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1 Introduction

Cluster-robust methods are widely used to account for cross-sectional dependence
(Cameron and Miller, 2015). The standard model of cluster dependence partitions
the set of observations into a large number of clusters such that observations across
clusters are independent (Hansen and Lee, 2019). However, in many settings, obser-
vations cannot be divided into independent, mutually exclusive clusters. Temporally
and spatially dependent data typically have the property that correlation between
observations decays with distance but never exactly reaches zero. Recent economet-
ric work develops cluster-robust methods applicable to data of this type (Bester et
al., 2011; Canay et al., 2017, 2020; Ibragimov and Müller, 2010, 2016). We build on
this literature to study the performance of these methods under network dependence.

Clustered standard errors are frequently used with network data. When there
exists a large set of plausibly independent networks, for example, geographically iso-
lated villages (e.g. Banerjee et al., 2013), the standard asymptotics are applicable.
However, it is common to observe only a single large network, say the friendship
network of a school or village, in which case it may be unclear how to partition the
network into clusters. For example, Miguel and Kremer (2004) study a setting with
many schools but allow for cross-school treatment spillovers. Since observations in
different schools may then be correlated, it is not clear whether clustering, say, at the
school level yields valid standard errors.

Several papers approach this problem by using a “community detection” or “net-
work clustering” unsupervised learning algorithm to divide the network into disjoint
subnetworks according to some criteria and then clustering standard errors on the
subnetworks (e.g. Aral and Nicolaides, 2017; Aral and Zhao, 2019; Zacchia, 2020).
However, it is unclear whether the criteria used to construct these subnetworks de-
liver a set of clusters that can be used for statistically valid inference. This is because
the clusters are linked (hence the need for partitioning), so they are not generally
independent. Additionally, these algorithms often depend on tuning parameters that
can be chosen to mechanically increase the number of clusters the algorithm outputs,
and there are no guidelines on how to choose this number for the purpose of inference.

An alternative to cluster-robust inference is to use HAC variance estimators, which
are well-known methods of adjusting for spatial or temporal dependence. In the con-
text of network dependence, the same estimators may be used by interchanging tem-

2



Network Clustering

poral or spatial distance with network (path) distance (Kojevnikov, 2021; Kojevnikov
et al., 2020). However, simulation evidence has shown that tests using these estima-
tors tend to over-reject in smaller samples (Conley et al., 2018; Ibragimov and Müller,
2010).

To our knowledge, there is no theoretical justification for applying cluster-robust
methods to network-dependent data. Zacchia (2020) invokes the work of Bester et
al. (2011) to justify network clustering, but the latter’s results are specific to spatial
data. For HAC estimators, complications arise in the choice of bandwidth when
switching from Euclidean to network distance (Kojevnikov et al., 2020; Leung, 2020).
A motivating question for this paper is whether cluster-robust methods also encounter
novel complications when applied to network-dependent data.

Contributions. We show that complications do exist. Whereas weakly dependent
spatial data can always be partitioned into a set of “quality” clusters (we will define
what we mean by “quality”), this turns out not to be the case for network data. We
show that cluster-robust methods applied to networks that lack quality clusters can
exhibit substantial size distortion. This motivates the methods provided in this paper
for diagnosing whether quality clusters exist and how to construct them.

We derive conditions on the clusters and data-generating process under which
cluster-robust inference procedures are valid under network dependence. To our
knowledge, all existing such methods require asymptotic independence of clusters.
Bester et al. (2011) provide primitive sufficient conditions for asymptotic indepen-
dence for spatial data, the key assumption being a restriction on the growth rate of
cluster boundaries. For network data, we show that, under certain conditions, it is
necessary and sufficient for clusters to have low conductance, which is the ratio of
a cluster’s edge boundary size to its volume (defined in §2.1). This yields a simple
r0, 1s-measure of cluster quality and suggests an (infeasible) objective for constructing
clusters: choose the set that minimizes conductance. The importance of conductance
connects the literature on cluster-robust inference to results in spectral graph theory
and spectral clustering, which we draw on to feasibly construct clusters.

Due to the topology of Euclidean space, clusters satisfying the boundary condition
can always be constructed for spatial data (under increasing domain asymptotics).
However, we show that in the network setting, this may not be possible, depending on
the underlying process that generates the network. As we discuss, for low-conductance
clusters to exist, the network must have a sufficiently small (higher-order) Cheeger
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constant, which is a well-known graph invariant that measures network segregation.
Some classes of networks satisfy this condition, but many apparently do not.1 We
therefore require methods to determine the existence of low-conductance clusters and,
if they exist, to construct them.

Computing the Cheeger constant or set of clusters minimizing conductance turns
out to be infeasible. Fortunately, Cheeger inequalities imply that the lower eigen-
values of the graph Laplacian (defined in §2.2) are informative about the constant’s
magnitude. A simple argument (Proposition 1) shows that a set of L low-conductance
clusters exists if only if the Lth smallest eigenvalue is small, providing a practical di-
agnostic for determining both the existence and number of good clusters. To then
compute the clusters, we can apply k-means clustering to the eigenvectors, which
corresponds to spectral clustering, a widely used unsupervised learning algorithm.

Our simulation results show that there are advantages to using cluster-robust
methods for network data, relative to HAC estimators. We find that the random-
ization test of Canay et al. (2017) better controls size in smaller samples, provided
clusters have low conductance. However, when no such clusters exist, the test ex-
hibits substantial size distortion even in large samples, unlike the HAC estimator.
Our theory suggests this is due to the fact that clusters in this case do not satisfy the
requirement of asymptotic independence.

Based on these results, we make three recommendations for empirical practice
in §2.3. These concern how to assess whether a given set of clusters is of sufficient
“quality” (compute the conductance), how to assess whether quality clusters exist
(compute the spectrum of the Laplacian), and how to compute such clusters if they
exist (apply spectral clustering or other community detection algorithms).

Community detection algorithms can output a small number of clusters, as is
the case in our simulation results. Conventional clustered standard errors can per-
form poorly in this setting (Cameron and Miller, 2015). Our results therefore utilize
asymptotics sending the sizes of a fixed number of clusters to infinity (Bester et al.,
2011; Canay et al., 2017, 2020; Ibragimov and Müller, 2010, 2016). Our formal results
provide interpretable primitive conditions under which the key independence assump-
tion imposed by these papers holds. We do not develop a new inference procedure;
rather, we provide diagnostics to assess whether these existing procedures are valid
when applied to network data and an asymptotic theory supporting these diagnostics.

1A simple example is a fully connected network, but we will discuss more realistic examples.
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Related Literature. There is a large, cross-disciplinary literature on spectral clus-
tering. von Luxburg (2007) is a well-known reference in computer science. A growing
literature in statistics studies the performance of spectral clustering for estimating
stochastic block models (e.g. Lei and Rinaldo, 2015; Rohe et al., 2011). The goal of
this literature is to recover latent types (“communities”), and theoretical results con-
cern convergence of the sample Laplacian to a population Laplacian that identifies the
types. We are instead interested in spectral clustering from the graph conductance
perspective of identifying small-boundary clusters, regardless of their association or
lack thereof with some underlying parameter such as type. This perspective seems to
be emphasized more in the computer science literature (see e.g. Trevisan, 2016).

Jochmans and Weidner (2019) establish a connection between the second-largest
eigenvalue of the graph Laplacian and the rate of convergence of fixed-effect network
regressions. Their results suggest the practical importance of computing the spectrum
to assess estimator precision. Our paper highlights the usefulness of the spectrum for
a different purpose, namely to assess the validity of cluster-robust methods under
network dependence.

As noted by Conley et al. (2018), there is little work on how to best group observa-
tions into clusters even for non-network data. Ibragimov and Müller (2010) show that
there is no data-dependent way to “optimally” construct clusters while maintaining
uniform size control but nonetheless note that this is an important practical issue.
Ibragimov and Müller (2016) make some progress along this direction by providing a
test for whether a finer cluster partition is valid compared to a coarser one. Parti-
tioning space into equally-sized rectangles satisfies the boundary condition of Bester
et al. (2011), but with irregularly spaced data, it may be possible to do better. Re-
cent work by Müller and Watson (2021) addresses this problem by constructing novel
standard errors using the principal components of the variance of a baseline spatial
model and selecting the number of components to minimize the expected length of
the confidence interval.

The outline of the paper is as follows. In the next section, we state the model,
summarize our main results and their intuition, and make recommendations for em-
pirical practice. We present the asymptotic theory in §3. Then in §4, we discuss the
use of spectral clustering for constructing clusters. We provide theoretical and simu-
lation results on the spectra of various geometric and random graphs in §5, showing
that some important classes of graphs lack quality clusters. In §6, we present sim-
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ulation results comparing the randomization test to HAC estimators and apply our
results to two empirical studies. Finally, §7 concludes.

2 Setup and Overview

We observe a set of units Nn “ t1, . . . , nu, data Wi P Rdw associated with each
unit i, and an undirected network or graph A on Nn. We represent A as a binary,
symmetric adjacency matrix with ijth entry Aij “ 1 signifying a link between i and
j and Aij “ 0 signifying its absence. We assume no self-links, so that Aii “ 0 for all
i. Remark 1 below discusses possible extensions to weighted, directed networks.

Our analysis treats A as fixed (conditioned upon), whereas tWiu
n
i“1 is random and

not necessarily identically distributed. Let θ0 P Rdθ be the true parameter of interest
and g : Rdw ˆ Rdθ Ñ Rdg a moment function such that

ErgpWi, θ0qs “ 0 @ i P Nn.

The goal is inference on θ0. Define the standard generalized method of moments
(GMM) estimator

θ̂ “ argmin
θ

Ĝpθq1ΨĜpθq,

where Ĝpθq “ n´1
řn
i“1 gpWi, θq is the sample moment vector and Ψ a weighting

matrix. For example, to recover parameters of linear-in-means-type models, Aral
and Nicolaides (2017) and Zacchia (2020) both use instrumental variables estimators,
which are well known special cases of GMM.

Various papers cited in the introduction develop cluster-robust methods for this
setting when tWiu

n
i“1 satisfies weak temporal or spatial dependence. We instead

employ a notion of weak network dependence, formally defined in §3, which is con-
ceptually similar to mixing conditions used in time series and spatial econometrics.
The key difference is the metric, which is path distance. For any two units i, j, their
path distance `Api, jq is the length of the shortest path between them in A.2 Weak
network dependence essentially demands that the correlation between Wi and Wj

decays to zero as `Api, jq Ñ 8.
2A path between i, j is a sequence of links Ak1k2 , Ak2k3 , . . . , Akm´1km “ 1 such that k1 “ i,

km “ j, and ka ‰ kb for all a, b P t1, . . . ,mu. The length `Api, jq of this path is m´ 1. If i ‰ j and
no path between i, j exists, then we define `Api, jq “ 8. If i “ j, we define `Api, jq “ 0.
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Clusters. Cluster-robust methods take as input a partition of Nn into L clusters,
which we denote by tC`uL`“1. Each C` implicitly depends on the network A since
different networks may be partitioned differently. Being a partition, YL

`“1C` “ Nn
and C`XCm “ ∅ for all ` ‰ m. In practice, clusters will typically constitute connected
subnetworks in the sense that `Api, jq ă 8 for all i, j P C` and any cluster ` because
community detection algorithms usually output connected subnetworks. Also, a union
of k disconnected subnetworks is better treated as k distinct clusters since, being
disconnected, such subnetworks are uncorrelated under the weak dependence concept
we use, and cluster-robust methods are more powerful with a larger number of clusters.

In general, the observed network may consist of multiple components, which are
connected subnetworks that are disconnected (in the sense of infinite path distance)
from the rest of the network. Under weak network dependence, observations in differ-
ent components are uncorrelated, so components can therefore be treated as separate
clusters. This implies that, if a network consists of many components, standard
many-cluster asymptotics are applicable. However, a well-known stylized fact about
real-world networks is that they typically possess a giant component containing the
vast majority of units (formally, order n units), and all other components are small
(formally, being opnq and typically Oplog nq in size; see Barabási, 2015). For exam-
ple, the giant of the Facebook graph contains 99.91 percent of all units, whereas its
second-largest component only has about 2000 units (Ugander et al., 2011). There-
fore, the key task for clustering is partitioning the giant, which is the main part of the
network. All other components, being small, can be treated as individual clusters.

Inference Procedures. Suppose we have a set of clusters. Let θ̂` be the GMM esti-
mator computed only using observations in cluster ` and Ĝ`pθq “ n´1`

ř

iPC` gpWi, θq,
the sample moment vector constructed only using these observations. Cluster-robust
methods use estimates pθ̂`qL`“1 or moments pĜ`pθ̂`qq

L
`“1 (possibly for constrained ver-

sions of θ̂`) to construct tests. A commonly used method is a wild bootstrap procedure
due to Cameron et al. (2008), whose formal properties under fixed-L asymptotics are
studied by Canay et al. (2020). Their results, as well as those of Bester et al. (2011),
require clusters to satisfy certain homogeneity conditions, which are not imposed by
Canay et al. (2017) and Ibragimov and Müller (2010).

Cai et al. (2021) argue that the randomization test of Canay et al. (2017) has a
number of attractive properties relative to the other alternatives. We next summarize
this test since it will be the focus of our simulation study in §6. Let Sn “ p

?
npθ̂` ´
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θqqL`“1, and define the Wald statistic

T pSnq “

˜

1
?
L

L
ÿ

`“1

?
npθ̂` ´ θq

1

¸˜

1

L

L
ÿ

`“1

npθ̂` ´ θqpθ̂` ´ θq
1

¸´1˜

1
?
L

L
ÿ

`“1

?
npθ̂` ´ θq

¸

,

where θ is the null value of θ0. One can alternatively use subvectors of θ̂` and θ. For
π “ pπ`q

L
`“1 P t´1, 1uL, let πSn “ pπ`

?
npθ̂` ´ θqq

L
`“1. The test rejects if

T pSnq ą T pkqpSnq, (1)

where k “ r2Lp1´αqs, α is the level of the test, and T pkqpSnq is the kth largest value
of tT pπSnq : π P t´1, 1uLu.

2.1 Conductance

In §3, we provide conditions under which a given set of clusters can be used for
asymptotically valid cluster-robust inference. We consider a sequence of networks
with associated clusters indexed by the network size n and take n to infinity, while
keeping the number of clusters L fixed. For economy of language, we often simply
refer to a network rather than a sequence of networks when discussing asymptotic
results.

Let n` “ |C`|, the cardinality of C`, and Ĝ`pθq “ n´1`
ř

iPC` gpWi, θq. Under weak
network dependence and standard regularity conditions, we establish that

1?
n

¨

˚

˚

˝

n1Ĝ1pθ0q
...

nLĜLpθ0q

˛

‹

‹

‚

d
ÝÑ N p0,Σ˚q, Σ˚ “

¨

˚

˚

˚

˚

˝

ρ1Σ1
?
ρ1ρ2 Σ12 . . .

?
ρ1ρL Σ1L

?
ρ2ρ1 Σ21 ρ2Σ2 . . .

?
ρ2ρL Σ2L

...
... . . . ...

?
ρLρ1 ΣL1

?
ρLρ2 ΣL2 . . . ρLΣL

˛

‹

‹

‹

‹

‚

,

(2)
where ρ` “ limnÑ8 n`{n, Σ`m “ limnÑ8Covp

?
n`Ĝ`pθ0q,

?
nmĜmpθ0qq, and Σ` “ Σ``.

This is an elementary but key intermediate result for establishing that the vector of
GMM estimates p

?
npθ̂` ´ θ0qq

L
`“1 is asymptotically normal.

The cluster-robust methods previously cited all require asymptotic independence
in the sense that the off-diagonal blocks Σ`m are zero for all ` ‰ m (e.g. Canay et al.,
2020, Assumption 2.2(i)). Assumption 3.1(ii) of Canay et al. (2017) imposes symme-
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try of the limit distribution, which, under the group of transformations considered
in their §4 and our (1), corresponds to having off-diagonal blocks equal to zero. We
therefore interpret zero off-diagonal blocks as the key requirement for the validity
of cluster-robust methods. Our goal is to provide restrictions on the network and
clusters under which this holds.

We next introduce some standard definitions from spectral graph theory (Chung,
1997; Trevisan, 2016).

Definition 1. For any S Ď Nn, define its edge boundary size with respect to A as
the number of links involving a unit in S and a unit not in S:

|BApSq| “
ÿ

iPS

ÿ

jPNnzS

Aij.

The volume of S is volApSq “
ř

iPS

řn
j“1Aij, the sum of the degrees

řn
j“1Aij of units

i in S. Finally, the conductance of S (assuming it has at least one link) is

φApSq “
|BApSq|
volApSq

.

The conductance is the probability that a randomly chosen neighbor of a randomly
chosen unit in S lies outside of S. The denominator is a trivial upper bound on the
numerator since all units in S may only be connected to units outside of S. In addition
to delivering a r0, 1s measure, normalizing by the volume ensures that small sets do
not have low conductance simply by virtue of having few members or few links.

Our main assumption for guaranteeing Σ`m “ 0 for all ` ‰ m is

max
1ď`ďL

φApC`q Ñ 0 as nÑ 8. (3)

This says the maximal conductance of the clusters is small. Theorem 1 establishes
sufficiency under additional conditions and Theorem 2 necessity. The intuition for
(3) is as follows. As we will see, weak network dependence requires restrictions on
the sizes of K-neighborhoods, where the K-neighborhood of a unit i is

NApi,Kq “ tj P Nn : `Api, jq ď Ku,

recalling that `Api, jq is path distance. In sparse networks, the size of this set is asymp-
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totically bounded for any i,K. This ensures a type of increasing domain asymptotics
as n Ñ 8, meaning that units are minimally spaced apart in large networks. For
example, it rules out a completely connected network where all units are distance 1
apart. Now, if (3) holds, this means that, for two clusters of order n size, the number
of links connecting the clusters is opnq. Consequently, given that units in the network
are minimally spaced apart, most units in one cluster will be far from units in the
other for large n, which will imply asymptotic independence of clusters since corre-
lation decays with distance. This is the same intuition for temporally (Ibragimov
and Müller, 2010) and spatially (Bester et al., 2011) correlated data, but it was not
previously obvious how this extends to network data. As for necessity, as far as we
are aware, there are no prior results, but the intuition is similar. If (3) fails, then we
could have each unit in one cluster directly linked to a unit in the other, in which
case the clusters can be strongly correlated.

Note that (3) does not mean the giant asymptotically fractures into L distinct
components. For any given cluster, it requires the number of cross-cluster links to be
small relative to the number of links emanating from units in the cluster. However,
any cluster can still have many links to any other cluster. Figure 1 plots two ran-
dom graphs from simulations in §5.2, coloring units by clusters obtained via spectral
clustering (see §4). Connections within clusters are denser than connections across
clusters, which means conductance is low. Indeed, the clusters in the left and right
panels have maximal conductance 0.13 and 0.07, respectively.

2.2 Graph Invariants

The next natural question is whether a sequence of clusters satisfying (3) necessarily
exists for any given network sequence. In the spatial setting, one can always con-
struct clusters satisfying the required boundary condition under increasing domain
asymptotics (Bester et al., 2011, Assumption 2(iv)), for example by partitioning R2

into rectangles, but this is not true in general for networks.
For any integer k ą 1, define the kth-order Cheeger constant of A

hkpAq “ min

"

max
1ď`ďk

φApS`q : S1, . . . , Sk partitions Nn
*

. (4)

This is a well-known graph invariant that measures network segregation. If A has
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Figure 1: Low-conductance clusters of a random geometric graph (left panel) and a
draw from the random connections model (right panel), obtained by spectral cluster-
ing. See §5 for a description of these models.

k components, then it is maximally segregated, and hkpAq “ 0, whereas if A is
completely connected, then hkpAq “ 1 for any k. The outer minimization problem
corresponds to solving an adjusted “mincut” problem (von Luxburg, 2007). By con-
trast, the goal of unadjusted mincut is to divide the network into k subnetworks with
a minimal number of links between the subnetworks. The problem with unadjusted
mincut is that it does not produce a satisfactory partition in practice because it does
not account for subnetwork size; it often generates singleton clusters obtained by cut-
ting a single link. The adjusted mincut problem in (4) accounts for this by dividing
by volume in the definition of conductance. Thus if we set the numerator of φApSq

to be one for all S, for instance, then the minimum is achieved by a partition such
that all of its elements have equal volume.

Clearly, a necessary condition for (3) is

hLpAq Ñ 0. (5)

Thus, if hLpAq could be computed, it would provide a simple way to assess whether
low-conductance clusters exist. Furthermore, the argmin would be the best possible
partition for cluster-robust inference. Unfortunately, this optimization problem is
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NP-complete (Šíma and Schaeffer, 2006).
Fortunately, the spectrum of the graph Laplacian, which can be efficiently com-

puted, is highly informative about the magnitude of the Cheeger constant. Let D

be the n ˆ n diagonal matrix with iith entry equal to i’s degree
řn
j“1Aij. The

(normalized) Laplacian of A is

I ´D´1{2AD´1{2,

where I is the nˆn identity matrix. Let us order the eigenvalues of the Laplacian as

λ1 ď λ2 ď . . . ď λn.

The following facts are well known: λk P r0, 2s for all k, and λk “ 0 if and only if
A has at least k components (hence λ1 “ 0) (Chung, 1997). The latter property
suggests that if λk is close to zero, then A should contain a set of k clusters with
low conductance since having k components is the “ideal” case of k clusters with zero
maximal conductance.

The (higher-order) Cheeger inequality formalizes this intuition by relating Cheeger
constants to the spectrum of the Laplacian as follows:

λk
2
ď hkpAq ď Cλ

1{2
k , (6)

where C is a constant that does not depend on n and is Opk2q (Lee et al., 2014,
Theorem 1.1).3 This yields the following simple corollary.

Proposition 1. hLpAq Ñ 0 if and only if λL Ñ 0.

Proof. The “if” direction is immediate from both inequalities in (6). The “only if”
direction follows from the second inequality and the fact that λk P r0, 2s for all k.

The proposition gives us a feasible way of assessing (5), which is to examine the
magnitude of λL. Based on (5) and the proposition, we make the following definition.

3See Chung (1997) and Trevisan (2016) for proofs for k “ 2. The lower bound holds because,
from the variational characterization of λk, one can rewrite λk as the optimum of an objective that
corresponds to a continuous relaxation of the optimization problem corresponding to hkpAq.
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Definition 2. A sequence of networks is well clustered at L if λL Ñ 0 as n Ñ 8.
It is well clustered if it is well clustered at L for some L ą 1 and poorly clustered
otherwise.

That is, well-clustered networks can be partitioned into L low-conductance clusters,
which can be used for cluster-robust inference by our asymptotic theory. Note that
this is a very minimal notion of being well clustered, and in practice, we should aim
for L ě 5 clusters that are not unbalanced, as discussed in §2.3 below.

The next natural question is what kinds of networks are well clustered, meaning
what models of network formation generate well-clustered networks. Our discussion in
§5 indicates that a variety of networks satisfy this condition, but there are important
classes of networks that apparently do not. It is therefore important to assess whether
a given network is well clustered in practice.

2.3 Practical Recommendations

Based on these results, we make several recommendations for empirical practice.

Conductance. For any candidate set of clusters tC`uL`“1, however it is obtained,
one should compute its maximal conductance max1ď`ďL φApC`q P r0, 1s. By (3), the
goal is to obtain a value close to zero, and our simulations in §6.1 indicate that
values as high as about 0.1 can still ensure adequate size control. The remaining two
recommendations concern whether we can find and how to find such clusters.

Laplacian. The ideal set of clusters constitutes the partition that minimizes conduc-
tance. As previously discussed, an exact solution is computationally infeasible, which
motivates the use of spectral methods. Specifically, we would like to choose L such
that λL is small and λL`1 is large. If such an L exists, then the Cheeger inequality
implies L low-conductance clusters exist but L ` 1 such clusters do not. Of course,
there are no universal thresholds for “small” and “large.” Nonetheless, this heuristic
is widely used in practice to determine the number of clusters for spectral clustering
and principal components analysis (von Luxburg, 2007).

Any heuristic is necessarily subjective, as is quite clear when one inspects the
spectra of various graphs (see e.g. Figure 2). Different definitions of “small” or “large”
can potentially generate rather different clusters. Fortunately for us, we are not in-
terested in interpreting the clusters themselves, as is usually the case when applying
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community detection algorithms, but rather in finding a set of low-conductance clus-
ters. One can therefore compute as many partitions as desired using any number of
algorithms in order to find one with the smallest conductance.4

Still, we would like to make a more specific recommendation for how to use the
spectrum to choose L. The discussion above involves a combination of two heuristics.
What might be called the “cutoff heuristic” specifies a desired cutoff c and chooses
L satisfying λL ď c ă λL`1. On the other hand, the “gap heuristic” simply solves
argmaxLpλL`1´λLq. Let L1pcq be the result of the cutoff heuristic under some chosen
cutoff c and L2 that of the gap heuristic. In §5.2, we illustrate the need to combine
both heuristics and present simulation results using the following rule that combines
the two, which may be a reasonable starting point in practice:

L “ 1tL2 ă 5umaxtL1pcq, L2u ` 1tL2 ě 5umintL1pcq, L2u. (7)

To understand the idea, first note that if L is chosen very small, cluster-robust
methods have little power, and an alternative procedure may be preferable. The sim-
ulation results of Cameron et al. (2008) and Cai et al. (2021) show good performance
of their respective methods for clusters of size as few as five, so L ě 5 seems to be a
good rule of thumb. Now, as we will discuss in §5.2, some graphs have a large gap
very early in the spectrum, in which case L2 is potentially too small. In this case, the
heuristic errs on the side of potentially obtaining more clusters by taking the max of
the two values. In other graphs, the location of the gap is quite random, potentially
yielding huge values of L2. In this case, the heuristic errs on the side of obtaining
fewer, better clusters with lower conductance by taking the minimum. Our simulation
results in §5.2 indicate that using this rule with cutoffs c ă 0.05 seems to produce
values of L such that, for well-clustered graphs, spectral clustering (described in §4)
delivers clusters with maximal conductance near 0.1, so these are reasonable starting
points.

Computing clusters. Many algorithms are available for this purpose. We focus
on spectral clustering in our simulation results. In §4, we define the algorithm and
discuss why it computes low-conductance clusters when they exist.

Unbalanced clusters. For some networks, community detection algorithms may
4Provided these algorithms only use the network data A, as is the case for most community

detection algorithms, our asymptotic theory remains valid since it treats A as fixed.

14



Network Clustering

usually return an unbalanced partition consisting of one large cluster and several very
small clusters; see Example 4 below. Such networks may be thought of as being
close to poorly clustered. Result (2) implies that only large clusters (of order n
size) contribute to the limit distribution, so this situation is little better than having
only the large cluster, a setting where cluster-robust methods have trivial power.
Consequently, an alternative inference procedure should be used.

It may be tempting to rectify an unbalanced partition by changing the tuning pa-
rameters of various network clustering algorithms to mechanically increase the number
of clusters beyond what the spectral gap suggests, essentially by producing “deeper
cuts” in the large cluster. We strongly recommend against this practice because some
of the resulting clusters will have high conductance, violating (3). For instance, if
the spectral gap identifies the number of clusters as L, so that λL is close to zero but
λL`1 is far from zero, then using a deeper cut to obtain L ` 1 clusters means some
cluster has high conductance by the Cheeger inequality since λL`1 is large.

Remark 1 (Weighted, directed graphs). Our asymptotic results rely on a CLT that
only pertains to binary, undirected networks, but as discussed in Kojevnikov (2021),
this can be extended to weighted networks. The definitions of conductance, the
Cheeger constant, and the Laplacian immediately apply to weighted (Aij P R) net-
works and have been generalized to directed (Aij ‰ Aji) networks. It is likely possible
to formalize a notion of weak network dependence for such networks under which
cluster-robust inference is valid when the conductance is asymptotically negligible.
Furthermore, the Cheeger inequality applies directly to weighted graphs (Lee et al.,
2014) and has been extended to directed graphs (Chung, 2005). Consequently, we
believe that our recommendations are also relevant for these types of networks.

3 Asymptotic Theory

We consider a sequence of networks, each network associated with a partition, with
both implicitly indexed by the network size n. Recall that n` “ |C`|, the size of the
`th cluster.

Assumption 1 (Limit Sequence). (a) The number of clusters L in each partition is
fixed as nÑ 8. (b) For any ` “ 1, . . . , L, n`{nÑ ρ` P r0,8q.
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We consider a small number of clusters in part (a) because the partitions generated
by spectral clustering in our simulations are quite small in size. Part (b) defines ρ`
as the asymptotic fraction of units in C`, allowing for the possibility that the cluster
has trivial size (ρ` “ 0).

To formalize weak network dependence, one approach is to adapt a notion of
temporal or spatial weak dependence by replacing temporal or spatial distance with
path distance. Kojevnikov et al. (2020) take this approach, adapting the concept of
ψ-weak dependence, which we employ in what follows. They and Leung (2020) verify
ψ-weak dependence for a number of network applications.

Weak dependence simply means the correlation between two sets of observations
decays as the network distance between the sets grows. Formalizing this requires some
notational overhead. For any H,H 1 Ď Nn, define `ApH,H 1q “ mint`Api, jq : i P H, j P

H 1u, the distance between two sets. Let Ld be the set of bounded R-valued Lipschitz
functions on Rd, ‖f‖8 “ supx|fpxq|, Lippfq the Lipschitz constant of f P Ld, and

Pnph, h1; sq “ tpH,H 1
q : H,H 1

Ď Nn, |H| “ h, |H 1
| “ h1, `ApH,H

1
q ě su ,

the set of pairs of sets H,H 1, with respective sizes h, h1, that are at least distance s
apart in the network. Define GH “ pgpWi, θ0qqiPH , the vector of moments for units in
H, and Mnps, kq “ n´1

řn
i“1|NApi, sq|k, the kth moment of the s-neighborhood size.

Finally, let

Hnps,mq “
 

pi, j, k, `q P N 4
n : k P NApi,mq, ` P NApj,mq, `Apti, ku, tj, `uq “ s

(

.

This is the set of paired couples pi, jq and pk, `q with the property that the two pairs
are exactly path distance s apart, i, k are at most m apart from one another, and
likewise with j, `.

Assumption 2 (Weak Network Dependence I).

(a) There exist a constant C ą 0 and uniformly bounded constants tψnpsqus,nPN with
ψnp0q “ 1 for all n such that supn ψnpsq Ñ 0 as sÑ 8 and

|CovpfpGHq, f
1
pGH 1qq| ď Chh1p‖f‖8 ` Lippfqqp‖f 1‖8 ` Lippf 1qqψnpsq

for all n, h, h1 P N; s ą 0; f P Ldgh; f 1 P Ldgh1; and pH,H 1q P Pnph, h1; sq.
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(b) There exist p ą 4 and a sequence of positive constants tmnunPN such that mn Ñ 8

and

max

#

1

n2

n
ÿ

s“0

|Hnps,mnq|ψnpsq1´4{p, n´1{2Mnpmn, 2q, n3{2ψnpmnq
1´1{p

+

Ñ 0.

(8)

This imposes weak network dependence on the set of moments.5 Part (a) encodes
the definition of ψ-weak dependence and Assumption 2.1 of Kojevnikov et al. (2019).
Part (b) is Assumption 3.4 of the same reference.6 The key quantity is ψnpsq, which
essentially bounds the correlation between sets of observations at distance s and is
required to decay to zero as s diverges. Leung (2020) shows that ψnpsq is uniformly
Ope´c sq for some c ą 0 in well-known social interactions models.

Part (b) is analogous to mixing conditions for spatial data that require the mixing
coefficient to decay sufficiently quickly. In the network setting, this is necessarily
more complicated to state because the metric space is non-Euclidean. As discussed
in Leung (2020), whereas the number of units in a ball of radiusK grows polynomially
in Euclidean space, it can grow exponentially in a network. Part (b) requires ψnpsq
to decay sufficiently quickly relative to the growth rates of s-neighborhoods, the
equivalent of balls in Euclidean space, and this is conceptually the same requirement
underlying spatial mixing conditions.

Appendix A of Leung (2020) verifies part (b) for different classes of graphs. The
second term in (8) restricts s-neighborhood growth rates. For instance, if |NApi, sq|
is uniformly bounded by an exponential function of s, then choosing mn to grow
logarithmically with n ensures thatMnpmn, 2q “ Op1q. The third term in (8) requires
sufficiently fast decay of ψnpsq. In the case of exponential decay in s, the assumption
is satisfied for mn diverging at a logarithmic rate. Finally, the first term of (8)
essentially requires ψnpsq to decay to zero fast enough relative to s-neighborhood
sizes. See §A.2 in the appendix for further discussion.

Assumption 3 (Regularity). (a) Covp
?
n`Ĝ`pθ0q,

?
nmĜmpθ0qq Ñ Σ`m finite for any

`,m “ 1, . . . , L, with Σ`` positive definite for any `. (b) For p in Assumption 2(b),
5It can be verified given an analogous weak network dependence condition imposed on the data

tWiu
n
i“1 and smoothness conditions on gp¨q (Kojevnikov et al., 2020, Appendix A.1).

6This can be replaced with Assumption 3.4 of Kojevnikov et al. (2020), but we find the 2019
version easier to use.
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supnPN maxiPNn Er‖gpWi, θ0q‖ps1{p ă 8.

Proposition 2. Under Assumptions 1–3, (2) holds.

Assumption 3 is standard. The proof of the proposition and all other results in this
section are given in §A.1. Under additional standard regularity conditions, we can
establish joint asymptotic normality of p

?
npθ̂` ´ θ0qq

L
`“1. Since this type of result is

well known, we omit these conditions and the corresponding result.
We next state conditions required for our first main result, which shows that the

off-diagonal blocks of Σ˚ in (2) are zero. Combined with Proposition 2, this verifies
the key high-level condition required by cluster-robust inference methods for a small
number of clusters. Let δpAq “ n´1

řn
i“1

řn
j“1Aij, the average degree.

Assumption 4 (Conductance). max1ď`ďL φApC`q ¨ δpAq Ñ 0.

This requires the largest conductance over elements of the partition to vanish as the
network grows since δpAq generally is bounded away from zero (otherwise, the network
would be empty in the limit). In dense networks, δpAq diverges, in which case the
assumption requires the maximal conductance to shrink to zero faster. However, for
settings with nontrivial network dependence, Assumption 2 requires A to be sparse
in the sense that δpAq “ Op1q.

Assumption 5 (Weak Network Dependence II).
řn
s“1 sMnps, 2p1` εqq

1{p1`εqψnpsq “

Op1q for some ε ą 0.

This is conceptually the same as Assumption 2(b), requiring dependence to decay
quickly enough relative to the growth rate of s-neighborhood sizes. We verify the
condition for some examples in §A.2. Note that validity of the HAC estimator (Ko-
jevnikov et al., 2020, Proposition 4.1) does not require Assumptions 4 or 5; instead,
it requires conditions relating the bandwidth and kernel to the network topology.

Theorem 1 (Sufficiency). Under Assumptions 1–5,
?
ρ`ρm Σ`m “ 0 for all ` ‰ m.

As previously discussed, this justifies the use of cluster-robust methods for network
data. Lemma 1 of Bester et al. (2011) is the analogous result for spatial data. Our
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last result establishes the necessity of Assumption 4 for obtaining zero off-diagonals.

Theorem 2 (Necessity). Consider any sequence of networks and associated clusters
such that Assumption 1 holds, min` ρ` ą 0 (only nontrivial clusters are used), each
cluster is a connected subnetwork, and δpAq “ Op1q (network is sparse), but clusters
fail to satisfy Assumption 4. There exists a data-generating process for tgpWi, θ0qu

n
i“1

satisfying Assumptions 2, 3, and 5 such that, for some `,m “ 1, . . . , L with ` ‰ m,
?
ρ`ρm Σ`m ‰ 0.

4 Constructing Clusters

Ideally we would like to find the set of clusters solving (4), but as discussed in §2.2, this
is not computationally feasible. This partly motivates a large, multi-disciplinary lit-
erature on network clustering algorithms. Zacchia (2020) uses a popular modularity-
based algorithm due to Blondel et al. (2008) to construct clusters. Such algorithms
seek to find a partition that approximately minimizes a “modularity” criteria, which is
a measure of community structure related to, but not quite the same as, conductance.
Modularity-based algorithms are the subject of a large literature in computer science
and physics (e.g. Barabási, 2015, Ch. 9).

Spectral clustering algorithms are another popular method (von Luxburg, 2007),
which has been more directly shown to deliver low-conductance clusters. Given a
desired number of clusters L, these algorithms apply k-means or some other clustering
method to L eigenvectors of the Laplacian. One common version of the algorithm is
the following.

1. Given a graph A and desired number of clusters L, compute the Laplacian and
its eigenvalues λ1 ď . . . ď λn.

2. Let V` be the eigenvector associated with λ` and V`i its ith component. Embed
the n units in RL by associating each unit i with a position

ρi “

˜

V1i

p
řL
`“1 V

2
`iq

1{2
, . . . ,

VLi

p
řL
`“1 V

2
`iq

1{2

¸

.

3. Cluster the positions pρiqni“1 using k-means with k “ L to obtain C1, . . . , CL.
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We use this in the simulations that follow. As discussed in von Luxburg (2007), it
can be interpreted as a continuous relaxation of the ideal program (4).

There are well-known results justifying why spectral clustering produces low-
conductance clusters, provided they exist, and our simulation results in the next
sections support these results. Recall that if λL “ 0, the network consists of L com-
ponents, which are “ideal” clusters with exactly zero conductance. This intuitively
suggests that if λL is close to zero, the network has L low-conductance clusters.

Consider an “ideal” network A˚ consisting of L components. The eigenvector
VL associated with λL then almost perfectly identifies the clusters because it can be
written as VL “D1{2V ˚L , where V ˚Li “ V ˚Lj if and only if i, j are in the same component
(Peng et al., 2017). That is, up to degree scaling due to D1{2, units in the same
component are assigned the same value by VL, whereas units in different components
are assigned different values. Recovering the clusters is then a simple task for k-means
(the normalization in the definition of ρi adjusts for degree heterogeneity).

Now suppose more realistically that the observed networkA has Lth-order Cheeger
constant that is small relative to λL`1 (their ratio tends to zero). This implies A has
L low-conductance clusters by the Cheeger inequality. It also implies a spectral gap
in that λL{λL`1 Ñ 0.7 By Theorem 1.1 of Peng et al. (2017), the span of the L eigen-
vectors of the Laplacian (corresponding to the smallest L eigenvalues) is close to that
of L vectors of normalized indicators that identify the infeasible optimal partition
that minimizes conductance. Consequently, the output of k-means should be close to
the optimum.

5 Spectra of Geometric and Random Graphs

By Theorem 2, (3) is necessary for cluster-robust inference to be valid. As discussed in
§2.1, a necessary condition for (3) is that the network must be well clustered, meaning
for some L, hLpAq Ñ 0, or equivalently, λL Ñ 0 by Proposition 1. This section
shows that, unfortunately, not all networks are well clustered, which motivates the
recommendations in §2.3. We first survey results from geometry and random graph
theory on the spectra and Cheeger constants of various graphs. We then provide

7In §5.2, we apply spectral clustering to networks with small spectral gaps that are nonetheless
well clustered, yet find the algorithm still delivers low-conductance clusters. Hence, having a large
spectral gap is sufficient but apparently not necessary.
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simulation evidence supporting the theory and clarifying aspects that are, to our
knowledge, incomplete.

5.1 Theoretical Results

The first two examples are of well-clustered graphs.

Example 1. A planar graph is a graph that can be drawn on the plane such that links
do not cross. Kelner et al. (2011) show that planar graphs with uniformly bounded
degree satisfy λL “ OpL{nq. More generally, they show that for graphs embedded in
orientable surfaces of genus g, the same result holds if g does not depend on L or n.

Example 2. Random geometric graphs are defined by associating each unit i with a
position Xi P Rd, i.i.d. across units with density f , and setting Aij “ 1t‖Xi ´Xj‖ ď
rnu for some rn ą 0. For the graph to be sparse, rn must tend to zero. Several
papers characterize the limiting behavior of Cheeger constants. Müller and Penrose
(2020) show that the second-order Cheeger constant is op1q a.s. when rn Ñ 0 and
nrdn " log n.8 Trillos et al. (2016) (Theorem 12) provide similar results for kth-order
Cheeger constants, albeit defined slightly differently than ours.

A perhaps more realistic model is the random connections model

Aij “ 1tαi ` αj ` r
´1
n ‖Xi ´Xj‖ ą εiju, (9)

which allows units further than distance rn to form links, albeit with probability
vanishing with distance ‖Xi ´ Xj‖. Leung and Moon (2020) study generalizations
of this model with strategic interactions. To our knowledge, there are no available
results on the spectrum, but we provide simulation evidence below showing that this
graph appears to be well clustered.

We next discuss examples of graphs that are not well clustered.

Example 3. A k-regular graph is one such that
ř

j Aij “ k for all i. Bollobás

8This is their Theorem 2.1 for v “ 2, b “ 1. Their notion of conductance corresponds to our
definition multiplied by the link count

ř

i,j Aij , what they label Voln,2pXnq. By their equation (2.12),
that term is of exact order n2rdn. Furthermore, the limit in (2.11) is finite. Hence, the normalization
in their Theorem 2.1 implies the Cheeger constant is Oprnq “ op1q a.s.
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(1988) proves that for k ě 3, the isoperimetric number of a randomly drawn k-
regular graph is at least a certain positive constant with probability approaching one.
The isoperimetric number for k-regular graphs equals kh2pAq, the 2nd-order Cheeger
constant times k, so the latter is bounded away from zero.

Expander graphs (or rather sequences of them) are those, which, by construction,
have Cheeger constants uniformly bounded away from zero, yet may still be sparse
(Hoory et al., 2006).

Expander and k-regular graphs are extremely stylized models. The final examples
concern more realistic models that have been applied to real-world networks.

Example 4. Inhomogeneous random graphs (Bollobás et al., 2007) satisfy

PpAij “ 1 | αi, αjq “
κpαi, αjq

n
,

where the types αi are usually independent and κpαi, αjq is often assumed to have
bounded support. Stochastic block models correspond to the special case in which
types are finitely supported. These are widely used in the statistics literature for
studying community detection.

One can easily choose κp¨q to generate homophily in types, where units with
similar types have a higher probability of linking. Given this type of structure, it
may seem that these graphs can be well clustered under reasonable conditions, say
with clusters roughly corresponding to sets of units with the same type. However,
Hoffman et al. (2019) write that a body of literature studying Erdős-Rényi graphs (a
special case with κp¨q constant) “show that the giant component can be partitioned
into a well connected expanding core together with small (logarithmic size) graphs
attached to the core,” where the core is a subgraph of the giant that is order n in
size.9 This suggests that even if λL were small for these graphs, any low-conductance
partition would be extremely unbalanced, so the graph is close to poorly clustered.
Our simulations below support this.

9See e.g. Coja-Oghlan (2007) (Theorem 1.2) for formal results for Erdős-Rényi graphs and Zhang
and Rohe (2018) for related results for stochastic block models.
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5.2 Simulation Evidence

We simulate the random geometric graph (RGG) (Example 2), random connections
model (RCM) (9), Erdős-Rényi graph (ER), and stochastic block model (SBM) (Ex-
ample 4) for n “ 1000 units. We calibrate parameters to obtain an average degree
of about 5 for all graphs. For the RGG, tXiu

iid
„ Upr0, 1s2q, and rn “ p5{pπnqq1{2.

For the RCM, tαiu
iid
„ Upr0, 1sq, tεiju

iid
„ logistic, tXiu KK tαiu KK tεiju, and rn “

p5{p3.5πnqq1{2. For ER, ρpαi, αjq “ ρ̄ “ 5. Finally, for the SBM, we construct 10
blocks of 100 units each, where units in the same block have probability 10{n of
linking and units in different blocks have probability p5 ¨ 8{9q{n of linking.

We analyze the spectrum of and apply spectral clustering to the subnetwork on
the giant component. Figure 2 plots histograms and scatterplots of the spectra for a
typical draw from each model. We see that both the RGG and RCM have a sizeable
mass of eigenvalues near zero but no obvious spectral gap. In contrast, both ER and
the SBM have only one zero eigenvalue (λ1 is necessarily zero) and a large gap between
λ1 and λ2. Consequently, only the RGG and RCM appear to be well clustered.

The scatterplots also illustrate the potential pitfalls with using only either the
cutoff heuristic or the gap heuristic described in §2.3. The gap heuristic identifies
one clear cluster for ER and the SBM, whereas for the RGG and RCM, the location
of the largest gap looks essentially random given how continuous the spectrum is.
For the cutoff heuristic, using this alone could potentially pick out a rather large
number of clusters for the RGG and RCM, given the mass of eigenvalues near zero,
whereas using our combination of heuristics (7) could improve inference by producing
lower-conductance clusters at the relatively small cost of having fewer of them.

We next present results on the conductances of clusters generated from spectral
clustering, choosing L according to (7) with c “ 0.05. If L2 ă 5, meaning the gap
heuristic finds very few clusters, this gives ER and SBM a chance to find more clusters
by taking the larger of the two potential values of L. Table 1 displays the result of 10k
simulations. The first column of the table is the maximal conductance, the second
the number of clusters, the third the size of the spectral gap, the fourth the Lth
smallest eigenvalue, the fifth the median cluster size, the sixth the size of the giant
component, and the last the average degree. We find that the heuristic (7) produces
a larger number of clusters for the RGG and a moderate number for the RCM, both
with conductances around 0.15. In contrast, for ER and the SBM, only one cluster is
typically found on average, and this cluster comprises nearly all units in the network.
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Figure 2: Histograms and scatterplots of eigenvalues.

We obtain similar results for c “ 0.02 and c “ 0.1 (not reported in a table).
For 0.02, the RGG (RCM) has on average 24 (6) clusters with maximal conductance
0.085 (0.071). For 0.1, the average number of clusters for ER and the SBM is still only
1.01. Figure 1 plots an RGG and a draw from the RCM with clusters obtained using
a cutoff of 0.02. In the figure, units are plotted according to their position in r0, 1s2

and colored according to their clusters obtained from spectral clustering. The RCM
contains longer-range links, producing a denser-looking figure, so spectral clustering
generates fewer clusters compared to the RGG.

Table 1: Spectra and Clusters

maxS φpSq # Clus. Gap λL Med. Clus. Giant Degree

RGG 0.158 40.0 0.004 0.048 18.3 758.4 4.83
RCM 0.137 12.7 0.006 0.047 77.3 983.9 4.98
ER 0.002 1.0 0.180 0.000 990.7 993.1 5.00
SBM 0.003 1.0 0.180 0.000 990.5 993.0 5.00

n “ 1k. Averages over 10k simulations. “Gap” = size of spectral gap, “Med. Clus.” =
median cluster size, “Giant” = size of giant component, “Degree” = average degree.

24



Network Clustering

6 Numerical Illustrations

6.1 Monte Carlo

We present simulation results on the finite-sample properties of the randomization
test for clusters computed using spectral clustering and t-test using a HAC estimator.

Design 1. We simulate the RGG, RCM, and SBM using the same parameters as
the design in §5.2. We then draw tεiu

n
i“1

iid
„ N p0, 1q independently of the network

and define Wi “ εi `
ř

j Aijεj{
ř

j Aij, which generates a simple form of network
dependence. We let θ0 “ ErWis “ 0 and gpWi, θ0q “ Wi, so the goal is inference
on the mean of Wi, whose true value is zero. This design is deliberately simplistic
to show that, even here, cluster-robust methods can break down for poorly clustered
networks.

We use the randomization test (1) to test the null that θ0 “ 0 at the 5 percent
level. For each simulation draw, we compute L “ 8 clusters in the giant component.
We treat all other components as individual clusters and discard all clusters with size
less than 20. We choose L “ 8 because, based on the results in §5.2, we expect clusters
of the RGG to have low conductance, so the randomization test should perform well.
Clusters of the RCM will have higher conductance, and it is unclear whether this
will translate to substantial size distortion. Finally, clusters of the SBM should have
exceedingly high conductance, so we expect the test to perform poorly.

We report rejection rates for the randomization test and two different t-tests.
One uses the leading alternative to cluster-robust inference, which is a HAC variance
estimator. We use a uniform kernel with the bandwidth chosen according to the rule
in Leung (2020), equation (12). The other t-test uses i.i.d. standard errors, which
serves to quantify the degree of dependence in the data.

Table 2 reports the results of 10k simulations. We see that the randomization test
control size well for the RGG, outperforming the HAC estimator in smaller samples.
This is a result of the low maximal conductance of the clusters. More surprising is that
the test has good performance for the RCM, despite the conductance being as high
as 0.22, with the test again outperforming the HAC estimator in smaller samples.
Finally, for the SBM, we see that the randomization test exhibits substantial size
distortion due to the high maximal conductance of the clusters, around 0.5. Here the
HAC estimator outperforms for all sample sizes.
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Table 2: Rejection Rates for Design 1

RGG RCM SBM
n 250 500 1000 250 500 1000 250 500 1000

Rand 0.052 0.049 0.051 0.058 0.057 0.052 0.098 0.098 0.101
HAC 0.070 0.061 0.058 0.076 0.065 0.056 0.082 0.066 0.057
IID 0.274 0.272 0.279 0.275 0.276 0.282 0.289 0.288 0.287
# Clusters 8.886 9.483 10.275 7.994 8.000 8.000 7.814 7.966 7.999
maxS φpSq 0.104 0.046 0.028 0.219 0.141 0.094 0.521 0.516 0.523
1st Clus. 62.3 110.2 197.2 55.0 110.0 222.7 56.0 117.9 240.9
2nd Clus. 40.3 75.4 143.1 44.2 87.1 171.7 41.7 84.1 168.7
Last Clus. 23.0 27.9 45.1 24.3 40.0 69.5 24.2 40.9 78.9

Averages over 10k simulations. The first three rows give rejection rates for level-5% tests. The
last three rows are the sizes of the indicated clusters in descending order of size. The number of
clusters may be less than the target of 8 because we discard clusters of size less than 20.

Design 2. The next design considers the more realistic problem of estimating network
spillovers. We exactly replicate the designs in §5.2 of Leung (2020), which involve
two outcome models: a linear-in-means model and a binary game on a network. For
the former, Yi “ VipD,A, εq, and for the latter, Yi “ 1tVipD,A, εq ą 0u, where

VipD,A, εq “ α ` β

ř

j AijYj
ř

j Aij
` δ

ř

j AijDj
ř

j Aij
`Diγ ` εi,

where Yi is unit i’s outcome, εi a structural error, and Di is i’s binary treatment
assignment which is i.i.d. and independent of all other primitives. For details on
parameters and distributions of primitives, see Leung (2020). For both models, we
estimate a spillover effect using the inverse-probability weighting estimator

θ̂ “
1

n

n
ÿ

i“1

Yi

ˆ

Ti
PpTi “ 1q

´
1´ Ti

PpTi “ 0q

˙

, Ti “ 1
 

max
j
AijDj ą 0

(

.

That is, Ti is an indicator for having a treated neighbor. We simulate the outcome
models on three different networks. Two follow the ones used in Leung (2020), the
configuration model and RGG, which are calibrated to the data on school friendship
networks in his empirical application. The configuration model generates a network
approximately uniformly at random from the set of all networks with a given degree
sequence; that sequence is chosen to be the empirical degree sequence of the network
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in his application, which has average degree of about 8. This plays the role of the
SBM in Table 2 as the network that turns out to lack low-conductance clusters.

We additionally simulate the RCM using the same design as Table 2. Like the
RGG, the average degree is calibrated to the empirical application by setting rn “
pκ{p3πnqq1{2, where κ is the average degree in the data. Additionally, as with the RGG
design, we set the error terms εi in both outcome models equal to νi ` pρi1 ´ 0.5q,
where ρi1 is the first component of i’s position ρi in the linear-in-means model, and
νi is a normal error term; this generates unobserved homophily in the network. For
additional details on the design, see Leung (2020).

Table 3 reports the results of 5k simulations, choosing L as in design 1. Each
network formation model is associated with three columns with n corresponding to
the population size in the largest, two largest, and four largest schools in the empirical
application of Leung (2020). We find that the randomization test performs poorly
for the configuration model, which produces poorly clustered networks, but controls
size well for the other networks, which are well clustered. The test also exhibits some
size distortion for the RCM when conductance exceeds 0.1.

Table 3: Rejection Rates for Design 2

RGG RCM Configuration
n 365 716 1408 365 722 1427 350 692 1375

LIM Rand 0.053 0.056 0.051 0.066 0.063 0.054 0.251 0.254 0.252
LIM HAC 0.066 0.071 0.063 0.078 0.069 0.058 0.076 0.065 0.063
BG Rand 0.049 0.052 0.049 0.063 0.048 0.056 0.161 0.167 0.163
BG HAC 0.066 0.062 0.059 0.069 0.055 0.054 0.075 0.067 0.058
maxS φpSq 0.052 0.037 0.027 0.165 0.119 0.084 0.605 0.604 0.608
# Clusters 7.87 7.95 8.01 7.84 7.93 7.99 8.00 8.00 8.00
1st Clus. 175.5 322.0 616.3 178.1 333.0 639.1 197.0 358.5 671.2
2nd Clus. 141.1 252.8 466.8 134.7 243.3 456.7 119.2 210.4 390.6
Last Clus. 61.0 113.7 213.0 68.8 128.4 243.8 79.8 147.8 21.0

Averages over 5k simulations. The first four rows give rejection rates for a level-5% test, with
LIM = linear-in-means, BG = binary game, Rand = randomization test, HAC = t-test with
HAC estimator. The last three rows are the sizes of the indicated clusters in descending order
of size. The number of clusters may be less than the target of 8 because we discard clusters of
size less than 20.
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6.2 Empirical Applications

Aral and Nicolaides (2017). This paper finds evidence of peer effects in exer-
cise activity using data from an online social network of 1.1 million runners. The
authors partition their network into 15144 clusters (average size 7.7, SD 41) using a
modularity-based method and use clustered standard errors. Their network data is
not publicly available. However, on p. 35 of the supplementary appendix, they write,
“on average 8 out of 10 friends are within cluster while 2 of 10 are across clusters.”
This is reported based on their belief that this measures independence of clusters.

Our results provide some formal justification for this belief. Their statistic is
similar to conductance – it is an average over a measure of conductance defined at the
unit level – so we can ballpark max1ď`ďL φApC`q at around 0.2 in their application.
Our simulations indicate that cluster-robust methods would perform better if this
were closer to 0.1. It is likely that the authors could halve the number of clusters,
which still leaves a very sizeable number, for a substantial decrease in conductance.

Note that the large number of clusters is not because their network has many
small components (in which case finding clusters is trivial). They report that the
giant component of their network contains 90 percent of units. A possible explanation
for the low conductance of their clusters is that the online social network they study
spans many countries, with US users comprising 20 percent of the data. It is likely
that link formation is strongly geographically determined, and our discussion in §5
indicates that spatial graphs typically have low conductance. Nonetheless, it is not
a priori clear how to construct clusters since it is possible that many pairs of users
across states or countries are linked in the network. Then it is not obvious whether,
say, using states as clusters may produce low-conductance clusters. This illustrates
the usefulness of community detection algorithms in providing a more principled way
of constructing clusters based on minimizing conductance.

Zacchia (2020). This paper studies knowledge spillovers across firms. The author
constructs a weighted, undirected network of 707 firms for each year t. The weighted
link Aij,t between firms i and j at time tmeasures co-patenting between firm inventors.
In order to apply a community detection algorithm, which requires a static network,
the author sums the networks across time, defining Aij “

ř

tAij,t for each i, j.
To compute the clusters, Zacchia (2020) applies a variant of the Louvain algorithm

to the giant component, which is a modularity-based method (Blondel et al., 2008).
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Figure 3: Scatterplot of eigenvalues λ2 ď . . . ď λ20.

The variant adds a tuning parameter ϕ that can be increased to obtain more clusters.
The choice of ϕ “ 0.6 used in the paper yields 20 clusters in the giant. The author
treats all units outside of the giant as a single cluster and clusters standard errors.

Our theoretical results in §3 only pertain to unweighted graphs. However, the
graph invariants in §2.2 are all defined for weighted graphs, as discussed in Remark 1.
We compute these quantities both for the original weighted network and the un-
weighted version where Aij is set to 1 if and only if the weight is positive. In the
unweighted graph, there are 3451 links, so the network is sparse. The analysis that
follows focuses on the giant component, which consists of 439 units.

Figure 3 plots the spectra of the Laplacians for both the weighted and unweighted
networks, starting at λ2 (since λ1 “ 0). The networks have spectral gaps at 2 and
4. However, the former has only one eigenvalue below 0.1, while the latter has none.
This indicates that the networks appear to be poorly clustered.

This is further confirmed in Figure 4. The first two columns plot the conductances
and sizes of each cluster used in Zacchia (2020) for the weighted network, and the
remaining columns plot the same quantities obtained from spectral clustering, for dif-
ferent values of L. The corresponding figure for the unweighted network is essentially
the same and therefore omitted. The figure shows that both the Louvain algorithm
for ϕ “ 0.6 and the spectral clustering algorithm for L “ 20 yield clusters all with
high conductance. Choosing smaller values of L for spectral clustering does not ap-
pear to improve matters, as only a single cluster with low conductance emerges, but
this contains the vast majority of units in the network. Thus, the partition is highly
unbalanced, which, as discussed in §2.3, means the power of the test would be little
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Figure 4: Conductances and cluster sizes for the weighted network.

better than one with one cluster. This network apparently reflects the problem dis-
cussed in Example 4 that inhomogeneous random graphs may consist of a large “core”
that is not well clustered and small attachments, resulting in an unbalanced partition.
Thus, for this dataset, it may be preferable to use an alternative to cluster-robust
inference methods.

7 Conclusion

This paper studies the practice of partitioning a network, either manually or using
an unsupervised learning algorithm, in order to apply cluster-robust inference meth-
ods. We isolate a key condition that, under some assumptions, is necessary and
sufficient for this practice to be valid: the clusters must all have low conductance,
that is, low boundary-to-volume ratios. We call graphs “well clustered” if a partition
with this property exists and provide theoretical and simulation evidence showing
that important classes of graphs are not well clustered. Our simulation study shows
that cluster-robust inference methods applied to such graphs can exhibit severe size
distortion. For graphs that are well clustered, however, they outperform HAC esti-
mators in terms of size control. Our results on conductance connect the literature on
cluster-robust inference to spectral clustering, allowing us to use tools from the latter
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to construct clusters in a more principled way, namely to minimize conductance.
We provide three recommendations for empirical practice. First, for any candidate

set of clusters, one should compute the maximal conductance to assess its quality
and aim for a value below 0.1. Second, given a network, one should first compute
the spectrum of the Laplacian to assess whether the network is well clustered. Third,
given a well-clustered network, one can compute candidate clusters using spectral
clustering or any number of community detection algorithms. We note that some
networks may be well clustered but only have unbalanced partitions consisting of one
large cluster and several small clusters. In this case, cluster-robust methods have
poor power and an alternative may be preferred, such as a HAC variance estimator.

A Appendix

A.1 Proofs

Proof of Proposition 2. Let S be the subset of clusters C` for which ρ` ą 0.
Then n´1{2pn`Ĝ`pθ0qq`PS is asymptotically normal with the desired limit variance by
the CLT of Kojevnikov et al. (2019) (Theorem 3.2) and Cramér-Wold device. Note
that to verify their version of Assumption 2(b) (their Assumption 3.4), we need to di-
vide the quantities in (8) by powers of the standard deviation Varp

ř

`PS c`n
´1{2n`Ĝ`pθ0qq

1{2,
where pc`q`PS is any nonzero vector (for the Cramér-Wold device). However, the stan-
dard deviation has a strictly positive limit by Assumption 3, hence why we ignore it
our formulation of Assumption 2(b). Finally, for all ` such that ρ` “ 0, their CLT
implies n´1{2n`Ĝ`pθ0q

p
ÝÑ 0, so we can extend joint convergence for only clusters in

S to joint convergence for the full vector, as in (2).

Proof of Theorem 1. We show n´1Covpn`Ĝ`pθ0q, nmĜmpθ0qq “ op1q for any
` ‰ m. Let ‖¨‖ be the matrix sup norm. The covariance is bounded in norm by

1

n

ÿ

iPC`

ÿ

jPCm

‖ErgpWi, θ0qgpWj, θ0q
1
s‖ ď C 1

n
ÿ

s“1

ψnpsq
1

n

ÿ

iPC`

ÿ

jPCm

1t`Api, jq “ su (A.1)

for some constant C 1 ą 0 by Assumption 2 (take f, f 1 to be the identity function).
The sum over s terminates at n because there are only n units in the network, and
disconnected units are uncorrelated under Assumption 2(a).
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We next bound the term n´1
ř

iPC`

ř

jPCm 1t`Api, jq “ su in (A.1). Let

BApC`q “
 

i P C` : max
jPNnzC`

Aij “ 1
(

,

the boundary of C`. Given i P C` and j P Cm with `Api, jq “ s, there must exist
some k P BpC`q such that `Api, kq “ d and `Apk, jq “ d1, for some d, d1 satisfying
d` d1 ` 1 “ s. Hence,

1

n

ÿ

iPC`

ÿ

jPCm

1t`Api, jq “ su

ď
1

n

n
ÿ

i“1

n
ÿ

j“1

s´1
ÿ

d“0

n
ÿ

k“1

1t`Api, kq “ du1tk P BApC`qu1t`Apk, jq “ s´ 1´ du

ď

s´1
ÿ

d“0

1

n

n
ÿ

k“1

1tk P BApC`qu|NApk, dq| |NApk, s´ 1´ dq|

ď

s´1
ÿ

d“0

˜

1

n

n
ÿ

k“1

|NApk, dq|1`ε|NApk, s´ 1´ dq|1`ε
¸1{p1`εq˜

1

n

n
ÿ

k“1

1tk P BApC`qu

¸ε{p1`εq

(A.2)

for any ε ą 0 by Hölder’s inequality. Since

1

n

n
ÿ

k“1

|NApk, dq|1`ε|NApk, s´ 1´ dq|1`ε ď 1

n

n
ÿ

k“1

|NApk, sq|2p1`εq,

we have

(A.2) ď s

ˆ

1

n

n
ÿ

k“1

|NApk, sq|2p1`εq

looooooooooomooooooooooon

Mnps,2p1`εqq

˙1{p1`εqˆ |BApC`q|
volApC`q
looomooon

ďφApC`q

volApC`q
n

looomooon

ďδpAq

˙ε{p1`εq

,

noting that |BApC`q| ď |BApC`q|. Therefore,

(A.1) ď C 1
n
ÿ

s“1

sMnps, 2p1` εqq
1{p1`εqψnpsq

ˆ

max
1ď`ďL

φApC`q ¨ δpAq
˙ε{p1`εq

.

Choosing ε according to Assumption 5, this is op1q by Assumptions 4 and 5.
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Proof of Theorem 2. The assumptions imply lim infnÑ8 max1ď`ďL φApC`q ą 0.
Then, for some `, the following has positive limit infimum:

ř

iPC`

ř

jRC` Aij

volApC`q
“

ÿ

m‰`

ř

iPC`

ř

jPCm Aij

volApC`q
.

This implies that for some cluster m ‰ `,

lim inf
nÑ8

ř

iPC`

ř

jPCm Aij

volApC`q
ą 0. (A.3)

Consider a data-generating process such that for some universal constants γ ą 0

and γ1 ě 0 and all n, ErgpWi, θ0qgpWj, θ0qs “ γAij ` γ1p1 ´ Aijq. Then for `,m
satisfying (A.3),

|n´1Covpn`Ĝ`pθ0q, nmĜmpθ0qq| “
ˇ

ˇ

ˇ

ˇ

1

n

ÿ

iPC`

ÿ

jPCm

ErgpWi, θ0qgpWj, θ0qs

ˇ

ˇ

ˇ

ˇ

ě γ
1

n

ÿ

iPC`

ÿ

jPCm

Aij “ γ

ř

iPC`

ř

jPCm Aij

volApC`q
n`
n

1

n`

ÿ

iPC`

n
ÿ

j“1

Aij.

By assumption, n`{nÑ ρ` ą 0. Furthermore, n´1`
ř

iPC`

řn
j“1Aij is the average degree

of units in cluster `, so since clusters are connected subnetworks, this is always at least
one. Therefore, the right-hand side of the above display is asymptotically bounded
away from zero.

A.2 Verifying Weak Network Dependence

Leung (2020) shows that ψnpsq is uniformly Ope´c sq for some c ą 0 in certain models
of social interactions. His Appendix A verifies Assumption 2(b) under the assumption
that ψnpsq “ e´c s for graphs with polynomial and exponential neighborhood growth
rates, meaning

max
iPNn
|NApi, sq| “ Csd and max

iPNn
|NApi, sq| “ Ceβs,

respectively, for C, d, β ą 0. In the polynomial case, no additional conditions are
needed. In the exponential case, we need c ą 3β, meaning that ψnpsq decays suffi-

33



Michael P. Leung

ciently fast enough relative to the rate at which neighborhood sizes expand.
We verify Assumption 5 under this setup. In the polynomial case,

n
ÿ

s“1

sMnps, 2p1` εqq
1{p1`εqψnpsq ď C2

n
ÿ

s“1

s2d`1e´c s “ Op1q.

In the exponential case, since c ą 3β,

n
ÿ

s“1

sMnps, 2p1` εqq
1{p1`εqψnpsq ď C2

n
ÿ

s“1

ep2β´cqs “ Op1q.

Note that it is enough to have c ą 2β, so at least for these classes of graphs, Assump-
tion 5 is weaker than Assumption 2(b).
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