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Abstract
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1 Introduction

Many influential macro asset pricing models have been developed and widely used by researchers,

practitioners, and monetary authorities.1 The econometric evaluation of their specifications is

important for policy analysis and forecasting, but conventional methods face severe challenges due

to ubiquitous information imbalance in these models; see, among others, Campbell (2018) and

Chen, Dou, and Kogan (2020) for structural models, as well as Kan and Zhang (1999), Kleibergen

(2009), and Gospodinov, Kan, and Robotti (2017) for linear models with spurious factors. The

econometric question of how to construct a robust and efficient evaluation of macro asset pricing

models, especially nonlinear structural models, is of great importance for the asset pricing literature.

To address this crucial question, this paper proposes a specification test robust to information

imbalance in a unified weak identification framework. In the generalized method of moments

(GMM) setup, we show that the rare-disaster risk model (Rietz, 1988; Barro, 2006), the time-

varying rare-disaster risk model (Gabaix, 2012; Wachter, 2013), and the long-run risk model (Bansal

and Yaron, 2004) all fit in a general framework — there exists a set of baseline moments that are

valid regardless of the asset pricing theory but only provide weak identification of the key model

parameters, characterized by the near flatness of the baseline moments (Stock and Wright, 2000).2

The remainder of the moments are asset pricing moments implied by a specific macro asset pricing

theory. These asset pricing moments, by design, provide tighter cross-equation restrictions and thus

strongly identify the key model parameters. We propose a new conditional specification test that

evaluates the validity of the asset pricing moments by effectively exploiting the noisy information

embedded in the baseline moments. This approach yields substantial power improvement compared

to the widely used J test (Hansen, 1982) for models with information imbalance.

This new conditional specification test builds on the approach of conditional inference with a

functional nuisance parameter by Andrews and Mikusheva (2016a). In our analysis, the object of

interest shifts from structural parameters to model specifications. The test statistic is an incremen-

tal J statistic as in the C test of Eichenbaum, Hansen, and Singleton (1988). However, the critical

value is simulation-based and is conditional on a sufficient statistic that captures the macroeco-

nomic information decoupled from the underlying content of asset pricing theories. It has correct

asymptotic size uniformly over the identification strength in the baseline moments. In contrast,

the C test, with a critical value based on the chi-square distribution, may under- or over-reject

the null hypothesis because estimators for weakly identified parameters have distributions that are
1See, e.g., Campbell (2003), Brunnermeier and Sannikov (2016), Cochrane (2017), He and Krishnamurthy (2018),

and Dou, Fang, Lo, and Uhlig (2020), for reviews on macro-finance models.
2See, e.g., Stock, Wright, and Yogo (2002), Andrews and Stock (2007), Mikusheva (2013), and Andrews, Stock,

and Sun (2019), for reviews on weak instruments and weak identification.
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poorly approximated by a normal distribution even in large samples (e.g., Stock and Wright, 2000;

Andrews and Cheng, 2012). Our conditional specification test becomes equivalent to the optimal

test in the classical scenario without weak identification (Newey, 1985). In contrast, the J test

based on all moment conditions neglects the valid information in the baseline moments.

This paper contributes to the connection between finance and econometrics, and makes the

following methodological and empirical contributions. First, we study the identification issue in

(time-varying) rare-disaster risk and long-run risk models. Our study shows how to coherently fit

a structural macro asset pricing model featuring information imbalance into a formal econometric

framework with both weak and strong identification, which paves the way for uniformly valid

inference. Each example demonstrates how to conduct a model-specific reparameterization that

exploits the major implications of the macro asset pricing model. To the best of our knowledge, the

identification and robust testing problems we study here have never been explored for these macro

asset pricing structural models under a formal econometric framework. Moreover, the empirical

application analyzes a full-blown time-varying rare-disaster risk model. There has been little formal

econometric study of the validity of the rare-disaster risk mechanisms in the asset pricing literature,

with a few exceptions (e.g., Julliard and Ghosh, 2012). Our empirical study also fills this gap in

the literature.

Second, we develop a new robust specification test and study its asymptotic properties. We

consider a general GMM framework, although the applications focus on asset pricing models. The

proposed conditional specification test builds on the work of Andrews and Mikusheva (2016a) and

differs from it in two main ways. First, our hypothesis test is on a model rather than the value

of some parameters. We estimate the model parameters instead of plugging in their true values

under the null because the latter is not available for the purpose of model evaluation. Estimation of

unknown parameters introduces additional technical complications for uniformly valid asymptotic

analysis. Second, we explore the differences in both validity and information content across two sets

of moments instead of studying inference based on one set of near-flat moments. Such imbalance

in the information content is the key feature of the models we study.

Related Literature. We contribute to improving upon existing specification tests and broad-

ening the scope of weak-identification robust inference methods. Conditional inference has been

successfully applied in constructing confidence sets for weakly identified parameters, following the

pioneering work of Moreira (2003) for linear instrumental variable (IV) models. Kleibergen (2005)

extends its application to nonlinear GMM models. Furthermore, Andrews and Mikusheva (2016a)

provide a new perspective – viewing the near-flat population moment function as a functional nui-

3



sance parameter. Standing on their shoulders, we apply the conditional inference approach to the

evaluation of nonlinear structural models, a new setting with many important applications. Hahn,

Ham, and Moon (2011) study a generalized Hausman test robust to weak instruments in linear

models and discuss several micro-econometric applications where our conditional specification test

also applies.

A growing body of literature is concerned with the efficacy of conventional inference methods

for macro asset pricing models and the development of robust methods. Using identification-robust

inference methods, Stock and Wright (2000) study the preference parameters through nonlinear

Euler equations, Yogo (2004) investigates the elasticity of intertemporal substitution (EIS) param-

eter through linearized cross-equation restrictions, and Ascari, Magnusson, and Mavroeidis (2019)

study the preference parameters under different structural models featuring habits, hand-to-mouth

consumers, or recursive preferences. Recently, a large number of papers have studied robust infer-

ence methods for linear asset pricing models (e.g., Kan and Zhang, 1999; Gospodinov, Kan, and

Robotti, 2017; Kleibergen and Zhan, 2020; Anatolyev and Mikusheva, 2020), Further, in predictive

models of stock returns with highly persistent predictors, standard asymptotic inference can largely

fail (e.g., Elliott and Stock, 1994; Stambaugh, 1999), and new valid and efficient procedures have

been developed (e.g., Campbell and Yogo, 2006; Elliott, Müller, and Watson, 2015). Nevertheless,

the existing literature lacks reliable and powerful model evaluation methods in the presence of

information imbalance.

The rest of the paper is organized as follows. Section 2 provides the general GMM setup with

information imbalance and two motivating examples. Section 3 describes the conditional specifica-

tion test, provides the algorithm, and illustrates its finite-sample performance through Monte Carlo

simulations based on the two motivating examples. Section 4 establishes the theoretical results on

the size of the proposed test and its uniform validity. Section 5 contains an empirical application

of the proposed test to time-varying rare-disaster risk models. Section 6 concludes. The appendix

contains proofs of the theoretical results on the size of the test. The supplemental appendix contains

proofs of the auxiliary lemmas in the appendix, theoretical and simulation results on the power of

the test, and details for the empirical application. Moreover, a note on additional materials Cheng,

Dou, and Liao (2021) is available on the authors’ personal websites.

2 Information Imbalance: General Setup and Examples

General Setup. Our objective is to statistically assess the validity of a macro asset pricing

model by applying specification tests to a set of model-implied cross-equation restrictions. The
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specification test can be formulated as below:

H0 : E[ḡ1(θ0)] = 0k1×1 versus H1 : E[ḡ1(θ0)] 6= 0k1×1, (2.1)

where ḡ1(θ) ≡ n−1
∑n

i=1 g1,t(θ) and g1,t(θ) ≡ g1(Yt, θ) ∈ Rk1 depends on the data Yt and the dθ× 1

dimensional parameter θ, whose true value is denoted by θ0. Some additional baseline moments

are always valid under both the null and the alternative,

E[ḡ0(θ0)] = 0k0×1, (2.2)

where ḡ0(θ) ≡ n−1
∑n

i=1 g0,t(θ) and g0,t(θ) ≡ g0(Yt, θ) ∈ Rk0 .3 Under the null, the full moments

are E [ḡ(θ0)] = 0k×1, where ḡ(θ) ≡ [ḡ0(θ)′, ḡ1(θ)′]′ is k ≡ k0 + k1 dimensional and differentiable in

θ almost surely. We allow the baseline moments to depend only on a subvector of θ.

The models we consider have two key features. First, the baseline moments E[ḡ0(θ0)] = 0k0×1

may only weakly identify θ0, i.e., E[ḡ0(θ)] is nearly flat in θ. Second, once the asset pricing theory

is imposed, the full moments E[ḡ(θ0)] = 0k×1 strongly identify θ0 under the null, i.e., the singular

values of the associated Jacobian matrix Q ≡ E[∂ḡ(θ0)/∂θ′] are bounded away from zero. For

moments created with IVs, the baseline moments E[ḡ0(θ0)] = 0k0×1 and the additional moments

E[ḡ1(θ0)] = 0k1×1 are created with weak IVs and strong IVs, respectively.

Motivating Example 1: Disaster Risk Model for Equity Premium. We consider a

simple variant of Rietz (1988) and Barro (2006, 2009) with macroeconomic disasters characterized

by extremely large consumption declines. We assume that real consumption growth follows4

∆ct ≡ ln

(
Ct
Ct−1

)
= σεt − ζt, (2.1)

where Ct is real consumption per capita, the consumption shock εt follows a standard normal

distribution, and ζt is a disaster variable. Particularly, the disaster variable ζt is characterized by

ζt ≡ xt(v + Jt), (2.2)

where the variable xt ∼ Bernoulli(p) captures the occurrence of disasters, the constant v is the

lower bound of the disaster size, and the variable Jt ∼ Exp(α) is a disaster shock. The shocks

(εt, Jt, xt) are independently and identically distributed (i.i.d.) over t and mutually independent

with each other. Specification of ∆ct in (2.1) provides baseline moment conditions: E[m̄0(α)] = 0,

where m̄0(α) ≡ n−1
∑n

t=1m0,t(α) with

m0,t(α) ≡

 ∆ct + pµ1(α)

∆c2
t − σ2 − pµ2(α)

 and µj(α) ≡ E[(v + Jt)
j ] > 0 for j = 1, 2. (2.3)

3Throughout the paper, we suppress the dependence of ḡ0(θ) and ḡ1(θ) on n for notational simplicity.
4We ignore the intercept in ∆ct to maintain simplicity since it plays little role in explaining equity premia.

5



Specifically, µ1(α) = v + 1/α and µ2(α) = v2 + 2v/α+ 2/α2. For illustrative purposes, we assume

that the econometrician knows all parameters, except α, a parameter that can be only weakly

identified by the moments based on ∆ct if p is close to 0.

The representative agent maximizes his lifetime expected utility:

U0 ≡ E

[ ∞∑
t=0

e−δt
C1−γ
t

1− γ

]
, (2.4)

where δ is the subjective discount rate and γ is the relative risk aversion coefficient. The Euler

equation for the utility maximization problem gives the following moment condition for excess log

return of equity rem,t: E[m̄1(α)] = 0, where m̄1(α) ≡ n−1
∑n

t=1m1,t(α) with

m1,t(α) ≡ rem,t − γσ2 +
1

2
σ2 + pµ1(α)− p

α− γ
h(α), and

h(α) ≡ α
[
eγv − α− γ

α− γ + 1
e(γ−1)v

]
. (2.5)

We call this the asset pricing moment. The model and the equilibrium condition require that v > 0

and α > γ > 1, ensuring that the function h(α) is positive and finite.

The asset pricing moment (2.5) clearly demonstrates the key idea of the disaster risk model:

when p and α− γ are both close to 0, the rare yet large disaster can generate a substantial equity

premium as long as their ratio is a sizable loading in front of h(α) to match the moment of rem,t.

This parameter restriction on p and α− γ ensures that the disaster risk is a meaningful economic

mechanism for explaining the equity premium even if p is small. To utilize this key insight, we

transform the parameter α to θ with

θ ≡ p

α− γ
and θ ∈ Θ ≡ [c, c], (2.6)

for constants 0 < c < c. Our analysis allows p and α − γ to be both arbitrarily close to 0, while

keeping the ratio θ bounded from above and away from zero.

To parameterize all the moments in θ, we write

ḡ0(θ) ≡ m̄0(θ−1p+ γ) and ḡ1(θ) ≡ m̄1(θ−1p+ γ). (2.7)

Let µ(1)
j (α) ≡ (d/dα)µj(α), where µj(α) for j = 1, 2 are defined in (2.3). For the baseline moments

ḡ0(θ), simple calculations give

E
[
d

dθ
ḡ0(θ)

]
= −(θ−1p)2

[
µ

(1)
1 (θ−1p+ γ), − µ(1)

2 (θ−1p+ γ)
]′
, (2.8)

where µ(1)
j (θ−1p+ γ) for j = 1, 2 are positive and bounded. Because θ is bounded, we have

lim
p→0

E
[
d

dθ
ḡ0(θ)

]
= [0, 0]′ and lim

p→0
E
[
d

dθ
ḡ1(θ)

]
= −γeγv 6= 0. (2.9)
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The baseline moments weakly identify θ when p is close to 0, whereas the asset pricing moment

always strongly identifies θ.

Motivating Example 2: Long-Run Risk Model for Equity Premium. We consider a

simple variant of the baseline model of Bansal and Yaron (2004). As shown in the literature (e.g.,

Müller and Watson, 2008, 2018), the time series of U.S. real output growth exhibit a long-run (low-

frequency) component, denoted by xt. However, economists debate whether U.S. real consumption

growth and U.S. real stock return are significantly loaded on the long-run component, xt, of the

real output growth (e.g., Beeler and Campbell, 2012; Bansal, Kiku, and Yaron, 2012).

The long-run component of real output growth, xt, is latent and obeys the following autore-

gressive process of order 1 (i.e., AR(1) process):

xt = ρxt−1 + εx,t. (2.10)

The representative agent’s consumption has the following log growth process:

∆ct ≡ ln

(
Ct
Ct−1

)
= φxt−1 + σcεc,t, (2.11)

where Ct is real consumption per capita. The shocks (εx,t, εc,t) follow a standard bivariate normal

distribution and are i.i.d. over t. By introducing parameter φ in (2.11), we allow the expected

consumption growth to be weakly dependent on or independent of the long-run component xt as

in many macro asset pricing models. Specifically, when φ = 0, the consumption growth process

is exactly i.i.d. as in Campbell and Cochrane (1999). When φ > 0, the time series of U.S.

real consumption growth share the same long-run (low-frequency) component xt, as suggested by

Kandel and Stambaugh (1991), Hansen, Heaton, and Li (2008), and Schorfheide, Song, and Yaron

(2018). When φ is positive yet near zero, the consumption growth process is nearly i.i.d., as argued

by Beeler and Campbell (2012). In the model of Bansal and Yaron (2004, Table I), the loading

parameter φ is effectively 0.034% in the monthly frequency. The specification of ∆ct in (2.11)

implies the baseline moment conditions: E [m̄0(ρ)] = 0, where m̄0(ρ) ≡ n−1
∑n

t=1m0,t(ρ) with

m0,t(ρ) ≡

 ∆ct−1 (∆ct+1 − ρ∆ct)

∆ct (∆ct+1 − ρ∆ct) + ρσ2
c

 . (2.12)

For illustrative purposes, we assume that the econometrician knows all parameters except ρ, a

parameter that can be only weakly identified by the moments based on ∆ct if φ is close to 0.

The representative agent has recursive preferences and the agent maximizes the following life-

time utility:

Vt =

[
(1− δ)C1−1/ψ

t + δ
(
Et
[
V 1−γ
t+1

]) 1−1/ψ
1−γ

] 1
1−1/ψ

, (2.13)
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where δ is the rate of time preference, γ is the coefficient of risk aversion for timeless gambles,

ψ is the EIS under certainty, and Et[·] is the conditional expectation given the information up to

the end of period t. The Euler equation as the first-order condition for the utility maximization

problem requires that the equilibrium excess log return rem,t satisfies E [m̄1(ρ)] = 0, where m̄1(ρ) ≡
n−1

∑n
t=1m1,t(ρ) with

m1,t(ρ) ≡ rem,t − γσ2
c +

1

2
σ2
c −

1

2

(
2γ − ψ−1 − 1

) (
1− ψ−1

) φ2

(δ−1 − ρ)2 . (2.14)

We call this the asset pricing moment.

The key insight of the long-run risk model can be clearly seen from (2.14): when γ > 1 >

ψ−1, which implies that the agent has a preference for early resolution of uncertainty and the

intertemporal substitution effect dominates the income effect, the equity premium is sizable if the

cash flows load on the long-run component (i.e., φ is positive), the long-run component is persistent

(i.e., ρ is close to unity), and the representative agent’s rate of time preference is close to unity

(i.e., δ is close to unity). This insight summarizes the central idea of the parameter calibrations in

the works of Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012), in which φ = 0.034%,

ρ = 0.975, and δ = 0.9989 in the monthly frequency. To ensure that the long-run risk is a

meaningful economic mechanism for explaining the sizeable equity premium, φ/(δ−1−ρ) must be a

positive component that is bounded away from zero and from above in order to match the moment

of rem,t. To utilize this insight, we transform ρ to θ with

θ ≡ φ

δ−1 − ρ
and θ ∈ Θ ≡

{
θ ∈ [c, c] and δ−1 − θ−1φ ∈ [0, 1)

}
, (2.15)

for some constants 0 < c < c. Our analysis focuses on ρ < 1, 0 < δ < 1, and φ > 0. It allows ρ

and δ to be both arbitrarily close to 1 and φ to be arbitrarily close to 0, while keeping the ratio

between any pair of δ−1 − 1, 1− ρ, and φ bounded from above and away from zero.

To parameterize all the moments in θ, plugging in ρ = δ−1 − θ−1φ, we obtain

ḡ0(θ) ≡ m̄0(δ−1 − θ−1φ) and ḡ1(θ) ≡ m̄1(δ−1 − θ−1φ). (2.16)

The Jacobian matrix for the baseline moment conditions is

E
[
d

dθ
ḡ0(θ)

]
= − φ2

[(1 + δ−1)θ − φ][1 + φ−1(1− δ−1)θ]

[
δ−1 − θ−1φ, 1

]′
. (2.17)

Thus, the baseline moment restrictions are nearly flat in θ because

lim
φ→0

E
[
d

dθ
ḡ0(θ)

]
= [0, 0]′ . (2.18)
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However, under the reasonable calibrations in the literature (Bansal and Yaron, 2004; Beeler and

Campbell, 2012; Bansal, Kiku, and Yaron, 2012), the preference parameters γ and ψ are well above

1, and thus the asset pricing moment condition has the unknown parameter θ well identified:

lim
φ→0

E
[
d

dθ
ḡ1(θ)

]
= −(2γ − ψ−1 − 1)(1− ψ−1)θ 6= 0. (2.19)

3 Conditional Specification Test

Let Θ ∈ Rdθ denote the parameter space that includes θ0 as an interior point. We consider the

incremental J statistic:

T ≡ J − J0, where J ≡ min
θ∈Θ

g(θ)′(Ω̂(θ))−1g(θ) and J0 ≡ min
θ∈Θ

g0(θ)′(Ω̂0(θ))−1g0(θ), (3.1)

with g0(θ) ≡ n−1/2
∑n

t=1 g0,t(θ) ∈ Rk0 , g(θ) ≡ n−1/2
∑n

t=1 gt(θ) ∈ Rk, gt(θ) ≡ [g0,t(θ)
′, g1,t(θ)

′]′,

Ω̂(θ) ≡ Ω̂(θ, θ), where Ω̂(θ, θ̃) is an estimator of Ω(θ, θ̃) ≡ limn→∞Cov(g(θ), g(θ̃)) for any θ, θ̃ ∈ Θ

and Ω̂0(θ) is the leading k0×k0 submatrix of Ω̂(θ). Note that by definitions, g0(θ) and g(θ) rescale

the sample averages ḡ0(θ) and ḡ(θ) by n1/2, respectively.

If the baseline moments provide strong identification of θ0, T →d χ
2
k1

and a critical value from

this chi-square distribution yields the C test (incremental J test) of Eichenbaum, Hansen, and

Singleton (1988). This test is more powerful than the standard over-identification test based on the

J statistic because it exploits the validity of the baseline moments. When the baseline moments

only provide weak identification, the chi-square distribution is no longer a good approximation for

the distribution of T .
We propose an alternative critical value based on the conditional inference approach. Follow-

ing Andrews and Mikusheva (2016a), we view the rescaled baseline moment function E[g0(θ)] =

n1/2E[ḡ0(θ)] indexed by θ as a functional nuisance parameter and obtain a simulation-based crit-

ical value by conditioning on a sufficient statistic for E[g0(θ)]. Below, we describe the steps of

constructing this critical value in detail.

Step 1. First, estimate θ0 by the continuously updated estimator (CUE) as follows:

θ̂ ≡ arg min
θ∈Θ

g(θ)′(Ω̂(θ))−1g(θ). (3.2)

This estimator is consistent under the null, following the standard arguments (e.g., Newey and

Smith, 2004). Second, let Ω̂(θ, θ̃) be a consistent estimator of the covariance function Ω(θ, θ̃) for any

θ, θ̃ ∈ Θ. Specifically, Ω̂(θ, θ̃) can be a sample analog for i.i.d. data or be a heteroskedasticity and

autocorrelation consistent (HAC) estimator for time series data. Given this covariance estimator,

compute the test statistic T following (3.1). Third, let Ω̂ ≡ Ω̂(θ̂, θ̂) and Q̂ ≡ ∂ḡ(θ̂)/∂θ′.
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Step 2. Construct a sufficient statistic m(θ) for the rescaled baseline moments E[g0(θ)]. To

this end, conduct the following decomposition:

g0(θ) = m(θ) + V (θ)g(θ̂), where m(θ) ≡ g0(θ)− V (θ)g(θ̂) (3.3)

is the residual process obtained by projecting g0(θ) onto g(θ̂), and V (θ) ≡ S0Ω(θ, θ0)Ω−1 is the

projection coefficient with S0 ≡ [Ik0 , 0k0×k1 ] and Ω ≡ Ω(θ0, θ0). Importantly, m(θ) is orthogonal

to g(θ̂) by construction. In practice, we replace the unknown function V (θ) in the formula above

with its estimator V̂ (θ) ≡ S0Ω̂(θ, θ̂)Ω̂−1.

Here is a remark on why the residual process m(θ) is a sufficient statistic for the functional

nuisance parameter E[g0(θ)] under the null hypothesis. Under the null, g(θ̂), the full moment

function evaluated at θ̂, is approximately a linear function of g(θ0):

g(θ̂) = Ω1/2Mυ + εn, where υ ≡ Ω−1/2g(θ0)→d N(0, Ik), (3.4)

M ≡ Ik−Ω−1/2Q(Q′Ω−1Q)−1Q′Ω−1/2 is a projection matrix, and εn is an error term that is either

zero if gt(θ) is linear in θ or negligible asymptotically if gt(θ) is nonlinear. Because of the asymptotic

normality of g0(θ) and g(θ̂), the residual process m(θ) is a Gaussian process independent of g(θ̂)

asymptotically. Conditioning on m(θ), the distribution of g0(θ) and the test statistic T do not

depend on the functional nuisance parameter E[g0(θ)], meaning that m(θ) is a sufficient statistic

for E[g0(θ)]. The sufficient statistic m(θ) captures the identification information of the baseline

moments that is independent of randomness of the full moments in large samples. Intuitively, this

is the information of the baseline moments about θ0 decoupled from the underlying content of the

asset pricing theory.

Step 3. Conditioning on the sufficient statistic m(θ) obtained in step 2, we approximate the

conditional distribution of the test statistic T by replacing g0(·) with the decomposition in (3.3)

and replacing g(θ̂) with its asymptotic approximation Ω1/2Mυ in (3.4), where υ is drawn from the

standard k-dimensional multivariate normal distribution. Specifically, we define

L(υ; d0) ≡ υ′Mυ −min
θ∈Θ

[
m(θ) + V (θ)Ω1/2Mυ

]′
(Ω0(θ))−1

[
m(θ) + V (θ)Ω1/2Mυ

]
, (3.5)

where d0 ≡ (m(·)′, vec(V (·))′, vech(Ω)′, vech(Ω0(·))′, vech(M)′)′, and Ω0(θ) denotes the leading k0×
k0 submatrix of Ω(θ) ≡ Ω(θ, θ). To simulate this conditional distribution, for b = 1, . . . , B, take

independent draws υ∗b ∼ N(0, Ik) and calculate T ∗b = L(υ∗b ; d̂), Replacing d0 in (3.5) by d̂ means

that m(·) is the residual process obtained in step 2, V is replaced by V̂ (θ) in step 2, Ω and

Ω0(θ) are replaced by Ω̂ and Ω̂0(θ) = S0Ω̂(θ)S′0 in step 1, and M is replaced by M̂ ≡ Ik −
Ω̂−1/2Q̂(Q̂′Ω̂−1Q̂)−1Q̂′Ω̂−1/2.
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Step 4. Let α be the nominal size of the test and b0 ≡ d(1 − α)Be be the smallest integer

larger than or equal to (1 − α)B. The critical value cB,α(d̂) is the bth0 smallest value among

{T ∗b : b = 1, . . . , B}. Reject the null hypothesis in (2.1) if the statistic T in step 1 is larger than

the critical value cB,α(d̂). This completes the algorithm.

Besides θ, the moments may also depend on an unknown parameter ψ, which, unlike θ, cannot

be strongly identified by the asset pricing moments. In this case, we can apply the algorithm to

the joint hypothesis H0 : E[ḡ1(θ0, ψ0)] = 0k1×1 and ψ0 = ψc, with ψc imposed in all the moments

as if it were known. The original null hypothesis H0 : E[ḡ1(θ0, ψ0)] = 0k1×1 is rejected if the

joint hypothesis is rejected for all null values ψc in its parameter space. This is a projection-based

subvector inference method with the weakly identified nuisance parameter ψ. In practice, we may

consider different values ψc in the range of calibrations used in the literature and treat ψc as part

of the model’s functional-form specification being tested.

Monte Carlo Simulation. Here we conduct Monte Carlo simulations to compare the finite-

sample size and power of the proposed conditional specification test, the J test, and the C test in

the two motivating examples in Section 2. The models, moments, parameters, and notations are

as described in Section 2.

We first conduct a simulation study for the disaster risk model. We generate ∆ct following (2.1)

and (2.2), and we generate ret according to the following data-generating process:

ret = η + γσ2 − 1

2
σ2 − pµ1(α) +

p

α− γ
h(α) + εed,t, (3.6)

where the error term εed,t ≡ σεt− [xt(v + Jt)− pµ1(α)]+σdεd,t, and the functions µ1(·) and h(·) are
defined in (2.3) and (2.5), respectively.5 Here, εd,t is an i.i.d. standard normal variable capturing

the measurement error and is independent of the other shocks. Under the null, η = 0, and under

the alternative, we consider various values of η to compare the powers. The misspecification term

η in (3.6) can be attributed to the missing risk factors or economic mechanisms if expected returns

are not driven only by the disaster risk mechanism, and it can also be attributed to misspecified

functional forms or restrictive parametric assumptions.

The parameters are set in the yearly frequency, similar to those set by Rietz (1988), Longstaff

and Piazzesi (2004), and Wachter (2013), as follows: n = 150, σ = 2%, ν = 7%, γ = 4, p = 0.5%,

and σd = 15%. In accordance with the observed equity premium and its sampling uncertainty in the

data, we set θ = p/(α− γ) = 0.0138 as the calibrated “true” value in the simulation experiment to

match the annual equity premium of 6%, and we estimate θ using the simulated data by searching
5See Section A of the note on additional materials for the derivation of (3.6) and (3.7).
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Figure 1: A comparison of tests for the rare-disaster risk and long-run risk model.
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A. Disaster risk model (n = 150)
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B. Long-run risk model (n = 500)

Note: Panels A and B plot the rejection probabilities of three different specification tests for the disaster risk model and
the long-run risk model, respectively, based on the simulated data. In both panels, the solid curve represents the rejection
probability of the conditional specification test, with the test statistic T defined in (3.1) and the conditional critical value
defined in (4.2); the dashed curve represents the rejection probability of the J test (Hansen, 1982); the dotted curve represents
the rejection probability of the C test (Eichenbaum, Hansen, and Singleton, 1988); and the bold solid horizontal line represents
the 5% nominal size for all three specification tests.

in the interval [c, c], where the bounds c and c are calibrated to match the annual equity premium

of 3% and 9%, respectively.

We next conduct a simulation study for the long-run risk model. We generate ∆ct following

(2.10) and (2.11), and we generate ret according to the following data-generating process:

ret = η + γσ2
c −

1

2
σ2
c +

1

2

(
2γ − ψ−1 − 1

) (
1− ψ−1

) φ2

(δ−1 − ρ)2 + εe`,t, (3.7)

where the error term εe`,t ≡ σcεc,t + (1 − ψ−1)(δ−1 − ρ)−1φεx,t + σ`ε`,t. Here, ε`,t is an i.i.d.

standard normal variable capturing the measurement error and is independent of the other shocks.

The misspecification term η in (3.7) has a similar interpretation to that of the disaster risk model

example. The parameters are set in the quarterly frequency, close to those set by Bansal, Kiku, and

Yaron (2012), as follows: n = 500, σc = 0.0072×
√

3, δ = 0.99893, γ = 10, ψ = 1.5, ρ = 0.9753, and

σ` = 7.5%. In accordance with the observed equity premium and its sampling uncertainty in the

data, we set θ = φ/(δ−1−ρ) = 0.0665 as the calibrated “true” value in the simulation experiment to

match the annual equity premium of 6%, and we estimate θ using the simulated data by searching

in the interval [c, c], where the bounds c and c are calibrated to match the annual equity premium

of 3% and 9%, respectively.

Lastly, we discuss the simulation results for both examples, which are based on 10000 simulation

repetitions and B = 2500 random draws for the critical value of the conditional specification test in

each repetition. Figure 1 reports the finite-sample rejection probabilities of the proposed conditional

specification test, the J test, and the C test in the disaster risk model (panel A) and the long-run
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risk model (panel B). The simulation confirms that (i) the size of the conditional specification test

is at the nominal level, (ii) the power of the conditional specification test is higher than that of the

J test, and (iii) the size of the C test deviates from the nominal level, severely under-rejecting the

null hypothesis. In the note on additional materials, we show that these patterns are robust to a

wider parameter space of θ for both models. It is worth pointing out that the C test may over-

reject for a different data generating process. Figure 1 demonstrates that the proposed conditional

specification test offers substantial improvement over the existing tests for these two prominent

macro asset pricing models.

4 Theoretical Properties

4.1 Finite-Sample Size Control in Linear Gaussian Models

For the test statistic and the critical value in the algorithm, there are three types of approximation

errors between the finite- and large-sample distributions: (i) the linear approximation error εn
in (3.4), (ii) the Gaussian approximation error for the distribution of m(·) and υ, and (iii) the

estimation errors in the consistent estimators of θ0, Ω(·, ·), V (·), and M . To abstract from these

approximation errors, which all vanish asymptotically under the null, below we first consider a linear

Gaussian statistical experiment where all types of errors are exactly zero even in finite samples.

Let υ∗ ≡ Ω−1/2ψ(θ0) and m∗ (·) ≡ E[g0 (·)]+S0ψ (·)−V (·) Ω1/2MΩ−1/2ψ(θ0) denote the Gaussian

counterparts of υ and m(·), respectively, where ψ(·) is a Gaussian process with the covariance

function Ω(·, ·). In this linear Gaussian experiment, the test statistic T is exactly L(υ∗; d∗), where

d∗ is the same as d0 except thatm(·) in d0 is replaced bym∗(·). Define its conditional 1−α quantile

as

c∗α(d∗) ≡ inf {c ∈ R : P (L(υ∗; d∗) > c| d∗) ≤ α} , (4.1)

for nominal size α, where P ( ·| d∗) denotes the conditional distribution of L(υ∗; d∗) given d∗.

Lemma 1. In a linear Gaussian experiment we have the following results under the null hypothesis:

(i) m∗(·) and Mυ∗ are independent;

(ii) P (L(υ∗; d∗) > c∗α(d∗)) ≤ α;
(iii) If the conditional distribution of L(υ∗; d∗) given d∗ is continuous at its 1 − α quantile almost

surely, the size of the test equals the nominal level: P (L(υ∗; d∗) > c∗α(d∗)) = α.

The critical value c∗α(d∗) can be simulated using the marginal distribution of υ∗ because of

the following three reasons. First, υ∗ enters L(υ∗; d∗) through Mυ∗. Second, Mυ∗ and m∗(·) are

independent. Finally, m∗ (·) is the only random component in d∗. In large samples, the simulated
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critical value cB,α(d̂) obtained in step 4 of the algorithm given in Section 3 approximates c∗α(d∗)

with high accuracy when B is a large number.

4.2 Asymptotic Uniform Validity for Nonlinear Models

We first state the assumptions that are used to derive the asymptotic size of the test. Let P denote

the distribution of the data {Yt}nt=1. We allow P to change with the sample size n but suppress

this dependence for notational simplicity. We also suppress the dependence of E[·] and θ0 on P.

Let P denote a family of distributions for which the baseline moments are valid. Let P0 denote a

subset of P consistent with the null hypothesis. Both P and P0 are allowed to change with n. Let

q(θ) ≡ ∂ḡ(θ)/∂θ′, then Q(θ) = E[q(θ)]. For j = 1, . . . , dθ, let Qj(θ) denote the jth column of Q(θ)

and θj denote the jth component in θ. Let λmin(A) denote the minimal eigenvalue of a symmetric

real matrix A, and ‖ · ‖ denote the matrix Frobenius norm.

Assumption 1. The following conditions hold uniformly over P ∈ P:
(i) g (·) − E [g (·)] weakly converges to a mean-zero Gaussian process ψ(·) with covariance Ω(·, ·);
(ii) supθ∈Θ ‖q(θ)−Q(θ)‖ →p 0 and Q(θ) is continuous;

(iii) supθ∈Θ [||E[ḡ(θ)] ||+ ||Q(θ)||+
∑dθ

j=1 ||∂Qj(θ)/∂θ′||] ≤ Cm for some finite constant Cm.

Assumption 2. The following conditions hold uniformly over P ∈ P:
(i) There exists an estimator Ω̂(·, ·) of Ω(·, ·) such that supθ,θ̃∈Θ ||Ω̂(θ, θ̃)− Ω(θ, θ̃)|| = op(1);

(ii) Ω(θ, θ̃) is continuous uniformly over (θ, θ̃) ∈ Θ×Θ;

(iii) supθ,θ̃∈Θ ||∂Ω̂(θ, θ̃)/∂θj − ∂Ω(θ, θ̃)/∂θj || = op(1) for j = 1, . . . , dθ;

(iv) supθ,θ̃∈Θ[||Ω(θ, θ̃)||+
∑dθ

j=1 ||∂Ω(θ, θ̃)/∂θj ||] ≤ CΩ for some finite constant CΩ.

Assumption 3. The following conditions hold uniformly over P ∈ P0:

(i) There exists θ0 ∈ Θ such that E [ḡ(θ0)] = 0k×1;

(ii) for any ε > 0, there exists a constant δε > 0 such that infθ∈Bcε(θ0) ||E [ḡ(θ)] || > δε, where

Bc
ε(θ) ≡ {θ̃ ∈ Θ : ||θ̃ − θ|| ≥ ε};

(iii) λmin (Q′Q) ≥ cλ and infθ∈Θ λmin (Ω(θ)) ≥ cλ for some positive constant cλ.

Assumption 1(i) requires that the moment is well approximated by a Gaussian limit. Its verifi-

cation relies on a uniform central limit theorem, as discussed by Andrews and Mikusheva (2016a).6

6In our long-run risk example, the assumption of Gaussian approximation is innocuous even if the root of the
latent autoregressive process could be arbitrarily close to unity, different from the classical near unit root analysis
(e.g., Phillips, 1987; Mikusheva, 2007). In this example, the stationary component always dominates the latent
non-stationary component because the loading on the latent process φ shrinks to 0 proportionally as 1 − ρ shrinks
to 0 (see Section B of the note on additional materials for details). In the disaster risk model, Assumption 1(i) holds
with a non-singular covariance matrix even though the disaster occurs with a small probability because the variance
of the normally distributed regular shock dominates that of the disaster shock.
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Assumption 1(ii) follows from the uniform law of large numbers. Assumption 1(iii) are standard

regularity conditions on uniformly bounded moment functions and their derivatives.

Assumptions 2(i) and 2(iii) require that we have uniformly consistent estimators of the covari-

ance function Ω(·, ·) and its partial derivatives. Uniform consistency can be obtained by strength-

ening a pointwise consistent covariance matrix estimator with standard smoothness conditions.

Assumptions 2(ii) and 2(iv) impose continuity and uniform upper bounds on the covariance func-

tion Ω(·, ·) and its partial derivatives. Both Assumptions 1 and 2 are imposed on P, not only on

P0, because they are useful for both the size and power analyses of the proposed conditional test.

Assumption 3 is used to show consistency and asymptotic normality of θ̂ under the null hypoth-

esis. Assumptions 3(i) and 3(ii) provide the identification uniqueness condition of the unknown

parameter θ0 using all valid moments under the null hypothesis. Assumption 3(iii) includes stan-

dard full rank conditions for the Jacobian matrix and the covariance matrix of the full moments

ḡ(θ).

Let d̂ be the analog of d, with m(·), V (·), Ω, Ω(·, ·), and M all replaced by their consistent

estimators, as in the practical algorithm. Given d̂, we simulate independent draws υ∗ ∼ N(0, Ik)

and obtain the critical value

cα(d̂) ≡ inf
{
c ∈ R : P ∗(υ∗ : L(υ∗; d̂) > c) ≤ α

}
, (4.2)

where P ∗(·) denotes the distribution of υ∗.

Theorem 1. Suppose Assumptions 1, 2, and 3 hold. The test has correct asymptotic size, in the

sense that, for any ε > 0,

lim sup
n→∞

sup
P∈P0

P
(
T > cα(d̂) + ε

)
≤ α.

Theorem 1 implies that the conditional specification test controls the asymptotic size no matter

whether the unknown parameter θ0 (or its subvector) is strongly identified, weakly identified, or

not identified by the baseline moments E [ḡ0(θ0)] = 0k0×1.7

Next, we consider the behavior of the test statistic T and the conditional critical value cα(d̂)

when E [ḡ0(θ0)] = 0k0×1 strongly identifies θ0.

Assumption 4. The following conditions hold uniformly over P ∈ P00 ⊂ P: (i) for any ε > 0,

there exists a constant δε > 0 such that infθ∈Bcε(θ0) ‖E [ḡ0(θ)]‖ > δε; and (ii) λmin (Q′0Q0) ≥ cλ

where Q0 ≡ E [∂ḡ0(θ)/∂θ′].
7Under additional regularity conditions on the continuity of the distribution function of the test statistic and

the critical value, the test is also asymptotically similar, as discussed in Andrews and Mikusheva (2016a); see, e.g.,
Andrews, Cheng, and Guggenberger (2020) for discussions on asymptotic similarity.
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Assumption 4 is similar to Assumption 3 and is imposed on E [gt(θ)] for the strong identification

of θ0 using all moments. This assumption is needed to show that the test statistic T converges to a

chi-square distribution and the critical value cα(d̂) converges to the 1−α quantile of this chi-square

distribution under strong identification.

Theorem 2. Suppose Assumptions 1, 2, 3, and 4 hold. The following results hold uniformly over

P0 ∩ P00: (i) T →d χ
2
k1
; and (ii) cα(d̂)→p q1−α(χ2

k1
), where q1−α(χ2

k1
) denotes the 1− α quantile

of a χ2
k1

distribution.

Theorem 2 shows that the conditional specification test is equivalent to the C test under the

null when the baseline moments E [ḡ0(θ0)] = 0k0×1 provide strong identification of θ0.

If the baseline moment conditions E [ḡ0(θ0)] = 0k0×1 only depend on a subvector θc,0 of θ0 with

dimension dc and strongly identify θc,0, arguments analogous to those used to prove Theorem 2

also give

T →d χ
2
k1+dc−dθ and cα(d̂)→p q1−α(χ2

k1+dc−dθ) (4.3)

uniformly over P0 ∩ P00. In this case, k1 ≥ dθ − dc in (4.3) because the asset pricing moments of

dimension k1 must strongly identify all the parameters not in the baseline moments.

In the presence of some additional parameter ψ that is only weakly-identified by the asset

pricing moments, we can test the joint hypothesis H0 : E[ḡ1(θ0, ψ0)] = 0k1×1 and ψ0 = ψc for

some null value ψc as discussed in Section 3. As long as Assumptions 1 to 4 hold with ψ0 fixed at

ψc, the results of Theorems 1 and 2 apply to the joint test. The projection-based subvector test

H0 : E[ḡ1(θ0, ψ0)] = 0k1×1 also has correct asymptotic size. Since the projection-based test could

be conservative, more efficient subvector tests are desirable.8 Developing more efficient subvector

tests for the present problem is beyond the scope of this paper.

In the supplemental appendix, we investigate the power of the conditional specification test.

We prove that (i) the test is consistent when the asset pricing moments are globally misspecified

regardless of the identification strength in the baseline moments, and (ii) the conditional test shares

the power optimality of the C test in standard scenarios where the baseline moments provide strong

identification. The optimal test in the presence of weakly identified baseline moments is beyond

the scope of the paper. However, the literature has provided several encouraging power results

for various conditional tests against the null hypothesis H0 : θ = θ0 (e.g., Andrews, Moreira, and

Stock, 2006; Andrews and Mikusheva, 2016a, 2020) and we expect the conditional specification test

to inherit these good properties. One may also apply the generic methods of Elliott, Müller, and
8See e.g., Guggenberger, Kleibergen, Mavroeidis, and Chen (2012); Andrews and Mikusheva (2016b); Guggen-

berger, Kleibergen, and Mavroeidis (2019); Kleibergen (2021) for recent research along this line.
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Watson (2015) to evaluate the efficiency of an ad hoc test with correct size. In the supplemental

appendix, we derive some power envelopes in a Gaussian experiment as in Section 4.1 based on

the observations of g(θ̂), under various restrictions on the alternative and the test. These power

envelopes are akin to those in Section 3.4 of Andrews and Mikusheva (2016a). Simulation studies

in the supplemental appendix show that the power of the conditional specification test is close to

that of the infeasible uniformly most powerful unbiased test in many cases, particularly when the

number of baseline moments is large or when the baseline moments are strongly correlated with

the asset pricing moments.

5 Empirical Application

In this section, we consider a full-blown time-varying rare-disaster risk model similar to that of

Wachter (2013), a significant extension of the static rare-disaster risk model in Section 2. The

model is extended in a few crucial aspects: (i) the probability of rare disasters is time varying; (ii)

the representative agent has a recursive Epstein-Zin-Weil preference; (iii) the government bill is

defaultable; and (iv) the corporate dividend is modeled as the levered consumption. The model is

able to generate a sizeable equity premium, a low interest rate, a high volatility of equity returns, a

low volatility of government bill returns, and predictable excess equity returns in different prediction

horizons, without generating excessive volatility for the aggregate consumption and dividend.

We consider the time-varying disaster risk model for a real-data application because it has

been one of the most influential macro-finance frameworks in the literature. For instance, the

time-varying disaster risk mechanism has been used to explain important empirical patterns in

macroeconomic quantities (e.g., Gourio, 2012), exchange rates and international capital flows (e.g.,

Martin, 2013; Dou and Verdelhan, 2017; Lewis and Liu, 2017), volatile unemployment flows (e.g.,

Kilic and Wachter, 2018), and prices of derivatives (e.g., Gabaix, 2012).

Model. We first describe the model. The log growth rate of consumption, ∆ct ≡ ln(Ct/Ct−1),

evolves as follows:

∆ct = gc + σcεc,t − ζt, (5.1)

where Ct is real consumption per capita at time t, ζt is the disaster variable, gc is the average growth

rate conditional on no disaster in the next period (i.e., ζt = 0), and εc,t is the normal consumption

shock that follows a standard Gaussian distribution. The disaster variable ζt is characterized by

ζt = xt(v + Jt), (5.2)
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where the constant v is the lower bound of the disaster size, the variable Jt ∼ Exp(α) captures the

disaster shock, and the variable xt = x+
t − x

−
t captures the occurrence of a jump, with x+

t to be a

Bernoulli variable capturing the occurrence of a rare disaster with probability max(pt−1, 0) and x−t
to be a Bernoulli variable capturing the occurrence of a rare boom with probability max(−pt−1, 0).

Under the definition of xt, the expectation of xt is pt−1 conditioning on the information up to the

end of period t. This jump probability index pt−1 evolves according to an AR(1) process:

p̂t = (1− ρ) + ρp̂t−1 + σpεp,t, with p̂t−1 ≡ pt−1/p, and ρ, p ∈ (0, 1). (5.3)

Here, the shock εp,t follows a standard Gaussian distribution. Thus, xt follows a hidden Markovian

process with the latent state variable pt−1. The evolution in (5.3) says that the long-term average

jump probability pt is E [pt] = p and the unconditional standard deviation of jump probability index

pt−1 is Vol(pt−1) = p
√
σ2
p/(1− ρ2). Similar in spirit to our specification of (5.3), Gourio (2012)

assumes that the log transformation of the normalized jump probability index p̂t−1 = pt−1/p evolves

as an AR(1) process.9

We model the real dividend per capita Dt as the levered consumption with the log dividend

growth ∆dt ≡ ln(Dt/Dt−1) evolving as follows:

∆dt = gd + φσcεc,t − φζt, (5.4)

similar in spirit to the works of Abel (1999) and Campbell (2003). Here, the constant gd is the

average growth rate conditional on no disaster in the next period (i.e., ζt = 0). The shocks

(εc,t, εp,t, Jt) are mutually independent with each other and i.i.d. over t. The Bernoulli variables

(x+
t , x

−
t ) are independent of the contemporaneous jump probability shock εp,t and its leads in the

time series, but (x+
t , x

−
t ) and the lags of εp,t are dependent through the jump probability index

pt−1. The two processes (x+
t , x

−
t ) and (εc,t, Jt) are mutually independent.

Consider the government bill with a one-period maturity. Like in the works of Barro (2006)

and Wachter (2013), we assume that the government bill may default only when a disaster occurs.

The return on the defaultable government bill can be expressed as

rb,t = yb,t−1 − xb,t(v + Jt), (5.5)

where the variable yb,t−1 is the yield of the government bill, and the Bernoulli variable xb,t ∈ {0, 1}
characterizes the occurrence of a government bill default. The yield yb,t−1 is observable in the data.

9The value of pt−1 can go outside the interval [−1, 1] with a negligible chance under the relevant calibrations. A
similar situation is encountered by Gourio (2012). We set this jump probability pt−1 to the nearest boundary once
it goes outside [−1, 1]. We stick to the literature by assuming Gaussian shocks in (5.3) to ensure the (approximate)
exponential-affine solution, summarized in (5.7) – (5.10).
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The government bill defaults in period t if and only if xb,t = 1. We assume that, in the event

of disaster (xt = 1), there will be a default on government liabilities with probability q. That is,

P(xb,t = 1|xt = 0 or xt = −1) = 0 and P(xb,t = 1|xt = 1) = q. As reflected in (5.5), we follow

Barro (2006) and Wachter (2013) in assuming that the percentage loss of the government bill is

equal to the percentage decline in consumption in the event of default.

The representative agent has recursive preferences with unit EIS, and maximizes her utility Vt
as follows:

lnVt = (1− δ) lnCt + δ(1− γ)−1 lnEt
[
V 1−γ
t+1

]
, (5.6)

where δ is the rate of time preference, γ is the coefficient of risk aversion for timeless gambles.

Equilibrium. We solve the model using the Campbell-Shiller log-linearization approximation

around the steady state, where pt−1 is close to p > 0. The equilibrium log return of the government

bill, denoted by rb,t, is

rb,t − Et−1 [rb,t] = − [xb,t(v + Jt)− qpt−1µ1(α)] ,

with Et−1 [rb,t] = ω1(ϑ)− qµ1(α)(pt−1 − p)− (1− q)h1(α, γ)
pt−1 − p
α− γ

, (5.7)

where µ1(α) and ω1(ϑ) are defined in (2.3) and (5.13), and h1(α, γ) ≡ α
[
evγ − ev(γ−1) α− γ

α− γ + 1

]
.

The equilibrium excess log return of the equity over the government bill, denoted by rem,t, is

rem,t − Et−1

[
rem,t

]
= φσcεc,t + βpσpεp,t − [(φxt − xb,t)(v + Jt)− (φ− q)pt−1µ1(α)] ,

with Et−1

[
rem,t

]
= ω3(ϑ) + h3(α, γ)

pt−1 − p
α− γ

, (5.8)

where βp ≡ pδ̄
1− ρδ̄ h2(α, γ) with δ̄ ≡ δe(gd−gc) and λp ≡ − p

δ−1 − ρ

[
ev(γ−1) α

α− γ + 1 − 1
]
, and

ω3(ϑ) is defined in (5.13). Here, h2(α, γ) and h3(α, γ) are defined as follows:

h2(α, γ) ≡ α
[
ev(γ−φ) 1

α− γ + φ
− ev(γ−1) 1

α− γ + 1

]
,

h3(α, γ) ≡ α
[
(1− q)evγ − ev(γ−φ) α− γ

α− γ + φ
+ qev(γ−1) α− γ

α− γ + 1

]
− (α− γ)(φ− q)µ1(α). (5.9)

The equilibrium log price-dividend ratio, denoted by zm,t, is

zm,t = zm + h2(α, γ)
pt − p
1− ρδ̄

, where zm ≡ ln

[
δ̄

1− δ̄

]
. (5.10)

Here, zm is the long-run average log price-dividend ratio. To ensure the existence of the equilibrium,

we require that δ̄ < 1. As done by Barro (2009), we interpret δ̄ as the effective rate of time preference

of the representative agent and require the effective rate of time preference to be less than 1. The

detailed derivation of the equilibrium is relegated to the note on additional materials.
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Moments. We consider a set of baseline moment conditions that summarize the key dynamic

features of ∆ct and ∆dt specified in equations (5.1) – (5.4) as follows: E[m̄0(ϑ)] = 08×1, where

m̄0(ϑ) = n−1
∑n

t=1m0,t(ϑ) with

m0,t(ϑ) ≡



(∆ct − gc) + pµ1(α)

(∆dt − gd) + φpµ1(α)

(∆ct − gc)2 − σ2
c − pµ2(α)

(∆dt − gd)2 − φ2σ2
c − pφ2µ2(α)

∆ct−1 [∆ct+1 − ρ∆ct + (1− ρ)(pµ1(α)− gc)]

∆dt−1 [∆dt+1 − ρ∆dt + (1− ρ)(φpµ1(α)− gd)]

∆dt−1 [∆ct+1 − ρ∆ct + (1− ρ)(pµ1(α)− gc)]

∆ct−1 [∆dt+1 − ρ∆dt + (1− ρ)(φpµ1(α)− gd)]



, (5.11)

where µj(α) is defined in (2.3). The baseline moments depend on (α, ρ), but not on (σ2
p, γ).

We next consider the 6 asset pricing moment conditions targeted by Wachter (2013). The asset

pricing moment conditions are E[m̄1(ϑ)] = 06×1, where m̄1(ϑ) = n−1
∑n

t=1m1,t(ϑ) with

m1,t(ϑ) ≡



rb,t − ω1(ϑ)

[rb,t − ω1(ϑ)]2 − ω2(ϑ)

rem,t − ω3(ϑ)[
rem,t − ω3(ϑ)

]2 − ω4(ϑ)

rem,t−1

[
rem,t − ω5(ϑ)(zm,t−1 − zm)− ω3(ϑ)

]
rem,t−1

[
rem,t+1 − ω6(ϑ)(zm,t−1 − zm)− ω3(ϑ)

]


, (5.12)
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and the deterministic functions ωi(ϑ) are described in detail as follows:

ω1(ϑ) ≡ − ln δ + gc −
1

2
(2γ − 1)σ2

c − qpµ1(α)− (1− q)h1(α, γ)
p

α− γ
,

ω2(ϑ) ≡ qpµ2(α)− q2p2µ1(α)2 +

[
2qpµ1(α) + (1− q)h1(α, γ)

p

α− γ

]
(1− q)h1(α, γ)σ2

pp

(1− ρ2)(α− γ)
,

ω3(ϑ) ≡ φγσ2
c + βpλpσ

2
p −

1

2

(
φ2σ2

c + β2
pσ

2
p

)
+ h3(α, γ)

p

α− γ
, (5.13)

ω4(ϑ) ≡ φ2σ2
c + β2

pσ
2
p + (q − 2φq + φ2)pµ2(α)− (q − φ)2µ1(α)2

(
p2 +

σ2
p

1− ρ2

)
h3(α, γ)2σ2

pp
2

(1− ρ2)(α− γ)2
,

ω5(ϑ) ≡ (1− ρδ̄)
α− γ

h2(α, γ)−1h3(α, γ), and ω6(ϑ) ≡ ρω5(ϑ).

The first two moments are about the low mean and low volatility of government bill returns, the

third and fourth moments are about the high mean and high volatility of excess equity returns,

and the last two moments are about the one- and two-period-ahead predictability of excess equity

returns using lagged log price-dividend ratios. As demonstrated in many studies (e.g., Keim and

Stambaugh, 1986; Campbell and Shiller, 1988), high price-dividend ratios predict low excess returns

across various horizons. Importantly, Campbell and Yogo (2006) show that conventional tests of

the predictability of stock returns can be invalid and lack power when the predictor variable is

persistent and its innovations are highly correlated with returns.

We assume that the econometrician knows all parameters except ϑ = (α, ρ, σ2
p, γ), which governs

the dynamics of time-varying rare-disaster risk and the agent’s risk aversion. Other parameters

(gc, gd, σ
2
c , φ, v, p, q, δ) are externally calibrated, and the key asset pricing implications are not sen-

sitive to the local perturbations in these parameters (see Wachter, 2013; Chen, Dou, and Kogan,

2020, for sensitivity analysis). Specifically, we set gc = gd = 0.02, σ2
c = 0.022, φ = 3.5, v = 0.07,

q = 0.4, and δ = 0.97, which lie within the ballpark of the calibrations used in the literature (e.g.,

Bansal and Yaron, 2004; Longstaff and Piazzesi, 2004; Wachter, 2013). We consider multiple values

of p ∈ {0.3%, 0.5%, 0.7%, 0.9%, 1.1%} to focus on rare disasters following the calibrations adopted

by Rietz (1988) and Longstaff and Piazzesi (2004), which are consistent with the structural estima-

tion result from the observed equity index option prices in Backus, Chernov, and Martin (2011).

The calibrated parameter values are effectively part of the functional form of the model under the

examination of the specification tests, similar to Julliard and Ghosh (2012) who test the rare events

hypothesis using the generalized empirical likelihood methods.

Reparametrization. The asset pricing moments in (5.12) clearly demonstrate the key idea of

the time-varying disaster risk model to simultaneously explain the sizeable equity risk premium

and high equity volatility: when p, α − γ, σ2
p, and 1 − ρ2 are all close to 0, the rare yet severe
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disaster can generate a substantial equity premium and large equity volatility as long as the two

ratios p
α− γ and

σ2
p

1− ρ2 are sizable to match the equity premium and the volatility of equity excess

returns. This ensures that the time-varying disaster risk is a meaningful economic mechanism for

explaining the equity premium and volatility even if p is very small. To utilize this key insight, we

transform the parameters α and ρ to θ1 and θ2, respectively, with

θ1 ≡
p

α− γ
, θ2 ≡

σ2
p

1− ρ2
, θ3 ≡ ρ, and θ4 ≡ γ, (5.14)

with the stacked parameter vector θ ∈ Θ ≡
∏4
i=1 Θi. Our analysis allows p, α− γ, σ2

p, and 1− ρ2

to be all close to 0, while keeping the ratios θ1 and θ2 bounded from above and below. We refer to

θ1 and θ2 as the adjusted disaster size parameter and the adjusted disaster probability volatility

parameter, respectively. To reparameterize all the moments from ϑ into θ, write

ḡi(θ) ≡ m̄i(θ
−1
1 p+ θ4, θ2(1− θ2

3), θ3, θ4), with i ∈ {0, 1}. (5.15)

The asset pricing moments provide an intuitive identification structure of θ. The first and third

moments on the average of (excess) returns mainly identify the adjusted disaster size parameter θ1.

The second and fourth moments on the variance of (excess) returns mainly identify the adjusted

disaster probability volatility parameter θ2 and the risk aversion parameter θ4. The last two

moments on the predictability of excess equity returns identify the persistence parameter of time-

varying disaster probability θ3.

U.S. Data, Robust Evaluations, and Model Uncertainty Sets. Based on the annual U.S.

data of consumptions, dividends, government bill returns, equity returns, and log price-dividend

ratios, we compare the J test and the proposed conditional specification test, then contrast the

model uncertainty sets constructed based on the two specification tests.

Ideally, a reliable empirical analysis of the time-varying rare-disaster risk model should be based

on the longest possible sample. As a result, we construct a set of long time series (1871 - 2019),

with the data obtained from various sources. To construct the time series of log real consumption

growth rates, we use the Barro-Ursua Macroeconomic Data for 1871 - 2009 and the per-capita real

personal consumption expenditure on services and nondurable goods from the National Income

and Product Accounts (NIPA) for 2010 - 2019. To construct the time series of log price-dividend

ratios, real log dividend growth rates, and log market returns, we obtain the data from Campbell

(2003) and Robert Shiller’s website for 1871 - 2012, and the Center for Research in Security Prices

(CRSP) S&P Index data for 2013 - 2019. For log real returns of treasury bills, we obtain the data

from Campbell (2003) and Robert Shiller’s website for 1871 - 2012, and the CPI-deflated 1-year

treasury bill rates from the federal reserve data program (H15) for 2013 - 2019.
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Table 1: Specification test results for time-varying rare-disaster risk models with different calibrated
long-run average disaster probability p.

P-values of tests Point estimates

Calibrated p J test Cond. test v + α−1 p × σp ρ γ

p = 0.3% 0.120 0.012 0.321 0.205% 0.979 3.610

p = 0.5% 0.400 0.088 0.279 0.140% 0.994 4.230

p = 0.7% 0.434 0.102 0.242 0.115% 0.998 4.950

p = 0.9% 0.411 0.089 0.224 0.101% 0.999 5.350

p = 1.1% 0.254 0.030 0.212 0.116% 0.999 5.670

Note: We report the point estimates of v+α−1 and p×σp, instead of α and σ2
p, because of the direct economic interpretations:

v + α−1 is the average disaster size in (5.1) and p× σp is the volatility of the jump probability index pt in (5.3). The GMM
estimators are computed using the continuous-updating estimator proposed by Hansen, Heaton, and Yaron (1996).

Table 1 presents the results on the J test, the proposed conditional specification test, and the

point estimation. 10 In the benchmark calibration with p = 0.7%, the time-varying rare-disaster

risk model can easily fit the U.S. data, closely matching both the baseline and asset pricing moment

conditions through the lens of the J test (with the p-value equal to 0.434). The proposed conditional

specification test can improve the test power by efficiently utilizing the limited information of the

baseline moment conditions, with the p-value dropping substantially from 0.434 to 0.102. Yet, it is

interesting and reassuring to see that the time-varying rare-disaster risk model remains statistically

consistent with the U.S. data at the 5% level, even under the stringent and robust examination of

the proposed conditional specification test. When increasing (or decreasing) the long-run average

disaster probability p from 0.7% to 0.9% (or 0.5%), the test and estimation results remain nearly

unchanged. By contrast, when disasters occur very rarely with p = 0.3% (or fairly frequently with

p = 1.1%), the time-varying rare-disaster risk model is statistically rejected at the 5% level by

the proposed conditional specification test based on the U.S. data with a p-value of 0.012 (or a

p-value of 0.030), although it is still largely accepted according to the J test with a p-value of 0.120

(or a p-value of 0.254). This result manifests the importance of robust procedures in evaluating

macro asset pricing models, and our econometric analysis here addresses the irrefutability concern

of economic mechanisms relying on extremely rare disasters (e.g., Campbell, 2018; Chen, Dou,
10For the results reported in Table 1, we set Θ1 ≡ [0.001, 0.020], Θ2 ≡ [5, 12], Θ3 ≡ [0.950, 0.999] and Θ4 ≡

[3, 6], and conduct parameter estimation by grid search with the step size 0.001, 0.01, 0.001 and 0.01, respectively.
For the results reported in Figure 2 below, which is more computationally intensive, we consider a smaller parameter
space Θ2 ≡ [5, 8], which still covers the CUE estimator of θ2 in all of the relevant cases considered in Figure 2, a
larger step size 0.1 of the grid points in Θ2 and Θ4, and maintain the rest of the parameter space specification. For
a summary of the empirical implementation details, see Section SF of the supplemental appendix.
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and Kogan, 2020). Moreover, this result also echoes the quantitative study of Wachter (2013),

showing that, unless conditioning on no disaster (i.e., the U.S. has been very lucky over the past

centuries), the simulated data based on a time-varying disaster risk model with a fairly high disaster

probability has a difficult time simultaneously matching all the baseline and asset pricing moment

conditions in (5.11) and (5.12). Last but not least, our econometric analysis in Table 1 shows that

the time-varying rare-disaster risk models indeed provide a potential explanation for the prominent

asset pricing puzzles because, for each of the three non-rejected case, the estimated risk aversion

parameter γ is less than 10, the upper bound of the “reasonable” range for γ in the macroeconomics

and asset pricing literature (e.g., Campbell, 2003). There has been little formal econometric analysis

on (time-varying) rare-disaster risk mechanisms in the asset pricing literature. As a contribution,

the test and estimation results in Table 1 fill this gap.

Figure 2 shows that the robust specification test can serve as a powerful tool for constructing

the model uncertainty sets. The model uncertainty set consists of the moment misspecification

parameter η such that H0 : E [ḡ1(θ0)] = η cannot be rejected by a given specification test, with the

asset pricing moments ḡ1(θ) defined in (5.15). In fact, the specification tests in Table 1 correspond

to the null of η = 0. Similar to the intuitive interpretation of Hansen and Sargent (2001), the

estimated model is viewed as an approximation of the true model, lying within a collection of

alternative probabilistic models whose fit of the moment conditions is statistically close to the

estimated model.

For computational feasibility and economic interpretability, Figure 2 reports pairwise joint

model uncertainty sets where only two elements of the vector η deviate from 0 for each model

uncertainty set construction. Panel A shows that the joint model uncertainty set shrinks substan-

tially when using the proposed conditional specification test. Specifically, the model uncertainty

set shrinks by about 2 and 4 percentage points along the dimensions of the average government bill

return and the equity risk premium, respectively, which are comparable to the the average interest

rate and equity premium themselves in the data. Moreover, panel B shows that the model uncer-

tainty set shrinks by about 3 percentage points along the dimension of the variance of equity excess

returns, and the magnitude of the change is comparable to that of the variance of equity excess

return itself in the data. In terms of the volume of the model uncertainty sets, the one constructed

by the conditional specification test is about 40% of that by the J test. To further account for the

uncertainty in the probability of rare disasters p, panels C and D display the unions of uncertainty

sets for p = 0.5%, 0.7%, and 0.9%, the three cases where the asset pricing moments with η = 0 are

not rejected in Table 1. The model uncertainty sets naturally become larger when accounting for

uncertainty of p. Nevertheless, in both cases, the uncertainty sets based on the conditional specifi-
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Figure 2: Joint model uncertainty sets based on the time-varying rare-disaster risk models.
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Note: Panel A plots the joint model uncertainty set for the average return of government bills (η1) and the equity premium
(η3) by focusing on η = [η1, 0, η3, 0, 0, 0]′. Panel B plots the joint model uncertainty set for the volatility of excess equity return
(η4) and the equity premium (η3) by focusing on η = [0, 0, η3, η4, 0, 0]′. Panels C and D are analogous to A and B, respectively,
except that each uncertainty set is the union of those obtained under p = 0.5%, 0.7%, 0.9%. The bigger “nearly-ellipses-shaped”
areas are the joint model uncertainty sets constructed using the J test, while the smaller darker “nearly-ellipses-shaped” areas
are those constructed using the proposed conditional specification test. All the sets are calculated under the 95% confidence
level. We focus on these two joint model uncertainty sets because interest rates, excess equity returns, and equity return
volatilities are the most important quantities in macro asset pricing theories.

cation test remain substantially smaller than those based on the J test. Crucially, the data-driven

joint model uncertainty sets on the mean and the variance of asset returns displayed in Figure 2

play a pivotal role in robust mean-variance portfolio analysis (e.g., Garlappi, Uppal, and Wang,

2007).

6 Conclusion

This paper provides a robust and powerful test to evaluate macro asset pricing models. The newly

proposed conditional specification test gains power by exploiting valid but noisy information in
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weakly identified baseline moments. To achieve robustness under weak identification, the condi-

tional specification test decouples the useful macroeconomic information embedded in the baseline

moment conditions from the additional asset pricing moment conditions. Our novel approach is

particularly useful when the standard over-identification tests suffer from distorted size or poor

power due to information imbalance. It can help researchers, practitioners, and monetary author-

ities to better understand the economic mechanisms behind the influential macro-finance models

and conduct robust econometric analysis accounting for model uncertainty.

Appendix: Proofs

Throughout the proofs, we use K to denote a positive constant that may change from line to

line. For any x ∈ Rk0 and any k0 × k0 symmetric positive definite matrix A, ‖x‖A ≡ (x′A−1x)1/2.

Let λmin(A) and λmax(A) denote the smallest and the largest eigenvalues of a real symmetric matrix

A, respectively. The proofs of all auxiliary Lemmas, i.e., Lemmas A1 – A7 below, are given in the

supplemental appendix.

Proof of Lemma 1. Since Mυ∗ and m∗(·) are mean-zero Gaussian, part (i) follows from

E [m∗(·)(Mυ∗)′] = 0. For part (ii), by the law of iterated expectation and the definition of c∗α(d∗),

P (L(υ∗, d∗) > c∗α(d∗)) = E [P (L(υ∗, d∗) > c∗α(d∗)|d∗)] ≤ α. (A.1)

Part (iii) follows from P (L(υ∗, d∗) > c∗α(d∗)|d∗) = α under the specified continuity condition.

Q.E.D.

The following results hold for the CUE θ̂ in (3.2) and g(θ̂), Ω̂, M̂ , and V̂ (θ) based on θ̂,

regardless of the identification strength in the baseline moments.

Lemma A1. Under Assumptions 1, 2 and 3, the following results hold uniformly over P ∈ P0:

(a) n1/2(θ̂ − θ0) = −
(
Q′Ω−1Q

)−1
Q′Ω−1g(θ0) + op(1) = Op(1);

(b) g(θ̂) = Ω1/2MΩ−1/2g(θ0) + op(1) = Op(1);

(c) Ω̂ = Ω + op(1) where Ω̂ ≡ Ω̂(θ̂);

(d) M̂ = M + op(1);

(e) supθ∈Θ ||V̂ (θ)− V (θ)|| = op(1) where supθ∈Θ ‖V (θ)‖ ≤ c−1
λ CΩ.

We next present a few lemmas used in the proof of Theorem 1. For any x ∈ Rk, continuous

vector function md : Θ 7→ Rk0 , continuous matrix function Vd : Θ 7→ Rk0×k, k × k symmetric
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positive definite matrix Ωd, symmetric and continuous matrix function Ω0,d (·) : Θ 7→ Rk0×k0 which

is positive definite for any θ ∈ Θ, and k × k symmetric idempotent matrix Md, let

ξ ≡ (x′, d′)′, where d ≡ (md(·)′, vec(Vd(·))′, vech(Ωd)
′, vech(Ω0,d(·))′, vech(Md)

′)′.

Define

R(ξ) ≡ ‖x‖2Ωd −min
θ∈Θ
‖md(θ) + Vd(θ)x‖2Ω0,d(θ) , (A.2)

and

L(υ; d) ≡ υ′Mdυ −min
θ∈Θ

∥∥∥md(θ) + Vd(θ)Ω
1/2
d Mdυ

∥∥∥2

Ω0,d(θ)
. (A.3)

The test statistic T in (3.1) can be written as

T = R(ξ̂), where ξ̂ ≡ (g(θ̂)′, d̂′)′ and

d̂ ≡ (m̂(·)′, vec(V̂ (·))′, vech(Ω̂)′, vech(Ω̂0(·))′, vech(M̂)′)′. (A.4)

Given d̂, the critical value cα(d̂) is simulated using L(υ∗; d̂) with independent draws of υ∗ ∼ N(0, Ik).

To show the bounded Lipschitz properties of functionals of ξ, we use the metric

‖ξ‖s = ‖x‖+ sup
θ∈Θ
‖md(θ)‖+ sup

θ∈Θ
‖Vd(θ)‖+ ‖Ωd‖+ sup

θ∈Θ
‖Ω0,d(θ)‖+ ‖Md‖ . (A.5)

Lemma A2. Under Assumptions 1, 2 and 3,

lim
n→∞

sup
P∈P0

sup
f∈BL1

∥∥∥E[f(ξ̂)]− E [f(ξ∗)]
∥∥∥ = 0,

where ξ∗ ≡ ((Ω1/2Mυ∗)′, d∗′)′ and BL1 denotes the set of functionals with Lipschitz constant and

supremum norm bounded above by 1.

To use the weak convergence of ξ̂ for studying the statistic T , we follow Andrews and Mikusheva

(2016a) and define a truncated version of R(ξ) as

RC(ξ) ≡ R(ξ)tC(x′Ω−1x) (A.6)

where tC(u) ≡ I{u < C}+ (2C − u)C−1I{C ≤ u < 2C} for any u ∈ R and some C ≥ 1. Similarly,

to study the critical value cα(d̂), we define a truncated version of L(υ; d) as

LC(υ; d) ≡ LC(υ; d)I{‖υ‖2 ≤ C}, where LC(υ; d) ≡ L(υ; d)tC(υ′Mdυ). (A.7)

Compared with RC(ξ), the truncation in LC(υ; d) has an extra term I{‖υ‖2 ≤ C}, which is needed

to show that LC(υ; d) is Lipschitz in Md. Since Md may not have full rank, the truncation with

tC(υ′Mdυ) is insufficient to bound ‖υ‖. Thus, truncation with ‖υ‖2 ≤ C is added in LC(υ; d).
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Lemma A3. Suppose that Ω̂ is symmetric and positive definite and Ω̂0 is the leading k0 × k0

submatrix of Ω̂. Then R(ξ̂) ≥ 0. Moreover, if Q̂′Q̂ is nonsingular, L(υ; d̂) ≥ 0 for any υ ∈ Rk.

Lemma A4. Given R(ξ) ≥ 0, the functional RC(ξ) is bounded and Lipschitz in ξ.

Lemma A5. Let cα,C(d) ≡ inf
{
c : P ∗

(
υ∗ : LC(υ∗; d) > c

)
≤ α

}
. Given L(υ; d) ≥ 0, cα,C(d) is

bounded and Lipschitz in d.

The extra truncation ‖υ‖2 ≤ C in LC(υ; d) causes a discrepancy between cα,C(d∗) and the

conditional 1−α quantile of RC(ξ∗) given d∗. Lemma A6 below shows that we can choose C large

enough such that the discrepancy is negligible, which is one of the key elements to show the uniform

size control of the conditional specification test.

Lemma A6. For any ε ∈ (0, 1) and any δ > 0, there is a finite constant Cδ such that for any

C ≥ Cδ: P (RC(ξ∗) > cα,C(d∗) + ε) ≤ α+ δ/4.

Proof of Theorem 1. The proof strategy follows from that for Theorem 1 of Andrews and

Mikusheva (2016a). The major differences are as follows. (i) The test statistic and the critical value

are defined with different functions, R(ξ̂) and L(υ∗; d̂), respectively. These two functions have to

be truncated differently too, as in (A.6) and (A.7), respectively, to yield the bounded Lipschitz

property. (ii) The additional truncation to L(υ∗; d̂) causes a discrepancy between cα,C(d∗) and the

conditional 1− α quantile of RC(ξ∗) given d∗. Lemma A6 is used to address these problems.

For notational simplicity, we assume that infθ∈Θ λmin(Ω̂(θ)) ≥ K−1, λmin(Q̂′Q̂) ≥ K−1 and

supθ∈Θ λmax(Ω̂(θ)) ≤ K in the proof. This assumption is innocuous since the above properties hold

with probability approaching 1 (wpa1) in view of Assumptions 1(ii), 2(i, iv) and 3(iii), and the

consistency of θ̂ under the null. Suppose that the claim of the theorem does not hold. Then

lim
n→∞

sup
P∈P0

P
(
R(ξ̂) > cα(d̂) + ε

)
> α, (A.8)

which implies that there exists δ > 0 and a divergent sequence ni (indexed by i) such that

Pni
(
R(ξ̂) > cα(d̂) + ε

)
> α+ δ for all i. (A.9)

For any u ∈ R and any i, by the union bound of probability,

Pni
(
R(ξ̂) > u

)
≤ Pni

(
R(ξ̂) > u, g(θ̂)′(Ω̂−1)g(θ̂) ≤ C

)
+ Pni

(
g(θ̂)′(Ω̂−1)g(θ̂) > C

)
. (A.10)

By the definition of θ̂, g(θ̂)′(Ω̂−1)g(θ̂) ≤ g(θ0)′(Ω̂(θ0))−1g(θ0) which together with Assumptions

1(i), 2(i) and 3 implies that g(θ̂)′(Ω̂−1)g(θ̂) = Op(1) uniformly over P ∈ P0. Therefore, there exists

a large constant C1,δ such that for all large ni,

Pni
(
g(θ̂)′(Ω̂−1)g(θ̂) > C1,δ

)
≤ δ/4, (A.11)
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which together with (A.9) and (A.10) implies that

Pni
(
R(ξ̂) > cα(d̂) + ε, g(θ̂)′(Ω̂−1)g(θ̂) ≤ C

)
> α+ 3δ/4, (A.12)

for any C ≥ C1,δ. By definition,

I
{
RC(ξ̂) > u

}
≥ I

{
R(ξ̂) > u

}
I
{
g(θ̂)′(Ω̂−1)g(θ̂) ≤ C

}
for any u ∈ R, (A.13)

where RC(ξ̂) ≡ R(ξ̂)tC(g(θ̂)′(Ω̂−1)g(θ̂)) and tC (u) = 1 for u ≤ C following its definition. By (A.12)

and (A.13), we have for any C ≥ C1,δ,

Pni
(
RC(ξ̂) > cα(d̂) + ε

)
> α+ 3δ/4. (A.14)

Since L(υ, d̂) ≥ 0 for any υ ∈ Rk by Lemma A3 and tC (u) ≤ 1 for any u ∈ R, we have LC(υ, d̂) ≤
L(υ, d̂) for any υ ∈ Rk, which further implies that cα,C(d̂) ≤ cα(d̂). Therefore, by (A.14) we deduce

that for any C ≥ C1,δ,

Pni
(
RC(ξ̂)− cα,C(d̂) ≥ ε

)
> α+ 3δ/4. (A.15)

Let UC,n be a random variable which has the same distribution as RC(ξ̂)− cα,C(d̂) under the law

Pn. Let U∞,C,n be a random variable which has the same distribution as RC(ξ∗) − cα,C(d∗). By

Lemma A4 and Lemma A5, RC(ξ)− cα,C(d) is bounded and Lipschitz in ξ. Therefore, by Lemma

A2,

lim
n→∞

sup
f∈BL1

‖E [f(UC,n)]− E [f(U∞,C,n)]‖ = 0. (A.16)

Since U∞,C,n is bounded for any n, by Prokhorov’s theorem, there exists a subsequence nj (of ni)

and a random variable UC such that U∞,C,nj →d UC , which together with (A.16) implies that

UC,nj →d UC . Since (A.15) can be written as Pni (UC,ni ≥ ε) > α+3δ/4, by Portmanteau theorem,

lim inf
nj→∞

P
(
U∞,C,nj > ε/2

)
≥ P (UC > ε/2) ≥ P (UC ≥ ε) (A.17)

≥ lim sup
nj→∞

Pnj
(
UC,nj ≥ ε

)
≥ α+ 3δ/4, for any C ≥ C1,δ.

We next show that for all large C, P
(
U∞,C,nj > ε/2

)
≤ α+ δ/4 for any nj , which contradicts

(A.17), and hence the claim of the theorem holds. To this end, for C ≥ C2,δ in Lemma A6,

P
(
U∞,C,nj > ε/2

)
= P (RC(ξ∗) > cα,C(d∗) + ε/2) ≤ α+ δ/4, (A.18)

where the equality holds because U∞,C,nj and RC(ξ∗) − cα,C(d∗) have the same distribution and

the inequality follows from Lemma A6. Q.E.D.

Let θ̂
∗ ≡ arg minθ∈Θ ‖m̂(θ) + V̂ (θ)Ω̂1/2M̂υ∗‖2

Ω̂0(θ)
and M̃0 ≡ (Ω

−1/2
0 S0Ω1/2)′M0(Ω

−1/2
0 S0Ω1/2).
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Lemma A7. Under Assumptions 1, 2, 3 and 4, we have uniformly over P ∈ P0 ∩ P00:

(a) n1/2(θ̂
∗ − θ0) = −(Q′Ω−1Q)−1Q′Ω−1g(θ0)−

(
Q′0Ω−1

0 Q0

)−1
Q′0Ω−1

0 S0Ω1/2Mυ∗ + op(1);

(b) L(υ∗, d̂) = υ∗′(M − M̃0)υ∗ + op(1);

(c) υ∗′(M − M̃0)υ∗ ∼ χ2
k1
.

Proof of Theorem 2. (i) Under Assumptions 1 – 3, Lemma A1 gives

g(θ̂) = Ω1/2MΩ−1/2g(θ0) + op(1) and Ω̂ ≡ Ω̂(θ̂) = Ω + op(1), (A.19)

uniformly over P ∈ P0. Let θ̂0 ≡ arg minθ∈Θ g0(θ)′(Ω̂0(θ))−1g0(θ). Adding Assumption 4, we have

g0(θ̂0) = Ω
1/2
0 M0Ω

−1/2
0 g0(θ0) + op(1) and Ω̂0 ≡ Ω̂0(θ̂0) = Ω0 + op(1) (A.20)

uniformly over P ∈ P0 ∩ P00, where M0 ≡ Ik0 − Ω
−1/2
0 Q0(Q′0Ω−1

0 Q0)−1Q′0Ω
−1/2′
0 . Therefore,

T →d χ
2
k1

uniformly over P ∈ P0 by the standard arguments in the literature (e.g., Eichenbaum,

Hansen, and Singleton, 1988; Hall, 2005, Section 5).

We next prove part (ii). The critical value is simulated from

L(υ∗, d̂) = υ∗′M̂υ∗ −
∥∥∥m̂(θ̂

∗
) + V̂ (θ̂

∗
)Ω̂1/2M̂υ∗

∥∥∥2

Ω̂0(θ̂
∗
)
. (A.21)

By Lemma A7(b, c), we have uniformly over P ∈ P0 ∩ P00,

L(υ∗, d̂) = L∗ + op(1), where L∗ ≡ υ∗′(M − M̃0)υ∗ ∼ χ2
k1 . (A.22)

By (A.22), there exists a positive sequence δn = o(1) such that for any ε > 0,

P∗
(
|L(υ∗, d̂)− L∗| ≥ ε/2

)
= o(δn), uniformly over P ∈ P0 ∩ P00, (A.23)

where P∗ ≡ P ∗ ⊗ P denotes the product measure of υ∗ and the data. Due to the independence

between P ∗ and P, for any ε > 0 and for all large n,

P∗
(
|L(υ∗, d̂)− L∗| ≥ ε/2

∣∣∣ d̂) ≤ δn wpa1. (A.24)

Note that cα(d̂) is the 1− α conditional quantile of L(υ∗, d̂) given d̂ and L∗ ∼ χ2
k1

is independent

of d̂. Therefore, (A.24) implies

q1−α−δn(χ2
k1)− ε/2 ≤ cα(d̂) ≤ q1−α+δn(χ2

k1) + ε/2 wpa1 (A.25)

because by (A.24) and the union bound of (conditional) probability, we have

P∗
(
L(υ∗, d̂) > q1−α+δn(χ2

k1) + ε/2
∣∣∣ d̂) ≤ P∗

(
L∗ > q1−α+δn(χ2

k1)
∣∣ d̂)+ δn = α, (A.26)

P∗
(
L∗ > cα(d̂) + ε/2

∣∣∣ d̂) ≤ P∗
(
L(υ∗, d̂) > cα(d̂)

∣∣∣ d̂)+ δn ≤ α+ δn.

Since δn = o(1) and χ2
k1

is continuous with a strictly increasing quantile function, for all large n,

q1−α+δn(χ2
k1)− ε/2 ≤ q1−α(χ2

k1) ≤ q1−α−δn(χ2
k1) + ε/2, (A.27)

which together with (A.25) implies that, for any ε > 0, |cα(d̂)− q1−α(χ2
k1

)| ≤ ε wpa1. Q.E.D.
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