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Abstract

We propose a method for constructing con�dence intervals that account for many

forms of spatial correlation. The interval has the familiar �estimator plus and minus a

standard error times a critical value�form, but we propose new methods for constructing

the standard error and the critical value. The standard error is constructed using pop-

ulation principal components from a given �worst-case�spatial covariance model. The

critical value is chosen to ensure coverage in a benchmark parametric model for the spa-

tial correlations. The method is shown to control coverage in large samples whenever

the spatial correlation is weak, i.e., with average pairwise correlations that vanish as

the sample size gets large. We also provide results on correct coverage in a restricted

but nonparametric class of strong spatial correlations, as well as on the e¢ ciency of the

method. In a design calibrated to match economic activity in U.S. states the method

outperforms previous suggestions for spatially robust inference about the population

mean.
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1 Introduction

Prompted by advances in both data availability and theory in economic geography, inter-

national trade, urban economics, development and other �elds, empirical work using spatial

data has become commonplace in economics. These applications highlight the importance of

econometric methods that appropriately account for spatial correlation in real-world settings.

While important advances have been made, researchers arguably lack practical methods that

allow for reliable inference about parameters estimated from spatial data for the wide-range

spatial designs and correlation patterns encountered in applied work.1 This paper takes a

step forward in this regard.

Speci�cally, we consider the problem of constructing a con�dence interval (or test of a

hypothesized value) for the mean of a spatially-sampled random variable. We propose a

con�dence interval constructed in the usual way, i.e., as the sample mean plus and minus an

estimate of its standard error multiplied by a critical value. The novelty is that the standard

error and critical value are constructed so the resulting con�dence interval has the desired

large-sample coverage probability (say, 95%) for a relatively wide range of correlation patterns

and spatial designs. The analysis is described for the mean, but the required modi�cations

for regression coe¢ cients or parameters in GMM settings follow from standard arguments.

To be more precise, suppose that a random variable y is associated with a location s 2 S,
where S � Rd. Figure 1 shows three one-dimensional (d = 1) spatial designs. Panel (a)

shows the familiar case of regularly spaced locations, corresponding to the standard time

series setting; panels (b) and (c) show randomly selected locations drawn from a density g,

where g is uniform in panel (b) and triangular in panel (c). Figure 2 shows two geographic

examples, so d = 2, for the U.S. state of Texas. In panel (a), the locations are randomly

selected from a uniform distribution, while in panel (b) they are more likely to be sampled

from areas with high economic activity, here measured by light intensity as seen from space.2

In much of our analysis, we will assume that locations are i.i.d. draws from a distribution

with density g, and so will encompass the irregularly spaced time series and Texas examples.

Adding some notation, suppose

yl = �+ ul for l = 1; :::; n (1)

1Ibragimov and Müller (2010), Sun and Kim (2012) and Bester, Conley, Hansen, and Vogelsang (2016),

for instance, �nd nontrivial size distortions of modern methods even in arguably fairly benign designs, and

Kelly (2019) reports very large distortions under spatial correlations calibrated to real-world data.
2The light data are from Henderson, Squires, Storeygard, and Weil (2018).
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Figure 1: Three One-Dimensional Spatial Designs

Figure 2: Two Geographic Spatial Designs

where yl is associated with the spatial location sl, � is the mean of yl, and ul is an unob-

served error, assumed to be covariance stationary with mean zero and covariance function

E[u(r)u(s)] = �u(r � s). Let y denote the sample mean, and consider the usual t-statistic

� =

p
n(y � �0)
�̂

where �̂2 is an estimator for the variance of
p
n(y��). Tests of the null hypothesisH0 : � = �0

reject when j� j > cv, where cv is the critical value, and the corresponding con�dence interval
for � has endpoints y � cv �̂=

p
n. Inference methods in this class di¤er in their choice of �̂2

and critical value cv.

The case of regularly-spaced time series observations (panel (a) of Figure 1) is the most

well-studied version of this problem. Here Var(
p
n(y��)) is the long-run variance of y. Classic

choices for �̂2 are kernel-based consistent estimators such as those proposed in Newey andWest

(1987) and Andrews (1991), and associated standard normal critical values. A more recent

literature initiated by Kiefer, Vogelsang, and Bunzel (2000) and Kiefer and Vogelsang (2005)
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accounts for the sampling uncertainty of kernel-based �̂2 by considering ��xed-b�asymptotics

where the bandwidth is a �xed fraction of the sample size, which leads to a corresponding

upward adjustment of the critical value. Closely related are projection estimators of �̂2

where the number of projections is treated as �xed in the asymptotics, as in Müller (2004,

2007), Phillips (2005), Sun (2013), and others, leading to Student-t critical values. These

newer methods are found to markedly improve size control under moderate serial correlation

compared to inference based on standard normal critical values.

In the general spatial case, the variance of y depends on the correlation between all of

the observations, and this in turn depends on two distinct features of the problem. The

�rst is the correlation between observations at arbitrary locations (say r and s); this is given

by the covariance function �u(r � s). The second feature is which locations in S are likely
to be sampled; this is given by the spatial density g. Only the �rst of these features is

important in the regularly-spaced time series example because the locations do not vary from

one application to the next.

Most existing suggestions for spatial inference are derived under the assumption that the

locations are (asymptotically) uniformly distributed, corresponding to a constant density g:

This includes the consistent kernel-based estimator in Conley (1999), the spatial analogue of

the �xed-b kernel approach analyzed in Bester, Conley, Hansen, and Vogelsang (2016), as well

as the spatial projection-based estimator put forward in Sun and Kim (2012). Exceptions

include Kelejian and Prucha (2007), who derive a consistent kernel for �̂2 under assumptions

that can accommodate arbitrary locations sl, and the cluster approach suggested by Ibragimov

and Müller (2010, 2015) and Bester, Conley, and Hansen (2011) (also see Cao, Hansen,

Kozbur, and Villacorta (2020)).

This paper makes progress over this literature by developing a method that (i) accounts for

sampling uncertainty in �̂2 in a spatial context while allowing for nonuniform spatial densities

g; (ii) is valid under generic weakly correlated ul; (iii) also controls size under a restricted

but nonparametric form of strongly correlated ul. The last property sets it apart from all

previously mentioned methods; in a time series setting, Robinson (2005) and Müller (2014)

derive inference under parametric forms of strong dependence, and Dou (2019) derives optimal

inference under a non-parametric form of strong dependence under a simplifying Whittle-type

approximation to the implied covariance matrices.

Our method works as follows: First, a benchmark parametric model is speci�ed for the

covariance function, say �0u(�) = �0u(�jc), where c is a persistence parameter with larger values
indicating less dependence. For a given lower bound on the persistence parameter, say c0,
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a hypothetical covariance matrix for (y1; :::; yn)0 is constructed using �0u(�jc0) evaluated at
the actual sample locations (s1; :::; sn). The eigenvectors of the demeaned version of this

covariance matrix are the (population) principal components of the residuals ûl = yl�y under
�0u(�jc0), and the sample variance of q of these principal components is the estimator �̂2. The
critical value is chosen to ensure coverage for all c � c0. The number of principal components
q is chosen to minimize the expect length of the con�dence interval in the model where ul
is i.i.d. For shorthand, we refer to the method as spatial correlation principal components,

abbreviated SCPC.

Intuitively, variance estimators �̂2 that are quadratic forms in û are sums of squares of

weighted averages of û. Under spatial correlation, most weighted averages are less variable

than y, leading to a downward biased �̂2. SCPC selects the linear combinations of û that are

most variable, so that the bias is as small as possible in the benchmark model with parameter

c0.

The remainder of the paper studies this method. Section 2 provides the speci�cs for

SCPC. These speci�cs raise a variety of issues that are the focus of the remaining sections of

the paper. In particular, Section 3 lays out the analytic framework used to study the large-

sample and �nite-sample Gaussian properties of spatial t-statistics. We use the framework

to analyze SCPC, but several of the results in Section 3 encompass other methods, notably

��xed-b�kernel-based methods, and general projection estimators with a �xed number of basis

functions. We �nd that in contrast to the regularly spaced time series case, such t-statistics

with analogously adjusted critical values are not generically valid under weak correlation as

soon as the spatial density function is not uniform. We develop an alternative approach to

the construction of critical values that restores validity, and this is used for SCPC inference.

Section 4 thus shows that SCPC has the desired large-sample coverage probability under

generic weak correlation. Moreover, Section 4 provides a set of (easily veri�able) su¢ cient

conditions that guarantee coverage under arbitrary mixtures of a set of strong correlation

patterns in a �nite-sample Gaussian setting. Section 4 also investigates the �nite-sample

coverage probability of SCPC con�dence sets when there is heteroskedasticity across locations

or measurement errors in locations � two problems faced in some applications. Section 5

addresses the question of e¢ ciency of SCPC by computing a lower bound on the expected

length of con�dence intervals for any inference method that controls coverage in a particular

class of spatial correlations. Comparing the expected length of SCPC to this lower bound

provides a measure of the e¢ ciency of the method. Section 6 compares the properties of

SCPC to other methods that have been proposed in the literature, and the results suggest
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that SCPC dominates these methods over the range of covariance functions and spatial designs

considered. Section 7 discusses extensions and implementation issues. First, it discusses how

the results developed in the body of the paper for inference about the population mean

can be applied to inference problems about regression coe¢ cients or parameters in GMM

models. It then discusses two important computational issues involved in computing the

critical value and computing the required eigenvectors for the construction of SCPC in very

large-n applications. Finally, Section 7 provides a sketch of the generalization of the SCPC

method to multivariate (F-test) settings. Proofs are collected in the appendix.

2 Spatial Correlation Principal Components

This section provides details for computing the SCPC t-statistic, critical value and associated

con�dence interval. The construction of SCPC raises a variety of questions about its prop-

erties, many of which are posed here and discussed in detail in the remaining sections of the

paper.

The construction of the SCPC t-test and con�dence interval involves, among other things,

various covariance matrices and probability calculations. We stress at the outset that these are

used to describe the required calculations, and they are not assumptions about the probability

distribution of the data under study. Those assumptions will be listed in Section 3 and, it

will turn out, are signi�cantly more general than what would follow from the description in

this section.

Let y = (y1; y2; :::; yn)
0 and similarly for s = (s1; s2; :::; sn)

0; u = (u1; u2; :::; un)
0 and the

vector of residuals û = (û1; û2; :::; ûn)0. Let l denote an n�1 vector of 1s, andM = I�l(l0l)�1l0.
Consider a benchmark model for ul with a parametric covariance function Cov(u(r); u(s)) =

�0u(r�sjc), where smaller values of the scalar parameter c indicate stronger correlations. In the
following, we focus on the simple Gaussian exponential (�AR(1)�) model where �0u(r � sjc) =
exp(�cjjr � sjj) for c > 0. Let �(c) denote the n � n covariance matrix with �(c)ij =
exp(�cjjsi � sjjj), so that �(c) is the covariance matrix of u(s) evaluated at the sample
locations s: Let c0 denote a pre-determined value of c that is meant to capture an upper bound

on the spatial persistence in the data. (The choice of c0 is discussed below). Let r1; r2; :::; rn
denote the eigenvectors of M�(c0)M corresponding to the eigenvalues ordered from largest

to smallest, and normalized so that n�1r0jrj = 1 for all j. The scalar variable n
�1=2r0jû has

the interpretation as the jth population principle component of ûjs � N (0;M�(c0)M). The
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SCPC estimator of �2 based on the �rst q of these principal components is

�̂2SCPC(q) = q
�1

qX
j=1

(n�1=2r0jû)
2; (2)

and the corresponding SCPC t-statistic is

� SCPC(q) =

p
n(y � �0)
�̂SCPC(q)

: (3)

The critical value cvSCPC(q) of the level-� SCPC test is chosen so that size is equal to �

under the Gaussian benchmark model with c � c0. That is, cvSCPC(q) satis�es

sup
c�c0

P0�(c)(j� SCPC(q)j > cvSCPC(q)js) = �; (4)

where P0�(c) means that the probability is computed in the benchmark model yjs �
N (�0l;�(c)).
The �nal ingredient in the method is the choice of q. Let E1[2�̂SCPC(q) cvSCPC(q)js] denote

the expected length of the con�dence interval constructed using � SCPC(q) under the Gaussian

i.i.d. model yjs � N (l�; I). (The superscript �1�on E di¤erentiates this from the benchmark
model with covariance matrix �(c).) SCPC chooses qSCPC to make this length as small as

possible, that is q solves

min
q�1

E1[2�̂SCPC(q) cvSCPC(q)js] =min
q�1

p
8n�1=2q�1=2 cvSCPC(q)

�((q + 1)=2)

�(q=2)
(5)

with the equality exploiting that q�̂2SCPC(q)js � �2q in the Gaussian i.i.d. model.

Remark 2.1. The primary concern in the construction of �̂2 is downward bias. Recall that
the eigenvector r1 maximizes h0M�(c0)Mh among all vectors h of the same length, the second

eigenvector r2 maximizes h0M�(c0)Mh subject to h0r1 = 0, and so forth, and for any q � 1,
the n � q matrix (r1; : : : ; rq) maximizes trH0M�(c0)MH among all n � q matrices H with

n�1H0H = Iq. Thus, the SCPC method selects the linear combinations of û in the estimator

of �2 that induce the smallest bias in the benchmark model with c = c0, under the constraint

of being unbiased in the i.i.d. model.

The choice of q trades o¤ the downward bias in �̂2SCPC(q) that occurs when q is large and

its large variance when q is small. Both bias and variance lead to a large critical value, and

(5) leads to a choice of q that optimally trades o¤ these two e¤ects to obtain the shortest

possible expected con�dence interval length in the i.i.d. model.
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Remark 2.2. By construction, SCPC con�dence intervals have correct coverage in Gaussian
models with a spatial exponential covariance function (�AR(1)�models) with spatial persis-

tence level less than or equal to the model with c = c0. Lemma 1 in Section 3 provides a

central limit result that rationalizes the normality assumption. Theorem 7 provides condi-

tions on the choice of c0 so that the SCPC t-test controls size in large samples not just in the

exponential model, but under generic �weak correlation�, as de�ned in Section 3. Theorem

8 provides easily veri�able su¢ cient conditions for size control under mixtures of parametric

small sample Gaussian models.

Remark 2.3. SCPC requires that the researcher chooses a value for c0 which represents the
highest degree of spatial correlation allowed by the method. One way to calibrate c0 is via

the average pairwise correlation of the spatial observations

� =
1

n(n� 1)

nX
l=1

X
` 6=l

Cor (yl; y` jsn )

that is, we set c0 so that it implies a given value �0 of ��. For example, �0 = 0:001 implies

very weak correlation, �0 = 0:02 stronger correlation, and �0 = 0:10 very strong correlation.

In our examples, we calibrate c0 to these three values of �.

Remark 2.4. The SCPC method with c0 calibrated in this way is invariant to the scale of the
locations fslgnl=1 7! faslgnl=1 for a > 0, and (in contrast to Sun and Kim�s (2012) suggestion)
also to arbitrary distance preserving transformations, such as rotations.

Remark 2.5. The weights rj used to construct the principal components and �̂2SCPC(q) de-
pend on s, the sample values of the spatial locations. Because the spatial locations are

randomly drawn, the rj weights are random. But as shown in Section 3, the weights have

well-de�ned limits in terms of appropriately de�ned nonrandom eigenfunctions. Figure 3

plots selected eigenfunctions for two one-dimensional spatial designs and Figure 4 shows the

associated plots for the Texas example, where in both cases �0 = 0:02. With uniform spatial

densities (panel (a) in both �gures), the eigenfunctions are much like the weighting functions

used for low-frequency projection methods for regularly spaced time series (e.g., Müller (2004),

Phillips (2005), Sun (2013)) or its spatial analogue (e.g., Sun and Kim (2012)). In contrast,

the non-uniform densities (panel (b) in the �gures) produce weights that are distorted ver-

sions of their uniform counterparts, with most of the variation concentrated in high-density

areas.
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Figure 3: Eigenfunctions for Two One-Dimensional Spatial Designs

The �gures also show the associated normalized eigenvalues, that is the variance of the

principal components under the assumed exponential model, relative to the variance of
p
n(y�

�). When the density is uniform, these relative variances are slightly below 1:0 for small j, and

decline monotonically with j. This leads to the familiar downward bias of �̂2 in projection

methods. When the spatial density is not uniform, the relative variance of the principal

components can be larger than unity, mitigating this downward bias.

Remark 2.6. In the regular spaced time series case, the eigenvectors of SCPC for ��0 2
f0:02; 0:10g are numerically close to the type-II cosine transforms considered in Müller (2004,
2007), Lazarus, Lewis, Stock, and Watson (2018) and Dou (2019). What is more, the SCPC

choice of q is also numerically close to the corresponding optimal choice of q in Dou (2019).

So when applied to time series, SCPC comes close to replicating Dou�s (2019) suggestion for

optimal inference, with c0 representing the upper bound for the degree of persistence. The

same is true in a spatial design with locations that happen to fall on a line with approximately

uniform empirical distribution.

U.S. states spatial correlation designs. Before making two additional remarks about the
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Figure 4: Eigenfunctions for Two Geographic Spatial Designs

SCPC method, we introduce a set of spatial correlation designs that will be used throughout

the paper. The idea is to consider a set of real world designs to learn about the usefulness of

the SCPC and other methods in practice. In particular, we randomly draw n = 500 locations

within the boundaries of the 48 contiguous states of the U.S. (we also considered n = 1000

draws, and found nearly identical results in all exercises). The density of locations g within

each state is either uniform (guniform), or it is proportional to light measured from space (glight)

as a proxy for economic activity. We draw �ve sets of 500 independent locations under each

density g 2 fguniform; glightg and ��0 2 f0:02; 0:10g for each state, for a total of 240 (= 48 states
� 5 location draws) sets of locations fslg500l=1 and associated covariances under each of the four
(g; ��0) pairs.
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Figure 5: CDFs of Expected Length of SCPC Con�dence Interval Relative to Known Variance

Interval

Remark 2.7. The critical value of the SCPC t-statistic re�ects randomness in both y and
�̂2SCPC. This is analogous to inference in small-sample Gaussian models using critical values

from the Student-t distribution. Figure 5 shows the e¤ect of the uncertainty in �2 on the

expected length of 95% con�dence intervals in the U.S. states spatial correlation designs, by

comparing the expected length of the SCPC con�dence interval in the i.i.d. model to the

the length with �2 known: this relative length is E1[(cv =1:96)(�̂SCPC=�)js], where 1.96 is the
standard normal critical value. The �gure plots the CDF of these relative lengths over the

240 draws under each (g; ��0) pair. For example, the left-most CDF (dashed blue, for g = glight
and �0 = 0:02) shows that the relative expected length ranges from roughly 1.08 to 1.18 across

the 240 draws. The �gure indicates that the expected lengths are higher under guniform than

under the glight design and are higher under ��0 = 0:10 than ��0 = 0:02: For comparison the

�gure also shows the relative expected lengths of Student-t con�dence intervals with 8 and

3 degrees of freedom, in multiples of the length of the known variance z-interval. Evidently,

when ��0 = 0:02, the increase in expected length of the SCPC con�dence interval relative to

an oracle endowed with the value of �2 is roughly like learning about the value of �2 from 8

i.i.d.N (0; �2) observations. When ��0 = 0:10, relative lengths increase to approximately what
would obtain from Student-t3 inference.

Remark 2.8. Consider the related question about the e¢ ciency of SCPC relative to other
methods that do not assume that the value of �2 is known. This question can be answered

in two ways. The �rst is to compare SCPC to methods that have previously been proposed.

This is done in Section 6. A more ambitious approach compares SCPC to the most e¢ cient

method constructed for any particular spatial density that, like SCPC, produces con�dence
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intervals with the desired coverage over a wide range of covariance functions. This is done in

Section 5 which computes a lower bound on the expected length of con�dence intervals for

any such method.

3 Large-sample analysis of spatial t-statistics

This section outlines a large-sample framework used to study SCPC and other spatial t-

statistics. The �rst two subsections introduce notation and the asymptotic sampling frame-

work. With these in hand, the remainder of the section summarizes the large-sample dis-

tribution of various statistics including the SCPC and kernel-based t-statistics. Proofs are

provided in the appendix.

3.1 Notation

Some of this notation has been introduced earlier, but is repeated here for easy reference.

The sample mean is denoted by yn, where here and elsewhere we append the subscript n

for clarity in the asymptotic analysis. The residual is ûl = yl � yn. Let yn = (y1; :::; yn)0, and
similarly for un, ûn and sn. The vector ln is a n� 1 vector of 1s, andMn = In� ln(l0nln)�1ln,
so that ûn =Mnun.

Generically, we consider estimators �̂2n that are quadratic forms in ûn. LetQn be a positive

semide�nite matrix with Qnln = 0. We consider estimators of the form

�̂2n(Qn) = n
�1û0nQnûn = n

�1u0nQnun (6)

where the �nal equality follows from Qnln = 0.

Two leading examples of estimators in this class are kernel-based estimators and

orthogonal-projections estimators. For kernel-based estimators, let k(r; s) denote a positive

semi-de�nite kernel, k : S � S 7! R. Let Kn denote an n � n matrix with (l; `) element
equal to k(sl; s`) and let Qn =MnKnMn. Then �̂

2
n = n

�1P
l

P
` k(sl; s`)ûlû` = n

�1û0nQnûn.

For orthogonal-projection estimators, let Ŵn be an n � q matrix with jth column given
by ŵj satisfying n�1Ŵ0

nŴn = q�1Iq and Ŵ0
nln = 0 (the �hat�notation is a reminder that

Ŵ depends on the locations sn, which are random). With Qn = ŴnŴ
0
n, the orthogonal

projection estimator is �̂2n =
Pq

j=1(n
�1=2ŵ0

jûn)
2 = n�1û0nQnûn. The SCPC estimator is an

orthogonal-projection estimator using the �rst q eigenvectors ofMn�(c0)Mn, scaled to have

length 1=
p
q; as the columns of Ŵn.
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For quadratic form estimators �̂2n(Qn), under the null hypothesis the squared t-statistic is

a ratio of quadratic forms in un

� 2n(Qn) =
(
p
n(yn � �0))

2

�̂2n(Qn)
=
u0nlnl

0
nun

u0nQnun
: (7)

3.2 Sampling and large-n framework

The spatial locations s are chosen from S, a compact subset of Rd. Sample locations are
selected as i.i.d. draws from a distribution G with density g, where g(s) is continuous and

positive for all s 2 S.
The average pairwise correlation of y, conditional on the sample locations is ��n =
1

n(n�1)
Pn

l=1

P
` 6=l Cor (yl; y` jsn ). When �n = 0, yn jsn is white noise. When �n = Op(1)

(and not op(1)), we will say the process exhibits strong correlation. When �n = Op(1=c
d
n)

where cn is a sequence of constants with cn !1, we follow Lahiri (2003) and say the process
exhibits weak correlation.

The following asymptotic framework, adapted from Lahiri (2003), is useful for representing

weak and strong correlation. Let B be a zero-mean stationary random �eld on Rd with
continuous covariance function E[B(s)B(r)] = �B (s� r), and B and fslgnl=1 are independent.
To avoid pathological cases, we further assume

R
�B(s)ds > 0 and that B is nonsingular in

the sense that inf jjf jj=1
R R

f(r)f(s)�B(s� r)dG(r)dG(s) > 0 with jjf jj2 =
R
f 2(s)dG(s).

Let cn denote a sequence of constants with either cn ! 1 or cn = c > 0. We consider

a triangular-array framework with ul = B(cnsl) for sl 2 S, so that �u(s) = �B(cns). The

sequence cn determines the �in�ll�and �out�ll�nature of the asymptotics. To see this, note

that the volume of the relevant domain for the random �eld B is cdn vol(S), where vol(S) is the
volume of S: The average number of sample points per unit of volume is then n=(cdn vol(S)):
If cdn / n; the volume of the domain is increasing, while the number of points per unit of

volume is not; this is the usual out�ll asymptotic sampling scheme. On the other hand, when

cn = c, a constant, the volume of the domain is �xed, and the number of points per unit of

volume is proportional to n; this is the usual in�ll sampling. Finally, when cn ! 1 with

cdn = o(n) the sampling scheme features both in�ll and out�ll asymptotics. A calculation

shows that �n = Op(1=c
d
n), so the sequence cn characterizes weak and strong correlation as

described above. With this background, let an = cdn=n; we will assume that an ! a 2 [0;1).
Finally, we specify a set of weighting functions. To simplify the problem, we initially

consider weights that are nonrandom. For j = 1; : : : ; q, let wj : S 7! R denote a set of
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continuous functions that satisfy
R
wj(s)dG(s) = 0 and

R
w2j (s)dG(s) > 0. We introduce the

following notation involving these functions: w(s) is a q�1 vector-valued continuous function
with w(s) = (w1(s); :::; wq(s))0; w0(s) = (1;w(s)0)0;Wn is a n� q matrix with lth row given
by w(sl)0, andW0

n is a n�(q+1) matrix with lth row given by w0(sl)
0 so thatW0

n = [ln;Wn].

Remark 3.1. In our framework, locations sl are sampled within S for a �xed and given
S. But nothing changes in our derivations if instead we treated the observations yl as being
indexed by cnsl 2 cnS, as in Lahiri (2003), or any other one-to-one transformation of sl. The
essential characteristic is the dependence pattern over the spatial domain of the observations,

governed by cn and B.

With this background, we now present the large-sample analysis.

3.3 Large-sample behavior of weighted averages

As is evident from equation (7) the squared t-statistic is a ratio of squares of weighted av-

erage of the elements of un. This subsection discusses the large-sample distribution of such

weighted averages. These results involve weak converge (i.e., convergence in distribution)

where our interest lies in these limits conditional on the locations sn. With this in mind,

for Xn and X p-dimensional random vectors, we use the notation Xnjsn )p X to denote

E[h(Xn)jsn]
p! E[h(X)] for any bounded continuous function h : Rp 7! R. This notion of

weak convergence in probability is slightly weaker than almost sure weak convergence of con-

ditional distributions, but still ensures that the limiting distribution is not induced by the

randomness in the locations sn.

Lemma 1 characterizes the large-sample behavior of sums of the form
Pn

l=1w
0(sl)u(sl):

For the weak correlation result, we invoke the mixing and moment assumptions of Lahiri

(2003) on B that underlie his Theorem 3.2.

Lemma 1. (i) (strong correlation) Suppose cn = c > 0 and B is a Gaussian process. Then

n�1W00
nunjsn )p X � N (0;
sc)

with


sc =

Z Z
w0(r)w0(s)0�B(c(r � s))dG(r)dG(s):

(ii) (weak correlation) Suppose cn !1, and the assumptions of Lahiri�s (2003) Theorem
3.2 hold. Then

a1=2n n�1=2W00
nunjsn )p X � N (0;
wc)
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with


wc = a�B(0)V1 +

�Z
�B(s)ds

�
V2

where

V1 =

Z
w0(s)w0(s)0g(s)ds and V2 =

Z
w0(s)w0(s)0g(s)2ds:

Remark 3.2. Note that the variance of
Pn

l=1w
0(sl)u(sl) conditional on sn is

Var

"
nX
l=1

w0(sl)u(sl) jsn

#
=
X
l

X
`

w0(sl)w
0(s`)

0�u(sl � s`)

=
X
l

X
`

w0(sl)w
0(s`)

0�B(cn (sl � s`)): (8)

The strong-correlation covariance matrix, 
sc, is recognized as the large-n analogue of this

expression after appropriate normalization and averaging over the locations. The weak-

correlation covariance matrix, 
wc; di¤ers from 
sc in two ways. First, because cn ! 1
in the weak-correlation case, and �B(r) vanishes for large jrj, the second term in 
wc is recog-

nized as the limit of 
sc as the double integral concentrates entirely on �the diagonal�where

r � s. Second, as out�ll becomes more important (that is, an = cnn=n gets larger), variances
become more important relative to covariances; this explains the �rst term in 
wc:

Remark 3.3. The form of V2 is further recognized as the limit covariance matrix in a

model where the observations are independent, with variance proportional to g(sl). Thus,

V2 is what one would obtain for the limit covariance matrix under a speci�c form of non-

stationarity. Intuitively, a high density area does not only yield many observations, but under

spatial correlation, the variance contribution is further ampli�ed by the resulting high average

correlation.

Remark 3.4. In the strong-correlation case, normality is assumed. That said, CLTs have
been established also for strongly correlated models when d = 1 (i.e., the time series case),

such as Taqqu (1975), Phillips (1987) or Chan and Wei (1987), and to a lesser extent also

for d > 1, as in Wang (2014) or Lahiri and Robinson (2016). For the weak correlation case,

large-sample normality follows from Theorem 3.2 in Lahiri (2003).

Remark 3.5. When g(s) is constant, so the spatial distribution is uniform, V1 / V2

and 
wc /
R
w0(s)w0(s)0ds. Thus, in a leading case with orthogonal wj of length 1=

p
q,R

wj(s)wi(s)dG(s) = q
�11[i = j], 
wc / diag(1; q�1Iq), a familiar result from the literature
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on HAR inference in time series with regularly spaced observations. Importantly, while this

result holds under constant g(s), it does not hold for other spatial distributions, so that the

typical HAR results about inconsistent variance estimators for regularly spaced time series

under weak dependence do not carry over to the spatial case.

3.4 Large-sample null rejection probability of spatial t-tests

This section presents a useful representation for the limiting distribution of � 2n(WnW
0
n) under

the assumptions of Lemma 1.

Theorem 2. For cv > 0, let D(cv) = diag(1;� cv2 Iq), A = D(cv)
 with 
 2 f
sc;
wcg,
and let (!0; !1; :::; !q) denote the eigenvalues of A ordered from largest to smallest. Then

under the assumptions of Lemma 1, under the null hypothesis and with (Z0; Z1; :::; Zq)0 �
N (0; Iq+1),
(i) !0 > 0, and !i � 0 for i � 1;
(ii) P (� 2n(WnW

0
n) > cv

2 jsn)
p! P

�
Z20 >

Pq
i=1(� !i

!0
)Z2i

�
.

Remark 3.6. In the weak-correlation case with constant spatial density g(s) and orthogonal
wj of length 1=

p
q, 
 = 
wc / diag(1; q�1Iq). Thus �!i=!0 = cv2 =q, and the asymptotic

rejection probability becomes the corresponding quantile of the F1;q distribution, a result

familiar from the limiting distribution of projection based squared t-statistics in the regularly

spaced time series case.

Remark 3.7. In the general weak correlation case with arbitrary spatial density g, 
wc =

a�B(0)V1 +
�R
�B(s)ds

�
V2. Because � 2n is a scale-invariant function of un, it is without loss

of generality to normalize the scale of �B(�) so that a�B(0) +
R
�B(s)ds = 1. Under this

normalization


wc = �V1 + (1� �)V2 (9)

where � is scalar with 0 � � < 1. Thus, the limiting CDF of � 2n is seen to depend on �B only
through the scalar �; the matrices V1 and V2 are functions of the weights w0 and the spatial

density g. The scalar � thus completely summarizes the large sample e¤ect of alternative

underlying random �elds B and weak correlation sequences cn !1.

3.4.1 Extensions for estimated weights

For SCPC and other estimators, the weights in w(s) are estimated using the sample locations

sn. The conditions under which Lemma 1 continues to hold for such estimated weights is
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given in the following theorem.

Theorem 3. Suppose the mapping ŵ0 : S 7! Rq+1 is a function of sn (but not of B), and

sup
s2S

jjŵ0(s)�w0(s)jj p! 0: (10)

Then Lemma 1 and Theorem 2 continue to hold with Ŵ0
n in place of W

0
n, where the lth row

of Ŵ0
n is equal to (1; ŵ(sl)

0).

Remark 3.8. The theorem also accommodates location dependent convergent critical values
cvn

p! cv by setting ŵ0(s) = (cvn = cv)w
0(s).

3.4.2 Extension for kernel variance estimators

This subsection discusses how these results can be generalized so they apply to kernel-based

variance estimators, �̂2n(MnKnMn) and associated t-statistics � 2n(MnKnMn), where the n�n
matrix Kn has (l; `) element equal to k(sl; s`) for a positive semide�nite continuous kernel

k : S � S 7! R. Since in our framework, sl 2 S for a �xed sampling region S, and k does
not depend on n, these kernel estimators are spatial analogues of �xed-b time series long-run

variance estimators considered by Kiefer and Vogelsang (2005), as also investigated by Bester,

Conley, Hansen, and Vogelsang (2016).

Let K̂n =MnKnMn, and note that the (l; `) element of K̂n is k̂n(sl; s`) with

k̂n(r; s) = k(r; s)� n�1
nX
l=1

k(sl; s)� n�1
nX
l=1

k(r; sl)� n�2
nX
l=1

nX
`=1

k(sl; s`): (11)

To begin, consider a simpler problem using a kernel that replaces the sample means in (11)

with populations means

k(r; s) = k(r; s)�
Z
k(u; s)dG(u)�

Z
k(r; u)dG(u) +

Z Z
k(u; t)dG(u)dG(t): (12)

By Mercer�s Theorem, k(r; s) has the representation

k(s; r) =
1X
i=1

�i'i(s)'i(r) (13)

where f�i; 'ig are the eigenvalues and eigenfunctions of k, with eigenvalues ordered from
largest to smallest,

R
'i(s)dG(s) = 0 and

R
'i(s)'j(s)dG(s) = 1[i = j].
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Consider the problem with a truncated version of k,

kq(s; r) =

qX
i=1

�i'i(s)'i(r):

We can directly apply Theorem 2 using wj(s) = �
1=2
j 'j(s). Speci�cally, let �Kn;q be an

n � n matrix with (l; `) element equal to kq(sl; s`). Then u0n �Kn;qun = u
0
nWnW

0
nun so that

� 2n(�Kn;q) = �
2
n(WnW

0
n), and P

�
� 2n(�Kn;q) > cv

2 jsn
� p! P

�
Z20 >

Pq
i=1(� !i

!0
)Z2i

�
by Theorem

2.

To extend this result to the original problem, it is useful to reformulate it in terms of

eigenvalues of linear operators. Speci�cally, denote by L2G the Hilbert space of functions
S 7! R with inner product hf1; f2i =

R
f1(s)f2(s)dG(s). Normalize 
wc = �V1 + (1� �)V2,

as in (9). A tedious but straightforward calculation (see (27) in the appendix) shows that the

eigenvalues !i of A = D(cv)
 with 
 = f
sc;
wcg are also the eigenvalues of �nite rank
self-adjoint linear operators L2G 7! L2G, namely RscTqRsc and RwcTqRwc in the strong and
weak correlation case, respectively, where

R2sc(f)(s) =

Z
�B(c(s� r))f(r)dG(r)

R2wc(f)(s) = (�+ (1� �)g(s))f(s)

Tq(f)(s) =

Z �
1� cv2 kq(s; r)

�
f(r)dG(r):

This suggests that the limiting rejection probability for the original non-truncated �k might

be characterized by the (potentially in�nite) number of eigenvalues of the operators RTR :

L2G 7! L2G with R 2 fRwc; Rscg, where

T (f)(s) =

Z �
1� cv2 k(s; r)

�
f(r)dG(r):

The following theorem shows this to be the case, and it also includes the generalization to

sample demeaned kernels (11) instead of (12).

Theorem 4. Let !0 denote the largest eigenvalue, and !i; i � 1 the remaining eigenvalues of
RTR for R 2 fRwc; Rscg. Then under the assumptions of Lemma 1, !0 > 0 and !i � 0 for
i � 1, and P(� 2n(K̂n) > cv

2 jsn)
p! P(Z20 >

P1
i=1(�!i=!0)Z2i ):

Remark 3.9. Under weak correlation the limit distribution of kernel-based spatial t-statistics
depends on the spatial density g, since the eigenvalues of RwcTRwc are a function of g. This
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is analogous to the results for projection estimators discussed above. Thus, in both cases,

using a critical value that is appropriate for i.i.d. data (that is, setting � = 1) does not, in

general, lead to valid inference under weak correlation.

Remark 3.10. The theorem is also applicable to projection estimators using basis functions
�i that are orthogonalized using the sample locations (such as those suggested in Sun and

Kim (2012)) by setting k(r; s) = q�1
Pq

i=1 �i(r)�i(s).

Remark 3.11. The framework of Theorem 4 also sheds light on the asymptotic bias of

kernel-based and orthogonal projection estimators under weak correlation. The estimand

�2 is the limiting variance of a1=2n n�1=2
Pn

l=1 ul, which under the normalization (9) is equal

to the (single) eigenvalue of the operator RwcT�2Rwc with T�2(f)(s) =
R
f(r)dG(r), that isR

(�+(1� �)g(s))dG(s): The expectation of an�̂2n(K̂n) converges to the trace of the operator

RwcT�kRwc with T�k(f)(s) =
R
k(s; r)f(r)dG(r), that is

R
(�+ (1� �)g(s))�k(s; s)dG(s). Thus,

the estimator is asymptotically unbiased for all g if and only if �k(s; s) = 1. For standard

choices of k, k(s; s) = 1, so the only source of asymptotic bias is the demeaning (and if the

estimator �̂2n uses the null value yn � �0ln instead of the residuals ûn, the asymptotic bias is
zero under the null hypothesis). Moreover, if k(r; s) concentrates around the �diagonal�where

r � s, corresponding to a �xed-b kernel estimator with small b, the demeaning e¤ect is small,
as is the asymptotic variability of an�̂

2
n(K̂n). Thus, �xed-b kernel estimators with standard

kernel choices and small b yield nearly valid and e¢ cient inference under weak correlation.

In contrast, orthogonal projection estimators where �k(r; s) = q�1
Pq

i=1 �i(r)�i(s) do not

share this approximate unbiasedness property, even for q large, since
R
�i(s)

2dG(s) = 1 does

not, in general, imply that �k(s; s) = q�1
Pq

i=1 �i(s)
2 � 1.

The proof of Theorem 4 involves showing that in large samples, the di¤erence between

the eigenfunctions of the sample demeaned kernel (11) and the population demeaned kernel

(12) becomes small. The following lemma extends and adapts previous results by Rosasco,

Belkin, and Vito (2010) to the case of sample demeaned kernels.

Lemma 5. Let (v̂i; �̂i) with v̂i = (v̂i;1; : : : ; v̂i;n)0 be the eigenvector-eigenvalue pairs of n�1K̂n

with �̂1 � �̂2 � : : : � �̂n and n�1v̂0iv̂i = 1. For all i with �̂i > 0; de�ne the S 7! R functions

'̂i(�) = n�1�̂
�1
i

nX
l=1

v̂i;lk̂n(�; sl): (14)

Let �(j), j = 1; : : : be the unique positive values of �i, ordered descendingly, and suppose �(j)
has multiplicity mj � 1. Then for any p such that �(p) > 0,
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(a) there exist rotation matrices Ô(j) of dimension mj �mj, j = 1; : : : ; p such that with

q =
Pp

j=1mj, ' = ('1; : : : ; 'q)
0 and '̂ = ('̂1; : : : ; '̂q)

0,

sup
s2S

jj'(s)� diag(Ô(1); : : : ; Ô(p))'̂(s)jj = Op(n�1=2);

(b)
Pq

i=1(�̂i � �i)2 = Op(n�1).

Part (a) shows convergence of the eigenspace corresponding to unique eigenvalues, and

part (b) shows convergence of the eigenvalues.

3.4.3 SCPC t-statistic

Beyond its use in the proof of Theorem 4, Lemma 5 can be used to establish the large sample

distribution of the SCPC t-statistic for nonrandom q and critical value cv. Note that in

this application of Lemma 5, we are interested in the eigenfunctions of the covariance kernel

k0(r; s) = �0u(r � sjc0) of the benchmark model, rather than the eigenfunctions of a kernel
that de�nes a kernel-based variance estimator.

Recall from Section 2 that ri is the eigenvector ofMn�n(c0)Mn corresponding to the ith

largest eigenvalue, normalized to satisfy n�1r0iri = 1. Let '
0
i be the eigenfunction of the kernel

k
0
(r; s) corresponding to the ith largest eigenvalue �0i , where k

0(r; s) = �0u(r� sjc0) and �k0 is
the demeaned version of k0 in analogy to (12). Lemma 5 and a slightly extended version of

Theorem 3 (see Lemma 10 in the appendix) then yields the following corollary.

Corollary 6. Suppose �0q > �0q+1. Then Theorem 2 holds for � 2SCPC(q) = � 2n(q
�1Pq

i=1 rir
0
i)

with w(s) = ('01(s); : : : ; '
0
q(s))

0=
p
q.

4 Size control of spatial t-statistics

This section presents two results on size control of spatial t-statistics, the �rst asymptotic

and the second a �nite-sample result, and applies these to SCPC.

4.1 Asymptotic size control under weak correlation

As discussed above (see equation (9)), under weak correlation, the asymptotic rejection prob-

ability of �n for �nite q can be studied via 
wc(�) = �V1 + (1� �)V2, where the covariance

function of u and the sequence cn a¤ects the large-sample distribution of �n only through
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the scalar � 2 [0; 1). Thus, if cv is such that sup0��<1 P (
Pq

i=0 !i(�; cv)Z
2
i > 0) = �, where

f!i(�; cv)gqi=0 are the eigenvalues of A(�; cv) = D(cv)
wc(�), then setting cvn � cv for all n
yields inference that is asymptotically robust under all forms of weak correlation covered by

Theorem 1 (ii). In the case of a kernel-based variance estimator, the same holds as long as cv

satis�es sup0��<1 P (
P1

i=0 !i(�; cv)Z
2
i > 0) = � where f!i(�; cv)g1i=0 are the eigenvalues of the

linear operator L(f)(s) =
R p

�+ (1� �)g(s)
�
1� cv2k(s; r)

�p
�+ (1� �)g(r)f(r)dG(r).

The value cv depends on the spatial density g, which can be seen directly by inspecting

the form of 
wc and the operator L. In principle, one could use these expressions to estimate

cv directly. But this would involve estimates of the spatial density g, which leads to di¢ cult

bandwidth an other choices. We now discuss a simpler approach.

Consider a benchmark model B0 that satis�es the assumptions of Theorem 1 (ii), such as

the Gaussian exponential model introduced in Section 2. Let �0B denote the covariance kernel

of B0, and suppose cn;0, is chosen so that an;0 = cdn;0=n! a0 = 0: For instance, cn;0 = c0 > 0

satis�es this condition, as does cn;0 = n1=d= log(n). Note that for this model � = 0. Suppose

cvn = cvn(sn) satis�es

sup
c�cn;0

P0�(c)(� 2n � cv2n jsn) � � (15)

where P0�(c) is computed under the benchmark model, that is under unjsn � N (0;�(c)) with
�(c) the covariance matrix of (B0(cs1); :::; B0(csn))0.

Theorem 7. Let cv2n satisfy (15). Under weak correlation in the sense of Lemma 1 (ii), for
t-statistics covered by Theorems 2, 3, 4 and Corollary 6, max(cv2�cv2n; 0)

p! 0. Consequently,

for any � > 0, lim supn P(P(� 2n > cv2n jsn) > � + �)! 0, so that lim supn P(� 2n � cv2n) � �.

The intuition for Theorem 7 is as follows. The critical value cvn in (15) is valid in the

benchmark model for all c � cn;0 and n. Thus, it is also valid along arbitrary sequences

cn � cn;0. Since the cn;0 model has � = 0, there exists sequences cn � cn;0 that induce

any � 2 [0; 1) in the benchmark model; thus di¤erent sequences cn in the benchmark model
recreate any possible limit distribution under generic weak correlation, so that size control in

the benchmark model for all c � cn;0 translates into size control under generic weak correlation.

4.1.1 Implications for SCPC

For SCPC, the benchmark covariance kernel for B0 is exponential �0B(r; s) = exp(�jjr � sjj)
and (from equation (4)) the critical value is chosen to satisfy (15) with equality. Thus, with a
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�xed value of c0, the SCPC t-test � SCPC(q) controls size in large samples under generic weak

correlation.3

In addition and by construction, the SCPC critical value is chosen to satisfy the size

constraint for all values of c � c0 in the benchmark model. Thus, size is controlled by

construction also in strong-correlation models with exponential covariance kernels for all c �
c0.

4.2 Finite sample size control in the Gaussian model

The asymptotic results of the last subsection are comforting, but in �nite samples, the ro-

bustness of a spatial t-statistic with critical value chosen according to (15) still depends on

the choice of cn;0 and the benchmark model. This motivates investigating size control in �nite

samples, which potentially includes �strong�correlation cases.

We restrict attention to Gaussian models where y � N (l�;�) for some � and implicitly

condition on s, and we also omit the dependence on n to ease notation. In this �nite sample

conditional framework, the distinction betweenW and Ŵ is immaterial, so for simplicity, we

write � 2(WW0) for the t-statistic.4

Let V denote a set of covariance matrices. A test using the t-statistic � 2(WW0) with

critical value cv is robust for V if sup�2V P�(� 2(WW0) > cv2) � �. For a �nite or parametric
set of V, sup�2V P�(� 2(WW0) > cv2) can be established numerically. We therefore focus on

an analytical robustness result for a non-parametric class V.
Speci�cally, we establish a set of readily veri�able su¢ cient conditions to check robustness

for sets V that are composed of mixtures of parametric covariance matrices �p(�) for � 2 �.
We then apply this result to a set of Matérn covariance matrices with parameter � and

investigate the robustness of SCPC over arbitrary mixtures of these Matérn models. In

addition, we use the result to study the robustness of a popular projection based t-test in a

regularly spaced time series setting.

Consider a benchmark model with � = �0, and suppose that cv has been chosen so that

3Technically, the SCPC choice of q in (5) is also a function of the locations of sn, so qSCPC is random.

However, the argument that establishes Theorem 7 can be extended under this complication as long as

qSCPC � qmax almost surely for some �nite and �xed qmax. See Theorem 11 in the appendix for a formal

statement.
4This also covers kernel variance estimators by setting q = T � 1 and using the Choleksy decomposition

MKM =WW0.
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P�0(� 2(WW0) > cv2) = �: We are interested in conditions under which

P�1(� 2(WW0) > cv2) � � for �1 =

Z
�

�p(�)dF (�) (16)

for a probability distribution F .

Let �j(�) denote the jth largest eigenvalue of some matrix.

Theorem 8. Let 
0 =W00�0W
0, 
(�) =W00�p(�)W0, and assume 
0 and 
(�); � 2 �

are full rank. Suppose A0 = D(cv)
0 is diagonalizable, and let P be its eigenvectors. Let

A(�) = P�1D(cv)
(�)P and �A(�) = 1
2
(A(�) + A(�)0). Suppose A0 and A(�); � 2 � are

scale normalized such that �1(A0) = �1(A(�)) = 1. Let

�1(�) = �q(��A(�))� �1(�A(�))�q(�A0)� (�1(�A(�))� 1)
�i(�) = �q+1�i(��A(�))� �1(�A(�))�q+1�i(�A0) for i = 2; : : : ; q:

If for some probability distribution F on �,
Pj

i=1

R
�i(�)dF (�) � 0 for all 1 � j � q, then

(16) holds.

Remark 4.1. If
Pj

i=1 �i(�) � 0 for all � 2 � and 1 � j � q, then the theorem implies that

P�1(� 2(WW0) > cv2) � � for �1 an arbitrary mixture of �p(�).

Remark 4.2. Note that for �p(�0) = �0, �i(�0) = 0 for 1 � j � q, so the inequalities of

the theorem have no �minimal slack�and potentially apply also to parametric models with a

covariance matrix �p(�) that takes on values arbitrarily close to �0.

Remark 4.3. As shown in Theorem 2, the eigenvalues of A0 and A(�) (or, equivalently, of

D(cv)
(�)) govern the rejection probability of � 2(WW0) under �0 and �p(�). Given the

scale normalization �1(A0) = �1(A(�)) = 1, if ��j(A(�)) � ��j(A0) for all j � 2, then the
result there implies that P�p(�)(� 2(WW0) > cv2) � P�0(� 2(WW0) > cv2). It follows from

an integral representation (cf. equation (20) below) that the null rejection probability of the

t-statistic is Schur convex in these negative eigenvalues, so that the inequality holds whenever

the negative eigenvalues of A(�) weakly majorize those of A0. Majorization inequalities

about eigenvalues of sums of matrices from Marshall, Olkin, and Arnold (2011) and additional

calculations then extend this further to the result in Theorem 8.

Remark 4.4. The conditions of Theorem 8 implicitly depend on the locations s, so the

implications are speci�c to the application. In the spatial case, the practical importance
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of the theorem is that the conditions are straightforward to check numerically for a given

parametric family �p(�). This can establish a range of robustness of a spatial t-test in a

given application and is illustrated in the next subsection with the SCPC t-test and the

Matérn class of spatial correlations. The theorem also provides insights for inference in the

regularly-spaced time series case, where the spatial design is �xed across applications. This

is illustrated in the subsequent subsection for a projection-based t-statistic for mixtures of

AR(1) processes and processes that are �less persistent�than a benchmark AR(1) model.

4.2.1 Implications for SCPC

The critical value for the SCPC t-test is chosen to control size in exponential models with

c � c0, where c0 is calibrated to a value �0. Because � is monotone in c, the resulting SCPC
t-test controls size for all � � �0 in the exponential model by construction.
Let �p(�) denote the covariance matrix associated with a parameter �, with average

pairwise correlation �(�). Let ��L;�U = f�j�L � �(�) � �Ug denote the set of values of � that
induce correlations between �L and �U . If the inequalities in Theorem 8 are satis�ed for all

values of � 2 ��L;�U , then the SCPC t-test controls size for all mixtures of �p(�) in this set.

In this section we consider �p(�) computed from Matérn processes with parameter

� = (�; c), where � and c are positive constants. If u follows a Matérn process, its co-

variance function �u(r � s) depends on the locations only through d = jjr � sjj. For

� 2 f1=2; 3=2; 5=2;1g, the Matérn covariance functions are

� � = 1=2: �u(d) / exp[�cd]

� � = 3=2: �u(d) /
�
1 +

p
3dc
�
exp[�

p
3cd]

� � = 5=2: �u(d) /
�
1 +

p
5dc+ (5=2)d2c2

�
exp[�

p
5cd]

� � =1: �u(d) / exp[�c2d2=2]:

For any �(c0) it is straightforward to compute the bounds �L and �U such that the

inequalities in Theorem 8 are satis�ed for all values of � 2 ��L;�U with � 2 f1=2; 3=2; 5=2;1g
and c > 0. We carried out this exercise for the U.S. states spatial correlation designs of Section

2 (the calculations for one set of locations take less than a second). We �nd �L � 0:001 and
�U = �0 2 f0:02; 0:10g, with very few minor exceptions.
We conclude that SCPC controls size in �nite Gaussian samples for a wide range of Matérn

process mixtures that imply � � �0, at least for this set of spatial designs.
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4.2.2 Implications for regularly-spaced time series

The spatial design is �xed for regularly-spaced time series, so the theorem can provide gen-

eral robustness results. Consider, for instance, the equal weighted cosine (EWC) projection

estimator of Müller (2004, 2007), Lazarus, Lewis, Stock, and Watson (2018) and Dou (2019)

where w(s) =
p
2=q(cos�s; cos(2�s); : : : ; cos(q�s)). Suppose the critical value cvn is chosen

so that size is controlled in a Gaussian AR(1) with coe¢ cient exp(�c0=n), and q is chosen to
minimize expected length in the i.i.d. model. For c0 = 10, c0 = 25 and c0 = 50, we obtain

q = 5; 7 and 10, respectively, for all n 2 f50; 100; 500g. Call this test the EWC(c0) t-test.
Calculations based on Theorem 8 for these values of c0 and n show that the EWC(c0) t-test

controls size for arbitrary mixtures of AR(1) processes with coe¢ cients exp(�c=n), c � c0.

By taking the limit in n and using standard local-to-unity weak convergence results (as in

Müller (2014)), one can further apply Theorem 1 to the limiting covariance matrices 
0 and


(�) to study asymptotic robustness of the EWC(c0) t-test with an asymptotically justi�ed

critical value (which are equal to cv = 3:53, 2:71, 2:40 for c0 = 10, 25, 50, respectively).

Another numerical calculation based on Theorem 8 then shows that these EWC(c0) t-tests

control asymptotic size for underlying processes that are arbitrary mixtures of local-to-unity

models with parameters c � c0.
Moreover, let fn;0 : [��; �] 7! [0;1) be the spectral density of an AR(1) process with co-

e¢ cient exp(�c0=n), so fn;0(!) / (1�2e�c0=n cos!+e�2c0=n)�1. A spectral density fn;1 would
naturally be considered less persistent than fn;0 if fn;1(!)=fn;0(!) is (weakly) monotonically

increasing in j!j. Denote all such functions by Fn. De�ne

M =
fn;1(�)=fn;0(�)

fn;1(0)=fn;0(0)
;

so M measures by how much fn;1(!)=fn;0(!) increases over [0; �], and denote by F �M
n all

functions in Fn with M � �M for some �M > 1. Then for any fn;1 2 F �M
n , there exists a CDF

H on [0; �] such that

f1;n(!) / fn;0(!) + (M � 1)H(j!j)fn;0(!)

=
�M �M
�M � 1

fn;0(!) +
M � 1
�M � 1

Z
[fn;0(!) + ( �M � 1)1[j!j � �]fn;0(!)]dH(�)

so fn;1 has a representation as a scale mixture of fn;0(!) + ( �M � 1)1[j!j � �]fn;0(!), 0 �
� � �. After translating this back into a corresponding mixture of covariance matrices

�p(�), an application of Theorem 8 shows that the EWC(c0) t-test also controls size in this
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class, for (c0; �M) 2 f(10; 10); (25; 10); (50; 5)g and all n 2 f50; 100; 500g. These results re�ne
corresponding results in Dou (2019) that are based on a Whittle-type diagonal approximation

to �.

Taking limits as n ! 1 yields a corresponding asymptotic robustness statement: The

function f0 : R 7! [0;1) with f0(!) = (!2+c20)�1 is proportional to the �local-to-zero�spectral
density (cf. Müller and Watson (2016, 2017)) of a local-to-unity process with parameter

c0: Consider any process whose local-to-zero spectral density f1 is such that f1(!)=f0(!) is

monotonically increasing in j!j with lim!!1 f1(!)=f0(!) � �Mf1(0)=f0(0) and that satis�es

the CLT in Müller and Watson (2016, 2017). A numerical calculation based on Theorem 8

then shows that the EWC(c0) t-tests for (c0; �M) 2 f(10; 10); (25; 10); (50; 5)g controls size in
large samples under all such processes.

4.3 Size properties of SCPC under heteroskedasticity and mismea-

sured locations

The SCPC t-test is not robust to heteroskedasticity or measurement error in locations by

construction. For example, suppose that u(s) = h(s)~u(s), where ~u is homoskedastic and

satis�es the assumptions outlined above for u, and h : S 7! R is a non-random function that

induces heteroskedasticity in the u process. The linear combinations of u studied in Lemma

2 are now
Pn

l=1w
0(sl)u(sl) =

Pn
l=1w

0
h(sl)~u(sl) where w

0
h(s) = w

0(s)h(s). The results of the

lemma and subsequent theorems then follow with w0
h replacing w

0. But, the test statistic

and critical value is computed using w0, not w0
h, so that size control is not guaranteed, even

in large samples. An analogous problem arises when the locations si are measured with error.

In both cases, the particulars of the size distortion depend on the distribution of spatial

locations, g, the weights w0 (which in turn depend on the value of �0 used to calibrate c0),

the function h in the heteroskedastic model and the distribution of the measurement error for

the locations.

We summarize two experiments that illustrate and quantify the size distortions in the

U.S. states spatial correlation designs. The �rst experiment is a heteroskedastic model with

log h increasing or decreasing linearly from log h(s) = 0 to log h(s) = log 3 moving from the

most westward to the most eastward location, the experiment is repeated with h increasing or

decreasing moving north to south, and we record the largest of the four rejection frequencies.

Panel (a) of Figure 6 plots the CDF of rejection frequencies for nominal 5% SCPC tests for

each (�0; g) pair. For these designs, the resulting size distortions are not large, except for a
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Figure 6: CDFs of Size under Heteroskedasticity and Location Measurement Error

few states with �0 = 0:02 and the light spatial density g, where rejection frequencies approach

10%.

The second experiment investigates location measurement error of a form studied in Conley

and Molinari (2007). Speci�cally for each location, s�i = si + ei where s�i is the measured

location, si is the true location and ei is the measurement error. The error term is ei =

(e1;i; e2;i) with e1;i the north-south and e2;i the east-west coordinate and ej;i i.i.d.U(��; �)
over j and i, and � = 0:0375H with H the length of the smallest square that encompasses all

locations, corresponding to �level 4�errors in Conley and Molinari�s (2007) classi�cation. The

CDFs for the rejection frequencies are shown in panel (b) of Figure 6. Evidently, measurement

error of this sort has little e¤ect on the size of SCPC under uniformly distributed locations,

but can have a substantial e¤ect for highly concentrated spatial distributions, especially when

�0 = 0:02.

5 E¢ ciency of SCPC

Figure 5 showed the expected length of the SCPC con�dence interval relative to the length

of an oracle con�dence interval that uses the true value of Var(
p
n(y � �)) conditional on

the observed locations s. (As before, in this subsection we keep the conditioning on s and

the dependence on n implicit.) For studying e¢ ciency, a more relevant comparison involves

the expected length of the SCPC con�dence interval relative to a con�dence interval that,

like SCPC, does not depend on the true (unknown) value of Var(
p
n(y � �)). Ideally, such a
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comparison would involve SCPC and the most e¢ cient method for constructing a con�dence

interval. We undertake such a comparison here.

To be speci�c, let CS(y) � R denote a con�dence set for � constructed from y. We

restrict attention to location and scale equivariant con�dence sets, that is CS satis�es CS(a�+

a�y) = f�0 : (�0 � a�)=a� 2 CS(y)g for all y, a� 2 R and a� > 0. As in Section 4.2,

we focus on the Gaussian model y � N (l�;�). We want to compare the SCPC interval

with a con�dence interval that, like SCPC, has good coverage P�(� 2 CS(y)) over a range
of potential spatial correlation patterns � 2V. The metric for measuring e¢ ciency is the
expected length E1[

R
1[x 2 CS(y)]dx] in the i.i.d. model y � N (l�; I).

Our choice of V is motivated by the structure of the SCPC benchmark covariance matrix
�(c0). The idea is to include in V covariance matrices that are weakly less persistent than
�(c0), and that cannot be easily distinguished from the i.i.d. model. To characterize these

covariance matrices, note that �(c0) is generated from u, an isotropic random �eld with

covariance function �u(s; r) = exp(�c0jjs � rjj). Isotropy implies that the spectrum of this

random �eld F0 : Rd 7! [0;1) at frequency ! 2 Rd can be written as function of the scalar
! = jj!jj, that is F0(!) = f0(!) for some f0 : R 7! [0;1). As is well known, the exponential
covariance model for d = 2 corresponds to a spectral density function f0 proportional to

(c0 + !
2)�3=2. By scale invariance of both CS and the SCPC interval, it is without loss of

generality to set f0 equal to

f0(!) =
1

(c0 + !2)3=2
:

For some �! > 0, de�ne f�(!) = 1[j!j � �!](f0(!) � f�(�!)), and let fR(!) = f0(!) � f�(!),
so that

f0(!) = f�(!) + fR(!):

For 0 � j!j � �!, the density f� is equal to f0(!) � f0(�!), so that the remainder fR(!) is
a continuous density that is �at for j!j � �!, and that follows the same decline as f0 for

j!j > �!. Since both f�(!) and fR(!) are non-negative, we have the corresponding identity

in covariance matrices

�(c0) = ��(�!) +�R(�!) (17)

where ��(�!) and �R(�!) are induced by the isotropic random �elds with spectral densities

F�(!) = f�(jj!jj) and FR(!) = fR(jj!jj), respectively.
Now consider the covariance matrix

��(�!) = ��(�!) + �1(�R(�!))In
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where �1(�R(�!)) is the largest eigenvalue of �R(�!). Since fR(!) is monotonically decreasing

in j!j, also �R(�!) contributes to the persistence of �(c0) in (17), so replacing it with white
noise of weakly larger variance should make inference about � under ��(�!) no harder than

under �(c0).5 Said di¤erently, a method that is robust under correlation patterns weakly

less persistent than �(c0) should continue to have good coverage after replacing medium and

high frequency variation in y by white noise, that is, under ��(�!). This motivates the set

V = f��(�!)j�! > 0g.
A calculation shows that in the U.S. states spatial correlation designs, the SCPC interval

has good coverage properties under this V. With �SCPC(�!) = P��(�!)(� 2SCPC > cv2SCPC) for the
nominal 5% level SCPC test, for most designs, sup�!�0 �SCPC(�!) is equal or very close to 5%,

and it never exceeds 8%. To keep things on an equal footing, we allow CS the same degree of

undercoverage, that is we consider the problem

inf
CS
E1[
Z
1[x 2 CS(y)]dx] s.t. P��(�!)(� =2 CS(y)) � max(�SCPC(�!); �) for all �! > 0: (18)

In words, we seek the invariant con�dence set with the shortest expected length in the i.i.d. lo-

cation model among all con�dence sets that are as robust as the SCPC interval under ��(�!),

�! > 0.

Since �! is one-dimensional, one can apply the numerical techniques of Elliott, Müller, and

Watson (2015) and Müller and Norets (2016) (also see Müller and Watson (in preparation))

to obtain an informative lower bound on the objective infCS E1[
R
1[x 2 CS(y)]dx] that holds

for any equivariant CS(y) that satis�es the constraint in (18).

We compute such lower bounds in the U.S. states spatial correlation designs. Panel (a)

of Figure 7 shows the CDFs of the length of SCPC con�dence intervals relative to the lower

bounds for the 240 designs in each (�0; g) pair. The expected lengths of SCPC are within 7% of

the e¢ ciency bound for all designs when �0 = 0:02. When �0 = 0:10, so that spatial correlation

is high, and the spatial locations are highly concentrated as under the light design, the ex-

pected length of the SCPC con�dence interval can be more that 15% longer than the e¢ ciency

bound. In part, this is because the implied e¢ cient con�dence sets are complicated and rather

uninterpretable functions of y in this case. We thus repeat the exercise for con�dence sets con-

strained to be symmetric around y by imposing CS(a�+ a�y) = f�0 : (�0� a�)=a� 2 CS(y)g
5In the regularly-spaced time series setting, white noise amounts to a �at spectrum, so �0(�!) corresponds

to an underlying spectral density equal to f�(!) + f0(�!), which is the �kinked�spectral density considered

by Dou (2019). For arbitrary locations, however, the domain of the spectrum doesn�t fold onto the interval

[��; �], so that white noise cannot mathematically be represented by a �at spectrum.
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Figure 7: CDFs of Expected Length of SCPC Relative to Lower Bound on Expected Length

for all y, a� 2 R and a� 6= 0. The results are summarized in panel (b), and we can see that
SCPC comes closer to the resulting higher bound on con�dence interval length.

Remark 5.1. These e¢ ciency results also provide a limit on the possibility of using data-
dependent methods to learn about the value of the worst-case correlation c0: Since the

i.i.d. model corresponds to c ! 1, if it was possible to learn the value of c from the data,

one would be able to conduct much more e¢ cient inference than what is reported in Figure

7. The results here thus provide a rationalization for treating c0 as given.6

6 Comparison with other methods

This section compares SCPC with other methods that have been proposed, focusing on size

and expected length of con�dence intervals in the benchmark Gaussian model with exponential

covariance kernel and parameter c0 (calibrated by ��0). We consider two kernel-based methods,

two versions of a cluster method, and one projection method. All these methods are t-statistic

based tests of the form considered in Section 3.

The kernel based methods use a Bartlett kernel, k(s; r) = kBartlett(jjs�rjj=b). The methods
di¤er in their choice of bandwidth b and critical value. The �rst method uses a standard

normal critical value with b chosen so the resulting test has size as close as possible to 5%.

This is a version of the method proposed by Conley (1999), but with an oracle choice for the

6Also see Dou (2019) for a related discussion and associated impossibility results.
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bandwidth. The second method sets b = maxl;` jjsl � s`jj and chooses the critical value to
obtain exact coverage under � = I. This is the spatial analogue of the method suggested

by Kiefer, Vogelsang, and Bunzel (2000) (KVB) for regularly spaced time series. The cluster

methods follow the approach of Ibragimov and Müller (2010) (IM) with student-tq critical

values and is implemented with q = 4 and q = 9 equal-sized clusters.7 The projection method

follows Sun and Kim (2012). It uses a student-tq critical value and q low-frequency Fourier

weights orthogonalized using the sample locations, where q is chosen as a function of the

exponential model parameter c0 using the formula in their equation (8). The �rst and last

method are thus tailored to the true value c0, just like SCPC.

We analyze these methods in the U.S. states spatial correlation designs, augmented to also

include the value �0 = 0:001 for the average pairwise correlation to investigate performance

under �weak�spatial correlations. Figure 8 summarizes the results for size control and expected

lengths by plotting the CDFs for each (�0; g) pair. The �rst column shows the null rejection

frequency for each method; by construction, the rejection frequency for SCPC is at most 5%

in all designs. The expected lengths in the second and third column use size-corrected critical

values to ensure 95% coverage under �(c0), and are given in multiples of the expected length

of the (non-adjusted) SCPC method. The second column reports these relative expected

lengths under � = I, and the third column under �(c0).

Looking at the �rst column, the kernel and cluster methods have null rejection probabilities

close to 5% when �0 = 0:001, but exhibit signi�cant size distortions for �0 = 0:02 or 0:10.

Evidently, the kernel and cluster methods substantially underestimate the variance of y for

the latter two values of �0. In contrast, the Fourier projection method has relatively small size

distortions under g = guniform but can have substantial size distortions under g = glight, even

when ��0 = 0:001. This is consistent with the implications of Theorem 2: the student-t critical

value for the projection method is appropriate when 
 / I, which it is under weak-correlation
with g uniform, but not otherwise, even for large q (cf. Remark 3.11).

The relative lengths shown in the second column are above unity, sometimes by a wide

margin, indicating that SCPC is closer to the e¢ ciency bound computed in Section 5 than

these alternative methods, at least for the designs considered here. The third column shows

7The assignment of locations to clusters is performed sequentially, where at each step, we minimize (across

yet unassigned locations) the maximal distance over clusters (among those that have not yet been assigned n=q

locations). Cluster distances are computed from the northwest, northeast, southeast and southwest corners

of the location circumscribing rectangle, and in the q = 9 case, also from the mid-points of the four sides of

this rectangle, and its center.
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Figure 8: CDFs of Null Rejection Probability and Relative Expected Length of Alternative

Methods
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that this continues hold for lengths computed under�(c0) with a few exceptions. Notably, the

expected length of the size-adjusted 9-cluster method is smaller than SCPC when �0 = 0:10.

This apparent good performance comes at the cost of substantially longer con�dence intervals

in the i.i.d. model.

7 Extensions and computational issues

This section discusses extensions of the method to regression and GMM models, some com-

putational issues, and the multivariate extension of SCPC.

7.1 Extensions to regression and GMM

The extension of these results to regression and GMM problems follows from standard argu-

ments. For example, consider the linear regression problem

wl = xl� + z
0
l� + "l for l = 1; :::; n (19)

where � is the (scalar) parameter of interest, zl are additional controls in the regression, and

(wl; xl; zl) are associated with location sl. Let ~xl = xl � SxzS�1zz zl denote the residual from
regressing xl on zl, where we use the notation Sab = n�1

Pn
l=1 alb

0
l for any vectors al and bl.

Suppose S~x~x
p! �2~x~x > 0 and

n�1=2
nX
l=1

~xl"ljs)p N (0; �2~x"):

Then
p
n(�̂ � �)js)p N (0; �2)

where �2 = �2~x"=�
4
~x~x. Spatial correlation a¤ects inference in this model through �

2
~x" which

incorporates potential correlation between ~xl"l and ~x`"` at spatial locations sl and s`.

Thus, suppose that ~xl"l satis�es the assumptions previously made for ul. Then a straight-

forward calculation shows that setting

yl = �̂ +
~xl"̂l

n�1
Pn

l=1 ~x
2
l

in the analysis of the previous sections leads to analogous results with � replacing � as the

parameter of interest. The extension to GMM inference is analogous; see, for instance, Section

4.4 of Müller (2020).
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7.2 Computational issues

We highlight two computational issues. The �rst involves the calculation of the SCPC critical

value, and the second involves the problem of computing the eigenvectors rj of M�(c0)M

when n is very large.

The critical value cv = cvSCPC(q) solves supc�c0 P�(c)(�
2(q�1

Pq
j=1 rjr

0
j) > cv2) = � or

equivalently (from Theorem 2) supc�c0 P (Z
2
0 >

Pq
i=1 �iZ

2
i ) = � where �i = �!i=!0, !i are

the eigenvalues of Ŵ00�(c)Ŵ0D(cv) with Ŵ0 = [l; r1=
p
q; : : : ; rq=

p
q] and Zj �i.i.d. N (0; 1).

Bakirov and Székely (2005) show that

P

 
Z20 �

qX
i=1

�iZ
2
i

!
=
1

�

Z 1

0

x
q�1
2p

(1� x)
Qq
i=1(x+ �i)

dx; (20)

which is readily evaluated by numerical quadrature. Thus cvSCPC(q) can be obtained by

combining a root-�nder with a grid search over c � c0.
The second problem involves computing the eigenvectors rj = (rj;1; : : : ; rj;n)0 of the n� n

matrixM�(c0)M when n is very large (say, larger than n = 2000). Here we can leverage the

eigenfunction convergence result in Lemma 5 as discussed in Section 3.4.3: In the notation

de�ned there, we seek to approximate rj = ('̂
0
j(s1); : : : ; '̂

0
j(sn))

0. Consider a random subset

of size ~n < n of the observed locations f~slg~nl=1 � fslgnl=1, and let ~�(c0) be the implied ~n� ~n
covariance matrix of (u(~s1); : : : ; u(~sn))0 using the benchmark covariance function �0u(r�sjc0) =
exp[�c0jjr � sjj]. Let the eigenvector corresponding to the jth largest eigenvalue ~�j of ~�(c0)
be ~rj = (~r1;j; : : : ; ~r~n;j)0 with ~n�1~r0j~rj = 1. As long as ~n!1 and �q+1 > �q, Lemma 5 implies

that the span of the S 7! R functions

~'0j(s) = ~n
�1~�

�1
j

~nX
l=1

~rj;l

 
exp[�c0jjs� ~sljj]� ~n�1

~nX
`=1

exp[�c0jj~sl � ~s`jj]
!
, j = 1; : : : ; q

converges to the eigenspace spanned by '0j , j = 1; : : : ; q, just like the full sample estimators '̂
0
j .

Thus, it is formally justi�ed to approximate the value of '̂0j at locations fslgnl=1 3 s` =2 f~slg~nl=1
via rj;` = '̂

0
j(s`) � ~'0j(s`)� this is a version of the so-called Nyström method (see, for instance,

Rasmussen and Williams (2005) for discussion and references).

In practice, such approximations can be carried out for several random subsets of ~n loca-

tions, followed by a (sample) principle component analysis to extract the best approximation

to the space spanned by the �rst q eigenvectors. The resulting algorithm has O(n) running

time (in contrast to the O(n2) running time of a basic implementation of Conley (1999)-type
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kernel estimators). We provide corresponding STATA and Matlab code in the replication

�les.

7.3 Extension to F-tests

Consider the case where yl = � + ul with yl, � and ul m � 1 vectors, and we seek to test
the hypothesis H0 : � = �0. Suppose the observations conditional on s are generated by the

model

u(sl) = B(cnsl), l = 1; : : : ; n

whereB(s) is an Rm-valued mean-zero stationary random �eld on Rd with covariance function
E[B(s)B(r)0] = �B(r�s). LetY andU be the n�mmatrices of observations and innovations,
respectively, and �y = n�1

Pn
l=1 yl the sample mean. The natural analogue to the t-statistic

� 2(ŴŴ
0
) is Hotelling�s-T 2 statistic

T 2(ŴŴ
0
) = n(�y � �0)

0
�
Y0ŴŴ0Y

��1
(�y � �0): (21)

One would expect that under mixing and moment conditions similar to those of Lemma

1 (ii)

vec(W00U)js)p N
�
0; a�B(r � s)
V1 +

�Z
�B(s)ds

�

V2

�
: (22)

Note that T 2(ŴŴ
0
) is invariant to the transformation Y ! YH for nonsingular H. For the

purposes of studying the limit distribution of T 2(q) under weak correlation, it is thus without

loss of generality to normalize �B(�) such that the limit covariance matrix in (22) becomes

diag(�)
V1 + (Im � diag(�))
V2 (23)

where � is a m� 1 vector with elements in [0; 1).
For the extension of the SCPC method, consider a benchmark model indexed by c =

(c1; : : : ; cm) where vec(Y)js � N (� 
 ln;�(c)) with �(c) = diag(�(c1); : : : ;�(cm)), and

�(c) is as in Section 2. Let c0 = c0lm, a m � 1 vector of identical elements c0. The SCPC
test statistic T 2SCPC(q) is a special case of (21) with the columns of Ŵ equal to the �rst q

eigenvectors of �(c0), scaled to have length 1=
p
q, and with critical value cvTSCPC chosen to

satisfy

sup
c�c0

P0�(c)(T 2SCPC(q) > cvTSCPC(q)js) = �;
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under the null hypothesis, where c � c0 is understood as an elementwise inequality. The

value of q that minimizes the expected volume of the con�dence ellipsoid under vec(Y)js �
N (�
 l; Im
In) is

min
q�m

E[volfm :m0(q�1Sq)
�1m � n�1 cvTSCPC(q)g] = min

q�m

(2� cvTSCPC(q)=n)
m=2�((q + 1)=2)

p
q�((q �m+ 1)=2)�(m=2 + 1)

where Sq is distributed Wishart with q degrees of freedom, and the equality follows from

Bartlett�s decomposition of a Wishart random matrix, and the formulas for the expectation

of a � random variable and the volume of an m dimensional ellipsoid.

Since appropriate choices of cj;n !1, j = 1; : : : ;m in the benchmark model can replicate

the normalized limit distributions (23) for all �, by the same arguments that lead to Theorem

7, T 2SCPC(q) controls size under all weak correlation patterns that induce (22). And as in

Section 7.1, it is straightforward to adapt T 2SCPC(q) to test m restrictions in linear regression

and GMM problems. We omit details for brevity. Generalizing the results about the small

sample robustness of � SCPC under potentially strong correlations in Theorem 8 to T 2SCPC is

interesting but challenging, and beyond the scope of this paper.
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A Appendix

Lemma 9. If Xnjsn )p X and Yn
p! 0, then (Xn +Yn)jsn )p X.

Proof. Let BL be the space of Lipschitz continuous functions Rp 7! R bounded by one with
unit Lipschitz constant. By Berti, Pratelli, and Rigo (2006), page 93, Xnjsn )p X is equiva-

lent to suph2BL jE[h(Xn)�h(X)jsn]j
p! 0, so it su¢ ces to show that suph2BL jE[h(Xn+Yn)�

h(X)jsn]j
p! 0. Let Y�

n = Yn1[jjYnjj � 1], so that

sup
h2BL

jE[h(Xn +Yn)� h(X)jsn]j � sup
h2BL

jE[h(Xn +Y
�
n)� h(X)jsn]j+ 2P(jjY�

njj > 1jsn):

Note that with �n(h) = h(Xn +Y
�
n)� h(Xn), j�n(h)j � jjY�

njj a.s. for all h 2 BL, so that

sup
h2BL

jE[h(Xn +Y
�
n)� h(X)jsn]j = sup

h2BL
jE[�n(h) + h(Xn)� h(X)jsn]j

� sup
h2BL

(jE[�n(h)jsn]j+ jE[h(Xn)� h(X)jsn]j)

� E[jjY�
njjjsn] + sup

h2BL
jE[h(Xn)� h(X)jsn]j:

We are left to show that Yn
p! 0 implies P(jjY�

njj > 1jsn)
p! 0 and E[jjY�

njjjsn]
p! 0:

Consider the latter claim. Suppose otherwise. Then for some " > 0, and some subsequence

n0 of n, limn0!1 P(E[jjY�
n0jjjsn0 ] > ") > ", so that lim infn0!1 E[jjY�

n0jj] > "2. But since Y�
n is

bounded, Yn
p! 0 implies limn!1 E[jjY�

njj] = 0, a contradiction. A similar argument yields
E[jjY�

njjjsn]
p! 0, concluding the proof.

Proof of Lemma 1: (i) Since B is Gaussian, n�1W00
nunjsn � N (0;
n) with 
n =

n�2
P

l;`w
0(sl)w

0(s`)
0�B(c (sl � s`)). It thus su¢ ces to show that 
n

p! 
sc.

We have 
n = �B(0)n
�2P

lw
0(sl)w

0(sl)
0 + n�2

P
l 6=`w

0(sl)w
0(s`)

0�B(c (sl � s`)), and
jjn�2

P
lw

0(sl)w
0(sl)

0jj � n�1 sups2S jjw0(s)jj2 ! 0: Furthermore,

E

"
1

n(n� 1)
X
l 6=`

w0(sl)w
0(s`)

0�B(c (sl � s`))
#
= E[w0(s1)w

0(s2)
0�B(c (s1 � s2))] = 
sc

and with w0i (s) the ith element of w
0(s),

E

24 1

n(n� 1)
X
l 6=`

w0i (sl)w
0
j (s`)

0�B(c (sl � s`))
!235
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=
(n� 2)(n� 3)
n(n� 1) E[w0i (s1)w0j (s2)0�B(c (s1 � s2))]E[w0i (s3)w0j (s4)0�B(c (s3 � s4))]

+
4(n� 2)
n(n� 1)E[w

0
i (s1)w

0
j (s2)

0�B(c (s1 � s2))w0i (s1)w0j (s3)0�B(c (s1 � s3))]

+
2

n(n� 1)E[w
0
i (s1)w

0
j (s2)

0�B(c (s1 � s2))w0i (s1)w0j (s2)0�B(c (s1 � s2))]

so that Var[ 1
n(n�1)

P
l 6=`w

0
i (sl)w

0
j (s`)

0�B(c (sl � s`))] = O(n�1), and therefore 
n
p! 
sc.

(ii) Follows from Theorem 3.2 in Lahiri (2003) and the Cramér-Wold device. �

Proof of Theorem 2: In the notation of Lemma 1, with X = (X0;X
0
1:q)

0 and Z =

(Z0; : : : ; Zq)
0 we have

P
�
� 2n(WnW

0
n) > cv

2 jsn
� p! P

�
X2
0

X0
1:qX1:q

> cv2
�

= P
�
X2
0 � cv2X0

1:qX1:q > 0
�

= P (X0D(cv)X > 0)

= P(Z0
1=2D(cv)
1=2Z > 0)

= P

 
qX
i=0

!iZ
2
i > 0

!
where the convergence follows from Lemma 1 and the continuous mapping theorem, and the

last equality follows by similarity of the matrices 
1=2D(cv)
1=2 and D(cv)
. The claim

about the sign of the eigenvalues follows from Lemma 14 below. �

Proof of Theorem 3: We show that Lemma 1 (i) and (ii) continue to hold with w0

replaced by ŵ0. We have

E

24 nX
l=1

(ŵ0i (sl)� w0i (sl))u(sl)
!2
jsn

35 � sup
s2S

jŵ0i (s)� w0i (s)j2
X
l;`

j�B(cn (sl � s`))j

almost surely. Proceeding as in the proof of Lemma 1 (i) now shows that

E[n�2
P

l;` j�B(c (sl � s`))j] =
R R

j�B(c(r � s))jg(r)g(s)drds, so n�2
P

l;` j�B(c (sl � s`))j =
Op(1). Similarly, under the assumptions of part (ii) of Lemma 1, proceeding as in

the proof of Lemma 5.2 of Lahiri (2003) yields E[ann�1
P

l;` j�B(cn (sl � s`))j] ! a�2u +R
Rd j�B(s)jds

R
g(s)2ds. The result thus follows from (10) and Lemma 9.

The proof of Theorem 4 requires a slightly more general version of Theorem 3.
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Lemma 10. In the notation of Lemma 5, suppose Ŵ = L̂�̂, where the ith column of the n�q
matrix �̂ is v̂i = ('̂i(s1); : : : ; '̂i(sn))

0 and L̂ = diag(�̂1; : : : ; �̂q). Under the assumptions of

Lemma 1, cdnn
�2(u0ŴŴ

0
u� u0WW0u)jsn

p! 0, whereW = L�, L = diag(�1lm1 ; : : : ; �plmp)

and the ith column of � is equal to ('i(s1); : : : ; 'i(sn))
0.

Proof. With Ô =diag(Ô(1); : : : ; Ô(p)),

cdnn
�2u0�̂L̂

2
�̂0u = cdnn

�2u0�̂ÔÔ
0
L̂2Ô0Ô�̂

0
u

= cdnn
�2u0�Ô

0
L̂2Ô0�0u+ op(1)

= cdnn
�2u0�Ô

0
L2Ô0�0u+ op(1)

= cdnn
�2u0�L2�0u+ op(1)

where the �rst line follows from Ô0Ô = Iq, the second from Lemma 5 (a) and (b) and the

reasoning in the proof of Theorem 3, the third from Lemma 5 (b) and jjcd=2n n�1Ô0�0ujj �
jjÔjj � jjcd=2n n�1�0ujj = Op(1) using Lemma 1, and the fourth from Ô0L2Ô0 = L2 a.s. The

result now follows from Lemma 9.

Proof of Theorem 4: For the �rst claim, by Theorem 4.4.6 of Harkrishan (2017),

!0 = supjjf jj=1hf;RTRfi, so it su¢ ces to show that for some f 2 L2G, hf;RTRfi > 0. In

the weak correlation case, this holds for f(s) = (�+ (1� �)g(s))�1=2, since hf;RwcTRwcfi =
h1; T1i =

R R
(1� �k(r; s))dG(r)dG(s) = 1. In the strong correlation case, the same conclusion

holds by setting f such that Rscf = 1. Such an f exists, because the kernel of R2sc is equal to

f0g by assumption about �B, so the range of Rsc is L2Gnf0g by Theorem 3.5.8 of Harkrishan

(2017).

Under the null hypothesis, P(� 2n(Kn) > cv2 jsn) = P(�̂n > 0jsn), where �̂n =

cdnn
�2P

l;` ulu`(1 � cv2 k̂n(sl; s`)). By construction of �̂i and '̂i(�) in Lemma 5, for all
1 � l; ` � n,

k̂n(sl; s`) =

nX
i=1

�̂i'̂i(sl)'̂i(s`):

For a given q satisfying the assumption of Lemma 5, and all n > q, let

k̂n;q(r; s) =

qX
i=1

�̂i'̂i(r)'̂i(s)

and �̂
q

n = cdnn
�2P

l;` ulu`(1 � cv2 k̂n;q(sl; s`)): We now show the last claim, that is P(�̂n >
0jsn)

p! P(
P1

i=0 !iZ
2
i > 0), which is implied by the following three claims

(i) for any " > 0 lim
q!1

lim sup
n!1

P(j�̂n � �̂
q

nj > ") = 0 (24)
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(ii) for any �xed q, P(�̂
q

n > 0jsn)
p! P

 
qX
i=0

!q;iZ
2
i > 0

!
(25)

(iii) lim
q!1

P

 
qX
i=0

!q;iZ
2
i > 0

!
= P

 1X
i=0

!iZ
2
i > 0

!
(26)

for some double array of real numbers !q;i by invoking Lemma 9.

For claim (i), note that for all n > q, �̂n � �̂
q

n a.s., and

E[�̂
q

n � �̂njsn] = cdnn
�2
X
l;`

�B(cn(sl � s`))
 

nX
i=q+1

�̂i'̂i(sl)'̂i(s`)

!
� �̂q+1c

d
nn

�2
X
l;`

�B(cn(sl � s`))

where the inequality follows from tr(AB) � �1(A) trB for positive semide�nite matricesA;B
and �1(A) the largest eigenvalue of A. By the same reasoning as employed in Theorem 3,

cdnn
�2P

l;` �B(cn(sl� s`)) = Op(1). Furthermore, by Lemma 5 (b), j�̂q+1��q+1j = Oq(n�1=2),
and limq!1 �q = 0. Thus (24) follows.

For claim (ii), let '0(s) = 1 and �0 = 1. By Lemma 5 (a), Lemma 10 and Theorem

2, claim (25) holds, where !q;i are the eigenvalues of D(cv)
 for 
 2 f
sc;
wcg; and the
(i + 1); (j + 1) element of 
 is equal to

p
�i�j

R R
'i(s)�B(c(r � s))'j(r)dG(s)dG(r) andp

�i�j
R
'i(s)'j(s)(�+ (1� �)g(s))ds under strong and weak correlation, respectively.

For claim (iii), we �rst show that these !q;i are also the eigenvalues of the �nite rank self-

adjoint linear operators RTqR, R 2 fRsc; Rwcg. To this end, let '�i (s) =
p
�iR'i(s). With

d0 = 1 and di = � cv2, we have

RTqR(f)(s) =

Z  qX
i=0

di'
�
i (s)'

�
i (r)

!
f(r)dG(r)

and the (i + 1); (j + 1) element of 
 stated above is equal to
p
�i�jh'i; R2'ji =p

�i�jhR'i; R'ji =
R
'�i (s)'

�
j(s)dG(s). Let v = (v0; : : : ; vq)

0 be an eigenvector of D(cv)


corresponding to eigenvalue !, D(cv)
v = !v. Then D(cv)
v = !v implies

Z 0BBBB@
'�0(r)'

�
0(r) � � � '�q(r)'

�
0(r)

� cv2 '�0(r)'�1(r) � � � � cv2 '�q(r)'�1(r)
...

. . .
...

� cv2 '�0(r)'�q(r) � � � � cv2 '�q(r)'�q(r)

1CCCCA dG(r)v = !v:
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Premultiplying both sides of this equation by ('�0(s); : : : ; '
�
q(s)) yields

qX
j=0

qX
i=0

vj'
�
i (s)

Z
di'

�
j(r)'

�
i (r)dG(r) = !

qX
j=0

vj'
�
j(s)Z  qX

i=0

di'
�
i (s)'

�
i (r)

! 
qX
j=0

vj'
�
j(r)

!
dG(r) = !

qX
j=0

vj'
�
j(s) (27)

so
Pq

j=0 vj'
�
j(r) is an eigenvector of RTqR with eigenvalue !, and since the kernel of RTqR

contains all functions that are orthogonal to f'�i g
q
i=0, these are the only nonzero eigenvalues.

Now let !�q;i be the eigenvalues of the self-adjoint linear operator R(T � Tq)R. By Kato
(1987) (also see the development on page 911 of Rosasco, Belkin, and Vito (2010)), there is

an enumeration of the eigenvalues !q;i such that

1X
i=0

(!q;i � !i)2 �
1X
i=0

(!�q;i)
2 = jjR(T � Tq)RjjHS (28)

where jjR(T �Tq)RjjHS is the Hilbert-Schmidt norm on the operator R(T �Tq)R : L2G 7! L2G
induced by the norm

p
hf; fi. Now jjR(T�Tq)RjjHS � jjRjj2�jjT�TqjjHS (cf. (32) below), and

since T � Tq is an integral operator, jjT � TqjjHS =
R R �P1

i=q+1 �i'i(s)'j(s)
�2
dG(s)dG(r).

By Mercer�s Theorem, this converges to zero as q !1, so that

lim
q!1

1X
i=0

(!q;i � !i)2 = 0. (29)

Thus using the same order of eigenvalues as in (28), we also have Var[
Pq

i=0 !q;iZ
2
i �P1

i=0 !iZ
2
i ] � 2

P1
i=0(!q;i � !i)2, with the right-hand side converging to zero as q ! 1

by (29). But mean-square convergence implies convergence in distribution, and (26) follows.

For the second claim of the theorem, by Lemma 1, !q;i � 0 for i � 1, which in conjunction
with (29) implies !i � 0 for i � 1. �

Proof of Lemma 5: We initially show a weaker claim than part (a), namely that there

exists a sequence of q � q rotation matrices Ôn = Ôn(sn) with elements Ôn;ij such that

max
i�q

sup
s2S

�����'i(s)�
qX
j=1

Ôn;ij'̂i(s)

����� = Op(n�1=2): (30)

The proof follows closely the development in Rosasco, Belkin, and Vito (2010), denoted

RBV in the following. Let k0(r; s) = �k(r; s)+1: Conditional on sn, de�ne the linear operators
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L2G 7! L2G

M(f)(s) = f(s)�
Z
f(r)dG(r)

Mn(f)(s) = f(s)�
Z
f(r)dGn(r)

L(f)(s) =

Z
k0(r; s)f(r)dG(r)

Ln(f)(s) =

Z
k0(r; s)f(r)dGn(r)

and the derived operators �L = MLM , �Ln = MLnM and L̂n = MnLnMn, so that �L(f)(s) =R
f(r)�k(r; s)dG(r), �Ln(f)(s) =

R
�k(r; s)f(r)dGn(r) and L̂n(f)(s) =

R
k̂n(r; s)f(r)dGn(r),

where Gn is the empirical distribution of fslgnl=1.
Let H � L2G be the Reproducing Kernel Hilbert Space (RKHS) of functions f : S 7! R

with kernel k0 and inner product h�; �iH satisfying

hf; k0(�; r)iH = f(r)

and associated norm jjf jjH. Let K = sups2S k0(s; s): De�ne �H as the RKHS of functions

f : S 7! R with kernel �k, and H1 as the RKHS of functions f : S 7! R with kernel equal to 1,
which only consists of the constant function. Since k0 = �k + 1, H contains all functions that

can be written as linear combinations of �H and H1 (see, for instance, Theorem 2.16 in Saitoh

and Sawano (2016)). Thus H contains the constant function, and jj1jjH < 1. Furthermore,
since for any f 2 H, jf(r)j = hf(�); k0(�; r)iH � jjf jjH � jjk0(�; r)jjH �

p
Kjjf jjH, we have

sup
r2S

jf(r)j �
p
K � jjf jjH: (31)

As in RBV, view the operators above as operators on H 7! H. The operator norm jjAjj of
the operator A : H 7! H is de�ned as supjjf jjH=1 jjAf jjH, and A is called bounded if jjAjj <1.
A bounded operator A is Hilbert-Schmidt if

P1
j=1 jjAejjj < 1 for some (any) orthonormal

basis ej. The space of Hilbert-Schmidt operators is a Hilbert space endowed with the norm

jjAjjHS =
qP1

j=1hAej; AejiH, and for any Hilbert-Schmidt operator A and bounded operator
B,

jjABjjHS � jjAjjHSjjBjj, jjBAjjHS � jjBjj � jjAjjHS. (32)

By Theorem 7 of RBV, L and Ln are Hilbert-Schmidt.
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Furthermore, for any f 2 H,

jjMf jjH = jjf �
Z
f(r)dG(r)jjH

� jjf jjH + jj1jjH
Z
f(r)dG(r)

� jjf jjH + jj1jjH sup
r2S

jf(r)j

so that (31) implies that jjM jj is a bounded operator. By the same argument, so is Mn

(almost surely). Thus, from (32), also �L, �Ln and L̂n are Hilbert-Schmidt for almost all sn.

Conditioning on sn throughout, we have the almost sure inequalities

jjL̂n � �LjjHS � jjL̂n � �LnjjHS + jj�Ln � �LjjHS

and using (32)

jjL̂n � �LnjjHS � jj(Mn �M)LnMnjjHS + jjMLn(Mn �M)jjHS
� jjMn �M jj � jjMnjj � jjLnjjHS + jjMn �M jj � jjM jj � jjLnjjHS

and

jj(Mn �M)f jjH =





Z f(r)dGn(r)�
Z
f(r)dG(r)






H

= jj1jjH
����Z f(r)dGn(r)�

Z
f(r)dG(r)

���� :
Now consider the sequence of real independent random variables f(sl); which have mean

E[f(sl)] =
R
f(r)dG(r), and, by (31), are almost surely bounded. Since

R
f(r)(dGn(r) �

dG(r)) = n�1
Pn

l=1 f(sl) � E[f(s1)], so that by Hoe¤ding�s inequality, with probability of at
least 1� 2e�� ����Z f(r)(dGn(r)� dG(r))

���� � p2�n�1=2 sup
r2S

jf(r)j

for all � � 0. This holds for all f 2 H, so we conclude that jjMn �M jj = Op(n�1=2).
Furthermore, applying the same reasoning as in the proof of Theorem 7 of RBV, jj�Ln �

�LjjHS = Op(n�1=2). Thus, jjL̂n � �LjjHS = Op(n�1=2).
The conclusion now follows from similar arguments as employed in Proposition 10 and

12 of RBV. In particular, note that 'i 2 H for all i. Furthermore,
R
'i(s)dG(s) =

��1i
R
'i(r)

�k(r; s)dG(r)dG(s) = 0. Thus, with ei =
p
�i'i 2 H, Mei = ei,

and hei; eiiH = hei(�); ��1i
R
�k(r; �)ei(r)dG(r)iH = ��1i hei; �LeiiH = ��1i hei; LeiiH =
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��1i
R
hei(�); k0(r; �)iHei(r)dG(r) = ��1i

R
e2i (r)dG(r) = 1, so that ei are normalized eigen-

vectors of �L : H 7! H. Since H � L2G, these are the only eigenfunctions of �L : H 7! H with

positive eigenvalue, so that the spectrum of �L is equal to f�ig1i=1 (cf. Proposition 8 of RBV).
Also, '̂i 2 H, and since v̂i is the eigenvector of n�1K̂n with eigenvalue �̂i, n�1K̂nv̂i = �̂iv̂i,

we obtain for �̂i > 0 that

L̂n('̂i)(�) =

Z
k̂n(r; �)'̂i(r)dGn(r)

= n�1
nX
j=1

k̂n(�; sj)'̂i(sj)

= n�2�̂
�1
i

nX
j=1

k̂n(�; sj)
nX
l=1

v̂i;lk̂n(sj; sl)

= n�1
nX
j=1

k̂n(�; sj)v̂i;j

= �̂i'̂i(�)

and Z
'̂i(r)

2dGn(r) = n
�3�̂

�2
i

nX
j=1

nX
`=1

nX
t=1

v̂i;j k̂n(sj; s`)k̂n(s`; st)v̂i;t = 1:

Furthermore, from
Pn

l=1 v̂i;l = 0, also
R
'̂i(s)dGn(s) = 0, so that Mnêi = êi. Thus,

with êi =
p
�̂i'̂i 2 H; hêi; êiiH = hêi(�); �̂

�1
i

R
k̂n(r; �)êi(r)dGn(r)iH = �̂

�1
i hêi; L̂nêiiH =

�̂
�1
i hêi; LnêiiH = �̂

�1
i

R
hêi(�); k0(r; �)iHêi(r)dGn(r) = �̂

�1
i

R
êi(r)

2dGn(r) = 1: Therefore êi
are normalized eigenfunctions of L̂n : H 7! H, and since all f 2 H that are orthogonal to

êi, i = 1; : : : ; n are in the kernel of L̂n, these are the only eigenfunctions of �L : H 7! H with

positive eigenvalue, so the spectrum of L̂n : H 7! H is equal to f�̂igni=1 (cf. Proposition 9 of
RBV).

Part (b) of the lemma now follows from jjL̂n � �Ljj2HS = Op(n�1) and the development on
page 911 of RBV.

To establish (30), note that with the projection operators P q : H 7! H and P̂ q : H 7! H
de�ned via P q(f)(�) =

Pq
i=1hf; eiiHei(�) and P̂ q(f)(�) =

Pq
i=1hf; êiiHêi(�), by Proposition 6

of RBV, jjP̂ q�P qjjHS � 2(�q��q+1)�1jjL̂n� �LjjHS+op(n�1=2) = Op(n�1=2). De�ne the q� q
matrix ~On with i; jth element ~On;ij = hêi; ejiH. Then the j; tth element of ~O0

n
~On is given byPq

i=1
~On;ij ~On;it =

Pq
i=1hêi; ejiHhêi; etiH = hej; P̂ q(et)iH, and 1[j = t] = hej; P q(et)iH, so that
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by the Cauchy-Schwarz inequality�����
qX
i=1

~On;ij ~On;it � 1[j = t]
����� =

���hej; (P̂ q � P q)etiH���
� jjP̂ q � P qjjHS = Op(n�1=2):

Thus jj~O0
n
~On�Iqjj = Op(n�1=2), and with Ôn = (~O

0
n
~On)

�1=2 ~On, also jjÔn� ~Onjj = Op(n�1=2).
Furthermore, with r̂2i = �i=�̂i

p! 1 using part (b) of the lemma,

p
�ijj

qX
j=1

Ôn;ij'̂j � 'ijjH = jjr̂i
qX
j=1

Ôn;ij êj � eijjH

� jj
qX
j=1

~On;ij êj � eijjH + jj
qX
j=1

(r̂iÔn;ij � ~On;ij)êjjjH

� jj(P̂ q � P q)eijjH +
qX
j=1

jr̂iÔn;ij � ~On;ijj

� jjP̂ q � P qjjHS +
qX
j=1

jr̂iÔn;ij � ~On;ijj = Op(n�1=2)

so (30) follows from (31).

The claim in part (a) of the lemma now follows by induction from (30): For p = 1, this

follows directly. Suppose the result holds for p � 1, and let ÔB = diag(Ô(1); : : : ; Ô(p�1)), so

that

sup
s2S

jjÔB'̂B(s)�'B(s)jj = Op(n�1=2); (33)

with 'B and '̂B the vector of the �rst
Pp�1

j=1mj eigenfunctions. Now let

ÔI =

 
Ô11 Ô12

Ô21 Ô22

!

be the (
Pp

j=1mj) � (
Pp

j=1mj) matrix Ôn of (30) applied with q =
Pp

j=1mj, with

Ô11 of the same dimensions as ÔB. Let 'I�B and '̂I�B be the mp � 1 vectors of

eigenfunctions with indices
Pp�1

j=1mj + 1; : : : ;
Pp

j=1mj, so that by the conclusion of (30),

sups2S jjÔ11'̂B(s)+Ô12'̂I�B(s)�'B(s)jj = Op(n�1=2) and sups2S jjÔ21'̂B(s)+Ô22'̂I�B(s)�
'I�B(s)jj = Op(n�1=2). In conjunction with (33), the former yields sups2S jj(Ô11�ÔB)'̂B(s)+

Ô12'̂I�B(s)jj = Op(n�1=2), which implies in light of (30) and the linear independence of eigen-
vectors that both jjÔ11�ÔBjj = Op(n�1=2) and jjÔ12jj = Op(n�1=2). Since ÔI and ÔB are ro-
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tation matrices, Ô0
BÔB = Ô

0
11Ô11+Ô

0
21Ô21 = I, so that jjÔ11�ÔBjj = Op(n�1=2) further im-

plies jjÔ21jj = Op(n�1=2). We conclude that also sups2S jjÔ22'̂I�B(s)�'I�B(s)jj = Op(n�1=2),
so that the result for p holds with Ô(p) = Ô22, which concludes the proof. �

Proof of Theorem 7: Suppose max(cv2 � cv2n; 0)
p! 0 does not hold. Then

there exists � > 0 such that lim supn!1 P(cv2 � cv2n > �) > �. De�ne {(�; cv2) =
P (
P1

i=0 !i(�; cv)Z
2
i > 0), so that sup0��<1 {(�; cv2) = � by de�nition of cv. By continuity

of {, there exists 0 � �0 < 1 and cv2 � �=2 � cv20 � cv2 such that {(�0; cv20) = �. If �0 = 0,
set cn;1 = cn;0. Otherwise, let cn;1 ! 1 be such that the corresponding an;1 = cdn;1=n ! a1

satis�es a1�0B(0)=(a1�
0
B(0) +

R
�0B(s)ds) = �0. Now let cv

2
n;1 solve

P0�(cn;1)(�
2
n � cv2n;1 jsn) = � a.s.;

so that clearly, cv2n;1 � cv2n a.s. for all large enough n. Thus, with An the event that sn takes
on a value such that cv2 � cv2n0;1 > �, we also have lim supn!1 P(An) > �, and there exists a
subsequence n0 !1 of n such that P(An0) > � for all n0.
For all such n0,

� = P0�(cn0;1)(�
2
n0 � cv2n0;1 jAn0) � P0�(cn0;1)(�

2
n0 � cv2 � �jAn0) a.s. (34)

and by Theorem 4, P0�(cn0;1)(�
2
n0 � cv2 � �jAn0) ! {(�0; cv2 � �) > �. This contradicts (34),

and the result follows. �

Theorem 11. Let q̂n be an arbitrary function of sn taking values in Q = f1; 2; : : : ; qmaxg for
some sample size independent �nite and nonrandom qmax. Then for a t-statistic �n(q) that

satis�es the conditions of Theorem 7 for all q 2 Q with critical value cvn(q) as in (15), for

any � > 0, lim supn!1 P(P(� 2n(q̂n) > cvn(q̂n)2jsn) > � + �) = 0.

Proof. Suppose otherwise. Then there exists � > 0 and a subsequence n0 !1 such that with

Bn = fsn : P(� 2n(q̂) > cvn(q̂)2jsn) > � + �g � S,

lim
n0!1

P(sn0 2 Bn0) > �.

Let An;i = fsn : q̂n = ig, so that limn0!1
Pqmax

i=1 P(sn0 2 Bn0 \ An0;i) > �. There hence

exists some 1 � q � qmax and a further subsequence n00 of n0 such that limn00 P(sn00 2 Bn00 \
An00;q) > �=qmax. But along this subsequence, q is �xed, so Theorem 7 applies and yields

limn00!1 P(sn00 2 Bn00 \ An00;q)! 0, yielding the desired contradiction.
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The proof of Theorem 8 relies on some preliminary results.

Lemma 12. The Rq 7! R function

J(�) =
1

�

Z 1

0

x
q�1
2p

(1� x)
Qq
i=1(x+ �i)

dx

with � = (�1; : : : ; �q) is Schur convex.

Proof. By the Schur-Ostrowski criterion (Theorem 3.A.4 in Marshall, Olkin, and Arnold

(2011)), J is Schur convex if (and only if)

(�i � �j)
�
@J

@�i
� @J

@�j

�
� 0 for all 1 � i; j � q.

With ~J = (x+ �i)
�1=2(x+ �j)

�1=2, by a direct calculation,

(�i � �j)
 
@ ~J

@�i
� @ ~J

@�j

!
=

(�i � �j)2

2(x+ �i)
3=2(x+ �j)

3=2
� 0

so the result follows.

Lemma 13. For any two q�q positive semi-de�nite matrices B1 and B2 and vectors v1;v2 2
Rq, and all p 2 [0; 1],

&(p) = (pv1 + (1� p)v2)0(Iq + pB1 + (1� p)B2)�1(pv1 + (1� p)v2)
� pv01(Iq +B1)�1v1 � (1� p)v02(Iq +B2)�1v2 � 0.

Proof. We �rst show that &(p) is convex. Write G(p) = Iq + pB1 + (1 � p)B2. The �rst
derivative of the nonlinear part of 1

2
&(p) is given by

(v1�v2)0G(p)�1(pv1+(1�p)v2)� 1
2
(pv1+(1�p)v2)0G(p)�1(B1�B2)G(p)�1(pv1+(1�p)v2)

so that the second derivative of 1
2
&(p) equals

(v1 � v2)0G(p)�1(v1 � v2)� 2(v1 � v2)0G(p)�1(B1 �B2)G(p)�1(pv1 + (1� p)v2)
+ (pv1 + (1� p)v2)0G(p)�1(B1 �B2)G(p)�1(B1 �B2)G(p)�1(pv1 + (1� p)v2):

With �(p) = G(p)�1=2(v1 � v2) and r(p) = �G(p)�1=2(B1 � B2)G(p)�1(pv1 + (1 � p)v2),
the second derivative may be rewritten as 

�(p)

r(p)

!0 
Iq Iq

Iq Iq

! 
�(p)

r(p)

!
� 0

and convexity follows. Thus maxp2[0;1] &(p) � max(&(1); &(0)) = 0.
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Lemma 14. Let A1 =
R
P�1D(cv)
(�)PdF (�). The q + 1 eigenvalues of A1 are real, and

only one is positive, and the same holds for A(�), � 2 �. Furthermore, �1(A1) � 1.

Proof. By similarity, the eigenvalues of A1 are equal to those of PA1P
�1, which in turn is

similar to the symmetric matrix 
l0�1l l0�1

~W
~W0�1l ~W0�1 ~W

!1=2 
1 0

0 �Iq

! 
l0�1l l0�1

~W
~W0�1l ~W0�1

~W

!1=2
with ~W = (l;W= cv), and the �rst claim follows for A1. The claim for A(�) follows from the

same argument.

For the last claim, let �h : R 7! R

�h(t) = 1� tl0�1l+ t
2l0�1 ~W(Iq + t ~W

0�1
~W)�1 ~W0�1l:

Note that �h(t) is weakly decreasing in t > 0, since with ~H = �t ~W(Iq + t ~W
0�1

~W)�1 ~W0�1l

�h0(t) = �
 
l
~H

!0 
�1 �1

�1 �1

! 
l
~H

!
< 0:

The characteristic polynomial of A1 is given by

det

 
s� l0�1l l0�1

~W

� ~W0�1l sIq + ~W0�1 ~W

!
= (s� l0�1l+ l0�1 ~W(sIq + ~W0�1

~W)�1 ~W0�1l) det(sIq + ~W0�1 ~W)

= s�h(s�1) det(sIq + ~W0�1 ~W)

so that �1(A1) satis�es �h(1=�1(A1)) = 0. Similarly, 1=�1(A(�)) = 1 is a root of

h�(t) = 1� tl0�(�)l+ t2l0�(�) ~W(Iq + t ~W
0�(�) ~W)�1 ~W0�(�)l:

By Lemma 13, for any t > 0,

l0�1
~W(Iq + t ~W

0�1 ~W)�1 ~W0�1l

=

�Z
~W0�(�)ldF (�)

�0�
Iq + t

Z
~W0�(�) ~WdF (�)

��1�Z
~W0�(�)ldF (�)

�
�

Z
l0�(�) ~W(Iq + t ~W

0�(�) ~W)�1 ~W0�(�)ldF (�):

Thus, �h(t) �
R
h�(t)dF (�), and from h�(1) = 0 for all �, �h(1) � 0. Since h is decreasing, its

root 1=�1(A1) must thus be smaller than unity, and the conclusion follows.
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Proof of Theorem 8: Proceeding as in the proof of Theorem 2, P�1(� 2(WW0) > cv2) =

P (Z20 �
Pq

i=1 ��iZ
2
i ) with ��i = �i (�A1) =�1(A1). By Lemma 14, ��i � 0 for i = 1; : : : ; q. For

future reference, note that P�0(� 2(WW0) > cv2) = � yields

P

 
Z20 �

qX
i=1

�iZ
2
i

!
� �: (35)

for �i = �i (�A0).

In the following, we write a � b for two vectors a;b 2 Rq to indicate that b majorizes a,
that is, with the elements of ai and bi sorted in descending order,

jX
i=1

ai �
jX
i=1

bi for all j = 1; : : : ; q

and
Pq

i=1 ai =
Pq

i=1 bi. Let �A1 =
1
2
(A1 +A

0
1). From Theorems 9.F.1 and 9.G.1 in Marshall,

Olkin, and Arnold (2011)

(�1(�A1); : : : ; �q+1(�A1)) � (�1(��A1); : : : ; �q+1(��A1)) (36)

�
�Z

�1(��A(�))dF (�); : : : ;Z
�q(��A(�))dF (�);

Z
�q+1(��A(�))dF (�)

�
:

Since
R
�q+1(��A(�))dF (�) = �

R
�1(�A(�))dF (�) and �q+1(�A1) = ��1(A1), we have

��1(A1) +

qX
j=1

�j(�A1) = �
Z
�1(�A(�))dF (�) +

qX
j=1

Z
�j(��A(�))dF (�):

The majorization result (36) further implies

�1(A1) � �1(�A1) �
Z
�1(�A(�))dF (�) (37)

so that also

(�1(�A1); : : : ; �q(�A1)) �
�Z

�1(��A(�))dF (�); : : : ;Z
�q�1(��A(�))dF (�);

Z
�q(��A(�))dF (�)�

�Z
�1(�A(�))dF (�))� �1(A1)

��
:

48



with the elements still sorted in descending order. Thus, with ~�i =
R
�i(��A(�))dF (�)=�1(A1)

for i = 1; : : : ; q � 1 and

~�q =

R
�q(��A(�))dF (�)� (

R
�1(�A(�))dF (�))� �1(A1))

�1(A1)

we have (��1; : : : ; ��q) � (~�1; : : : ; ~�q), so that by (20) and Lemma 12, P (Z20 �
Pq

i=1 ��iZ
2
i ) �

P (Z20 �
Pq

i=1 ~�iZ
2
i ).

Now applying (37)

~��i =

Z
�i(��A(�))dF (�)=

Z
�1(�A(�))dF (�) � ~�i

for i = 1; : : : ; q � 1, and since from Lemma 14, �1(A1) � 1, also

~��q =

R
�q(��A(�))dF (�)� (

R
�1(�A(�))dF (�)� 1)R

�1(�A(�))dF (�)
� ~�q

provided Z
�q(��A(�))dF (�)�

�Z
�1(�A(�))dF (�)� 1

�
� 0: (38)

Since P(Z20 �
Pq

i=1 ~�iZ
2
i ) is a decreasing function in ~�i, P (Z20 �

Pq
i=1 ~�iZ

2
i ) �

P (Z20 �
Pq

i=1 ~�
�
iZ

2
i ) : By Theorem 3.A.8 of Marshall, Olkin, and Arnold (2011), Lemma 12,

and (35), it now su¢ ces to show that

jX
i=1

~��q+1�i �
jX
i=1

�q+1�i (39)

for all 1 � j � q, and since �q � 0, this also ensures that (38) holds. Condition (39) may be
rewritten as

Pj
i=1

R
�i(�)dF (�) � 0, and the result follows. �
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