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1 Introduction

We derive a canonical representation for a broad class of block matrices, that includes block covariance

matrices. A special case of particular interest are block correlation matrices. The representation is

a semi-spectral decomposition of block matrices, that are diagonalized with the exception of a single

diagonal block, whose dimension is given by the number of blocks.

The canonical representation facilitates simple computations of several matrix functions, such as

the matrix inverse, the matrix exponential, and the matrix logarithm. Consequently, the decomposition

greatly simplifies the evaluation of Gaussian log-likelihood functions when the covariance matrix, or

the correlation matrix, has a block structure.

We contribute to the literature on block correlation models by providing simple expressions for the

inverse of any (invertible) block correlation matrix, as well as a simple expression for its determinant.

This greatly eases the computational burden in the evaluation of a Gaussian (quasi-) log-likelihood

function. The results apply to block correlation matrices with an arbitrary number of blocks. For block

correlation matrices with two blocks, an expression for its inverse was obtained in Engle and Kelly

(2012, lemma 2.3), and related results can be found in Viana and Olkin (1997).

As a preview of some of the results in this paper, one can consider the following n × n correlation

matrix,

C =





















1 ρ · · · ρ

ρ 1
. . .

...
...

. . .
. . . ρ

ρ · · · ρ 1





















.

This correlation matrix is known as an equicorrelation matrix, and it is well known that its eigenvalues

are 1+ρ(n−1) and 1−ρ, where the latter has multiplicity n−1. This follows directly from the spectral

decomposition,

Q′CQ = D =







1 + ρ(n − 1) 0

0 (1 − ρ)In−1






, (1)

where Q is an orthonormal matrix, so that Q′Q = In. Here In denotes the n × n identity matrix. The

matrix Q is given by Q = (vn, vn⊥), where vn is the n-dimensional vector, vn = ( 1√
n

, . . . , 1√
n

)′, and vn⊥

is an n× (n−1) matrix that is orthogonal to vn, i.e. v′
n⊥vn = 0, and orthonormal, i.e. v′

n⊥vn⊥ = In−1.1

It can now be verified that QQ′ = I, so that Q is orthonormal and C = QQ′CQQ′ = QDQ′. In this

1When n = 1, v1⊥ is an 1 × 0 “matrix” and we use the conventions: v′
1⊥v1⊥ = ∅ (dimension 0 × 0) and v1⊥v′

1⊥ = 0
(dimension 1 × 1). This ensures that our expressions also hold in the special case, where one or more blocks has size one.
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example, the matrix, D, is the canonical form of C, which is obtained via a rotation of C, where the

rotation does not depend on ρ. In this example, where K = 1, D coincides with the diagonal matrix of

eigenvalues in the spectral decomposition of C.

In this paper, we derive a similar decomposition for a broad class of block matrices that includes

block covariance matrices and block correlation matrices. In the general case with multiple blocks,

K ≥ 2, the canonical representation does not fully disentangle all eigenvalues, and some eigenvalues

may be complex-valued. The canonical representation decomposes any block matrix into a K × K

matrix and n − K real-valued eigenvalues, where K is the number of blocks. We can illustrate the

general results with a 2 × 2 block correlation matrix,

C =







Cρ11 ρ211n1×n2

• Cρ22







where Cρ11 and Cρ22 are equicorrelation matrices with correlations ρ11 and ρ22, respectively, and di-

mensions n1 × n1 and n2 × n2 respectively, and 1n1×n2 is the n1 × n2 whose elements are all equal to

one. Now define

Q =







vn1 0 vn1⊥ 0

0 vn2 0 vn2⊥






.

For the equicorrelation matrix, we now have the following representation,

Q′CQ =





















1 + ρ11(n1 − 1) ρ12
√

n1n2 0 0

ρ12
√

n1n2 1 + ρ22(n2 − 1) 0 0

0 0 (1 − ρ11)In1−1 0

0 0 0 (1 − ρ22)In2−1





















. (2)

We denote the upper-left 2 × 2 matrix by A. In general, A will be a K × K matrix, whose eigenvalues

are also eigenvalues of C. The general result for block matrices with K blocks will be presented in

Theorem 1, with a structure similar to that in (2). An important feature is that the matrix Q does not

depend on the elements in block matrix, but is solely determined by the block partition, (n1, . . . , nK),

where n = n1 + · · · + nK .

The canonical representation is obtained for general block matrices that need not be symmetric,

nor positive semidefinite. In fact, our results are applicable to non-square matrices. Block covariance

matrices and block correlation matrices are interesting special cases. For block correlation matrices,

the A-matrix, which emerges in (2), was previously established in Huang and Yang (2010) and Cadima
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et al. (2010), as we will discuss in Section 3. We derive additional results for block correlation matrices

that simplify the evaluation of the log-likelihood function.

The rest of this paper is organized as follows. We present the main result in Section 2, where the

canonical representation is established for a broad class of block matrices, along with some related

results for the matrix exponential, matrix logarithm of block matrices, and matrix powers, including

the matrix inverse. In Section 3, we consider the special case with block covariance matrices and

block correlation matrices. Many of these results are useful for maximum likelihood estimation with

a Gaussian log-likelihood function, as we show in Section 4. In Section 5, we apply the results to

estimation of block covariance matrices for a very large panel of daily stock returns. We conclude in

Section 6 and all proofs are presented in the Appendix.

2 Canonical Representation of Block Matrices

Let B be a square n × n matrix. The extension to rectangular matrices, which is trivial, will be

addressed in the end of this section. The matrix, B, is called a block matrix with block partition,

n1, . . . , nK , if it can be expressed as:

B =





















B[1,1] B[1,2] · · · B[1,K]

B[2,1] B[2,2]

...
. . .

B[K,1] B[K,K]





















,

where B[i,j] is an ni × nj matrix with the following structure

B[i,i] =





















di bii · · · bii

bii di
. . .

...
. . .

. . .

bii di





















and B[i,j] =













bij · · · bij

...
. . .

bij bij













if i 6= j, (3)

for some constants, di and bij, i, j = 1, . . . , K. So the diagonal elements of the diagonal blocks, B[i,i],

can take a different value than the off-diagonal elements, whereas all elements in an off-diagonal block,

B[i,j], i 6= j, are identical.

We introduce the following notation that relates to orthogonal projections. Let P[i,j] = vni
v′

nj
be

the ni × nj matrix whose elements are all equal to 1√
ninj

. It is simple to verify that P[i,k]P[k,j] = P[i,j],
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and with i = k = j it follows that P[i,i]P[i,i] = P[i,i], so that P[i,i] is a projection matrix. It then follows

that P ⊥
[i,i] = Ini

− P[i,i] is a projection matrix, and it can be verified that P ⊥
[i,i] = vni⊥v′

ni⊥, where the

matrix, vn⊥, was characterized in the introduction.

Finally, we define the n × n matrix

Q =





















vn1 0 · · · vn1⊥ 0 · · · 0

0 vn2 0 vn2⊥
...

...
. . .

. . .

0 · · · vnK
0 · · · vnK⊥





















,

and observe that Q is an orthonormal matrix, characterized by the identity Q′Q = I. The first K

columns of Q can be used to form averages within each of the K blocks, whereas the remaining columns

of Q capture “differences” within each block. The two sets of columns span orthogonal subspaces that

correspond to distinct components of the block decomposition. Note that Q is solely defined by the

block partition, n1, . . . , nK , and it is therefore invariant to the actual values taken by the elements in

the block matrix.

Theorem 1. Suppose that B is a block matrix with block partition n1, . . . , nK . Then

B[i,j] = aijP[i,j] + 1{i=j}λiP
⊥
[i,i], for i, j = 1, . . . , K,

where aij = bij
√

ninj, for i 6= j, aii = di + (ni − 1)bii, and λi = di − bii. Moreover,

B = QDQ′, with D =





















A 0 · · · 0

0 λ1In1−1
. . .

...

...
. . .

. . . 0

0 · · · 0 λKInK−1





















. (4)

The matrix Q rotates B into its canonical form, D. The first K columns of Q span an eigenspace

of B, associated with the eigenvalues that A and B have in common. The last n − K columns of Q are

the remaining eigenvectors of B.

Theorem 1 can be used to characterize properties of B and simplifies the computation of some

transformations of B, including the matrix logarithm of B, which is denoted by log B. These results

are stated in the following Corollary:
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Corollary 1. Suppose that B is a block matrix as defined above. (i) The eigenvalues of B are given

by those of A as well as λi = di − bii, i = 1, . . . , K, and det B = det(A)λ
n1−1

1 · · · λnK−1
K . (ii) B is

invertible, if and only if A is invertible and di 6= bii, for all i = 1, . . . , K. (iii) The q-th power of the

block matrix, Bq, is well-defined whenever Aq and λq
i , i = 1, . . . , K, are well-defined, in which case Bq

has the same block structure as B, with blocks given by

Bq
[i,j] = a

(q)
ij P[i,j] + 1{i=j}λq

i P ⊥
[i,i],

where aq
ij is the ij-th element of Aq, for i, j = 1, . . . , K. (iv) The matrix exponential of B has the same

block structure as B, with blocks given by

exp(B)[i,j] = aexp
ij P[i,j] + 1{i=j}eλiP ⊥

[i,i],

where aexp
ij is the ij-th element of exp A, for i, j = 1, . . . , K. (v) If log A and log λi, i = 1, . . . , K, exist,

then log B has the same block structure as B, with blocks given by

log(B)[i,j] = alog
ij P[i,j] + 1{i=j} log λiP

⊥
[i,i],

where alog
ij is the ij-th element of log A.

It follows that Bq is well-defined for all positive integers of q, and the matrix inverse, B−1, exists

whenever A is invertible and λi 6= 0, for all i = 1, . . . , K, in which case Bd is also well-defined for other

negative integers of d. The logarithms, log A and log(dk − bkk), exist provided that A is invertible and

dk − bkk 6= 0. This may result in a complex-valued solution to the matrix logarithm. If a real-valued

solution is required, then the conditions are that A is positive definite and that dk − bkk > 0 for all

k = 1, . . . , K.

2.1 Block Matrices with Kronecker Representation

Many of the expressions can be simplified further, in the special case, where all block sizes are identical,

so that n1 = n2 = . . . = nK = n, with n = N/K. In this situation, we have B = A⊗P +Λ⊗P⊥, where

P is the n × n matrix with 1/n in all entries, P⊥ = In − P , and Λ = diag(λ1, . . . , λK). In this case, it

follows that h(B) = h(A)P +h(Λ)P⊥, where h(·) represents the matrix inverse, the matrix exponential,

or the matrix logarithm, provided these are well-defined.
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2.2 Rectangular Block Matrices

Suppose that B has blocks, B[i,j] ∈ R
ni×nj , as specified in (3), where i = 1, . . . , K1 and j = 1, . . . , K2,

and K1 6= K2, so that B is a non-square matrix. Set K = max(K1, K2) and suppose that K1 > K2.

Then, by appending blocks with zero elements to B, we obtain a square matrix, B̃ = (B, 0), which is

a block matrix with block partition, n1, . . . , nK . Our results apply to B̃, so that it has the canonical

form B̃ = QDQ′ and B = QDQ̃′, where Q̃ is made up of the first n1 + · · · + nK2 columns of Q. If

K2 > K1, we can instead define B̃ = (B′, 0)′, and the results follow similarly.

3 Block Correlation Matrices

A block correlation matrix is characterized by the correlation coefficients that form a block structure, so

that the correlation between two variables is solely determined by the blocks to which the two variable

belong. This results in a correlation matrix with a common correlation coefficient within each block.

Block correlation matrices offer a way to parameterize large covariance matrices in a parsimonious

manner, and can be used to impose economically relevant structures that reduce the complexity of the

covariance matrix. This structure is used in some multivariate GARCH models, see Engle and Kelly

(2012) and Archakov et al. (2020).

An n × n block correlation matrix, C, with K blocks, is a symmetric block matrix with blocks,

C[i,i] =





















1 ρii · · · ρij

ρii 1
. . .

...
. . .

. . .

ρii 1





















and for i 6= j, C[i,j] =













ρij · · · ρij

...
. . .

ρij ρij













, (5)

where ρii is within-block correlations, and ρij = ρji, i 6= j, are between-block correlations, for i, j =

1, . . . , K. For C to be a correlation matrix, we obviously need ρij ∈ [−1, 1] for all i, j = 1, . . . , K.

However, this alone is not sufficient to produce a valid correlation matrix, because negative eigenvalues

can arise with some combinations of correlation coefficients, even if these area all strictly smaller than

one.

The case with block equicorrelation matrices corresponds to the case where the diagonal elements

of all diagonal blocks, B[kk] equal dk = 1, for all k = 1, . . . , K. So Theorem 1 fully characterizes the

set of correlation coefficients that yields a positive (semi-) definite correlation matrix. We formulate

this result as a separate Corollary. Note that the canonical form, (4), for C in (5), is such that A is
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symmetric with elements given by aij = ρij
√

ninj, for i 6= j, aii = 1 + ρii(ni − 1), and λi = 1 − ρii.

Corollary 2 (Block correlation matrices). Let C be a block correlation matrix. Then

det C = det A ·
K
∏

i=1

(1 − ρii)
ni−1,

so that C is a non-singular block correlation matrix if and only if A is positive definite and |ρii| < 1.

In this case, both the inverse correlation matrix, C−1, and the matrix logarithm, log C, have the same

block structure as C, with blocks given by

C−1
[i,j] = a#

ijP[i,j] + 1{i=j}
1

1−ρii
P ⊥

[i,i],

and

log(C)[i,j] = ãijP[i,j] + 1{i=j} log(1 − ρii)P
⊥
[i,i],

respectively, where a#
ij is the ij-th element of A−1 and ãij is the ij-th element of log A.

The conditions for C in (5) to be a (possibly singular) correlation matrix is that A is positive semi-

definite and |ρii| ≤ 1 . So, Corollary 2 characterizes the set of positive definite block equicorrelation

matrices, where the additional requirements are that A is positive definite and |ρii| < 1.

In this context with block correlation matrices, the expression for A was previously obtained in

Huang and Yang (2010, proposition 5) and in Cadima et al. (2010, theorem 3.1). The focus in Huang

and Yang (2010) was on computational issues, which might explain that their paper is overlooked in

much of the literature.2 Their results add valuable insight about the block-DECO model by Engle

and Kelly (2012). For instance, their results provide a simple way to evaluate if a block matrix a

positive definite (or semidefinite) correlation matrix. The expression for the determinant of a correlation

matrix in Corollary 2 is a simple implication of the eigenvalues derived in Huang and Yang (2010) and

Cadima et al. (2010), whereas the expressions for the inverse and logarithmically transformed correlation

matrices are new.

2We were, until recently, also unaware of the results in Huang and Yang (2010) and Cadima et al. (2010). An anonymous
referee (on a different paper than the present one) directed us to Roustant and Deville (2017) and we subsequently
discovered the more detailed results in Huang and Yang (2010) and Cadima et al. (2010). Some of their results, e.g.
Huang and Yang (2010, eq. 6), were rediscovered in Roustant and Deville (2017), who do not cite Huang and Yang (2010)
or Cadima et al. (2010). In fact, none of the papers, Cadima et al. (2010), Huang and Yang (2010), Engle and Kelly
(2012), and Roustant and Deville (2017) cite any of the other papers listed here.
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3.1 Parametrization of Block Correlation Matrices

A new parametrization of correlation matrices was introduced in Archakov and Hansen (2020). The

new parametrization consists of the elements below the diagonal of log C (matrix logarithm of C). Let

̺ denote the vector with these n(n − 1)/2 elements, where n is the dimension of C (n × n). Archakov

and Hansen (2020) showed that the ̺ = ̺(C) is a one-to-one mapping between the set of non-singular

correlation matrices and R
n(n−1)/2.

For a block equicorrelation matrix, C, it follows (from Corollary 2) that log C has the same block

structure as C. So, for i 6= j, all elements in [log C]i,j are identical and given by
ãij√
ninj

, and the off-

diagonal elements of the diagonal blocks, [log C]k,k, k = 1, . . . , K, are all equal to ãkk−log(1−ρkk)
nk

, where

ãij are the elements of log A. Thus, the unique elements of [log C] are

Λ−1
n [log A − log Λ1−ρ]Λ−1

n = Λ−1
n [log(ΛnRΛn + Λ1−ρ) − log Λ1−ρ]Λ−1

n ,

where

R =













ρ11 · · · ρ1K

...
. . .

ρK1 ρKK













Λn =













√
n1 0

. . .

0
√

nK













, Λ1−ρ =













1 − ρ11 0

. . .

0 1 − ρKK













.

4 Applications of the Canonical Representation to Gaussian Log-

Likelihood

In this section, we focus on covariance and correlation matrices for normally distributed random vari-

ables. We derive simplified expressions for the corresponding log-likelihood functions, that greatly

reduce the computational burden when n is large relative to K. We derive the maximum likelihood

estimators, and provide a simple expression for the first derivatives of the log-likelihood function with

respect to the unknown parameters (the scores).

We will follow the conventional notation for covariances and variances, we write σij in place of bij,

i, j = 1, . . . , K, and σ2
k in place of dk, k = 1, . . . , K. Similarly, for correlation matrices we write ρij in

place of bij, and observe that dk = 1.

The density function for the multivariate Gaussian distribution with mean zero and an n×n covari-

ance matrix, Σ, is f(x) = (2π)− n
2 (det Σ)− 1

2 exp(−1
2x′Σ−1x). Suppose that Σ has the block structure

given by (n1, . . . , nK), so that it can be expressed as Σ = QDQ′, using the canonical representation.
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The corresponding log-likelihood function (multiplied by −2) can now be expressed as

−2ℓ = n log 2π + log det D + X ′QD−1Q′X,

where D = diag(A, λ1In1−1, . . . , λKInK−1), with λi = σ2
i − σi,i.

aij =















σ2
i + (ni − 1)σi,i for i = j,

σi,j
√

ninj for i 6= j.

So, if we define Y = (y′
0, y′

1, . . . , y′
K)′ = Q′X, where y0 is K-dimensional and yk is nk − 1 dimensional,

k = 1, . . . , K, then it follows that

−2ℓ = n log 2π + log det A + y′
0A−1y0 +

K
∑

k=1

(

(nk − 1) log λk +
y′

k
yk

λk

)

. (6)

This expression of the log-likelihood function shows that the block structure yields a considerable

simplification in the evaluation of the log-likelihood. Instead of inverting the n × n matrix Σ and

computing det Σ, it suffices to invert the smaller K × K matrix, A, and evaluate its determinant.

Moreover, the maximum likelihood estimator based on a random sample, X1, . . . , XN , is easily expressed

in terms of the transformed variables, Y1 = Q′X1, . . . , YN = Q′XN , as formulated in the following

Theorem.

Theorem 2. Suppose that X1, . . . , XN are independent and identically distributed as N(0, Σ), where

Σ is a block covariance matrix with block partition, n1, . . . , nK . Define the transformed variables,

Ys = Q′Xs, s = 1, . . . N , where Ys = (y′
0,s, y′

1,s, . . . , y′
K,s)

′ and where y0,s is K-dimensional and yk,s is

nk − 1 dimensional, k = 1, . . . , K.

The maximum likelihood estimator of Σ is given by Σ̂ = QD̂Q′, where D̂ = diag(Â, λ̂1In1−1, . . . ,

λ̂KInK−1) with

Â =
1

N

N
∑

s=1

y0,sy
′
0,s and λ̂k =

1

N

N
∑

s=1

y′
k,s

yk,s

nk−1 , k = 1, . . . , K.

The maximum likelihood estimates of the individual parameters can be obtained directly from Â

and λ̂k, k = 1, . . . , K. For i 6= j, it follows from the definition of A that σ̂i,j = âij/
√

ninj. For i = j,

we have σ̂i,i = (âii − λ̂i)/ni and σ̂2
i = λ̂i + σ̂i,i = 1

ni
âii + ni−1

ni
λ̂i.

In the special case where a block has size one, we have Σ[k,k] = σ2
k and σk,k is obviously undefined.
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In this situation, the corresponding variables, yk,s, s = 1, . . . , N , are also undefined, and hence, so

is λ̂k. Yet the expressions for the maximum likelihood estimators continue to be valid, including the

expression for Σ̂ in Theorem 2. If nk = 1, then σ̂2
k = âkk, while the expression for σ̂k,k is undefined and

can be ignored.

Estimation when the correlation matrix is assumed to have a block structure, as opposed to the

covariance matrix, is similar. However, a block correlation matrix is entirely given by the A-matrix,

and computation of the eigenvalues λ1, . . . , λK is redundant.

Corollary 3. Suppose that X1, . . . , XN are independent and identically distributed as Nn(0, Σ), where

Σ = ΛσCΛσ with Λσ = diag(σ1, . . . , σn) and C is a block correlation matrix with block partition,

n1, . . . , nK . The maximum likelihood estimates of the diagonal elements of Σ are given by σ̂2
i =

N−1∑N
s=1 X2

i,s, for i = 1, . . . , n. Next define X̃i,s = Xi,s/σ̂i, and introduce the transformed vari-

ables, Ỹs = Q′X̃s, s = 1, . . . N , where Ỹs = (ỹ′
0,s, ỹ′

1,s, . . . , ỹ′
K,s)

′ and where ỹ0,s is K-dimensional and

ỹk,s is nk − 1 dimensional, k = 1, . . . , K.

The maximum likelihood estimator of C is given by Ĉ = QD̃Q′, where D̃ = diag(Ã, λ̃1In1−1, . . . ,

λ̃KInK−1) with

Ã =
1

N

N
∑

s=1

ỹ0,sỹ
′
0,s and λ̃k =

nk − ãkk

nk − 1
, k = 1, . . . , K.

So the estimate of D can be obtained solely from Ã. For the individual correlations we have

ρ̂i,j = ãij/
√

ninj, for i 6= j, and for i = j, we have ρ̂i,i = (ãii − 1)/ni.

The score of the log-likelihood function is often of separate interest. For instance, the score is

used for the computation of robust standard errors, in Lagrange multiplier tests, in tests for structural

breaks, see e.g. Nyblom (1989), and in dynamic models with time-varying parameters (the so-called

score-drive models), see Creal et al. (2013). So we provide the expressions for the score in this context

with a block covariance matrix.

Suppose that Σ is a block covariance matrix, and consider its canonical representation Σ = QDQ′.

Since Q is entirely given by the block partition (n1, . . . , nK), and does not depend on the unknown

parameters in Σ, the expressions for the partial derivatives are relatively simple.

Proposition 1. Let Σ = QDQ be the canonical representation of Σ. Then ∂(−2ℓ)/∂A = M =

11



A−1 − A−1y0y′
0A−1 and for, k = 1, . . . , K, we have

∂(−2ℓ)

∂σ2
k

= Mk,k +

(

nk−1
λk

− y′
k

yk

λ2
k

)

∂(−2ℓ)

∂σkk
= (nk − 1)Mk,k −

(

nk−1
λk

− y′
k

yk

λ2
k

)

,

and, for i 6= j, we have
∂(−2ℓ)

∂σij
= 2

√
ninjMi,j.

The hessian could be derived similarly. In some applications, it might be preferable to parametrize

the block covariance matrix with A and (λ1, . . . , λK). In this case, one can use ∂(−2ℓ)/∂A = M , and

∂(−2ℓ)/∂λk = nk−1
λk

− y′
k

yk

λ2
k

, for k = 1, . . . , K.

5 Empirical Estimation of Block Correlation Matrices

We proceed to illustrate how high-dimensional covariance matrices with a block structure are straight-

forward to estimate in practice. We estimate block structures for a large panel of assets for two calendar

years, 2008 and 2013, using daily returns. We included all stocks in the CRSP database that could be

matched with a unique ticker symbol, and which did not have any missing observations. This resulted

in 3958 assets in 2008 and 2998 assets in 2013. The objective of this empirical application is demon-

strate that high-dimensional covariance matrices can be estimated with relatively few observation once

block structures are imposed, and that the canonical representation makes it simple to evaluate the

log-likelihood function and to obtain the maximum likelihood estimates. Given the well-known varia-

tion in conditional variances and covariances, our estimated covariance matrices should be viewed as

estimates of the average covariance matrix for 2008 and 2013, rather than an accurate description of

the data generating process.

We impose five nested structures on the correlation matrix, where the equicorrelation structure

(K = 1) is the simplest and most restrictive model. The remaining four correlation models use block

structures defined by the Sector, Group, Industry, and Sub-Industry categories, as classified by the

Global Industry Classification Standard (GICS) in 2013. The five specifications correspond to K = 1,

10, 24, 67, and 151, respectively, in 2008, and the same number of blocks in 2013, except for Sub-

Industry categories, which had K = 146.

We estimated the canonical correlation matrix using the results in Corollary 3. Thus, we first

compute the estimates of the variances, σ̂2
i =

∑N
t=1 X2

i,t, for each of the individual assets. Then

we define the standardized variables, X̃i,t = Xi,t/σ̂i, and ỹ0,t ∈ R
K , whose k-th element is given by

12



1√
nk

∑n1+···+nk

i=n1+···+nk−1+1 X̃i,t. From Corollary 3, we have ρ̂i,j = ãij/
√

ninj, for i 6= j, and ρ̂i,i = (ãii−1)/ni,

where Ã = 1
N

∑N
t=1 ỹ0,tỹ

′
0,t. Thus, the entire n × n covariance matrix with a block correlation structure

is estimated by computing the estimates of the n variances, and the K × K matrix Ã. Given the

high number of assets and just over 250 daily returns, the unrestricted sample covariance matrix would

be singular, because most of its eigenvalues will be zero. Once a block structure is imposed, we can

compute the inverse covariance matrix from the invertible K × K matrix, Ã, and it becomes simple to

evaluate the log-likelihood function.

The empirical results are summarized in Table 1. We report the range of estimated correlations

for each of the block structures, with the results for 2008 and 2013 are reported separately. The

range of estimated correlations. i.e. the interval between the smallest and the largest coefficient in

the correlation matrix, obviously increases with the number of blocks in the correlation matrix, and

the correlations are generally higher in 2008 than in 2013. These estimates are likely biased, because

they entail cross-sectional averaging within each sector/group/industry and time averaging, over a full

calendar year. We also report the value of the maximized log-likelihood function (scaled by −2/(nN))

and the corresponding value of the Bayesian Information Criterion (BIC). The minimum BIC is obtained

with a block structures based on Groups in both 2008 and 2013.3 The last column reports the number

K(K + 1)/2 of unique correlations within a block structure with K blocks, and while this number

increases rapidly with K, the gains in the log-likelihood are relatively modest. Consequently, the BIC

increases substantially once the number of blocks are defined by Industries and Sub-industries.

The estimated block structures are illustrated in Figures 1 and 2. The upper panels of Figure 1 show

the estimated correlation coefficients of assets within and between sectors. The lower panels are the

estimates for the 24 groups, with the actual estimates indicated by color coding. A darker shade of red

denotes a stronger correlation. The left panels are for 2008 and the right panels are for 2013. Figure 2

presents the estimated correlations using a block structure based on industries and sub-industries. We

observe that the correlations were generally higher in 2008 than in 2013, in part because of the turmoil

period leading up to, and following, the collapse of Lehman Brothers in late 2008. The block structure

is perhaps more visible in 2008, which might be explained by the Global Financial Crises having a

differentiated impact on different sections. For instance, Figure 1 shows that the correlations between

the Energy (10), Materials (15), and Utilities (55) sectors were relatively high, while Financials (40)

were relatively uncorrelated with other sectors in 2008. The partition by the GICS groups in the lower

3The BIC adds the penalty p log(nN) to −2ℓ, where p is the number of free parameters. For comparison, the AIC,
which uses the penalty 2p, selects the most general specification in both years. It is well known that the AIC tends to
favor more heavily parametrized models.
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panels of Figure 1 reveals additional details about the correlations. For financials (40), we observe

that the low correlations with other sectors are largely driven by Banks (4010).4 Figure 2 presents the

corresponding results for industries and sub-industries. The number of blocks are too plentiful to be

listed individually, however the industries and sub-industries are placed chronologically in the ascending

order in Figure 2 according to their GICS code.

6 Concluding Remarks

We have derived a canonical representation of block matrices, that is particularly useful for covariance

and correlation matrices. We derived a number of expressions that greatly simplify the computation

of the log-likelihood function. We illustrated this in an empirical application, where we estimated

the covariance matrix for nearly 4000 stocks returns using daily returns from a single calendar year,

i.e. just over 250 observations. Inverting the covariance matrix, and evaluating the log-likelihood is

straightforward once a block structure is imposed, where we used as many as K = 151 blocks, motivated

by the Global Industry Classification Standard.

The canonical representation and the related results are potentially useful for regularizing large

covariance matrices. For instance, one could shrink the sample correlation matrix towards a block

correlation matrix, analogous to the way Ledoit and Wolf (2004) proposed to shrink towards the

equicorrelation matrix. The canonical representation also paves new way to testing block structures in

covariance and correlation matrices. This predominantly amounts to testing a large number of zero-

restrictions in the canonical representation. We identified a number of transformations that preserves

the block structures, so testing of block structures could be based on any of the transformations, rather

than the original matrix. For instance, block structures in a correlation matrix C would be tested on

the canonical representation for log C. This is potentially interesting, because the connection between

logarithmically transformed correlation matrix and the Fisher transformation, see Archakov and Hansen

(2020). Finally, the group assignments, and hence K, will be unknown in many empirical applications.

The literature has therefore proposed various techniques that aim to determine the most appropriate

block structure. It is possible that the canonical representation will be useful for this type of model

selection problem.

4Note that we are using the GICS classification as it was in 2013, where Real Estate (4040) was a part of the Financials
Sector. A separate Real Estate Sector (50) was added to the GICS classification in 2016.
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Appendix of Proofs

Proof of Theorem 1. For i 6= j, we have B[i,j] = aijP[i,j] if aij = bij
√

ninj, since the elements

of P[i,j] are all equal to 1√
ninj

. For i = j, the diagonal elements differs from off-diagonal elements by

λi = di −bii, so that B[i,i] = biiniP[i,i] +(di −bii)Ini
. Since Ini

= P[i,i] +P ⊥
[i,i], we have B[i,i] = (biini+di −

bii)P[i,i] + (di − bii)P
⊥
[i,i] = aiiP[i,i] + λiP

⊥
[i,i]. The canonical representation, (4), follows by verifying that

Q′BQ is equal to the block-diagonal matrix in (4). This follows from the identities: v′
ni

P[i,j]vnj
= 1,

v′
ni

P[i,j]vnj⊥ = 0, v′
ni⊥P[i,j]vnj⊥ = 0, v′

ni
P ⊥

[i,i]vni
= 0, v′

ni
P ⊥

[i,i]vni⊥ = 0, and v′
ni⊥P ⊥

[i,i]vni⊥ = Ini−1, and

the fact that Q′Q = In, so that Q−1 = Q′, and hence B = QQ′BQQ′. This proves (4). �

Proof of Corollary 1. The first result for the eigenvalues of B and the determinant of B, follows

immediately from (4). The results for f(B), where f denotes the q-th power of a matrix, the matrix

exponential, or the matrix logarithm, follow by f(B) = Qf(D)Q′ and using the structure in Q, such

as vni
v′

nj
= P[ij] and vni⊥

v′
ni⊥ = P ⊥

[ii]. This completes the proof. �

Proof of Corollary 2. It follows from Theorem 1 and Corollary 1 by setting dk = 1 for all k. Some

expressions can also be verified directly. For instance, one can verify the expression for C−1 , by noting

that diagonal blocks of C−1 are given by

(C−1)[i,i] =
K
∑

k=1

aikP[ik]a
#
kiP[k,i] + (1 − ρii)P

⊥
[i,i]

1
1−ρii

P ⊥
[i,i] =

K
∑

k=1

aika#
kiP[i,i] + P ⊥

[i,i] = I,

where we used that a#
ki are the elements of the A−1 so we have

∑K
k=1 aika#

ki = 1. Next, for i 6= j, we

have

(C−1)[i,j] =
K
∑

k=1

aikP[i,k]a
#
kjP[k,j] +

aij

bj
P[i,j]P

⊥
[j,j] + bia

#
ijP ⊥

[i,i]P[i,j] =
K
∑

k=1

aika#
kjP[i,j] = 0,

where we used that P[i,k]P[k,j] = P[i,j] and PijP ⊥
[j,j] = P[i,j](Isj

− P[j,j]) = 0, and that
∑K

k=1 aika#
kj = 0,

for i 6= j. This completes the proof. �

Proof of Theorem 2. The expression, (6), shows that the log-likelihood function is made up of two

terms:

−2N

[

log det A + tr{A−1 1
N

N
∑

s=1

Y0,sY
′

0,s}
]

,

and

−2N
K
∑

k=1

(nk − 1)






log λk +

1
N

∑N
s=1

Y ′
k,s

Yk,s

nk−1

λk






.
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It is well known that Â = 1
N

∑N
s=1 Y0,sY ′

0,s maximizes the first term and that λ̂k = 1
N

∑N
s=1

Y ′
k,s

Yk,s

nk−1

maximizes the elements of the second term. Since (A, λ1, . . . , λK) is merely a reparametrization of

the elements of the block covariance matrix Σ, it follows that Σ̂ = QD̂Q′ is the maximum likelihood

estimator of Σ. It is easy to verify that this result is also valid in the special case, where one or more

of the blocks are 1-dimensional. In this case, σii is undefined, and so is λ̂k. In this case, σ2
i is identified

from the corresponding diagonal element of A, since âii = σ2
i , when ni = 1. �

Proof of Corollary 3. We have det Σ = det(ΛσCΛσ) =
∏n

i=1 σ2
i det C =

∏n
i=1 σ2

i det D. So the

log-likelihood function for the observation, X ∈ R
n, is

−2ℓ(σ2
1 , . . . , σ2

n, C) = n log 2π +
n
∑

j=1

log σ2
j + log det C + X ′Λ−1

σ CΛ−1
σ X,

and given a sample X1, . . . , XN , the first order condition for σ2
j :

0 = N
σ2

j

−
N
∑

t=1

1
σ4

j

X ′
teje

′
jCeje′

jXt = N
σ2

j

− 1
σ4

j

N
∑

t=1

X ′
tej1e′

jXt = N
σ2

j

− 1
σ4

j

N
∑

t=1

X2
j,t,

is invariant to C. So that σ̂2
j = 1

N

∑N
t=1 X2

j,t is the maximum likelihood estimator of σ2
j regardless of

the structure imposed on C. The concentrated log-likelihood function for the observation X ∈ R
n can

be expressed as

−2ℓ(C) ≡ −2ℓ(σ̂2
1 , . . . , σ̂2

n, C) = n log 2π +
n
∑

j=1

log σ̂2
j + log det D + X̃ ′Q′DQX̃,

and it follows from the proof of Theorem 2 that minimizing N log det D +
∑N

t=1 X̃ ′
sQ′DQX̃t is solved

by the D-matrix whose elements are given by Ã = 1
N

∑N
t=1 ỹ0,tỹ

′
0,t and λ̃k = 1

N

∑N
t=1

ỹ′
k,t

ỹk,t

nk−1 , for k =

1, . . . , K. For QD̃Q′ to be a correlation matrix (have ones along its diagonal), we need ãii = 1+(ni−1)ρ̂ii

and λ̃i = 1 − ρ̂ii, which implies λ̃i = ni−ãii

ni−1 . �

Proof of Proposition 1. Recall that akk = σ2
k + (nk − 1)σkk, aij = σij

√
ninj, for i 6= j, and

λk = σ2
k − σkk. It follows that

∂(log det A + y′
0A−1y0)

∂aij
= tr{A−1(eie

′
j)(I − A−1y0y′

0) = e′
j(I − A−1y0y′

0)A−1ei = Mj,i,

16



where M = A−1 − A−1y0y′
0A−1. From the expression (6), we find

∂(−2ℓ)

∂σ2
k

=
∂(log det A + y′

0A−1y0)

∂akk
+ (nk−1

λk
− y′

k
yk

λ2
k

) = Mk,k + (nk−1
λk

− y′
k

yk

λ2
k

)

∂(−2ℓ)

∂σkk
= (nk − 1)

∂(log det A + y′
0A−1y0)

∂akk
−
(

nk−1
λk

− y′
k

yk

λ2
k

)

= nkMk,k − ∂(−2ℓ)

∂σ2
k

,

and, for i 6= j, we find that

∂(−2ℓ)

∂σij
=

√
ninj

(

∂(log det A + y′
0A−1y0)

∂aij
+

∂(log det A + y′
0A−1y0)

∂aji

)

= 2
√

ninjMi,j ,

where we used that M is symmetric. �
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Tables and Figures

Summary statistics of estimated block correlations # blocks

Block structure Mean Std. Min Q10% Q50% Q90% Max − 2ℓ
nN

1
nN

BIC K
K(K+1)

2

U.S. market in 2008 (3958 stocks and 253 days)

Equicorrelation 0.228 0 0.228 0.228 0.228 0.228 0.228 2.57829 2.57830 1 1
Sectors 0.269 0.073 0.162 0.191 0.252 0.381 0.521 2.53748 2.53824 10 55
Groups 0.253 0.059 0.119 0.177 0.253 0.321 0.521 2.52519 2.52933 24 300
Industries 0.263 0.074 0.088 0.172 0.258 0.362 0.659 2.51123 2.54266 67 2278
Sub-industries 0.273 0.095 -0.036 0.157 0.268 0.394 0.886 2.48261 2.64086 151 11476

U.S. market in 2013 (2998 stocks and 252 days)

Equicorrelation 0.165 0 0.165 0.165 0.165 0.165 0.165 2.66583 2.01128 1 1
Sectors 0.181 0.059 0.107 0.126 0.168 0.242 0.507 2.63742 1.99057 10 55
Groups 0.174 0.045 0.092 0.126 0.166 0.231 0.507 2.62850 1.98715 24 300
Industries 0.183 0.060 0.065 0.118 0.173 0.260 0.712 2.61095 2.00065 67 2278
Sub-industries 0.182 0.067 -0.040 0.108 0.175 0.268 0.810 2.58182 2.09290 146 10731

Table 1: Summary statistics for the estimated block correlation matrices.
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Figure 1: Estimated correlations for a block structure based on GICS sectors (upper panels) and GICS
groups (lower panels). Left panels are the estimates based on 253 daily returns in 2008, and right panels
are the estimated based on 252 daily returns from 2013. The numbers to the left and below each plot
are GICS codes for sectors or groups.
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Figure 2: Estimated correlations for a block structure based on GICS industries (upper panels) and
GICS sub-industries (lower panels). Left panels are the estimates based on 253 daily returns in 2008,
and right panels are the estimated based on 252 daily returns from 2013. Industries and sub-industries
are listed chronologically according to their GICS code, that are too plentiful to list individually.
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