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Abstract

This paper develops a new method for estimating production functions when the inputs

are partially latent. We show that a combination of matching and IV techniques can be

used to overcome the problem of partially latent inputs. We propose a corresponding

semiparametric estimator, establish its asymptotic distribution, and demonstrate its

finite-sample performance in a Monte Carlo study. We then illustrate the usefulness

of our approach using two applications. Our first application focuses on the industrial

organization of pharmacies. We show that production function differences between

chains and independent pharmacies may partially explain the observed transformation

of the industry structure. Our second application investigates education production

functions and illustrates important differences in child investments between married

and divorced couples.
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1 Introduction

The objective of this paper is to develop and implement a new method for estimating pro-

duction functions when the input variables are partially latent. We show that a combination

of matching and IV techniques can be used to overcome the problem of partially latent

inputs. We characterize the asymptotic properties of our estimator and show that it per-

forms well in a Monte Carlo study. We then illustrate the usefulness of our approach using

two applications. Our first application focuses on the industrial organization of pharma-

cies which has undergone a dramatic change during the past two decades: an industry that

used to be primarily dominated by local independent pharmacies has been transformed by

the entry of large chains that operate in multiple markets. It is important to understand

whether this transformation has been driven by technological change.1 We show that phar-

macy chains have different production functions than independent pharmacies, which may

partially explain the observed transformation of the industry structure. The second appli-

cation investigates education production functions. Here we find that there are important

differences in child investments between married and divorced couples.

The starting point of our analysis is the canonical model that underlies most of the literature

of production function estimation. Recall that firms operate in competitive labor markets.2

Each firm is subject to a random productivity shock that is uncorrelated with local labor

market conditions. We assume each firm’s input choices do not necessarily have to be

optimal, but are monotonically increasing in the productivity shock. Hence, there is a

standard transmission bias problem since inputs are correlated with unobserved productivity

shocks (Marschak and Andrews, 1944). In the absence of panel data, researchers typically

rely on instrumental variables to overcome this problem.3 In particular, the key assumption

is that differences in local input prices give rise to differences in input choices that are

uncorrelated with productivity shocks at the local level, i.e., local input prices can serve as

valid instruments for endogenous input choices.4

1See Goldin and Katz (2016) for a detailed description of this transformation.
2For a survey, see Griliches and Mairesse (1998) and Ackerberg et al. (2007).
3See Griliches and Mairesse (1998) for a critical discussion of the assumption that these input prices are

exogenous. For example, the observed price differences across firms cannot capture input quality differences
across firms or different firms’ choices of location on a downward sloping input supply curve.

4Of course, this is only one approach for resolving the transmission bias problem. Another approach
to address this endogeneity problem involves using panel data with fixed effects, first advocated by Hoch
(1955, 1962) and Mundlak (1961, 1963). These approaches to identification have been combined with timing
assumptions to construct a control function estimator as discussed for example in Olley and Pakes (1996)
and Blundell and Bond (1998, 2000), Levinsohn and Petrin (2003), and Ackerberg, Caves, and Frazer (2015).
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In this paper, we consider the case in which the econometrician faces a latent variable

problem in estimation. This problem arises when the data is collected at the individual

worker-level and only contains information for the specific surveyed worker and a limited

amount of firm-level information, but no individual information about other workers in the

same firm. These types of unstructured data sets are becoming increasingly more prevalent in

empirical work. We focus on the case in which each firm needs to hire two types of workers:

managers and regular employees.5 The key problem that arises in estimation is that we

observe either output and managerial input or output and employee input, i.e. we never

observe the output, managerial inputs, and employee inputs at the same time. This problem

is similar to the latent variable problem encountered in the program evaluation literature.

Rubin (1973, 1974) advocates the use of matching in the absence of randomized controlled

trials. In the spirit of this approach, we suggest a similar solution to our problem: matching

managers and employees that work for similar firms within the same labor market.6

Matching ideally should be done based on the unobserved firm-specific productivity shock.

That is not feasible. Instead, we match based on the observed output level, which is however

only measured with error. If there were no measurement error in output, our assumptions

would imply that output is monotonically increasing in productivity, holding local wages

constant, and thus there is a one-to-one mapping between the unobserved productivity shock

and the observed output level within each local market. This insight then suggests that we

can use a matching algorithm to impute the missing input choice. In particular, we can

impute the missing input by matching a firm, for which we observe the output and the hours

of the manager, with a firm in the same market, for which we observe the same output

level and the hours of the employee. In practice, since output is observed with measurement

error, it is not guaranteed to be monotone in productivity. However, conditionally expected

output, with the measurement error averaged out, remains monotone. We then show that

matching can be done based on the conditional expectation of output given the observed

labor inputs and wages in the market.

In finite samples, we first nonparametrically estimate the conditional expectation of output,

and then use it to match firms and impute latent inputs. Finally we estimate the parameters

We discuss the extension of our methods to this scenario in the conclusions.
5We also show how to extend this approach to account for firms with more than one manager and one

employee. It is also straightforward to generalize our approach to account for capital or other inputs such
as intermediate goods.

6In the case of education production functions, we often only measure the inputs of one of the two parents
if the parents are divorced.
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of the production function using an IV estimator based on the imputed inputs. We provide

both high-level and lower-level conditions under which this semiparametric two-step estima-

tor is consistent and asymptotically normal at the usual parametric rate of convergence. We

also show that we can obtain efficiency gains by using the estimated conditional expectations

of output instead of the observed output in the second-stage IV regression. The technical

proof is based on the general econometric theory on semiparametric two-step estimation as

in Newey (1994), Newey and McFadden (1994) and Chen, Linton, and Van Keilegom (2003).

To evaluate the performance of our estimator we conduct a variety of Monte Carlo experi-

ments. Our findings suggest that our estimator is well-behaved in samples that are similar

in size to those observed in our applications discussed below. We also study the behavior

of our estimator when we pool observations across markets as is often necessary for many

practical applications. Moreover, we consider other realistic deviations such as the case in

which wages are also partially latent.

We then illustrate the usefulness of our new technique using two new applications. First,

we apply our new estimator to study differences in productivity in an important industry:

pharmacies. Goldin and Katz (2016) have forcefully argued that this is one of the most

egalitarian and family-friendly professions in which females face little discrimination in the

workforce. One potential explanation of this fact has been related to the rise of chains

which have replaced independent pharmacies in many local markets. It is, therefore, useful

to test the hypothesis whether chains have access to better production technologies than

independent pharmacies.

We use data from that National Pharmacist Workforce Survey in 2000. One of the key advan-

tages of this survey is that it not only collects data for each pharmacist that is surveyed but

also a limited amount of information at the store level. In particular, we know how many

pharmacists work in the store, and we observe the store’s output measured by total pre-

scriptions. The data suggest that there are some potentially important differences between

independent and chain pharmacies. For example, chains operate longer hours and, therefore,

managers and employees work longer hours in chains than in independent pharmacies.

We then implement our new estimator to measure differences across firm types. We restrict

the sample to pharmacies with no more than 3 pharmacists, i.e., pharmacies with one man-

ager and up to two employees who are also trained as pharmacists. We show that this is not

a restrictive assumption in our sample. The output is measured by prescriptions dispensed

per week. Labor inputs are hours worked by each type of pharmacist. Applying our new
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estimator, we can reject the null hypothesis that independent pharmacies and chains have

the same technology. Estimates for independent pharmacies are somewhat noisy but do not

suggest that there is a large difference between managers and regular employees. Estimates

for chains suggest that managers are more productive than regular employees. We thus con-

clude that chains seem to improve the effectiveness of managers which may partially explain

why they have become the dominant firm type in this industry.

Our second application focuses on education production functions which play a large role in

labor and family economics. Here we rely on data from the Child Development Supplement

(CDS) of the PSID. We consider two different samples to illustrate the usefulness of our

new methods. First, we consider a sample of children who live in married households.

Hence, both parental inputs are observed for these children. We find that our matched

TSLS estimator produces similar results to the feasible TSLS estimator. We also consider

a sample of children from divorced households where father’s inputs have to be imputed.

Hence, the standard TSLS is no longer feasible, but our matched TSLS can still be applied.

We find that our matched TSLS estimator produces insightful estimates in the sample of

children from divorced households as well. Both mother’s and farther’s times are estimated

to have positive effects on child quality. However, there are some significant differences

between married and divorced parents.

This paper relates to and contributes to the line of literature on production function es-

timation by proposing a method to handle the problem of partially latent inputs. Our

identification strategy is based on strict monotonicity (and the consequent invertibility) in

a scalar unobservable, a feature also found in and leveraged by Olley and Pakes (1996) and

Levinsohn and Petrin (2003). Their essentially use an auxiliary variable together with an

input to control for the unobserved productivity shock: investment with capital in Olley

and Pakes (1996) and intermediate inputs with capital in Levinsohn and Petrin (2003). In

comparison, we use the output with the observed input to pin down the productivity shock.

We emphasize that the feature of functional dependence between input variables, which was

pointed out by Ackerberg, Caves, and Frazer (2015) as an underlying problem in Olley and

Pakes (1996) and Levinsohn and Petrin (2003), in fact forms the basis of our imputation

strategy. Beyond these conceptual linkages, our paper has very different focuses from these

papers cited above: they focus more on the dynamic nature of capital inputs, and do not

use input prices for instruments as discussed in Griliches and Mairesse (1998).

Lastly, we should point out that this paper is both conceptually and technically different
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from previous work on missing data in linear regression and, more generally, GMM esti-

mation settings, such as Rubin (1976), Little (1992), Robins, Rotnitzky, and Zhao (1994),

Wooldridge (2007), Graham (2011), Chaudhuri and Guilkey (2016), Abrevaya and Donald

(2017) and McDonough and Millimet (2017). This line of literature usually exploits two

types of conditions: first, observations with no missing data occur with positive probability,

and second, data are “missing at random” (potentially with conditioning). Neither condi-

tion is satisfied in our setting: every observation contains missing data, and missing can be

correlated with other observables as well as the unobserved productivity shock. Instead, we

rely on monotonicity (and invertibility) in our production function model to identify and

impute the latent input.

The rest of the paper is organized as follows. Section 2 discusses the problems associated

with estimating the production functions with partially latent input variables. It introduces

our new matched TSLS estimator and derives its asymptotic properties. Section 3 reports

the results from a variety of different Monte Carlo experiments. Section 4 introduces our

first application focusing on the production functions of pharmacies. It discusses our data

sources and presents our main empirical findings. Section 5 discusses our second application

which deals with education production functions. Finally, Section 6 presents our conclusions.

2 Identification and Estimation

2.1 Model and Identification

Our starting point is a model of N firms, each consisting of one manager and one employee.

For each firm i, let H1i denote the number of hours worked by the manager, H2i denote the

hours worked by the employee, and Qi denote the output. Throughout the paper we use

lower-case letters to denote denote the logarithm of the corresponding variables in capital

letters, e.g. qi = logQi.

Each firm i operates in one of M competitive local labor markets, indexed by m. Let m (i)

denote the market in which firm i is active. The firm must pay the standing local market

wages for managers and employees in market m, denoted by W1m and W2m respectively.

Wages differ across markets for exogenous reasons such as differences in the costs of living.

Heterogeneity of wages across local labor markets will be important for our identification

and estimation strategy as discussed in detail below. Often times we will abuse notation
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and write W1i and W2i for the wages paid by a specific firm i, with the understanding that

W1i = W1m(i) and W2i = W2m(i) for any firm i located in market m.

We assume that all firms face a common output price in all markets, i.e., drugs all cost the

same. Effectively, we ignore differences in output prices across local labor markets, which

is a reasonable assumption if transportation costs are low. For simplicity, we normalize the

output price to be one.7

We are interested in estimating the production function that relates the output Qi to the

hours worked H1i and H2i, but we are faced with the following data structure with partially

latent inputs:

Assumption 1 (Observability).

(i) Either (Qi, H1i) or (Qi, H2i), but never both, is observed for each firm i.

(ii) (W1m,W2m) are observed in each local market m.

These structures often arise when the data is collected at the individual or worker-level

and only contains a limited amount of firm-level information. These types of unstructured

data sets are becoming increasingly more prevalent in empirical work. Below we provide

two applications that share this data structure. Our first application focuses on the retail

market for pharmaceutical drugs. The data is based on in the National Pharmacist Workforce

Survey. This is a survey that is conducted at the employee level. Hence, only one person,

either a manager or an employee, is surveyed for each pharmacy. The surveyed person

provides store-level information (e.g. output) and her own individual-level information (e.g.

weekly worked hours). Our second application is focuses on education production functions

and views the household as the relevant unit of analysis. When children have divorced

parents it is quire natural that data on the divorced spouse is often not available. Hence,

a similar data structure arises in that case. As we discuss in the conclusions of this paper,

there are a number of other potential applications where similar data structures arise.

Consider the following production function with Cobb-Douglas technology:

qi = α0 + α1h1i + α2h2i + ui + εi (1)

where α := (α0, α1, α2) is a vector of unknown parameters of interest with α1, α2 ≥ 0.

As in Olley and Pakes (1996), both ui and εi are unobserved in the data; however, ui is

7Note that it is straightforward to extend our model to allow different output prices in local markets, as
we discuss below.
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a “productivity” shock observed (or predicted) by firm i at the time of its input choice

decisions (over h1i and h2i), while εi is a measurement error term that does not enter into

firm i’s decision problem. We will discuss more general functional forms in Section 2.3.

Let h1 (ui, wi) and h2 (ui, wi) denote firm i’s input choices under local wages wi := (w1i, w2i)

and productivity shock ui. We now impose the following assumption on the monotonicity of

the input choice rules h1 and h2 with respect to the unobserved productivity shock:

Assumption 2 (Strict Monotonicity). h1 (u,w) and h2 (u,w) are both strictly increasing in

u, for any values of w = (w1, w2).

Assumption 2 is a standard assumption that underlies most, if not all, existing approaches

of production function estimation in one way or another. See, for example, Griliches and

Mairesse (1998) and Ackerberg, Caves, and Frazer (2015) for reviews of the relevant litera-

ture. Note that Assumption 2 is only “sensible” if α1, α2 > 0 (even though we do not need

a formal assumption that α1, α2 > 0).

Assumption 3 (Wages as IV). Write wi := (w1i, w2i)
′

and hi := (h1i, h2i)
′
.

(i) Relevance: E
[
wih

′
i

]
has full rank.

(ii) Exogeneity: E [ui|wi] = 0.

Here we are following a strategy discussed in Griliches and Mairesse (1998) and assume that

local wages are valid instruments.8 Assumptions 2 and 3(i) are automatically satisfied if

firms optimally choose inputs according to the production function (1), in which case h1

and h2 are characterized by the relevant first-order conditions and have simple closed-form

formulas that are linear and increasing in u (and in w1, w2). We note that the problem of

partially latent inputs is less relevant in that case, since the “reduced-form” regression of the

observed inputs on the exogenous wages wi will indirectly recover the production function

parameters α. This corresponds to the “duality approach” to production function estimation

as discussed in detail in Griliches and Mairesse (1998). An attractive feature of our approach

is also that we can test whether inputs are optimally chosen. If we reject the null hypothesis

that inputs are optimal, our estimator is still feasible while duality estimators are not.9

8In addition to the exogeneity condition in Assumption 3(ii), we implicitly require through Assumption
3(i) that there is sufficient variation in local wages (e.g., the number of markets M must be at least 3.)

9See Appendix A for details on how to implement this test.
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Lastly, we require the following exogeneity condition on the measurement error term εi, in

particular with respect to whether h1i or h2i is observed. To state the assumption, define

di :=

1, if H1i is observed and H2i is latent,

2, if H2i is observed and H1i is latent.

Assumption 4 (Measurement Error). E [εi|wi, hi, di] = 0.

We note that E [εi|wi, hi] = 0 is a standard assumption in the literature without the latent

input problem. Furthermore, it is worth noting that Assumption 4 is much weaker than the

standard “missing-at-random (MAR)” assumption imposed in the literature that focuses

on missing data. Here we are simply requiring that εi is a “measurement error” term that

is independent of the covariates (including the indicator for missing variables), but do not

impose any restriction on the dependence structure between di and (wi, hi).

We now present our main identification result, followed by a detailed explanation of our

identification strategy.

Theorem 1. Under model 1 and Assumptions 1-4, both the latent inputs (realizations of h2i

or h1i) and the production function parameters α are identified.

The starting point of our approach is the reduced form of our model with the measurement

error term:

qi = q (ui, wi) + εi (2)

where

q (ui, wi) := α0 + α1h1 (ui, wi) + α2h2 (ui, wi) + ui,

which is strictly increasing in ui given Assumption 2.

First, consider two firms i and j within the same market m so that w1i = w1j and w2i = w2j.

Suppose that h1i, h1j are observed for i and j while h2i, h2j are unobserved. If these firms

have the same value of manager inputs h1i = h1j, then it must also be true that they have

the same value of the productivity shock, i.e.,

ui = h−11 (h1i; wi) = h−11 (h1j; wi) = uj,

where h−11 (· ;wi) is the inverse of h1 (·, wi). This further implies that

q (ui, wi) = q (uj, wj) ,
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and hence if we take an average of qi and qj,

1

2
(qi + qj) = q (wi, ui) +

1

2
(εi + εj) . (3)

we are essentially averaging out the variations in ε.10

Formally, define γ1 (c) as the expected output of firm i conditional on the event that h1i is

observed (di = 1) to have some given value c, i.e.,

γ1 (c;wi) := E [qi|wi, di = 1, h1i = c] . (4)

Clearly, γ1 is directly identified from data given Assumption 1, and can be nonparametrically

estimated later on. Taking a closer look at γ1, we have, by equation (2), Assumption 2 and

Assumption 4,

γ1 (c;w) = E [q (wi, ui) + εi|wi = w, di = 1, h1 (wi, ui) = c] = q
(
h−11 (c;w) , w

)
= α0 + α1c+ α2h2

(
h−11 (c;w) , wi

)
+ h−11 (c;w) , (5)

which is a direct formalization of the intuition in equation (3). By conditioning on wi

and a particular observed value of h1i = c, we are effectively conditioning on the unobserved

productivity shock ui, and aggregation across firms allows us to average out the measurement

errors and obtain a quantity that is implicitly a function of the productivity shock ui =

h−11 (c; wi).

We observe that γ1 (c;w) will also be strictly increasing in c, since

∂

∂c
γ1 (c;w) = α1 + α2

∂

∂u
h2
(
h−11 (c) , w

) 1
∂
∂u
h1
(
h−11 (c) , w

) +
1

∂
∂u
h1
(
h−11 (c) , w

) > 0 (6)

as α1, α2 ≥ 0 and ∂
∂u
h1,

∂
∂u
h2 > 0 by Assumption 2. Similarly, we can define γ2 (c;w) :=

E [qi|wi = w, di = 2, h2i = c], which is also strictly increasing in c.

The basic idea behind our identification strategy is then to conditionally “match” observa-

tions on the event that

γ1 (c1;w) = γ2 (c2;w) (7)

for some c1, c2 at given levels of local wages w.

For example, if again we first consider firms within the same market (so that w is constant),

then equation (7) involves two separate (conditionally) expected output levels, one (γ1) for

firms whose h1i is observed , and the other (γ2) for firms whose h2i is observed. When these

two expected output levels are equalized as in equation (7), we can infer that the underlying

10As a matter of fact, we can directly match on output q if there is no measurement error in output.
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productivity shock u must be the same across all firms with either h1i = c1 observed or

h2i = c2 observed, since by equations (3) and (5) we know

h−11 (c1; w) = h−12 (c2; w) =: u

which also pins down the latent inputs via:

h2i = h2 (w, u) , for di = 1,

h1i = h1 (w, u) , for di = 2.

Formally, the latent inputs can be identified as

h2i = γ−12 (γ1 (h1i;wi) ;wi) , for di = 1,

h1i = γ−11 (γ2 (h2i;wi) ;wi) , for di = 2, (8)

since h1i, h2i are observed for di = 1, 2 respectively, and γ1, γ2 are nonparametrically identified

functions.

With the latent inputs identified, we are back to the production function equation (1) without

latent inputs, where α is identified under the standard IV condition in Assumption 3.

Alternatively we can consider the following equation which uses the conditional expected

output as the dependent variable:

qi = α0 + α1h1i + α2h2i + ui, (9)

where qi := q (ui, wi) = γ1 (h1i, wi) = γ2 (h2i, wi). Again, α is identified under Assumption 3.

2.2 Estimation

Our proof of identification is constructive. Hence, it can be used to derive a sequential esti-

mation procedure of the parameters of interest. Specifically, our estimator can be obtained

through the following three steps.

Step 1 (Nonparametric Regression): obtain an estimator γ̂1 of γ1 by nonparametrically

regressing qi on h1i and wi, among firms whose h1i is observed (i.e., di = 1). Similarly obtain

an estimator γ̂2 of γ2.

Step 2 (Imputation): impute latent inputs by plugging the nonparametric estimators γ̂1, γ̂2
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into equation (8), i.e.,

ĥ2i = γ̂−12 (γ̂1 (h1i;wi) ;wi) , for di = 1,

ĥ1i = γ̂−11 (γ̂2 (h2i;wi) ;wi) , for di = 2.

Step 3 (IV Regression): run either of the following two IV regressions:

• (i) Estimate equation (1) with wi as IVs, i.e.,

α̂ :=

(
1

n

n∑
i=1

wih̃i

)−1(
1

n

n∑
i=1

wiqi

)

where wi := (1, w1i, w2i)
′

and

h̃i :=


(

1, h1i, ĥ2i

)′
, for di = 1,(

1, ĥ1i, h2i

)′
, for di = 2.

• (ii) Estimate (9) with wi as IVs and the expected output qi replaced by its plug-in

estimator

q̃i :=

γ̂1 (h1i, wi) , for di = 1,

γ̂2 (h2i, wi) , for di = 2,

i.e.,

α̂∗ :=

(
1

n

n∑
i=1

wih̃i

)−1(
1

n

n∑
i=1

wiq̃i

)
.

We now derive the consistency and the asymptotic normality of α̂ and α̂∗ under the following

additional regularity assumptions.

Assumption 5 (Finite Error Variances). E [u2i |wi] <∞ and E [ε2i |wi, hi, di] <∞.

Assumption 6 (Strong Monotonicity). The first derivative of γk (·, w) is uniformly bounded

away from zero, i.e., for any c, w,

∂

∂c
γk (c;w) > c > 0.

In view of equation (6), Assumption 6 is satisfied if either α1, α2 > 0 or ∂
∂u
h1,

∂
∂u
h1 are uni-

formly bounded above by a finite constant. Assumption 6 is needed to ensure that γ̂−1k (·, w)

is a good estimator of γ−1k (·, w) provided that the first-stage nonparametric estimator γ̂k is

consistent for γk, i.e. the two inverse functions need to be well-behaved.
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Assumption 7 (First-Stage Estimation).

(i) Donsker property: γ1, γ2 ∈ Γ, which is a Donsker class of functions with uniformly

bounded first and second derivatives, and γ̂1, γ̂2 ∈ Γ with probability approaching 1.

(ii) First-stage convergence: ‖γ̂k − γk‖ = op

(
N−

1
4

)
for k = 1, 2.

Assumption 7(i) is guaranteed if γ1, γ2 satisfy certain smoothness condition, e.g. γk possesses

uniformly bounded derivatives up to a sufficiently high order. 7(ii) is required so that the final

estimator of the production function parameters α can converge at the standard parametric

(
√
N) rate despite the slower first-step nonparametric estimation of γ1, γ2.

Finally, we state another technical assumption that captures how the first-stage nonpara-

metric estimation of γ1, γ2 influences the final semiparametric estimators α̂ or α̂∗ through the

functional derivatives of the residual functions with respect to γ1, γ2. Assumption 8 below,

based on Newey (1994), provides an explicit formula for the asymptotic variance of α̂ and

α̂∗ that does not depend on the particular forms of first-stage nonparametric estimators.

To state Assumption 8, write zi := (qi, wi, hi, di), γ := (γ1, γ2), the residual functions

g (zi, α̃, γ̃) :=

wi
(
qi − α̃0 − α̃1h1i − α̃2γ̃

−1
2 (γ̃1 (h1i))

)
for di = 1,

wi
(
qi − α̃0 − α̃2h2i − α̃1γ̃

−1
1 (γ̃2 (h2i))

)
for di = 2.

g∗ (zi, α̃, γ̃) :=

wi
(
γ̃1 (h1i)− α̃0 − α̃1h1i − α̃2γ̃

−1
2 (γ̃1 (h1i))

)
for di = 1,

wi
(
γ̃2 (h2i)− α̃0 − α̃2h2i − α̃1γ̃

−1
1 (γ̃2 (h2i))

)
for di = 2

for generic α̃, γ̃, and

g (zi, γ̃) := g (zi, α, γ̃) , g∗ (zi, γ̃) := g∗ (zi, α, γ̃) ,

at the true α. The two versions g, g∗ of residual functions correspond to the two versions of

estimators α̂, α̂∗ in Step 3 (i) and (ii): g corresponds to α̂, where the raw observed outputs

qi are used in final IV regression, while g∗ corresponds to α̂∗, where estimates q̃i of the

conditionally expected output qi = γ1 (h1i) = γ2 (h2i) are used instead. Define the pathwise

functional derivative of g at γ along direction τ by

G (zi, τ) := lim
t→0

1

t
[g (zi, γ + tτ)− g (zi, γ)]

and similarly define G∗ (zi, τ) for g∗. Then, as in Newey (1994), analytical calculation of

G and G∗ leads to the following characterization of the influence terms from the first-stage
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estimation11:

ϕ (zi) := −
(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1 {di = 1} − 1 {di = 2}) .

ϕ∗ (zi) :=

[
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

]
1 {di = 1}+

[
λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

)]
1 {di = 2}

where γ
′

k denotes ∂
∂hk

γk (hki;wi), λ1 stands for

λ1 (hi, wi) := E [1 {di = 1}|hi, wi]

i.e., the conditional probability of observing h1i, and λ2 := 1 − λ1. We are now ready to

present the following assumption, which essentially states that the expected error induced

by the first-stage estimation is asymptotically equivalent to sample averages of ϕ (zi)wiεi

and ϕ∗ (zi)wiεi.

Assumption 8 (Asymptotic linearity). (i) Suppose∫
G (z, γ̂ − γ) dP (z) =

1

N

N∑
i=1

ϕ (zi)wiεi + op

(
N−

1
2

)
.

(ii) Suppose ∫
G∗ (z, γ̂ − γ) dP (z) =

1

N

N∑
i=1

ϕ∗ (zi)wiεi + op

(
N−

1
2

)
.

We emphasize that Assumptions 7 and 8 are standard assumptions widely imposed in the

semiparametric estimation literature, which can be satisfied by many kernel or sieve first-

stage estimators under a variety of conditions. See Newey (1994), Newey and McFadden

(1994) and Chen, Linton, and Van Keilegom (2003) for references. In Assumption 9 below,

we also provide an example of lower-level conditions that replace Assumptions 7 and 8 when

we use the Nadaraya-Watson kernel estimator in the first-stage nonparametric regression.

The next theorem establishes the asymptotic normality of α̂ and α̂∗.

Theorem 2 (Asymptotic Normality). Suppose Assumptions 1-7 hold and let Σwh := E
[
wih

′

i

]
.

(i) With Assumption 8(i), √
N (α̂− α)

d−→ N (0,Σ) ,

where Σ := Σ−1whΩΣ−1hw and

Ω := E
[
wiw

′

i

(
u2i + [1 + ϕ (zi)]

2 ε2i
)]
.

11See the proof of Theorem 2 for details on the calculation.

14



(ii) With Assumption 8(ii), √
N (α̂∗ − α∗) d−→ N (0,Σ∗) ,

where Σ∗ := Σ−1whΩ
∗Σ−1hw and

Ω∗ := E
[
wiw

′

i

(
u2i + ϕ∗ (zi)

2 ε2i
)]
.

(iii) Ω− Ω∗ is positive definite, i.e., α̂∗ is asymptotically more efficient than α̂.

We note that, if the latent inputs were observed and the first-step nonparametric regression

were not required, the asymptotic variance of standard IV estimator of α would be given

by Σ−1whVar (wi (ui + εi)) Σ−1hw. Hence, the presence of the additional term δ (zi) in Ω captures

the effect of the first-step nonparametric regression on the asymptotic variance of α̂.

Theorem 2(iii) is intuitive: the error term for the IV regression with the raw output qi as

the left-hand-side variable is ui + εi, which has a larger variance than the corresponding

error term ui, if the conditionally expected output qi is used instead. Even though we do

not observe qi and must use an estimator q̃i = γ̂1 (h1i) or q̃i = γ̂2 (h2i), the impact of the

first-stage estimation error (which can be loosely thought as an average of εi across i) is

smaller than the impact of εi itself.

To see this more clearly, first consider the multiplier “1 + ϕ (zi)” in (i): the “1” comes from

the one “raw” share of error εi embedded in each qi that we use as the outcome variable,

while “ϕ (zi)” essentially captures the share of influence of the first-step estimation error

γ̂ − γ due to εi. Together, we have

1 + ϕ =

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
1 {di = 1}+

(
λ1
α2

γ
′
2

+ 1− λ2
α1

γ
′
1

)
1 {di = 2} ,

while the corresponding multiplier ϕ∗ on εi in (ii) is essentially the same except that “1 −
λ1

α2

γ
′
2

” becomes “λ1 − λ1
α2

γ
′
2

” and “1 − λ2
α1

γ
′
1

” becomes “λ2 − λ2
α1

γ
′
1

”. Since λ1, λ2 < 1, the

overall multiplier on εi becomes smaller in magnitude12. Essentially, by using the estimated

conditional expected output q̃i, the raw “1” share of εi in qi is moved into the first-stage

estimation error of qi, which is then “averaged” and reduced in magnitude to λ1 or λ2, thus

leading to smaller overall variance.

Lastly, we emphasize that the efficiency comparison in 1(iii) does not directly relate to the

theory of semiparametric efficiency bounds, such as in Ackerberg et al. (2014), which is about

asymptotic efficiency of semiparametric estimators under a given criterion function. In fact,

12Note that α1/γ
′

1 ≤ 1 and α2/γ
′

2 ≤ 1 by equation (6).
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by Ackerberg et al. (2014), both estimators based on qi and q̃i attain their corresponding

semiparametric efficiency bounds with respect to their different criterion functions g and g∗.

1(iii), however, is a comparison across the two criterion functions g and g∗, and essentially

states that the (asymptotically) efficient estimator under g∗ is even more efficient than the

efficient estimator under g.

We now present a set of lower-level conditions that replace Assumption 7 when we use the

canonical Nadaraya-Watson kernel estimator for the nonparametric regression in Step 1. We

emphasize this simply serves as an illustration of Assumptions 7 and 8 and Theorem 2, as our

method does not require the use of any specific form of first-step nonparametric estimators.

For sieve (series) first-step estimators, similar results can be derived based on, for example,

Newey (1994), Chen (2007) and Chen and Liao (2015).

Assumption 9 (Example Conditions for Kernel First Step). Let Nk :=
∑N

i=1 1 {di = k}
denote the number of firms for which hki is observed, and let γ̂k be the Nadaraya-Watson

kernel estimator of γk defined by

γ̂k (xk) :=
1

Nkb3

∑
di=k

K
(
xk−xki
b3

)
qi

1
Nkb3

∑
di=k

K
(
xk−xki
b3

)
where xki := (hki, w1i, w2i) for all i such that di = k. Suppose the following conditions hold:

(i) λ1 (hi, wi) := E [1 {di = 1}|hi, wi] ∈ (ε, 1− ε) for all (hi, wi) for some ε > 0.

(ii) (h1i, h2i, w1i, w2i) has compact support in R4 with joint density f that is uniformly

bounded both above and below away from zero.

(iii) E [q4i ] <∞ and E [q4i |hi, wi] f (hi, wi) is bounded.

(iv) γk is uniformly bounded and has uniformly bounded derivatives up to order p ≥ 4.

(v) K (u) has uniformly bounded derivatives up to order p, K (u) is zero outside a bounded

set,
∫
K (u) du = 1,

∫
utK (u) du = 0 for t = 1, ..., p− 1, and

∫
‖u‖p |K (u)| du <∞.

(vi) b is chosen such that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp → 0.

Assumption 9(i) essentially requires that the proportion of observations with h1i observed

and that with h2i observed are both strictly positive, or in other words, the numbers of

both types of observations tend to infinity at the same rate of N . This guarantees that

we can estimate both γ1 based on observations with h1i and γ2 based on observations with
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h2i well enough asymptotically. Assumption 9(iv) is the key smoothness condition that will

help establish the Donsker property (and a consequent stochastic equicontinuity condition)

in Assumption 7(i). Assumption 9(v)(vi) are concerned with the choice of kernel function

K and bandwidth parameter b: (v) requires that a “high-order” kernel function (of order

p) is used, while (vi) requires that the bandwidth is set (in a so-called “undersmoothed”

way) so that the kernel estimator γ̂k converges at a rate faster than N−1/4, as required in

Assumption 7(ii). The requirement of p ≥ 4 in (iii) ensures that (vi) is feasible. Together

with the additional regularity conditions in (ii)(ii), these conditions ensure that Assumptions

7-8 and are satisfied. See Newey and McFadden (1994, Section 8.3) for additional details.

Proposition 1 (Asymptotic Distributions with Kernel First Step). Under Assumptions 1-6

and 9 the conclusions of Theorem 2 hold.

To obtain consistent variance estimators, define

Ω̂ :=
1

N

N∑
i=1

wiw
′

i

[
qi − h̃

′

iα̂ + ϕ̂ (zi) (qi − q̃i)
]2

Ω̂∗ :=
1

N

N∑
i=1

wiw
′

i

[
q̃i − h̃

′

iα̂
∗ + ϕ̂∗ (zi) (qi − q̃i)

]2
with

ϕ̂ (zi) := −
(
λ̂1
α̂2

γ̂
′
2

− λ̂2
α̂1

γ̂
′
1

)
(1 {di = 1} − 1 {di = 2})

ϕ̂∗ (zi) :=

[
λ̂1

(
1− α̂2

γ̂
′
2

)
+ λ̂2

α̂1

γ̂
′
1

]
1 {di = 1}+

[
λ̂1
α̂2

γ̂
′
2

+ λ̂2

(
1− α̂1

γ̂
′
1

)]
1 {di = 2}

where λ̂1 := 1
N

∑N
i=1 1 {di = 1} . Then the asymptotic variance estimators can be obtained

as

Σ̂ := S−1
wh̃

Ω̂S−1
h̃w
, Σ̂∗ := S−1

wh̃
Ω̂∗S−1

h̃w

with Swh̃ := 1
N

∑N
i=1wih̃

′
i.

Proposition 2. In addition to Assumptions 1-6 and 9, suppose furthermore that λ1 (hi, wi) ≡
λ1 ∈ (0, 1). Then Ω̂

p−→ Ω and Ω̂∗
p−→ Ω∗.
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2.3 Discussion on Generalizations

Additional Instrumental Variables

If additional instruments are available, it is straightforward to incorporate them in the

second-stage regression, which will take the form of a two-stage least square estimator instead

of an IV regression. Our results will carry over with suitable changes in notation. For

example, the asymptotic variance formula for α̂ needs to be adapted as

Σ :=
(
ΣhwΣ−1wwΣwh

)−1
ΣhwΣ−1wwΩΣ−1wwΣwh

(
ΣhwΣ−1wwΣwh

)−1
.

Other Parametric Production Functions

Similarly, the log-linearity of the Cobb-Douglas production function only helps us obtain

a linear second-stage regression (IV or TSLS), which does not interfere at all with our

first-stage nonparametric estimation of γ1, γ2 and the imputation of latent inputs h1i or h2i

(beyond the monotonicity conditions built in the production function). To see this, consider

a potentially nonlinear (parametric) production function of the form

qi = Fα (h1i, h2i) + ui + εi

such that Fα is increasing in h1i and h2i. Provided that Assumptions 2 and 4 still hold, the

conditional expectation

γ1 (c, w) := E [qi|wi = w, di = 1, h1i = c] = Fα
(
c, h2

(
h−11 (c;w) ;w

))
+ h−11 (c;w)

remains nonparametrically identified and strictly increasing in c, enabling us to carry over

our method of latent input imputation without change. The second stage boils down to the

estimation of α based on the moment condition E [wi (qi − Fα (h1i, h2i))] = 0, which can be

obtained via nonlinear least square (NLLS) regression or more generally GMM. Technically,

since GMM estimators are Z-estimators, the corresponding asymptotic theory in Newey and

McFadden (1994), on which the proof of Theorem 1 is based, still applies with proper changes

in notations.

Nonparametric Production Function

More generally, with any nonparametric production function that is additively separable in

ui and εi of the form qi = F (h1i, h2i) + ui + εi where F is an unknown function that is

18



increasing in h1i and h2i, our imputation method for the latent input still applies without

change. The only thing that changes is the second-stage nonparametric estimation of F with

both h1i and h2i known (or more precisely, with one known and one imputed) based on the

moment condition E [wi (qi − F (h1i, h2i))] = 0. The asymptotic theory for this case can be

similarly obtained based on theory on nonparametric two-step estimation (e.g. Hahn, Liao,

and Ridder, 2018).

3 A Monte Carlo Experiment

In this section, we report the findings of a Monte Carlo study. Table 1 reports the parameter

specifications of the Cobb- Douglas production function that we use in our experiments.

Here we assume that inputs are optimally chosen by a profit maximizing firm as discussed in

detail in Appendix A. These parameters were chosen so that the simulated data are broadly

consistent with the descriptive statistics of our first application that we discuss in detail in

the next section. For each specification, market size, denoted by L, and number of firms in

each market, denoted by I can vary. In particular, we consider the following scenarios: L =

50, 100, 500 and I = 1, 50, 100. For each experiment, we compute the difference between

the true parameter value and the sample average of the estimates using 1000 replications

(N). This is a measure of the bias our estimator. We also estimate the root mean squared

error (RMSE) using the sample standard deviation of our estimates.

Note that our data generating process mechanically implies h1 and h2 have a linear re-

lationship with q. We estimate γ1(c;wi) and γ2(c;wi) using a second degree polynomial.

Not surprisingly, we find that the estimated coefficients on quadratic terms are almost 0.

Moreover the interpolated functions γ−11 and γ−12 are almost linear.

Table 2 summarizes the performance of two different estimators: TSLS when all inputs are

observed as well as the matched TSLS when inputs are partially latent. As we would expect

given our asymptotic results, the matched TSLS performs almost as well as the standard

TSLS estimator under these ideal sampling conditions. This finding holds for all three

different specifications and several choices for the number of firms within a market and the

number of local markets.

Next we investigate how our estimator performs when we have a relatively small number of

observations in each market. Considering an extreme case, we simulate data for L = 500 and

I = 1. As we only have a single firm in each market, we cannot impute the missing input
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Table 1: Monte Carlo Parameter Specification

Constant Across Specification Variable Across Specification

α0 α1 α2 µz σz κ1,2,3,4 σu σε ση

Spec1 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.4 0.3

(
0.01 0

0 0.01

)

Spec 2 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.8 0.3

(
0.01 0

0 0.01

)

Spec 3 4 0.35 0.25

(
2.4
2.1

) (
0.05 0

0 0.02

) 
1.3
0.3
0.1
0.9

 0.8 0.3

(
0.5 0
0 0.5

)

variable using within market information. Instead, we pool observations across markets

and estimate conditional expectations conditional on h1 (or h2), w1, and w2. Table 2 also

summarizes the bias and RMSE where L = 500 and I = 1. We find that the matched TSLS

estimator performs almost as well as the standard TSLS estimator that assumes that both

inputs are observed.

Finally, we consider the case in which the wage for type j is observed only when we observe

the input for type j, i.e. we assume that:

(w1i, w2i) =

(w∗1i,missing) if H1i is observed

(missing, w∗2i) if H2i is observed
(10)

Since we need to impute missing wages, we assume that true wages are functions of some

demand shifters Zm ∈ R2 for the local labor market m and a random error ηi which is

assumed to be independent from the demand shifters. Note that this specification allows for

correlation between w1m(i) and w2m(i) through Zm. Specifically, we simulate wages as follows:

w∗1i = w1m(i) = κ1Z1m + κ2Z2m + η1i (11)

w∗2i = w1m(i) = κ3Z1m + κ4Z2m + η2i
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Table 2: Monte Carlo: Different Markets, Observed Wages

Number of Number of TSLS Matched TSLS

Param Markets Firms Spec Bias RMSE Bias RMSE

α0 50 50 1 0.001 0.001 0.000 0.001
α0 100 100 1 -0.000 0.000 -0.000 0.000
α0 50 50 2 0.001 0.002 -0.000 0.002
α0 100 100 2 -0.000 0.000 0.000 0.001
α0 50 50 3 0.001 0.002 0.001 0.002
α0 100 100 3 -0.000 0.000 0.001 0.001
α0 500 1 1 -0.004 0.003 -0.004 0.003
α0 500 1 2 -0.014 0.011 -0.015 0.011
α0 500 1 3 -0.013 0.010 -0.014 0.010

α1 50 50 1 0.004 0.003 0.003 0.004
α1 100 100 1 0.000 0.001 0.000 0.001
α1 50 50 2 0.007 0.010 0.006 0.013
α1 100 100 2 0.001 0.002 0.001 0.003
α1 50 50 3 0.006 0.008 0.032 0.015
α1 100 100 3 0.001 0.002 0.020 0.003
α1 500 1 1 -0.002 0.015 -0.001 0.016
α1 500 1 2 -0.000 0.048 0.001 0.052
α1 500 1 3 -0.007 0.040 -0.006 0.043

α2 50 50 1 -0.005 0.005 -0.004 0.006
α2 100 100 1 -0.001 0.001 -0.000 0.001
α2 50 50 2 -0.010 0.014 -0.010 0.017
α2 100 100 2 -0.002 0.003 -0.002 0.004
α2 50 50 3 -0.007 0.011 -0.046 0.021
α2 100 100 3 -0.001 0.002 -0.029 0.005
α2 500 1 1 -0.004 0.020 -0.004 0.022
α2 500 1 2 -0.020 0.068 -0.022 0.073
α2 500 1 3 -0.009 0.051 -0.010 0.055
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To impute the missing wages, we regress the observed wages (w1i, w2i) on the demand shifters

(Z1m, Z2m). Using estimated parameters from the regression, we then impute the missing

wages.

Table 3: Monte Carlo: Small Markets with Partially Latent Wages

Number of Number of Standard SLS Matched TSLS

Param markets firms Spec Bias RMSE Bias RMSE

α0 500 1 1 -0.004 0.003 -0.004 0.003
α0 500 1 2 -0.008 0.010 -0.007 0.010
α0 500 1 3 -0.008 0.010 -0.007 0.010

α1 500 1 1 -0.002 0.015 -0.001 0.016
α1 500 1 2 0.005 0.054 0.008 0.055
α1 500 1 3 0.004 0.053 0.008 0.054

α2 500 1 1 -0.004 0.020 -0.004 0.022
α2 500 1 2 -0.021 0.072 -0.023 0.075
α2 500 1 3 -0.020 0.070 -0.023 0.074

Table 3 summarizes the performance of our new estimator together with TSLS estimator.

Even if we have a relatively large variance of the imputation errors, such as in Specification

3, our new estimator performs reasonably well.

Figure 1 plots the empirical distribution for the case of specification 2. Overall, we find that

the matched TSLS estimator performs almost as well as the standard TSLS estimator.

We conclude that our estimator performs well in all Monte Carlo experiments, even in sce-

narios that are slightly more general than those considered in Section 2 of the paper. In

particular, we do not need to observe both sets of instruments (wages) in the data. We can

impute the missing instrument. Next, we evaluate the performance of our estimator in two

applications. The first application focuses on pharmacies and studies differences in tech-

nology across different types of firms. The second application studies education production

functions.
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Figure 1: Histograms of Estimated Coefficients With Imputed Wages
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4 First Application: Pharmacies

Our first application focuses on the industrial organization of pharmacies. This industry

has undergone a dramatic change over the past two decades. An industry that used to be

primarily dominated by local independent pharmacies has been transformed by the entry

of large chains that operate in multiple markets. An important question is the extent to

which this transformation has been driven by technological change that has benefited large

chains over smaller independently operated pharmacies. If this is in fact the case, these

technological changes may help to explain why this profession has become so popular with

females (Goldin and Katz, 2016).

The main data set that we use is the National Pharmacist Workforce Survey of 2000 which is

collected by Midwestern Pharmacy Research. The data comes from a cross-sectional survey

answered by randomly selected individual pharmacists with active licenses. The data set

is composed of two groups of information: information about pharmacists and information

about the pharmacy each pharmacist works at.

Information at the pharmacy level includes the type of pharmacy (Independent or Chain), the
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hours of operation per week, the number of pharmacists employed, and the typical number of

prescriptions dispensed at the pharmacies per week. The store-level information is provided

by an individual pharmacist who works at the pharmacy, thus the quality of the responses

may depend on how knowledgeable the person is about the pharmacy. However, considering

that most of the pharmacists in our sample are observed to be full-time pharmacists, we

think the quality of the firm-level data is fairly high. The number of prescriptions dispensed

at the pharmacy is our measure of output. As a consequence, we do not have to use revenue

based output measures which could bias our analysis as discussed, for example, in Epple,

Gordon, and Sieg (2010).

Table 4: Summary Statistics at the Firm Level: Pharmacies

Firm Number Emp Operating Prescriptions Prescriptions Prop Number
Type Pharmacists Size Hours per Week per Hour Urban of Obs

Indep n < 2 3.15 51.96 778.00 14.94 0.63 50
(1.41) (7.08) (368.95) (6.54) (0.39)

Indep 2 ≤ n < 3 3.94 56.99 914.40 16.09 0.71 58
(1.80) (10.04) (472.81) (8.43) (0.34)

Indep 3 ≤ n 4.71 64.24 1252.22 19.44 0.78 36
(1.44) (14.15) (610.61) (8.75) (0.32)

Chain n < 2 1.88 53.50 666.88 12.90 0.81 8
(0.99) (8.02) (278.84) (6.58) (0.34)

Chain 2 ≤ n < 3 3.25 80.50 1294.68 16.21 0.81 101
(1.36) (9.86) (595.08) (7.66) (0.29)

Chain 3 ≤ n 5.32 82.82 1765.67 21.43 0.89 79
(1.63) (13.67) (681.57) (7.87) (0.20)

[*] Independent pharmacies: fewer than 10 stores under the same ownership
[*] Chain pharmacies: more than 10 stores under the same ownership
[*] Standard deviations in the parentheses
[*] One part-time pharmacist is counted as 0.5 pharmacist in number of pharmacists
[*] Employment size includes interns and technicians

Table 4 summarizes the means of key variables that are observed at the firm or pharmacy

level. After eliminating cases with missing input/output information, we observe 332 phar-

macists. Table 4 suggests that there are some pronounced differences between chains and

independent pharmacies. Chains are more likely to be located in larger urban areas than

independent pharmacies. They also operate longer hours per week. Interestingly, hourly

productivity measured by the number of prescriptions per hour is, on average, similar to
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the independent pharmacies with similar employment size. We explore these issues in more

detail below and test whether the different types of pharmacies have access to the same

technology.

Table 5: Summary Statistics at the Worker Level: Pharmacists

Firm Number of Actual Paid Hourly Number of
Type Position Pharmacists Hours Hours Earnings Obs

Indep Employee n < 2 40.94 39.28 28.87 9
(11.61) ( 9.60) (7.64)

Indep Employee 2 ≤ n < 3 33.90 33.03 29.37 29
(12.01) (11.14) (4.09)

Indep Employee 3 ≤ n 31.61 30.95 30.24 28
(11.62) (10.96) (4.93)

Indep Manager n < 2 50.02 45.34 30.32 41
(9.05) (7.24) (12.45)

Indep Manager 2 ≤ n < 3 49.45 44.19 28.70 29
(8.15) (7.99) (9.90)

Indep Manager 3 ≤ n 46.50 44.38 30.28 8
(4.11) (6.30) (6.57)

Chain Employee n < 2 46.20 43.00 34.70 5
(2.77) (4.47) (2.19)

Chain Employee 2 ≤ n < 3 41.82 39.84 34.13 66
(5.76) (4.38) (3.32)

Chain Employee 3 ≤ n 39.96 37.94 34.03 56
(8.63) (7.02) (3.12)

Chain Manager n < 2 45.33 42.00 36.75 3
(5.03) (2.65) (4.43)

Chain Manager 2 ≤ n < 3 44.10 40.50 34.06 35
(7.02) (2.58) (4.90)

Chain Manager 3 ≤ n 43.61 41.43 35.04 23
(5.41) (3.41) (3.59)

[*] Independent pharmacies: fewer than 10 stores under the same ownership
[*] Chain pharmacies: more than 10 stores under the same ownership
[*] Hourly earnings are computed based on the paid hours, not actual hours
[*] Standard deviations in the parentheses

The data set also collects various information about pharmacists including hours of work,

demographics, and household characteristics. Most importantly we observe the position at

the pharmacy (Owner/Manager or Employee). We treat hours of the manager and hours of
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Table 6: Test for Optimality of Inputs

Independent Chain
H1 Observed H2 Observed H1 Observed H2 Observed

Wald Statistic 5.495 36.914 15.312 26.172
p-value (0.064) (0.000) (0.000) (0.000)

the employee as the two input factors in our analysis.

Information related to the individual pharmacists is summarized in Table 5. Employee

pharmacists at independent pharmacies work fewer hours than the employee pharmacists at

chain pharmacies, and hourly earnings are lower than those of the employees at the chains.

Pharmacists in managerial positions at independent pharmacies work more hours than do

managers at chain pharmacies, but they have lower hourly earnings on average.

We observe only one pharmacy in each local labor market, which is defined as the 5-digit

zip code area.13 Hence, we need to use the version of our estimator that goes across local

markets for identification.

We test whether the observed labor inputs are indeed the optimal choice of firms. If the

inputs are optimally chosen, the coefficients can be directly estimated from equation 15 in

Appendix A. Under the assumption of Cobb-Douglas production, we can test the optimality

by jointly testing the null hypothesis of unity of both coefficients on the observed wage

and input. Table 6 shows the test result. A formal Wald test rejects the null hypothesis

of optimality. Thus the direct inversion of the optimality conditions cannot be applied to

estimate the production function; whereas our matched estimator can be applied.

We implement two versions of our matched TSLS estimator using two slightly different

matching algorithms. First, we estimate the expectation of output conditional on local

wages. Second, we estimate the expectation of output conditional on local demand shifters.

We implement these two estimators for the pooled sample and the two subsamples of chains

and independent pharmacies. Table 7 summarizes our findings. We report the estimated

parameters of the Cobb-Douglas production function as well as the estimated standard errors.

In addition, we report standard F-statistics for the first stage of the TSLS estimator to test

13We only observe the wage for the observed type. Thus, wages are imputed for the unobserved type using
local demand shifters in 5-digit zip code levels and pharmacists’ characteristics. We use actual wages for the
observed position and imputed wages for both positions together with principal components of local demand
shifters as instruments.
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for weak instruments. Overall, we find that our instruments are sufficiently strong in most

cases.

As discussed in Section 2 of this paper, we can also estimate the production function using

expected outputs as the dependent variable. Since the observed output is subject to a

measurement error, this semi-parametric estimator offers the potential of some efficiency

gains. Table 8 reports our findings for this version of our estimator.

Table 7: Estimation Result

Independent Chain
Wages Local Wages Local

Demand Shifters Demand Shifters

α0 5.447 4.711 2.504 -1.186
(0.597) (0.711) (1.790) (4.227)

α1 0.227 0.230 0.819 1.743
(0.122) (0.090) (0.454) (1.147)

α2 0.090 0.285 0.409 0.489
(0.071) (0.123) (0.191) (0.278)

Nobs 144 144 188 188
First-stage F for h1 9.320 5.234 11.774 1.747

p-val (0.000) (0.000) (0.000) (0.074)
First-stage F for h2 13.648 9.807 3.630 3.528

p-val (0.000) (0.000) (0.000) (0.000)

Table 8 shows that we estimate all parameters of the production function with good pre-

cision. Correcting for potential measurement error by using the expected output as the

dependent variable, we achieve similar, maybe even slightly more plausible estimates as

shown in Table 8. The estimator that imputes missing values based on local demand con-

ditions performs slightly better in our application than the estimator that just uses wages.

This might be because we need to impute wages for missing observations as discussed above.

Our results indicate that chains may have a different production function than independent

pharmacies. A formal joint hypothesis test rejects the null hypothesis that the coefficients

of the production function are the same. The result also suggests that managers may be

more effective in chains than independents. A formal Wald test rejects the null hypothesis

that the two coefficients that characterize managerial efficiency are the same. Additionally,

we do find that chains have a significantly lower residual variance than independents. We

thus conclude that chains have different production functions than independent pharmacies
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Table 8: Estimation Result With Expected Output As Dependent Variable

Independent Chain
Wages Local Wages Local

Demand Shifters Demand Shifters

α0 5.857 6.023 3.634 2.992
(0.331) (0.369) (1.060) (1.598)

α1 0.163 0.085 0.687 0.815
(0.057) (0.042) (0.268) (0.432)

α2 0.047 0.085 0.250 0.297
(0.051) (0.065) (0.105) (0.106)

Nobs 144 144 188 188
First-stage F for h1 9.320 5.234 11.774 1.747

p-val (0.000) (0.000) (0.000) (0.074)
First-stage F for h2 13.648 9.807 3.630 3.528

p-val (0.000) (0.000) (0.000) (0.000)

which may partially explain the change in the observed market structure of that industry.

However, more research is needed to fully address this question.

5 Second Application: Achievement and Parental In-

vestments

Our second application focuses on the estimation of education production functions. Here

we assume that child’s achievement qi is a function of the mother’s and father’s time inputs,

denoted by hmi and hfi. Again, we consider a log-linear Cobb-Douglas specification given

by

qi = αi + αm hmi + αf hfi + ui (12)

where heterogeneity in intercept is given by:

αi = x′i α0 (13)

Hence, we assume that baseline productivity αi varies with family characteristics, such as

family income. As before, we can estimate the education production function using TSLS

with wages as instruments for inputs as well as our matched TSLS estimator if some inputs

are missing.
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Our data is based on the four available waves of the Child Development Supplement (CDS).

These are the cohorts interviewed in 1997, 2002-3, 2007, and 2014.14 For these children, we

have detailed time usage information of their parents on two days, each of which is randomly

selected among weekdays and weekends, respectively. Based on this time diary information,

we can construct time inputs for mothers and fathers.15 The CDS information can be linked

to the original PSID survey using the family ID. Hence we have detailed parental information

such as education level, household income, and the number of children.

The CDS collects multiple measures of child development including both cognitive and non-

cognitive skills. We focus on two important cognitive tests. First, we study the passage

comprehension test which assesses reading comprehension and vocabulary among children

aged between 6 and 17. Second, we analyze the applied problems test which assesses math-

ematics reasoning, achievement, and knowledge for children aged between 6 and 17.16

We begin by estimating an education production function using the subsample of children

who live in married households. Here we observe both mother’s and father’s inputs directly

from the data. We observe 3,236 children with complete inputs and applied problem scores

and 2,789 children with complete inputs and reading comprehension scores. Table 9 provides

descriptive statistics of the main variables in this sample.

We can estimate the model using the traditional TSLS estimator. We compare these esti-

mates with our matched TSLS which is based on a sample in which we randomly omit one of

the two inputs. This exercise allows us to compare the performance of both estimators when

there is no latent input problem. Here we restrict our attention to married couples with both

spouses living together. We exclude families with more than 5 children. As instruments for

time inputs we use education, employment status, hourly wage, age of children. To preserve

the representativeness of our sample, we use the child-level survey weight for all analyses.

Household labor income is in 10,000 dollars. Table 10 summarizes our findings.

Overall, our empirical findings are reasonable. We find that investments in child quality

decrease with the number of children in the family and increase with household income,

as expected. Both parental time inputs are positive and typically statistically significant

14The CDS 1997 cohort consists of up to 12-year-old children and follows them for 3 waves (1997, 2001,
2007). The CDS 2014 cohort consists of children that were up to 17 years old in 2013.

15We exclude families with stepmother and stepfather from our sample.
16We also analyzed the letter word test which assesses symbolic learning and reading identification skills.

There are also two non-cognitive measures. The externalizing behavioral problem index measures disruptive,
aggressive, or destructive behavior. The internalizing behavioral problem index measures expressions of
withdrawn, sad, fearful, or anxious feelings.
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Table 9: Summary Statistics of CDS Sample

Married Sample Divorced Sample

Applied Problem Score (Standardized) 107.58 101.28
(16.63) (16.92)

Passage Comprehension Score (Standardized) 105.89 99.48
(14.77) (14.49)

Mother’s Time Input 20.77 15.18
(14.32) (14.06)

Father’s Time Input 13.87 4.34
(11.96) (13.81)

Total Number of Child In Family 2.17 2.1
(0.9) (0.9)

Child’s Age At Interview 9.68 11.37
(4.74) (4.44)

Total Household Labor Income (in 2011 Dollar) 68941 24158
(55732) (28616)

Mother’s Age 37.05 37.3
(7.27) (6.85)

Father’s Age 39.1 38.81
(7.7) (8.8)

Mother’s Years of Education 13.51 12.92
(2.57) (1.97)

Father’s Years of Education 13.38 12.97
(3.21) (1.9)

Prop of Living With Mother - 0.88
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Table 10: Education Production Function: Married Sample

Dependent variable:
Applied Problems Passage Comprehension

TSLS matched TSLS TSLS matched TSLS

Constant 4.510 4.484 4.321 4.380
(0.017) (0.026) (0.026) (0.223)

Num Child = 2 −0.011 0.034 −0.051 −0.097
(0.008) (0.020) (0.013) (0.150)

Num Child = 3+ 0.008 0.077 −0.030 −0.059
(0.009) (0.026) (0.014) (0.152)

Household Labor Inc 0.008 0.006 0.010 0.009
(0.001) (0.002) (0.001) (0.017)

Mom Hour 0.016 0.027 0.100 0.098
(0.008) (0.002) (0.012) (0.033)

Dad Hour 0.032 0.021 0.017 0.006
(0.007) (0.007) (0.009) (0.040)

Nobs 3,236 3,236 2,789 2,789
First-stage F for hm 61.997 127.295 41.812 58.530
First-stage F for hf 62.636 117.966 58.654 59.156
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Table 11: Education Production Function: Divorced Sample

Dependent variable:
Applied Problems Passage Comprehension

matched TSLS matched TSLS

Constant 4.548 4.529
(0.127) (0.061)

Num Child = 2 0.051 0.019
(0.088) (0.039)

Num Child = 3+ 0.002 −0.015
(0.112) (0.066)

Household Labor Inc −0.013 −0.006
(0.030) (0.004)

Mom Hour 0.050 0.037
(0.044) (0.015)

Dad Hour 0.010 0.001
(0.025) (0.003)

Nobs 785 723
First-stage F for hm 40.532 35.264
First-stage F for hf 35.633 33.070

and economically meaningful. Comparing the TSLS with our matched TSLS estimator, we

find that the results are remarkably similar, especially for the passage comprehension test.

The results for the applied problem test are also encouraging although the differences in

the estimates are slightly larger. Qualitatively, we reach the same conclusions with both

estimators. We thus conclude that our matched TSLS performs well in this sample.

Next, we consider the subsample that consists of households that self-reported to be either

divorced or separated. We exclude “single” households for obvious reasons. In these house-

holds, one of the parents is not living in the child’s household. We typically do not observe

time inputs for these divorced parents. For the applied problem (passage comprehension)

score we observe 785 (723) children with the mother’s input. There are 103 (92) observations

where we have the father’s input, which we use for imputation purposes.17 Note that the

standard TSLS is no longer feasible in this subsample because of the latent variable problem.

Table 11 summarizes our findings.

17Missing instruments for the unobserved spouse are imputed using standard techniques based on the
observed spouse’s information.
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Table 11 shows that the time inputs for fathers and mothers are positive, statistically signifi-

cant, and economically meaningful. Moreover, the point estimates are similar to the ones we

obtained for the married sample reported in Table 10. The main difference is that mother’s

and father’s time inputs are slightly less productive for children from divorced families. In

summary, our estimator seems to work well in this application as well and yields plausible

and accurate point estimates for most coefficients of interest.

6 Conclusions

We have developed a new method that allows us to estimate production functions when

inputs are partially latent. We propose to use a matching algorithm to impute the missing

input. The parameters of the production function can then be estimated using a matched

TSLS estimator that accounts for the endogeneity of inputs. We have established the asymp-

totic normality of two versions of our proposed estimators under high-level and low-level

conditions, and showed that using the estimated conditionally expected output leads to effi-

ciency gains over using the raw output in the final-step IV regression. We have shown that

the estimator performs well in Monte Carlo experiments, even if sampling conditions are not

ideal. We consider the case in which we need to go across markets for identification and the

situation in which other missing variables need to be imputed as well.

We have also shown that our estimator performs well in two new applications. First, we have

estimated the production function of two different types of pharmacies. We consider the case

in which pharmacies have two types of labor inputs: managerial and regular pharmacists.

Our application is motivated by the observation that pharmacies used to be primarily domi-

nated by local independent firms. More recently, the market structure has been transformed

by the entry of large chains that operate in multiple markets. We have studied whether this

change in market structure has been driven by differences in technology available to chains

and independents. We find some convincing evidence that chains have different technologies

than independently operated pharmacies.

Our second application focuses on the estimation of education production functions which

play a large role in labor and family economics. We have shown that our matched TSLS

estimator produces similar results to the regular TSLS estimator in a sample of children in

married households, where both parental inputs are observed. We have also considered a

sample of children from divorced households where father’s inputs have to be imputed. We
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find that our matched TSLS estimator produces insightful estimates in that sample as well.

This paper provides ample scope for future research. We discussed in Section 2.3 that our

estimator can be extended to allow for functional form assumptions than the standard Cobb-

Douglas Case. Moreover, it may be possible to incorporate dynamic input considerations and

richer error structure in the production function than we have considered thus far. Finally,

we think that our estimator will also turn out to be fruitful in many other applications.

In particular, our approach seems to be most promising for firms with a small number of

workers who perform different tasks.
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A The Cobb-Douglas Case with Optimal Inputs

Suppose that firm i chooses inputs optimally by solving the following (expected) profit-

maximization problem:

max
H1i,H2i

eα0Hα1
1i H

α2
2i e

ui −W1iH1i −W2iH2i, (14)

By the first-order conditions,

H1i = e
α0+ui

1−α1−α2

(
W1i

α1

) 1−α2
α1+α2−1

(
W2i

α2

) α2
α1+α2−1

H2i = e
α0+ui

1−α1−α2

(
W2i

α2

) 1−α1
α1+α2−1

(
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α1

) α1
α1+α2−1

Qi = e
α0+ui

1−α1−α2

(
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α1

) α1
α1+α2−1

(
W2i

α2

) α2
α1+α2−1
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α1W2i

)α2

H
α1+α2
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α1W2i
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2i

In log forms

h1 (ui, wi) =
α0 + (1− α2) logα1 + α2 logα2

1− α1 − α2

− 1− α2

1− α1 − α2

w1i −
α2

1− α1 − α2

w2i +
1

1− α1 − α2

ui

h2 (ui, wi) =
α0 + α1 logα1 + (1− α1) logα2

1− α1 − α2

− α1

1− α1 − α2

w1i −
1− α1

1− α1 − α2
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q (ui, wi) =
α0 + α1 logα1 + α2 logα2

1− α1 − α2

− α1

1− α1 − α2

w1i −
α2

1− α1 − α2

w2i +
1

1− α1 − α2

ui

= α0 + α2 log (α2/α1) + (α1 + α2)h1 (ui, wi) + α2w1i − α2w2l + ui

= α0 + α1 log (α1/α2) + (α1 + α2)h2 (ui, wi)− α1w1i + α1w2l + ui

Taking inverses

ui = h−11 (h1i, wi) := − [α0 + (1− α2) logα1 + α2 logα2] + (1− α1 − α2)h1i + (1− α2)w1i + α2w2i

= h−12 (h2i, wi) := − [α0 + α1 logα1 + (1− α1) logα2] + (1− α1 − α2)h2i + α1w1i + (1− α1)w2i

Hence,

γ1 (h1i, wi) = q
(
h−11 (h1i, wi) , wi

)
= − logα1 + h1i + w1i,

γ2 (h2i, wi) = q
(
h−12 (h2i, wi) , wi

)
= − logα2 + h2i + w2i,
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and

qi = γ1 (h1i, wi) + εi =− logα1 + h1i + w1i + εi

= γ2 (h2i, wi) + εi =− logα2 + h2i + w2i + εi. (15)

It is then evident that α1 or α2 can be estimated directly from 15 from the corresponding

subsample where h1i or h2i is observed.

B Proofs

B.1 Additional Notation and Lemmas

Notation For each i, we use hji to denote the observed input and use hki to denote the

latent input variable for firm i, i.e.

hji = h1i, hki = h2i, for di = 1,

hji = h2i, hki = h1i, for di = 2.

We write

di1 := 1 {di = 1} ,

di2 := 1 {di = 2} ,

so that hji = di1h1i + di2h2i while hki := di1h2i + di2h1i.

We write hi := (1, h1i, h2i)
′

to denote the true regressor vector. (Recall h̃i denotes the same

regressor vector with imputed latent input ĥki in place of hki.)

Moreover, we suppress the wage variables w in functions such as γ1 (u,w) and γ2 (u,w),

unless it becomes necessary to emphasize the dependence of such functions on w.

Lemma 1. Under Assumption 6, if ‖γ̂k − γk‖∞ = Op (an), then
∥∥γ̂−1k − γ−1k ∥∥∞ = Op (an)

and
∣∣∣ĥki − hki∣∣∣ = Op (an).

Proof. By Assumption 6 we have

c |u1 − u2| ≤ |γk (u1)− γk (u2)|
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For any v ∈ Range (γk),∣∣γ̂−1k (v)− γ−1k (v)
∣∣ ≤ 1

c
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(
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c
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Furthermore, observing that

c
∣∣γ−1k (v1)− γ−1k (v2)

∣∣ ≤ ∣∣γk (γ−1k (v1)
)
− γk

(
γ−1k (v2)

)∣∣ = |v1 − v2|

we have by Assumption 6 and Lemma 1, for di = 1,∣∣∣ĥki − hki∣∣∣ =
∣∣γ̂−1j (γ̂k (hki))− γ−1j (γk (hki))

∣∣
=
∣∣γ̂−1j (γ̂k (hki))− γ−1j (γ̂k (hki)) + γ−1j (γ̂k (hki))− γ−1j (γk (hki))

∣∣
≤
∣∣γ̂−1j (γ̂k (hki))− γ−1j (γ̂k (hki))

∣∣+
∣∣γ−1j (γ̂k (hki))− γ−1j (γk (hki))

∣∣
≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
|γ̂k (hki)− γk (hki)|

≤
∥∥γ̂−1j − γ−1j ∥∥∞ +

1

c
‖γ̂k − γk‖∞

= Op (an) . (16)

Lemma 2. Under Assumption 6:

(i) The pathwise derivative of γ−1k w.r.t. γk along τk ∈ Γ is given by

∇γkγ
−1
k [τk] := lim

t↘0

(γk + tτk)
−1 (v)− γ−1k (v)

t
= −

τk
(
γ−1k (v)

)
γ
′
k

(
γ−1k (v)

) .
(ii) The pathwise derivative of γ−1k (γj (·)) w.r.t. γj along τj ∈ Γ is given by

∇γj

(
γ−1k ◦ γj

)
[τj] := lim

t↘0

γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
(
γ−1k
)′

(γj (x)) τj (x) =
1

γ
′
k

(
γ−1k (γj (x))

)τj (x) .

(iii) The second-order derivatives have bounded norms:

∇2
γk
γ−1k [τk] [τk] ≤M ‖τk‖2

∇2
γj

(
γ−1k ◦ γj

)
[τj] [τj] ≤M ‖τk‖2

Proof. (i) and (ii) follow immediately from the definition of pathwise derivatives. See, e.g.,
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Lemma 3.9.20 and 3.9.25 in Van Der Vaart and Wellner (1996) for reference. For (iii),

∇2
γk
γ−1k [τk] [νk] =

τ
′

k

(
γ−1k
)

γ
′
k

(
γ−1k
) · νk (γ−1k )

γ
′
k

(
γ−1k
) − τk

(
γ−1k
)[

γ
′
k

(
γ−1k
)]2
[
γ
′′

k

(
γ−1k
)

+
1

γ
′
k

(
γ−1k
)] νk (γ−1k )

≤M ‖τk‖ ‖νk‖

since γ
′

k ≥ c > 0 by Assumption 6 and γ
′′

and τ
′

k are uniformly bounded above by Assumption

7(i). Similarly for ∇2
γj

(
γ−1k ◦ γj

)
.

Lemma 3. Writing γ := (γ1, γ2), the pathwise derivative of γ−1k ◦γj w.r.t. γ along τ is given

by

∇γ

(
γ−1k ◦ γj

)
[τ ] := lim

t↘0

(γk + tτk)
−1 (γj (x) + tτj (x))− γ−1k (γj (x))

t

=
1

γ
′
k

(
γ−1k (γj (x))

) [τj (x)− τk
(
γ−1k (γj (x))

)]
Proof. By Lemma 2,

1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x))
]

=
1

t

[
(γk + tτk)

−1 (γj (x) + tτj (x))− γ−1k (γj (x) + tτj (x))
]

+
1

t

[
γ−1k (γj (x) + tτj (x))− γ−1k (γj (x))

]
→ ∇γkγ

−1
k [τk] (γj (x)) +∇γj

(
γ−1k ◦ γj

)
[τj]

= −
τk
(
γ−1k (γj (x))

)
γ
′
k

(
γ−1k (γj (x))

) +
1

γ
′
k

(
γ−1k (γj (x))

)τj (x)

=
1

γ
′
k

(
γ−1k (γj (x))

) (τj (x)− τk
(
γ−1k (γj (x))

))

B.2 Proof of Theorem 2(i)

Proof. We verify the conditions in Lemma 5.4 of Newey (1994), or equivalently, Theorems

8.11 of Newey and McFadden (1994).
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Recall zi := (qi, wi, hi, di), γ := (γ1, γ2) and

g (z, α̂, γ̂) =wi
(
qi − α̂0 −

(
h1iα̂1 + γ̂−12 (γ̂1 (h1i)) α̂2

)
di1 −

(
h2iα̂2 + γ̂−11 (γ̂2 (h2i)) α̂2

)
di2
)

=wi
(
qi − α̂0 − hjiα̂j − γ̂−1k (γ̂j (hji)) α̂k

)
g (z, γ̂) =wi

(
qi − α0 −

(
h1iα1 + γ̂−12 (γ̂1 (h1i))α2

)
di1 −

(
h2iα2 + γ̂−11 (γ̂2 (h2i))α2

)
di2
)

=wi
(
qi − α0 − hjiαj − γ̂−1k (γ̂j (hji))αk

)
=wi

(
ui + εi +

[
hki − γ̂−1k (γ̂j (hji))

]
αk
)

Clearly, E [g (zi, γ)] = E [wi (ui + εi)] = 0 by Assumptions 3 and 4. Moreover, 1
N

∑N
i=1 g (z, α̂, γ̂) =

0 by the definition of α̂.

Now, define

G (zi, γ̂ − γ) := ∇γg (z, γ) [γ̂ − γ]

= −αkwi∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

=
−αkwi

γ
′
k

(
γ−1k (γj (hji))

) [(γ̂j − γj) (hji)− (γ̂k − γk)
(
γ−1k (γj (hji))

)]
= − αkwi

γ
′
k (hki)

[γ̂j (hji)− γj (hji)− γ̂k (hki) + γk (hki)] since γ−1k (γj (hji)) = hki

= di1wi

(
−α2

γ
′
2

)
(1,−1)

(
γ̂1 − γ1
γ̂2 − γ2

)
+ di2wi

(
−α1

γ
′
1

)
(−1, 1)

(
γ̂1 − γ1
γ̂2 − γ2

)

= −wi
(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) (17)

By Lemma 2(iii) and Lemma 3, we deduce

‖g (z, γ̂)− g (z, γ)−G (z, γ̂ − γ)‖ = Op

(
‖γ̂ − γ‖2∞

)
= op

(
1√
N

)
given our assumption that ‖γ̂ − γ‖∞ = op

(
N−1/4

)
.

Next, the stochastic equicontinuity condition

1√
N

N∑
i=1

(
G (z, γ̂ − γ)−

∫
G (z, γ̂ − γ) dP (z)

)
= op

(
1√
N

)
(18)

is guaranteed by Assumptions 6 and 7. Specifically, γ̂ − γ belongs to a Donsker class of

functions by the smoothness assumption while 1/γ
′

k (hki) ≤ 1/c guarantees that G (zi, ·) is

square-integrable, so that G (zi, ·) is also Donsker and thus (18) holds.

Now, write

xi := (hi, wi)
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so that zi = (qi, xi, di). Then we have∫
G (zi, γ̂ − γ)Pzi

=

∫
−wi

(
di1
α2

γ
′
2

− di2
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dP (xi, di)

=

∫
−wi

([∫
di1dP (di|xi)

]
α2

γ
′
2

−
[∫

di2dP (di|xi)
]
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPxi

=

∫
−wi

(
λ1 (xi)

α2

γ
′
2

− λ2 (xi)
α1

γ
′
1

)
(1,−1) (γ̂ − γ) dPxi

By Proposition 4 of Newey (1994), with

ϕ (zi) := −
(
λ1
α2wi
γ
′
2

− λ2
α1wi
γ
′
1

)
(di1 − di2)

we have

wi

(
λ1
α2

γ
′
2

− λ2
α1

γ
′
1

)
(1,−1)

(
di1 (qi − γ1 (h1i))

di2 (qi − γ2 (h2i))

)
≡ ϕ (zi)wiεi,

and by Assumption 8∫
G (z, γ̂ − γ) dP (z) =

1

N

N∑
i=1

ϕ (zi)wiεi + op

(
1√
N

)
.

Hence, Lemma 5.4 of Newey (1994),

1√
N

N∑
i=1

g (zi, γ̂) =
1√
N

N∑
i=1

[g (zi, γ) + ϕ (zi)wiεi] + op (1)
d−→ N (0,Ω) ,

where

Ω :=Var [g (zi, γ) + ϕ (zi)wiεi]

=E
[
wiw

′

i (ui + [1 + ϕ (zi)] εi)
2
]

= E
[
wiw

′

i

(
u2i + [1 + ϕ (zi)]

2 ε2i
)]

Lastly, by Lemma 1∣∣∣∣∣ 1n
n∑
i=1

wi

(
ĥ1i − h1i

)∣∣∣∣∣ ≤ 1

n

n∑
i=1

|wi|
∣∣∣ĥ1i − h1i∣∣∣ ≤ Op (an) · 1

n

n∑
i=1

|wi| = Op (an) = op (1)

and thus

1

N

N∑
i=1

wih̃
′

i = E
[
wih

′

i

]
+

1

N

N∑
i=1

wi

(
h̃i − hi

)′
+

1

N

N∑
i=1

(
wih

′

i − E
[
wih

′

i

])
= E

[
wih

′

i

]
+Op (aN) +Op

(
1√
N

)
p−→ Σwh := E

[
wih

′

i

]
.
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Hence,

√
N (α̂− α) =

(
1

N

N∑
i=1

wih̃i

)−1
1√
N

N∑
i=1

g (zi, γ̂)
d−→ N

(
0,Σ−1whΩΣ

′−1
wh

)
.

B.3 Proof of Theorem 2(ii)

Proof. We adapt the proof of Theorem 2(i) above with

g∗ (z, α̂, γ̂) :=wi
(
γ̂j (hji)− α̂0 − α̂jhji − α̂kγ̂−1k (γ̂j (hji))

)
,

g∗ (z, γ̂) :=wi
(
γ̂j (hji)− α0 − αjhji − αkγ̂−1k (γ̂j (hji))

)
.

with E [g∗ (zi, γ)] = E
[
wi
(
γj (hji)− α0 − αjhji − αkγ−1k (γj (hji))

)]
= E [wiui] = 0 and

1
N

∑N
i=1 g (z, α̂∗, γ̂) = 0.

By the chain rule,

G∗ (zi, τ) :=∇γg
∗ (z, γ) [γ̂ − γ]

=wi
(
[γ̂j (hji)− γj (hji)]− αk∇γ

(
γ−1k ◦ γj

)
[γ̂ − γ]

)
=wi

(
1− αk

γ
′
k (hki)

)
[γ̂j (hji)− γj (hji)]− wi

αk
γ
′
k (hki)

[γ̂k (hki)− γk (hki)]

=wi

[
di1

(
1− α2

γ
′
2

,−α2

γ
′
2

)
+ di2

(
−α1

γ
′
1

, 1− α1

γ
′
1

)]
(γ̂ − γ)

and∫
G (zi, γ̂ − γ)Pzi =

∫
wi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
(γ̂ − γ) dPxi

By Proposition 4 of Newey (1994), with

ϕ∗ (zi) := −
(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))
di2

we have

wi

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

, λ1
α2

γ
′
2

+ λ2

(
1− α1

γ
′
1

))(
di1 (qi − γ1 (h1i))

di2 (qi − γ2 (h2i))

)
≡ ϕ∗ (zi)wiεi,

and by Assumption 8∫
G (z, γ̂ − γ) dP (z) =

1

N

N∑
i=1

ϕ∗ (zi)wiεi + op

(
1√
N

)
.
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Hence, we have

1√
N

N∑
i=1

g∗ (zi, γ̂) =
1√
N

N∑
i=1

[g∗ (zi, γ) + ϕ∗ (zi)wi] + op (1)
d−→ N (0,Ω∗) ,

where

Ω := Var [g∗ (zi, γ) + δ∗ (zi)] = E
[
wiw

′

i

(
u2i + ϕ∗ (zi)

2 ε2i
)]
,

giving

√
N (α̂− α) =

(
1

N

N∑
i=1

wih̃i

)−1
1√
N

N∑
i=1

g∗ (zi, γ̂)
d−→ N

(
0,Σ−1whΩ

∗Σ
′−1
wh

)
.

B.4 Proof of Theorem 2(iii)

Proof. By (5), we have

∂

∂c
γj (c;w) = αj + αkh

′

k

1

h
′
j

+
1

h
′
j

> αj,

and thus 0 < αj/γ
′
j < 1, which implies

λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

> 0, λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

> 0.

Hence,

ϕ∗ =

(
λ1

(
1− α2

γ
′
2

)
+ λ2

α1

γ
′
1

)
di1 +

(
λ2

(
1− α1

γ
′
1

)
+ λ1

α2

γ
′
2

)
di2 > 0

1 + ϕ = 1−
(
α2

γ
′
2

λ1 −
α1

γ
′
1

λ2

)
(di1 − di2)

=

(
1− λ1

α2

γ
′
2

+ λ2
α1

γ
′
1

)
di1 +

(
1− λ2

α1

γ
′
1

+ λ1
α2

γ
′
2

)
di2

= ϕ∗ + (1− λ1) di1 + (1− λ2) di2
> ϕ∗ > 0.

Hence, (1 + ϕ)2 > ϕ∗2 > 0 and

Ω− Ω∗ = E
[
wiw

′

i

[
(1− ϕ (xi, di))

2 − ϕ∗ (xi, di)
2] ε2i ]

is positive definite.
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B.5 Proof of Propositions 1 and 2

Proof. Assumption 9(i) guarantees that N1 ∼ N2 ∼ N so that

‖γ̂1 − γ1‖∞ ∼ ‖γ̂2 − γ2‖∞ = Op (aN)

where, by Assumption 9(ii)-(v) and Theorem 8 of Hansen (2008),

aN = bp +

√
logN√
Nb3

.

With b chosen according to Assumption 9(vi) so that
√
logN√
Nb3

= o
(
N−

1
4

)
and
√
Nbp → 0,

implying that

aN = o
(
N−

1
2

)
+ o

(
N−

1
4

)
= o

(
N−

1
4

)
,

verifying Assumption 7(ii). Assumption 8 (and consequently Proposition 1) follows from

Theorem 8.11 of Newey and McFadden (1994).

Since ϕ̂
p−→ ϕ and ϕ̂∗

p−→ ϕ∗, Proposition 2 then follows from Theorem 8.13 of Newey and

McFadden (1994).
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