the encounter happened6. OCR algorithms extract information from the business
card image, including the name and company of the person and the office address,
among other items. This makes it possible to identify individuals and organizations.7

In order to register for the service, users need to scan their own business cards (hereafter
called profile card). In case of changes, users can update their profile card information
by a simple scan.

The data from Eight that is used in this research includes only anonymized infor-
mation on connections formed between January and December of 2019 among users
that have agreed with Eight’s Terms of Service. Nodes represent Eight users who have
uploaded a profile card at least once by the end of 2019. We keep only nodes for
which all covariates used in the analysis have non-missing values and that belong to
the largest connected component of the resulting network. An edge is formed between
user A and user B when either A scans B’s business card or vice versa. We exclude
purely digital connections, and concentrate only on face-to-face encounters. We assume
that a business card exchange is bilateral, and therefore the network is undirected. We
also consider only the first contact between a pair of users, so that each link has a
weight of 1. Self-loops are excluded.

We obtain node attributes from the latest profile card uploaded by the user in
order to cover three sources of homophily: geographic proximity, job type similarity
and industrial similarity. We extract the user’s job category from the job description
in its profile card, and assign users an industrial category based on the user’s place of
employment. We construct an industry-occupation covariate as the interaction between
the industrial category of the user’s company and the user’s occupation code, which

4https://8card.net/en
5https://ir.corp-sansan.com/en/ir/news/news391044820607604029/main/0/link/

Presentation%20Material%20for%20FY2020%20Q2%20(EN)_revision.pdf
6Some information in English about the business card database can be found in https://datalp.

sansan-dsoc.com/
7A gentle introduction in English to the digitization process can be found in https://en.sansan-dsoc.

com/data/imagerecognition/
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can take any of 8,006 unique values.
For measuring geographic proximity we employ the Hexagonal Hierarchical Spatial

Index (hereafter H3) created and open sourced by Uber8. It is an indexing system that
projects the sphere of the Earth into an icosahedron and constructs a grid of nested
hexagons, each one of which is assigned a unique identifier or index. The H3 indexing
system supports 15 resolutions, where hexagons at higher resolutions have a smaller
average area9, and hexagons within the same resolution do not overlap.

In order to assign an H3 index to a node we perform geocoding on the office ad-
dress in the user’s profile card and obtain its latitude and longitude coordinates. The
geocoding mechanism is based on data obtained through the Location Reference In-
formation Download Service 10, and address geolocation data 11, both provided by the
Geospatial Information Authority of Japan. Addresses within Japanese cities are rep-
resented using three nested subdivisions: chome, ban and gou (building frontage), in
order of granularity. The quality of geocoding varies depending on the availability of
data at each region and the level of granularity. Among the addresses in the dataset,
52% could be matched up to the gou level (highest level of accuracy), and 43% to the
ban level. The remaining 4.6% is matched at the chome level. We assign each node the
H3 index that contains its coordinates at the resolution of 8. The user’s location is thus
represented by a hexagon of roughly 0.74 km2. The choice of the resolution represents
a trade-off between the capability to model homophily, and memory requirements of its
usage for block recovery. Choosing a resolution that is too low or too high would pre-
vent us from capturing the effect of spatial homophily, as too few/many nodes would be
located in the same tile, and too low a resolution imposes high memory requirements
to the matrix representation of homophily in this dimension.

One alternative would be to perform matching at the zip code level; however, regions
sharing the same zip code can differ greatly in area, and important differences may arise
between large cities and the countryside. At resolution 8, H3 index similarity captures
more business connections than zip code similarity while still being sparse enough for
keeping the computation manageable. Although H3 index similarity does not provide a
measure of spatial homophily at large distances, the area of tiles at resolution 8 is large
enough to contain several high rise office buildings and commercial areas, and therefore
captures the cost of business connections at a local level. The H3 index covariate in
the dataset has 28,392 unique values.

The resulting network has 242, 223 nodes and 682, 920 edges. The network is very
sparse, with a density of roughly 2.3× 10−5. The network contains 27, 289 triangles
and 9, 661, 321 2-stars. All the 47 prefectures and 1,650 cities (roughly 96% of the
total Japanese cities), are represented in the sample. Nodes based in Japan’s largest
urban areas in Tokyo and Osaka account for 50% of the nodes. The data is highly

8https://eng.uber.com/h3/
9A table with the mean area per hexagon at each resolution can be found at https://h3geo.org/docs/

core-library/restable/
10Location Reference Information Download Service (Geospatial Information Authority of Japan) https:

//nlftp.mlit.go.jp/index.html
11Address Geolocation Data (Geospatial Information Authority of Japan) https://www.gsi.go.jp/

kihonjohochousa/jukyo_jusho.html
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geographically concentrated. The most common H3 index is shared by 2,603 nodes,
and 90% of the tiles contain 10 or less nodes.

34.3% of the sample is composed by persons in Sales-related occupations, followed
by company directors (13.1%). 61.5% of the sample holds the ranks of staff. Nodes
are more evenly distributed across industrial categories, with the largest category,
IT companies, accounting for only 3.3% of the sample. Same industry-occupation
connections represent a 2.3% of the total connections, while same H3 index connections
represent roughly 1.8%.

The degree distribution resembles a power law, just like many other large social
networks, as shown in Figure 1.

Figure 1: Degree distribution
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Note: The figure displays the degree distribution of the network in the data used for estimation. Authors’
calculations based on Eight dataset. The network has 242, 223 nodes and 682, 920 edges, with a density of
2.3× 10−5.

3 Model

We model the decision of users to create professional relationships through in-person
interactions or via the business card exchange platform. The set of users is I =
{1, 2, ..., n} and each user i ∈ I is characterized by a vector of observable characteristics
xi, such as gender, location, etc. Additionally, each user is characterized by a K-
dimensional vector zi that is unobservable to the researcher, but it is observed by
other users. The vector zi = (zi1, ..., ziK) is interpreted as an assignment to one of K
types; we say that user i belongs to type k if zik = 1 and zi` = 0 for all ` 6= k.

Business card exchanges are recorded in the adjacency matrix g, whose generic
element gij = 1 if users i and j have exchanged a business card, and gij = 0 otherwise.
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We model users’ objective function as a function of the network g, observable
characteristics x, unobservable types z and parameter vector θ = (α,β,ψ,γ)

Ui (g,x, z;θ) =

n∑
j=1

gijuij(α,β) +

n∑
j=1

n∑
r 6=i,j

gijgjrwijr(ψ) +

n∑
j=1

n∑
r 6=i,j

gijgjrgrivijr(γ) (1)

The payoff of direct interactions uij(α,β) := u(xi,xj , zi, zj ;α,β) includes both costs
and benefits of interacting. The payoff is a function of observable characteristics (xi,xj)
as well as unobservable types (zi, zj). User i receives a net benefit uij(α,β) for a
link to user j. The second part of the payoff is the effect of popularity wijr(ψ) :=
w(xi,xj ,xr, zi, zj , zr;ψ). If user i forms a link to j, she receives an indirect payoff
wijr(ψ) from each link formed by j. Therefore we can interpret the second term in the
utility function as a weighted payoff from popularity, where the weights are functions of
observable and unobservable characteristics. Finally, the third term in the payoff is the
effect of transitivity vijr(γ) := v(xi,xj ,xr, zi, zj , zr;γ), or the payoff from common
connections. Each user i receives a payoff vijr(γ) from each user r that is connected to
both i and j. In the standard strategic network formation literature, direct connections
are assumed costly, while indirect connections are free. In this model we do not need
to assume that, as the payoff structure allows for costly indirect benefits as well, in
principle.

We conceptualize the network formation process as a sequential game, where users
form links over time; however, the researcher only observes the network at a particular
point in time.12 We thus focus on the analysis of stationary equilibria of the model.

In each period two users meet and decide whether to exchange their business cards,
by maximizing the surplus generated by the interaction. Before making a decision the
users also observe the matching quality of their link, which is also unobserved by the
researcher. Formally, in period t = 0, each user is randomly assigned to a unobservable
type zi, drawn from a Multinomial Distribution

Zi
iid∼ Multinomial (1; η1, . . . , ηK) (2)

Conditional on the realization of the types’ assignment z, the network is formed over
time according to the following sequence:

1. Two users i and j meet with probability ρ(g−ij ,x, z), where g−ij is the network
g excluding the element gij

2. The users observe a random matching quality shock εij

3. They form a link if the surplus generated by the link is positive, that is if the
sum of their payoffs when the link occurs is greater than the sum of their payoffs
in absence of a business connection,

Ui (g + ij,x, z;θ) + Uj (g + ij,x, z;θ) + εij ≥ Ui (g,x, z;θ) + Uj (g,x, z;θ) (3)

12There is a growing literature in network econometrics using sequential network formation to improve
tractability and obtain an equilibrium selection rule. See DePaula (2017); Christakis et al. (2010); Graham
(2020); Graham and dePaula (2020); Chandrasekhar (2016); Mele (2017, 2020b); Mele and Zhu (forthcoming);
Jackson (2008); Jackson and Watts (2001) for examples.
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where the network g + ij consists of the network g with the addition of the link
gij between users i and j.

This process of network formation generates a Markov Chain of networks, where
each network only depends on the previous period’s network. In each period, only one
link is updated and only two users are actively playing, best-responding to the previous
period link decisions of the other players. To characterize the long-run behavior of the
network, we make the following formal assumptions.

Assumption 1 The network formation game satisfies the following assumptions:

1. Users can meet any user with positive probability

ρ(g−ij ,x, z) > 0 for any i, j ∈ I (4)

and meetings are independent over time and across pairs of users.

2. The payoffs from popularity and transitivity are invariant to permutation of triads

wijr(ψ) = wφ(ijr)(ψ) and vijr(γ) = vφ(ijr)(γ) (5)

for all i, j, r ∈ I. The notation φ(ijr) denotes a permutation of the users indica-
tors ijr.

3. The matching quality shock εij is independent and identically distributed over
time and across pairs of users according to a logistic distribution.

The first assumption, imposes that any pair has a positive probability of meeting,
however small. This implies that in the long-run two users have (possibly infinitely)
many opportunities to form and delete a link. The second assumption restricts the
preferences so that we can identify the externality effects. The final assumption about
the matching shock is standard in random utility models and is common in the network
econometrics literature (Graham and dePaula, 2020; DePaula, 2017; Chandrasekhar,
2016; Graham, 2020).

Under these assumptions we can show that the game of network formation is a
potential game and it converges to a unique stationary equilibrium distribution over
networks. Therefore, given the block structure z, in the long-run we expect to see a
network g with probability π(g,x, z;θ), as shown in the next proposition (Mele, 2017,
2020b; Mele and Zhu, forthcoming).

Proposition 1 Under the assumptions of the model and conditioning on the initial
assignment of types z, the network formation model converges to a stationary Markov
Chain of networks, with long-run distribution

π(g,x, z;θ) =
exp [Q(g,x, z;θ)]

c(x, z;θ)
(6)

where the potential function Q(g,x, z;θ) is

Q(g,x, z;θ) =

n∑
i=1

n∑
j=1

gijuij(α,β) +
1

2

n∑
i=1

n∑
j=1

n∑
r 6=i,j

gijgjrwijr(ψ)

+
2

3

n∑
i=1

n∑
j=1

n∑
r 6=i,j

gijgjrgrivijr(γ) (7)
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and the normalizing constant c(x, z;θ) is given by

c(x, z;θ) =
∑
ω∈G

exp [Q(ω,x, z;θ)] (8)

where G denotes the set of all possible undirected networks with n nodes.

The proof can be found in Mele (2020b). Proposition 1 shows that – after conditioning
on the realized unobservable heterogeneity z – the network formation game admits
a representation as a potential game (Monderer and Shapley, 1996), where all the
deterministic incentives of the users to form links are captured by the potential function
(7). Indeed, we can show that

Q(g + ij,x, z;θ)−Q(g,x, z;θ)

= Ui (g + ij,x, z;θ) + Uj (g + ij,x, z;θ)− (Ui (g,x, z;θ) + Uj (g,x, z;θ)) (9)

for all user pairs i, j ∈ I.13 This means that all the incentives of each pair of users
to create or delete a link, net of the matching quality, are described by the aggregate
potential function.

The potential game characterization in the proposition implies that the equilib-
rium pairwise stable networks (with transfers) can be obtained by finding the (local)
maxima of the potential Q(g,x, z;θ). Therefore, in the long-run we expect to see the
pairwise stable networks with high probability, according to the stationary distribution
π(g,x, z;θ). In such equilibria, the surplus generated by each link is not necessarily
split equally between the users involved in the relationship. This allows us to model
the fact that some networking relationships are asymmetric or players have different
bargaining power (Jackson, 2008).

4 Estimation

Estimation of this model is challenging because the likelihood depends on the normal-
izing constant (8) that is hard to evaluate even with modern supercomputers (Snijders,
2002).14 This is especially true for the size of our dataset.

To get around some of these challenges, we exploit a particular specification of
the model to obtain a likelihood that can be factorized in between- and within-blocks
components, after conditioning on the unobserved block structure. This factorization
crucially decreases the complexity of computations.

To estimate the block structure, we approximate the model using a stochastic block-
model. Given the estimated block structure we estimate the full model using maximum
pseudolikelihood estimators.

13See Mele (2017); Mele and Zhu (forthcoming); Mele (2020b) for a formal proof of this statement.
14The constant is the sum of the exponential of potential functions over all possible network configurations.

This sum thus includes 2(n(n−1)/2 terms. Even considering parallelization of the computations, the exact
computation of the normalizing constant is either impractical or infeasible for most network sizes. In our
data we have around n = 240, 000. Additionally, the standard MCMC methods used in the literature to
estimate ERGMs converge too slowly for our data, as in the best case scenario the algorithms converve in
n2 log(n) steps (Bhamidi et al., 2011; Mele, 2017).
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These methods bypass the need to compute the likelihood and the normalizing
constant, thus allowing estimation in massive networks. In this section we provide
several details about the specification of the payoff functions, the estimation of the
unobserved heterogeneity (the block structure) and the estimation of the structural
payoff parameters.

4.1 Model specification and likelihood factorization

The model specification is crucial for a tractable estimation procedure, thus we adopt
the following specification with local externalities (Mele, 2020b; Schweinberger, 2020;
Schweinberger and Handcock, 2015; Babkin et al., 2020). The parameter α only de-
pends on the unobservable types, taking value αw if the users belong to the same type;
otherwise it is αb. The parameters β contain the net marginal benefits of observable
characteristics and we assume that they vary within-types (βw) and between-types
(βb). Finally, we specify externalities as local, that is we assume that the externality is
part of the payoff only if all the users involved in the relationship belong to the same
unobserved type.

Assumption 2 The payoffs of the users are assumed to have the following functional
forms:

uij(α,β) =

{
αw +

∑P
p=1 βwpfp(xi,xj) if zi = zj

αb +
∑P

p=1 βbpfp(xi,xj) if zi 6= zj
(10)

wijr(ψ) =

{
ψ if zi = zj = zr

0 otherwise
(11)

vijr(γ) =

{
γ if zi = zj = zr

0 otherwise
(12)

(13)

where the functions fp(xi,xj) only depend on the observed characteristics of i and j,
for p = 1, · · · , P .

The specification differs from other papers using the HERGM framework. In fact,
we allow the parameters for the observable covariates to vary within and between
blocks, while most papers assume homogeneity for the entire network (Schweinberger
and Handcock, 2015; Babkin et al., 2020). This allows us more flexibility in estimation.

The specification with local transitivity and local popularity is convenient for es-
timation and computation. Indeed, we can show that the potential function (7) can
be decomposed in the sum of within- and between-community potentials. Let gk,l de-
note the sub-network among users in blocks Ck and Cl. Let x(k) denote the observable
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covariates of users in community Ck. Let’ define the functions:

Qk,k(gk,l,x
(k), z;θ) :=

∑
i∈Ck

∑
j∈Ck

giju(xi,xj , zi, zj ;αw,βw) (14)

+
ψ

2

∑
i∈Ck

∑
j∈Ck

∑
r∈Ck

gijgjr +
2γ

3

∑
i∈Ck

∑
j∈Ck

∑
r∈Ck

gijgjrgri

Qk,l(gk,l,x
(k),x(l), z;θ) :=

∑
i∈Ck

∑
j∈Cl

giju(xi,xj , zi, zj ;αb,βb) (15)

Then the potential function can be re-written as

Q(g,x, z;θ) =
K∑
k=1

Qk,k(gk,k,x
(k), z;θ) +

K∑
k=1

K∑
l>k

Qk,l(gk,l,x
(k),x(l), z;θ) (16)

From a practical standpoint, this decomposition implies that the likelihood of the net-
work factorizes as product of within- and between-community likelihoods, facilitating
estimation and identification.

π(g,x, z;θ) =

K∏
k=1

exp
[
Qk,k(gk,k,x

(k), z;θ)
]

ck,k(Gk,k,x(k);θ)

[
K∏
l>k

exp
[
Qk,l(gk,l,x

(k),x(l), z;θ)
]

ck,l(Gk,l,x(k),x(l);θ)

]
(17)

where the within-community and between-communities normalizing constants are, re-
spectively

ck,k(Gk,k,x(k), z;θ) =
∑

ωk,k∈Gk,k

exp
[
Qk,k(ωk,k,x

(k), z;θ)
]

(18)

ck,l(Gk,l,x(k),x(l), z;θ) =
∑

ωk,l∈Gk,l

exp
[
Qk,k(ωk,l,x

(k),x(l), z;θ)
]

(19)

Notice that the between-community potential Qk,l(gk,l,x
(k),x(l), z;θ) does not in-

clude the link externalities (transitivity and popularity). Therefore, the second part of
likelihood (17) is the product of conditionally independent links,

K∏
l>k

exp
[
Qk,l(gk,l,x

(k),x(l), z;θ)
]

ck,l(Gk,l,x(k),x(l);θ)
=

K∏
l>k

∏
i∈Ck

∏
j∈Cl

exp [gij (uij(αb,βb) + uji(αb,βb))]

1 + exp [(uij(αb,βb) + uji(αb,βb)]

(20)
To summarize, Assumption 2 guarantees independence of between-communities

links; on the other hand, within-community links may have strong dependence. In
aggregate, our model maintains the complex correlation structure of exponential fam-
ily random graphs (ERGMs) locally, but allows for weaker dependence among links
globally.

4.2 Estimation algorithm

The likelihood factorization described in the previous section attenuates some of the
computational issues in estimation. However, most applications to date have focused
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on networks of few hundred nodes when using a Bayesian estimation strategy (Schwein-
berger and Handcock, 2015; Mele, 2020b); and networks with few thousands nodes when
using an approximate maximum likelihood strategy (Babkin et al., 2020). Our data
contain hundreds of thousands nodes and therefore we have to use alternative methods
and computational strategies to obtain a computationally tractable estimation method.

Our approximate algorithm consists of two steps, as suggested in Babkin et al.
(2020). In step 1 we estimate the block structure ẑ, approximating the likelihood of the
model as the one of a stochastic blockmodel. We then use a variational approximation
to obtain a tractable lower bound of the log-likelihood and accelerate the estimation
using a minorization-maximization algorithm suggested in Vu et al. (2013). In step
2, given the estimated block structure ẑ, we estimate the parameters of the model
(α,β,ψ,γ) using maximum pseudolikelihood estimators.

This procedure is based on two considerations. First, the likelihood of a stochastic
block-model imposes the same probability of the original likelihood on between-block
links. Therefore, the approximation only involves the within-block sub-networks. As
long as the network is large, most of the probability mass is on the between-block links,
and therefore this approximation works well.15

Second, while the likelihood of a stochastic block-model is intractable, there exist
variational methods of inference to recover its parameters. Variational methods max-
imize a lower bound to the likelihood, recovering an estimated block structure. The
asymptotic analysis shows that variational estimates are consistent and asymptotically
normal Bickel et al. (2013); Daudin et al. (2008). Computations can be sped up by
using minorization-maximization techniques (Vu et al., 2013).16 However, the imple-
mentation in Vu et al. (2013) does not take into account the observable covariates,
which are crucial in our application. Therefore, we extend their algorithm to include
(discrete) covariates.

We present the two steps in the following subsections, while providing more tech-
nical details in Appendix A.

4.2.1 Approximate block structure estimation

In step 1, we approximate the log-likelihood of the model, as if there are no link
externalities, i.e. we rewrite the likelihood as if (ψ, γ) = (0, 0). This approximation
works as long as we have many blocks, that is when K is relatively high compared with
the size of the network n.

The full likelihood of our model can be written as follows

L(g,x;θ,η) =
∑
z∈Z

L (g,x, z;θ,η) =
∑
z∈Z

Pη (Z = z)π(g,x, z;θ). (21)

Conditional on the community structure z, the probability that we observe network g
is given by π(g,x, z;θ): this corresponds to the probability of observing the network

15Formal statements are contained in Babkin et al. (2020).
16Alternatively, spectral methods hold promise in dealing with massive network data (Athreya et al., 2018;

Mele et al., 2021).
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in the long run, that is

π(g,x, z;θ) =
K∏
k=1

exp
[
Qk,k(gk,k,x

(k), z;θ)
]

ck,k(Gk,k,x(k);θ)

 K∏
l>k

∏
i∈Ck

∏
j∈Cl

exp [gij (uij(αb,βb) + uji(αb,βb))]

1 + exp [(uij(αb,βb) + uji(αb,βb)]


(22)

The complete likelihood (21) is obtained by multiplying the likelihood (22) by the
probability of firm types/communities z, that is Pη (Z = z), given by a multinomial
distribution

Zi|η1, ..., ηK
iid∼ Multinomial (1; η1, ...ηK) for i = 1, ..., n (23)

and summing over all possible community structures z ∈ Z.

Our estimation method is based on the observation that if the externalities are not
present in the model, ψ = 0 and γ = 0, the likelihood is the same as the one of a
standard K-block stochastic blockmodel with nodal covariates. Therefore we consider
the approximation

L (g,x, z;α,β, ψ, γ,η) ≈ L (g,x, z;α,β, ψ = 0, γ = 0,η) (24)

To estimate the block-structure z we use a variational approximation for stochas-
tic blockmodels, and compute the lower bound of the log-likelihood (Wainwright and
Jordan, 2008; Bishop, 2006; Babkin et al., 2020). Let q(z) be an approximating dis-
tribution over blocks z. Then the lower bound `B(g,x;α,β,η) is obtained via an
application of Jensen’s inequality

`(g,x,α,β,η) := log
∑
z∈Z

L (g,x, z;α,β, ψ = 0, γ = 0,η) (25)

= log
∑
z∈Z

q(z)
L (g,x, z;α,β, ψ = 0, γ = 0,η)

q(z)
(26)

≥
∑
z∈Z

q(z) log

[
L (g,x, z;α,β, ψ = 0, γ = 0,η)

q(z)

]
(27)

≡ `B(g,x,α,β,η). (28)

The variational method finds the best approximating distribution q(z), by finding
the best lower bound. Because this variational problem is also intractable and cannot
be solved in closed-form, we choose q(z) from a tractable family of distributions, as
suggested in the literature (Wainwright and Jordan, 2008). For our model, it is natural
to choose a multinomial distribution qξ(z)

Zi
ind∼ Multinomial (1; ξi1, ...ξiK) for i = 1, ..., n (29)

that can be optimized with respect to the variational parameters ξi’s to obtain a
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tractable bound `B(g,x,α,β,η; ξ)

`B(g,x,α,β,η; ξ) ≡
∑
z∈Z

qξ(z) log

[
L (g,x, z;α,β, ψ = 0, γ = 0,η)

qξ(z)

]
(30)

=
n∑
i<j

K∑
k=1

K∑
l=1

ξikξjl log πij,kl(gij ,x, z) +
n∑
i=1

K∑
k=1

ξik (log ηk − log ξik)

where log πij,kl(gij ,x, z) is the log-likelihood of a link between nodes in blocks k and l

log πij,kl(gij ,x, z) ≡ gij log

[
exp [uij,kl(α,β) + uji,lk(α,β)]

1 + exp [uij,kl(α,β) + uji,lk(α,β)]

]
+ (1− gij) log

[
1

1 + exp [uij,kl(α,β) + uji,lk(α,β)]

]
and uij,kl(α,β) = u(xi,xj , zik = zjl = 1, z;α,β) is the direct net benefit payoff of user
i in block k from forming a link with user j in block l.

Minorization-Maximization. This estimation framework for stochastic blockmod-
els is relatively standard in the literature and it enjoys several asymptotic properties
and guarantees (Bickel et al., 2013). In particular, the estimates are consistent and
asymptotically normal. The EM algorithm consists of iteratively updating the pa-
rameters via an expectation and a maximization step, whose updates are available in
closed-form (Daudin et al., 2008; Bickel et al., 2013).

However, maximizing the lower bound `B(g,x,α,β,η; ξ) with respect to ξ can
still be impractical in very large datasets, because the iterative update for each ξik
depends on (n−1)K other terms ξjl. These updates are time consuming. Additionally,
the iterative algorithm used for computing the lower bound approximation is a local
algorithm and may get stuck in a local maximum.

To alleviate these computational problems, we extend the Minorization-Maximization
methods of Vu et al. (2013) in two complementary directions. First we allow the al-
gorithm to incorporate (discrete) covariates. The original algorithm is designed for
stochastic blockmodels without any observable covariates, so this is a significant im-
provement in terms of applicability of the method. Second, we provide an efficient
computational algorithm that exploits matrix algebra rather than nested loops in com-
putation, to speed up computations by a factor of 14000. This allows estimation in
massive networks. Our implementation takes advantage of the sparsity of the graph
by making use of sparse matrices where possible in order to make efficient use of the
memory, which is a problem when dealing with massive datasets.

The idea of minorization algorithms is to find a function that approximates the
lower bound `B(g,x,α,β,η; ξ), while being simpler to maximize. In practice, a func-
tion M

(
ξ; g,x,α,β,η, ξ(s)

)
minorizes the likelihood lower bound `B(g,x,α,β,η; ξ)

at parameter ξ(s) and iteration s if

M
(
ξ; g,x,α,β,η, ξ(s)

)
≤ `B(g,x,α,β,η; ξ) for all ξ (31)

M
(
ξ(s); g,x,α,β,η, ξ(s)

)
= `B(g,x,α,β,η; ξ(s)) (32)
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where α,β,η and ξ(s) are fixed.
We follow Vu et al. (2013) and use the following function for a stochastic block

model lower bound

M
(
ξ; g,x,α,β,η, ξ(s)

)
:=

n∑
i<j

K∑
k=1

K∑
l=1

ξ2
ik

ξ
(s)
jl

2ξ
(s)
ik

+ ξ2
jl

ξ
(s)
ik

2ξ
(s)
jl

 log π
(s)
ij;kl(gij ,x, z)

+
n∑
i=1

K∑
k=1

ξik

(
log η

(s)
k − log ξ

(s)
ik −

ξik

ξ
(s)
ik

+ 1

)
. (33)

The main difference from Vu et al. (2013) is that our model includes observable (dis-
crete) covariates. Therefore, the updates of the maximization are slightly different.

As in a standard Variational EM algorithm, we can write down the parameter
updates in closed-form. The update rules for ξ, η, and πij;kl(gij ,x, z) follow

ξ(s+1) := arg max
ξ

M
(
ξ; g,x,α(s),β(s),η(s), ξ(s)

)
,

η
(s+1)
k :=

1

n

n∑
i=1

ξ
(s+1)
ik , k = 1, . . . ,K,

and

π
(s+1)
ij;kl (d, χ1, . . . , χp, z) :=

∑n
i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{gij = d, χ1,ij = χ1, . . . , χp,ij = χp}∑n

i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{χ1,ij = χ1, . . . , χp,ij = χp}

,

for k, l = 1, . . . ,K and d, χ1, . . . , χp ∈ {0, 1}, respectively. In the formula for π
(s+1)
ij;kl (d, χ1, . . . , χp, z))

we have used the notation χp,ij to denote and indicator variable equal to 1 if the (dis-
crete) nodal covariate p of i and j are the same, i.e. χp,ij = 1{xip = xjp}. Generaliza-
tions of this specification are allowed.

The estimated block structure ẑ is obtained by choosing the modal block assign-
ment, that is ẑik = 1 if ξ̂ik ≥ ξ̂i` for all ` 6= k and ẑil = 0 for all l 6= k.

4.2.2 Estimation of structural parameters

Conditioning on the estimate of ẑ, we estimate the structural parameters θ = (α,β, ψ, γ)
by maximum pseudolikelihood (MPLE) methods (Boucher and Mourifie, 2017; Snijders,
2002; Babkin et al., 2020). This amounts to maximize the product of the conditional
link probabilities.

Formally, given the estimated ẑ, we compute the conditional probability of a link

pij(g,x,θ; ẑ) = Λ

uij(α,β) + uji(α,β) + ψ
∑
r 6=i,j

(gjr + gir) + 4γ
∑
r 6=i,j

gjrgir

 (34)
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where Λ(u) = eu/(1 + eu) is the logistic function. The pseudolikelihood function is

`PL(g,x,θ; ẑ) =
n∑
i=1

n∑
j>i

gij log pij(g,x,θ) + (1− gij) log(1− pij(g,x,θ)) (35)

and the estimator is the maximizer of the log-pseudolikelihood

θ̂PL = arg max
θ

`PL(g,x,θ; ẑ) (36)

The asymptotic framework for the maximum pseudolikelihood estimator was recently
analyzed in Boucher and Mourifie (2017). It can be shown that the estimates are
consistent and asymptotically normal under some regularity conditions.

5 Results

We estimated our model for the network presented in Section 2 with a maximum of
1,500 blocks, using 250 iterations of the EM algorithm. After recovering the estimated
block structure ẑ and controlling for the node covariates described in Section 2, we
estimate the structural parameters using the maximum pseudolikelihood method and
accounting for node covariates on the block recovery step. For comparison, we also
perform the estimation without taking node covariates into account for block recovery.
Our implementation of the algorithm used to obtain these results is available in the
lighthergm R package, which can be found at https://github.com/sansan-inc/

lighthergm. We present the results of each step in detail in the subsections below.

5.1 Block structure estimation results

The block structure estimation step is by far the most computationally intensive part
of the estimation. For this application we employed an Ubuntu Linux machine with 128
GB of memory and 64 processor cores. We set the maximum number of types/blocks
to 1,500. The computation is performed with about 35 GB of memory for the block
recovery step accounting for node covariates, although it can be performed with well
under 32 GB of memory when node covariates are not employed. All processor cores
are in use during most of the calculation time.

First, we initialize the blocks by using the Infomap algorithm by Rosvall et al.
(2009). Infomap presents several advantages over other clustering algorithms for our
particular use case. First, Infomap’s time complexity is linear in the number of edges,
which makes it a good choice for initializing the block memberships on very sparse
networks. Yang et al. (2016) show that Infomap performs better than other algorithms
with similar time complexities at the same values of the mixing parameter. Further-
more, Infomap’s performance at recovering the true communities is independent of the
network size. In comparison, the default initialization algorithm on the original hergm
R package version 4.1-7 is Walktrap (Pons and Latapy, 2005), which, despite having
properties that make it a good candidate, has a space complexity that is quadratic in
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Figure 2: Block size distribution
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Note: Blocks and their respective sizes are shown in ascending order with respect to the number of affiliated
nodes. The vertical axis is expressed in logarithmic scale.

the number of nodes, making it an expensive choice for clustering large networks.

Starting at the initial block structure, we apply 250 iterations of the fast EM
algorithm. Each EM algorithm iteration takes approximately 14 minutes, for a total of
38.3 hours to complete the whole EM iteration part of the block structure estimation
step when accounting for node covariates. In comparison, Vu et al. (2013) employ a
similar variational approach on a network of 131, 000 nodes with only 20 blocks and
without nodal characteristics with 100 EM iterations taking a total of 24 hours.

Figure 3 shows the improvement in the target function’s Lower Bound at each it-
eration. The improvements are monotonic, and converge after close to 100 iterations,
although the improvement keeps being positive after 250 iterations. In order to under-
stand how much the block structure changes with the number of iterations, we compute
the Yule’s coefficient with respect to the initial block structure obtained by Infomap.
The Yule’s coefficient measures the similarity between two block structures regardless
of the labels. It takes values between 0 and 1, where higher values mean a higher
similarity. We find that the final blocks differ considerably from the initial structure.
After 100 iterations, the Yule’s coefficient is roughly 0.74, and after 250 iterations it
goes down to 0.05.

Figure 2 shows the sizes of all the blocks in ascending order of the number of
affiliated nodes. The dotted line marks the median block size of 59 nodes. We observe
that a few blocks contain a large number of nodes, and the largest block contains
37,615 nodes, representing a 15.5% of the total nodes. Looking at the distribution as
a whole, blocks are in general quite homogeneous in size. The block size distribution
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Figure 3: Lower Bound Improvement per Iteration
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Note: Block recovery takes into consideration the information on H3 tile similarity and industry-occupation
similarity.

is strongly concentrated around the median, and has an interquartile range of only 22
nodes. Figure 4 displays a subset of the network and the estimated block affiliation of
the nodes, and shows that the recovered block structure in fact represents areas of the
graph with denser connectivity.

Figure 5 shows the relationship between the number of nodes and the share of the
five largest blocks by prefecture. Nodes in hub prefectures such as Tokyo and Osaka
tend to be distributed across many blocks, with no single dominating cluster. On the
other hand, smaller prefectures tend to be dominated by a few large blocks. Okinawa
is a clear outlier, with the largest block accounting for over 40% of its nodes.

Finally, when covariates are not employed at the block recovery step, a more skewed
distribution of block sizes is obtained. The size of the largest block in this case is
85,512, and the median block size is 72. The Yule’s coefficient between this partition
and the one obtained when employing node covariates is 0.37, suggesting that in fact,
accounting for homophily on observable characteristics can have an impact on the
structure of the resulting partition, holding the number of EM iterations and the initial
block structure constant.

5.2 Structural parameters estimation results

We take the community structure obtained in the previous step and proceed to esti-
mate the within-block and between-block ERGM parameters. Given the assumptions
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Figure 4: The business network and the recovered community structure

Note: The figure visualizes the network, with colors representing the block membership of the nodes. The
visualized network consists of the subnetwork that results from sampling 10,000 nodes from the largest 100
blocks, weighting by the node’s degree, and extracting the giant component. The visualization was created with
Gephi (https://gephi.org/).

in our model, we separate the between-block connections from the within-block ones,
and estimate the parameters for each set independently employing maximum pseudo-
likelihood estimation. This step requires fewer resources and processing time compared
to the previous step. The estimates for both sets of parameters are shown in Table 1.

Standard errors correspond to the ones obtained by each separate maximum pseudo-
likelihood estimation and thus do not consider the error in the block structure recovery
step. Regarding the between-block model results, estimates are similar regardless of
whether node covariates were employed to inform the block recovery step. This is to
be expected, given that most of the possible connections are across blocks, despite the
differences in the final block structure. Coefficients are all significant at the 1% level.
The coefficient for the edges term reflects the sparsity of the network, while geospa-
tial and industrial-occupational homophily are significant factors explaining business
connections across blocks.

Results for the within-block connection model show that random connections within
the same community are slightly more likely than across blocks, suggesting that per-
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Table 1: HERGM Parameter Estimates

Between Within

No Covars With Covars No Covars With Covars

(1) (2) (3) (4)

Edges −11.074∗∗∗ −11.000∗∗∗ −9.989∗∗∗ −9.047∗∗∗

(0.005) (0.005) (0.002) (0.003)

Triangles 0.891∗∗∗ 0.720∗∗∗

(0.006) (0.006)

2-Stars 0.111∗∗∗ 0.100∗∗∗

(0.0002) (0.0002)

Same Location (H3 Tile) 2.130∗∗∗ 2.049∗∗∗ 0.989∗∗∗ 0.793∗∗∗

(0.041) (0.041) (0.027) (0.028)

Same Industry-occupation 2.611∗∗∗ 2.645∗∗∗ 1.745∗∗∗ 0.739∗∗∗

(0.039) (0.037) (0.019) (0.020)

Bayesian Inf. Crit. 37,691,931,592 37,691,988,973 4,106,060 3,129,658

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
All estimates are obtained using a maximum pseudolikelihood estimator, conditioning on
the estimated block structure. Block recovery was performed using 250 EM iterations and
1,500 blocks. For columns (1) and (3) the block structure recovery in the first step does not
take into account the covariates; for columns (2) and (4) the first step controls for the
covariates.
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Figure 5: Share of the five largest blocks by prefecture
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Note: We measure the diversity of the community structure for each prefecture by ordering blocks in decreasing
order by size, and measuring the share of nodes affiliated to the top five blocks. Prefectures with more nodes tend
to be more diverse in terms of community affiliation.

sons prefer forming business connections among peers within the same communities,
everything else constant, although a formal statistical test is required. We observe a
significant preference for transitivity and popularity, which highlights the importance
of externalities on the network formation process within communities. Similar to con-
nections across communities, homophily in location, industry and occupation is an
important component of the utility of business connections within communities. Coef-
ficients for the edges and externalities terms do not differ greatly depending on whether
node covariates are employed for block recovery; however, the importance of homophily
when explaining business connections within blocks is higher when the block recovery
step does not account for covariates.

6 Conclusions

Networking on the job is an important determinant of mobility and career advancement
in many labor markets. In this paper we have studied a network of business relation-
ships using the digital trace of business card exchanges from Eight, a platform for
the digitization of business cards containing data from the whole Japan. Our sample
contains about 240,000 users of the platform.

Our empirical analysis is guided by a theoretical equilibrium model of network for-
mation where users form relationships based on their preferences for observables, unob-
servables, and endogenous network features. The stationary equilibrium characterizes
the likelihood of observing a network in the data, and we estimate the parameters using
approximate maximum likelihood methods. Crucially, the unobserved heterogeneity is
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discrete, and the equilibrium is a mixture of exponential random graphs (Schweinberger
and Handcock, 2015; Mele, 2020b).

We rely on a two-step approach to estimation, first developed in Babkin et al.
(2020). The first step involves an approximate clustering of the nodes, to estimate
the unobserved (discrete) type distribution. The second step estimates the structural
payoff parameters using a pseudolikelihood estimatior (Boucher and Mourifie, 2017;
Snijders, 2002).

We propose several algorithmic improvements to the model-based clustering algo-
rithm in Vu et al. (2013), to include discrete nodal covariates and to speed-up computa-
tions through a mix of variational approximations, fast sparse matrix algebra routines
and minorization-maximization methods. These improvements allow estimation of the
structural model using a massive dataset with about 240,000 users, controlling for
(discrete) observable characteristics.

Our analysis shows that this massive business network contains a large number
of small (unobserved) business communities. A standard exponential random graph
model is unable to capture this feature. This confirms that including unobserved
heterogeneity in the network formation model is crucial to understand the business
networking patterns in this data.

Our scalable method will allow network researchers to estimate complex models
using massive datasets. Previous work on the econometric analysis of large networks
has been limited by the complexity of estimation algorithms, and for most studies the
definition of a large network has been mostly limited to a few thousands of nodes.
Our algorithmic improvements makes it possible to analyze networks with hundreds of
thousands of nodes, while using relatively few resources.

Furthermore, additional improvements in computational speed and scalability can
be obtained, e.g by using GPUs. Larger networks can be handled at a lower cost by
means of distributed computing. Crucially, the space complexity of our implementation
depends heavily on the size of the matrix of variational parameters, which is a dense
matrix and grows with the number of clusters. Since it is reasonable to expect that
the number of unobservable blocks grows with the size of the network, the dimensions
of this matrix may impose a limitation to the size of networks that can be feasibly
analyzed.

We also acknowledge that our implementation of the clustering algorithm makes
use of the fact that the network is sparse and the discrete covariates follow the same
sparse pattern. In particular, we employ feature adjacency matrices to facilitate ma-
trix algebra. Our current implementation requires these matrices to be sufficiently
sparse to fit into memory. This complication arises because the algorithm requires the
creation of a number of sparse matrices that grows with the square of the number of
discrete covariates. Both of these issues impose limitations to the type and number of
covariates that can be employed. We believe that it is possible to further improve the
speed of the block structure recovery step and at the same time break the dependency
on the sparsity of the discrete features, which should make it possible to employ more
and better covariates, and to run more iterations of the EM algorithm, thus improving
its block recovery capabilities. We expect to extend our algorithm to include these im-
provements in future versions of this research, and that solving some of this additional
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complications may contribute to popularize the industrial use of exponential random
graph models for the analysis of large social networks and their simulation.
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A Computational details

A.1 Generalized EM-step: An MM algorithm

Denote g = [gij ] the adjacency matrix of the network. Recall the surrogate function:

M
(
ξ; g,x,α,β,η, ξ(s)

)
:=

n∑
i<j

K∑
k=1

K∑
l=1

ξ2
ik

ξ
(s)
jl

2ξ
(s)
ik

+ ξ2
jl

ξ
(s)
ik

2ξ
(s)
jl

 log π
(s)
ij;kl(gij ,x, z)

+
n∑
i=1

K∑
k=1

ξik

(
log η

(s)
k − log ξ

(s)
ik −

ξik

ξ
(s)
ik

+ 1

)
. (37)

The update rules for ξ, η, and πdij ;xij follow

ξ(s+1) := arg max
ξ

M
(
ξ; g,x,α(s),β(s),η(s), ξ(s)

)
,

η
(s+1)
k :=

1

n

n∑
i=1

ξ
(s+1)
ik , k = 1, . . . ,K,

and

π
(s+1)
ij;kl (d, χ1, . . . , χp, z) :=

∑n
i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{gij = d, χ1,ij = χ1, . . . , χp,ij = χp}∑n

i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{χ1,ij = χ1, . . . , χp,ij = χp}

(38)
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for k, l = 1, . . . ,K and d, χ1, . . . , χp ∈ {0, 1}, respectively. Maximizing the surrogate
function amounts to solving n separate quadratic programming problems of K variables
ξi under the constraints ξik ≥ 0 for all k and

∑n
k=1 ξik = 1 (Stefanov, 2004). To do so,

we need to compute the coefficients on ξ2
ik and ξik for all i and k. Note that

n∑
i<j

K∑
k=1

K∑
l=1

ξ2
ik

ξ
(s)
jl

2ξ
(s)
ik

+ ξ2
jl

ξ
(s)
ik

2ξ
(s)
jl

 log π
(s)
ij;kl(gij ,x, z)

=

n∑
i=1

K∑
k=1

n∑
j 6=i

K∑
l=1

ξ2
ik

2ξ
(s)
ik

ξ
(s)
jl log π

(s)
ij;kl(gij ,x, z)

=

n∑
i=1

K∑
k=1

ξ2
ik

2ξ
(s)
ik

n∑
j 6=i

K∑
l=1

ξ
(s)
jl log π

(s)
ij;kl(gij ,x, z)

︸ ︷︷ ︸
=:Ω

(s)
ik (g,x,z)

=
n∑
i=1

K∑
k=1

Ω
(s)
ik (g,x, z)

2ξ
(s)
ik

ξ2
ik.

Thus the surrogate function can be rearranged as

M
(
ξ; g,x,α,β,η, ξ(s)

)
=

n∑
i=1

K∑
k=1

{
1

ξ
(s)
ik

(
Ω

(s)
ik (g,x, z)

2ξ
(s)
ik

− 1

)
ξ2
ik +

(
log η

(s)
k − log ξ

(s)
ik + 1

)
ξik

}
.

A bottleneck in computation lies in Ω
(s)
ik (g,x, z) :=

∑n
j 6=i
∑K

l=1 ξ
(s)
jl log π

(s)
ij;kl(gij ,x, z),

since π
(s)
ij;kl(gij ,x, z) is dependent on the state of each dyad of the graph. We could

naively compute Ω
(s)
ik (g,x, z) by choosing an appropriate π

(s)
ij;kl(gij ,x, z) for each dyad

in nested loops, but it would be computationally burdensome. To overcome this chal-

lenge, we will prove that computing Ω
(s)
ik (g,x, z) can be simplified to matrix multipli-

cation and summation by making use of the adjacency matrix of the graph.17

To describe how that method works, we start with a simple example where there

are no nodal covariates, i.e., we assume π
(s)
ij;kl(gij ,x, z) = π

(s)
ij;kl(gij , z) for any i, j. First,

we suppose gij = 0 for all i 6= j and compute Ω
(s)
ik (g = 0, z). Based on the update rule

(38), we can drop the notational dependence of π
(s)
ij;kl(gij , z) on i, j, i.e.,

π
(s)
ij;kl(gij , z) = π

(s)
kl (gij , z)

17The basic idea had already been implemented in the R package hergm (Schweinberger and Luna, 2018).
One of our contributions is to use an adjacency matrix to speed up the computation.
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for all i, j. Observe that

Ω
(s)
ik (g = 0, z) =

n∑
j 6=i

K∑
l=1

ξ
(s)
jl log πkl(0, z)

=
n∑
j 6=i

(
ξ

(s)
j1 log πk1(0, z) + · · ·+ ξ

(s)
jK log πkK(0, z)

)
=
{(
ξ

(s)
11 + ξ

(s)
21 + · · ·+ ξ

(s)
n1

)
− ξ(s)

i1

}
log πk1(0, z)

+
{(
ξ

(s)
12 + ξ

(s)
22 + · · ·+ ξ

(s)
n2

)
− ξ(s)

i2

}
log πk2(0, z)

+ · · ·

+
{(
ξ

(s)
1K + ξ

(s)
2K + · · ·+ ξ

(s)
nK

)
− ξ(s)

iK

}
log πkK(0, z)

=

K∑
l=1


n∑
j=1

ξ
(s)
jl︸ ︷︷ ︸

=:τ(l)

−ξ(s)
il

 log πkl(0, z)

=
K∑
l=1

(
τ(l)− ξ(s)

il

)
log πkl(0, z).

Define

A0
(n×K)

:=


τ(1)− ξ(s)

11 τ(2)− ξ(s)
12 . . . τ(K)− ξ(s)

1K

τ(1)− ξ(s)
21 τ(2)− ξ(s)

22 . . . τ(K)− ξ(s)
2K

...
...

. . .
...

τ(1)− ξ(s)
n1 τ(2)− ξ(s)

n2 . . . τ(K)− ξ(s)
nK


and

Π0(z)
(K×K)

:=


log π11(0, z) log π12(0, z) . . . log π1K(0, z)
log π21(0, z) log π22(0, z) . . . log π2K(0, z)

...
...

. . .
...

log πK1(0, z) log πK2(0, z) . . . log πKK(0, z).


Then Ω

(s)
ik (g = 0, z) is given by the (i, k) entry of A0Π0(z)>.

Next, construct the following K ×K matrix:

Π1(z)
(K×K)

:=


log π11(1,z)

π11(0,z) log π12(1,z)
π12(0,z) . . . log π1K(1,z)

π1K(0,z)

log π21(1,z)
π21(0,z) log π22(1,z)

π22(0,z) . . . log π2K(1,z)
π2K(0,z)

...
...

. . .
...

log πK1(1,z)
πK1(0,z) log πK2(1,z)

πK2(0,z) . . . log πKK(1,z)
πKK(0,z) .


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Remember that g = [gij ] is the adjacency matrix of the network, and that ξ(s) = [ξ
(s)
ik ]

is a n×K matrix. We can show that the (i, k) entry of gξ(s)Π1(z)> is given by

n∑
j 6=i

K∑
l=1

gijξ
(s)
jl log

πkl(1, z)

πkl(0, z)
=

n∑
j 6=i

K∑
l=1

(gijξ
(s)
jl log πkl(1, z)− gijξ(s)

jl log πkl(0, z))

Finally, the (i, k) entry of A0Π0(z)> + gξ(s)Π1(z)> corresponds to

n∑
j 6=i

K∑
l=1

ξ
(s)
jl log πkl(0, z) +

n∑
j 6=i

K∑
l=1

(gijξ
(s)
jl log πkl(1, z)− gijξ(s)

jl log πkl(0, z))

=

n∑
j 6=i

K∑
l=1

ξ
(s)
jl (gij log πkl(1, z) + (1− gij) log πkl(0, z))

=
n∑
j 6=i

K∑
l=1

ξ
(s)
jl log πkl(gij , z)

= Ω
(s)
ik (g, z).

Therefore, computing the coefficient on ξ2
ik of the surrogate function can reduce to

matrix multiplication and summation. Intuitively, assuming that there are no links in
the network, we first compute the “baseline” quadratic coefficients. Then we update
the baseline quadratic coefficients for actual links using the adjacency matrix.18 As

Table 2 shows, the computing time of Ω
(s)
ik (g,x, z) using this formula is more than

14,000 times faster than that of a naive way using nested loops. This helps reduce the
computing time in the overall EM steps, since the quadratic coefficients need to be
computed in every EM iteration.

Table 2: Comparison of the computing time of quadratic coefficients between nested loops
and the matrix formula. For this benchmark we used a simulated network with n = 1, 000
and K = 50. Both are calculated using the Rcpp package in R.

Method Time (seconds) Relative

Nested loops 318.590 14481.36
Using the formula 0.022 1.00

Once the quadratic coefficients are computed, the other steps are relatively easy
to proceed. Computing the coefficients on the linear term in the surrogate function
is straightforward, and we can solve the quadratic programming problems with the
computed coefficients on the quadratic and linear terms. This maximization converges

18We can also embed sparse matrix algebra routines for the adjacency matrix, which reduces both the
computing time and the burden on the memory usage.
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quite fast even for large n and K and is parallelizable.19 Based on the ξ(s+1) obtained
from the quadratic programming problems, we can update the K×K matrix π(d = 1)
by

π(s+1)(d = 1) =

{(
ξ(s+1)

)>
g
(
ξ(s+1)

)}
�
{(
ξ(s+1)

)> (
ξ(s+1)

)}
,

whereA�B stands for the Hadamard (entry-wise) division of the conformable matrices
A and B.

So far we consider a special case where there are no nodal covariates in the MM
algorithm, but this can be extended to include discrete ones. We first calculate

π
(s+1)
kl (d = 1, χ1 = 0, . . . , χp = 0, z) :=

∑n
i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{gij = 1, χ1,ij = 0, . . . , χp,ij = 0}∑n

i=1

∑
j 6=i ξ

(s+1)
ik ξ

(s+1)
jl 1{χ1,ij = 0, . . . , χp,ij = 0}

(39)

for all k, l = 1, . . . ,K. This is the probability that nodes in block k and l are con-
nected on average, given that each dyad does not share any characteristics. Once

π
(s+1)
kl (d = 1, χ1 = 0, . . . , χp = 0, z) is ready, π

(s+1)
kl (d = 0, χ1 = 0, . . . , χp = 0, z) can

be easily computed by 1− π(s+1)
kl (d = 1, χ1 = 0, . . . , χp = 0, z), and π

(s+1)
kl (d = 0, χ1 =

0, . . . , χp = 0, z) will be used to compute the “baseline” quadratic coefficients as in the
case without nodal covariates.

To compute π
(s+1)
kl (d = 1, χ1 = 0, . . . , χp = 0, z), we use feature adjacency matrices,

which represent whether node i and j such that i 6= j share the same characteristics
(e.g., whether they belong to the same industry). Define the n × n feature adjacency
matrix for covariate s as

Xs,ij =

{
1 if si = sj and i 6= j

0 otherwise.

Then the K ×K matrix π(s+1)(d = 1, χ1 = 0, . . . , χp = 0, z) can be given by

π(s+1)(d = 1, χ1 = 0, . . . , χp = 0, z) =

{(
ξ(s+1)

)>
g ◦ (J −X1) ◦ · · · ◦ (J −Xp)

(
ξ(s+1)

)}
�{(

ξ(s+1)
)>

(J −X1) ◦ · · · ◦ (J −Xp)
(
ξ(s+1)

)}
,

where A ◦B denotes the Hadamard (i.e., entry-wise) product of the conformable ma-
trices A and B, J is a n× n matrix whose off-diagonal entries are all one and whose
diagonals are all zero. Note that the sparseness of g ◦ (J −X1) ◦ · · · ◦ (J −Xp) does
not exceed that of g. As long as g is sparse, g ◦ (J −X1) ◦ · · · ◦ (J −Xp) is also
sparse. This is why we first compute π(s+1)(d = 1, χ1 = 0, . . . , χp = 0, z) instead of
π(s+1)(d = 0, χ1 = 0, . . . , χp = 0, z), whose numerator contains only dense matrices.

19Theoretically, this maximization can be conducted in parallel, but we do not employ parallel computing
here due to issues related to the OpenMP library. However, the computation converges quite fast even if we
do not parallelize this step.

31



Also note that the matrix (J −X) is very dense when X is sparse, and computing
naively (J −X) would cause extremely high memory usage for large networks. This
computation is avoidable by using the distributive property

g ◦ (J −X) = g − g ◦X

and applying this property iteratively.
That is not the case with the denominator of π(s+1)(d = 1, χ1 = 0, . . . , χp = 0, z),

since it only contains dense matrices (J −X1), . . ., (J −Xp). We want to compute(
ξ(s+1)

)>
(J −X1) ◦ · · · ◦ (J −Xp)

(
ξ(s+1)

)
without breaking matrix sparseness. To

explain how to achieve the objective, let us focus on a case where there are only
three feature adjacency matrices X1, X2, and X3. Thus we consider to calculate(
ξ(s+1)

)>
(J −X1) ◦ (J −X2) ◦ (J −X3)

(
ξ(s+1)

)
.

Note that the following decomposition holds:(
ξ(s+1)

)>
(J −X1) ◦ (J −X2) ◦ (J −X3)

(
ξ(s+1)

)
=
(
ξ(s+1)

)>
{J − (X1 +X2 +X3) + (X1 ◦X2 +X2 ◦X3 +X3 ◦X1)− (X1 ◦X2 ◦X3)}

(
ξ(s+1)

)
=
(
ξ(s+1)

)>
J
(
ξ(s+1)

)
︸ ︷︷ ︸

=:P1

+
(
ξ(s+1)

)>
{−(X1 +X2 +X3) + (X1 ◦X2 +X2 ◦X3 +X3 ◦X1)− (X1 ◦X2 ◦X3)}

(
ξ(s+1)

)
︸ ︷︷ ︸

=:P2

= P1 + P2.

(X1 +X2 +X3), (X1 ◦X2 +X2 ◦X3 +X3 ◦X1), and (X1 ◦X2 ◦X3) are all sparse
as long as X1, X2, and X3 are sparse. Then computing P2 is not so computationally
costly. Moreover, we can compute P1 utilizing the fact that the (i, j) entry of the K×n
matrix (ξ(s+1))>J equals

∑
m 6=j ξmi. In this way, we can avoid computing dense matrix

to compute the denominator of (39). So far we have focused on the three-covariate
case, and this can be easliy extended to the p-covariate one.

Once computing π is completed, we can calculate the quadratic coefficients as we
do without nodal covariates. Redefine

A0
(n×K)

:=


τ(1)− ξ(s)

11 τ(2)− ξ(s)
12 . . . τ(K)− ξ(s)

1K

τ(1)− ξ(s)
21 τ(2)− ξ(s)

22 . . . τ(K)− ξ(s)
2K

...
...

. . .
...

τ(1)− ξ(s)
n1 τ(2)− ξ(s)

n2 . . . τ(K)− ξ(s)
nK

 ,

Π0(z)
(K×K)

:=


log πd=0,chi1=0,...,χp=0;11 log πd=0,χ1=0,...,χp=0;12 . . . log πd=0,χ1=0,...,χp=0;1K

log πd=0,χ1=0,...,χp=0;21 log πd=0,χ1=0,...,χp=0;22 . . . log πd=0,χ1=0,...,χp=0;2K
...

...
. . .

...
log πd=0,χ1=0,...,χp=0;K1 log πd=0,χ1=0,...,χp=0;K2 . . . log πd=0,χ1=0,...,χp=0;KK

 ,
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and

Π(d, χ1, . . . , χp, z)
(K×K)

:=


log

πd,χ1,...,χp;11
πd=0,χ1=0,...,χp=0;11

log
πd,χ1,...,χp;12

log πd=0,χ1=0,...,χp=0;12
. . . log

πd,χ1,...,χp;1K
πd=0,χ1=0,...,χp=0;1K

log
πd,χ1,...,χp;21

πd=0,χ1=0,...,χp=0;21
log

πd,χ1,...,χp;22
πd=0,χ1=0,...,χp=0;22

. . . log
πd,χ1,...,χp;2K

πd=0,χ1=0,...,χp=0;2K

...
...

. . .
...

log
πd,χ1,...,χp;K1

πd=0,χ1=0,...,χp=0;K1
log

πd,χ1,...,χp;K2

πd=0,χ1=0,...,χp=0;K2
. . . log

πd,χ1,...,χp;KK
πd=0,χ1=0,...,χp=0;KK

 .

Also define functions Γ : {0, 1} → Rn×n and Λs : {0, 1} → Rn×n (s = 1, . . . , p) such
that

Γ(d) :=

{
G (d = 1)

J −G (d = 0)

and

Λs(χs) :=

{
Xs (χs = 1)

J −Xs (χs = 0)
.

Then Ω
(s)
ik (g,x, z) :=

∑n
j 6=i
∑K

l=1 ξ
(s)
jl log π

(s)
kl (gij ,x, z), the most time-consuming part

to compute, is given by the (i, k) entry of the following matrix:

A0Π0(z)> +
∑

d=χ1=···=χp 6=0

Γ(d) ◦Λ1(χ1) ◦ · · · ◦Λp(χp)ξ
(s)Π(d, χ1, . . . , χp)

>.

The rest of the computation proceeds in the same way as we do without nodal covari-
ates.
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