
Stratification Trees for Adaptive Randomization in Randomized

Controlled Trials

Max Tabord-Meehan

Department of Economics

University of Chicago

maxtm@uchicago.edu

18th November 2020

Abstract

This paper proposes an adaptive randomization procedure for two-stage randomized con-

trolled trials. The method uses data from a first-wave experiment in order to determine how to

stratify in a second wave of the experiment, where the objective is to minimize the variance of

an estimator for the average treatment effect (ATE). We consider selection from a class of strat-

ified randomization procedures which we call stratification trees: these are procedures whose

strata can be represented as decision trees, with differing treatment assignment probabilities

across strata. By using the first wave to estimate a stratification tree, we simultaneously select

which covariates to use for stratification, how to stratify over these covariates, and the assign-

ment probabilities within these strata. Our main result shows that using this randomization

procedure with an appropriate estimator results in an asymptotic variance which is minimal in

the class of stratification trees. Moreover, our results are able to accommodate a large class of

assignment mechanisms within strata, including stratified block randomization. In a simulation

study, we find that our method, paired with an appropriate cross-validation procedure, can

improve on ad-hoc choices of stratification. We conclude by applying our method to the study

in Karlan and Wood (2017), where we estimate stratification trees using the first wave of their

experiment.
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1 Introduction

This paper proposes an adaptive randomization procedure for two-stage randomized controlled

trials (RCTs). The method uses data from a first-wave experiment in order to determine how to

stratify in a second wave of the experiment, where the objective is to minimize the variance of an

estimator for the average treatment effect (ATE). We consider selection from a class of stratified

randomization procedures which we call stratification trees: these are procedures whose strata can

be represented as decision trees, with differing treatment assignment probabilities across strata.

Stratified randomization is ubiquitous in randomized experiments. In stratified randomization,

the space of available covariates is partitioned into finitely many categories (i.e. strata), and

randomization to treatment is performed independently across strata. Stratification has the ability

to decrease the variance of estimators for the ATE through two parallel channels. The first channel

is from ruling out treatment assignments which are potentially uninformative for estimating the

ATE. For example, if we have information on the sex of individuals in our sample, and outcomes

are correlated with sex, then performing stratified randomization over this characteristic can reduce

variance (we present an example of this for the standard difference-in-means estimator in Appendix

D.1). The second channel through which stratification can decrease variance is by allowing for

differential treatment assignment probabilities across strata. For example, if we again consider the

setting where we have information on sex, then it could be the case that for males the outcome under

one treatment varies much more than under the other treatment. As we show in Section 2.1, this

can be exploited to reduce variance by assigning treatment according to the Neyman Allocation,

which in this example would assign more males to the more variable treatment. Our proposed

method leverages insights from supervised machine-learning to exploit both of these channels,

by simultaneously selecting which covariates to use for stratification, how to stratify over these

covariates, as well as the optimal assignment probabilities within these strata, in order to minimize

the variance of an estimator for the ATE.

Our main result shows that using our procedure results in an “optimal” (to be made precise

later) stratification of the covariate space, where we restrict ourselves to stratification in a class of

decision trees. A decision tree partitions the covariate space such that the resulting partition can

be interpreted through a series of yes or no questions (see Section 2.2 for a formal definition and

some examples). We focus on strata formed by decision trees for several reasons. First, since the

resulting partition can be represented as a series of yes or no questions, it is easy to communicate

and interpret, even with many covariates. This feature could be particularly important in many

economic applications, because many RCTs in economics are undertaken in partnership with ex-

ternal organizations (for example, every RCT described in Karlan and Appel 2016 was undertaken

in this way), and thus clear communication of the experimental design could be crucial. Second, as

we explain in Section 3.1, using partitions based on decision trees gives us theoretical and compu-
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tational tractability. Third, as we explain in Section 3.2, using decision trees allows us to flexibly

address the additional goal of minimizing the variance of estimators for subgroup-specific effects.

Lastly, decision trees naturally encompass the type of stratifications usually implemented by prac-

titioners. The use of decision trees in statistics and machine learning goes back at least to the work

of Breiman (see Breiman et al., 1984; Gyorfi et al., 1996, for classical textbook treatments), and

has seen a recent resurgence in econometrics (examples include Athey and Imbens, 2016; Athey

and Wager, 2017).

An important feature of our theoretical results is that we allow for the possibility of so-called

restricted randomization procedures within strata. Restricted randomization procedures limit the

set of potential treatment allocations, in order to force the true treatment assignment proportions

to be close to the desired target proportions (common examples used in a variety of fields include

Antognini and Giovagnoli, 2004; Efron, 1971; Kuznetsova and Tymofyeyev, 2011; Wei, 1978; Zelen,

1974). Restricted randomization induces dependence in the assignments within strata, which com-

plicates the analysis of our procedure. By extending techniques recently developed in Bugni et al.

(2018), our results will accommodate a large class of restricted randomization schemes, includ-

ing stratified block randomization, which as we discuss in Example 2.5 is a popular method of

randomization.

Although our main focus is on increasing efficiency, stratified randomization has additional

practical benefits beyond reducing the variance of ATE estimators. For example, when a researcher

wants to analyze subgroup-specific effects, stratifying on these subgroups serves as a form of pre-

analysis registration, and as we will show, can help reduce the variance of estimators for the

subgroup-specific ATEs. It is also straightforward to implement stratified randomization with

multiple treatments. To these ends, we also present results for targeting subgroup-specific effects,

as well as results for multiple treatments.

The literature on randomization in RCTs is vast (references in Athey and Imbens 2017, Cox

and Reid 2000, Glennerster and Takavarasha 2013, Pukelsheim 2006, Rosenberger and Lachin

2015, and from a Bayesian perspective, Ryan et al. 2016, provide an overview). The classical

literature on optimal randomization, going back to the work of Smith (1918) (see Silvey, 2013, for

a textbook treatment), maintains a parametric relationship for the outcomes with respect to the

covariates, and targets efficient estimation of the model parameters. In contrast, our paper follows

a recent literature which instead maintains a non-parametric model of potential outcomes, and

targets efficient estimation of treatment effects. This recent literature can be broadly divided into

“one-stage” procedures, which do not use prior data on all experimental outcomes to determine

how to randomize (examples include Aufenanger, 2017; Barrios, 2014; Kallus, 2018; Kasy, 2016),

and “multi-stage” procedures, of which our method is an example. Multi-stage procedures use

prior data on the experimental outcomes to determine how to randomize. For example, they may

use response information from previous experimental waves to determine how to randomize in
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subsequent waves of the experiment. We will call these procedures response-adaptive. Although

response adaptive methods typically require information from a prior experiment, such settings do

arise in economic applications. First, many social experiments have a pilot phase or multi-stage

structure. For example, Simester et al. (2006), Karlan and Zinman (2008), and Karlan and Wood

(2017) all feature a multi-stage structure, and Karlan and Appel (2016) advocate the use of pilot

experiments to help avoid potential implementation failures when scaling up to the main study.

Second, many research areas have seen a profusion of related work which could be used as a first

wave of data in a response-adaptive procedure (see for example the discussion in the introduction of

Hahn et al., 2011). The study of response-adaptive methods to inform many aspects of experimental

design, including how to randomize, has a long history in the literature on clinical trials, both from

a frequentist and Bayesian perspective (see for example the references in Cheng et al., 2003; Hu

and Rosenberger, 2006; Sverdlov, 2015), as well as in the literature on bandit problems (see Bubeck

et al., 2012).

Three papers which propose response-adaptive randomization methods in a framework similar

to ours are Hahn et al. (2011), Chambaz et al. (2014) and Bai (2019) (see also Viviano, 2020,

for related work in the presence of network interference). Hahn et al. (2011) develop a procedure

which uses the information from a first-wave experiment to compute the propensity score that

minimizes the asymptotic variance of an ATE estimator, over a discrete set of covariates (i.e.

they stratify the covariate space ex-ante). They then use the resulting propensity score to assign

treatment in a second-wave experiment. In contrast, our method computes the optimal assignment

proportions over a data-driven discretization of the covariate space. Chambaz et al. (2014) propose

a multi-stage procedure which uses data from previous experimental waves to compute an optimal

propensity score, where the propensity score is constrained through entropy restrictions. However,

their method requires the selection of several tuning parameters, as well as additional regularity

conditions, and their optimal target depends on these features in a way that may be hard to assess

in practice. Their results are also derived in a framework where the number of experimental waves

goes to infinity, which may not be a useful asymptotic framework for many settings encountered in

economics. Moreover, the results in both Hahn et al. (2011) and Chambaz et al. (2014) assume that

assignment was performed completely independently across individuals in a given wave. In contrast,

we reiterate that our results will accommodate a large class of stratified randomization schemes.

Bai (2019) derives the MSE-optimal blocking of an experimental sample for the difference-in-means

estimator, given a fixed assignment proportion, and shows that this blocking takes the form of a

“matched-pairs” style design. He then proposes procedures which use information from a first-wave

experiment to approximate the optimal blocking in a second-wave experiment. He also shows that

it is possible to combine his procedure with the one proposed in this paper, by implementing his

optimal blocking within each stratum produced by our method. Importantly, he shows that the

resulting combined procedure has an asymptotic variance which is no greater, and typically strictly

smaller, than using our procedure alone.
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The paper proceeds as follows: In Section 2, we provide a motivating discussion, set up the

notation, and formally define the set of randomization procedures we consider. In Section 3,

we present the formal results underlying the method as well as several relevant extensions. In

Section 4, we perform a simulation study to assess the performance of our method in finite samples.

In Section 5, we consider an application to the study in Karlan and Wood (2017), where we

estimate stratification trees using the first wave of their experiment and perform an application-

based simulation. Section 6 concludes.

2 Preliminaries

In this section we discuss some preliminary concepts and definitions. Section 2.1 presents a series of

simplified examples which we use to motivate our procedure. Section 2.2 establishes some notation

and provides the definition of a stratification tree, as well as our notion of a randomization procedure.

2.1 Motivating Discussion

We present a series of simplified examples which we use to motivate our proposed method. First we

study the problem of optimal experimental assignment without covariates. We work in a standard

potential outcomes framework: let pY p1q, Y p0qq be potential outcomes for a binary treatment A P

t0, 1u, and let the observed outcome Y for an individual be defined as

Y “ Y p1qA` Y p0qp1´Aq .

Let

ErY paqs “ µa, V arpY paqq “ σ2
a ,

for a P t0, 1u. Our quantity of interest is the average treatment effect

θ :“ µ1 ´ µ0 .

Suppose we perform an experiment to obtain a size n sample tpYi, Aiqu
n
i“1, where the sampling

process is determined by tpYip1q, Yip0qqu
n
i“1, which are i.i.d, and the treatment assignments tAiu

n
i“1,

where exactly n1 :“ tnπu individuals are randomly assigned to treatment A “ 1, for some π P p0, 1q

(however, we emphasize that our results will accommodate other methods of randomization). Given

this sample, consider estimation of θ through the standard difference-in-means estimator:

θ̂S :“
1

n1

n
ÿ

i“1

YiAi ´
1

n´ n1

n
ÿ

i“1

Yip1´Aiq .

It can then be shown that
?
npθ̂S ´ θq

d
ÝÑ Npθ, V1q ,

5



where

V1 :“
σ2

1

π
`

σ2
0

1´ π
.

In fact, it can be shown that under this randomization scheme V1 is the finite sample variance

of the normalized estimator (whenever n1 “ nπ exactly), but this will not necessarily be true for

other randomization schemes. Our goal is to choose π to minimize the variance of θ̂. Solving this

optimization problem yields the following solution:

π˚ :“
σ1

σ1 ` σ0
.

This allocation is known as the Neyman Allocation, which assigns more individuals to the treatment

which is more variable. Note that when σ2
0 “ σ2

1, so that the variances of the potential outcomes

are equal, the optimal proportion is π˚ “ 0.5, which corresponds to a standard equal treatment

allocation. In general, implementing π˚ is infeasible without knowledge of σ2
0 and σ2

1. In light of

this, if we had prior data tpYj , Ajqu
m
j“1 which allowed us to estimate σ2

0 and σ2
1, then we could

use this data to estimate π˚, and then use this estimate to assign treatment in a subsequent wave

of the study. The idea of sequentially updating estimates of unknown population quantities using

past observations, in order to inform experimental design in subsequent stages, underlies many

procedures developed in the literatures on response adaptive experiments and bandit problems,

and is the main idea underpinning our proposed method.

Remark 2.1. Although the Neyman Allocation minimizes the variance of the difference-in-means

estimator, it is entirely agnostic on the welfare of the individuals in the experiment itself. In

particular, the Neyman Allocation could assign the majority of individuals in the experiment to

the inferior treatment if that treatment has a much larger variance in outcomes (see Hu and

Rosenberger 2006 for relevant literature in the context of clinical trials, as well as Narita (2018)

for recent work on this issue in econometrics). While this feature of the Neyman Allocation may

introduce ethical or logistical issues in some relevant applications, in this paper we focus exclusively

on the problem of estimating the ATE as accurately as possible.

Next we repeat the above exercise with the addition of a discrete covariate S P t1, 2, ...,Ku

over which we stratify. We perform an experiment which produces a sample tpYi, Ai, Siqu
n
i“1,

where the sampling process is determined by i.i.d draws tpYip1q, Yip0q, Siqu
n
i“1 and the treatment

assignments tAiu
n
i“1. For this example suppose that the tAiu

n
i“1 are generated as follows: for

each k, exactly n1pkq :“ tnpkqπpkqu individuals are randomly assigned to treatment A “ 1, with

npkq :“
řn

i“1 1tSi “ ku.

Note that when the assignment proportions πpkq are not equal across strata, the difference-

in-means estimator θ̂S is no longer consistent for θ. Hence we consider the following weighted

estimator of θ:

θ̂C :“
ÿ

k

npkq

n
θ̂pkq ,
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where θ̂pkq is the difference-in-means estimator for S “ k:

θ̂pkq :“
1

n1pkq

n
ÿ

i“1

YiAi1tSi “ ku ´
1

npkq ´ n1pkq

n
ÿ

i“1

Yip1´Aiq1tSi “ ku .

In words, θ̂C is obtained by computing the difference in means for each k and then taking a weighted

average over each of these estimates. Note that when K “ 1 (i.e. when S can take on one value),

this estimator simplifies to the difference-in-means estimator. It can be shown under appropriate

conditions that
?
npθ̂C ´ θq

d
ÝÑ Np0, V2q ,

where

V2 :“
K
ÿ

k“1

P pS “ kq

„ˆ

σ2
0pkq

1´ πpkq
`
σ2

1pkq

πpkq

˙

` pErY p1q ´ Y p0q|S “ ks ´ ErY p1q ´ Y p0qsq2


,

with σ2
dpkq “ ErY pdq2|S “ ks´ErY pdq|S “ ks2. The first term in V2 is the weighted average of the

conditional variances of the difference in means estimator for each S “ k. The second term in V2

arises due to the additional variability in sample sizes for each S “ k. We note that this variance

takes the form of the semi-parametric efficiency bound derived by Hahn (1998) for estimators of

the ATE which use the covariate S. Following a similar logic to what was proposed above without

covariates, we could use first-wave data tpYj , Aj , Sjqu
m
j“1 to form a sample analog of V2, and choose

tπ˚pkquKk“1 to minimize this quantity.

Now we introduce the setting that we consider in this paper: suppose we observe covariates

X P X Ă Rd, so that our covariate space is now multi-dimensional with potentially continuous

components. How could we practically extend the logic of the previous examples to this setting? A

natural solution is to discretize (i.e. stratify) X into K categories (strata), by specifying a mapping

S : X Ñ t1, 2, 3, ...,Ku, with Si :“ SpXiq, and then proceed as in the above example. As we argued

in the introduction, stratified randomization is a popular technique in practice, and possesses several

attractive theoretical and practical properties. In this paper we propose a method which uses first-

wave data to estimate (1) the optimal stratification, and (2) the optimal assignment proportions

within these strata. In other words, given first-wave data tpYj , Aj , Xjqu
m
j“1, where X P X Ă Rd, we

propose a method which selects tπpkquKk“1 and the function Sp¨q, in order to minimize the variance

of our estimator θ̂C . In particular, our proposed solution selects a randomization procedure amongst

the class of what we call stratification trees, which we introduce in the next section.

2.2 Notation and Definitions

In this section we establish our notation and define the class of randomization procedures that we

will consider. Let Ai P t0, 1u be a binary variable which denotes the treatment received by a unit i

(we consider the extension to multiple treatments in Appendix D), and let Yi denote the observed
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outcome. Let Yip1q denote the potential outcome of unit i under treatment 1 and let Yip0q denote

the potential outcome of unit i under treatment 0. The observed experimental outcome for each

unit is related to their potential outcomes through the expression:

Yi “ Yip1qAi ` Yip0qp1´Aiq .

Let Xi P X Ă Rd denote a vector of observed pre-treatment covariates for unit i. Let Q denote the

distribution of pYip1q, Yip0q, Xiq. Throughout the paper we assume that all of our observations are

generated by i.i.d draws from Q. We restrict Q as follows:

Assumption 2.1. Q satisfies the following properties:

• Y paq P r´M,M s for some M ă 8, for a P t0, 1u, where the marginal distributions Y p1q and

Y p0q are either continuous or discrete with finite support.

• X P X “
Śd

j“1rbj , cjs, for some tbj , cju
d
j“1 finite.

• X “ pXC , XDq, where XC P Rd1 for some d1 P t0, 1, 2, ..., du is continuously distributed with

a bounded, strictly positive density. XD P Rd´d1 is discretely distributed with finite support.

Remark 2.2. The support assumptions imposed on pY p1q, Y p0q, Xq in Assumption 2.1 are used

frequently throughout the proofs of our results. However, they may be stronger than is desirable

in some applications. For example, our assumption that X be supported on a rectangle may

fail in certain practical examples (see for example the set of covariates considered in Section 5).

Nevertheless, the simulation results presented in Sections 4 and 5 suggest that these assumptions

could be reasonably weakened. Moreover, the user does not need to specify a choice of M to

implement the procedure.

Our quantity of interest is the average treatment effect (ATE) given by:

θ “ ErYip1q ´ Yip0qs .

An experiment on an i.i.d sample tpYip1q, Yip0q, Xiqu
n
i“1 produces the following data:

tWiu
n
i“1 :“ tpYi, Ai, Xiqu

n
i“1 ,

whose joint distribution is determined by Q, the potential outcomes expression, and the ran-

domization procedure which generates tAiu
n
i“1. We focus on the class of stratified randomization

procedures: these randomization procedures first stratify according to baseline covariates and then

assign treatment status independently across each of these strata. Moreover, we attempt to make

minimal assumptions on how randomization is performed within strata, in particular we do not

require the treatment assignment within each stratum to be independent across observations.
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We will now describe the structure we impose on the class of possible strata we consider. For L

a positive integer, let K “ 2L and let rKs :“ t1, 2, ...,Ku. Consider a function S : X Ñ rKs, then

tS´1pkquKk“1 forms a partition of X with K strata. For a given positive integer L, we work in the

class Sp¨q P SL of functions whose partitions form tree partitions of depth L on X , which we now

define. Note that the definition is recursive, so we begin with the definition for a tree partition of

depth one:

Definition 2.1. Let Γj Ă rbj , cjs, let Γ “
Śd

j“1 Γj, and let x “ px1, x2, ..., xdq P Γ. A tree partition

of depth one on Γ is a partition of Γ which can be written as

ΓDpj, γq Y ΓU pj, γq ,

where

ΓDpj, γq :“ tx P Γ : xj ď γu ,

ΓU pj, γq :“ tx P Γ : xj ą γu ,

for some j P rds and γ P Γj. We call ΓDpj, γq and ΓU pj, γq leaves (or sometimes terminal nodes),

whenever these are nonempty.

Example 2.1. Figure 1 presents two different representations of a tree partition of depth one on

r0, 1s2. The first representation we call graphical : it depicts the partition on a square drawn in the

plane. The second depiction we call a tree representation: it illustrates how to describe a depth

one tree partition as a yes or no question. In this case, the question is “is x1 less than or greater

than 0.5?”.

x1

x2

1 2

0.5

1

x1
ď

0.5

2

x
1 ą

0.5

Figure 1: Two representations of a tree partition of depth 1 on r0, 1s2.

Graphical representation (left), tree representation (right).

Next we define a tree partition of depth L ą 1 recursively:

Definition 2.2. A tree partition of depth L ą 1 on Γ “
Śd

j“1 Γj is a partition of Γ which can be

written as Γ
pL´1q
D Y Γ

pL´1q
U , where

Γ
pL´1q
D is a tree partition of depth L´ 1 on ΓDpj, γq ,

9



Γ
pL´1q
U is a tree partition of depth L´ 1 on ΓU pj, γq ,

for some j P rds and γ P Γj. We call Γ
pL´1q
D and Γ

pL´1q
U left and right subtrees, respectively,

whenever these are nonempty.

Example 2.2. Figure 2 depicts two representations of a tree partition of depth two on r0, 1s2.

x1

x2

1

2

3 4

0.5 0.9

0.8

1

x 2
ď

0.
8

2

x
2
ą

0.8

x1
ď

0.
5

3

x 1
ď

0.
9

4

x
1
ą

0.9

x
1
ą

0.5

Figure 2: Two representations of a tree partition of depth 2 on r0, 1s2.

Graphical representation (left), tree representation (right).

We focus on strata that form tree partitions for several reasons. First, these types of strata are

easy to represent and interpret, even in higher dimensions, via their tree representations or as a series

of yes or no questions. We argued in the introduction that this could be of particular importance in

economic applications. Second, as we explain in Remark 3.2 and Appendix E, restricting ourselves

to tree partitions gives us theoretical and computational tractability. In particular, computing

an optimal stratification is a difficult discrete optimization problem for which we exploit the tree

structure to employ an effective search heuristic known as an evolutionary algorithm. Third, the

recursive aspect of tree partitions makes the targeting of subgroup-specific effects convenient, as

we show in Section 3.2.

For each k P rKs, we define π :“ pπpkqqKk“1 to be the vector of target proportions of units

assigned to treatment 1 in each stratum.

A stratification tree is a pair pS, πq, where Sp¨q forms a tree partition, and π specifies the target

proportions in each stratum. We denote the set of stratification trees of depth L as TL.

Remark 2.3. To be precise, any element T “ pS, πq P TL is equivalent to another element T 1 “

pS1, π1q P TL whenever T 1 can be realized as a re-labeling of T . For instance, if we consider Example

2.1 with the labels 1 and 2 reversed, the resulting tree is identical to the original except for this

re-labeling. TL should be understood as the quotient set that results from this equivalence.

Example 2.3. Figure 3 depicts a representation of a stratification tree of depth two. Note that

the terminal nodes of the tree have been replaced with labels that specify the target proportions

in each stratum.
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πp1q “ 0.3

x 2
ď

0.
8

πp2q “ 0.7

x
2
ą

0.8

x1
ď

0.
5

πp3q “ 0.5

x 1
ď

0.
9

πp4q “ 0.4

x
1
ą

0.9

x
1 ą

0.5

Figure 3: Representation of a Stratification Tree of Depth 2

We further impose that the set of trees cannot have arbitrarily small (nonempty) cells, nor can

they have arbitrarily extreme treatment assignment targets:

Assumption 2.2. We constrain the set of stratification trees T “ pS, πq P TL such that, for some

fixed ν ą 0 and δ ą 0, πpkq P rν, 1´ νs and P pSpXq “ kq ą δ whenever S´1pkq ‰ H.

Remark 2.4. In what follows, we adopt the following notational convention: if S´1pkq “ H, then

ErW |SpXq “ ks “ 0 for any random variable W .

Remark 2.5. The depth L of the set of stratification trees will remain fixed but arbitrary through-

out most of the analysis. We return to the question of how to choose L in Section 3.2.

For technical reasons relating to the potential non-measurability of our estimator, we will impose

one additional restriction on TL.

Assumption 2.3. Let T :L Ă TL be a countable, closed subset of the set of stratification trees1. We

then consider the set of stratification trees restricted to this subset. By an abuse of notation, we

continue to denote the set of stratification trees we will consider as TL.

Remark 2.6. We emphasize that this assumption is only used as a sufficient condition to guarantee

measurability, in order to invoke Fubini’s theorem in the proof of Theorem 3.1. Note that, in

practice, restricting the set of stratification trees to those constructed from a finite grid satisfies

Assumption 2.3. However, our results will also apply more generally.

Recall that we are interested in randomization procedures that stratify on baseline covariates

and then assign treatment status independently across strata. For each T P TL, and given an

i.i.d sample tpYip0q, Yip1q, Xiqu
n
i“1 of size n, an experimental assignment is described by a random

vector ApnqpT q :“ pAipT qq
n
i“1 for each T P TL. For our purposes a randomization procedure (or

randomization scheme) is a family of such random vectors ApnqpT q for each T “ pS, πq P TL. For

1Here “closed” is with respect to an appropriate topology on TL, see Appendix B for details. It is possible that

Assumption 2.3 could be weakened
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T “ pS, πq, let Si :“ SpXiq and Spnq :“ pSiq
n
i“1 be the random vector of stratification labels of the

observed data. We impose two assumptions on the randomization procedure ApnqpT q.

First, we require the following exogeneity assumption:

Assumption 2.4. The randomization procedure is such that, for each T “ pS, πq P TL,

”

pYip0q, Yip1q, Xiq
n
i“1 K ApnqpT q

ı

ˇ

ˇ

ˇ

ˇ

Spnq .

This assumption asserts that the randomization procedure can depend on the observables only

through the strata labels. Next, let ppk;T q :“ P pSi “ kq be the population proportions of each

stratum, then we also require that the randomization procedure satisfy the following “consistency”

property:

Assumption 2.5. The randomization procedure is such that

sup
TPTL

ˇ

ˇ

ˇ

ˇ

n1pk;T q

n
´ πpkqppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 ,

for each k P rKs. Where

n1pk;T q “
n
ÿ

i“1

1tAipT q “ 1, Si “ ku .

This assumption asserts that the assignment procedure must approach the target proportion

asymptotically, and do so in a uniform sense over all stratification trees in TL.

Other than Assumptions 2.4 and 2.5, we do not require any additional assumptions about

how assignment is performed within strata. Examples 2.4 and 2.5 illustrate two randomization

schemes which satisfy these assumptions and are popular in economics. Bugni et al. (2018) make

similar assumptions for a fixed stratification and show that they are satisfied for a wide range of

assignment procedures, including procedures often considered in the literature on clinical trials:

see for example Efron (1971), Wei (1978), Antognini and Giovagnoli (2004), and Kuznetsova and

Tymofyeyev (2011). In Proposition 2.1 below, we verify that Assumptions 2.4 and 2.5 hold for

stratified block randomization (see Example 2.5), which is a common assignment procedure in

economic applications.

Example 2.4. Simple random assignment assigns each individual within stratum k to treatment

via a coin-flip with weight πpkq. Formally, for each T , ApnqpT q is a vector with independent

components such that

P pAipT q “ 1|Si “ kq “ πpkq .

Simple random assignment is theoretically convenient, and features prominently in papers on ad-

aptive randomization. However, it is considered unattractive in practice because it results in a

“noisy” assignment for a given target πpkq, and hence could be very far off the target assignment
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for any given random draw. Moreover, this extra noise increases the finite-sample variance of ATE

estimators relative to other assignment procedures which target πpkq more directly (see for example

the discussion in Kasy, 2013).

Example 2.5. Stratified block randomization (SBR) assigns a fixed proportion πpkq of individuals

within stratum k to treatment 1. Formally, let npkq be the number of units in stratum k, and let

n1pkq be the number of units assigned to treatment 1 in stratum k. In SBR, n1pkq is given by

n1pkq “ tnpkqπpkqu .

SBR proceeds by randomly assigning n1pkq units to treatment 1 for each k, where all
ˆ

npkq

n1pkq

˙

,

possible assignments are equally likely. This assignment procedure has the attractive feature that

it targets the proportion πpkq as directly as possible. An early discussion of SBR can be found

in Zelen (1974). SBR is a popular method of assignment in economics (for example, every RCT

published in the Quarterly Journal of Economics in 2017 used SBR).

We conclude this section by showing that Assumptions 2.4 and 2.5 are satisfied by SBR:

Proposition 2.1. Suppose randomization is performed through SBR (see Example 2.5), then As-

sumptions 2.4 and 2.5 are satisfied.

3 Results

In this section we formally define our proposed procedure and present results about its asymptotic

behavior. Section 3.1 sets up the problem and presents the main results about the asymptotic

normality of our estimator. Section 3.2 considers several extensions: a cross-validation procedure

to select the depth L of the stratification tree, asymptotic results for a “pooled” estimator of the

ATE, and extensions for the targeting of subgroup specific effects.

3.1 Main Results

In this section we describe our procedure, and present our main formal results. Recall our discussion

at the end of Section 2.1: given first-wave data, our goal is to estimate a stratification tree which

minimizes the asymptotic variance in a certain class of ATE estimators, which we now introduce.

For a fixed T P TL, let tpYi, Ai, Xiqu
n
i“1 be an experimental sample generated from a randomized

experiment with randomization procedure ApnqpT q. Consider estimation of the following equation

by OLS:

Yi “
ÿ

k

αpkq1tSi “ ku `
ÿ

k

βpkq1tAi “ 1, Si “ ku ` ui .

13



Then our ATE estimator is given by

θ̂pT q “
ÿ

k

npkq

n
β̂pkq ,

where npkq “
ř

i 1tSi “ ku. In words, this estimator takes the difference in means between

treatments within each stratum, and then averages these over the strata. Given appropriate reg-

ularity conditions, the results in Bugni et al. (2018) establish asymptotic normality for a fixed

T “ pS, πq P TL:
?
npθ̂pT q ´ θq

d
ÝÑ Np0, V pT qq ,

where

V pT q “
K
ÿ

k“1

P pSpXq “ kq

„

pErY p1q ´ Y p0q|SpXq “ ks ´ ErY p1q ´ Y p0qsq2 `

ˆ

σ2
0pkq

1´ πpkq
`
σ2

1pkq

πpkq

˙

,

and

σ2
apkq “ ErY paq2|SpXq “ ks ´ ErY paq|SpXq “ ks2 .

Again we remark that this variance takes the form of the semi-parametric efficiency bound of

Hahn (1998) amongst all estimators that use the strata indicators as covariates. We propose a

two-stage adaptive randomization procedure which asymptotically achieves the minimal variance

V pT q across all T P TL. In the first stage, we use first-wave data tpYj , Aj , Xjqu
m
j“1 (indexed by j)

to estimate some “optimal” tree T̂ which is designed to minimize V pT q. In the second stage, we

perform a randomized experiment using stratified randomization with ApnqpT̂ q to obtain second-

wave data tpYi, Ai, Xiqu
n
i“1 (indexed by i). Finally, to analyze the results of the experiment, we

consider both the “unpooled” estimator θ̂pT̂ q defined above, which uses only the second-wave data

to estimate the ATE, as well as a “pooling” estimation strategy, which use both waves of data to

construct an ATE estimator (see Section 3.2).

We now present the main theoretical properties of our method. In particular, we establish

conditions under which the estimator θ̂pT̂ q constructed using the second wave of data is asymp-

totically normal, with minimal variance in the class of estimators defined above. Additionally, we

provide a consistent estimator of the asymptotic variance of our estimator, and establish a form of

“robustness” of our estimator to potential inconsistency of T̂ . Note that in all of the results of this

section, the depth L of the class of stratification trees is fixed and specified by the researcher. We

return to the question of how to choose L in Section 3.2.

From now on, to be concise, we will call data from the first-wave the pilot data, and data from

the second-wave the main data. As in the paragraph above, denote the pilot data as tWju
m
j“1 :“

tpYj , Xj , Ajqu
m
j“1. Given this pilot sample, we require the following high-level consistency property

for our estimator T̂ :

14



Assumption 3.1. The estimator T̂m is a σtpWjq
m
j“1u{BpTLq measurable function of the pilot data2

and satisfies

|V pT̂mq ´ V
˚|

a.s
ÝÝÑ 0 ,

where

V ˚ “ inf
TPTL

V pT q ,

as mÑ8.

Note that Assumption 3.1 does not imply that V ˚ is uniquely minimized at some T P TL and

so we do not make any assumptions about whether or not T̂ converges to any fixed tree. Moreover,

Assumption 3.1 imposes no explicit restrictions on how T̂ is constructed, or even on the nature of

the pilot data itself. In Proposition 3.1 below, we establish sufficient conditions on the pilot data

under which an appropriate T̂ can be constructed by solving the following empirical minimization

problem:

T̂EM P arg min
TPTL

rV pT q ,

where rV pT q is an empirical analog of V pT q (defined in Appendix E) constructed using the pilot

data. In Section 3.2, we consider an alternative construction of T̂ which uses cross-validation to

select the depth of the tree. In general, computing T̂EM involves solving a complicated discrete

optimization problem. In Appendix E we describe an evolutionary algorithm which effectively

performs a stochastic search for the global minimizer of the empirical minimization problem.

We verify Assumption 3.1 for T̂EM when the pilot data comes from a RCT performed using

simple random assignment:

Proposition 3.1. Suppose the pilot data come from a RCT performed using simple random as-

signment. Under Assumptions 2.1, 2.2, and 2.3, Assumption 3.1 is satisfied for T̂EM .

To prove our asymptotic normality result we impose one additional regularity condition on the

distribution Q when pY p0q, Y p1qq are continuous. We impose this assumption because of technical

complications that arise from the fact that the set of minimizers of the population variance V pT q

is not necessarily a singleton:

Assumption 3.2. Fix some a and k and suppose Y paq is continuous. Let G be the family of

quantile functions of Y paq|SpXq “ k, for all S´1pkq nonempty. Then we assume that G forms a

pointwise equicontinuous family.

Remark 3.1. To our knowledge this assumption is non-standard. In Lemma C.4 we show that

a sufficient condition for Assumption 3.2 to hold is that the quantile functions be continuous (i.e.

that the densities of Y paq|SpXq “ k do not contain “gaps” in their support), and that the quantile

functions vary “continuously” as we vary S P SL.

2BpTLq is the Borel-sigma algebra on TL generated by an appropriate topology and σtpWiq
m
i“1u is the sigma-algebra

generated by the pilot data. See the appendix for details.
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We now state the first main result of the paper: an optimality result for the unpooled estimator

θ̂pT̂ q. In Remark 3.2 we comment on some of the technical challenges that arise in the proof of the

result.

Theorem 3.1. Given Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, and 3.2, we have that

?
npθ̂pT̂mq ´ θq

d
ÝÑ Np0, V ˚q ,

as m,nÑ8.

Remark 3.2. Here we comment on some of the technical challenges that arise in proving Theorem

3.1. First, we develop a theory of convergence for stratification trees by defining a novel metric on

SL based on the Frechet-Nikodym metric, and establish basic properties about the resulting metric

space. In particular, we use this construction to show that a set of minimizers of V pT q exists given

our assumptions, and that T̂ converges to this set of minimizers in an appropriate sense. For these

results we exploit the properties of tree partitions for two purposes: First, we frequently exploit

the fact that for a fixed index k P rKs, the class of sets tSp´1qpkq : S P SLu consists of rectangles,

and hence forms a VC class. Second, as explained in Remark 2.3, every T P TL is in fact an

equivalence class. Using the structure of tree partitions, we define a canonical representative of T

(see Definition B.1) which we use in our definitions.

Next, because Assumptions 2.4 and 2.5 impose so little on the dependence structure of the

randomization procedure, it is not clear how to apply standard central limit theorems. When the

stratification is fixed, Bugni et al. (2018) establish asymptotic normality by essentially re-writing

the sampling distribution of the estimator as a partial-sum process. In our setting the stratification

is random, and so to prove our result we generalize their construction in a way that allows us to re-

write the sampling distribution of the estimator as a sequential empirical process (see Van der Vaart

and Wellner, 1996, Section 2.12.1 for a definition). We then exploit the asymptotic equicontinuity

of this process to establish asymptotic normality (see Lemma A.2 for details). We emphasize that

we do not require any assumptions on the convergence rate of T̂ to the set of optimal trees when

establishing this result.

Next we construct a consistent estimator for the variance V ˚. Let

pVH “
K
ÿ

k“1

npkq

n

´

β̂pkq ´ θ̂
¯2

,

and let

pVY “ R1V̂hcR ,

where V̂hc is the robust variance estimator for the parameters in the saturated regression, and R is

following vector with K “leading” zeros:

R1 “

„

0, 0, 0, . . . , 0,
np1q

n
, . . . ,

npKq

n



.
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We obtain the following consistency result:

Theorem 3.2. Given Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, and 3.2, then

pV pT̂ q
p
ÝÑ V ˚ ,

where

pV pT q “ pVHpT q ` pVY pT q ,

as m,nÑ8.

We finish this section by presenting a result about the limiting behavior of θ̂pT̂ q when T̂ is not

necessarily itself consistent in the sense of Assumption 3.1:

Proposition 3.2. Let rTm be any sequence of trees constructed from the pilot data. Let Hnpt;T q

be the cdf of
?
npθ̂pT q ´ θq, and let Φpt;T q be the cdf of a Np0, V pT qq random variable. Given

Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, and 3.2, we have that

sup
tPR
|Hnpt; rTmq ´ Φpt; rTmq|

a.s
ÝÝÑ 0 ,

as m,nÑ8.

We conclude from Proposition 3.2 that, regardless of whether or not T̂ is consistent for an

optimal tree, we may use a normal approximation of
?
npθ̂pT̂ q ´ θq to conduct valid inference.

Indeed, we will see in the simulations of Section 4 that even in situations where T̂ is a very poor

estimate of an optimal tree, the coverage of a confidence interval constructed using our estimator

is not affected.

3.2 Extensions

In this section we present some extensions to the main results. First we present a version of T̂

whose depth is selected by cross-validation. Second, we describe a method to combine estimates

of the ATE from both waves of data, and establish properties of the resulting “pooled” estimator.

Finally, we explain how to accommodate the targeting of subgroup-specific effects.

3.2.1 Cross-validation to select L

In this subsection we describe a method to select the depth L via cross-validation. We focus on

selecting a depth L such that the optimal tree can be well estimated using the pilot data, since

in practice this seems to be the binding constraint. The tradeoff of choosing L in the first-stage

estimation problem can be framed as follows: by construction, choosing a larger L has the potential
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to lower the variance of our estimator, since now we are optimizing in a larger set of trees. On the

other hand, choosing a larger L will make the set of trees more complex, and hence will make the

optimal tree harder to estimate accurately for a given pilot-data sample size. We suggest a procedure

to select L with these two tradeoffs in mind. We proceed by first specifying some maximum upper

bound L̄ on the depth to be considered. For each 0 ď L ď L̄ (where we understand L “ 0 to mean

no stratification), define

V ˚L :“ arg min
TPTL

V pT q .

Note that by construction it is the case that V ˚0 ě V ˚1 ě V ˚2 ě ... ě V ˚
L̄

. Let T̂L be the stratification

tree estimated from class TL, then by Assumption 3.1, we have that

|V pT̂Lq ´ V
˚
L |

a.s
ÝÝÑ 0 ,

for each L ď L̄. Despite the fact that T̂L asymptotically achieves a (weakly) lower variance as

L grows, it is not clear that, in finite samples, a larger choice of L should be favored, since we

run the risk of estimating the optimal tree poorly (i.e. of overfitting). In order to protect against

this potential for overfitting, we propose a simple cross-validated version of the stratification tree

estimator. The use of cross-validation to estimate decision trees goes back at least to the work

of Breiman (see Breiman et al., 1984). For an overview of the use of cross-validation methods in

statistics in general, see Arlot et al. (2010).

The cross-validation procedure we propose proceeds as follows: let tWju
m
j“1 be the pilot data,

and for simplicity suppose m is even. Split the pilot sample into two halves and denote these

by D1 :“ tWju
m{2
j“1 and D2 :“ tWju

m
j“m{2`1, respectively. Now for each L, let T̂

p1q
L and T̂

p2q
L be

stratification trees of depth L estimated on D1 and D2. Let rV p1qp¨q and rV p2qp¨q be the empirical

variances computed on D1 and D2 (where, in the event that a cell in the tree partition is empty, we

assign a value of infinity to the empirical variance). Define the following cross-validation criterion:

rV CV
L :“

1

2

´

rV p1q
´

T̂
p2q
L

¯

` rV p2q
´

T̂
p1q
L

¯¯

.

In words, for each L, we estimate a stratification tree on each half of the sample, compute the

empirical variance of these estimates by using the other half of the sample, and then average the

results. Intuitively, as we move from small values of L to large values of L, we would expect

that this cross-validation criterion should generally decrease with L, and then eventually increase,

in accordance with the tradeoff between tree complexity and estimation accuracy. We define the

cross-validated stratification tree as follows:

T̂CV “ T̂L̂ ,

with

L̂ “ arg min
L

rV CV
L ,
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where in the event of a tie we choose the smallest such L. Hence T̂CV is chosen to be the strati-

fication tree whose depth minimizes the cross-validation criterion rV CV
L . If each T̂L is estimated by

minimizing the empirical variance over TL, as described in Section 3.1, then we can show that the

cross-validated estimator satisfies the consistency property of Assumption 3.1:

Proposition 3.3. Suppose the pilot data come from a RCT performed using simple random as-

signment. Under Assumptions 2.1, 2.2, and 2.3, Assumption 3.1 is satisfied for T̂CV “ T̂EM
L̂

in

the set TL̄, that is,

|V pT̂CV q ´ V ˚L̄ |
a.s
ÝÝÑ 0 ,

as mÑ8.

In light of Proposition 3.3 we see that all of our previous results continue to hold while using

T̂CV as our stratification tree. However, Proposition 3.3 does not help us conclude that T̂CV should

perform any better than T̂L̄ in finite samples. Although it is beyond the scope of this paper to

establish such a result, doing so could be an interesting avenue for future work. Instead, we assess

the performance of T̂CV via simulation in Section 4, and note that it does indeed seem to protect

against overfitting in practice. In Section 5, we use this cross-validation procedure to select the

depth of the stratification trees we estimate for the experiment undertaken in Karlan and Wood

(2017).

Remark 3.3. Our description of cross-validation above defines what is known as “2-fold” cross-

validation. It is straightforward to extend this to “V -fold” cross-validation, where the dataset is

split into V pieces. Breiman et al. (1984) find that using at least 5 folds is most effective in their

setting (although their cross-validation technique is different from ours), and in many statistical

applications 5 or 10 folds has become the practical standard. Here we focus on 2-fold cross validation

because of the computational difficulties we face in solving the optimization problem to compute

T̂EM .

3.2.2 A pooling estimator of the ATE

In this subsection we study an estimator which allows us to “pool” data from both datasets when

estimating the ATE. Pooling may be particularly useful in formal two-stage randomized experiments

where the first wave sample-size is large relative to the total sample-size (for example, in the

application we consider in Section 5).

Let θ̂1 be an estimator of the ATE constructed from the pilot data, and let θ̂pT̂ q be the estimator

defined in Section 3.1. We impose the following high level assumption on the asymptotic behavior

of θ̂1:
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Assumption 3.3. θ̂1 is an asymptotically normal estimator for the ATE:

?
mpθ̂1 ´ θq

d
ÝÑ Np0, V1q ,

as mÑ8. Moreover, V1 can be consistently estimated.

Assumption 3.3 holds for a variety of standard estimators under various assignment schemes:

see for example the results in Bugni et al. (2017), Bugni et al. (2018), and Bai et al. (2019). We

also impose the following assumption on the relative rates of growth of the pilot and main sample.

Assumption 3.4. Let m be the pilot data sample size, n the main data sample size, and N “ m`n.

We assume that
m

N
Ñ λ ,

for some λ P r0, 1s.

We propose the following sample-size weighted estimator:

θ̂SW “ pλθ̂1 ` p1´ pλqθ̂pT̂ q ,

where λ̂ “ m{N .

Theorem 3.3 derives the limiting distribution of this estimator:

Theorem 3.3. Given Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.1, 3.2, 3.3, and 3.4, we have that

?
Npθ̂SW ´ θq

d
ÝÑ Np0, λV1 ` p1´ λqV

˚q ,

where N “ n`m, as m,nÑ8.

In words, we see that the pooled estimator θ̂SW now has an asymptotic variance which is

a weighted combination of the optimal variance and the variance from estimation in the pilot

experiment, with weights which correspond to their relative sizes.

3.2.3 Stratification Trees for Subgroup Targeting

In this subsection we explain how the method can flexibly accommodate the problem of variance

reduction for estimators of subgroup-specific ATEs, while still minimizing the variance of the un-

conditional ATE estimator in a restricted set of trees. It is common practice in RCTs for the strata

to be specified such that they are the subgroups that a researcher is interested in studying (see for

example the recommendations in Glennerster and Takavarasha, 2013). This serves two purposes:

the first is that it enforces a pre-specification of the subgroups of interest, which guards against

ex-post data mining. Second, it allows the researcher to improve the efficiency of the subgroup

specific estimates.
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Let S1 P SL1 be a tree of depth L1 ă L, whose terminal nodes represent the subgroups of interest.

Suppose these nodes are labelled by g “ 1, 2, ..., G, and that P pS1pXq “ gq ą 0 for each g. The

subgroup-specific ATEs are defined as follows:

θpgq :“ ErY p1q ´ Y p0q|S1pXq “ gs .

We introduce the following new notation: let TLpS1q Ă TL be the set of stratification trees which

can be constructed as extensions of S1. For a given T P TLpS1q, let KgpT q Ă rKs be the set of

terminal nodes of T which pass through the node g in S1 (see Figure 4 for an example).

1

x1
ď

0.
5

2

x
1
ą

0.5

πp1q “ 0.3

x 2
ď

0.
8

πp2q “ 0.7

x
2
ą

0.8
x1
ď

0.
5

πp3q “ 0.5

x 1
ď

0.
9

πp4q “ 0.4

x
1
ą

0.9

x
1 ą

0.5

Figure 4: On the left: a tree S1 whose nodes represent the subgroups of interest.

On the right: an extension T P T2pS
1q. Here K1pT q “ t1, 2u,K2pT q “ t3, 4u

Given a tree T P TLpS1q, a natural estimator of θpgq is then given by

θ̂pgqpT q :“
ÿ

kPKg

npkq

n1pgq
β̂pkq ,

where n1pgq “
řn

i“1 1tS1pXiq “ gu and β̂pkq are the regression coefficients of the saturated regres-

sion over T . It is straightforward to show using the recursive structure of stratification trees that

choosing T as a solution to the following problem:

min
TPTLpS1q

V pT q ,

will minimize the asymptotic variance of the subgroup specific estimators θ̂pgq, while still minimizing

the variance of the global ATE estimator θ̂ in the restricted set of trees TLpS1q. Moreover, to

compute a minimizer of V pT q over TLpS1q, it suffices to compute the optimal tree for each subgroup,

and then append these to S1 to form the stratification tree.

In Section 5 we illustrate the application of this extension to the setting in Karlan and Wood

(2017). In their paper, they study the effect of information about a charity’s effectiveness on

subsequent donations to the charity, and in particular the treatment effect heterogeneity between

large and small prior donors. For this application we specify S1 to be a tree of depth 1, whose
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terminal nodes correspond to the subgroups of large and small prior donors. We then compute T̂

for each of these subgroups and append them to S1 to form a stratification tree which simultaneously

minimizes the variance of the subgroup-specific estimators, while still minimizing the variance of

the global estimator in this restricted class.

4 Simulations

In this section we analyze the finite sample behaviour of our method via a simulation study, and

in particular analyze the performance of the cross-validation procedure presented in Section 3.2.

We consider three DGPs in the spirit of the designs considered in Athey and Imbens (2016). We

emphasize that although these designs are artificial, they highlight several interesting qualitative

patterns. In Section 5, we repeat this exercise using an application-based design. For all three

designs in this section, the outcomes are specified as follows:

Yipaq “ κapXiq ` νapXiq ¨ εa,i .

Where the εa,i are i.i.d Np0, 0.1q, and κap¨q, νap¨q are specified individually for each DGP below.

In all cases, Xi P r0, 1s
d, with components independently and identically distributed as Betap2, 5q.

The specifications are given by:

Model 1: d “ 2, κ0pxq “ 0.2, ν0pxq “ 5,

κ1pxq “ 10x11tx1 ą 0.4u ´ 5x21tx2 ą 0.4u ,

ν1pxq “ 1` 10x11tx1 ą 0.6u ` 5x21tx2 ą 0.6u .

This is a “low-dimensional” design with two covariates. The first covariate is given a higher weight

than the second in the outcome equation for Y p1q.

Model 2: d “ 10, κ0pxq “ 0.5, ν0pxq “ 5,

κ1pxq “
10
ÿ

j“1

p´1qj´110´j`21txj ą 0.4u ,

ν1pxq “ 1`
10
ÿ

j“1

10´j`21txj ą 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first covariate has the largest

weight in the outcome equation for Y p1q, and the weight of subsequent covariates decreases quickly.

Model 3: d “ 10, κ0pxq “ 0.2, ν0pxq “ 9,

κ1pxq “
3
ÿ

j“1

p´1qj´110 ¨ 1txj ą 0.4u `
10
ÿ

j“4

p´1qj´15 ¨ 1txj ą 0.4u ,
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ν1pxq “ 1`
3
ÿ

j“1

10 ¨ 1txj ą 0.6u `
10
ÿ

j“4

5 ¨ 1txj ą 0.6u .

This is a “moderate-dimensional” design with ten covariates. Here the first three covariates have

similar weight in the outcome equation for Y p1q, and the next seven covariates have a smaller but

still significant weight.

In each case, κ0p¨q is calibrated so that the average treatment effect is close to 0.1, and ν0p¨q is

calibrated so that Yip1q and Yip0q have similar unconditional variances (see Appendix E for details).

In each simulation we test five different methods of stratification. In all cases, when we stratify we

consider a maximum of 8 strata (which corresponds to a stratification tree of depth 3). In all cases

we use SBR to perform assignment. We consider the following methods of stratification:

• No Stratification: Here we assign the treatment to half the sample, with no stratification.

• Ad-hoc: Here we stratify in an “ad-hoc” fashion and then assign treatment to half the sample

in each stratum. To construct the strata we iteratively select a covariate at random, and

stratify on the midpoints of the currently defined strata.

• Stratification Tree: Here we split the sample and perform a pilot experiment to estimate a

stratification tree, we then use this tree to assign treatment in the second wave.

• Cross-Validated Tree: Here we estimate a stratification tree as above, while selecting the

depth via cross validation.

• Infeasible Optimal Tree: Here we estimate an “optimal” tree by using a large auxiliary sample.

We then use this to assign treatment to the entire sample (see Appendix E for further details).

We perform the simulations with a sample size of 5, 000, and consider three different splits

of the total sample for the pilot experiment and main experiment. The pilot experiment was

performed using simple random assignment without stratification. To estimate the stratification

trees we minimize an empirical analog of the asymptotic variance as described in Appendix E. The

estimator we use throughout is the sample-size weighted estimator described in Section 3.2.

We assess the performance of the randomization procedures through the following criteria:

the empirical coverage of a 95% confidence interval formed using a normal approximation, the

percentage reduction in average length of the 95% CI relative to no stratification, the power of a

t-test for an ATE of 0, and the percentage reduction in root mean-squared error (RMSE) relative

to no stratification. For each design we perform 3, 000 Monte Carlo iterations. Table 1 presents

the simulation results for Model 1.

In Table 1, we see that when the pilot study is small (sample size 100), our method can perform

poorly relative to ad-hoc stratification. However, the CV tree does a good job of avoiding overfitting,

and performs only slightly worse than ad-hoc stratification for this design. When we consider a
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Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 94.5 0.0 77.2 0.0

Ad-Hoc 94.9 -7.0 82.9 -10.4

Strat. Tree 94.6 -0.1 78.2 -1.4

CV Tree 95.1 -5.1 81.9 -7.7

Optimal Tree 94.2 -18.6 91.5 -19.5

500 4500

No Stratification 94.1 0.0 77.7 0.0

Ad-Hoc 94.0 -7.0 82.5 -6.3

Strat. Tree 93.5 -13.5 88.0 -12.9

CV Tree 93.9 -13.0 87.5 -13.5

Optimal Tree 94.8 -17.0 90.8 -18.3

1500 3500

No Stratification 95.0 0.0 76.3 0.0

Ad-Hoc 94.5 -7.0 82.6 -7.9

Strat. Tree 93.7 -12.0 86.8 -11.9

CV Tree 94.4 -11.6 86.7 -11.9

Optimal Tree 94.3 -12.9 87.9 -12.1

Table 1: Simulation Results for Model 1
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medium-sized pilot study (sample size 500), we see that both the stratification tree and the CV

tree outperform ad-hoc stratification. Finally, when using a large pilot study (sample size 1500),

we see that all three trees (strat, CV, and optimal) perform similarly to each other, and that there

is a drop in performance relative to the medium-sized pilot. This is the behaviour we should have

expected given the asymptotic results presented in Section 3. Next we study the results for Model

2, presented in Table 2:

In Table 2, we see that for a small pilot, we get similar results to Model 1, with the CV tree

again doing a good job of avoiding overfitting. For a medium-sized pilot, both trees display sizeable

gains relative to ad-hoc stratification. For the large pilot, the qualitative results are similar to what

we saw in Table 1. Finally, we study the results of Model 3, presented in Table 3.

In Table 3, we see very poor performance of our method when using a small pilot. However,

as was the case for Models 1 and 2, the CV tree still helps to protect against overfitting. When

moving to the medium and large sized pilots, we see that both trees perform comparably to ad-hoc

stratification as well as to the optimal tree.

Overall, we conclude that our proposed cross-validation procedure does a good job of protecting

against overfitting. However, we would caution against using our method with small pilots.

5 An Application

In this section we study the behavior of our method in an application, using the experimental

data from Karlan and Wood (2017). First we provide a brief review of the empirical setting:

Karlan and Wood (2017) study how donors to the charity Freedom from Hunger respond to new

information about the charity’s effectiveness. The experiment, which proceeded in two separate

waves corresponding to regularly scheduled fundraising campaigns, randomly mailed one of two

different marketing solicitations to previous donors, with one solicitation emphasizing the scientific

research on FFH’s impact, and the other emphasizing an emotional appeal to a specific beneficiary

of the charity. The outcome of interest was the amount donated in response to the mailer. Karlan

and Wood (2017) found that, although the effect of the research insert was small and insignificant,

there was substantial heterogeneity in response to the treatment: for those who had given a large

amount of money in the past, the effect of the research insert was positive, whereas for those who

had given a small amount, the effect was negative. They argue that this evidence is consistent with

the behavioral mechanism proposed by Kahneman (2003), where small prior donors are driven by

a “warm-glow” of giving (akin to Kahneman’s System I decision making), in contrast to large prior

donors, who are driven by altruism (akin to Kahneman’s System II decision making). However, the

resulting confidence intervals of their estimates are wide, and often contain zero (see for example

Figure 1 in Karlan and Wood, 2017). The covariates available in the dataset for stratification are
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Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 95.0 0.0 46.3 0.0

Ad-Hoc 94.3 -1.9 48.8 -1.0

Strat. Tree 94.5 7.0 41.6 9.5

CV Tree 94.4 -7.8 53.8 -7.2

Optimal Tree 93.8 -19.2 63.9 -17.5

500 4500

No Stratification 94.7 0.0 47.1 0.0

Ad-Hoc 93.9 -1.8 48.0 -1.9

Strat. Tree 93.6 -12.8 57.6 -10.2

CV Tree 94.3 -14.0 58.9 -14.3

Optimal Tree 94.1 -17.5 63.3 -15.8

1500 3500

No Stratification 94.1 0.0 47.8 0.0

Ad-Hoc 93.8 -1.8 49.5 -0.5

Strat. Tree 94.0 -12.4 59.1 -13.0

CV Tree 94.2 -12.1 58.8 -12.7

Optimal Tree 94.2 -13.3 59.1 -14.1

Table 2: Simulation Results for Model 2
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Sample Size

Stratification Method

Criteria

Pilot Main Coverage %∆Length Power %∆RMSE

100 4900

No Stratification 95.0 0.0 30.5 0.0

Ad-Hoc 94.9 -2.2 32.0 -1.6

Strat. Tree 95.3 16.3 24.7 15.8

CV Tree 94.6 1.0 30.9 3.1

Optimal Tree 94.6 -7.3 35.4 -5.8

500 4500

No Stratification 94.8 0.0 31.0 0.0

Ad-Hoc 94.9 -2.2 32.7 -2.3

Strat. Tree 95.0 -2.1 31.8 -2.3

CV Tree 94.9 -1.8 31.2 -2.7

Optimal Tree 94.4 -6.7 33.9 -5.3

1500 3500

No Stratification 95.1 0.0 29.4 0.0

Ad-Hoc 94.9 -2.2 31.8 -0.5

Strat. Tree 95.4 -4.1 31.9 -2.9

CV Tree 95.5 -3.6 32.2 -3.8

Optimal Tree 95.9 -5.2 33.4 -5.1

Table 3: Simulation Results for Model 3
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as follows:

• Total amount donated prior to mailer

• Amount of most recent donation prior to mailer (denoted pre gift below)

• Amount of largest donation prior to mailer

• Number of years as a donor (denoted # years below)

• Number of donations per year (denoted freq below)

• Average years of education in census tract

• Median zipcode income

• Prior giving year (either 2004/05 or 2006/07) (denoted p.year below)

As a basis for comparison, Figure 5 depicts the stratification used in Karlan and Wood (2017)3.
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Figure 5: Stratification used in Karlan and Wood (2017)

We estimate two different stratification trees using data from the first wave of the experiment

(with a sample size of 10, 869), that illustrate stratifications which could have been used to assign

treatment in the second wave. We compute the trees by minimizing an empirical analog of the

variance, as described in Section 3. The first tree is fully unconstrained, and hence targets efficient

estimation of the unconditional ATE estimator, while the second tree is constrained in accordance

with Section 3.2 to efficiently target estimation of the subgroup-specific effects for large and small

prior donors (see below for a precise definition). In both cases, the depth of the stratification tree

was selected using cross validation as described in Section 3.2, with a maximal depth of L̄ “ 5

(which corresponds to a maximum of 32 strata). When computing our trees, given that some of

these covariates do not have upper bounds a-priori, we impose an upper bound on the allowable
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range for the strata to be considered (we set the upper bound as roughly the 97th percentile in the

dataset, although in practice this should be set using historical data).

Figure 6 depicts the unrestricted tree estimated via cross-validation. We see that the cross-

validation procedure selects a tree of depth one, which may suggest that the covariates available to

us for stratification are not especially relevant for decreasing the variance of the estimator. However,

we do see a wide discrepancy in the assignment proportions for the selected strata. In words, the

subgroup of respondents who have been donors for more than 16 years have a larger variance in

outcomes when receiving the research mailer than the control mailer. In contrast the subgroup of

respondents who have been donors for less than 16 years have roughly equal variances in outcomes

under both treatments.

πp1q “ 0.47

#
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Figure 6: Unrestricted Stratification Tree estimated from Karlan and Wood (2017) data

Next, we estimate the restricted stratification tree which targets the subgroup-specific treat-

ment effects for large and small prior donors. We specify a large donor as someone who’s most

recent donation prior to the experiment was larger than $100. We proceed by estimating each sub-

tree using cross-validation. Figure 7 depicts the estimated tree. We see that the cross-validation

procedure selects a stratification tree of depth 1 in the left subtree and a tree of depth 0 (i.e. no

stratification) in the right subtree, which further reinforces that the covariates we have available

may be uninformative for decreasing variance.

3Although Karlan and Wood (2017) claim to use a different stratification in the second-wave experiment, their

exact implementation is not clear from the available data. Replication data is available by request from Innovations

for Poverty Action. Observations with missing data on median income, average years of education, and those receiving

the “story insert” were dropped.
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Figure 7: Restricted Stratification Tree estimated from Karlan and Wood (2017) data

These results are not necessarily surprising given the nature of the experiment: with very high

probability, a recipient of either mailer is likely to make no donation at all, and hence we might ex-

pect limited heterogeneity in the potential outcomes with respect to our observable characteristics.

This suggests a potential added benefit from using our method: when using cross-validation, the

depth of the resulting tree could serve as a diagnostic tool to help assess the potential gains from

stratification in a given application. In particular, if the procedure outputs a very shallow tree

given a large sample, this may suggest that there is relatively little heterogeneity in the outcome

with respect to the observable characteristics.

To further assess the potential gains from stratification in this application, we repeat the sim-

ulation exercise of Section 4 with an application-based simulation design. To generate the data,

we draw observations from the entire dataset with replacement, and impute the missing potential

outcome for each observation using nearest-neighbour matching on the Euclidean distance between

the (scaled) covariates. We perform the simulations with a sample size of 30, 000, which corresponds

approximately to the total number of observations in the dataset. To reproduce the empirical set-

ting, we conduct the experiment in two waves, with sample sizes of 12, 000 and 18, 000 in each wave,

respectively. In all cases, when we stratify we consider a maximum of 4 strata, which corresponds

to the number of strata in Figure 5, and use SBR to perform assignment. We compare the following

stratification methods using the same criteria as in Section 4:

• No Stratification: Here we assign treatment to half the sample, with no stratification.

• Fixed Stratification: Here we use the stratification from Figure 5, and assign treatment to

half the sample in each stratum.

• Stratification Tree: Here we perform the experiment in two waves. In the first wave, we assign

individuals to treatment using the Fixed stratification, and then use this data to estimate a

stratification tree. In the second wave we use the estimated tree to assign treatment.
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• Cross-Validated Tree: Here we perform the experiment in two waves. In the first wave,

we assign individuals to treatment using the Fixed stratification, and then use this data to

estimate a stratification tree with depth selected via cross-validation. In the second wave we

use the cross-validated tree to assign treatment.

• Infeasible Optimal Tree: Here we estimate an infeasible “optimal” tree by using a large

auxiliary sample (see Appendix E). In the first wave, we assign individuals to treatment

using the Fixed stratification. In the second wave, we assign individuals to treatment using

the infeasible tree.

We perform 6000 Monte Carlo iterations. Table 4 presents the simulation results. We see in

Table 4 that the overall gains from our procedure are small, which as we explained above may not

be surprising given the nature of the experiment. The stratification tree performs slightly worse

than no stratification, which agrees with the fact that the cross-validation procedure returned a

tree of depth one in Figure 6. As was the case in the simulations of Section 4, the cross-validated

stratification tree protects against overfitting, and seems to perform fairly well relative to the other

feasible methods presented. To put these (modest) gains in perspective, the fixed stratification

design would require 500 additional observations to match the performance of our cross-validated

tree, and the no-stratification design would require 1000 additional observations.

6 Conclusion

In this paper we proposed an adaptive randomization procedure for two-stage randomized controlled

trials, which uses the data from a first-wave experiment to assign treatment in a second wave of

the RCT. Our method uses the first-wave data to estimate a stratification tree: a stratification of

the covariate space into a tree partition along with treatment assignment probabilities for each of

these strata.

Going forward, there are several extensions of the paper that we would like to consider. First,

many RCTs are performed as cluster RCTs, that is, where treatment is assigned at a higher level

of aggregation such as a school or city. Extending the results of the paper to this setting could

be a worthwhile next step. Another avenue to consider would be to combine our randomization

procedure with other aspects of the experimental design. For example, Carneiro et al. (2016) set up

a statistical decision problem to optimally select the sample size, as well as the number of covariates

to collect from each participant in the experiment, given a fixed budget. It may be interesting to

embed our randomization procedure into a similar decision problem. Finally, although our method

employs stratified randomization, we assumed throughout that the experimental sample is an i.i.d

sample. Further gains may be possible by considering a setting where we are able to conduct

stratified sampling in the second wave as well as stratified randomization. To that end, Song and

31



Yu (2014) develop estimators and semi-parametric efficiency bounds for stratified sampling which

may be useful.
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A Proofs of Main Results

The proof of Theorem 3.1 requires some preliminary machinery which we develop in Appendix B. In this

section we take the following facts as given:

• We select a representative out of every equivalence class T P T by defining an explicit labeling of the

leaves, which we call the canonical labeling (Definition B.1).

• We endow T with a metric ρp¨, ¨q that makes pT , ρq a compact metric space (Definition B.2, Lemma

B.2).

• We prove that V p¨q is continuous in ρ (Lemma B.1).

• Let T ˚ be the set of minimizers of V p¨q, then this set is compact (in the topology induced by ρ), and

it is the case given our assumptions that

inf
T˚PT ˚

ρpT̂m, T
˚q

a.s.
ÝÝÑ 0 ,

as m Ñ 8 (note that ρp¨, ¨q is measurable due to the separability of T ). Furthermore, there exists a

sequence of σtpWiq
m
i“1u{BpTLq-measurable trees T̄m P T ˚ such that

ρpT̂m, T̄mq
a.s.
ÝÝÑ 0 .

(Lemma B.4)

Remark A.1. To simplify the exposition, we derive all our results for the subset of TL which excludes trees

with empty leaves. In other words, this means that we will only consider trees of depth L with exactly 2L

leaves.

Proof of Theorem 3.1

Proof. Let E1r¨s and E2r¨s denote the expectations with respect to the first wave and second wave data,

respectively. By Lemmas B.4 and A.1, we obtain immediately that

E2r1t
?
npθ̂pT̂mq ´ θq ď tus

a.s
ÝÝÑ Φ˚ptq ,

where Φ˚ptq is the CDF of a Np0, V ˚q random variable. By the dominated convergence theorem, we get that

E1rE2r1t
?
npθ̂pT̂mq ´ θq ď tuss Ñ Φ˚ptq .

Finally, by Fubini’s theorem,

P p
?
npθ̂pT̂mq ´ θq ď tq “ Er1t

?
npθ̂pT̂mq ´ θq ď tus “ E1rE2r1t

?
npθ̂pT̂mq ´ θq ď tuss Ñ Φ˚ptq ,

as desired.

Lemma A.1. Let tT
p1q
m um be a sequence of trees such that there exists a sequence tT

p2q
m um where ρpT

p1q
m , T

p2q
m q Ñ

0, and T
p2q
m P T ˚ for all m. Given the Assumptions required for Theorem 3.1,

?
npθ̂pT p1qm q ´ θq

d
ÝÑ Np0, V ˚q .
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Proof. By the derivation in the proof of Theorem 3.1 in Bugni et al. (2018), we have that

?
npθ̂pT p1qm q ´ θq “

K
ÿ

k“1

”

Ω1pk;T p1qm q ´ Ω0pk;T p1qm q

ı

`

K
ÿ

k“1

Θkpk;T p1qm q ,

where

Ωapk;T q :“
npk;T q

napk;T q

«

1
?
n

n
ÿ

i“1

1tAipT q “ a, Si “ kuψipa;T q

ff

,

with the following definitions:

ψipa;T q :“ Yipaq ´ ErYipaq|SpXqs ,

npk;T q :“
n
ÿ

i“1

1tSi “ ku ,

napk;T q :“
n
ÿ

i“1

1tAipT q “ a, Si “ ku ,

and

ΘkpT q :“
?
n

ˆ

npk;T q

n
´ ppk;T q

˙

rEpY p1q|SpXq “ kq ´ EpY p0q|SpXq “ kqs
2
.

To prove our result, we study the process

OpT q “ rΩ0p1;T q Ω1p1;T q Ω0p2;T q . . . Ω1pK;T q Θp1;T q . . . ΘpK;T qs
1
.

By Lemma A.2, we have that

OpT p1qm q
d
“ ŌpT p2qm q ` oP p1q ,

where Ōp¨q is defined in Lemma A.2. Hence

?
npθ̂pT p1qm q ´ θq

d
“OnpT

p2q
m q ` oP p1q ,

where

OnpT
p2q
m q “ B1ŌpT p2qm q ,

and B is the appropriate vector of ones and negative ones to collapse ŌpT q:

B1 “ r´1, 1,´1, 1, . . . , 1, 1, 1, . . . , 1s .

It remains to show that OnpT
p2q
m q

d
ÝÑ Np0, V ˚q, and then the result will follow. To that end, fix a strictly

increasing indexing pn1,m1q ă ... ă pn`,m`q ă ... (where the inequality is to be interpreted componentwise).

By the compactness of T ˚, tT
p2q
m` u contains a convergent subsequence (which by an abuse of notation we

continue to index by m`, with corresponding index n`), so that:

T p2qm`
Ñ T˚ ,

for some T˚ P T ˚. By the asymptotic equicontinuity of Ōp¨q established in Lemma A.2, we have that

ŌpT p2qm`
q “ ŌpT˚q ` oP p1q ,

and by the partial sum arguments in Lemma C.1. of Bugni et al. (2018), it follows that

On`pT
˚q

d
ÝÑ Np0, V ˚q ,
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since T˚ is an optimal tree. Hence we have that

On`pT
p2q
m`
q
d
ÝÑ Np0, V ˚q .

By Lemma C.1 (applied to the CDFs), we get that

OnpT
p2q
m q

d
ÝÑ Np0, V ˚q ,

as m,nÑ8, and so the result follows.

Lemma A.2. Let tT
p1q
m um be a sequence of trees such that there exists a sequence tT

p2q
m um where ρpT

p1q
m , T

p2q
m q Ñ

0, and T
p2q
m P T ˚ for all m. Given the Assumptions required for Theorem 3.1,

OpT p1qm q
d
“ ŌpT p2qm q ` oP p1q ,

as nÑ8, where Op¨q is defined in the proof of Lemma A.1 and Ōp¨q is defined in the proof of this result.

Proof. By the argument in Lemma C1 in Bugni et al. (2018), we have that

OpT q d“ rOpT q ,

where
rOpT q “

”

rΩ0p1;T q rΩ1p1;T q rΩ0p2;T q . . . rΩ1pK;T q Θp1;T q . . . ΘpK;T q
ı1

.

with

rΩapk;T q “
npk;T q

napk;T q

»

–

1
?
n

npF̂ pk;T q`F̂a`1pk;T qq
ÿ

i“npF̂ pk;T q`F̂apk;T qq`1

GkapUi,paqpkq;T q

fi

fl ,

with the following definitions: tUi,paqpkqu
N
i“1 are i.i.d U r0, 1s random variables generated independently of

everything else, and independently across pairs pa, kq, Gkap¨ ;T q is the inverse CDF of the distribution of

ψpa;T q|SpXq “ k, F̂ pk;T q :“ 1
n

řn
i“1 1tSi ă ku, and F̂apk;T q :“ 1

n

řn
i“1 1tSi “ k,Ai ă au.

Let us focus on the term in brackets. Fix some a and k for the time being, and let

G :“ tGkap¨ ;T q : T P T u

be the class of all the inverse CDFs defined above, then the empirical process ηn : r0, 1s ˆ G Ñ R defined by

ηnpu, fq :“
1
?
n

tnuu
ÿ

i“1

fpUiq ,

is known as the sequential empirical process (see Van der Vaart and Wellner (1996)) (note that by construction

ErfpUiqs “ 0). By Theorem 2.12.1 in Van der Vaart and Wellner (1996), ηn converges in distribution to a

tight limit in `8pr0, 1sˆGq if G is Donsker, which follows by Lemma A.5. It follows that ηn is asymptotically

equicontinuous in the natural (pseudo) metric

d ppu, fq, pv, gqq “ |u´ v| ` ρP pf, gq ,

where ρP is the variance pseudometric. Note that since Ui „ U r0, 1s and ErfpUiqs “ 0 for all f P G, ρP

is equal to the L2 norm || ¨ ||. Define F pk;T q :“ P pSpXq ă kq and Fapk;T q :“
ř

jăa ppk;T qπjpkq, where

π0pkq :“ 1´ πpkq, π1pkq :“ π, then it follows by Lemmas A.3, and A.6 that:

|F̂apk;T p1qm q ´ Fapk;T p2qm q|
p
ÝÑ 0 ,
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|F̂ pk;T p1qm q ´ F pk;T p2qm q|
p
ÝÑ 0 ,

||Gkap¨ ;T p1qm q ´Gkap¨ ;T p2qm q|| Ñ 0 ,

as mÑ8. Hence we have by asymptotic equicontinuity that

ηn

´

F̂ pk;T p1qm q ` F̂apk;T p1qm q, Gkap¨ ;T p1qm q

¯

“ ηn

´

F pk;T p2qm q ` Fapk;T p2qm q, Gkap¨ ;T p2qm q

¯

` oP p1q .

By Lemma A.4,

npk;T
p1q
m q

napk;T
p1q
m q

“
1

πpk;T
p2q
m q

` oP p1q .

Using the above two expressions, it can be shown that

rΩapk;T p1qm q “ Ω̄apk;T p2qm q ` oP p1q ,

where

Ω̄apk;T q :“
1

πpk;T q

»

–

1
?
n

tnpF pk;T q`Fa`1pk;T qqu
ÿ

i“tnpF pk;T q`Fapk;T qqu`1

GkapUi,paqpkq;T q

fi

fl .

Now we turn our attention to Θpk;T q. By standard empirical process results for

?
n

ˆ

npk;T q

n
´ ppk;T q

˙

,

it can be shown that

Θpk;T p1qm q “ Θpk;T p2qm q ` oP p1q ,

since the class of indicators t1tSpXq “ ku : S P Su is Donsker for each k (since the partitions are rectangles

and hence for a fixed k we get a VC class). Finally, let

ŌpT q “
“

Ω̄0p1;T q Ω̄1p1;T q Ω̄0p2;T q . . . Ω̄1pK;T q Θp1;T q . . . ΘpK;T q
‰1
.

then we have shown that

OpT p1qm q
d
“ ŌpT p2qm q ` oP p1q,

as desired.

Proof of Theorem 3.2

Proof. Adapting the derivation in Theorem 3.3 of Bugni et al. (2018), and using the same techniques de-

veloped in the proof of Theorem 3.1 of this paper, it can be shown that

V̂ pT̂ q
d
“V pT̄ q ` oP p1q .

By definition, T̄ P T ˚ so that the result follows.
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Proof of Proposition 2.1

Proof. By definition,
n1pkq

n
“

tnpkqπpkqu

n
.

We bound the floor function from above and below:

πpkq
npkq

n
ď
n1pkq

n
ď πpkq

npkq

n
`

1

n
.

We consider the lower bound (the upper bound proceeds identically). It suffices to show that

sup
TPT

ˇ

ˇ

ˇ

ˇ

npk;T q

n
´ ppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 .

Since the partitions are rectangles, for a fixed k we get a VC class and hence by the Glivenko-Cantelli

theorem the result follows.

Proof of Proposition 3.1

Proof. First note that, for a given realization of the data, there exists an optimal choice of π for every S P SL
by continuity of rVmpT q in π (which we’ll call π˚pSq), so our task is to choose pS, π˚pSqq to minimize rVmpT q.

Given this, note that for a given realization of the data, the empirical objective rVmpT q can take on only

finitely many values, and hence a minimizer rT exists. Re-write the population-level variance V pT q as follows:

V pT q “ ErνT pXqs ,

where

νT pxq “

«

σ2
1,Spxq

πpSpxqq
´

σ2
0,Spxq

1´ πpSpxqq
` pθSpxq ´ θq

2

ff

,

σ2
a,Spxq “ V arpY paq|SpXq “ Spxqq ,

θSpxq “ ErY p1q ´ Y p0q|SpXq “ Spxqs .

Write rVmpT q as

rVmpT q “
1

m

m
ÿ

i“1

ν̂T pXiq ,

with

ν̂T pxq “

«

σ̂2
1,Spxq

πpSpxqq
´

σ̂2
0,Spxq

1´ πpSpxqq
` pθ̂Spxq ´ θ̂q

2

ff

,

where the hats in the definition of ν̂ simply denote empirical analogs. For the sake of the proof we also

introduce the following intermediate quantity:

VmpT q “
1

m

m
ÿ

i“1

νT pXiq .

Now, let T˚ be any minimizer of V pT q (which exists by Lemma B.4), then

V pT̂ q ´ V pT˚q “ V pT̂ q ´ rVmpT̂ q ` rVmpT̂ q ´ V pT
˚q

ď V pT̂ q ´ rVmpT̂ q ` rVmpT
˚q ´ V pT˚q

ď 2 sup
TPT

|rVmpT q ´ V pT q| .
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So if we can show

sup
TPT

|rVmpT q ´ V pT q|
a.s
ÝÝÑ 0 ,

then we are done.

To that end, by the triangle inequality:

sup
TPT

|rVmpT q ´ V pT q| ď sup
TPT

|rVmpT q ´ VmpT q| ` sup
TPT

|VmpT q ´ V pT q| ,

so we study each of these in turn. Let us look at the second term on the right hand side. This converges

almost surely to zero by the Glivenko-Cantelli theorem, since the class of functions tνT p¨q : T P T u is

Glivenko-Cantelli (this can be seen by the fact that νT p¨q can be constructed through appropriate sums,

products, differences and quotients of various types of VC-subgraph functions, and by invoking Assumption

2.2 to avoid potential degeneracies through division). Hence it remains to show that the first term converges

a.s. to zero.

Re-writing:

rVmpT q “
K
ÿ

k“1

«˜

1

m

m
ÿ

i“1

1tSpXiq “ ku

¸˜

σ̂2
1,Spkq

πpkq
´

σ̂2
0,Spkq

1´ πpkq
` pθ̂Spkq ´ θ̂q

2

¸ff

,

and

VmpT q “
K
ÿ

k“1

«˜

1

m

m
ÿ

i“1

1tSpXiq “ ku

¸˜

σ2
1,Spkq

πpkq
´

σ2
0,Spkq

1´ πpkq
` pθSpkq ´ θq

2

¸ff

,

where, through an abuse of notation, we define σ2
a,Spkq :“ V arpY paq|SpXq “ kq etc. By the triangle

inequality it suffices to consider each difference for each k P rKs individually. Moreover, since the expression
1
m

řm
i“1 1tSpXiq “ ku is bounded, we can factor it out and ignore it in what follows. It can be shown by

repeated applications of the triangle inequality, Assumption 2.2, the Glivenko-Cantelli Theorem and the

following expression for conditional expectation:

ErY |SpXq “ ks “
ErY 1tSpXq “ kus

P pSpXq “ kq
,

that

sup
TPT

ˇ

ˇ

ˇ

ˇ

ˇ

˜

σ̂2
1,Spkq

πpkq
´

σ̂2
0,Spkq

1´ πpkq
` pθ̂Spkq ´ θ̂q

2

¸

´

˜

σ2
1,Spkq

πpkq
´

σ2
0,Spkq

1´ πpkq
` pθSpkq ´ θq

2

¸
ˇ

ˇ

ˇ

ˇ

ˇ

a.s
ÝÝÑ 0 .

Hence, we see that our result follows.

Proof of Proposition 3.2

Proof. It suffices to show that for any deterministic sequence of trees tTmu, we have that

χnpTmq :“ sup
t
|Hnpt, Tmq ´ Φpt;Tmq| Ñ 0 .

Fix a strictly increasing indexing pn1,m1q ă ... ă pn`,m`q ă ... (where the inequality is to be interpreted

componentwise). By the compactness of TL, we have that tTm`u has a convergent subsequence (which by an

abuse of notation we continue to index by m` and n` as in the proof of Lemma A.1) such that Tm` Ñ T 1 for
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some T 1 P TL. By identical arguments to those used in the proofs of Lemmas A.1 and A.2 combined with

Polya’s theorem, it is the case that

sup
t
|Hn`pt;Tm`q ´ Φpt, T 1q| Ñ 0 .

By the continuity of V p¨q we get that V pTm`q Ñ V pT 1q, and hence

|Φpt;Tm`q ´ Φpt;T 1q| Ñ 0 ,

for every t. By the continuity of Φpt;T 1q we get by an argument identical to the proof of Polya’s theorem

that

sup
t
|Φpt;Tm`q ´ Φpt;T 1q| Ñ 0 .

It then follows by the triangle inequality that

χn`pTm`q Ñ 0 .

By Lemma C.1 it follows that χnpTmq itself converges to zero, and hence we are done.

Proof of Proposition 3.3

Proof. For simplicity of exposition suppose that V ˚1 ą V ˚2 ą ... ą V ˚
L̄

. It suffices to show that

ˇ

ˇ

ˇ

rV p1qpT̂
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ

a.s
ÝÝÑ 0 ,

for each L, and similarly with 1 and 2 reversed. Then we he have that

rV CVL
a.s
ÝÝÑ V ˚L ,

and hence

L̂
a.s
“ L̄ ,

for m sufficiently large. To that end, by the triangle inequality

ˇ

ˇ

ˇ

rV p1qpT̂
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

rV p1qpT̂
p2q
L q ´ rV p2qpT̂

p2q
L q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

rV p2qpT̂
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
.

Consider the second term on the RHS, applying the triangle inequality again,

ˇ

ˇ

ˇ

rV p2qpT̂
p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

rV p2qpT̂
p2q
L q ´ V pT̂

p2q
L q

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
V pT̂

p2q
L q ´ V ˚L

ˇ

ˇ

ˇ
,

and both of these terms converge to zero a.s. by the arguments made in the proof of Proposition 3.1. Next

we consider the first term on the RHS, this is bounded above by

sup
T

ˇ

ˇ

ˇ

rV p1qpT q ´ rV p2qpT q
ˇ

ˇ

ˇ
,

and another application of the triangle inequality yields

sup
T

ˇ

ˇ

ˇ

rV p1qpT q ´ rV p2qpT q
ˇ

ˇ

ˇ
ď sup

T

ˇ

ˇ

ˇ

rV p1qpT q ´ V pT q
ˇ

ˇ

ˇ
` sup

T

ˇ

ˇ

ˇ

rV p2qpT q ´ V pT q
ˇ

ˇ

ˇ
,

with both terms converging to 0 a.s. by the arguments made in the proof of Proposition 3.1.
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Proof of Theorem 3.3

Proof. Let t1, t2 P R be arbitrary, then we will to show that

P
´?

mpθ̂1 ´ θq ď t1,
?
npθ̂pT̂ q ´ θq ď t2

¯

Ñ Φ1pt1qΦ
˚pt2q ,

where Φ1p¨q is the CDF of a Np0, V1q random variable, and Φ˚p¨q is the CDF of a Np0, V ˚q random variable.

The result will then follow by Assumption 3.4 and Slutsky’s theorem. As in the proof of Theorem 3.1, let

E1r¨s and E2r¨s denote the expectations with respect to the first and second wave data, respectively, then by

Fubini’s theorem,

P
´?

mpθ̂1 ´ θq ď t1,
?
npθ̂pT̂ q ´ θq ď t2

¯

“ E1

”

E2

”

1t
?
mpθ̂1 ´ θq ď t1u1t

?
npθ̂pT̂ q ´ θq ď t2u

ıı

.

Adding and subtracting P p
?
mpθ̂1 ´ θq ď t1qΦ

˚pt2q gives, after some additional algebra,

E1

”

E2

”

1t
?
mpθ̂1 ´ θq ď t1u1t

?
npθ̂pT̂ q ´ θq ď t2u

ıı

“ E1

”´

E2

”

1t
?
npθ̂pT̂ q ´ θq ď t2u

ı

´ Φ˚pt2q
¯

1t
?
mpθ̂1 ´ θq ď t1u

ı

`

` P p
?
mpθ̂1 ´ θq ď t1qΦ

˚pt2q .

By Assumption 3.3, we have that

P p
?
mpθ̂1 ´ θq ď t1qΦ

˚pt2q Ñ Φ1pt1qΦ
˚pt2q .

It remains to show that

E1

”´

E2

”

1t
?
npθ̂pT̂ q ´ θq ď t2u

ı

´ Φ˚pt2q
¯

1t
?
mpθ̂1 ´ θq ď t1u

ı

Ñ 0 .

By the triangle inequality,

ˇ

ˇ

ˇ
E1

”´

E2

”

1t
?
npθ̂pT̂ q ´ θq ď t2u

ı

´ Φ˚pt2q
¯

1t
?
mpθ̂1 ´ θq ď t1u

ı
ˇ

ˇ

ˇ
ď E1

ˇ

ˇ

ˇ
E2

”

1t
?
npθ̂pT̂ q ´ θq ď t2u

ı

´ Φ˚pt2q
ˇ

ˇ

ˇ
.

By the argument used in the proof of Theorem 3.1,

ˇ

ˇ

ˇ
E2

”

1t
?
npθ̂pT̂ q ´ θq ď t2u

ı

´ Φ˚pt2q
ˇ

ˇ

ˇ

a.s
ÝÝÑ 0 .

Hence our result follows by applying Dominated Convergence.

Lemma A.3. Let F̂ , F̂a, F and Fa be defined as in the proof of Lemma A.2. Let T
p1q
m , T

p2q
m be defined as

in the statement of Lemma A.2. Given the Assumptions of Theorem 3.1, we have that, for k “ 1, ...,K,

|F̂apk;T p1qm q ´ Fapk;T p2qm q|
p
ÝÑ 0 ,

and

|F̂ pk;T p1qm q ´ F pk;T p2qm q|
p
ÝÑ 0 .

Proof. We prove the first statement for a “ 1, and the rest of the results follow similarly. We want to show

that
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

1tSipT
p1q
m q “ k,AipT

p1q
m q “ 0u ´ p1´ πpk;T p2qm qqppk;T p2qm q

ˇ

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 .

40



By the triangle inequality, we bound this above by

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

1tSipT
p1q
m q “ k,AipT

p1q
m q “ 0u ´ p1´ πpk;T p1qm qqppk;T p1qm q

ˇ

ˇ

ˇ

ˇ

ˇ

`

`

ˇ

ˇ

ˇ
p1´ πpk;T p1qm qqppk;T p1qm q ´ p1´ πpk;T p2qm qqppk;T p2qm q

ˇ

ˇ

ˇ
.

The first line of the above expression converges to zero by Assumption 2.5. Next consider the second line:

by assumption, we have that |ppk;T
p1q
m q ´ ppk;T

p2q
m q| Ñ 0 and |πpk;T

p1q
m q ´ πpk;T

p2q
m q| Ñ 0 and hence the

second line converges to zero.

Lemma A.4. Let T
p1q
m , T

p2q
m be defined as in the statement of Lemma A.2. Given the Assumptions of

Theorem 3.1, we have that, for k “ 1, ...,K,

npk;T
p1q
m q

napk;T
p1q
m q

“
1

πpk;T
p2q
m q

` oP p1q .

Proof. This follows from Assumption 2.5, the Glivenko-Cantelli Theorem, and the fact that πpk;T
p2q
m qppk;T

p2q
m q

and 1

ppk;T
p2q
m q

are bounded.

Lemma A.5. Given Assumption 2.1, the class of functions G defined as

G :“ tGkap¨ ;T q : T P T u ,

for a given a and k is a Donsker class.

Proof. This follows from the discussion of classes of monotone uniformly bounded functions in Van Der Vaart

(1996).

Lemma A.6. Let T
p1q
m , T

p2q
m be defined as in the statement of Lemma A.2. Given the Assumptions of

Theorem 3.1, we have that, for k “ 1, ...,K,

||Gkap¨ ;T p1qm q ´Gkap¨ ;T p2qm q|| Ñ 0 .

Proof. We show this for the case where Y paq is continuous. We proceed by showing convergence pointwise

by invoking Lemma C.3, and then using the dominated convergence theorem. It thus remains to show that

|Zka pt;T
p1q
m q ´ Zka pt;T

p2q
m q| Ñ 0 ,

where Zka p¨ ;T q is the CDF of the distribution of pY paq ´ ErY paq|SpXqsq
ˇ

ˇSpXq “ k. Re-writing, we have

that

Zka pt;T q “
Er1tY paq ď t` EpY paq|SpXq “ kqu1tSpXq “ kus

P pSpXq “ kq
,

Hence by the triangle inequality, Assumption 2.2 and a little bit of algebra, we get that

|Zka pt;T
p1q
m q ´ Zka pt;T

p2q
m q| ď

1

δ
|Rm1 ´Rm2| `

1

δ2
|Rm3| ,

where

Rmj “ Er1tY paq ď t` EpY paq|Spjqm pXq “ kqu1tSpjqm pXq “ kus for j “ 1, 2 ,
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Rm3 “ P pSp1qm pXq “ kq ´ P pSp2qm pXq “ kq .

|Rm3| goes to zero by assumption. It remains to show that |Rm1 ´ Rm2| converges to zero. Again by the

triangle inequality,

|Rm1 ´Rm2| ď |Rm1 ´Rm4| ` |Rm4 ´Rm2| ,

where

Rm4 “ Er1tY paq ď t` EpY paq|Sp1qm pXq “ kqu1tSp2qm pXq “ kus .

By another application of the triangle inequality,

|Rm1 ´Rm4| ď E
ˇ

ˇ

ˇ
1tSp1qm pXq “ ku ´ 1tSp2qm pXq “ ku

ˇ

ˇ

ˇ
,

and this bound converges to zero by assumption. Finally,

|Rm4 ´Rm2| ď E
ˇ

ˇ

ˇ
1tY paq ď t` EpY paq|Sp1qm pXq “ kqu ´ 1tY paq ď t` EpY paq|Sp2qm pXq “ kqu

ˇ

ˇ

ˇ
.

By similar arguments to what we have used above, it can be shown that

|EpY paq|Sp1qm pXq “ kq ´ EpY paq|Sp2qm pXq “ kq| Ñ 0 ,

and hence it can be shown that |Rm4 ´Rm2| also converges to zero.
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Stratification Method

Criteria

Coverage %∆Length Power %∆RMSE

No Stratification 93.7 0.0 51.9 0.0

Fixed 93.9 -0.6 52.4 -1.6

Strat.Tree 93.0 0.3 52.2 1.1

Strat. Tree (CV) 93.8 -1.9 53.9 -3.0

Infeasible Tree 94.8 -5.9 58.1 -7.7

Table 4: Simulation Results for Application-Based Simulation
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B A Theory of Convergence for Stratification Trees (for online

publication)

Remark B.1. For the remainder of this section, suppose X is continuously distributed. Modifying the

results to include discrete covariates with finite support is straightforward. Also recall that as discussed in

Remark A.1, to simplify the exposition we derive our results for the subset of TL which excludes trees with

empty leaves.

We will define a metric ρ on the space TL and study its properties. To define ρ, we write it as a product

metric between a metric ρ1 on SL, which we define below, and ρ2 the Euclidean metric on r0, 1sK . Recall

from Remark 2.3 that any permutation of the elements in rKs simply results in a re-labeling of the partition

induced by Sp¨q. For this reason we explicitly define the labeling of a tree partition that we will use, which

we call the canonical labeling :

Definition B.1. (The Canonical Labeling)

• Given a tree partition tΓD,ΓUu of depth one, we assign a label of 1 to ΓD and a label of 2 to ΓU (recall

by Remark A.1 that both of these are nonempty).

• Given a tree partition tΓ
pL´1q
D ,Γ

pL´1q
U u of depth L ą 1, we label Γ

pL´1q
D as a tree partition of depth

L´ 1 using the labels t1, 2, ...,K{2u, and use the remaining labels tK{2` 1, ...,Ku to label Γ
pL´1q
U as

a tree partition of depth L ´ 1 (recall by Remark A.1 that each of these subtrees hase exactly 2L´1

leaves).

• If it is ever the case that a tree partition of depth L can be constructed in two different ways, we

specify the partition unambiguously as follows: if the partition can be written as tΓ
pL´1q
D ,Γ

pL´1q
U u with

cut pj, γq and tΓ
1
pL´1q
D ,Γ

1
pL´1q
U u with cut pj1, γ1q, then we select whichever of these has the smallest pair

pj, γq where our ordering is lexicographic. If the cuts pj, γq are equal then we continue this recursively

on the subtrees, beginning with the left subtree, until a distinction can be made.

In words, the canonical labeling labels the leaves from “left-to-right” when the tree is depicted in a tree

representation (and the third bullet point is used to break ties whenever multiple such representations are

possible). All of our previous examples have been canonically labeled (see Examples 2.1, 2.2). From now

on, given some S P SL, we will use the the version of S that has been canonically labeled. Let PX be the

measure induced by the distribution of X on X . We are now ready to define our metric ρ1p¨, ¨q on SL as

follows:

Definition B.2. For S1, S2 P SL,

ρ1pS1, S2q :“
2L
ÿ

k“1

PXpS
´1
1 pkq∆S´1

2 pkqq .

Where A∆B :“ AzB Y BzA denotes the symmetric difference of A and B. That ρ1 is a metric follows

from the properties of symmetric differences and Assumption 2.1. We show under appropriate assumptions

that pS, ρ1q is a complete metric space in Lemma B.2, and that pS, ρ1q is totally bounded in Lemma B.3.
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Hence pS, ρ1q is a compact metric space under appropriate assumptions. Combined with the fact that

pr0, 1s2
L

, ρ2q is a compact metric space, it follows that pT , ρq is a compact metric space.

Next we show that V p¨q is continuous in our new metric.

Lemma B.1. Given Assumption 2.1, V p¨q is a continuous function in ρ.

Proof. We want to show that for a sequence Tn Ñ T , we have V pTnq Ñ V pT q. By definition, Tn Ñ T

implies Sn Ñ S and πn Ñ π where Tn “ pSn, πnq, T “ pS, πq. By the properties of symmetric differences,

|P pSnpXq “ kq ´ P pSpXq “ kq| ď PXpS
´1
n pkq∆S´1pkqq ,

and hence P pSnpXq “ kq Ñ P pSpXq “ kq. It remains to show that ErfpY paqq|SnpXq “ ks Ñ ErfpY paqq|SpXq “

ks for fp¨q a continuous function. Re-writing:

ErfpY paqq|SnpXq “ ks “
ErfpY paqq1tSnpXq “ kus

P pSnpXq “ kq
.

The denominator converges by the above inequality, and the numerator converges by the above inequality

combined with the boundedness of fpY q.

Lemma B.2. Given Assumptions 2.1 and 2.2, pS, ρ1q is a complete metric space.

Proof. Let tSnun be a Cauchy sequence in SL. It follows by the definition of ρ1 that for each k, tS´1
n pkqun

is a sequence of d-dimensional cubes which is itself Cauchy in the metric PXp¨∆¨q. Fix a k and consider the

resulting sequence of cubes Γn “
Śd

j“1rajn, bjns for n “ 1, 2, ..., we will show that this sequence converges

to some cube Γ “
Śd

j“1raj , bjs, where aj “ limn ajn, bj “ limn bjn. The resulting partition formed by all of

these limit cubes will be our limit of tSnun.

To that end, we will show that for a Cauchy sequence of cubes tΓnun, the corresponding sequences tajnu

and tbjnu are all Cauchy as sequences in R. First note that if tΓnun is Cauchy with respect to the metric

induced by PX , then it is Cauchy with respect to the metric induced by Lebesgue measure λ on r0, 1sd, since

by Assumption 2.1, for any measurable set A,

PXpAq “

ż

A

fXdλ ě cλpAq ,

for some c ą 0. Moreover by Assumptions 2.1 and 2.2, it follows that if tΓnun is Cauchy w.r.t to the metric

induced by λ, then each sequence of intervals trajn, bjnsun for j “ 1..., d is Cauchy w.r.t to the metric induced

by Lebesgue measure on r0, 1s (which we denote by λ1). By the properties of symmetric differences, when

rajn, bjns X rajn1 , bjn1s ‰ H for n ‰ n1,

λ1prajn, bjns∆rajn1 , bjn1sq “ |bjn1 ´ bjn| ` |ajn1 ´ ajn|,

and hence it follows that the sequences tanun and tbnun are Cauchy as sequences in R, and thus convergent.

It follows that tran, bnsun converges to rlim an, lim bns, and hence that Γn converges to Γ, as desired.

Lemma B.3. Given Assumption 2.1 pSL, ρ1q is a totally bounded metric space.

49



Proof. Given any measurable set A, we have by Assumption 2.1 that

PXpAq “

ż

A

fXdλ ď CλpAq ,

where λ is Lebesgue measure, for some constant C ą 0. The result now follows immediately by constructing

the following ε-cover: at each depth L, consider the set of all trees that can be constructed from the set of

splits t ε
Cp22Lq

, 2ε
Cp22Lq

, ..., 1u. By construction any tree in SL is at most ε away from some tree in this set.

Lemma B.4. Given Assumptions 2.1, 2.2, and 3.1. Then the set T ˚ of maximizers of V p¨q exists, and

inf
T˚PT ˚

ρp rTm, T
˚q

a.s.
ÝÝÑ 0 ,

as mÑ 8, where measurability of ρp¨, ¨q is guaranteed by the separability of T . Furthermore, there exists a

sequence of σtpWiq
m
i“1u{BpTLq-measurable trees T̄m P T ˚ such that

ρp rTm, T̄mq
a.s.
ÝÝÑ 0 .

Proof. First note that, since pT , ρq is a compact metric space and V p¨q is continuous, we have that T ˚ exists

and is itself compact. Fix an ε ą 0, and let

Tε :“ tT P T : inf
T˚PT ˚

ρpT, T˚q ą εu ,

then it is the case that

inf
TPTε

V pT q ą V ˚ .

To see why, suppose not and consider a sequence Tm P Tε such that V pTmq Ñ V ˚. Now by the compactness

of T , there exists a convergent subsequence tTm`u of tTmu, i.e. Tm` Ñ T 1 for some T 1 P T . By continuity,

it is the case that V pTm`q Ñ V pT 1q and by assumption we have that V pTm`q Ñ V ˚, so we see that T 1 P T ˚

but this is a contradiction.

Hence, for every ε ą 0, there exists some η ą 0 such that

V pT q ą V ˚ ` η ,

for every T P Tε. Let ω be any point in the sample space for which we have that V p rTmpωqq Ñ V ˚, then it

must be the case that T̃mpωq R Tε for m sufficiently large, and hence

inf
T˚PT ˚

ρp rTm, T
˚q

a.s.
ÝÝÑ 0 .

To make our final conclusion, it suffices to note that ρp¨, ¨q is itself a continuous function and so by the

compactness of T ˚, there exists some sequence of trees T̄m such that

inf
T˚PT ˚

ρp rTm, T
˚q “ ρp rTm, T̄mq .

Furthermore, by the continuity of ρ, the measurability of rT , and the compactness of T ˚, we can ensure the

measurability of the T̄m, by invoking a measurable selection theorem (see Theorem 18.19 in Aliprantis and

Border (1986)).
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C Auxiliary Lemmas (for online publication)

Lemma C.1. Let txn,mu be a doubly-indexed sequence of real numbers. If for any strictly increasing indexing

pn1,m1q ă pn2,m2q ă ... ă pn`,m`q ă ... (where the inequality is to be interpreted componentwise) the

sequence txn`,m`u contains a convergent subsequence which converges to x, then xn,m Ñ x as n,mÑ8.

Proof. Suppose not, then there exists some ε ą 0 such that for any M P N, we can find n1,m1 ą M

such that |xn1,m1 ´ x| ą ε. We use this fact to construct the following sequence: first pick n1,m1 ą 1

such that |xn1,m1
´ x| ą ε. Next pick n2,m2 ą maxpn1,m1q such that |xn2,m2

´ x| ą ε. Continue to

pick n``1,m``1 ą maxpn`,m`q such that |xn``1,m``1
´ x| ą ε. The resulting sequence txn`,m`u satisfies

to conditions of the lemma but contains no subsequence converging to x. Hence the result follows by

contradiction.

Lemma C.2. Let tAnun, tBnun be sequences of continuous random variables such that

|An ´Bn|
p
ÝÑ 0 .

Furthermore, suppose that the sequences of their respective CDFs tFnptqun tGnptqun are both equicontinuous

families at t. Then we have that

|Fnptq ´Gnptq| Ñ 0 .

Proof. Fix some ε ą 0, and choose a δ ą 0 such that, for |t1 ´ t| ă δ, |Gnptq ´Gnpt
1q| ă ε{2. Furthermore,

choose N such that for n ě N , P p|An ´Bn| ą δq ă ε{2. Then for n ě N :

Fnptq “ P pAn ď tq ď P pBn ď t` δq ` P p|An ´Bn| ą δq ď Gnptq ` ε ,

and similarly

Gnptq ď Fnptq ` ε .

We thus have that |Gnptq ´ Fnptq| ă ε as desired.

Lemma C.3. Let tFnptqun and tGnptqun be sequences of (absolutely) continuous CDFs with bounded support

r´M,M s, such that

|Fnptq ´Gnptq| Ñ 0 ,

for all t. Let tF´1
n un and tG´1

n un be the corresponding sequences of quantile functions, and suppose that

each of these form an equicontinuous family for every p P p0, 1q. Then we have that

|F´1
n ppq ´G´1

n ppq| Ñ 0 .

Proof. Let V be a random variable that is uniformly distributed on r´2M, 2M s, and let Γp¨q be the CDF of

V. Then it is the case that

|FnpV q ´GnpV q|
a.s
ÝÝÑ 0 .

By the uniform continuity of Γ and the equicontinuity properties of tF´1
n un and tG´1

n un, we have that

tP pFnpV q ď ¨qun and tP pGnpV q ď ¨qun are equicontinuous families for p P p0, 1q. It thus follows by Lemma

C.2 that

|P pFnpV q ď pq ´ P pGnpV q ď pq| Ñ 0 .
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By the properties of quantile functions we have that |ΓpF´1
n ppqqq ´ ΓpG´1

n ppqq| Ñ 0. Hence by the uniform

continuity of Γ´1, we can conclude that

|Γ´1pΓpF´1
n ppqqq ´ Γ´1pΓpG´1

n ppqqq| “ |F
´1
n ppq ´G´1

n ppq| Ñ 0 ,

as desired.

Our final lemma completes the discussion in Remark 3.1. It shows that, as long as the family of quantile

functions defined in Assumption 3.2 are continuous, and vary “continuously” in S P SL, then Assumption

3.2 holds.

Lemma C.4. Let pD, dq be a compact metric space. Let F be some class of functions

F “ tfd : p0, 1q Ñ RudPD

such that fdp¨q is continuous and bounded for every d P D. Define g : D Ñ L8p0, 1q by gpdq “ fdp¨q, and

suppose that g is continuous. Then we have that, for every x0 P p0, 1q, tfdp¨qudPD is an equicontinuous family

at x0.

Proof. By construction, gpDq “ F , and so by the continuity of g and the compactness of D, F is compact.

Let ε ą 0 and fix some x0 P p0, 1q. Let Fε{3 “ tfdkp¨quKk“1 be a finite ε{3 cover for F . By continuity, there

exists a δ ą 0 such that if |x ´ x0| ă δ, |fdkpxq ´ fdkpx0q| ă ε{3 for every k “ 1, ...,K. By the triangle

inequality, for any d:

|fdpxq ´ fdpx0q| ď |fdpxq ´ fdkpxq| ` |fdkpxq ´ fdkpx0q| ` |fdkpx0q ´ fdpx0q| ,

for all k “ 1, ...,K. It thus follows that, for |x´ x0| ă δ, and by virtue of the fact that Fε{3 is an open cover

for F ,

|fdpxq ´ fdpx0q| ă ε ,

and hence tfdp¨qudPD is an equicontinuous family at x0.

D Supplementary Results (for online publication)

D.1 Supplementary Example

In this section we present a result which complements the discussion in the introduction on how stratification

can reduce the variance of the difference-in-means estimator. Using the notation from Section 2.2, let

tYip1q, Yip0q, Xiu
n
i“1 be i.i.d and let Y be the observed outcome. Let S : X Ñ rKs be a stratification

function. Consider treatments tAiu
n
i“1 which are assigned via stratified block randomization using S, with

a target proportion of 0.5 in each stratum (see Example 2.5 for a definition). Finally, let

θ̂ “
1

n1

n
ÿ

i“1

YiAi ´
1

n´ n1

n
ÿ

i“1

Yip1´Aiq ,

where n1 “
řn
i“1 1tAi “ 1u. It can be shown using Theorem 4.1 of Bugni et al. (2017) that

?
npθ̂ ´ θq

d
ÝÑ Np0, V q ,
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with V “ VY ´ VS , where VY does not depend on S and

VS :“ E
”

pErY p1q|SpXqs ` ErY p0q|SpXqsq
2
ı

.

In contrast, if treatment is assigned without any stratification, then

?
npθ̂ ´ θq

d
ÝÑ Np0, V 1q ,

with V 1 “ VY ´ ErY p1q ` Y p0qs2. It follows by Jensen’s inequality that VS ą ErY p1q ` Y p0qs2 as long as

ErY p1q ` Y p0q|SpXq “ ks is not constant for all k. Hence we see that stratification lowers the asymptotic

variance of the difference in means estimator as long as the outcomes are related to the covariates as described

above.

D.2 Extension to the Case of Multiple Treatments

Here we consider the extension to multiple treatments. Let A “ t1, 2, ..., Ju denote the set of possible

treatments, where we consider the treatment A “ 0 as being the “control group”. Let A0 “ AY t0u be the

set of treatments including the control. Our quantities of interest are now given by

θa :“ ErY paq ´ Y p0qs ,

for a P A, so that we consider the set of ATEs of the treatments relative to the control. Let θ :“ pθaqaPA

denote the vector of these ATEs.

The definition of a stratification tree T P TL is extended in the following way: instead of specifying a

collection π “ pπpkqqKk“1 of assignment targets for treatment 1, we specify, for each k, a vector of assignment

targets for all a P A0, so that π “ ptπapkquaPA0
q
K
k“1, where each πapkq P p0, 1q and

ř

aPA0
πapkq “ 1. We

also consider the following generalization of our estimator: consider estimation of the following equation by

OLS

Yi “
ÿ

kPrKs

αpkq1tSi “ ku `
ÿ

aPA

ÿ

kPrKs

βapkq1tAi “ a, Si “ ku ` ui ,

then our estimators are given by

θ̂apT q “
ÿ

k

npkq

n
β̂apkq .

Now, for a fixed T P TL, the results in Bugni et al. (2018) imply that
?
npθ̂pT q ´ θq is asymptotically

multivariate normal with covariance matrix given by:

VpT q :“
ÿ

k

ppk;T q pVHpk;T q ` VY pk;T qq ,

with

VHpk;T q :“ outer rpErY paq ´ Y p0q|SpXq “ ks ´ ErY paq ´ Y p0qsq : a P As ,

VY pk;T q :“
σ2

0pkq

π0pkq
ι|A|ι

1
|A| ` diag

ˆˆ

σ2
apkq

πapkq

˙

: a P A
˙

,

where the notation v :“ pva : a P Aq denotes a column vector, outerpvq :“ vv1, and ιM is a vector of ones of

length M . We note that this variance matrix takes the form of the semi-parametric efficiency bound derived

in Cattaneo (2010) for the discretization implied by Sp¨q.
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Because we are now dealing with a covariance matrix VpT q as opposed to the scalar quantity V pT q,

we need to be more careful about what criterion we will use to decide on an optimal T . The literature

on experimental design has considered various targets (see Pukelsheim, 2006, for some examples). In this

section we will consider the following collection of targets:

V ˚ “ min
TPTL

||VpT q|| ,

where || ¨ || is some matrix norm. In particular, if we let || ¨ || be the Euclidean operator-norm, then our

criterion is equivalent to minimizing the largest eigenvalue of VpT q, which coincides with the notion of E -

optimality in the study of optimal experimental design in the linear model (see for example Section 6.4 of

Pukelsheim, 2006). Intuitively, if we consider the limiting normal distribution of our estimator, then any fixed

level-surface of its density forms an ellipsoid in R|A|. Minimizing ||VpT q|| in the Euclidean operator-norm

corresponds to minimizing the longest axis of this ellipsoid.

Consider the following extensions of Assumptions 2.1, 2.2, 3.1, 2.4, and 2.5 to multiple treatments:

Assumption D.1. Q satisfies the following properties:

• Y paq P r´M,M s for some M ă 8, for a P A0, where the marginal distributions of each Y paq are

either continuous or discrete with finite support.

• X P X “
Śd

j“1rbj , cjs, for some tbj , cju
d
j“1 finite.

• X “ pXC , XDq, where XC P Rd1 for some d1 P t0, 1, 2, ..., du is continuously distributed with a bounded,

strictly positive density. XD P Rd´d1 is discretely distributed with finite support.

Assumption D.2. Constrain the set of stratification trees TL such that, for some fixed ν ą 0, πapkq P

rν, 1´ νs for all T .

Assumption D.3. The estimator rT is a σtpWiq
m
i“1u{BpTLq measurable function of the pilot data and satisfies

|V p rT q ´ V ˚|
a.s
ÝÝÑ 0 ,

where

V ˚ “ inf
TPTL

||VpT q|| ,

as mÑ8.

Assumption D.4. The randomization procedure is such that, for each T “ pS, πq P T :

”

pYip0q, Yip1q, ..., Yip|A|q, Xiq
n
i“1 K ApnqpT q

ı

ˇ

ˇ

ˇ

ˇ

Spnq .

Assumption D.5. The randomization procedure is such that

sup
TPT

ˇ

ˇ

ˇ

ˇ

napk;T q

n
´ πapkqppk;T q

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0 ,

for each k P rKs. Where

napk;T q “
n
ÿ

i“1

1tAipT q “ a, Si “ ku .

Consider also the following potentially strong uniqueness assumption:
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Assumption D.6. The minimizer T˚ of V pT q over TL is unique.

In general, we are not aware of any conditions that guarantee the uniqueness of the minimum of V pT q.

Clearly this assumption could be violated, for example, if all the covariates enter the response model sym-

metrically, since then many distinct trees could minimize V pT q. Finding appropriate conditions under which

this should be true, or weakening the result to move away from this assumption, are important considerations

for future research.

If we consider the following generalization of the empirical minimization problem:

rTEM “ arg min
TPTL

||rVpT q|| ,

where rVpT q is an empirical analog of VpT q, then analogous results to those presented in Section 3.1 continue

to hold in the multiple treatment setting as well. For example:

Theorem D.1. Given Assumptions D.1, D.2, 2.2, 2.3, D.3, D.4, D.5, and D.6, we have that

?
npθ̂pT̂ q ´ θq

d
ÝÑ Np0,V˚q ,

where V˚ “ VpT˚q, as m,nÑ8.

Note that, since we are now imposing Assumption D.6, Assumption 3.2 is no longer required. The proof

proceeds identically to the proof of Theorem 3.1: we simply add the necessary components to the vector Op¨q
to accommodate the multiple treatments and follow the derivation in Theorem 3.1 of Bugni et al. (2018)

accordingly. We also skip the final conditioning/subsequence step by invoking Assumption D.6.

E Computational Details and Supplementary Simulation Details

(for online publication)

E.1 Computational Details

In this section we describe our strategy for computing stratification trees. We are interested in solving the

following empirical minimization problem:

rTEM P arg min
TPTL

rV pT q ,

where

rV pT q :“
K
ÿ

k“1

mpk;T q

m

„

´

ÊrY p1q ´ Y p0q|SpXq “ ks ´ ÊrY p1q ´ Y p0qs
¯2

`

ˆ

σ̂2
0pkq

1´ πpkq
`
σ̂2

1pkq

πpkq

˙

,

with

ÊrY p1q ´ Y p0q|SpXq “ ks :“
1

m1pk;T q

m
ÿ

j“1

YjAj1tSpXjq “ ku ´
1

m0pk;T q

m
ÿ

j“1

Yjp1´Ajq1tSpXjq “ ku ,

ÊrY p1q ´ Y p0qs :“
1

m1

m
ÿ

j“1

YjAj ´
1

m0

m
ÿ

j“1

Yjp1´Ajq ,
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σ̂2
apkq :“ ÊrY paq2|SpXq “ ks ´ ÊrY paq|SpXq “ ks2 .

Finding a globally optimal tree amounts to a discrete optimization problem in a large state space.

Because of this, the most common approaches to fit decision trees in statistics and machine learning are

greedy: they begin by searching for a single partitioning of the data which minimizes the objective, and

once this is found, the processes is repeated recursively on each of the new partitions (Breiman et al. (1984),

and Friedman et al. (2001) provide a summary of these types of approaches). However, recent advances in

optimization research provide techniques which make searching for globally optimal solutions feasible in our

setting.

A very promising method is proposed in Bertsimas and Dunn (2017), where they describe how to encode

decision tree restrictions as mixed integer linear constraints. In the standard classification tree setting,

the misclassification objective can be formulated to be linear as well, and hence computing an optimal

classification tree can be computed as the solution to a Mixed Integer Linear Program (MILP), which

modern solvers can handle very effectively (see Florios and Skouras (2008), Chen and Lee (2016), Mbakop

and Tabord-Meehan (2016), Kitagawa and Tetenov (2018), Mogstad et al. (2017) for some other applications

of MILPs in econometrics). Unfortunately, to our knowledge the objective function we consider cannot be

formulated as a linear or quadratic objective, and so specialized solvers such as BARON would be required to

solve the resulting program. Instead, we implement an evolutionary algorithm (EA) to perform a stochastic

search for a global optimum. See Barros et al. (2012) for a survey on the use of EAs to fit decision trees.

The algorithm we propose is based on the procedure described in the evtree package description given

in Grubinger et al. (2011). In words, a “population” of candidate trees is randomly generated, which we will

call the “parents”. Next, for each parent in the population we select one of five functions at random and

apply it to the parent (these are called the variation operators, as described below), which produces a new

tree which we call its “child”. We then evaluate the objective function for all of the trees (the parents and

the children). Proceeding in parent-child pairs, we keep whichever of the two produces a smaller value for the

objective. The resulting list of winners then becomes the new population of parents, and the entire procedure

repeats iteratively until the top 5% of trees with respect to the objective are within a given tolerance of each

other for at least 50 iterations. The best tree is then returned. If the algorithm does not terminate after

2000 iterations, then the best tree is returned. We describe each of these steps in more detail below.

Although we do note prove that this algorithm converges to a global minimum, it is shown in Cerf (1995)

that similar algorithms will converge to a global minimum in probability, as the number of iterations goes

to infinity. In practice, our algorithm converges to the global minimum in simple verified examples, and

consistently achieves a lower minimum than a greedy search. Moreover, it reliably converges to the same

minimum in repeated runs (that is, with different starting populations) for all of the examples we consider

in the paper.

Optimal Strata Proportions: Recall that for a given stratum, the optimal proportion is given by

π˚ “
σ1

σ0 ` σ1
,

where σ0 and σ1 are the within-stratum standard deviations for treatments 0 and 1. In practice, if π˚ ă 0.1

then we assign a proportion of 0.1, and if π˚ ą 0.9 then we assign a proportion of 0.9 (hence we choose an

overlap parameter of size ν “ 0.1, as required in Assumption 2.2).
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Population Generation: We generate a user-defined number of depth 1 stratification trees (typically

between 500 and 1000). For each tree, a covariate and a split point is selected at random, and then the

optimal proportions are computed for the resulting strata.

Variation Operators:

• Split : Takes a tree and returns a new tree that has had one branch split into two new leaves. The

operator begins by walking down the tree at random until it finds a leaf. If the leaf is at a depth

smaller than L, then a random (valid) split occurs. Otherwise, the procedure restarts and the algorithm

attempts to walk down the tree again, for a maximum of three attempts. If it does not find a suitable

leaf, a minor tree mutation (see below) is performed. The optimal proportions are computed for the

resulting strata.

• Prune: Takes a tree and returns a new tree that has had two leaves pruned into one leaf. The operator

begins by walking down the tree at random until it finds a node whose children are leaves, and destroys

those leaves. The optimal proportions are computed for the resulting strata.

• Minor Tree Mutation: Takes a tree and returns a new tree where the splitting value of some internal

node is perturbed in such a way that the tree structure is not destroyed. To select the node, it walks

down the tree a random number of steps, at random. The optimal proportions are computed for the

resulting strata.

• Major Tree Mutation: Takes a tree and returns a new tree where the splitting value and covariate value

of some internal node are randomly modified. To select the node, it walks down the tree a random

number of steps, at random. This modification may result in a partition which no longer obeys a tree

structure. If this is the case, the procedure restarts and repeats the algorithm for a maximum of three

attempts. If it does not produce a valid tree after three attempts, it destroys any subtrees that violate

the tree structure in the final attempt and returns the result. The optimal proportions are computed

for the resulting strata.

• Crossover : Takes a tree and returns a new tree which is the result of a “crossover”. The new tree

is produced by selecting a second tree from the population at random, and replacing a subtree of

the original tree with a subtree from this randomly selected candidate. The subtrees are selected

by walking down both trees at random. This may result in a partition which no longer obeys a

tree structure, in which case it destroys any subtrees that violate the tree structure. The optimal

proportions are computed for the resulting strata.

Selection: For each parent-child pair (call these Tp and Tc) we evaluate rV pTpq and rV pTcq and then keep

whichever tree has the lower value. If it is the case that for a given T any stratum has less than two

observations per treatment, we set rV pT q “ 8 (this acts as a rough proxy for the minimum cell size parameter

δ, as specified in Assumption 2.2).

E.2 Supplementary Simulation Details

In this section we provide additional details on our implementation of the simulation study.

For each design we compute the ATE numerically. For Model 1 we find ATE1 “ 0.1257, for Model 2 we

find ATE2 “ 0.0862 and for Model 3 we find ATE3 “ 0.121. To compute the optimal infeasible trees, we
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use an auxiliary sample of size 30, 000. The infeasible trees we compute are depicted in Figures 8, 9 and 10

below.
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Figure 8: Optimal Infeasible Tree for Model 1
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Figure 9: Optimal Infeasible Tree for Model 2
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Figure 10: Optimal Infeasible Tree for Model 3

For the application-based design, the ATE is computed to be 0.61. The infeasible tree we computed is

depicted in Figure 11.
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Figure 11: Infeasible Optimal Tree for App.-based Simulation
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