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Abstract

Observed choices between risky lotteries are difficult to reconcile with expected utility
maximization, both because subjects appear to be too risk averse with regard to small
gambles for this to be explained by diminishing marginal utility of wealth, as stressed by
Rabin (2000), and because subjects’ responses involve a random element. We propose
a unified explanation for both anomalies, similar to the explanation given for related
phenomena in the case of perceptual judgments: they result from judgments based on
imprecise (and noisy) mental representations of the decision situation. In this model,
risk aversion results from a sort of perceptual bias — but one that represents an optimal
decision rule, given the limitations of the mental representation of the situation. We
propose a quantitative model of the noisy mental representation of simple lotteries,
based on other evidence regarding numerical cognition, and test its ability to explain
the choice frequencies that we observe in a laboratory experiment.
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Risk-averse choices are conventionally explained as reflecting expected utility maximiza-
tion (EUM) on the part of decision makers for whom the marginal utility of additional wealth
decreases with increases in their wealth. Experimentally observed choices under risk are dif-
ficult to reconcile with this theory, however, for several reasons.1 One is the observation that
people often decline even very small bets that offer somewhat better than fair odds. In the
case of any smooth utility-of-wealth function, choices ought to become nearly risk-neutral
in the case of small enough stakes (Arrow, 1971). And while it is always possible to ex-
plain rejection of any given bet by assuming sufficient rapidly diminishing marginal utility
of wealth, the degree of curvature of the utility function that is required will then imply
that the same person should reject even extremely favorable bets when potential losses are
moderately large (though in no way catastrophic), as explained by Rabin (2000); this too
seems plainly counter-factual.2

A well-known response to this difficulty (Rabin and Thaler, 2001) is to propose that
people maximize the expected value of a nonlinear utility function, but that this function is
reference-dependent: it is not a context-invariant function of wealth, but instead depends on
how the wealth that may be obtained in different possible states compares to some reference
level of wealth.3 But this proposed solution raises a further question: why the human mind
should exhibit such reference-dependence, if it leads to behavior that would seem not to
be in the decision maker’s interest.4 Simply stating that this appears to be what many
people prefer — as if they perfectly understand what they are getting from their choices
and nonetheless persistently choose that way — is not entirely convincing. We propose
instead an alternative interpretation, under which decision makers often fail to accurately
choose the option that would best serve their true objectives, because their decision is based
not on the exact characteristics of the available options, but rather on an imprecise mental
representation of them.

Our alternative explanation has the advantage that it can simultaneously explain another
well-established feature of choice behavior in experimental settings: that choices appear to
be random, in the sense that the same subject will not always make the same choice when
offered the same set of simple gambles on different occasions (Hey and Orme, 1994; Hey,
1995, 2001). We propose that this should be understood as reflecting imprecision in the
cognitive processes involved in making a choice, in the same way as random trial-to-trial
variation in perceptual judgments (say, about the relative magnitude of two sensory stimuli)
is understood.5

1For a broader review, see Friedman et al. (2014).
2Rabin’s argument appeals to introspection. But see Cox et al. (2013) for examples of experiments in

which subjects make choices with respect to both small and large bets that are inconsistent with EUM under
any possible concave utility function.

3Fudenberg and Levine (2006, 2011) offer a different potential explanation. But as with the hypothesis
of reference-dependent preferences, their explanation for small-stakes risk aversion provides no explanation
for other phenomena that we address in this paper, such as the observation of risk-seeking with respect to
small losses along with risk-aversion with respect to small gains.

4As Rabin and Thaler (2001) point out, “myopic loss-averters ... make decisions that mean that others can
take money from them with very high probability and very low risk.” They also note that such exploitation
seems all too commonplace. Our point is not to assert that the predictions of such a model must be wrong,
but rather to urge that persistent behavior of this kind calls for an explanation.

5For additional types of evidence also suggesting that the valuations that can be accessed when making
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As reviewed in Woodford (2019), the standard approach to modeling imprecision of
this kind in perceptual judgments, since the work of Fechner (1860) and Thurstone (1927),
attributes the randomness in perceptual judgments to randomness in internal representations
of the stimulus features in the brain of the observing subject, and not necessarily to any sub-
optimality of the judgments that are produced on the basis of that imperfect representation
of the world. Such an approach has the advantage of allowing for random variation in
the responses that are given on individual occasions, while nonetheless retaining a fairly
constrained specification of the nature of the randomness. The “decoding” of the information
contained in the noisy internal representation can be assumed to be optimal, leading to a
precise specification of this part of the model on normative grounds; the nature of the noise
in the “encoding” process is specified more flexibly, but this can be a subject of empirical
study (for example, using neurophysiological measurements), and can also be experimentally
manipulated (by changing conditions in ways that should predictably increase or decrease
encoding noise), as we discuss further below.

In essence, we propose that small-stakes risk aversion can be explained in the same way
as perceptual biases that result from noise in internal representations.6 According to our
theory, intuitive estimates of the value of risky prospects (not ones resulting from explicit
symbolic calculations) are based on mental representations of the magnitudes of the avail-
able monetary payoffs that are imprecise in roughly the same way that the representations
of sensory magnitudes are imprecise, and in particular are similarly random, conditioning
on the true payoffs. Intuitive valuations must be some function of these random mental
representations. We explore the hypothesis that they are produced by a decision rule that
is optimal, in the sense of maximizing the (objective) expected value of the decision maker’s
expected wealth, subject to the constraint that the decision must be based on the random
mental representation of the situation.

Under a particular model of the noisy coding of monetary payoffs, we show that this
hypothesis will imply apparently risk-averse choices: the expected net payoff of a bet will
have to be strictly positive for indifference, in the sense that the subject accepts the bet
exactly as often as she rejects it. Risk aversion of this sort is consistent with a decision rule
that is actually optimal from standpoint of an objective (expected wealth maximization) that
involves no “true risk aversion” at all; this bias is consistent with optimality in the same way
that perceptual biases can be consistent with optimal inference from noisy sensory data. And
not only can our theory explain apparent risk aversion without any appeal to diminishing
marginal utility, but it can also explain why the “risk premium” required in order for a risky
bet to be accepted over a certain payoff does not shrink to zero (in percentage terms) as the
size of the bet is made small, contrary to the prediction of EUM.

This explanation has two important advantages over other proposed explanations. First,
it is more parsimonious: rather than introducing separate free parameters to account for risk
attitudes on the one hand and the randomness of choice on the other, the same parameter
(the degree of noise in internal representations) must account for both phenomena in our

a decision are imprecise, see Butler and Loomes (1988, 2007) and Bayrak and Hey (2019).
6Our theory is thus similar to proposals in other contexts (such as Koszëgi and Rabin, 2008) to interpret

experimentally observed behavior in terms of mistakes on the part of decision makers — i.e., a failure to make
the choices that would maximize their true preferences — rather than a reflection of some more complex
type of preferences.
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theory. In addition, the same hypothesis of optimal choice on the basis of noisy internal
representations provides a unified explanation for a number of additional experimentally
observed phenomena (such as the “isolation effect” and “reflection effect” of Kahneman and
Tversky, 1979), that require additional, seemingly independent hypotheses in the account of
them given in prospect theory.

And second, the hypothesis that these effects result from imprecision in internal represen-
tations, rather than from true preferences and random error in subjects’ reporting of those
preferences, suggests that the degree to which both stochastic choice and risk aversion are
observed should vary across individuals and situations as a result of variation in the amount
of working memory capacity that can be devoted to the representation of the numerical
magnitudes involved in a given choice problem. Various pieces of evidence (discussed further
in section 5) suggest that this is the case.

Both our own results below and a replication of our work by Garcia et al. (2018) show that
subjects whose choices are more random tend to exhibit greater small-stakes risk aversion,
and Garcia et al. further show that both the randomness of choice and risk aversion in choices
between lotteries correlates with an independent measure of imprecision in subjects’ internal
representations of numerical magnitudes. Moreover, subjects’ capacity for representation of
numerical magnitudes appears to be subject to experimental manipulation. Authors such
as Gerhardt et al. (2016) find that increased “cognitive load” increases the apparent risk
aversion of subjects, while Frydman and Jin (2019) show that choice between lotteries can
be made less stochastic by reducing the range of payoffs used across different trials. None
of these effects can be explained by a preference-based account of either small-stakes risk
aversion or stochastic choice.

While our approach is based on an analogy with imprecision in perceptual judgments,
as modeled in the psychophysical tradition originating with the work of Fechner (1860), it
differs from what are sometimes called “Fechnerian” models of stochastic choice (e.g., Block
and Marshack, 1960, or Butler, Isoni and Loomes, 2012). In such models, a deterministic
valuation of a given lottery is assumed to be precisely computed (say, in accordance with
expected utility theory), but then a random term is added to the valuation in any individual
trial; such models allow choice to be stochastic, but risk attitudes must still be explained
by the “deterministic core” of the model, in a way that is independent of the randomness.
In our theory, instead, the randomness in choice is attributed to random errors at an earlier
stage in the valuation process, which also give rise to departures from risk neutrality.

At the same time, suggesting an analogy with perceptual biases does not mean that the
random errors of interest to us arise only in the perception of data as they are presented
to the subject. This is not even true of perceptual judgments, except of the simplest kind.
Drugowitsch et al. (2016) consider perceptual comparison tasks in which the properties of
two sequences of stimuli must be averaged and then compared with one another, allowing
them to determine (from the way in which the degree of randomness in responses varies
with changes in the sequences to be compared) how much of the randomness in responses
is due to (a) noise in the initial perceptions of individual stimuli, (b) noise in subsequent
processing of the initial sensory data to obtain an assessment of the average for the sequence,
or (c) noise in reporting the answer implied by those internal computations. They conclude
that in their task, the most important source of randomness is of type (b), which the call
“inference noise”. Similarly in our case, we suppose that the important source of noise is
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error in the representations of numerical magnitudes that are subsequently accessed in the
decision process, rather than error in the initial recognition of the meaning of the symbols
presented to the experimental subject.

Under our hypothesis about the source of small-stakes risk aversion, it is important to
jointly model the determinants of average responses and the randomness in the responses
on individual trials. This has implications not only for theoretical modeling, but for the
experimental procedures that should be used to measure risk attitudes. One should not
expect to be able to measure people’s noise-free preferences by simply measuring modal
or median responses, and assuming that a deterministic model of choice should fit those
summary data, as is often presumed in the experimental literature, as a way of side-stepping
the issue of modeling the noise in individual responses. Instead, the perspective that we
propose implies that it is necessary to model the entire distribution of responses that are
predicted to occur under any given objective choice situation.

Given this, different experimental procedures are appropriate as well. Rather than seeking
to obtain a single measure of what is “really” preferred in a given choice situation — by
offering each choice problem only once, and presenting closely related problems together in
order to encourage consistent answers across several problems — we instead use methods
similar to those of perceptual studies (or papers like Mosteller and Nogee, 1951): individual
choice problems are presented repeatedly to the same subject, but in random order so as to
encourage an independent judgment in each case. For this reason, we offer new experimental
evidence, despite the extensive prior work on choice between simple gambles.

Section 1 reviews evidence regarding the mental representation of numerical magnitudes
that motivates our model of noisy coding of monetary payoffs. Section 2 presents an explicit
model of choice between a simple risky gamble and a certain monetary payoff, and derives
predictions for the both the randomness of choice and the degree of apparent risk aversion
implied by an optimal decision rule. Section 3 describes a simple experiment in which we are
able to test some of the specific quantitative predictions of this model. Section 4 discusses the
implications of our theory for additional phenomena reported in experiments such as those
of Kahneman and Tversky (1979). Finally, section 5 discusses further evidence suggesting
that small-stakes risk aversion reflects imprecise cognition, rather than perfectly understood
preferences, and concludes.

1 Imprecision in Numerical Cognition

An important recent literature on the neuroscience of perception argues that biases in per-
ceptual judgments can actually reflect optimal decisions — in the sense of minimizing average
error, according to some well-defined criterion, in a particular class of situations that are
possible ex ante — given the constraint that the brain can only produce judgments based on
the noisy information provided to it by sensory receptors and earlier stages of processing in
the nervous system, rather than on the basis of direct access to the true physical properties of
external stimuli (e.g., Stocker and Simoncelli, 2006; Wei and Stocker, 2015). The approach
has been used to explain systematic biases in perception in a variety of sensory domains
(Petzschner et al., 2015; Wei and Stocker, 2017).

The relevance of these observations about perceptual judgments for economic decision
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might nonetheless be doubted. Some may suppose that the kind of imprecision in mental
coding just discussed matters for the way in which we perceive our environment through our
senses, but that an intellectual consideration of hypothetical choices is an entirely different
kind of thinking. Moreover, it might seem that typical decisions about whether to accept
gambles in a laboratory setting involve only numerical information about potential payoffs
that is presented in an exact (symbolic) form, offering no obvious opportunity for imprecise
perception. However, we have reason to believe that reasoning about numerical information
often involves imprecise mental representations of a kind directly analogous to those involved
in sensory perception.

1.1 Imprecise Perception of Numerosity

This is clearest (and has been studied most thoroughly) in the case of perceptions of the
number of items present in a visual display. For example, quick judgments can be made
about the number of dots present in a visual display of a random cloud of dots, without
taking the time to actually count them. As with perceptions of physical magnitudes such as
length or area, such judgments of numerosity are subject to random error. And just as in the
case of sensory magnitudes, the randomness in judgments can be attributed to randomness
in the neural coding of numerosity (Nieder and Merten, 2007; Nieder and Dehaene, 2009;
Nieder, 2013).

We can learn about how the degree of randomness of the mental representation of a num-
ber varies with its size from the frequency distribution of errors in estimation of numerosity.
A common finding is that when subjects must estimate which of two numerosities is greater,
or whether two arrays contain the same number of dots, the accuracy of their judgments
does not depend simply on the absolute difference in the two numbers; instead, the absolute
difference required for a given degree of accuracy grows as the numbers are made larger,
and roughly in proportion to their magnitudes — a “Weber’s Law” for the discrimination
of numerosity analogous to the one observed to hold in many sensory domains (Ross, 2003;
Cantlon and Brannon, 2006; Nieder and Merten, 2007; Nieder, 2013). Moreover, when
subjects must report an estimate of the number of dots in a visual array,7 the standard
deviation of the distribution of estimates grows in proportion to the mean estimate, with
both the mean and standard deviation being larger when the true number is larger (Izard
and Dehaene, 2008; Kramer et al., 2011); similarly, when subjects are required to produce
a particular number of responses (without counting them), the standard deviation of the
number produced varies in proportion to the mean number of responses produced — the
property of “scalar variability” (Whalen et al., 1999; Cordes et al., 2001).

All of these observations are consistent with a theory according to which such judgments
of numerosity are based on an internal representation that can be represented mathematically
by a quantity that is proportional to the logarithm of the numerical value that is being
encoded, plus a random error the variance of which is independent of the numerical value

7Here we refer to arrays containing more than five or so dots. As discussed by Jevons (1871) and many
subsequent authors, the numerosity of very small arrays can be immediately perceived (without counting)
with high accuracy and confidence; the cognitive process used in such cases, termed “subitizing” by Kaufman
et al. (1949), is quite distinct from the ability to estimate the approximate numerosity of larger arrays, to
which the statements in the text refer.
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that is encoded (van Oeffelen and Vos, 1982; Izard and Dehaene, 2008). Let the number n
be represented by a real number r that is drawn from a distribution

r ∼ N(log n, ν2), (1.1)

where ν is a parameter independent of n. Suppose furthermore that if two stimuli of respec-
tive numerosities n1 and n2 are presented, their corresponding internal representations r1, r2

are independent draws from the corresponding distributions.
Finally, suppose that a subject judges the second array to be more numerous than the

first if and only if the internal representations satisfy r2 > r1. (This is an optimal decision
rule, in the sense of maximizing the frequency of correct answers, assuming that any given
pair of stimuli are equally likely to be presented in either order.) Then a subject is predicted
to respond that array 2 is more numerous with probability

Prob[“2 is more”] = Φ

(
log(n2/n1)√

2ν

)
, (1.2)

where Φ(z) is the cumulative distribution function of a standard normal variate z.
Equation (1.2) predicts that “Weber’s Law” should be satisfied: the response probability

depends only on the ratio n2/n1, and not on the absolute numerosity of either array. And
indeed, Garcia et al. (2018) find that response probabilities are close to being scale-invariant
in this sense. The equation also predicts that the z-transformed response probability (z(p) ≡
Φ−1(p)) should be an increasing linear function of log(n2/n1), and hence an approximately
linear function of n2 (for values of n2 near some fixed value of n1), with an intercept of
zero when n2 = n1, and a positive slope that decreases for higher values of the reference
numerosity n1; this is exactly what the discrimination data of Krueger (1984) show.8

The observed variability of estimates of numerosity is consistent with the same kind of
model of noisy coding. Suppose that the subject’s estimate n̂ of the numerosity of some
array must be produced on the basis of the noisy internal representation r hypothesized
above. If we approximate the prior distribution from which the true numerosity n is drawn
(in a given experimental context) by a log-normal distribution,9 log n ∼ N(µ, σ2), then the
posterior distribution for n, conditional on an internal representation r drawn from (1.1),
will also be log-normal: log n|r ∼ N(µpost(r), σ

2
post). Here µpost(r) is an affine function of r,

with a slope 0 < β < 1 given by

β ≡ σ2

σ2 + ν2
, (1.3)

while σ2
post > 0 is independent of r (see the online appendix for details).

If we hypothesize that the subject’s numerosity estimate is optimal, in the sense of
minimizing the mean squared estimation error when stimuli are drawn from the assumed
prior distribution, then we should expect the subject’s estimate to be given by the posterior

8See Figure 5 of Krueger (1984), in which the three panels correspond to three successively larger values
of n1, and further discussion in Woodford (2019).

9We adopt this approximation in order to allow a simple analytical calculation of the posterior distribution,
even though in the experiments referred to here, the value of n is actually always an integer. Note that in the
application of this model in section 2, monetary payments are assumed to be positive real numbers rather
than integers.
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mean, n̂(r) = E[n|r]. In this case, log n̂(r) will be an affine function of r, with a slope
of β. This result, together with (1.1), implies that conditional on the true numerosity n,
the estimate n̂ will be log-normally distributed: log n̂ ∼ N(µ̂(n), σ̂2), where µ̂(n) is an affine
function of log n with slope β, and σ̂2 is independent of n. It then follows from the properties
of log-normal distributions that

SD[n̂]

E[n̂]
=
√
eσ̂2 − 1 > 0,

regardless of the true numerosity n. Thus the property of scalar variability is predicted by
a model of optimal estimation.

A further implication of a Bayesian model of numerosity estimation is that the average
subjective estimate E[n̂|n] should in general differ from the true numerosity n: subjects’
estimates should be biased. Specifically, the model just proposed implies a power-law rela-
tionship,

E[n̂|n] = Anβ (1.4)

for some A > 0, where 0 < β < 1 is again defined by (1.3). This implies over-estimation
of small numerosities (greater than five), but under-estimation of larger numerosities, to
a progressively greater extent the larger the true numerosity n. This kind of “regressive
bias” in subjects’ estimates of numerosity is characteristic of all experiments in this area,
beginning with the classic study of Kaufman et al. (1949). In fact, authors often report
that average estimates can be fit reasonably well by a concave power law (or log-log plot),
of the kind derived above (Krueger, 1972, 1984; Indow and Ida, 1977; Kramer et al., 2011).
The cross-over point, however, at which the bias switches from over-estimation to under-
estimation varies across studies; Izard and Dehaene (2008) point out that it depends on the
range of numerosities used in the study in question. This is clearly shown by Anobile et
al. (2012), who find different concave mappings from n to E[n̂|n] in two experiments using
similar methodologies, but different ranges for the true numerosities used in the experiment
(1 to 30 dots in one case, 1 to 100 dots in the other).

As shown in the online appendix, this is just what the Bayesian model proposed above
would predict: if we vary µ across experiments, holding the other parameters fixed, the
cross-over point is predicted to vary in proportion to the variation in the prior mean of n.
The Bayesian model also predicts, for a given prior, that increased imprecision in mental
coding (a larger value of ν) should result in a lower value of β, and hence a more concave
relationship between the true and estimated numerosities; and this is what Anobile et al.
(2012) find when subjects’ cognitive load is increased, by requiring them to perform another
perceptual classification task in addition to estimating the number of dots present. Thus
many quantitative features of observed errors in judgments of numerosity are consistent with
a model of optimal judgment based on a noisy internal representation of numerosity, and a
specific (log-normal) model of the noisy coding of numerical magnitudes in such cases.

1.2 Symbolically Presented Numerical Information

The well-documented imprecision in people’s perception of visually presented numerical in-
formation might seem, however, to be irrelevant for typical laboratory decisions under risk,
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in which the relevant monetary amounts are described to the decision maker using number
symbols. One might reasonably suppose that symbolically presented numbers are gener-
ally understood precisely by the hearer; and to the extent that perceptual errors do occur,
they should not generally be expected to conform to Weber’s Law, as in the case of sensory
magnitudes. (If it were a simple matter of sometimes mis-hearing numbers stated by an
experimenter, one might expect that $34.13 could more easily be mistaken for $44.13 than
for $34.89.)

Nonetheless, there is a good deal of evidence suggesting that even when numerical quan-
tities are presented using symbols such as Arabic numerals, the semantic content of the
symbol is represented in the brain in a way that is similar to the way in which magnitudes
are represented — involving imprecision, just as with the representation of physical mag-
nitudes, and with similar quantities represented in similar ways, so that nearby numerical
magnitudes are more likely to be confused with one another (Dehaene, 2011). This is not
the only way in which numerical information is understood to be represented in the brain;
according to the well-known “triple-code model” of Dehaene (1992), numbers are represented
in three different ways (three “codes”), in circuits located in different regions of the brain,
each with a distinct function. An “Arabic code” is used for explicit multi-digit arithmetic
calculations, while simple verbal counting and retrieval of memorized facts of arithmetic are
instead executed via a “verbal code.”

Yet a third code, the “analog magnitude code,” is drawn upon in tasks involving number
comparisons and approximation. This is thought to be a “semantic” representation of the size
of the quantity represented by a given number — “the abstract quantity meaning of numbers
rather than the numerical symbols themselves” (Dehaene et al., 2003, p. 492) — and to be
independent of the symbolic form in which the number is presented. Scalp EEG recordings
while subjects process information presented in the form of Arabic numerals also indicate
that the neural patterns evoked by particular numbers vary continuously with numerical
distance, so that (for example) the neural signals for “3” are more similar to those for “4”
than to those for “5” (Spitzer et al., 2017; Teichmann et al., 2018; Luyckx et al., 2018).

The existence of an approximate semantic representation of numerical quantities, even
when numbers are presented symbolically, can also be inferred behaviorally from the ability
of patients with brain injuries that prevent them from performing even simple arithmetic
(using the exact facts of arithmetic learned in school) to nonetheless make fairly accurate
approximate judgments (Dehaene and Cohen, 1991). In normal adult humans, this approx-
imate “number sense” seems also to be drawn upon when number comparisons are made
very quickly, or when previously presented numerical information that has not been precisely
memorized must be recalled (Moyer and Landauer, 1967; Dehaene et al., 1990).

Moreover, there is evidence that the mental representation of numerical information
used for approximate calculations involves the same kind of logarithmic compression as in
the case of non-symbolic numerical information, even when the numerical magnitudes have
originally been presented symbolically. Moyer and Landauer (1967), Buckley and Gillman
(1974), and Banks et al. (1976) find that the reaction time required to judge which of two
numbers (presented as numerals) is larger varies with the distance between the numbers on
a compressed, nonlinear scale — a logarithmic scale, as assumed in the model of the coding
of numerosity sketched above, or something similar — rather than the linear (arithmetic)
distance between them. Further evidence suggesting that such judgments are based on
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imprecise analog representations of the numbers presented comes from the finding of Frydman
and Jin (2019) that the distance between numbers required for their relative size to be
correctly judged with a given probability shrinks when the range of variation in the numbers
presented in the experiment is smaller; such an effect is difficult to explain if errors are
attributed to mistakes in processing the presented number symbols.10

In an even more telling example for our purposes, Dehaene and Marques (2002) showed
that in a task where people had to estimate the prices of products, the estimates produced
exhibited the property of scalar variability, just as with estimates of the numerosity of a visual
display. This was found to be the case, even though both the original information people had
received about prices and the responses they produced involved symbolic representations of
numbers. Evidently, an approximate analog representation of the prices remained available
in memory, though the precise symbolic representation of the prices could no longer be
accessed.

Not only is there evidence for the existence of an approximate semantic representation
of numerical information that is presented symbolically; it seems likely that this “analog
magnitude code” is the same representation of number that is used when numbers are pre-
sented non-symbolically. The region in the intraparietal sulcus that is thought to be the
locus of the analog magnitude code seems to be activated by the presentation of numerical
stimuli, regardless of the format in which the information is presented: written words or
Arabic numerals, visual or auditory presentations, symbolic or non-symbolic (Piazza et al.,
2004; Brannon, 2006). If this is true, it means that we should expect the quantitative model
of imprecise internal representations that explains the perception of numerosity, a context
in which the statistical structure of errors has been documented in more detail, to also ap-
ply to the imprecise internal representations that are drawn upon when fast, approximate
judgments are made about symbolically presented numerical information. We shall explore
the implications of this hypothesis for risky choice.

More specifically, our hypothesis is that when people must decide whether a risky prospect
(offering either of two possible monetary amounts as the outcome) is worth more or less
than another monetary amount that could be obtained with certainty, they can make a
quick, intuitive judgment about the relative value of the two options using the same mental
faculty as is involved in making a quick estimate (without explicit use of precise arithmetic
calculations) as to whether the sum of two numbers is greater or less than some other number.

If this is approached as an approximate judgment rather than an exact calculation (as
will often be the case, even with numerate subjects), such a judgment is made on the basis
of mental representations of the monetary amounts that are approximate and analog, rather
than exact and symbolic; and these representations involve a random location of the amount
on a logarithmically compressed “mental number line.” The randomness of the internal
representation of the numerical quantity (or perhaps, of its value to the decision maker)
then provides an explanation for the randomness in laboratory decisions as to whether to
accept simple gambles; and as we show below, the logarithmic compression provides an
explanation for subjects’ apparent risk aversion, even in the case of gambles for fairly small
stakes.

10Their result can instead be explained by the model of logarithmic coding presented in the previous
section, under a small extension of the model discussed in the online appendix.
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Note that we do not assume that all decisions involving money are made in this way.
If someone is asked to choose between $20 and $22, either of which can be obtained with
certainty, we do not expect that they will sometimes choose the $20, because of noise in their
subjective sense of the size of these two magnitudes. The question whether $20 is greater or
smaller than $22 can instead be answered reliably (by anyone who remembers how to count),
using the “verbal code” hypothesized by Dehaene (1992) to represent the numbers, rather
than the “analog magnitude code.”

Likewise, we do not deny that numerate adults, if they take sufficient care (and con-
sciously recognize the problem facing them as having the mathematical structure of a type
of arithmetic problem), are capable of exact calculations of averages or expected values that
would not introduce the kind of random error modeled in the next section. Nonetheless,
we hypothesize that questions about small gambles in laboratory settings (even when in-
centivized) are often answered on the basis of an intuitive judgment based on approximate
analog representations of the quantities involved. Note also that our hypothesis does not
depend on an assumption that numerical quantities are mis-perceived at the time that the
problem is described to the subject; our model of lottery choice is perfectly consistent with
the subject being able to repeat back to the experimenter the quantities that he has been
told are at stake. But even when the subject knows exactly what the numbers are (i.e., has
access to an exact description of them using the “verbal code”), if the decision problem is
not trivial to answer on the basis of these numbers, we suppose that he may resort to an
approximate judgment on the basis of the imprecise semantic representation of the numbers,
present in the brain at the same time.

While our results here cannot prove this, we suspect that many economic decisions in
everyday life are also made on the basis of approximate calculations using imprecise semantic
representations of numerical magnitudes. The situation in typical laboratory experiments
studying choice under risk is actually the one that is most favorable to the use of explicit
mental arithmetic: the possible payoffs are completely enumerated and explicitly stated, and
the associated probabilities are explicitly stated as well. If, as our results suggest, choices
can be based on approximate calculations of the kind that we model even in such a simple
and artificial setting, it seems even more likely that cognitive mechanisms of this kind are
employed in real situations where the relevant data are only estimates to begin with.

2 A Model of Noisy Coding and Risky Choice

We now consider the implications of a model of noisy internal representation of numerical
magnitudes for choices between simple lotteries. We assume a situation in which a subject
is presented with a choice between two options: receiving a monetary amount C > 0 with
certainty, or receiving the outcome of a lottery, in which she will have a probability 0 < p < 1
of receiving a monetary amount X > 0. We wish to consider how decisions should be made
if they must be based on imprecise internal representations of the monetary amounts rather
than their exact values.

We hypothesize that the subject’s decision rule is optimal, in the sense of maximizing
the expected value of U(W ), subject to the constraint that the decision must be based on
an imprecise representation r of the problem, rather than the true data. Here W is the
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subject’s final wealth at the end of the experiment, and U(W ) is an indirect utility function,
assumed to be smooth and strictly increasing, indicating the (correctly assessed) expected
value to the subject of a given wealth. Note that our conceptualization of the subject’s
objective (from the standpoint of which the decision rule can be said to be optimal) involves
no “narrow bracketing” of the gains from a particular decision: it is assumed that only final
wealth W matters, and not the sequence of gains and losses by which it is obtained. The
expected value is defined with respect to some prior probability distribution over possible
decision situations (here, possible values of X and C that might be offered).

Let W a be the random final wealth if option a is chosen. If we consider only gambles for
small amounts of money, we can use the Taylor approximation U(W a) ≈ U(W0) + U ′(W0) ·
∆W a, where W0 is the subject’s wealth apart from any gain or loss from the experiment,
∆W a is the random monetary amount gained in the experiment if option a is chosen, and
U ′(W0) is positive for all possible values of W0. If we assume furthermore that the subject’s
information about W0 is coded by some internal representation r0, with a distribution that is
independent of the details of the gains offered by the decision problem, while the quantities X
and C have internal representations rx and rc respectively, that are distributed independently
of W0, then

E[U(W a)|r] ≈ E[U(W0)|r0] + E[U ′(W0)|r0] · E[∆W a|rx, rc]

will be an increasing function of E[∆W a|rx, rc], regardless of the value of r0.
It follows that, as long as stakes are small enough, an optimal decision rule is one that

chooses the action a for which the value of E[∆W a|rx, rc] is larger; we therefore consider the
hypothesis that decisions are optimal in this sense. Note that our theory’s predictions are
thus consistent with “narrow bracketing”: the choice between two risky prospects is predicted
to depend only on the distributions of possible net gains associated with those prospects,
and not on the level of wealth W0 that the subject has from other sources. But for us this
is a conclusion (a property of optimal decision rules) rather than a separate assumption.
Note also that while we do not deny the reasonableness of assuming that the function U(W )
should involve diminishing marginal utility of wealth (in the case of sufficiently large changes
in wealth), the degree of curvature of the function U(W ) plays no role in our predictions.
Thus small-stakes risk aversion is not attributed to nonlinear utility of income or wealth in
our theory.

In line with the evidence discussed in the previous section regarding internal representa-
tions of numerical magnitudes, we assume more specifically that the representations rx and
rc are each a random draw from a probability distribution of possible representations, with
distributions

rx ∼ N(logX, ν2), rc ∼ N(logC, ν2). (2.1)

Here ν > 0 is a parameter that measures the degree of imprecision of the internal represen-
tation of such quantities (assumed to be the same regardless of the monetary amount that is
represented); we further assume that rx and rc are distributed independently of one another.
We treat the parameter p as known (it does not vary across trials in the experiment described
below), so that the decision rule can (and indeed should) depend on this parameter as well.11

11See section 4.1 for discussion of an extension of the model in which p is also imprecisely represented.
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As in the model of numerosity perception presented in section 1.2, these representations
do not themselves constitute perceived values of the monetary amounts; instead, the internal
representations must be “decoded” in order to provide a basis for decision, in the case of a
given decision problem. The optimal decision in the case of a pair of mental representations
r = (rx, rc) depends not only on the specification (2.1) of the noisy coding, conditional
on the true magnitudes, but also on the relative ex ante likelihood of different possible
decision situations, which we specify by a prior probability distribution over possible values
of (X,C). We can then consider the optimal decision rule from the standpoint of Bayesian
decision theory. It is easily seen that E[∆W a|rx, rc] is maximized by a rule under which the
risky lottery is chosen if and only if

p · E[X|rx] > E[C|rc], (2.2)

which is to say if and only if the expected payoff from the risky lottery exceeds the expected
value of the certain payoff.12

The implications of our logarithmic model of noisy coding are simplest to calculate if (as
in the model of numerosity estimation) we assume a log-normal prior distribution for possible
monetary quantities. To reduce the number of free parameters in our model, we assume that
under the prior X and C are assumed to be independently distributed, and furthermore that
the prior distributions for both X and C are the same (some ex ante distribution for possible
payments that one may be offered in a laboratory experiment). It is then necessary only to
specify the parameters of this common prior:

logX, logC ∼ N(µ, σ2). (2.3)

Under the assumption of a common prior for both quantities, the common prior mean µ does
not affect our quantitative predictions about choice behavior; instead, the value of σ does
matter, as this influences the ex ante likelihood of X being sufficiently large relative to C for
the gamble to be worth taking. The model thus has two free parameters, to be estimated
from subjects’ behavior: σ, indicating the degree of ex ante uncertainty about what the
payoffs might be, and ν, indicating the degree of imprecision in the coding of information
that is presented about those payoffs on a particular trial.

2.1 Predicted Frequency of Acceptance of a Gamble

Under this assumption about the prior, the posterior distributions for both X and C are
log-normal, as in the model of numerosity estimation in the previous section. It follows that
the posterior means of these variables are given by

E[X|r] = eα+βrx , E[C|r] = eα+βrc ,

with β is again defined by (1.3). (The details are explained in the online appendix.) Taking
the logarithm of both sides of (2.2), we see that this condition will be satisfied if and only if

log p + βrx > βrc,

12Note that while the payoff C is certain, rather than random, once one knows the decision situation
(which specifies the value of C), it is a random variable ex ante (assuming that many different possible
values of C might be offered), and continues to be random even conditioning on a subjective representation
of the current decision situation, assuming that mental representations are noisy as assumed here.
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which is to say, if and only if the internal representation satisfies

rx − rc > β−1 log p−1. (2.4)

Under our hypothesis about the mental coding, rx and rc are independently distributed
normal random variables (conditional on the true decision situation), so that

rx − rc ∼ N(logX/C, 2ν2).

It follows that the probability of (2.4) holding, and the risky gamble being chosen, is given
by

Prob[accept risky|X,C] = Φ

(
logX/C − β−1 log p−1

√
2ν

)
. (2.5)

Equation (2.5) is the behavioral prediction of our model. It implies that choice in a
problem of this kind should be stochastic, as is typically observed. Furthermore, it implies
that across a set of gambles in which the values of p and C are the same in each case, but the
value of X varies, the probability of acceptance should be a continuously increasing function
of X. This is in fact what one sees in Figure 1, which plots data from Mosteller and Nogee
(1951).13 The figure plots the responses of one of their subjects to a series of questions of
the type considered here. In each case, the subject was offered a choice of the form: are
you willing to pay five cents for a gamble that will pay an amount X with probability 1/2,
and zero with probability 1/2? The figure shows the fraction of trials on which the subject
accepted the gamble, in the case of each of several different values of X. The authors used
this curve to infer a value of X for which the subjects would be indifferent between accepting
and rejecting the gamble, and then proposed to use this value of X to identify a point on
the subject’s utility function.

Figure 1 plots the data from Mosteller and Nogee (1951), together with a solid curve that
graphs the predicted relationship (2.5), in the case that σ = 0.26 and ν = 0.07. Note that
these values allow a reasonably close fit to the choice frequencies plotted in the figure from
Mosteller and Nogee.

Moreover, the parameter values required to fit the data are fairly reasonable ones. The
value ν = 0.07 for the so-called “Weber fraction” is less than half the value indicated by
human performance in comparisons of the numerosity of different fields of dots (Dehaene,
2008, p. 540); on the other hand, Dehaene (2008, p. 552) argues that one should expect
the Weber fraction to be smaller in the case of numerical information that is presented
symbolically (as in the experiment of Mosteller and Nogee) rather than non-symbolically (as
in the numerosity comparison experiments).14 Hence this value of ν is not an implausible
degree of noise to assume in the mental representations of numerical magnitudes used in

13This study is of particular interest for our purposes because the authors use a method intended to elicit
repeated, independent decisions about exactly the same pair of gambles at different points during the same
study, as is common in psychometric studies of imprecision in perception. We follow the same method in
our own experiment, reported in the next section.

14Garcia et al. (2018) have the same subjects do two versions of such a task, one in which the monetary
amounts are presented symbolically (as in the experiment of Mosteller and Nogee) and one in which the
amounts X and C are presented as visual arrays of euro coins. They find similar stochastic choice curves in
both cases, but the implied value of ν is larger when the amounts are shown visually.
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Figure 1: Theoretically predicted probability of acceptance of a simple gamble as a function
of the value X when the gamble pays off, for parameter values explained in the text. Circles
represent the data from Mosteller and Nogee (1951).

approximate calculations. The value of σ for the degree of dispersion of the prior over
possible monetary rewards is also plausible. In fact, the distribution of values of X used in
the trials reported in the figure is one in which the standard deviation of logX is 0.34, so
that the implicit prior attributed to the subject by our model is of at least the right order
of magnitude.

2.2 Explaining the Rabin Paradox

Our model explains not only the randomness of the subject’s choices, but also her apparent
risk aversion, in the sense that the indifference point (a value of X around 10.7 cents in
Figure 1) corresponds to a gamble that is better than a fair bet. This is a general prediction
of the model, since the indifference point is predicted to be at X/C = (1/p)β

−1
> 1/p,

where the latter quantity would correspond to a fair bet. The model predicts risk neutrality
(indifference when X/C = 1/p) only in the case that β = 1, which according to (1.3) can
occur only in the limiting cases in which ν = 0 (perfect precision of the mental representation
of numerical magnitudes), or σ is unboundedly large (radical uncertainty about the value of
the payoff that may be offered, which is unlikely in most contexts).

The model furthermore explains the Rabin (2000) paradox: the fact that the compen-
sation required for risk does not become negligible in the case of small bets. According to
EUM, the value of X required for indifference in a decision problem of the kind considered
above should be implicitly defined by the equation

pU(W0 +X) + (1− p)U(W0) = U(W0 + C).

For any increasing, twice continuously differentiable utility function U(W ) with U ′′ < 0,
if 0 < p < 1, this condition implicitly defines a solution X(C; p) with the property that
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pX(C; p)/C > 1 for all C > 0, implying risk aversion. However, as C is made small,
pX(C; p)/C necessarily approaches 1. Hence the ratio pX/C required for indifference exceeds
1 (the case of a fair bet) only by an amount that becomes arbitrarily small in the case of a
small enough bet. It is not possible for the required size of pX to exceed the certain payoff
even by 7 percent (as in the case shown in Figure 1), in the case of a very small value certain
payoff, unless the coefficient of absolute risk aversion (−U ′′/U ′) is very large — which would
in turn imply an implausible degree of caution with regard to large bets.

In our model, instead, the ratio pX/C required for indifference should equal Λ ≡ p−(β−1−1),
which is greater than 1 (except in the limiting cases mentioned above) by the same amount,
regardless of the size of the gamble. As discussed above, the degree of imprecision in mental
representations required for Λ to be on the order of 1.07 is one that is quite consistent with
other evidence. Hence the degree of risk aversion indicated by the choices in Figure 1 is
wholly consistent with a model that would predict only a modest degree of risk aversion in
the case of gambles involving thousands of dollars.

It is also worth noting that our explanation for apparent risk aversion in decisions about
small gambles does not rely on loss aversion, like the explanation proposed by Rabin and
Thaler (2001). Our model of the mental representation of prospective gains assumes that
the coding and decoding of the risky payoff X are independent of the value of C, so that
small increases in X above C do not have a materially different effect than small decreases
of X below C.

Instead, in our theory the EUM result that the compensation for risk must become
negligible in the case of small enough gambles fails for a different reason. Condition (2.4)
implies that the risky gamble is chosen more often than not if and only if p ·m(X) > m(C),
where m(·) is a power-law function of a kind that also appears in (1.4). It is as if the
decision maker assigned a nonlinear utility m(∆W a) to the wealth increment ∆W a. Our
model of optimal decision on the basis of noisy internal representations explains why the
ratio m(X)/m(C) is in general not approximately equal to X/C even in the case that X
and C are both small.

3 An Experimental Test

A notable feature of the behavioral equation (2.5) is that it predicts that subjects’ choice
frequencies should be scale-invariant, at least in the case of all small enough gambles: mul-
tiplying both X and C by an arbitrary common factor should not change the probability of
the risky gamble being chosen. This feature of the model makes it easy to see that the Rabin
paradox is not problematic for our model. In order to test this predictions of our model, we
conducted an experiment of our own, in which we varied the magnitudes of both X and C.
We recruited 20 subjects from the student population at Columbia University, each of whom
was presented with a sequence of several hundred trials. Each individual trial presented the
subject with a choice between a certain monetary amount C and a probability p of receiving
a monetary amount X.15

15The experimental design is discussed further in the online appendix. Our procedures were approved by
the Columbia University Institutional Review Board, under protocol IRB-AAAQ2255.
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The probability p of the non-zero outcome under the lottery was 0.58 on all of our trials,
as we were interested in exploring the effects of variations in the magnitudes of the monetary
payments, rather than variations in the probability of rewards, in order to test our model of
the mental coding of monetary amounts. Maintaining a fixed value of p on all trials, rather
than requiring the subject to pay attention to the new value of p associated with each trial,
also made it more plausible to assume (as in the model above) that the value of p should be
known precisely, rather than having to be inferred from an imprecisely coded observation on
each occasion.

We chose a probability of 0.58, rather than a round number (such as one-half, as in the
Mosteller and Nogee experiment discussed above), in order not to encourage our subjects to
approach the problem as an arithmetic problem that they should be able to solve exactly, on
the basis of representations of the monetary amounts using the “Arabic code” rather than
the “analog magnitude code,” in the terminology of Dehaene (1992). We expect Columbia
students to be able to solve simple arithmetic problems using methods of exact mental calcu-
lation that are unrelated to the kind of approximate judgments about numerical magnitudes
with which our theory is concerned, but did not want to test this in our experiment. We
chose dollar magnitudes for C and X on all trials that were not round numbers, either, for
the same reason.

The value of the certain payoff C varied across trials, taking on the values $5.55, $7.85,
$11.10, $15.70, $22.20, or $31.40. (Note that these values represent a geometric series, with
each successive amount

√
2 times as large as the previous one.) The non-zero payoff X

possible under the lottery option was equal to C multiplied by a factor 2m/4, where m took
an integer value between 0 and 8. There were thus only a finite number of decision situations
(defined by the values of C and X) that ever appeared, and each was presented to the subject
several times over the course of a session. This allowed us to check whether a subject gave
consistent answers when presented repeatedly with the same decision, and to compute the
probability of acceptance of the risky gamble in each case, as in the experiment of Mosteller
and Nogee. The order in which the various combinations of C and X were presented was
randomized, in order to encourage the subject to treat each decision as an independent
problem, with the values of both C and X needed to be coded and encoded afresh, and with
no expectations about these values other than a prior distribution that could be assumed to
be the same on each trial.

Our experimental procedure thus differed from ones often used in decision-theory exper-
iments, where care is taken to present a sequence of choices in a systematic order, so as to
encourage the subject to express a single consistent preference ordering. We were instead
interested in observing the randomization that, according to our theory, should occur across
a series of genuinely independent reconsiderations of a given decision problem; and we were
concerned to simplify the context for each decision by eliminating any obvious reason for the
data of one problem to be informative about the next.

We also chose a set of possible decision problems with the property that each value of
X could be matched with the same geometric series of values for C, and vice versa, so that
on each trial it was necessary to observe the values of both C and X in order to recognize
the problem, and neither value provided much information about the other (as assumed
in our theoretical model). At the same time, we ensured that the ratio X/C, on which
the probability of choosing the lottery should depend according to our model, always took
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Figure 2: The probability of choosing the risky lottery, plotted as a function of the risky
payoff X (data pooled from all 20 subjects). (a) The probability plotted as a function of X,
for each of the different values of C (indicated by darkness of lines). (b) The same figure,
but plotted against logX for each value of C.

on the same finite set of values for each value of C. This allowed us to test whether the
probability of choosing the lottery would be the same when the same value of X/C recurred
with different absolute magnitudes for X and C.

3.1 Testing Scale-Invariance

Figure 2 shows how the frequency with which our subjects chose the risky lottery varied
with the monetary amount X that was offered in the event that the gamble paid off, for
each of the five different values of C.16 (For this first analysis, we pool the data from all
20 subjects.) Each data point in the figure (shown by a circle) corresponds to a particular
combination (C,X).

In the first panel, the horizontal axis indicates the value of X, while the vertical axis
indicates the frequency of choosing the risky lottery on trials of that kind [Prob(Risky)].
The different values of C are indicated by different colors of circles, with the darker circles
corresponding to the lower values of C, and the lighter circles the higher values. (The six
successively higher values of C are the ones listed above.) We also fit a sigmoid curve to the
points corresponding to each of the different values of C, where the color of the curve again

16The data used to produce this and all subsequent figures, as well as the results reported in the tables,
can be found in Khaw, Li and Woodford (2020).
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choice curve estimated for each value of C, as in Figure 2. (b) A single choice curve, with
parameters estimated to maximize the likelihood of the pooled data.

identifies the value of C. Each curve has an equation of the form

Prob(Risky) = Φ(δC + γC logX), (3.1)

where Φ(z) is again the CDF of the standard normal distribution, and the coefficients (δC , γC)
are estimated separately for each value of C so as to maximize the likelihood of the data
corresponding to that value of C. Note that for each value of C, we obtain a sigmoid curve
similar to the one in Figure 1, though the fit is less perfect (at least partly because here,
unlike in Figure 1, we are pooling the data from 20 different subjects).

The similarity of the curves obtained for different values of C can be seen more clearly
if we plot them as a function of logX, rather than on a scale that is linear in X, as shown
in the second panel of Figure 2. (The color coding of the curves corresponding to different
values of C is again the same.) The individual curves now resemble horizontal shifts of one
another. The elasticity γC is similar for each of the values of C (with the exception of the
highest value, C = $31.40), and the value of logX required for indifference increases by a
similar amount each time C is multiplied by another factor of

√
2.

These observations are exactly what we should expect, according to our logarithmic
coding model. Condition (2.5) implies that a relationship of the form

Prob(Risky) = Φ(δ + γ log(X/C)) (3.2)

should hold for all values of C, meaning that in equation (3.1), γC should be the same for
each value of C, and that the value of logX required for indifference should equal a constant
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plus logC. We can see more clearly the extent to which these precise predictions hold by
plotting the curves in Figure 2(b) as functions of log(X/C), rather than as functions of logX;
this is done in the first panel of Figure 3. The six different curves come close to falling on
top of one another, as predicted by the model (although, again, the curve for C = $31.40
is somewhat out of line with the others). If we instead simply estimate parameters (δ, γ)
to maximize the likelihood of the pooled data under the model (3.2), we obtain the single
choice curve shown in the second panel of Figure 3. This fits the data for the different values
of X/C slightly worse than the individual choice curves shown in the previous panel, but
not by much. (The maximum-likelihood parameter estimates for the different choice curves,
and the associated likelihoods, are reported in the online appendix.)

We can consider quantitatively the extent to which our data are more consistent with
the more flexible model (3.1) than with the more restrictive predictions of (3.2), in two
different ways. First, we consider the in-sample fit of the two models by selecting a subset
of our observations (the “calibration dataset”), and find the parameter estimates for each
model that maximize the likelihood of this dataset. The column labeled LLcalibration in Table
1 reports the average maximized value of the log-likelihood of the data in the calibration
dataset, when it is chosen in each of four different ways. We use a “four-fold cross-validation”
approach, in which the complete dataset is divided into four parts, each containing exactly
1/4 of the observations, and the model parameters are estimated four different times; each
time, one of the four parts of the data is held out to be the “validation dataset,” and the
other three parts are used as the “calibration dataset.” Thus in the overall exercise, each
observation is used equally many times as part of the calibration dataset as every other. The
figures in Table 1 report the average values of the statistics obtained in the four different
estimations. With regard to in-sample fit, of course, LLcalibration is higher for the more
flexible model, since (3.2) is nested within this class of models as a special case.

A more relevant comparison between the in-sample fits of the two models is given by
the Bayes information criterion (BIC) statistic, also reported in the table for each model,
which penalizes the use of additional free parameters. This is defined as BIC ≡ −2LL +
k logNobs, where k is the number of free parameters (adjusted to maximize the likelihood)
for a given model, and Nobs is the number of observations in the calibration dataset.17 The
data provide more evidence in favor of the model with the lower BIC statistic. In particular,
for any two models M1 and M2, the Bayes factor K defined by

logK1 =
1

2
[BIC(M2)−BIC(M1)]

is the multiplicative factor by which the relative posterior probability that M1 rather than
M2 is the correct model of the data is increased by the observations in the calibration
dataset. (See, for example, Burnham and Anderson (2002), p. 303.)

We can also compare the out-of-sample fit of the two models, by reserving some of our
observations (the “validation dataset”), and not using them to estimate the model param-
eters. The column labeled LLvalidation in Table 1 then reports the average log-likelihood of
the data in the validation dataset under each model, when the parameter values are used

17Again, the BIC statistics reported in the table are actually the average values of the four BIC statistics
obtained for the four different choices of calibration dataset. And as elsewhere in the paper, “log” refers to
the natural logarithm.
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Model LLcalibration BIC LLvalidation log K
Pooled Data

Scale-invariant -2812.7 5642.9 -940.0 0.0
Unrestricted -2794.9 5672.5 -938.1 12.9

Heterogeneous Parameters
Scale-invariant -1853.4 3932.6 -677.5 0.0
Unrestricted -1556.1 3962.2 -2214.8 1552.1

Table 1: In-sample and out-of-sample measures of goodness of fit compared for the scale-
invariant model (our logarithmic coding model) and an unrestricted statistical model in
which a separate choice curve is estimated for each value of C. In the top panel, each model
is fit to the pooled data from all 20 subjects. In the bottom panel, separate model parameters
are fit to the data for each subject. (See text for further explanation.)

that were estimated using the calibration dataset. If we update the posterior probabilities
that the two models M1 and M2 are correct after observing the validation dataset as well,
we obtain a composite Bayes factor K = K1 ·K2, where

logK2 = LLvalidation(M1) − LLvalidation(M2)

by Bayes’ Rule. The logarithm of the composite Bayes factor K is reported in the final
column of the table, as an overall summary of the degree to which the data provide support
for each model, averaged across four different ways of choosing the validation dataset. (In
each case,M1 is the scale-invariant model, whileM2 is the alternative model considered on
that line of the table; thus values K > 1 indicate the degree to which the data provide more
support for the scale-invariant model than for the alternative.)

In Table 1, we compare two models: our scale-invariant model (3.2) and the unrestricted
alternative in which a separate probit model (3.1) is estimated for each of the six values of
C, as in Figure 2.18 In the case of the scale-invariant model, Nobs is the total number of
observations in the calibration dataset, pooling the data for all six values of C, and there
are k = 2 free parameters in the single model fit to all of these data. In the case of the
unrestricted model, a separate probit model (each with k = 2 free parameters) is estimated
for each value of C, and a BIC statistic is computed for that model (where Nobs is the
number of observations in the calibration dataset with that value of C); the BIC reported
in the “Unrestricted” row of the table is then the sum of the BIC statistics for these six
independent probit models, just as LLcalibration is the sum of the log likelihoods for the six
models. (More precisely, the table shows the average value of this sum of BIC statistics, for
each of the four different “folds” of the data.) In the top panel of the table, the two models
are compared when a common set of parameters is used to fit the pooled data from all 20
subjects, as in Figures 2 and 3. In the lower panel, instead, individual model parameters
are estimated for each subject, and the statistics reported are sums over all subjects of the
corresponding model fit statistics for each subject.

18Note that the scale-invariant model and unrestricted alternative referred to in Table 1 do not correspond
precisely to the predictions shown in Figures 2 and 3, since in Figures 2 and 3 the parameters of both models
are fit to our entire dataset, while in Table 1 the parameters are estimated using only a subset of the data.
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Figure 4: In-sample and out-of-sample model comparison statistics, for each of the 20 indi-
vidual subjects, when separate parameters are estimated for each subject. (See explanation
in text.)

Whether we assume a common set of parameters or subject-specific parameters, we see
that the BIC statistic is lower for the scale-invariant model. This means that while the
unrestricted model achieves a higher likelihood (necessarily), the data are not fit enough
better to justify the use of so many additional free parameters; thus based on the calibration
dataset alone, we would have a Bayes factor K1 > 1, meaning an increase in the relative
posterior probability of the scale-invariant model (compared to whatever relative probability
was assigned to that model in one’s prior). When we then consider out-of-sample fit of the
two models, if we assume a common set of parameters for all 20 subjects, the out-of-sample
fit is slightly better for the unrestricted model. However, the fit is only modestly better, and
when one takes into account both the in-sample and out-of-sample fit of the two models, we
obtain an overall Bayes factor K > 400, 000, greatly increasing the relatively probability of
the scale-invariant model.19

If we instead fit separate parameters for each subject, then as shown in the bottom panel
of Table 1, the aggregate evidence provides more support for the scale-invariant model both
in-sample and out-of-sample. In this case, the overall Bayes factor is greater than 10674.
Thus if we assume that either the scale-invariant model or the more flexible alternative must
be the correct model for all subjects (though the parameters may differ across subjects), the
evidence is overwhelming in favor of the scale-invariance hypothesis.

19Moreover, the slight inferiority of the scale-invariant model with regard to out-of-sample fit is due
primarily to the data for a single subject (subject 9), whose choice curves do not satisfy scale-invariance, as
shown in the online appendix. If we fit a single set of parameters to the pooled data for all subjects except
subject 9, the scale-invariant model fits better both in-sample and out-of-sample.
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In fact, the scale-invariant model fits reasonably well for most of the subjects considered
individually. Figure 4 shows a scatter plot of the values of the BIC difference, and the overall
Bayes factor K, for each individual subject, when separate choice curves are estimated for
each subject. Here each open dot corresponds to one subject. The vertical axis plots the
amount by which the BIC statistic for the unrestricted model is greater than the one for the
scale-invariant model (∆BIC), divided by N , the number of trials for that subject, in order
to obtain a measure that is more comparable across subjects. The horizontal axis plots the
value of logK, again divided by N . (In both cases, the values plotted for each subject are
the average of the values obtained for the four different “folds” of the data.) The dashed
line identifies points at which logK = (1/2)∆BIC, which is to say, points at which there
is no difference in LLvaluation between the two models. Points to the right of the dashed
line are thus those for which LLvaluation is higher for the scale-invariant model than for the
unrestricted model. We see that the overall Bayes factor favors the scale-invariant model for
all but one of the subjects (subject 14). Moreover, the scale-invariant model fits better (or
approximately as well) out-of-sample in the case of all of those 9 subjects; while it is favored
in-sample by the BIC criterion for 15 out of 20 (only fitting substantially worse in-sample
for subject 9).

Garcia et al. (2018) and Frydman and Jin (2019) repeat versions of our experiment, and
similarly find near scale-invariance of the choice curves associated with different values of
C, though they do not report statistical tests of scale invariance like those above. See, for
example, the bottom panel of Figure B2 in Frydman and Jin.

Despite this degree of support for our model’s prediction, our data are nonetheless not
perfectly scale-invariant. We see in Figure 3 that the estimated choice curve (using pooled
data) in the case C = $31.40 is not a perfect horizontal translation of the others, but instead
is somewhat flatter.20 This may indicate inaccuracy of the assumption of a log-normal prior
(2.3), used in our theoretical calculations above for convenience. Under the assumption of a
log-normal prior, log E[X|rx] is a linearly increasing function of rx, with constant slope β. But
if people instead form correct inferences based on a prior under which monetary payments
greater than $50 are less likely than a log-normal prior would allow, then log E[X|rx] would
increase less rapidly with further increases in rx, for values of rx above log 50. This would
result in a frequent failure to recognize how attractive the risky lottery truly is when X
exceeds $50, and hence less frequent acceptance of the risky lottery in such cases than the
scale-invariant model would predict, as can be observed in Figure 2. (We leave for future
work more detailed consideration of the extent to which our data may be better explained
by a more subtle account of subjects’ prior beliefs, or by a model of noisy coding that is not
exactly logarithmic.)

Holt and Laury (2002) also obtain nearly perfect scale-invariant choice curves (see their
Figure 1), when the amounts offered in hypothetical gambles are scaled up by a factor as
large as 90 times those used in their small-stakes gambles. They find, however, that their
subjects’ apparent degree of risk aversion increases when the scale of the gambles is increased,
in the case of gambles for real money (their Figure 2). It is unclear whether this difference

20Note however that this curve is also less well estimated than the others shown in the figure, as a number
of our subjects were not presented with trials including values of C this large, so that the Nobs for this case
is smaller, as indicated in Table 3 in the online appendix.
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Model LLcalibration BIC LLvalidation log K
Pooled Data

Log coding -2812.7 5642.9 -940.0 0.0
ARUM-Probit -2997.3 6012.0 -1001.8 246.3
ARUM-Logit -2973.4 5964.2 -993.5 214.1

Heterogeneous Parameters
Log coding -1853.4 3932.6 -677.5 0.0
ARUM-Probit -1960.0 4145.8 -763.2 192.3
ARUM-Logit -1903.7 4033.1 -688.0 60.7

Table 2: In-sample and out-of-sample measures of goodness of fit for three models: our
logarithmic coding model and two additive random-utility models. The format is the same
as in Table 1. (See text for further explanation.)

from our results (which also involve real money) reflects a difference in the kind of gambles
presented to their subjects, or the fact that their large gambles involved greater amounts of
money than even our largest gambles (hundreds of dollars rather than mere tens of dollars).21

Further studies would be desirable to clarify this.

3.2 Comparison with Random Expected Utility Models

As noted in the introduction, both the random variation in subjects’ choices between simple
gambles and existence of small-stakes risk aversion are often explained, in the experimental
economics literature, by positing (i) “narrow bracketing” of the choice problem, so that the
small amounts that can be gained in the experiment are not integrated with the subject’s
overall wealth (or overall lifetime budget constraint), (ii) significant concavity of the utility
function that is used to value different possible monetary gains in the experiment, and
(iii) a random term in the utility function, so that the expected utility assigned to a given
probability distribution over possible gains is not always the same. We have offered an
alternative model of both the randomness and the degree of apparent risk aversion in the
choices of our subjects that we regard as more theoretically parsimonious, and in our view this
theoretical parsimony should be a reason to prefer our interpretation, even if the competing
views were equally consistent with the data from a single experiment such as this one.
Nonetheless, it is interesting to ask whether our data could not be equally well explained by
a more familiar model.

Table 2 compares the fit of our model with two variants of an additive random-utility
model (ARUM). In the case of each of the ARUMs, the subject is assumed to choose the
option for which E[u(Y )] + ε is larger, where Y is the monetary amount gained from the
experiment (a random quantity, in the case of a risky prospect), u(Y ) is a nonlinear utility

21Note that it is perfectly consistent with our model to suppose that diminishing marginal utility of wealth
becomes an additional source of risk aversion in the case of large gambles, as we would expect to be the case.
It should also be noted that our model implies scale-invariance under the assumption that the DM’s prior
should be the same on the trials with different values of C; this makes sense in the context of our experiment
(where trials with different values of C are randomly interleaved), but less obviously so in the experiments
of Holt and Laury.
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function for such gains (valued separately from the subject’s other wealth), and ε is a random
term (drawn at the time of choice) that is independent of the characteristics of the option,
and also independent of the corresponding random term in the value assigned to the other
option. In the ARUMs considered in the table, u(Y ) is assumed to be of the CRRA form,
u(Y ) = Y 1−γ/(1− γ), for some γ ≥ 0. The random term ε is assumed either to be normally
distributed (the ARUM-Probit model), or to have an extreme-value distribution (the ARUM-
Logit model). Thus each of the ARUMs has two free parameters (the coefficient of relative
risk aversion γ and the standard deviation of ε), like the logarithmic coding model.

As in the case of Table 1, we consider both in-sample and out-of-sample measures of
model fit, where the calibration dataset and validation dataset are the same as in the earlier
table. In each case, we find that our model based on logarithmic coding provides a better fit
to the experimental data, both in-sample and out-of-sample. The alternative model which
comes closest to being a competitor is the ARUM-logit model, when separate parameters
are estimated for each subject. Yet even in this case, the implied Bayes factor K > 1026. If
one of the models considered must represent the correct statistical model of our data, then
the evidence overwhelmingly favors the model based on logarithmic coding.

In the online appendix, we report similar statistics for additional variants. Allowing
U(Y ) to belong to the more general class of HARA utility functions does not improve the
fit of the ARUMs, once the penalty for the additional free parameter is taken into account.
We also consider an alternative model of stochastic choice proposed by Apesteguia and
Ballester (2018), based on expected utility maximization with a random parameter in the
utility function, and show that this formulation does not better explain our data, either. The
ARUMs above can also be considered random variants of prospect theory, in which u(Y )
is the Kahneman-Tversky value function for gains, but we use the true probabilities of the
two outcomes as weights rather than distorted weights of the kind posited by Kahneman
and Tversky (1979). In the online appendix, we show that allowing for a probability weight
different from the true probability does not improve the fit of the random version of prospect
theory, once the penalty for the additional free parameter is taken into account. Thus our
model compares well with many of the most frequently used empirical specifications.22

4 Further Implications of the Theory

We have shown that it is possible to give a single unified explanation for the observed ran-
domness in choices by subjects evaluating risky income prospects on the one hand, and the
apparent risk aversion that they display on average on the other, as natural consequences
of people’s intuitions about the value of gambles being based on imprecise internal repre-
sentations of the monetary amounts that are offered. Our theory explains the possibility of
small-stakes risk aversion without implying any extraordinary degree of aversion to larger
gambles in other contexts. Moreover, it can also explain the fact (demonstrated in our
experiment) that the degree of risk aversion, as measured by the percentage by which the

22In the online appendix, we also discuss the degree to which our data are consistent with random versions
of the model proposed by Bordalo et al. (2012), in which risk attitudes result from differences in the salience
of alternative outcomes. The consistency of such a model with our data depends greatly on the way in which
the qualitative and deterministic model in their paper is made quantitative and stochastic.
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expected value of a random payoff must exceed the certain payoff in order for a subject to be
indifferent between them, is relatively independent of the size of the stakes (as long as these
remain small), contrary to what should be found if risk aversion were due to diminishing
marginal utility.

We have argued in the introduction that we find this theory particularly compelling on
account of its parsimony: the introduction of a new parameter (the parameter ν indicating
the degree of imprecision of a subject’s internal representation of monetary amounts) in order
to account for the degree of randomness of a subject’s choices also immediately implies their
apparent degree of risk aversion, rather than this being controlled by a separate parameter.
Moreover, the same basic theory (that intuitive judgments are made in accordance with an
optimal decision rule, subject to their having to be based on noisy internal representations
of the decision problem) has implications for a number of other types of decision problems,
beyond the simple type of experiment considered in sections 2 and 3. In particular, our
model can also account for a number of other anomalous features of subjects’ choices with
regard to small gambles that are documented by Kahneman and Tversky (1979) and Tversky
and Kahneman (1992).

The “reflection effect.” Kahneman and Tversky report that if subjects must choose
between a risky loss and a certain loss — with similar probabilities and monetary quantities
as in the kind of problem considered above, but with the signs of the monetary payoffs
reversed — risk seeking is observed more often than risk aversion (something they call the
“reflection effect”). The coexistence of both risk-averse choices and risk-seeking choices
by the same subject, depending on the nature of the small gambles that are offered, is a
particular puzzle for the EUM account of risk attitudes, since a subject should be either
risk averse or risk seeking (depending whether the subject’s utility of wealth is concave or
convex) regardless of the sign of the gambles offered.

The explanation of risk aversion for small gambles offered here instead naturally implies
that the sign of the bias (i.e., of the apparent risk attitude) should switch if the signs of
the monetary payoffs are switched. Consider instead the case of a choice between a risky
gamble that offers a probability p of losing an amount X (but losing nothing otherwise), and
the option of a certain loss of an amount C. If we assume that the quantities X and C are
mentally represented according to the same logarithmic coding model as above, regardless
of whether they represent gains or losses, then in the case of losses, the subject’s expected
wealth is maximized by a rule under which the risky lottery is chosen if and only if

p · E[X|rx] < E[C|rc], (4.1)

reversing the sign in (2.2).
The set of internal representations (rx, rc) for which this holds will be the complement of

the set discussed earlier, so that the model predicts

Prob[accept risky|X,C] = Φ

(
β−1 log p−1 − logX/C√

2ν

)
. (4.2)

Indifference again will require pX > C, but this will now count as risk-seeking behavior;
when pX = C, the risky loss should be chosen more often than not.
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This explanation for the “reflection effect” is not fundamentally different from those of
Kahneman and Tversky (1979) or Bordalo et al. (2012), who attribute it to the fact that
diminishing marginal sensitivity exists for losses as well as for gains. The additional insight
offered by our model is its provision of a further account of the origin of diminishing marginal
sensitivity, and in particular, the demonstration that it is consistent with a hypothesis that
subjects’ responses maximize the utility that subjects obtain (on average) from the use of
their total monetary wealth, without any assumption of an intrinsic concern with gains or
losses.

A framing effect. Kahneman and Tversky (1979) further show that subjects’ preferences
between a risky and a safe outcome can be flipped, depending whether the options are
presented as involving gains or losses. In one of their problems, subjects are asked to imagine
being given a substantial monetary amount 2M , and then being presented with a choice
between (a) winning an additional M with certainty, or (b) a gamble with a 50 percent
chance of winning another 2M and a 50 percent chance of winning nothing. In a second
problem, the initial amount was instead 4M , and the subsequent choice was between (a)
losing M with certainty, and (b) a gamble with a 50 percent chance of losing 2M and a 50
percent chance of losing nothing.

These two problems are equivalent, in the sense that in each case the subject chooses
between (a) ending up with 3M more than their initial wealth with certainty, or (b) a
gamble under which they have an equal chance of ending up with 2M or 4M more than
their initial wealth. Nonetheless, a substantial majority of their subjects chose (a) in the
first problem, while a substantial majority chose (b) in the second. This contradicts any
theory (not just EUM) under which people should have a consistent preference ranking of
probability distributions over final wealth levels.

Our theory easily explains this finding. If the initial gift is denoted G, and the monetary
amounts G,X, and C defining the decision problem must each be independently represented
in the fashion postulated above, then in the first problem, an expected wealth-maximizing
decision rule will choose (b) if and only if

E[G|rg] + p · E[X|rx] > E[G|rg] + E[C|rc],

which is equivalent to (2.2), while in the second problem it will choose (b) if and only if

E[G|rg] − p · E[X|rx] > E[G|rg] − E[C|rc],

which is equivalent to (4.1). We then get different probabilities of choosing (b) in the two
cases, given by equations (2.5) and (4.2) respectively.

Note that our theory assumes that the decision rule is in all cases the one that maximizes
expected final wealth, so that only the sum of the initial gift and the additional gain or loss
from the further option is assumed to matter to the decision maker; there is no intrinsic
interest assumed in gains or losses relative to what one had in the past or what one expected
to have. The relevance of the sequence of gains and losses by which one arrives at a given
final wealth comes not from the decision maker’s assumed objective, but from the need
to mentally represent the quantities used in the description of the options, in the form in
which they are presented, before integrating the separate pieces of information in further
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calculations. If this representation were possible with infinite precision (and subsequent
operations could also be perfectly precise), then different ways of presenting information
that imply the same possible final wealth levels would indeed be equivalent, and lead to the
same choices. But when the precision with which each monetary amount can be represented
is limited, mathematically equivalent problems are not processed in identical ways, and the
resulting behavior can be different as a result, despite its optimality in each case (conditional
on the mental representation).

Loss aversion. In the discussion above, we assume that the unsigned magnitudes of
monetary losses are encoded and decoded in exactly the same way as the magnitudes of
monetary gains. While this leads to an especially parsimonious mathematical specification,
the logic of our theory does not require us to assume this. In particular, the model should only
be symmetric in the way that losses as opposed to gains are treated if the prior distribution
from which potential losses are drawn is assumed to be the same as the prior distribution for
potential gains; yet it is hardly obvious that this is true. If we assume that both gains and
losses are log-normally distributed, but with different parameterizations of the two priors,
then the theory developed above can be generalized (as shown in the online appendix) to
one in which the biases in the average subjective valuations of losses differ in size from those
in the case of subjective valuations of gains. In particular, parameterizations of the model
are possible in which it predicts that subjects should exhibit “loss aversion” of the kind also
posited by prospect theory. For example, in order for subjects to be indifferent between
accepting and rejecting a gamble that offers an equal chance of a gain of size G and a loss of
size L, it may be necessary for the ratio G/L to be well above 1, as found by Tversky and
Kahneman (1992).

As shown in the appendix, the parametric assumptions about the respective prior distri-
butions for gains and losses required for this to be true are consistent with the assumptions
needed to obtain the predictions regarding choices between risky gains and certain gains that
we test above, as well as those needed to obtain the predictions regarding choices between
risky losses and certain losses that we have just discussed. Whether the assumptions regard-
ing priors that would be needed are also reasonable ones for settings such as the experiment
reported by Tversky and Kahneman is a topic that deserves further elaboration in future
studies.

Imprecise representation of probabilities. Tversky and Kahneman (1992) document other
respects in which subjects make both risk-averse choices and risk-seeking choices with respect
to small gambles, depending of the nature of the problem. For example, their subjects are
more often risk-seeking when choosing between a small certain gain and a small probability
of a considerably larger gain; but they are more often risk-averse when choosing between a
modest certain loss and a small probability of a considerably larger loss. Prospect theory
explains such cases by postulating that in the case of a risky prospect, the values assigned
to the various possible gains or losses are weighted not in proportion to each outcome’s
probability of occurrence (as required by EUM), but rather using weights that represent a
nonlinear transformation of the true probabilities.23

Choices of this kind are consistent with our model, if the model is generalized to assume

23Prelec (1998) and Gonzalez and Wu (1999) provide important further discussions of the properties that
such a nonlinear transformation should satisfy.
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(in the case of simple gambles of the kind discussed above) that the probability p of the
non-zero outcome also has an internal representation rp that is probabilistic. In the analysis
above, we have assumed for simplicity that the exact value of p is available as an input to the
decision rule. This is not inconsistent with our general view of the internal representation
of numerical information; for in the situation considered in our theoretical model (and in
our experiment), there is a single value of p that is used in all trials (though X and C vary
from trial to trial). Thus if we assume that the prior for which the subject’s decision rule
has been optimized represents the distribution of possible decision situations in this specific
experiment, the prior (in this type of experiment) would allow for only a single value of
p — and the Bayesian posterior would similarly have this single value of p in its support,
regardless of the noisy representation rp.

Nonetheless, it is clearly of interest to consider the case in which the prior is non-
degenerate (either because p varies from trial to trial, or because the decision maker has
not had enough experience with a particular context for her decision rule to be adapted to
the precise statistics of that context). Let us again assume for simplicity that under the
prior, the quantities p,X and C are distributed independently of one another; that the dis-
tribution of the representation rp depends only on p (not on the values of X or C), and
that the conditional distribution of rp is independent of the realizations of rx or rc; and
similarly for the other components of the internal representation r. Then condition (2.2) for
an optimal decision rule takes the more general form

E[p|rp] · E[X|rx] > E[C|rc],

or alternatively (given the model proposed above for the noisy coding of monetary amounts),

rx − rc > β−1ρ, ρ ≡ − log E[p|rp], (4.3)

generalizing (2.4). Here ρ is a random variable (because it depends on the realization of rp),
conditional on the true probability p.

This generalization of the decision rule (2.2) results in an additional source of randomness
in choice (namely, random variation in ρ); but in general, it also results in an additional
source of bias (because ρ also differs from log p on average). As a simple example, suppose
that the noise in the internal coding of X and C is negligible (ν is extremely small), but
that the internal representation rp is drawn from a distribution

rp ∼ N(z(p), ν2
p),

where z(p) ≡ log(p/1 − p) are the log odds of the two outcomes, and νp is non-negligible.
Suppose furthermore that the log odds are normally distributed under the prior,

z(p) ∼ N(µp, σ
2
p)

. Then the posterior log odds, conditional on the representation rp, are also normally dis-
tributed, with a mean m̄(rp) that is a weighted average of rp and the prior mean log odds,
and a variance σ̄2 that is independent of rp.

In this case, (4.3) requires that the value of log(X/C) required for indifference (acceptance
of the gamble exactly half the time) will be equal to the median value of ρ, which (given
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that rp has a symmetric distribution) is the value of ρ when rp is equal to the true log odds.
Alternatively, the value of the ratio C/X required for indifference is given by a function
w(p), where

w(p) ≡ E[F (z(p), ε)], F (z, ε) ≡ exp[m̄(z) + ε]

1 + exp[m̄(z) + ε]
,

and ε is a random variable distributed N(0, σ̄2). This function plays a role similar to the
probability weighting function of Kahneman and Tversky (1979). And as long as the variance
σ̄2 is not too great, the model implies that w(p) will have the inverse-S shape assumed by
Kahneman and Tversky.

Both Tversky and Kahneman (1992) and Gonzalez and Wu (1999) argue that this shape
for the probability weighting function can be understood as another example of diminishing
marginal sensitivity — in this case, diminishing with distance from either of the two extreme
probabilities 0 and 1. Our model shows more precisely how the same principle (noisy coding
combined with Bayesian inference from the noisy internal representation) naturally gives
rise to diminishing marginal sensitivity to larger monetary gains or losses and to effectively
nonlinear probability weighting.

In particular, if we fix the ratio νp/σp but make both σp and νp small, then in the limit
as σp, νp → 0, we obtain an analytical solution of the form

w(p) =
αpβ

(1− p)β + αpβ
, (4.4)

for certain coefficients α > 0, 0 < β < 1, which depend on the ratio νp/σp and the prior
mean log odds µp. (See the online appendix for details.) This function has the inverse-S
shape assumed by Kahneman and Tversky; indeed, the two-parameter family of weighting
functions (4.4) has often been assumed in econometric implementations of prospect theory.24

In this case, the model predicts risk-seeking in the case of gains for low values of p, but
risk-aversion for larger values of p, and risk-aversion in the case of losses for low values of p,
but risk-seeking for larger values of p, all as found by Kahneman and Tversky (1979). The
model is also consistent with the occurrence of Allais-type paradoxes, as discussed further
in the online appendix.

5 Evidence of a Connection Between Risk Aversion

and Cognitive Imprecision

Thus far, we have argued that our theory offers a unified explanation of a wide range of
phenomena that are not only well-documented, but that, in previous accounts, have required
a number of seemingly unrelated features to be added to a descriptive model of choice
behavior. However, we have discussed only phenomena that are also predicted by a variety
of already existing models of choice under risk. A further virtue of our theory is that it also

24Stott (2006) calls this family of weighting functions the “Goldstein-Einhorn” specification, and reviews
the various authors (including some prior to the work of Kahneman and Tversky) who have proposed versions
of it.
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leads to a variety of predictions that would not be predicted by other accounts, that do not
tie risk attitudes with respect to small gambles to cognitive imprecision.

Implications of heterogeneity in cognitive precision. We have shown above (Tables 1 and
2) that our experimental data are better fit by allowing the parameters of the scale-invariant
psychometric function to vary across subjects. There is an obvious reason, in the context of
our theory, for the choice curves of different subjects to be different: there is no reason to
suppose that the parameter ν, indicating the degree of imprecision of internal representations
of monetary amounts, is the same for all people. However, our theory implies that increasing
ν should both increase the randomness of the subject’s choices and imply greater apparent
risk-aversion, as measured by the value of X/C required for indifference. To the extent that
variation in this single factor is the main reason for differences in the behavior observed
for different subjects, we should expect to see a positive correlation between randomness of
choice and degree of risk aversion.

We can test this prediction by further examining the variation in behavior across subjects.
We focus here on the scale-invariant model, which as argued above is best supported by our
data, and estimate a scale-invariant choice curve for each of the 19 subjects other than
subject 9. (We omit subject 9 from the discussion in this section, since as shown in Figure 4,
this subject’s data are not well-described by a scale-invariant model.) Our theoretical model
implies not only that a scale-invariant curve (3.2) should describe each subject’s data, but
also that the coefficients for each subject should satisfy the inequalities

γ ≥ 0, − δ
γ
≥ log p−1, (5.1)

which are required in order for there to exist values of σ2 and ν2 consistent with those coef-
ficients. Hence in estimating the subject-specific models, we impose the further restriction
that the value of γ be non-negative.25

In comparing the choice curves of the different subjects, it is useful to parameterize them
not by γ and δ, but instead by the values of γ and

π ≡ eδ/γ.

In terms of this alternative parameterization, the theoretical constraints (5.1) can be written:

γ ≥ 0, π ≤ p. (5.2)

Note that when δ/γ ≤ 0 (as required by our theoretical model), 0 ≤ π ≤ 1, and π has the
interpretation of a “risk-neutral probability”: the subject’s indifference point is the same as
that of a risk-neutral, optimizing decision maker who believes that the probability of the
non-zero lottery payoff is π (rather than the true probability p). The prediction that π ≤ p
is another way of saying that our theoretical model predicts apparent risk aversion; and the
degree to which a subject’s estimated π is less than p provides a simple measure of the degree
of apparent risk aversion.

25For all but one subject, the estimated value of γ would be positive, even without imposing the restriction,
and even for that one, the value of γ is only slightly negative; we presume that this estimate reflects sampling
error, and treat this subject as having a γ of zero.
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Figure 5: Heterogeneity in subjects’ choice curves. Each shaded region indicates the credible
region for an individual subject’s parameters γ and π, with an open circle at that subject’s
maximum-likelihood values. The dashed line shows the theoretical relationship between γ
and π that should exist if all subjects share a common prior, under which σ = 0.35.

Figure 5 shows the estimated values of γ and π for each of the 19 subjects for whom
it is not grossly inaccurate to estimate a scale-invariant choice curve (now imposing the
theoretical constraint that γ ≥ 0). For each subject, an open circle indicates the parameter
values that maximize the likelihood of the data for that subject (the ML estimate), and the
surrounding shaded region indicates the set of parameter values for which the log likelihood
of the data is no more than 2 points lower than at the maximum. Thus the shaded region
indicates a Bayesian credible region for the parameter estimates, under the assumption of
a uniform prior for those parameters. The boundary of each maximum-posterior density
credible region is chosen according to a criterion which, in the case of a Gaussian posterior
for a single variable, would report the interval corresponding to the mean estimate plus or
minus two standard deviations.

The largest value of π that would be consistent with prediction (5.2) is indicated by the
horizontal dotted line in Figure 5; we see that for all but one of the 19 subjects, the credible
region includes points consistent with this prediction. Thus the individual choice curves of
18 out of our 20 subjects are reasonably consistent with both the model prediction of scale
invariance and with the coefficient constraints (5.2).

If we further assume a common log-normal prior (2.3) for all subjects, but allow the
precision of mental coding of monetary amounts (i.e., the parameter ν2) to vary across
subjects, then the values of γ and π estimated for each subject are predicted by the model
to be linked by a relationship of the form

π = p1+(2σ2γ2)−1

, (5.3)

where σ2 is a parameter common to all subjects. This is an upward-sloping relationship, of
the kind illustrated by the dashed curve in Figure 5, which graphs equation (5.3) in the case
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that σ = 0.35. Here ν2 is decreasing (the precision of mental coding is increasing) as one
moves up and to the right along the dashed curve.

If we estimate a choice curve for each subject without imposing the restriction of a
common σ2, the estimated coefficients do not all line up perfectly on a curve consistent with
(5.3); nonetheless, there is a strong positive correlation between the ML estimates of γ and
π for the various subjects, as can be seen in Figure 5. That is, the degree of apparent
risk aversion (measured by the degree to which π is less than p) is generally greater for
those subjects whose choices are less sensitive to variation in X/C (measured by the size
of γ). The fact that these two features of behavior go hand in hand is consistent with our
theory. Models such as EUM or prospect theory, extended to allow for stochastic choice
as in section 3.2, instead provide no reason to expect such a relationship, since in these
theories the degree of randomness of choice and the degree of risk aversion are determined
by independent parameters.

The predictions of our theory will be more flexible — and arguably more consistent
with our experimental data — if we allow different subjects to have different priors (more
specifically, different values for σ2). This might reflect imperfect learning of the prior (not
surprising given the subjects’ finite experience in this environment), in ways that differ across
subjects.

Correlation with imprecision in number processing more generally. The positive correla-
tion shown in Figure 5 is also found in a replication of our study by Garcia et al. (2018).
They show furthermore that both the randomness and the apparent risk aversion in choice
under risk can be predicted by the degree of randomness of the subjects responses in an
independent numerosity comparison task of the kind discussed in section 1.1 — that is, by
the subject-specific value of ν estimated using equation (1.2). This not only supports the
hypothesis that small-stakes risk aversion results from noisy coding of monetary amounts,
but suggests that the cognitive imprecision involved may be related to imprecision in the
internal representation of numerical magnitudes more generally.

Schley and Peters (2014) also report greater apparent risk aversion in subjects who rep-
resent numbers less precisely in other types of tasks. These authors also offer an explanation
for apparent risk aversion that is based on the idea that the perception of the numerical
magnitudes of prospective monetary payoffs is biased, and more specifically that perceived
magnitudes are an increasing, strictly concave function of the magnitudes. Like us, they
base their proposal on limitations on people’s general ability to accurate represent numbers
mentally, rather than on the true utility obtained from having more money (as in the EUM
explanation of risk aversion) or a theory of distorted valuations that is specific to the domain
of value-based decision making (as with prospect theory). In support of this proposal, they
show that subjects who less accurately represent numbers for other purposes also exhibit
greater apparent diminishing marginal utility of income and greater apparent risk-aversion
in choices between risky gambles.

However, their discussion assumes that less capacity for symbolic number mapping results
in a deterministic distortion of perceived numerical magnitudes (a true quantity X is always
perceived as exactly X̂ = AXβ), rather than in a more random mental representation as in
our theory. This means that they do not explore the connection between the randomness of
subjects’ choices and apparent risk aversion, as Garcia et al. and we do; and their theory
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provides no explanation for why people should value lotteries according to the average value
of the perceived payoffs X̂i instead of, say, according to the average value of X̂

1/β
i — a

criterion that would reliably maximize expected wealth, taking into account the perceptual
distortion.

Effects of varying cognitive load. Thus far, we have discussed implications of our model,
taking the precision of coding (parameterized by ν) to be fixed. But the model also makes
predictions about the effects of varying ν, which might be subject to predictable variation
for a variety of reasons. For example, one might well suppose that increased time pressure,
distraction or cognitive load should reduce the cognitive resources used to represent the mon-
etary magnitudes that define a particular decision problem, and that this should correspond,
in our model, to an increase in ν. According to our model, this should result in both de-
creased sensitivity of a subject’s decisions to variations in the risky payoff X that is offered
(i.e., a lower value of γ) and increased apparent risk aversion (a value of π that is lower
relative to p). This is an example of a prediction of our theory that is not made by theories
like prospect theory, that attribute departures from the predictions of EUM to (presumably
stable) distortions in the way that subjects evaluate monetary gains or probabilities.

In fact, a number of authors have found that increasing cognitive load (for example, by
requiring subjects to concurrently maintain a list of random letters or numbers in memory)
causes subjects to make more risk-averse choices (Whitney et al., 2008; Benjamin et al.,
2013; Deck and Jahedi, 2015; Gerhardt et al., 2016).26 This is often interpreted as support
for a “dual systems” view of decision making, in which increased cognitive load makes it
harder for subjects to employ a deliberative system that would be called upon under other
circumstances, so that emotional reactions or simpler heuristics are relied upon instead. Our
theory provides an alternative interpretation, in which the same cognitive mechanism might
be employed in both cases, but it relies upon an imprecise analog representation with a
degree of precision that depends on the number of other claims on working memory. The
fact that our subjects display a range of degrees of apparent risk aversion, as well as a range
of degrees of randomness in their choices, as shown in Figure 5 — rather than simply two
clusters corresponding to the users of two very different mental systems — is more easily
explained under the theory that we propose.

Effects of varying the range of possible monetary payoffs. Another reason for the pa-
rameter ν to possibly vary across experimental settings is change in the ranges of monetary
payoffs X and C that need to be represented. While we have found that we can account
fairly well for the imprecision in our subjects’ evaluations of the gambles presented to them
under the hypothesis that the coding noise parameter ν is the same on all trials, it remains
possible that the value of ν adapts depending on the prior distribution from which X and
C are expected to be drawn. Frydman and Jin (2019) report an experiment similar to ours,
in which however the parameter σ of the log-normal distributions from which the monetary
amounts X and C are drawn is different in two different blocks of trials. They observe

26Olschewski et al. (2018) instead find that increased cognitive load increases the randomness of choice, but
only increases risk aversion by a small (statistically insignificant) amount. Their measure of risk aversion,
however, is based on an “ARUM-probit” model that, as shown in section 3.2, is not consistent with the
predictions of our model, and does not fit our own experimental data as well as the logarithmic coding
model.
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probabilistic dependence of choice on the payoffs offered on a given trial (as in our Figures 2
and 3), but find that the choice curves are steeper (when plotted as a function of log(X/C))
in the data from the sessions in which σ was smaller. They interpret this result as showing
that the precision of internal representations of the monetary payoffs depends on the range
of values that the decision maker expects to encounter in a given context, in a way that
allows the brain to make optimal use of a finite capacity for discriminating between different
amounts (“efficient coding”).

Our theory is easily extended to predict such an effect. Suppose that the limit on the
precision of numerical representations comes not from some “hard-wired” system of number
representation (so that the degree of overlap between the distributions of internal represen-
tations of the quantities $28 and $30, say, is independent of the prior distribution from which
these quantities may have been drawn), but from a limit on the information-processing ca-
pacity of the system used to represent analog magnitudes. As a concrete example of such
a theory, suppose that the representation rx of any quantity X is given by an independent
draw from a distribution N(m, ω2), where m = φ(X) is a nonlinear transformation of the
true magnitude. If we assume that production of representations with this degree of fidelity
requires that the variance of the distribution of values for m be less than some finite upper
bound Ω2, then the system has a finite information-theoretic “channel capacity” determined
by the ratio Ω/ω — essentially, a measure of the effective number of distinct cases that can
be accurately discriminated. (See Cover and Thomas, 2006, chap. 9.)

Let us suppose that ω and Ω are given parameters (reflecting the limited acuity of a per-
son’s semantic representations of numerical magnitudes), but that the transformation φ(X)
is optimized for a given environment. More specifically, suppose that the transformation
is of the form φ(X) = ξ + ψ logX, with parameters ξ, ψ that are optimized for a given
environment (that is, for a given prior distribution for X). We show in the online appendix
that if the prior is of the form X ∼ N(µ, σ2), then the optimal encoding rule leads to a
noisy internal representation of the kind assumed in section 2, but with a value of ν that
varies endogenously with the prior. In fact, ν = (ω/Ω)σ, so that ν is predicted to grow in
proportion to the value of σ. Combining this result with prediction (2.5) for the probability
of acceptance of the risky bet, we see that the model predicts the effect observed by Frydman
and Jin (2019), in which a lower value of σ results in a steeper choice curve.27

An important implication of both the results of Frydman and Jin, and the studies sug-
gesting that manipulations of cognitive load can affect apparent risk aversion, is that an
aspect of choice behavior commonly attributed to preferences — which are usually assumed
to remain invariant across choice situations — may actually be malleable: subject to vari-
ation from one situation to another, and potentially subject to systematic influence by the
designer of a choice environment.28 The extent to which this is true should be an important

27Frydman and Jin (2019) also propose a model of efficient coding that can explain their finding. However,
their formulation has other quantitative predictions that are at odds with our experimental data; for example,
their model implies that choice curves should not be scale-invariant. The efficient coding model proposed
here is instead consistent with both our findings and theirs.

28See Payzan-LeNestour and Woodford (2020) for further discussion. “Evolutionary” theories of the origin
of preferences, such as those of Robson (2001), Rayo and Becker (2007), and Netzer (2009), suggest that this
could be possible as well, though it is often unclear over what time scale the “evolution” is thought to occur
in such theories.
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topic for further study.
The theory proposed here (and the experimental results that we report) neither requires

that this be the case, nor precludes it; our main results simply assume a particular model of
(and degree of precision of) noisy coding of numerical information about the choice options,
without asking where it came from, and assume a decision rule that is optimal for a particular
prior distribution over choice situations, without asking how the optimal rule (or the prior
relative to which it is optimal) is learned. But exactly because we seek to ground risk taking
in more general features of cognition rather than appealing to preferences, it is natural to
consider how these features of a given person’s cognitive functioning may be shaped by their
experience.29 Extension of the theory to incorporate learning dynamics and adaptation of
internal representations to the statistics of a given environment should be an important next
step in the research agenda.

29For an example of a model of a dynamic process through which a noisy coding scheme might adapt to
a changing environment, see Robson and Whitehead (2019).
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ONLINE APPENDIX

Khaw, Li, and Woodford,
“Cognitive Imprecision and Small-Stakes Risk Aversion”

A A Bayesian Model of Numerosity Estimation

Suppose that a stimulus of numerosity n results in an internal representation r that is drawn
from a distribution

r ∼ N(log n, ν2), (A.1)

where the noise parameter ν is independent of n. Then if the prior distribution from which
n is drawn is approximated by a log-normal distribution,

log n ∼ N(µ, σ2),

as proposed in the text (section 1.1), the pair of random variables (log n, r) have a joint
distribution of the bivariate Gaussian family. It follows from this that the distribution of
log n conditional on the value of r will be a Gaussian distribution,

log n|r ∼ N(µpost(r), σ
2
post), (A.2)

where the mean µpost(r) is an affine function of r, and the variance σ2
post is the same for all

r. This will give the posterior distribution for log n (and hence a posterior distribution for
n) that is implied by Bayes’ Rule, starting from the Gaussian prior for log n and updating
on the basis of the noisy evidence r. Since the posterior distribution for log n is normal, the
posterior distribution for n is log-normal, as stated in the text.

It further follows from the properties of a bivariate Gaussian distribution that the con-
ditional mean (mean of the posterior distribution) of log n is given by the linear projection

µpost(r) = E[log n|r] = µ + β · (r − µ), (A.3)

where µ is the unconditional mean of both log n and r, and the slope coefficient (linear
regression coefficient) is given by

β ≡ cov(log n, r)

var(r)
=

σ2

σ2 + ν2
, (A.4)

as stated in the text at (1.3). The conditional variance of log n is then given by

σ2
post = var(log n− µpost(r)) = var(log n− βr)

= var((1− β) log n) + var(βr|n) = (1− β)2σ2 + β2ν2

=
ν4σ2

(σ2 + ν2)2
+

σ4ν2

(σ2 + ν2)2
=

σ2ν2

σ2 + ν2
. (A.5)

The predicted distribution of numerosity estimates then depends on how we assume that
the subject’s estimate of the stimulus numerosity relates to the posterior distribution over
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possible numerosities implied by the internal representation r. Consider first the hypothesis
that the subject’s numerosity estimate n̂ is optimal, in the sense of minimizing the mean
squared estimation error, MSE ≡ E[(n − n̂)2], among all possible estimation rules under
which n̂ is some function of r. The rule that is optimal from the standpoint of this objective
would be the one under which n̂(r) = E[n|r] for all r.30

It follows from the properties of a log-normal distribution that if the posterior distribution
for n is given by (A.2), the posterior mean will be given by

E[n|r] = exp(µpost + (1/2)σ2
post).

Hence in this case, the Bayesian model predicts that

log n̂(r) = log E[n|r] = µpost(r) + (1/2)σ2
post

= µ + β · (r − µ) + (1/2)σ2
post. (A.6)

Thus as stated in the text, log n̂(r) is predicted to be an affine function of r with slope β.
Since r is a random variable, conditional on the numerosity n of the stimulus, it follows

that n̂(r) is also a random variable conditional on n. More specifically, since r is normally
distributed, conditional on n, and log n̂(r) is an affine function of r, log n̂ will be normally
distributed conditional on n:

log n̂ ∼ N(µ̂(n), σ̂2), (A.7)

as stated in the text. The mean and variance of this conditional distribution are given by

µ̂(n) ≡ E[log n̂|n] = µ+ β · (E[r|n]− µ) + (1/2)σ2
post

= µ+ β · (log n− µ) + (1/2)σ2
post,

σ̂2 ≡ var(log n̂|n) = β2var(r|n)

= β2ν2 =
σ4ν2

(σ2 + ν2)2
.

Thus as stated in the text, µ̂(n) is an affine function of log n with slope β, and σ̂2 is inde-
pendent of n.

Conditional on n, n̂ is log-normally distributed with the parameters just stated. It then
follows from the properties of a log-normal distribution that

E[n̂|n] = exp(µ̂(n) + (1/2)σ̂2), (A.8)

var[n̂|n] = [exp(σ̂2)− 1] · exp(2µ̂(n) + σ̂2).

Hence
SD[n̂|n]

E[n̂|n]
=
√
eσ̂2 − 1 > 0 (A.9)

regardless of the value of n, as stated in the text. This delivers the property of scalar
variability discussed in the text.

30The calculations in this case coincide with the ones needed for the Bayesian model of optimal choice
between lotteries, presented in section 2, even though the reason why it is optimal to base the subject’s
decision on an estimate of this kind is different in that context.
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One also observes that (A.8) implies that

log E[n̂|n] = µ̂(n) + (1/2)σ̂2 = logA+ β log n,

where
A ≡ exp((1− β)µ+ (1/2)σ2

post + (1/2)σ̂2) > 0.

This yields the power-law relationship stated as (1.4) in the text for the mean estimated
numerosity as a function of the true numerosity.

As discussed in the text, this implies a “regressive bias.” Specifically, E[n̂|n] > n for all
n < n∗, while E[n̂|n] < n for all n > n∗, where the “cross-over point” n∗ is given by

log n∗ ≡ logA

1− β
= µ+ c, (A.10)

using the expression

c ≡ 1

2

σ2
post + σ̂2

1− β
> 0

for a quantity that depends on σ and ν, but is independent of the prior mean µ. Thus if in
different experiments, the degree of prior uncertainty about the stimulus numerosity is the
same in percentage terms (that is, the value of σ is the same), while the average numerosity
presented is different (implying a different value of µ), the model implies that the cross-over
point n∗ should vary in proportion to eµ. Alternatively, n∗ should vary in proportion to the
prior mean numerosity E[n] (which is equal to eµ times a constant that depends only on σ),
as stated in the text.

If instead we assume that the prior is fixed across experiments, but that ν is varied (for
example, by varying cognitive load, as in the experiments of Anobile et al., 2012), then
both of the coefficients A and β in relation (1.4) are predicted to change across experiments.
When ν is larger (internal representations are less precise), the model predicts that β will be
smaller (though still positive), so that E[n̂|n] will be a more concave function of n, as stated
in the text.

These qualitative conclusions about subjective estimates of numerosity do not depend
on assuming that the subject’s estimate must equal the posterior mean, conditional on
the internal representation r. If we assume instead that the subject’s estimate minimizes
the mean squared percentage error in the estimates, E[(log n̂ − log n)2], then the Bayesian
estimate n̂(r) should satisfy

log n̂(r) = E[log n| r] = µpost(r).

From the above characterization of the posterior distribution, we would again find that
log n̂(r) is predicted to be an affine function of r, with a slope of β; only the intercept of
the function is different in this case. The same argument as above then once again implies
(A.7), where µ̂(n) is again an affine function of log n with a slope of β, though with a different
intercept than the one derived above.

Alternatively, if we assume that the subject’s estimate is given by the posterior mode (or
“maximum a posteriori estimate”), then the properties of a log-normal distribution imply
that

log n̂(r) = log mode[n|r] = µpost(r)− σ2
post.
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Thus once again, log n̂(r) is predicted to be an affine function of r with slope β, though with
yet another value for the intercept term. This again allows us to derive (A.7), in which µ̂(n)
is again an affine function of log n with a slope of β.

In each of these cases, the same derivations as above allow us to obtain the predictions
(A.9) and the power law (1.4). Again the equation for the cross-over point is of the form
(A.10); only the expression for the constant c is different in each case. Thus in any of these
cases, we obtain the following common predictions: (i) log E[n̂|n] should be an affine function
of log n [a log-log plot should be affine] with a slope 0 < β < 1; only the intercept of the
log-log plot should be different in the three cases. (ii) Fixing σ and ν, but allowing µ to vary
across experiments, the cross-over point n∗ should be a constant multiple of the prior mean
E[n]; only the positive multiplicative factor is different in the three cases. (iii) In any given
experiment, the standard deviation of n̂ should grow in proportion to the mean estimate as
n is increased [the property of scalar variability]. As discussed in the text, there is support
for all of these predictions in experiments on estimation of numerosity (as well as a number
of other sensory contexts, as reviewed in Petzschner et al., 2015).

B A Bayesian Model of Lottery Choice

As explained in the text, we assume that the quantities X and C are respectively represented
by quantities rx and rc, independent random draws from the conditional distributions

rx ∼ N(logX, ν2), rc ∼ N(logC, ν2), (B.1)

where the precision parameter ν > 0 is the same for both monetary amounts. We assume
that the subject’s decision rule is optimized (that is, that it maximizes the subject’s expected
financial gain from the decision) for an environment in which the true values (X,C) defining
a given decision problem are assumed to drawn from a prior distribution under which X
and C are distributed independently of each other, and each have a common (log-normal)
marginal distribution

logX, logC ∼ N(µ, σ2). (B.2)

Under these assumptions, the posterior distribution for X conditional on the internal rep-
resentation r ≡ (rx, rc) depends only on rx, and the posterior distribution for C similarly
depends only on rc.

We wish to determine which of the two options available to the subject on the given
trial would maximize the expected financial gain E[∆W a|r], given that the decision must be
based on the imprecise internal representation r of the decision problem. In the case of the
risky option, the expected financial gain is31

E[∆W risky|r] = p · E[X|rx],
31Here we assume that the zero financial gain in the case of the zero outcome is internally represented

as precisely zero. This is consistent with our logarithmic coding model (which implies that extremely small
financial gains have virtually zero probability of being mistaken for a financial gain of one cent or more). As
discussed in the text, we also assume here that the probabilities of the different outcomes are represented
with perfect precision; this last assumption is relaxed in section E below.
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while in the case of the certain option, it is

E[∆W certain|r] = E[C|rc].

Hence the risky option is predicted to be chosen if and only if

p · E[X|rx] > E[C|rc], (B.3)

as stated in the text at (2.2).
Furthermore, for either of the monetary amounts considered individually (Y = X or C),

the model just proposed implies that the joint distribution of log Y and ry is a bivariate
Gaussian distribution, of the same form as the joint distribution of log n and r in the model
of numerosity estimation. Just as in the calculations in the previous section of this appendix,
the distribution of log Y conditional on the value of ry will be a Gaussian distribution,

log Y |ry ∼ N(µpost(ry), σ
2
post), (B.4)

where the mean µpost(ry) is an affine function of ry, defined by the same equation (A.3) as
above; and the variance σ2

post is the same for all ry, and again given by (A.5). Thus the
conditional distribution for Y will be log-normal.

It then follows (just as in the model of numerosity estimation) that the conditional
expectation of either monetary amount will be given by

E[Y |ry] = exp[µpost(ry) + (1/2)σ2
post]

= exp[µ + β · (ry − µ) + (1/2)σ2
post]

= exp[α + βry],

as stated in the text, where

α ≡ (1− β)µ + (1/2)σ2
post = (1− β)

[
µ + (1/2)σ2

]
and β is again defined in (A.4). Substituting this expression for the conditional expectations
in (B.3), and taking the logarithm of both sides of the inequality, we find that the risky
option should be chosen if and only if the internal representations satisfy

log p + βrx > βrc,

as stated in the text.
This in turn implies that the risky option should be chosen if and only if rx − rc exceeds

the threshold stated in (2.4). The proposed model of noisy coding implies that, conditional
on the true data (X,C) defining the decision problem, rx − rc will be a Gaussian random
variable,

rx − rc ∼ N(logX − logC, 2ν2).

Hence the transformed variable

z ≡ (rx − rc) − log(X/C)√
2 · ν

46



will have a distribution N(0, 1), and a cumulative distribution function Φ(z). In terms of this
transformed variable, the condition (2.4) for acceptance of the risky option can be expressed
as

z > zcrit ≡ β−1 log p−1 − log(X/C)√
2 · ν

.

The probability of this occurring is Φ(−zcrit), as stated by equation (2.4) in the text.

C Endogenizing the Precision of the Internal

Representations of Numerical Quantities

Instead of simply postulating the rules (B.1), where the precision parameter ν is treated as
exogenously given, we may instead suppose (as discussed in the text in section 5) that the
internal representation rx of a numerical magnitude X is a draw from a distribution

rx ∼ N(m, ω2), (C.1)

where m is a monotonic transformation of the monetary amount X

m = φ(X) = ξ + ψ logX, (C.2)

with parameters α and β that may depend on the statistics of a particular environment, while
the precision parameter ω is assumed to be exogenously given. We assume that the cognitive
processes that produce this representation are only capable of generating representations with
the degree of precision indicated in (C.1) in the case that the “encoded value” m does not
vary in too extreme a way; specifically, we suppose that the system is subject to a “power
constraint” which requires that the average value of m2 be within some finite bound,

E[m2] ≤ Ω2 < ∞. (C.3)

Such a model has the mathematical form of what is called a “Gaussian channel” in the
communications engineering literature. We can think of the system as one in which an
original message X must be encoded through a rule such as (C.2) in order to allow it to
be transmitted to another location using a communication channel with particular physical
properties. Here m is the input that is supplied by a “sender” to the channel (encoding
in some convenient way the information in the message X), while rx is the output of the
channel to the “receiver”, on the basis of which some action can then be taken. The statistical
relationship (C.1), together with the power constraint (C.3), specifies the kind of messages
that can be transmitted over the channel, independently of what particular encoded values
m mean (what value of X in the world is mapped into a particular encoded value m), and
the way in which recovered signals rx will be interpreted. The “channel capacity” of such a
channel is a quantitative upper bound on the amount of information that can be transmitted
over the channel, per transmission, regardless of the encoding rule (and regardless of the
domain of values X about which one may wish to communicate); this is equal to

C = log

√
Ω2 + ω2

ω
,
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an increasing function of Ω/ω, as stated in the text.32 The problem of optimally choosing a
mapping (C.2) in order to make the output rx useful to the receiver, given the constraints
on what can be transmitted over the channel, is then what is known as an “optimal source
coding” problem in the communications literature.

C.1 An Efficient Coding Model of Numerosity Estimation

As an example of such a problem, suppose that a cognitive system must generate an internal
representation rx of a numerical magnitude X, on the basis of which an estimate X̂ of that
magnitude will have to be produced. Suppose further that the goal of the design problem is
to have a system that will achieve as low as possible a mean squared error of the estimate
X̂, when X is drawn from a log-normal prior distribution,

logX ∼ N(µ, σ2),

as in the model of numerosity estimation in section A.
In this problem, the estimate X̂ must be a function of the representation rx. But any

function of rx can also be expressed as a function of the transformed variable r̃x ≡ (rx−ξ)/ψ,
so we can equivalently treat r̃x as the internal representation, and restrict attention to
estimation rules that make X̂ a function of r̃x. But in any representation scheme of the
proposed form, it follows from (C.1)–(C.2) that r̃x ∼ N(logX,ω2/ψ2). Thus we have a
representation of the form (A.1), with ν = ω/ψ. It follows that all of the calculations in
section A continue to apply, with this interpretation of the parameter ν, and with the variable
r in that section understood to refer to r̃x.

It follows that the optimal (minimum-MSE) estimation rule in the case of any encoding
rule (C.2) will be given by (A.6), as in section A, and the MSE associated with this rule will
be given by

MSE = exp(2µ+ 2σ2) · [1− exp(−(1− β)σ2)].

For a fixed prior, this is a decreasing function of β, and hence an increasing function of ν.
Thus it is desirable (in order to make the MSE as small as possible) to make ν as small as
possible. Since ν = ω/ψ, it follows that it would be desirable to make ψ as large as possible,
consistent with the power constraint (C.3).

In the case of the kind of prior assumed, the power constraint becomes

(ξ + ψµ)2 + ψ2σ2 ≤ Ω2.

The maximum value of ψ consistent with this constraint is achieved when

ξ = −ψµ, ψ =
Ω

σ
. (C.4)

In this case, we have

ν =
Ω

ω
· σ. (C.5)

32See Cover and Thomas (2006), chap. 9, for explanation and proof. C can be understood as the logarithm
of the effective number of distinct values of m that can be differentiated on the basis of the output signal rx.
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Thus the optimal endogenous encoding rule makes ν vary in proportion to σ, the prior
standard deviation of logX.

If we assume that imprecise internal representations of this kind are drawn upon in a
number-comparison task, then it follows from the derivation in section A above that the
probability of judging a number X2 to be larger than some reference number X1 should be
given by

Prob[“X2 is greater”] = Φ

(
Ω√
2ωσ

log(X2/X1)

)
. (C.6)

This implies that the z-transformed probability should be an increasing linear function of
logX2, with a slope that increases if σ is reduced. This predicted slope increase is exactly
what Frydman and Jin (2018) find, both for their pooled data and for most of their subjects
individually.

In the derivation above, we have assumed that the goal of the encoding scheme is to
minimize the MSE of the estimated value X̂ that could be based on the imprecise internal
representation of a numerical quantity. In the case of an experiment like that of Frydman and
Jin, one might ask whether it would not be more appropriate to assume that the encoding
scheme is optimized so as to maximize performance in this particular task. But also under
this criterion, reduction of ν clearly increases performance. Hence the optimal encoding rule
in the family (C.2) will be the one that minimizes ν (which is to say, that maximizes ψ),
from among those consistent with the power constraint. The optimal encoding rule is the
same as above, leading again to the prediction (C.5) for the endogenous value of ν, and to
(C.6) as the prediction regarding response frequencies in the Frydman-Jin experiment.

C.2 An Efficient Coding Model of Lottery Choice

Now let us turn again to the model of lottery choice, but now endogenizing the precision
with which numerical magnitudes are internally represented. As in section B, we assume
here that both the quantities X and C are encoded in the same way. Here this means
that both are encoded using the system (C.1)–(C.2), with the same noise parameter ω for
the “capacity-constrained channel,” and the same parameter values (ξ, ψ) for the encoding
function in both cases. The internal representations rx, rc are assumed to be independent
draws from their respective distributions

rx ∼ N(mx, ω
2), rc ∼ N(mc, ω

2).

The parameters of the common encoding rule (C.2) must satisfy the power constraint (C.3),
where the expectation is taken under the prior N(µ, σ2), from which both X and C are
assumed to be drawn.

The implications of a common encoding rule of this kind can be derived along similar lines
as in the previous section. The assumption that a DM’s decision rule must be a function of rx
and rc is equivalent to assuming that it must be based on the transformed quantities r̃x and
r̃c (defined as in the previous section); and these transformed quantities will be independent
draws from the distributions specified in (B.1), where we define ν = ω/ψ, as in the previous
section. Using the same argument as in section B, we can show that in the case of any
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encoding rule of the form (C.2), the optimal decision rule will choose the risky lottery if and
only if

r̃x − r̃c > θ, (C.7)

for an appropriately chosen threshold θ. Moreover, under any threshold rule of this kind, the
implied probability of acceptance of the risky lottery will be given by the function

P (X/C; θ, ν) ≡ Φ

(
logX/C − θ√

2ν

)
, (C.8)

generalizing condition (2.5) in the text.
In order to consider the optimal endogenous determination of the encoding rule (C.2), we

must be able to measure the degree to which the DM achieves her objective under different
parameterizations of the rule. Under any encoding rule and any decision rule of the threshold
form (C.7), the DM’s expected loss (that is, the amount by which the mean monetary reward
falls short of what could have been obtained through correct choice on each trial) is given
by the function

L(θ, ν) ≡ E[max(C − pX, 0) · P (X/C; θ, ν)] + E[max(pX − C, 0) · (1− P (X/C; θ, ν))],

where the expectation is over possible draws of X and C from the prior distribution. For
any value of ν, the optimal threshold θ will minimize this function. This requires that at
the optimal threshold θ∗(ν), the first-order condition

∂L

∂θ
(θ∗) = E[(C − pX)

∂P (X,C)

∂θ
(θ∗)]

= − 1√
2ν

E

[
(C − pX) f

(
logX/C − θ√

2ν

)]
= 0 (C.9)

must be satisfied, where f(z) is the probability density function of the standard normal
distribution.

In fact, we can use the same argument as in section B to show that the optimal threshold
is θ∗ = β−1 log p−1, so we do not need condition (C.9) to determine θ∗; however, it will be
useful for us to know that (C.9) must hold when θ = θ∗(ν).

Assuming an optimal decision criterion, the DM’s expected loss in the case of a given
encoding rule is then equal to

L∗(ν) ≡ max
θ
L(θ, ν).

We wish to know how this changes if ν changes as a result of a change in the encoding rule.
Differentiating this definition and using the envelope theorem, we obtain

dL∗

dν
=

∂L

∂ν
(θ∗(ν), ν)

= − 1√
2ν2

E

[
(C − pX) f

(
logX/C − θ√

2ν

)
(logX/C − θ∗)

]
= − 1√

2ν2
E

[
(C − pX) f

(
logX/C − θ√

2ν

)
(logX/C − log p−1)

]
+

1√
2ν2

E

[
(C − pX) f

(
logX/C − θ√

2ν

)
(θ∗ − log p−1)

]
. (C.10)
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The final term in (C.10) is equal to zero, because of (C.9). Hence only the first term on
the right-hand side of (C.10) matters, and this term can be unambiguously signed. Because

C − pX < 0 ⇔ logX/C − log p−1 > 0

the expression inside the square brackets in this term is never positive, and is negative with
probability 1 (under the joint prior for X and C). Hence the expected value of the expression
inside the brackets is negative, and we find that

dL∗

dν
< 0

necessarily.
It follows that the DM’s expected financial gain (the objective assumed in our model of

the DM’s behavior) is maximized by choosing an encoding rule consistent with (C.3) that
makes ν as small as possible. As in the previous section, this requires that the encoding rule
be given by (C.4), as a result of which the endogenously determined value of ν is again given
by (C.5).

As in the previous section, we conclude that reducing the parameter σ of the prior
distributions from which the values of X and C are chosen should reduce the value of ν, in
order for efficient use to be made of the system’s finite capacity for representing different
numerical magnitudes. The probability of a subject’s accepting the risky lottery should
be given by (C.8), setting θ = θ∗(ν) = β−1 log p−1. It then follows that reducing σ should
increase the steepness of the choice curve, when the acceptance probability is plotted as a
function of logX/C, as discussed in the text. This is exactly what Frydman and Jin (2018)
find in their experiment.33

D Accounting for Loss Aversion

In the case of risky prospects that involve losses, it is natural to suppose that the (unsigned)
numerical magnitude of each possible loss is imprecisely encoded in exactly the same way as
the monetary amounts that represent possible gains. If we suppose that the distribution of
possible internal representations of a loss of size L is encoded by a quantity rL ∼ N(logL, ν2),
where the precision parameter ν is exactly the same as in the case of gains, and we similarly
assume that the prior over the (unsigned) numerical magnitudes of possible losses is the
same as the prior distribution (B.2) from which possible gains are drawn, then the optimal
subjective estimate of a loss based on its noisy internal representation will be given by

E[L|rL] = exp[α + βrL],

where α and β are the same coefficients as in the case of gains. The probability distribution of
estimated values conditional on the true magnitude G will again be a log-normal distribution,
the mean of which depends on G in exactly the same way as in the case of gains. Under
these assumptions, we obtain the prediction that a random loss will be preferred to a certain

33Frydman and Jin also interpret their finding as an implication of efficient coding, though their derivation
of this conclusion is somewhat different from the one presented here based on our logarithmic coding model.
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loss with the probability (4.2) stated in the text, where the parameters β and ν are the same
as in the corresponding equation in the case of risky prospects involving only gains. This
provides an explanation for Kahneman and Tversky’s “reflection effect,” as mentioned in the
text.

It need not be the case, however, that the prior distributions over potential gains and
losses are the same. Suppose that in the case of gains, the prior distribution over possible
magnitudes G is given by

logG ∼ N(µG, σ
2
G),

while in the case of losses the prior distribution is given by

logL ∼ N(µL, σ
2
L).

To reduce the number of free parameters in our theory, let us suppose that the precision of
encoding of both gains and losses is endogenously determined in the way discussed above.
Thus a gain of magnitude G will have an imprecise internal representation drawn from the
distribution

rG ∼ N(logG, ν2
G),

while a loss of magnitude L will have a representation drawn from the distribution

rL ∼ N(logL, ν2
L),

in which the ratio ν2
L/σ

2
L is the same ratio as ν2

G/σ
2
G because of (C.5).

It then follows from the discussion above that the optimal subjective estimate of a mon-
etary payoff of either sign, conditional on its internal representation, will be given by

E[G|rG] = exp[αG + βrG]

in the case of a gain, but by
E[L|rL] = exp[αL + βrL]

in the case of a loss. Here the coefficient

β =
σ2
G

σ2
G + ν2

G

=
σ2
L

σ2
L + ν2

L

(D.1)

will be the same for both gains and losses, while the coefficients

αG ≡ (1− β)
[
µG + (1/2)σ2

G

]
αL ≡ (1− β)

[
µL + (1/2)σ2

L

]
are different in the two cases.

This generalization of the model does not change the conclusions derived in the main
text; we still obtain (2.5) in the case of a choice between a risky gain and a certain gain and
(4.2) in the case of a choice between a risky loss and a certain loss, with the qualification that
in the former formula ν should be understood to refer to νG while in the latter formula it
refers to νL. The question whether the parameters are the same for gains and losses matters
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more, however, in the case of a “mixed prospect,” i.e., one in which either a gain or a loss
may occur.

Tversky and Kahneman (1992) report an experiment in which subjects must choose
whether or not to accept a gamble which involves an equal probability of obtaining a gain
G and a loss L. (The alternative, if the gamble is not accepted, is to obtain nothing with
certainty.) If the two monetary magnitudesG and L in such a decision problem are encoded in
the way proposed above, then an optimal decision rule will result in acceptance of the gamble
if and only if E[G|rG] − E[L|rL] > 0. Substituting the formulas above for the conditional
expectations, this condition will be satisfied if and only if the internal representations satisfy

rG − rL > (αL − αG)/β.

Under our assumptions about the distributions from which the internal representations are
drawn, the probability of this condition being satisfied is equal to

Prob[accept] = Φ

(
log(G/L) − β−1(αL − αG)√

(β−1 − 1)(σ2
G + σ2

L)

)
. (D.2)

If the priors are the same for losses and for gains, we have αL = αG, and (D.2) will imply
a probability of acceptance greater than one-half (i.e., that the subject should more often
accept the gamble than reject it) if and only if G > L. But if we suppose that µL ≥ µG, σL ≥
σG, and that at least one of these inequalities is strict, we will have αL > αG. In this case,
the value of G/L required for indifference (equal probability of acceptance and rejection) will
be greater than one. Thus a decision maker would be predicted to be averse to gambles of
this mixed type, unless the prospective gain is a sufficiently large multiple of the prospective
loss; and the ratio G/L required for acceptance more often than not will remain the same
even in the case of very small stakes (the predicted behavior is scale-invariant). Thus the
decision maker would exhibit “loss aversion,” just as the experimental subjects of Tversky
and Kahneman (1992) do.

Prospect theory explains this kind of behavior by postulating a kink in the “value func-
tion” at the reference point. In the theory proposed here, there is no deterministic value
function, but rather a probability distribution of subjective value estimates corresponding
to any given objective payoff. If, however, we let v(X) be the mean subjective estimate
of the signed monetary payoff X — that is, the mean value of the estimate X̂ ≡ E[X|rx],
integrating over the distribution of possible internal representations rx conditional on the
true payoff X — then the generalized version of our model presented in this section implies
that

v(X) = AXβ for X ≥ 0,

v(X) = −λA(−X)βfor X ≤ 0.

Here 0 < β < 1 is the coefficient defined in (D.1), the multiplicative factor A > 0 in the case
of gains is the same one that appears in (1.4), and the additional multiplicative factor λ > 0
in the case of losses is given by

λ ≡ exp
[
(1− β)(µL − µG) + (1/2)(1− β2)(σ2

L − σ2
G)
]
.
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Thus if µL ≥ µG, σL ≥ σG, and at least one of these inequalities is strict, the model predicts
that λ > 1, and the function V (X) will have a kink at X = 0, just like the value function
posited by prospect theory.

Thus our model is perfectly consistent with the existence of loss aversion, but does not
require that it must exist; whether it should exist depends on the asymmetry, if any, in the
prior distributions for losses as opposed to gains. Under more general assumptions about the
determinants of the precision with which gains and losses are encoded, additional reasons for
asymmetry in the subjective estimation of losses as opposed to gains would be possible. We
leave this further development of the theory, and consideration of the extent to which the
sources of asymmetry required by this theory can explain the cases in which loss aversion is
observed in practice, for more detailed discussion elsewhere.

E Testing Scale-Invariance: Additional Statistics

We begin with a further discussion of the degree to which the choice curves (psychometric
functions) for the different values of C shown in Figures 2 and 3 satisfy the property of
scale-invariance predicted by our model. The maximum-likelihood parameter estimates for
the different choice curves (estimates of (3.1) for each of the individual values of C, and the
estimate of (3.2) using the pooled data) are shown in Table 3. For each estimated model,
the table also indicates the number of observations Nobs used to estimate the parameters,
and the maximized value of the log-likelihood of the data, LL. We can use this information
to compute a Bayes information criterion (BIC) statistic for each model, defined as34

BIC ≡ −2LL + 2 logNobs,

since each model has two free parameters.
We can consider quantitatively the extent to which our data are more consistent with

the more flexible model (3.1) than with the more restrictive predictions of our theory, using
the BIC to penalize the use of additional free parameters. If we consider as one possible
model of our complete data set a theory according to which there is a curve of the form (3.1)
for each value of C, with parameters that may differ (in an unrestricted way) for different
values of C, then the BIC associated with this theory (with 12 free parameters) is the sum
of the BIC statistics shown in the last column of Table 3 for the individual values of C,
equal to 7545.5.35 The BIC associated with our more restrictive theory (with only two free
parameters) is instead only 7521.0, as reported in the bottom row of the table.36

34Here, as elsewhere in the paper, “log” refers to the natural logarithm.
35Here the BIC is equal to minus 2 times the log-likelihood of the complete data set under the optimized

parameters, plus a penalty of Nobs(θ) for each free parameter θ, where Nobs(θ) is the number of observations
that are fit using the parameter θ. In the present application, this is the sum of the BICs reported for the
models fit to the data for individual values of C.

36Our theory implies not only that choice probabilities should be given by a relationship of the form (3.2),
but also that the parameters must satisfy conditions (5.1) stated below. However, the unrestricted maximum
of the likelihood is attained by parameter values (shown in the bottom line of Table 3) that satisfy these
restrictions, so that the best-fitting parameter estimates consistent with our theory, and the associated BIC,
are the ones given in the table.
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C Nobs δ γ LL BIC
$5.50 1476 -6.16 2.52 -681.3 1377.1
$7.85 1476 -6.93 2.47 -685.8 1386.3

$11.10 1476 -8.15 2.54 -654.6 1323.8
$15.70 1476 -8.56 2.40 -674.6 1363.8
$22.20 1476 -9.52 2.42 -666.8 1348.2
$31.40 696 -7.87 1.84 -366.7 746.4

All 8076 -1.88 2.39 -3751.5 7521.0

Table 3: Maximum-likelihood estimates of choice curves for each of the values of C considered
separately, and when data from all values of C are pooled. (In each case, data from all 20
subjects are pooled.)

The more restrictive model is therefore preferred under the BIC: it leads to a lower value
of the BIC, since the increase in the log-likelihood of the data allowed by the additional
free parameters is not large enough to offset the penalty for additional free parameters. In
fact, the BIC for our more restrictive model is lower by 24.6 points, corresponding to a Bayes
factor of K = e12.3. Thus the data increase the relative posterior probability of the restrictive
model being the correct one, over whatever prior probability may have been assigned to this,
by a factor of more than 200,000.

As indicated in the text, the individual choice curves of one subject, subject 9, are much
farther from exhibiting scale-invariance than those of the other subjects. If we instead pool
the data of all subjects except subject 9, the sum of the BIC statistics from the choice curves
for individual values of C would equal 7143.4, while the BIC statistic for the restricted (scale-
invariant) model equal only 7104.1.37 Thus in this case, the BIC for our more restrictive
model would be lower by 39.3 points, corresponding to a Bayes factor in favor of the scale-
invariant model that is greater than 300 million.

This is of course purely a test of in-sample fit of the scale-invariant model. In the text, we
instead emphasize tests in which the parameters of each model are estimated using only 3/4
of each subject’s trials (the “calibration dataset”), and the remaining data (the “validation
dataset”) are used for an out-of-sample test of fit. In the first panel (“Pooled Data”) of Table
1 in the text, the statistics reported in the first two columns correspond to the statistics
presented in Table 3, except that the statistics correspond to choice curves estimated using
only the “calibration dataset.”38 (The values given for both the log likelihood and the BIC
statistic are smaller in Table 1 because of the smaller sample.) In this case, the overall
Bayes factor in favor of the scale-invariant model is not as large (when the pooled data are
used), as shown in Table 1; but the scale-invariant model is still strongly favored. When we
instead estimate separate choice curves for each subject, and then pool the log likelihoods
and corresponding BIC statistics across subjects, the scale-invariant model is much more
strongly favored, as shown in the bottom panel of Table 1 in the text.

37With the smaller number of subjects, the parameter estimates for the restricted model are δ = −1.95, γ =
2.47, rather than the values shown on the bottom line of Table 3.

38As discussed in the text, the values reported in Table 1 are actually averages of the values obtained for
four different choices as to which quarter of the subjects’ data to subtract from the calibration dataset.
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Model LLcalibration BIC LLvalidation log K
Pooled Data [all but Subject 9]

Scale-invariant -2656.6 5330.5 -887.56 0.0
Unrestricted -2644.4 5371.0 -887.60 20.3

Heterogeneous Parameters [all but Subject 9]
Scale-invariant -1719.5 3654.2 -632.2 0.0
Unrestricted -1514.3 3841.4 -2003.1 1464.5

Subject 9 Only
Scale-invariant -133.9 278.5 -45.3 0.0
Unrestricted -41.8 120.8 -211.7 87.6

Table 4: In-sample and out-of-sample measures of goodness of fit compared for the scale-
invariant model (our logarithmic coding model) and an unrestricted statistical model, using
the same format as in Table 1 in the text. In the top panel, each model is fit to the
pooled data from all 19 subjects other than subject 9. In the middle panel, separate model
parameters are fit to the data each of the 19 subjects other than subject 9. In the bottom
panel, separate model parameters are fit to the data for subject 9.

The first two panels of Table 4 repeat the analyses shown in the corresponding panels of
Table 1, but using only the data for the 19 subjects other than subject 9. The corresponding
statistics when only the data for subject 9 are used are shown in the bottom panel of the
table. (Note that if one sums each of the entries in the bottom two panels of Table 4, one
obtains the statistics given in the bottom panel of Table 1 in the text.)

If the data for subject 9 are excluded, then even when a common set of parameters is
estimated for all of the other 19 subjects, one finds that the scale-invariant model fits better,
both in-sample and out-of-sample. (In the first panel of Table 1, instead, LLvalidation is
higher for the unrestricted model, meaning that this model fits slightly better out-of-sample,
even though the in-sample fit is better for the scale-invariant model, once one penalizes the
additional free parameters of the unrestricted model, and the overall Bayes factor in support
of the scale-invariant model is relatively large.) The degree to which the overall Bayes factor
favors the scale-invariant model is also considerably larger when subject 9 is excluded: we
now find that log K = 20.3, meaning that K > 650 million.

The bottom panel of Table 4 shows that while the scale-invariant model fits more poorly
in-sample for subject 9, the unrestricted model fits much less well out-of-sample, and the
overall Bayes factor is actually positive for subject 9 individually. (This can be seen from
the location of the dot for subject 9 in Figure 4.) While the behavior of subject 9 is not
fit well by our model, it is also not described well by any stable choice curves for individual
values of C.

We do not attempt to model the behavior observed in the case of subject 9. However,
one way in which this subject fails to conform to our model is clear: the subject’s apparent
degree of risk-aversion increases notably as the size of the certain payment C is increased,
as shown in Figure 6. In fact, subject 9 is risk-seeking (in the sense that the risky option
is accepted more than half the time even for values of X/C < 1/p) when C equals $5.55
or $7.85, but risk-averse (in the sense that the risky option is declined more than half the
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Figure 6: Choice curves for subject 9, for each of five different values of C, plotted as functions
of logX/C, as in the first panel of Figure 3. Note that this subject was not presented any
trials in which C = $31.40.

time even for values of X/C > 1/p) when C equals $11.10 or more. When C equals $22.20,
subject 9 never chose the risky option, for any of the values of X/C used in the experiment.

In the context of our Bayesian model, the sharp increase in risk aversion for larger values of
C could be interpreted as optimal behavior on the part of a subject with a prior regarding the
possible values of X that implies greater skepticism about the likelihood of larger payments
than the log-normal prior assumed in our model would imply (perhaps because of prior
experience with the amounts paid in campus decision-making experiments). Alternatively,
it might reflect a subject for whom the amounts potentially earned in the experiment were
of sufficient immediate usefulness for there to be a significant degree of diminishing marginal
utility.

F Comparison with Alternative Models: Additional

Alternatives

F.1 More General Additive Random Expected-Utility Models

In the text, we consider two kinds of additive random-utility models (ARUMs). In each
model, the subject is assumed to choose the option for which E[u(Y )] + ε is larger, where
Y is the monetary amount gained from the experiment and ε is a random term (drawn at
the time of choice) that is independent of the characteristics of the option. In the “ARUM-
Probit” model, the random term ε is assumed to be drawn from a normal distribution,
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whereas in the “ARUM-Logit” model, ε is assumed to be drawn from an extreme-value
distribution. In each case, the nonlinear utility function u(Y ) is assumed to be of the CRRA
form, u(Y ) = Y 1−γ/(1− γ), for some γ ≥ 0.

Here we consider whether the fit of a nonlinear expected utility model might be improved
by allowing a more general form of utility function, specifically, a function in the HARA class.
This is the two-parameter family of utility functions u(Y ;α, β) for which the Arrow-Pratt
coefficient of absolute risk aversion ρ(Y ) ≡ −u′′(Y )/u′(Y ) is a hyperbolic function of Y :
ρ(Y ) = (α + βY )−1, for some constant coefficients α, β. We assume that these coefficients
are such that α + βY > 0 for all values of Y in the interval (0, Ȳ ), where Ȳ = $125.60 is
the largest monetary amount used in the experiment, so that u(Y ) is an increasing, concave
function over the range of values 0 < Y < Ȳ . (This assumption requires that α ≥ 0 and that
β not be too negative; it is satisfied if α, β ≥ 0 and at least one of them is positive.) This
family of functions nests the CRRA family (the case in which α = 0, β > 0), but also allows
other cases, including the familiar CARA family (the case in which α > 0, β = 0). Again we
can consider both Probit and Logit cases of the random-expected-utility model with HARA
utility. In each case, we have a three-parameter model, in which the free parameters are the
preference parameters α, β, and the standard deviation of ε.39

If we estimate a single utility function for all 20 subjects, then the generalization to
HARA utility makes no difference for our results, for in fact the best-fitting member of the
HARA family of utility functions is a member of the CARA family. (That is, when we
optimize the parameters α and β, the optimal parameter values are on the boundary of the
admissible region where α = 0. Because α is constrained, there are no more free parameters
than in the CRRA case, and the BIC statistics also remain the same.) This is true for both
the Probit and Logit versions of the ARUM; regardless of whether we estimate the common
model parameters pooling the data of all 20 subjects, or only using the data for the 19
subjects other than subject 9.

If instead we estimate a separate utility function for each subject, then for some individual
subjects the best-fitting HARA utility function involves α > 0, so that the generalization
to HARA utility does allow a better in-sample fit (in the sense of a higher value for the
likelihood). However, if we use the BIC criterion to penalize the additional free parameters
in the case of the more flexible family of utility functions, the restricted CRRA model still
fits the data better, at least if we sum the BIC statistics of the different subjects (so as to
compare the two hypotheses under which either CRRA is the right model for all subjects,
or the HARA model is). The BIC statistics for these model comparisons are shown in Table
5.40

In each row of Table 5, the statistics given show the sum of the BIC statistics for the
models estimated for the individual subjects. (The first column shows the sum of these
statistics for all 20 subjects; the second column shows the sum for all subjects other than

39The parameters α and β only identify the function u(Y ) up to an arbitrary affine transformation; the
exact function can be pinned down by further specifying two values such as u(Ȳ ) and u′(Ȳ ). These latter
parameters can be chosen arbitrarily. The value of u(Ȳ ) has no consequences for predicted choices (since it
does not affect the expected utility difference between any two lotteries); the value of u′(Ȳ ) amounts to a
choice of the units in which the standard deviation of ε is measured.

40Here we consider only in-sample fit of the various models to the complete data set, rather than under-
taking the kind of cross-validation exercise reported in Table 2.
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Sum of BIC over Subjects
Model All Subjects All but S9

Log coding 5223.0 4854.1
Random Expected-Utility Models

CRRA - Probit 5526.0 5183.7
CRRA - Logit 5359.0 5015.6
HARA - Probit 5571.1 5229.5
HARA - Logit 5411.0 5067.6

Random Prospect-Theory Models
PT - Probit 5535.0 5218.9
PT - Logit 5377.0 5058.4

Random Salience-Theory Models
Salience - Probit 5822.3 5506.1
Salience - Logit 5616.0 5297.4

Table 5: Model comparison statistics for alternative models in which separate parameters
are estimated for each subject. (The alternative models are explained in the text.) In each
case, the statistic given is the sum of the BIC statistics for the models estimated for the
individual subjects.

subject 9.) A comparison of the BIC statistics between any two rows can then be used to
judge the relative fit of the two models in question; in particular, the difference in the BIC
statistics in any two rows (of the same column) can be used to compute a Bayes factor K
for comparison of the two hypotheses that one model or the other is the correct model for
all subjects (all of those considered in that column).

For reference, the first row of the table shows the BIC statistics for our logarithmic coding
model.41 The second and third rows show the corresponding statistics for the CRRA-Probit
and CRRA-Logit models, the models called “ARUM-Probit” and “ARUM-Logit” in the text.
The fourth and fifth rows then show these statistics for the cases in which the function u(Y )
is allowed to be any member of the HARA family. We see that regardless of the assumed
distribution for the noise term ε, and regardless of whether we use all 20 subjects or we
exclude subject 9, the conclusion is the same: allowing the more general form of utility
function raises the log likelihood (not shown in the table), but also results in a larger BIC
statistic.

In each case, we would therefore have a Bayes factor K much greater than 1 in favor of
the CRRA specification. (For example, in the case of the logit specification and using the
data of all 20 subjects, the BIC for the CRRA case is 5359.0, while for the HARA case it is
5411.1. The BIC statistic is larger by 52.1 points, so that logK = 26.0, implying a Bayes
factor greater than 200 billion.) Of course, as discussed in the text, the logarithmic coding
model fits better than either of the ARUMs based on CRRA utility; regardless of whether
we exclude subject 9, the BIC statistics in the first row are lower than those in any other

41The BIC statistics shown in the first column differ from those in the bottom of panel of Table 2 in the
text, because here we fit the models to the complete dataset, rather than only to the “calibration dataset”
as in Table 2.
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row.

F.2 The Random Parameter Model of Apesteguia and Ballester
(2018)

Apesteguia and Ballester (2018) propose an alternative way of generalizing the standard
theory of expected utility maximization in order to allow for stochastic choice: rather than
adding a random term to the level of expected utility associated with a given gamble, they
propose that the expected utility of each gamble is computed using a utility with a parameter
that varies randomly from trial to trial, so that the ranking of different lotteries according
to their expected utility need not be the same on each trial. On any trial, however, a
single utility function is used to evaluate all of the choice options considered on that trial.
Thus all choices are made in a way that is optimal from the standpoint of a coherent set of
preferences that satisfy standard (normatively appealing) axioms; apparent inconsistencies
between choices made in different trials simply reflect the fact that preferences are different
across trials, and not a failure to choose optimally within any trial.

Apesteguia and Ballester argue that this kind of model should be more appealing on
normative grounds than the kind of ARUMs discussed above and in the main text. And it
might seem that their approach should have more promise as an explanation of our experi-
mental data, as well. The key failing of the ARUMs discussed above, responsible for their
fitting the data considerably less well than does our logarithmic coding model, is the fact
that they imply a particular kind of deviation from scale-invariance that is not observed.42

The random parameter model can instead easily be specified to be scale-invariant. In fact,
the specification used in the quantitative analysis of Apesteguia and Ballester — in which
the utility function is of the CRRA form, but with a randomly varying coefficient of relative
risk aversion — would imply scale-invariance.

Nonetheless, the random parameter model does not fit our data even as well as the
ARUMs discussed in the text (or above). This is because it implies that a dominated
lottery should never be chosen, despite the fact that choices between two lotteries neither of
which dominates the other will generally be random (with each of them chosen with positive
probability). In the case of our experiment, this means that subjects should never choose
the risky lottery on a trial in which X = C, since in this case the certain payment (receiving
C > 0 with certainty) dominates the lottery (receiving C only with probability p < 1, and
otherwise nothing). But our subjects do choose the risky lottery occasionally on trials when
X = C (in fact, 50 times out of 1,044 such trials). Because ARUMs allow this to occur
with positive probability (like our model), they outperform the random parameter model
on likelihood-based model selection criteria of the kind that we discuss above; but as shown
above, they nonetheless do not fit nearly as well as our model of logarithmic coding.

42The ARUMs imply that if one multiplies all monetary amounts by a factor of 5, while keeping the
probability p unchanged, the values u(X) and u(C) become larger by a factor much larger than 1 — and
hence the expected utilities associated with the two lotteries are each scaled up by this factor, as is the
difference between the expected utilities of the two lotteries — while the distribution of the error terms
remains unchanged. This means that the choice between any two lotteries (that are not precisely equal in
expected utility) should become much less noisy if the monetary payoffs are all scaled up in this way. We
do not observe such an effect in our data at all.
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F.3 Stochastic Versions of Prospect Theory

In order to test the ability of prospect theory to explain our data — at least in a way that
puts the theory on the same footing as the others considered here, and allows likelihood-
based model comparisons — it is necessary to extend the original theory of Kahneman and
Tversky (1979) to make it stochastic. A standard approach in econometric tests of prospect
theory (as reviewed in Stott, 2006) is to add a random term ε to the valuation of each risky
prospect that would be specified by Kahneman and Tversky. It is then assumed that the
option chosen on a given trial will be the one with the higher value of∑

i

w(pi)v(Yi) + ε,

where i indexes the possible outcomes under the risky prospect; pi is the objective probability
of outcome i and Yi the associated net monetary gain; w(p) is the Kahneman-Tversky
probability “weighting function” and v(Y ) their “value function”; and ε is a random term,
drawn independently for each prospect.43 Once again, we can consider both the case in
which ε is assumed to be drawn from a normal distribution and the case in which it has an
extreme-value distribution.

As noted in the text, the ARUMs based on a CRRA utility function (considered in
Table 2, and in Table 5 above) can also be considered to represent stochastic versions of
prospect theory, in which the weighting function is assumed to be linear (w(p) = p) and the
value function is of the CRRA form. This form of value function is in fact the one most
commonly used in empirical tests of prospect theory (following Tversky and Kahneman,
1992; again, see Stott, 2006, for a review of the literature). But the assumption that w(p) =
p is of course contrary to what Kahneman and Tversky propose; and one might wonder
whether a stochastic version of prospect theory that incorporates a nonlinear probability
weighting function would better explain our experimental data than the random expected-
utility models considered above.

Since in our experiment, the probability p of the non-zero outcome under the risky
alternative is always equal to 0.58, it only matters what numerical value we propose for the
probability weight p̃ ≡ w(0.58).44 Kahneman and Tversky assume an “inverse-S” shape for
w(p), implying that there exists an intermediate probability p̂ such that p < w(p) < 1 for
all 0 < p < p̂ but 0 < w(p) < p for all p̂ < p < 1. They further assume a “sub-additivity”
property for the weighting function, that requires that p̂ < 1/2 (so that in the case of two
equally likely outcomes, w(1/2) < 1/2). Since in our experiment, p = 0.58 > 1/2, the
assumptions of Kahneman and Tversky would imply that 0 < p̃ < 0.58.

Our noisy prospect-theory models therefore assume that

v(Y ) = Y 1−γ/(1− γ)

43Except for the presence of the ε term, this is the model of the valuation of risky prospects proposed in
Kahneman and Tversky (1979). Because in this paper we consider only simple gambles in which there are at
most two possible outcomes i, the further refinement of cumulative prospect theory, introduced in Tversky
and Kahneman (1992), is not relevant here.

44Kahneman and Tversky assume that w(0) = 0 and w(1) = 1. The only other probability that occurs in
our examples is 0.42, the probability of the zero outcome under the risky alternative. However, Kahneman
and Tversky also assume that v(0) = 0, so that the value of w(pi) for this alternative does not matter.
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and w(0.58) = p̃, where the parameters γ and p̃ satisfy the theoretical restrictions γ ≥ 0
and 0 ≤ p̃ ≤ 0.58. There are two versions of the model, “PT-Probit” in which ε is drawn
from a normal distribution, and “PT-Logit” in which it is drawn from an extreme-value
distribution. In each case, the noisy prospect-theory model has three free parameters: the
values of γ, p̃, and the standard deviation of ε.

If we fit the noisy prospect-theory models to our data assuming common parameter
values for all subjects, then the results are the same as in the case of the CRRA random
expected-utility models discussed in the text. For we find that the best-fitting parameter
values involve p̃ = 0.58, so that the upper bound is a binding constraint. In this case, the
noisy prospect-theory model reduces to a model that is mathematically equivalent to the
CRRA random expected-utility model; there is also the same number of free parameters
(given that p̃ is constrained), and hence the same BIC statistic as for the CRRA-ARUM.

If instead we fit a separate noisy prospect-theory model to the data for each subject,
then we do find that the data can be better fit by a model with 0 < p̃ < 0.58 for some
subjects. However, as in the case of the more flexible class of utility functions considered
in the previous subsection, the degree to which the likelihood of the data is increased is not
great enough to justify the inclusion of the additional free parameters, if free parameters are
penalized according to the BIC criterion. The sixth and seventh rows of Table 5 show the
BIC statistics (again, summed over the subjects) for the “PT-Probit” and “PT-logit” models.
In each case, the BIC statistics are higher for the less restrictive model (in which p̃ is allowed
to be less than 0.58) than if the theoretical assumption that p̃ = 0.58 is imposed. Thus these
models do not fit better than the random expected-utility models already considered, and
a fortiori are not competitive with the logarithmic coding model as an explanation for our
experimental data.

F.4 Stochastic Versions of Salience Theory

Bordalo et al. (2012) propose an alternative theory of risk attitudes, according to which
deviations from risk-neutral choice result from differential weighting of the different possible
outcomes of a gamble according to their degree of “salience.” In the case of a simple com-
parison between a certain outcome and a risky option with two possible outcomes, of the
kind considered here, their theory is relatively simple. There are only two possible outcomes
to take into account, the good outcome for the risky option (the one in which X is received)
and the bad outcome (the one in which zero is received). It is assumed that the relative
weight placed on the good outcome as opposed to the bad outcome is greater than the rela-
tive probability of that state if and only if the outcome in which the risky option yields X
is the more salient of the two possible outcomes.

Algebraically, the theory predicts that the risky gamble should be chosen if and only if45∑
i

gipiYi > C,

45The theory of Bordalo et al. (2012) also allows the utilities associated with different outcomes to be
different from the net financial gains in each case, as assumed here. However, none of the interpretations of
experimental findings with regard to risk attitudes in laboratory settings proposed in their paper depends
on assumption of nonlinear utility. So here we test a more parsimonious specification in which utility is
assumed to be linear, for small gambles of the kind presented in our experiment.
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where gi > 0 is the “salience weight” associated with outcome i (i = hi, lo), and Yi is the
monetary payoff on the risky gamble in that state. The salience weights are normalized so
that

∑
i gipi = 1 (which is why the salience weights do not appear on the right-hand side

of the above inequality). Finally, the relative salience weights associated with the different
possible outcomes depend on the degree of contrast between the monetary payoffs in the
different outcomes (a comparison between the payoffs X and C in the case of the hi state
and between 0 and C in the lo state). This means that each of the weights gi will be some
function of X and C.

The criterion for choice of the risky gamble thus reduces to

ghi(X,C) · p ·X > C, (F.1)

or alternatively,
log(X/C) > − log p − log ghi(X,C). (F.2)

Bordalo et al. (2012) further propose assumptions about the determinants of the salience
weights that imply that ghi < glo if |X − C| = |0− C|,46 so that log ghi < 0 when X/C = 2.
Furthermore, their assumptions imply that the relative salience of the X − C comparison
should be reduced either by reducing |X−C| (for fixed C) or increasing C (for fixed |X−C|);
hence log ghi must be negative when X/C = 1/p (the case of equal expected value), given
that 1/2 < p < 1 in our experiment. Thus their theory implies that the “indifference point”
should indicate risk aversion in our experiment.

A quantitative test of the theory would however require us to specify aspects of the
theory on which Bordalo et al. do not take a definite stand. In particular, we would have to
specify a particular function ghi(X,C) for the relative salience weight on the hi state, and
we would have to add a source of randomness to make the decision criterion (F.1) stochastic.
The degree to which such a model would be consistent with our data depends on how these
choices are made.

In particular, we note that it would be possible to make assumptions under which a
version of salience theory would be observationally indistinguishable from our own model.
The decision criterion (F.1) is scale-invariant if we assume that ghi(X,C) is homogeneous
of degree zero.47 This is not enough, however, for the theory to imply scale-invariant choice
curves. Even under this homogeneity assumption, the choice curves will not be scale-invariant
if we make the decision criterion stochastic by adding a random term to each side of (F.1),
with the random terms drawn from a distribution that is independent of the payoffs X and
C, as in an ARUM.

On the other hand, we would obtain a prediction of scale-invariant choice curves in the
case of multiplicative rather than additive error terms. In that case, (F.2) generalizes to

log(X/C) > − log p − log ghi(X/C) + εdiff , (F.3)

where εdiff is the difference between the logarithms of the two multiplicative error terms. If
the random term εdiff is distributed symmetrically around a median of zero (as will be the

46The comparison between 0 and C is assumed to be more salient than the comparison between X and C
in this case, owing to diminishing marginal sensitivity.

47This would be the case if we suppose that it depends only on the contrast measures |X − C|/|X + C|
and |0− C|/|0 + C| = 1, with ghi > glo if and only if the first of these contrasts is greater than the second.
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case if the two multiplicative error terms are assumed to be two independent draws from
the same distribution), then (F.3) continues to imply an indifference point indicating risk
aversion, though choice is now predicted to be stochastic. The model will also be consistent
with our statistical evidence in favor of scale-invariant choice curves.

Indeed, if we assume (a) that the relative salience weight is given by

ghi(X/C) = (λX/C)α

where 0 < λ < 1/2 and α > 0, and (b) that εdiff is the difference between two normally
distributed random variables, and hence itself distributed as N(0, 2ω2), then the predictions
of the stochastic version of salience theory are indistinguishable (in our dataset) from those
of our model of logarithmic coding. Note that under these assumptions, the criterion (F.3)
becomes

(1 + α) log(X/C) > − log p − α log λ + εdiff ,

which implies that the probability of choosing the risky gamble, as a function of X and
C, will be an expression of the same form as equation (2.5), where the coefficients of that
equation are chosen so that

(β−1 − 1) log p =
α

1 + α
log(λ/p) < 0

and
ν =

ω

1 + α
.

Hence the data from our study do not allow us to discriminate between these two possible
interpretations. Considering subjects’ choices from among a wider range of gambles would
instead allow the theories to be distinguished, and it would be desirable for such a comparison
to be undertaken in a future study.

G Imprecise Representation of Probability

The model of choice between lotteries presented in section B of this appendix can be gener-
alized to allow for noisy coding of the probability p as well. As explained in the text, if we
assume a noisy internal representation rp of the probability, the distribution of which depends
only on the true probability p described to the subject, then the threshold for acceptance of
the risky option becomes

rx − rc > β−1ρ, ρ ≡ − log E[p|rp], (G.1)

as stated in the text at (4.3).
Suppose that the internal representation rp is drawn from a distribution

rp ∼ N(log(p/1− p), ν2
p), (G.2)

where νp is non-negligible. Suppose furthermore that the log odds z ≡ log(p/1 − p) of the
two outcomes are normally distributed under the prior,

z ∼ N(µp, σ
2
p).
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Then the joint distribution of z and rp will be a bivariate Gaussian distribution, and calcula-
tions similar to those referenced in section B of this appendix can again be used to compute
conditional distributions.

In particular, the posterior log odds, conditional on the representation rp, will also have
a Gaussian distribution,

z|rp ∼ N(m̄(rp), σ̄
2), (G.3)

where
m̄(rp) ≡ E[z|rp] = µp + βp · (rp − µp)

using the notation

βp ≡
cov(z, rp)

var(rp)
=

σ2
p

σ2
p + ν2

p

,

and

σ̄2 ≡
σ2
pν

2
p

σ2
p + ν2

p

.

Note that m̄(rp) is a weighted average of rp and µp, and σ̄2 is independent of rp, as stated
in the text.

Since the probability p of the non-zero payoff can be reconstructed from the log odds as
p = ez/(1 + ez), we obtain

ρ(rp) = − log E[p|rp] = − log E

[
ez

1 + ez
|rp
]
,

where z is distributed in accordance with (G.3). Note that we can alternatively write this
function as

ρ(rp) = − log E[F (rp, ε)], (G.4)

where

F (rp, ε) ≡
exp[m̄(rp) + σ̄ε]

1 + exp[m̄(rp) + σ̄ε]
(G.5)

and the expectation is over realizations of the random variable ε, which has a standard
normal distribution (and is distributed independently of the value of rp).

Conditional on a given true value of p, the internal representation rp is a random variable
with distribution (G.2). The variable ρ is then a nonlinear transformation of rp defined by
(G.4), and so also a random variable with a distribution conditional on the true value of p.
The distribution of ρ is complicated to characterize, but it is easy to see that the introduction
of noise into the encoding of the log odds by rp results not only in random variation in the
value of ρ (which would instead be a constant, equal to − log p as assumed in equation (2.4),
if p were encoded with perfect precision), but also in a median value for ρ that is generally
different from the value it would have in the absence of coding noise. Because m̄(rp) is a
monotonically increasing function of rp, F (rp, ε) is an increasing function of rp for each value
of ε; it then follows from (G.4) that ρ(rp) must be a monotonically decreasing function of
rp. The median value of ρ is then the value of the function ρ(rp) when rp takes its median
value, so that

median[ρ|p] = ρ(z(p)).
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Since e−ρ is a monotonically decreasing function of ρ, we similarly have

w(p) ≡ median[e−ρ|p] = e−ρ(z(p)).

Recalling the definition of ρ(rp), we can alternatively define this function as

w(p) = E[F (z(p), ε)]. (G.6)

Although for any p, w(p)→ p as the variance ν2
p of the coding noise is made arbitrarily

small, w(p) is generally not equal to p (so that correspondingly, the mean value of ρ is not
equal to − log p) when the variance of the coding noise is positive. In fact, we can show
that w(p) has many of the properties that Kahneman and Tversky (1979) assume for their
probability weighting function.

First, we observe that for any 0 < p < 1, we have 0 < F (z(p), ε) < 1 for all ε, so that
the expected value of F must lie between these extremes as well. Then (G.6) implies that
0 < w(p) < 1 for all 0 < p < 1. Next, we also observe that the derivative of the function is
given by

w′(p) = E

[
∂F (z(p), ε)

∂z

]
· dz
dp

= βp(e
z + 2 + e−z) E[(em̄(z)+ε + 2 + e−m̄(z)−ε)−1]. (G.7)

Because this is the expected value of a variable that is always positive, w′(p) > 0, and we
observe that w(p) must be a monotonically increasing function of p over its entire range.

We further observe that for any ε, F (z(p), ε)→ 0 as p→ 0, and F (z(p), ε)→ 1 as p→ 1.
The convergence is also uniform enough in each case to allow one to show that (G.6) implies
that w(p) → 0 as p → 0, and w(p) → 1 as p → 1. Finally, (G.7) implies that for small p
(z << 0),

w′ ∼ βp e
(1−βp)(µp−z) E[eε],

while for large p (z >> 0),
w′ ∼ βp e

−(1−βp)(µp−z) E[e−ε].

From this we see that w′(p)→ +∞ as p→ 0, and similarly that w′(p)→ +∞ as p→ 1.
This implies that w(p) > p for all small enough p > 0, while w(p) < p for all large enough

p. Thus if we interpret w(p) as the “average perceived probability” when the true probability
is p, the model implies over-estimation of small positive probabilities, and under-estimation
of large probabilities less than 1, as with the probability weighting function of Kahneman
and Tversky (1979).

We can observe more about the global shape of the w(p) function if we consider the
limiting case in which σp and νp are both small, but we fix the ratio νp/σp at some finite
positive value γ as σp, νp → 0. In this limiting case, the value of βp remains fixed at the value
βp = 1/(1 + γ2) < 1, while the value of σ̄ approaches zero at the same rate as σp and νp. We
then observe from (G.5) that for each value of ε,

F (z, ε) → αpe
βpz

1 + αpeβpz
as σ̄ → 0,
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where αp ≡ e(1−βp)µp > 0, and the convergence is sufficiently uniform in ε to ensure that

lim
σ̄→0

E[F (z, ε)] =
αpe

βpz

1 + αpeβpz

for all z. Thus in the limiting case we obtain

w(p) =
αpp

βp

(1− p)βp + αppβp
, (G.8)

where the parameters satisfy αp > 0, 0 < βp < 1.
As noted in the text, this function has the “inverse-S” shape assumed for the probabil-

ity weighting function in prospect theory; indeed, this two-parameter family of probability
weighting functions has sometimes been used in quantitative implementations of prospect
theory. The function defined in (G.8) has the property that w(p) > p for all 0 < p < p∗,
while w(p) < p for all p∗ < p < 1, where the critical probability p∗ is given by

p∗ ≡ eµp

1 + eµp
.

If µp < 0, implying that under the prior, p < 1/2 is more likely than p > 1/2, then αp < 1,
and as a consequence p∗ < 1/2, and the function w(p) has the property of “subadditivity”
assumed by Kahneman and Tversky (1979).

The nonlinearity of the function w(p) in the case of noisy coding of the probability biases
choice in our model in a similar way as the nonlinear probability weighting function in
prospect theory. Consider, as an example, the case in which the noise in the internal coding
of X and C is negligible (ν is extremely small), while νp remains non-trivial (more precisely,
the ratio νp/σp is not too small). If the monetary amounts X and C are represented with
high precision, condition (G.1) for choice of the risky option reduces to

ρ < logX − logC.

Here the randomness in rx and rc have been suppressed as negligible, and β has been replaced
by its limiting value of 1; the probability of acceptance of the risky option is then just the
probability of a realization of ρ greater than log(X/C).

For any given value of p, this model predicts (like the model presented in section 2 of
this paper) that the probability of acceptance of the risky option should depend only on
the ratio X/C, and should be monotonically increasing in X/C; thus one should obtain a
smooth psychometric function of the kind shown in Figure 1 of the text. But unlike the
model in section 2, this model also predicts that the subject’s apparent risk attitude should
vary depending on the size of p.

If, as in the experiment discussed in Tversky and Kahneman (1992), we define the “cer-
tainty equivalent” C∗ for each risky prospect (p,X) as the value of C for which the subject
is indifferent between the risky prospect and obtaining C with certainty (i.e., the value of
C for which the probability of choosing the risky option is exactly 1/2), then our model of
random choice implies that C∗ should be implicitly defined by

median[ρ|p] = log(X/C∗),
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so that
C∗ = X · e−ρ(z(p)) = X · w(p).

Thus a plot of C∗/X as a function of p should show an increasing function of p (relatively
independent of the size of X) with the “inverse-S” shape seen in the figures in Tversky and
Kahneman (1992). In particular, this simple example suffices to show that our theory is
capable of explaining the complete “four-fold pattern of risk attitudes” displayed in those
figures.

The fact that the weighting function (G.8) is sub-additive when αp < 1 means that
our theory can also predict the occurrence of Allais-type paradoxes (in the same way that
prospect theory can). Consider the following pair of decision problems, presented to exper-
imental subjects in Kahneman and Tversky (1979). In the first problem, the subject must
choose between (a) winning $2400 with certainty and (b) a lottery offering a 33 percent
chance of winning $2500, a 66 percent chance of winning $2400, and a 1 percent chance of
winning nothing. In the second problem, the subject must choose between (a) a lottery offer-
ing an 34 percent chance of winning $2400, and otherwise nothing, and (b) a lottery offering
a 33 percent chance of winning $2500, and otherwise nothing. Kahneman and Tversky find
that experimental subjects are more likely to choose (a) in problem 1, but (b) in problem
2. This is problematic for EUM, which implies (regardless of the utility values assigned to
the three possible outcomes)that if (a) is preferred to (b) in one problem it must also be
preferred in the other problem, and vice versa, simply as a consequence of the fact that
expected utility is a linear function of the probabilities.

If one supposes instead that in the case of each lottery, the probabilities of the outcomes
(when different from zero or one) are encoded with noise, and decoded in the manner pro-
posed above48, then in problem 1, the average subjective valuation of option (b) is predicted
to be

w(.01) · 0 + w(.66) · 2400 + w(.33) · 2500.

If (simply as illustrative values) we suppose that αp = βp = 0.5, this quantity will equal
$1634.82; hence this option will on average be valued much less than $2400, and subjects
should be observed to choose option (a) much more frequently. In the case of problem 2, the
average subjective valuation of option (a) will be

w(.66) · 0 + w(.34) · 2400 = $633.85

using these same parameter values. The average subjective valuation of option (b) will
instead be

w(.67) · 0 + w(.33) · 2500 = $649.40.

Thus option (b) will be (weakly) preferred on average in problem 2, although option (a)
is preferred on average in problem — even though the same approach to noisy coding of
probabilities and Bayesian decoding of the internal representations is used in both cases.

48In the case of option (b) in problem 1, we assume that the Bayesian decoding of the internal represen-
tations of the probabilities of obtaining $2400 or $2500 is done independently for each of these probabilities
— that is, treating the two probabilities as two independent draws from the same prior distribution over
possible probabilities. This allows us to re-use the calculation of the function w(p) from the discussion above
of lotteries in which there is only a single non-zero outcome. Because this calculation implies that option
(b) should be judged on average to be considerably inferior to option (a), it seems unlikely that a more
sophisticated Bayesian calculation would overturn the result.
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H Experimental Design: Further Details

H.1 Participants

Twenty adults (10 female, ages 18-28 years) participated in the experiment after giving
informed consent. Participants were recruited from the Columbia University community
via on-campus informational fliers. Participants completed the experimental procedure in
a private room on a single computer station. All procedures involving human subjects
were approved by the Institutional Review Board of Columbia University (protocol #IRB-
AAAQ2255).

H.2 Experimental Task

Participants completed a task in which they were instructed to choose between a certain
monetary payment and a risky payment. Participants were presented with a series of options
on the screen and submitted their choices by pressing the left or right arrow keys on the
keyboard.

Figure 7 illustrates the screen observed by one of our subjects on a single trial. The two
sides of the screen indicate the two options available on that trial; the subject must indicate
whether she chooses the left or right option (by pressing the corresponding key). On the
left side of the screen, the dollar amount shown is the quantity C that can be obtained
with certainty if left is chosen. The right side of the screen shows the possible payoffs if
the subject chooses the risky lottery instead. The amounts at the top and bottom of the
right side indicate the two possible monetary prizes; the colored rectangular regions in the
center indicate the respective probabilities of these two outcomes, if the lottery is chosen.
The relative areas of the two rectangular regions provide a visual indication of the relative
probabilities of the two outcomes; in addition, the number printed in each region indicates
the probability (in percent) that that outcome will occur. (Thus on the trial shown, the
subject must choose between a certain payment of $5.55 and a lottery in which there would
be a 58 percent chance of receiving $15.70, but a 42 percent chance of receiving nothing.)

Figure 7: The computer screen during a single trial of our experiment. The two sides of the
screen show the two options available on this trial.
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Participants completed sequences lasting between 280 and 648 choices. The average
completion time ranged between 14 minutes (280 choices) and 37 minutes (648 choices).
In addition, participants began with instructional and practice session that lasted about 10
minutes. Participants were prompted to take a break after every 100 choices, upon which they
could resume the experiment at the press of a button. The experiment interface was created
with in-house code designed to run on the Psychophysics Toolbox-3 stimuli presentation
package for MATLAB.
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H.3 Experimental Task Instruction Slides
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