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Abstra
t

We develop a 
on
ept of weak identi�
ation in linear IV models in whi
h the number of instru-

ments 
an grow at the same rate or slower than the sample size. We propose a ja
kknifed version

of the 
lassi
al weak identi�
ation-robust Anderson-Rubin (AR) test statisti
. Large-sample in-

feren
e based on the ja
kknifed AR is valid under heteros
edasti
ity and weak identi�
ation. The

feasible version of this statisti
 uses a novel varian
e estimator. The test has uniformly 
orre
t

size and good power properties. We also develop a pre-test for weak identi�
ation that is re-

lated to the size property of a Wald test based on the Ja
kknife Instrumental Variable Estimator

(JIVE). This new pre-test is valid under heteros
edasti
ity and with many instruments.

Key words: instrumental variables, weak identi�
ation, dimensionality asymptoti
s.
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1 Introdu
tion

Re
ent empiri
al appli
ations of instrumental variables (IV) estimation often involve many

instruments that together may or may not be strongly relevant. A prominent example is

Angrist and Krueger (1991), whi
h started the weak IV literature, uses 180 instruments by

intera
ting dummies for the quarter of birth with state and year of birth. Other examples

in
lude papers that employ an empiri
al strategy known as �judge design� (Maestas et

al., 2013; Sampat and Williams, 2015; Dobbie et al., 2018). Fueled by ri
h administrative

data, these papers use the exogenous assignment of 
ases to judges as instruments for

treatment. Sin
e ea
h judge 
an only pro
ess a 
ertain number of 
ases out of the total


ourt 
ases, the number of judges (the number of instruments) is usually proportional

to the sample size. Another example is the famous Fama-Ma
Beth pro
edure in Asset
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Pri
ing (Fama and Ma
Beth, 1973; Shanken, 1992), whi
h is equivalent to IV estimation

pro
edure with the number of instruments proportional to the number of assets.

This paper answers three questions in an environment with many instruments: how

to de�ne weak identi�
ation, what to do if identi�
ation is weak, and how to pre-test for

weak instruments. We model many-instrument asymptoti
s by allowing the number of

instruments to grow at most proportionally with the sample size. Firstly, we de�ne weak

identi�
ation for linear IV models with many instruments by providing ne
essary and

su�
ient 
onditions for the existen
e of a 
onsistent test. Se
ondly, we introdu
e a test

that works when there are many instruments, but is also robust to weak identi�
ation and

heteros
edasti
ity. Finally, we propose a pre-test for weak identi�
ation. This pre-test

forms the basis for a two-step pro
edure that is analogous to that of Sto
k and Yogo

(2005). The two-step test 
ontrols size distortion under many-instrument asymptoti
s,

regardless of the strength of identi�
ation or the presen
e of heteros
edasti
ity.

For one of our main results, we de�ne weak identi�
ation as a situation where an analog

of the 
on
entration parameter divided by the square root of the number of instruments

stays bounded in large samples. We prove that even in a homos
edasti
 model with

known 
ovarian
e, an asymptoti
ally 
onsistent test does not exist if the ratio of the


on
entration parameter over the square root of the number of instruments stays bounded

in large samples. Thus, a ne
essary 
ondition for a 
onsistent test to exist is that the


on
entration parameter grows faster than the square root of the number of instruments.

Later, we show that this is also a su�
ient 
ondition by 
onstru
ting a robust test that

be
omes 
onsistent when this 
ondition is satis�ed.

We propose a new ja
kknifed version of the Anderson-Rubin (AR) test whi
h is robust

to both weak identi�
ation and heteros
edasti
ity in a model with many instruments. The

new test uses an asymptoti
 approximation based on a Central Limit Theorem (CLT) for

quadrati
 forms. The new AR test has the 
orre
t size regardless of identi�
ation strength

and be
omes 
onsistent as soon as the 
on
entration parameter grows faster than the

square root of the number of instruments.

As an important te
hni
al 
ontribution, we introdu
e a novel varian
e estimator for

the quadrati
 form CLT. The target varian
e is a quadrati
 form of the individual (het-
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eros
edasti
) varian
es of errors. We apply 
ross-�tting (Newey and Robins, 2018; Kline

et al., 2019) to produ
e unbiased proxies for the individual varian
es of errors. We adjust

the quadrati
 form to remove the bias due to 
orrelations between proxies. We prove the


onsisten
y of the new estimator under the null and lo
al alternatives.

Finally, we propose a new pre-test for weak identi�
ation whi
h is easy to use and is


onsistent with our de�nition of weak identi�
ation. An empiri
al resear
her 
an use our

pre-test to de
ide between employing our ja
kknife AR test if the pre-test suggests that

the identi�
ation is weak or a Wald test based on the Ja
kknife Instrumental Variable

Estimator (JIVE, Angrist et al., 1999) if the pre-test suggests that the identi�
ation is

strong. We guarantee the size of this two-step pro
edure. Chao et al. (2012) prove

that JIVE is 
onsistent in a heteros
edasti
 model when the 
on
entration parameter

grows faster than the square root of the number of instruments. Chao et al. (2012)

also derive a 
onsistent estimator of the JIVE standard error. The two-step pro
edure is

appealing be
ause when identi�
ation is strong, the JIVE-Wald is more e�
ient and easy

to implement and report.

Our pre-test is in the spirit of Sto
k and Yogo (2005), but it di�ers from theirs in

two important ways. Firstly, our pre-test allows for a general form of heteros
edasti
ity,

while the pre-test proposed in Sto
k and Yogo (2005) works only under 
onditionally

homos
edasti
 errors. Se
ondly, the Sto
k and Yogo (2005) pre-test is designed for a small

number of instruments and is based on the Two-Stage Least Squares (TSLS) estimator.

With many instruments TSLS is 
onsistent only when the 
on
entration parameter grows

faster than the number of instruments, whi
h makes the Sto
k and Yogo (2005) pre-test

not very informative.

We apply our pre-test to Angrist and Krueger (1991) and �nd that their identi�
ation

is strong. Consequently the JIVE 
on�den
e set is reliable (has 
overage within 5%

toleran
e level of the de
lared 
overage). Our weak identi�
ation-robust ja
kknife AR


on�den
e set is somewhat wider than the JIVE 
on�den
e set but is still informative.

Relation to the Literature. Our paper 
ontributes to both the literature on weak

IV and the literature on many instruments. The weak IV literature relates identi�
ation

strength to the size of the 
on
entration parameter and proposes robust tests that work
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only when there are a small number of instruments. Generalizations to many weak in-

struments either strongly restri
t the number of instruments (Andrews and Sto
k, 2007)

or work only under homos
edasti
ity (Anatolyev and Gospodinov, 2011).

The many instruments literature mostly establishes 
onsisten
y 
onditions for parti
-

ular estimators. For example, Chao and Swanson (2005) show that in a homos
edasti


model limited informationmaximum likelihood (LIML) and bias-
orre
ted TSLS (BTSLS)

are 
onsistent when the 
on
entration parameter grows faster than the square root of the

number of instruments. In a heteros
edasti
 model, 
onsisten
y of LIML and BTSLS re-

quires that the 
on
entration parameter grows faster than the number of instruments. By


ontrast, JIVE remains 
onsistent when the 
on
entration parameter grows faster than

the square root of the number of instruments (Chao et al. (2012)).

The remainder of this paper is organized as follows. In Se
tion 2 we introdu
e our

de�nition of weak identi�
ation in an environment with many instruments. In Se
tion 3

we 
onstru
t the ja
kknife AR test and establish its power properties. In Se
tion 4 we

present the pre-test and prove that it 
ontrols size. Se
tion 5 reports our pre-test results

for Angrist and Krueger (1991) and 
ondu
ts a simulation exer
ise inspired by Angrist

and Frandsen (2019), and Se
tion 6 
on
ludes. Some proofs and additional results may

be found in the Supplementary Appendix.

2 Weak Identi�
ation with Many Instruments

We study the linear IV regression with a s
alar out
ome Yi, a potentially endogenous

s
alar regressor Xi and a K × 1 ve
tor of instrumental variables Zi:





Yi = βXi + ei,

Xi = Πi + vi,
(1)

for i = 1, ..., N. We denote Πi = E[Xi|Zi] and allow the instruments to a�e
t the en-

dogenous regressor in a non-linear way. All results in this paper hold 
onditionally on

a realization of the instruments. Thus, we treat the instruments as �xed (non-random)

and Πi as some 
onstants. The mean-zero errors (ei, vi) are independent a
ross i but not
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identi
ally distributed and may be heteros
edasti
. We assume without loss of generality

that there are no 
ontrols in
luded in our model as they may be partialled out.

Weak identi�
ation under small K is studied extensively in the weak IV literature.

For Gaussian homos
edasti
 errors (ei, vi) and linear �rst stage (Πi = π′Zi), the strength

of the instruments 
orresponds dire
tly to the 
on
entration parameter,

π′Z′Zπ
σ2v

, where

σ2
v = V ar(vi). The 
on
entration parameter equals the signal-to-noise ratio in the �rst-

stage regression and is related to the bias of the TSLS estimator and the quality of

Gaussian approximation for the TSLS t-statisti
. For the general 
ase with homos
edasti


errors, Staiger and Sto
k (1997) introdu
ed weak instrument-asymptoti
s in whi
h one


onsiders a sequen
e of models so that the 
on
entration parameter 
onverges to a 
onstant

as N → ∞. Under this asymptoti
 embedding, neither a 
onsistent estimator of β nor a


onsistent test of the null hypothesis that β equals some s
alar exists, and the test based

on the TSLS t-statisti
 severely over-reje
ts.

The magnitude of the 
on
entration parameter is not a good indi
ator of identi�
a-

tion strength when the number of instruments is large. We model large K by 
onsidering

K → ∞ as N → ∞, with the only restri
tion that K is at most a fra
tion of N . Under

this many instrument-asymptoti
s, Theorem 1 below shows that the re-s
aled 
on
entra-

tion parameter

π′Z′Zπ
σ2v

√
K

provides a 
hara
terization of weak identi�
ation in terms of the


onsisten
y of tests.

Theorem 1 Assume we have a sample from model (1) with linear �rst stage Πi = π′Zi,

where the errors (ei, vi) are independently drawn from a Gaussian distribution N (0,Ω)

with a known 
ovarian
e Ω. Assume that the K×K matrix Z ′Z has rank K and K → ∞
as N → ∞. For any sample of size N let ΨN be the 
lass of all tests of size α for

testing the hypothesis H0 : β = β0, that is, any ψ ∈ ΨN is a measurable fun
tion from

{(Yi, Xi, Zi), i = 1, ..., N} to the interval [0, 1] su
h that Eβ0,πψ ≤ α for any value of

π ∈ R
K
. Then for any β∗ 6= β0 we have

lim sup
N→∞

max
ψ∈ΨN


 min
π:π

′Z′Zπ

σ2
v
√

K
≤C

Eβ∗,πψ


 < 1.

The setting 
onsidered in Theorem 1 is quite favorable: the �rst stage is linear, errors
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are Gaussian and homos
edasti
 with known 
ovarian
e matrix. So the only unknown

parameters are β and π. Theorem 1 states that even in this favorable setting there exists

no test that 
onsistently di�erentiates any β∗
from β0 if the ratio

π′Z′Zπ
σ2v

√
K

is bounded.

Indeed, for any test ψ we 
an �nd its guaranteed power Eβ∗,πψ by minimizing over the

alternatives (β∗, π) with bounded

π′Z′Zπ
σ2v

√
K
. We show that even the test that a
hieves the

maximum guaranteed power has guaranteed power stri
tly less than one asymptoti
ally.

Later we show that in a more general heteros
edasti
 model we 
an 
onstru
t a robust

test that be
omes 
onsistent when

Π′Π√
K

→ ∞.

Theorem 1 
an also be used to 
hara
terize weak identi�
ation in terms of 
onsistent es-

timation sin
e it implies there exists no 
onsistent estimator for β when

π′Z′Zπ√
K

is bounded.

Our result 
omplements the literature on estimation with many instruments. Chao and

Swanson (2005) show that with homos
edasti
 errors, when K grows proportionally to the

sample size the TSLS estimator is 
onsistent only if

π′Z′Zπ
K

→ ∞, while LIML and BTSLS

estimators are 
onsistent when

π′Z′Zπ√
K

→ ∞. However, under heteros
edasti
ity, even

when

π′Z′Zπ√
K

→ ∞, LIML and BTSLS be
ome in
onsistent, but JIVE is still 
onsistent,

a

ording to Chao et al. (2012).

The proof of Theorem 1 builds on several 
lassi
al papers. Following the approa
h

of Andrews et al. (2006), we �rst redu
e the 
lass of tests to those based on a su�
ient

statisti
. Among these tests, the minimal power is a
hieved by a test invariant to rotations

of the instruments. This observation allows us to further redu
e our attention to invariant

tests, whi
h depend on the data only through its maximal invariant under rotations. Then

we derive a limit experiment for K → ∞ similar to that derived in Andrews and Sto
k

(2007). In this limit experiment the minimax power is less than one. Finally we use the

argument of Müeller (2011) to bound the desired asymptoti
 minimax power using the

minimax power obtained in the limit experiment.

3 Ja
kknife AR

The goal of this se
tion is to introdu
e a test robust to weak identi�
ation in the het-

eros
edasti
 IV model when the number of instruments, K, is large.
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The existing weak IV literature proposes several weak identi�
ation-robust tests of

the null hypothesis H0 : β = β0, when K is small. These tests have 
orre
t size when

the identi�
ation is weak and be
ome 
onsistent when the identi�
ation is strong. One

example is the Anderson-Rubin (AR) test. Spe
i�
ally, the IV model (1) implies that

under a given null hypothesis H0 : β = β0, the exogeneity assumption holds E[Z ′e(β0)] =

0 for the implied error e(β0) = Y − β0X. Then under mild assumptions, the s
aled

sample analog

1√
N
Z ′e(β0) ⇒ N(0,Σ) satis�es a K-dimensional Central Limit Theorem.

The AR statisti
 is de�ned as

1
N
e(β0)

′ZΣ̂−1Z ′e(β0), where Σ̂ is a 
onsistent estimator of

V ar
(

1√
N
Z ′e
)
. The AR test reje
ts the null hypothesis when the AR statisti
 ex
eeds

the (1− α) quantile of the χ2
K distribution. The AR test has asymptoti
ally 
orre
t size

regardless of the value of the �rst stage 
oe�
ients Πi and is asymptoti
ally 
onsistent

when an analog of the 
on
entration parameter grows to in�nity.

Generalizing the AR statisti
 to the large-K setting is 
hallenging for multiple reasons.

Firstly, the 
ovarian
e matrix Σ has dimension K × K. Its 
onsistent estimation is

problemati
 if not impossible under general heteros
edasti
ity. Se
ondly, the AR statisti


under the null has an improperly 
entered limit distribution be
ause χ2
K has a very large

mean. Thirdly, the K-dimensional Central Limit Theorem provides a poor approximation

to the AR statisti
 when K is large.

We propose an analog of the AR test that is heteros
edasti
ity-robust and weak

identi�
ation-robust in the presen
e of a large number of instruments. Denote the proje
-

tion matrix P = Z(Z ′Z)−1Z ′
. Our test reje
ts the null of H0 : β = β0 when the ja
kknife

AR statisti


AR(β0) =
1

√
K
√

Φ̂

N∑

i=1

∑

j 6=i
Pijei(β0)ej(β0) (2)

ex
eeds the (1−α) quantile of the standard normal distribution. We defer the dis
ussion

of the estimator of the varian
e Φ̂ to the next subse
tion.

To address the 
hallenges with the existing AR statisti
, the AR statisti
 we propose

uses the default homos
edasti
ity-inspired weighting (Z ′Z)−1
in pla
e of Σ̂−1

. With the

(Z ′Z)−1
weighting, the existing AR statisti
 has a quadrati
 form e(β0)

′Pe(β0). However,

this quadrati
 form is not 
entered at zero as it 
ontains the term

∑N
i=1 Piie

2
i , and ea
h
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summand has positive mean. We thus remove this term from the quadrati
 form. This

re-
entering 
an be referred to as leave-one-out or ja
kknife. In the 
ontext of 
onsistent

estimation under many instruments, this leave-one-out idea was introdu
ed by Angrist et

al. (1999) and fruitfully exploited in a number of papers in
luding Hausman et al. (2012)

and Chao et al. (2012). In order to 
reate a test of 
orre
t size based on our AR statisti
,

we use a Central Limit Theorem for quadrati
 forms proved in Chao et al. (2012) that is

restated below.

Assumption 1 Assume P is an N×N proje
tion matrix of rank K, K → ∞ as N → ∞
and there exists a 
onstant δ su
h that Pii ≤ δ < 1.

Lemma 1 (Chao et al. (2012)) Let Assumption 1 hold for matrix P . Assume the errors

ηi are independent, Eηi = 0, and there exists a 
onstant C su
h that maxi Eη
4
i < C, then

1√
K
√
Φ

N∑

i=1

∑

j 6=i
Pijηiηj ⇒ N (0, 1),

where Φ = 2
K

∑N
i=1

∑
j 6=i P

2
ijV ar(ηi)V ar(ηj).

The assumption Pii ≤ δ < 1 implies that

K
N

= 1
N

∑N
i=1 Pii ≤ δ < 1. This assumption

is often referred to as a balan
ed design assumption. In the 
ase of group-dummies

instruments, Pii is equal to the ratio of the size of the group that observation i belongs

to over N . Assumption 1 
an be 
he
ked for any spe
i�
 design.

While Lemma 1 requires K → ∞, the Gaussian approximation may work well for

smaller K as well. For example, if K is �xed and errors are homos
edasti
, then

1√
K
√
Φ

N∑

i=1

∑

j 6=i
Pijηiηj ⇒

χ2
K −K√
2K

as N → ∞.

We prove this statement in the Supplementary Appendix S4. While the limit here is

not Gaussian it is very well approximated by a standard normal distribution even for

relatively small K. The random variable

χ2

K−K√
2K

ex
eeds the 95% quantile of the standard

normal distribution at most 7% of the time for all K, and at most 6% of the time for

K > 40.
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3.1 Varian
e estimation

In order to 
ondu
t asymptoti
ally valid inferen
e based on the normal approximation in

Lemma 1, we need an estimator for the s
ale parameter Φ, whi
h is 
onsistent under the

null. One `naive' estimator that a
hieves this is Φ̂1 =
2
K

∑N
i=1

∑
j 6=i P

2
ije

2
i (β0)e

2
j (β0), whi
h

uses the square of the implied error as an estimator for the i-th error varian
e. Under

the null when ei(β0) = ei, the estimator Φ̂1 is 
onsistent under relatively mild 
onditions.

However, using Φ̂1 in a test would result in poor power. To see this, note that under an

alternative value of the parameter β = β0+∆, we 
an plug in the �rst stage and write the

implied error ei(β0) = Yi − β0Xi as the sum of a non-trivial mean ∆Πi and a mean-zero

random term ηi = ei +∆vi:

ei(β0) = ∆Πi + ηi.

While squaring ei(β0) makes it an unbiased estimator for V ar(ei) under the null, it is

biased under the alternative when ∆ 6= 0. The bias in Φ̂1 grows at the same order as the

fourth power of ∆, whi
h brings down the power of the test against distant alternatives.

In order to remove the bias in e2i (β0) under the alternatives, one may residualize the

implied error before squaring. However, this introdu
es a bias under the null. Denote

M = I−P and letMi be the ith row ofM . Even under the null, the squared residualized

error is biased E(Mie)
2 6= V ar(ei). This is be
ause the squared residual 
ontains not only

the squared error ei but also the square of regression estimation mistake. The latter 
an

be large when the number of regressors K is large.

This bias 
an be removed su

essfully using the 
ross-�t varian
e estimator suggested

in Kline et al (2019) and Newey and Robins (2018). Namely, they show that a produ
t

of the implied error and residual a
hieves both goals: it removes the linearly predi
table

part of the implied error and remains an unbiased estimator of the varian
e

E

[
eiMie

Mii

]
= V ar(ei).

Our 
hallenge is that the s
ale parameter Φ de�ned in Lemma 1 is a quadrati
 form

with a double summation. Residuals Mie(β0) and Mje(β0) are 
orrelated sin
e they
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ontain the same estimation mistake. One 
an show that

E [eiMieejMje] = (MiiMjj +M2
ij)V ar(ei)V ar(ej).

Our proposed estimator of the s
ale parameter Φ re-weights ea
h term in the summation

to remove the bias des
ribed above:

Φ̂ =
2

K

N∑

i=1

∑

j 6=i

P 2
ij

MiiMjj +M2
ij

[ei(β0)Mie(β0)] [ej(β0)Mje(β0)] . (3)

We establish the 
onsisten
y of Φ̂ under the null and extend this result to lo
al alternatives.

Assumption 2 Errors ǫi, i = 1, ..., N are independent with Eǫi = 0, maxi E‖ǫi‖6 < ∞,

and for some 
onstants c∗ and C∗
that do not depend on N

c∗ ≤ min
i

min
x

x′V ar(ǫi)x

x′x
≤ max

i
max
x

x′V ar(ǫi)x

x′x
≤ C∗.

Theorem 2 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ei,

then for β = β0, we have

Φ̂
Φ
→p 1 as N → ∞.

Theorem 2 
ombined with Lemma 1 implies that under the null H0 : β = β0 our proposed

AR statisti
 has an asymptoti
ally standard normal distribution. Sin
e no assumption

about identi�
ation is made, the resulting AR test has asymptoti
ally 
orre
t size regard-

less of the strength of identi�
ation.

Theorem 3 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ǫi =

(ei, vi)
′
, and Π′MΠ ≤ C

K
Π′Π. Then for β = β0 + ∆ su
h that ∆2 · Π′Π

K
→ 0, we have

Φ̂
Φ
→p 1 as N → ∞.

Theorem 3 establishes the 
onsisten
y of the varian
e estimator when the null hy-

pothesis does not hold. We use Theorem 3 to derive lo
al power 
urves of the AR test

dis
ussed in the next se
tion. The varian
e estimator (3) residualizes some implied errors

Mie(β0) to remove non-trivial mean of e(β0) under the alternative. The residualization

is 
omplete if the �rst stage is linear Πi = π′Zi. We do not impose su
h an assumption
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in Theorem 3. Instead we require that the approximation of Πi by a linear 
ombination

of instruments improves with the number of instruments as measured by the L2 norm of

the approximation mistake, Π′MΠ.

3.2 Power of the Ja
kknife AR test

Let us introdu
e a ja
kknife measure of the information 
ontained in the instruments:

µ2 =
N∑

i=1

∑

j 6=i
PijΠiΠj .

Theorem 4 Let Pβ be a probability measure des
ribing the distribution of AR(β0) de�ned

in (2) and (3) under model (1) with parameter β = β0 +∆. Assume that the sequen
e of

�rst stage parameters Π satis�es the following assumptions: Π′MΠ ≤ C
K
Π′Π and

Π′Π
K

→ 0

as N → ∞. If Assumption 1 holds and the errors ǫi = (ei, vi)
′
satisfy Assumption 2, then

for any positive 
onstant c we have:

lim
N→∞

sup
|∆|2≤c

sup
z

∣∣∣∣Pβ{AR(β0) < z} − F

(
z − ∆2µ2

√
KΦ

)∣∣∣∣ = 0, (4)

where F (·) is the standard normal 
df. If the sequen
e of �rst stage parameters additionally

satis�es the 
ondition

µ2√
KΦ

→ ∞, then for any �xed ∆ 6= 0 the ja
kknife AR test is

asymptoti
ally 
onsistent:

lim
N→∞

Pβ{AR(β0) < z} = 1.

Equation (4) of Theorem 4 
hara
terizes the lo
al power 
urves of the ja
kknife AR test.

The power under the alternative β = β0 +∆ is a fun
tion of the distan
e ∆ between the

alternative β and the null β0, the number of instruments K, a measure of identi�
ation

strength µ2
and the degree of un
ertainty

√
Φ. Our ja
kknife AR statisti
 
an be negative,

unlike the AR statisti
 from the small-K 
ase whi
h is always non-negative. We reje
t

the null when AR(β0) ex
eeds the (1 − α) quantile of the standard normal distribution.

Under the alternative β = β0+∆, the AR statisti
s has a positive drift whi
h gives rise to
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a two-sided test. The se
ond statement of Theorem 4 shows that the AR test 
onsistently

distinguishes β from β0 as long as

µ2√
K
√
Φ
→ ∞.

Our measure of identi�
ation strength, µ2
, has a form similar to the numerator of the


on
entration parameter de�ned for the homos
edasti
 small-K 
ase. Though the two

forms are similar, there is an important distin
tion between them. In our 
ase the signal

strength is measured by a ja
kknife form, while in the homos
edasti
 small-K 
ase it is

measured by Π′PΠ =
∑N

i=1

∑N
j=1 PijΠiΠj . The instruments may a�e
t the endogenous

regressor in an arbitrarily non-linear way, and only the proje
tion of Π onto the linear

spa
e of the instruments is used by the linear IV regression. Thus the proje
tion matrix

appears naturally in our measure of identi�
ation strength. If the e�e
t of instruments

on the regressor (Π) is well approximated by the linear �rst stage (Π′MΠ ≤ C
K
Π′Π), then

the strength of identi�
ation has the same order as Π′Π in the sense that they grow to

in�nity or stay bounded simultaneously. Indeed, under Assumption 1 we have:

(
1− δ − C

K

)
Π′Π ≤ µ2 = Π′Π− Π′MΠ−

N∑

i=1

PiiΠ
2
i ≤ Π′Π.

Theorem 4 implies that

µ2√
K

→ ∞ is a su�
ient 
ondition for the 
onsisten
y of the

ja
kknife AR test. When the �rst stage is well approximated by linear 
ombination of

the instruments, this translates to a su�
ient 
ondition of

Π′Π√
K

→ ∞. This 
ompliments

Theorem 1 whi
h implies that

Π′Π√
K

→ ∞ is ne
essary for the 
onsisten
y of any test. It

is worth noti
ing that the 
ondition

Π′Π
K

→ 0 imposed by Theorem 4 is quite weak as it


overs both weakly and strongly identi�ed 
ases.

4 Pre-test for Weak Identi�
ation

In a prominent paper, Sto
k and Yogo (2005) introdu
ed a pre-test for weak identi�
ation

that has gained enormous popularity in applied work. In homos
edasti
 IV models with

small K, the 
on
entration parameter fully 
hara
terizes the worst bias of the TSLS as a

fra
tion of the OLS bias and the worst reje
tion rate of TSLS-Wald test. Sin
e the �rst

stage F statisti
 measures the 
on
entration parameter, Sto
k and Yogo (2005) suggest

12



a set of 
ut-o�s for the �rst stage F statisti
, above whi
h a resear
her 
an guarantee

with high (prespe
i�ed) probability that the bias of TSLS is not larger than 10% of the

OLS bias, or that the TSLS-Wald statisti
 does not over-reje
t by more than 5%. The


ut-o�s depend on the goal (bias or size) and the number of instruments. However, these

details seem to be mostly disregarded in empiri
al pra
ti
e, as the most 
ommon guidan
e

suggests a 
ut-o� of 10, regardless of the goal or the number of instruments.

As with any pro
edure of su
h generality, it su�ers from multiple drawba
ks. First,

the pre-test is valid only if the model is homos
edasti
. Andrews (2018) shows that in

models 
alibrated to 
ommonly-used data sets with heteros
edasti
ity one may �nd 
ases

with the �rst stage F statisti
s ex
eeding 1000, that have large over-reje
tions of the

TSLS-Wald test.

Se
ond, the TSLS estimator is less robust to weak identi�
ation when K is large.

In a homos
edasti
 model when K is growing proportionally to the sample size, the

TSLS estimator is 
onsistent only if

π′Z′Zπ
K

→ ∞, while LIML and BTSLS estimators are


onsistent when

π′Z′Zπ√
K

→ ∞ (see Chao and Swanson (2005)). In this 
ase, the pre-test

be
omes too 
onservative. Indeed, if

π′Z′Zπ√
K

→ ∞ but

π′Z′Zπ
K

9 ∞, then the pre-test

most likely de
lares weak identi�
ation as the expe
tation of the �rst stage F equals to

π′Z′Zπ
Kσ2v

+ 1, even though there exist 
onsistent estimators and a reasonable Wald-test 
an

be 
onstru
ted.

We propose a new pre-test for weak identi�
ation that allows us to form a two-step

pro
edure: a resear
her �rst assesses instrument strength based on our pre-test and then

uses the JIVE-Wald test if the instruments appear strong and our ja
kknife AR test if they

appear weak. We 
an guarantee the size of su
h two-step pro
edure in a heteros
edasti


IV model with large K. Our pre-test uses an empiri
al measure of

µ2√
K
, whose value


hara
terizes weak identi�
ation as dis
ussed in the previous se
tions:

F̃ =
1

√
K
√

Υ̂

N∑

i=1

∑

j 6=i
PijXiXj , (5)

here Υ̂ = 2
K

∑
i

∑
j 6=i

P 2

ij

MiiMjj+M2

ij
XiMiXXjMjX is an estimate of the varian
e Υ de�ned
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in (12). The JIVE-Wald test uses the JIV2 estimator introdu
ed in Angrist et al. (1999):

β̂JIV E =

∑N
i=1

∑
j 6=i PijYiXj∑N

i=1

∑
j 6=i PijXiXj

.

Our 
hoi
e of JIVE is based on two 
onsiderations. First, a

ording to Hausman et

al. (2012), in a heteros
edasti
 IV model, when

π′Z′Zπ√
K

→ ∞, LIML and BTSLS be
ome

in
onsistent, but JIVE is 
onsistent. Se
ond, the JIVE estimator is a ratio of two quadrati


forms similar to the ja
kknife AR statisti
. We use the following estimator of the JIVE

varian
e, that is a 
ross-�t version of the estimator derived in Chao et al. (2012):

V̂ =

∑N
i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj

(∑N
i=1

∑
j 6=i PijXiXj

)2 ,

where êi = Yi −Xiβ̂JIV E . The Wald statisti
 is de�ned as Wald(β0) =
(β̂JIV E−β0)

2

V̂
.

Theorem 5 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ǫi =

(ei, vi)
′
. Assume that Π′MΠ ≤ CΠ′Π

K
and

Π′Π
K2/3 → 0 as N → ∞. Then for β = β0,

(
Wald(β0), F̃

)
⇒
(

ξ2

1− 2̺ ξ
ν
+ ξ2

ν2

, ν

)
, (6)

where ξ and ν are two normal random variables with means 0 and

µ2√
K
√
Υ
, unit varian
es

and 
orrelation 
oe�
ient ̺ de�ned in equation (12).

Theorem 5 shows that the distribution of the JIVE-Wald statisti
s 
an be quite dif-

ferent from its 
onventional χ2
1 limit when

µ2√
K
√
Υ
is small. If

µ2√
K
√
Υ
is large, then most

realizations of the random variable ν are large as well and the limit of the JIVE-Wald is


lose to the distribution of ξ2, whi
h is χ2
1. This suggests that

µ2√
K
√
Υ
is a good measure for

identi�
ation strength. We noti
e that the limit expression for the JIVE-Wald statisti
s

is similar to the limit distribution derived by Sto
k and Yogo (2005, formula (2.22)) for

TSLS-Wald in homos
edasti
 weak IV with small K.

Using Theorem 5 we 
an 
al
ulate the worst asymptoti
 reje
tion rate of the JIVE-

14



Wald test as a fun
tion of

µ2√
K
√
Υ
= x:

Rmax
α (x) = max

̺∈[−1,1]
Px,̺

{
ξ2

1− 2̺ ξ
ν
+ ξ2

ν2

≥ χ2
1,1−α

}
,

where Px,̺ is the probability distribution of ξ, ν des
ribed in Theorem 5. For a typi
al

test with nominal size α = 5%, we �nd that

µ2√
K
√
Υ

= x > 2.5 implies Rmax
5% (x) < 10%.

Theorem 5 also allows us to 
onstru
t a 5%-test for the null hypothesis that the unknown

strength of identi�
ation parameter

µ2√
K
√
Υ
is higher than 2.5. This test is based on the

statisti
 F̃ and a

epts whenever F̃ > 4.14. Using Bonferroni bounds we obtain the

following statement:

Corollary 1 Let all assumptions of Theorem 5 hold. Then a two-step test for the null

hypothesis H0 : β = β0 that a

epts the null if F̃ > 4.14 and Wald(β0) < χ2
1,0.95 or if

F̃ ≤ 4.14 and AR(β0) < z0.95, has an asymptoti
 size smaller than 15%.

The pre-test we propose is to 
ompare F̃ with the 
ut-o� of 4.14. If F̃ ex
eeds the 
ut-

o� one may pro
eed using JIVE test/
on�den
e set, otherwise one is advised to employ

weak-identi�
ation robust ja
kknife AR test. The attra
tion of the two-step pro
edure is

that 
on�den
e sets based on the JIVE-Wald test is relatively easy to 
onstru
t and is

well understood by the pra
titioners. As we illustrate in simulations, the Ja
kknife AR


on�den
e sets tend to be wider than the JIVE-Wald 
on�den
e sets when identi�
ation

is strong. Simulations also suggest the Bonferroni bounds derived in Corollary 1 tend to

be 
onservative, as the a
tual size of the two-step test does not ex
eed 7%.

5 Empiri
al Illustration: Return to Edu
ation

Angrist and Krueger (1991) (AK91 in what follows) provided a motivating example for

the weak identi�
ation literature, starting with the seminal work by Bound et al. (1995).

Staiger and Sto
k (1997) suggested that the relatively low value of the �rst stage F

statisti
 
an be seen as a sign of potential weak instruments in the AK91 appli
ation.

Hansen et al. (2008) argued that �many instruments� may be a more relevant des
ription
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FF F̃ JIVE-Wald Ja
kknife AR

180 instruments 2.428 13.422 [0.066,0.132℄ [0.008,0.201℄

1530 instruments 1.27 6.173 [0.024,0.121℄ [-0.047, 0.202℄

Table 1: AK91 Pre-test Results

Notes: Results on pre-tests for weak identi�
ation and 
on�den
e sets for IV spe
i�
ation underlying

Table VII Column (6) of Angrist and Krueger (1991) using the original data. FF is the �rst stage F

statisti
 of Sto
k and Yogo (2005), F̃ is the statisti
 introdu
ed in (5). The JIVE-Wald 
on�den
e set is

des
ribed in Se
tion 4. The ja
kknife AR 
on�den
e set is based on analyti
al test inversion.

of the identi�
ation issue en
ountered in AK91, as instruments are possibly not weak


olle
tively. They suggested that estimators other than TSLS may restore the a

ura
y

for standard inferen
es. We apply our proposed pre-test statisti
s F̃ to the original AK91

appli
ation to assess whether instruments are weak given that there are many of them.

The original AK91 appli
ation estimated the e�e
t of s
hooling (Xi) on log weekly

wage (Yi) using quarter of birth as instruments in a sample of 329,509 men born 1930-39

from the 1980 
ensus.

3

There are multiple spe
i�
ations in the original AK91 study. We

fo
us on the spe
i�
ation with 180 instruments and also an extension of this spe
i�
ation

using 1530 instruments. The 180 instruments in
lude 30 quarter and year of birth in-

tera
tions (QOB-YOB) and 150 quarter and state of birth intera
tions (QOB-POB). For

the se
ond spe
i�
ation with 1530 instruments, we also in
lude full intera
tions among

QOB-YOB-POB. Table 1 reports the �rst stage F statisti
s (FF), our proposed pre-test

statisti
s F̃ introdu
ed in (5), 
on�den
e sets based on the JIVE-Wald and ja
kknife AR

statisti
s. While the �rst stage F statisti
 is below 10 and the pre-test from Sto
k and

Yogo (2005) would point toward weak identi�
ation for both spe
i�
ations, the instru-

ments turn out to be strong in both spe
i�
ations based on our pre-test. As a result,

the reported 
on�den
e sets based on a norminal 5% JIVE-Wald test are reliable, as the

a
tual size is at most 15%. The 
on�den
e sets based on our ja
kknife AR statisti
 are

wider, yet still informative.

3

With this sample size, we 
annot ve
torize 
al
ulations involving P
2

ij (for ja
kknife AR and pre-test)

due to memory 
onstraint. However, it is still relatively fast to exe
ute the non-ve
torized 
ode, whi
h

takes around 20 minutes.
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N K Avg. F̃ OLS 2SLS 2SLS LIML LIML JIVE JIVE

bias bias size bias size bias size

4,923 154 4.99 0.26 0.17 96.6% -0.001 0.6% -0.03 5%

3,209 135 3.35 0.26 0.19 95.7% -0.05 2.7% -0.06 5.2%

1,599 111 1.77 0.26 0.21 92.3% -0.89 14.5% 1.22 3.6%

Table 2: AK91 Simulation Results: Bias of di�erent estimators and Size of Non-robust Tests

5.1 Monte Carlo Experiments

Through Monte Carlo simulations we show that the ja
kknife AR and the pre-test we

develop are robust to many weak instruments unlike 
anoni
al IV estimators. To illustrate

the pra
ti
al importan
e of many weak instruments, we attempt to preserve the stru
ture

of AK91. Spe
i�
ally, we adopt the simulation design by Angrist and Frandsen (2019).

There is very little endogeneity in the original AK91, whi
h makes it hard to study the

biases of di�erent estimators. Thus, we follow Angrist and Frandsen (2019) to introdu
e

additional omitted variable bias to the simulated data. The simulated data has a nonlinear

�rst stage and is heteros
edasti
. We deviate from Angrist and Frandsen (2019) in two

respe
ts. First, we vary the sample size N of the simulated data to be 1.5%, 1% and 0.5%

of the original sample size. This is to vary the identi�
ation strength. We report the

identi�
ation strength by the average F̃ a
ross simulations. Simulations with sample size

equal to 1.5% of the original sample size produ
e strong identi�
ation in our de�nition, 1%

still produ
e strong identi�
ation but 
lose to the weak identi�
ation region, while 0.5%

produ
e weak identi�
ation.When we redu
e the sample size we also need to ex
lude the

instruments of the groups that are no longer populated. Se
ond, both in data simulation

and in estimation we do not in
lude 
ontrols in order to isolate the impli
ations of many

instruments. The Appendix provides more details on our simulation design.

We evaluate the performan
e of 
ommon estimators and tests based on 1000 simulation

draws. In Table 2, we report the bias and Wald tests size of OLS, 2SLS, LIML and JIVE

estimators. For the Wald test based on the LIML estimator, we 
al
ulate the standard

errors as in Hansen et al. (2008). They 
orre
ted the 
anoni
al standard error estimator

to be robust to many instruments, but this test is not robust to heteros
edasti
ity, as

LIML itself is in
onsistent under heteros
edasti
ity. For the Wald test based on the
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N K Avg. FF Avg. F̃ ja
kknife AR pre-test two-step test

4,923 154 1.63 4.99 5.1% 70.5% 5.8%

3,209 135 1.44 3.35 5.6% 26.7% 6.6%

1,599 111 1.24 1.77 6.3% 4.5 % 7.2%

Table 3: AK91 Simulation Results: Size of Robust Tests

JIVE estimator, we 
al
ulate the heteros
edasti
ity-robust standard errors as des
ribed

in Se
tion 4.

We �nd that due to many instruments 2SLS has large bias even under strong identi�-


ation. While Hausman et al. (2012) show LIML is in
onsistent under many instruments

and heteros
edasti
ity, LIML is not too biased in our simulated data, as long as identi�-


ation is not weak. We �nd that JIVE has low bias when identi�
ation is strong, but its

bias in
reases when identi�
ation is weak. The Wald test based on either LIML or JIVE

is not robust to many weak instruments, and we �nd substantial size distortion for LIML

under weak identi�
ation. Surprisingly we do not �nd large size distortion for JIVE.

In Table 3 we report the reje
tion frequen
y of the robust test we developed in this

paper based on the ja
kknife AR test statisti
. We �nd that the ja
kknife AR 
ontrols

size even under weak identi�
ation. Our proposed pre-test also 
ontrols size and is able to

swit
h to the JIVE-Wald test when identi�
ation is strong. In 
ontrast, the �rst stage F

statisti
s of Sto
k and Yogo (2005) (FF) are very small even under strong identi�
ation,

whi
h makes it not very informative.

Finally, in Table 4 we 
ompare the length of 
on�den
e intervals formed by inverting

various tests. In parti
ular, when identi�
ation is strong, ja
kknife AR 
on�den
e sets

are longer (less e�
ient) but are not unreasonably long 
ompared to the Wald tests based

on LIML and JIVE. In this 
ase, a pre-test 
an improve the e�
ien
y by swit
hing to the

Wald test based on JIVE. As with the 
anoni
al AR test, the ja
kknife AR test 
an result

in 
on�den
e intervals with in�nite length. We report the probability of in�nite length in

the last 
olumn of Table 4, and note that su
h probability in
reases as identi�
ation gets

weaker.

18



N K Avg. F̃ 2SLS LIML JIVE ja
kknife AR in�nite ja
kknife AR

4,923 143 4.99 0.18 1.14 0.81 1.66 0.4%

3,209 135 3.35 0.20 1.23 1.41 2.76 14.2%

1,599 111 1.77 0.24 1.46 5244 6.89 51.1%

Table 4: AK91 Simulation Results, Length of Con�den
e Interval

6 Con
lusion

In this paper, we argue that we 
an 
hara
terize weak identi�
ation as an environment

with many instruments when an analog of the 
on
entration parameter staying bounded

relative to the square root of the number of instruments in large samples. We introdu
e a

ja
kknifed version of the AR test that is robust to our de�nition of weak identi�
ation and

heteros
edasti
ity. We also propose a pre-test for weak identi�
ation and 
orrespondingly

a two-step testing pro
edure in the spirit of Sto
k and Yogo (2005). Unlike the pre-test

proposed by Sto
k and Yogo (2005), our two-step test 
ontrols size distortion even under

heteros
edasti
ity and with many instruments. As an empiri
al example, our pre-test

reje
ts weak identi�
ation in Angrist and Krueger (1992) where up to 1530 instruments

are used.
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8 Appendix with Proofs

Let C be a universal 
onstant (that may be di�erent in di�erent lines but does not depend

on N or K). Denote σ2
i = V ar(ei), ς

2
i = V ar(vi), γi = cov(ei, vi), and P̃

2
ij =

P 2

ij

MiiMjj+M2

ij
.

Proof of Theorem 1. Denote A to be an upper-triangular matrix, su
h that AΩA′ =

I2. The su�
ient statisti
 in model (1) is


 ξ1

ξ2


 = (A⊗ IK) ·


 (Z ′Z)−1/2Z ′Y

(Z ′Z)−1/2Z ′X


 ∼ N




 β̃Π

Π


 , I2K




(7)

where β̃ = (1, 0)A(β, 1)′ is a (known) linear one-to-one transformation of β. Denote the


orresponding null and alternative as β̃0 and β̃∗
. We denote also Π = (Z′Z)1/2π

σv
, whi
h

is one-to-one transformation of π. It is enough to restri
t attention to the tests that

depend on the data through su�
ient statisti
s only. Indeed, for any test ψ ∈ ΨN we may


onstru
t a test ψS = E(ψ|ξ1, ξ2) whi
h depends on the data only through the su�
ient
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statisti
s. Due to the law of iterated expe
tations the size and the power of ψS is the

same as the initial ψ.

Let U be the group of rotations on R
K
, that is U ∈ U are su
h U ′U = IK . No-

ti
e that the model is invariant to group U , namely if (ξ1, ξ2) satisfy model (7) with

parameters (β̃,Π) then (Uξ1, Uξ2) satisfy model (7) with parameters (β̃, UΠ). Note that

Π′Π = (UΠ)′(UΠ). This implies that for any fun
tion f we have E(β̃,Π)f(Uξ1, Uξ2) =

E(β̃,UΠ)f(ξ1, ξ2).

We 
all a test ψ = ψ(ξ1, ξ2) invariant to rotations i� for any U ∈ U we have

ψ(Uξ1, Uξ2) = ψ(ξ1, ξ2) for all realizations of (ξ1, ξ2). The maximum in Theorem 1 is

a
hieved at an invariant test. Indeed, take any test ψ ∈ ΨN that has size α, that is,

E(β̃0,Π)ψ(ξ1, ξ2) ≤ α for all Π. Let us 
onsider a new test ψ∗(ξ1, ξ2) =
∫
U∈U ψ(Uξ1, Uξ2)dU,

where the integral is taken uniformly over the unit sphere in R
K
. By 
onstru
tion, ψ∗

is

an invariant test as for any Ũ ∈ U , we have UŨ ∈ U for all U ∈ U so that

ψ∗(Ũξ1, Ũξ2) =

∫

U∈U
ψ(UŨξ1, UŨξ2)dU =

∫

U∈U
ψ(Uξ1, Uξ2)dU.

E(β̃0,Π)ψ
∗(ξ1, ξ2) =

∫

U∈U

{
E(β̃0,Π)ψ(Uξ1, Uξ2)

}
dU =

∫

U∈U

{
E(β̃0,UΠ)ψ(ξ1, ξ2)

}
dU ≤ α.

So, it has 
orre
t size. Now we 
he
k that the minimal power of ψ∗
a
hieved over alter-

natives (β̃∗,Π) with Π su
h that

Π′Π√
K

= C is not smaller than that of ψ. Assume that the

minimum of power for test ψ is a
hieved at the alternative Π∗
: minΠ′Π√

K
=C

E(β̃∗,Π)ψ(ξ1, ξ2) =

E(β̃∗,Π∗)ψ(ξ1, ξ2). Then, similarly to above:

min
Π′Π√

K
=C

E(β̃∗,Π)ψ
∗(ξ1, ξ2) = min

Π′Π√
K

=C

∫

U∈U

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU ≥

≥
∫

U∈U
min

Π′Π√
K

=C

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU = E(β̃∗,Π∗)ψ(ξ1, ξ2).

All invariant tests depend on the data only through maximal invariant. Thus, we should

only 
onsider tests that depend on the data through statisti
s Q = (Q1, Q2, Q3) =
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(ξ′1ξ1, ξ
′
1ξ2, ξ

′
2ξ2). If Π

′Π/
√
K → C then Q 
onverges to the following distribution:




ξ′
1
ξ1−K√
2K

ξ′
1
ξ2√
K

ξ′
2
ξ2−K√
2K


⇒ N







β̃2 C√
2

β̃C

C√
2


 , I3


 =




Q∞,1

Q∞,2

Q∞,3


 = Q∞. (8)

A

ording to Theorem 1 of Müeller (2011) the limit of the maximal power of tests in

experiment based on Q is bounded above by the maximal power a
hieved in the limit

experiment des
ribed on Q∞ as de�ned in the right hand side of equation (8). Noti
e

that the maximal a
hievable power Eβ̃∗,Cψ
∗(Q∞) is stri
tly less than 1 for any �xed β∗

and �xed C. Indeed, the best a
hievable power in the limit experiment (8) is no more

than the best a
hievable power in the experiment when C is known. If C is known, the

optimal test follows from the Neyman-Pearson lemma, and is less than 1.

Proof of Theorem 2. Assumptions 1 and 2 imply

1 ≥ 1

K

∑

i

∑

j 6=i
P 2
ij =

1

K

∑

i

∑

j

P 2
ij −

1

K

∑

i

P 2
ii ≥ 1− δ

1

K

∑

i

Pii = 1− δ.

Thus, (1 − δ)(c∗)2 < Φ < (C∗)2 and it is su�
ient to prove that Φ̂ − Φ →p 0. The last

statement holds due to Lemma 2 applied to ξi = (ei, ei, ei)
′. �

Lemma 2 Let Assumption 1 hold. Assume the errors ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i )′ are indepen-

dent mean zero random ve
tors with maxi E‖ξi‖6 < C. Then as N → ∞, we have:

1

K

∑

i

∑

j 6=i

{
P 2
ij

MiiMjj +M2
ij

[
ξ
(1)
i Miξ

(2)
] [
ξ
(1)
j Mjξ

(3)
]
− P 2

ijE

[
ξ
(1)
i ξ

(2)
i

]
E

[
ξ
(1)
j ξ

(3)
j

]}
→p 0.

Proof of Lemma 2. Noti
e that

1

K

∑

i

∑

j 6=i
P 2
ijE

[
ξ
(1)
i ξ

(2)
i

]
E

[
ξ
(1)
j ξ

(3)
j

]
=

1

K

∑

i

∑

j 6=i
P̃ 2
ijE

[
ξ
(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j

]
.

De�ne ξij = ξ
(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3) − E

[
ξ
(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3)
]
, then we need to prove that

1
K

∑
i

∑
j 6=i P̃

2
ijξij →p 0. Sin
e 1

K

∑
i

∑
j 6=i P̃

2
ijξij has zero mean, it is su�
ient to show that
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the varian
e of ea
h term in expression (9) de�ned below 
onverges to zero (here I4 is a

summation over distin
t indexes (i, i′, j, j′)):

E

(
1

K

∑

i

∑

j 6=i
P̃ 2
ijξij

)2

=
1

K2

∑

i

∑

j 6=i
P̃ 4
ijEξ

2
ij+

+
1

K2

∑

i

∑

j 6=i

∑

i′ 6={i,j}
P̃ 2
ijP̃

2
ii′Eξijξii′ +

1

K2

∑

I4

P̃ 2
ijP̃

2
i′j′Eξijξi′j′. (9)

First, we prove that maxi,j Eξ
2
ij < C. We expand ξij = A1,ij + A2,ij + A3,ij , where:

A1,ij =MiiMjj

(
ξ
(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j − E[ξ

(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j ]
)
+M2

ij

(
ξ
(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j − E[ξ

(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j ]
)
,

A2,ij =ξ
(1)
i ξ

(1)
j

∑

i′ 6={i,j}

(
MiiMji′ξ

(2)
i ξ

(3)
i′ +Mii′Mijξ

(2)
i′ ξ

(3)
i +MjjMii′ξ

(2)
i′ ξ

(3)
j +Mji′Mijξ

(2)
j ξ

(3)
i′

)
,

A3,ij =ξ
(1)
i ξ

(1)
j

∑

i′ 6={i,j}

∑

j′ 6={i,j}
Mii′Mjj′ξ

(2)
i′ ξ

(3)
j′ .

It is su�
ient to show that maxi,j EA
2
s,ij is bounded for all s = 1, 2, 3. The moment 
on-

dition implies EA2
1,ij ≤ C

(
MiiMjj +M2

ij

)2 ≤ C. Below we use that non-zero 
orrelations

between summands in As,ij imply that some indexes must 
oin
ide. We also use Lemma

S1.1 from the Supplementary Appendix:

EA2
2,ij ≤ C

∑

i′

(MiiMji′ +Mii′Mij +MjjMii′ +Mji′Mij)
2 ≤ C,

EA2
3,ij ≤ C

∑

i′ 6={i,j}

∑

j′ 6={i,j}

(
P 2
ii′P

2
jj′ + |Pii′Pjj′Pij′Pji′|

)
≤ C.

Next noti
e that

P̃ 2
ij =

P 2
ij

MiiMjj +M2
ij

≤ P 2
ij

(1− Pii)(1− Pjj)
≤ 1

(1− δ)2
P 2
ij . (10)

Lemma B1 in Chao et al (2012) gives that

∑
i

∑
j 6=i P

4
ij ≤ K and

∑
i

∑
j 6=i
∑

j′ 6=i,j′ 6=j P
2
ijP

2
ij′ ≤

K. Thus, given the bound on maxi,j Eξ
2
ij < C and by Cau
hy-S
hwarz inequality

maxi,j,k |Eξijξik| < C, the �rst two terms in expression (9) 
onverge to zero.

For the last term in (9), sin
e i, i′, j, j′ are all distin
t, we have EA1,ijAs,i′j′ = 0 for

24



s = 2, 3, and EA2,ijA3,i′j′ = 0. The non-zero terms in Eξijξi′j′ are

|EA2,ijA2,i′j′| ≤C |(MiiMjj′ +MijMij′)(Mi′i′Mjj′ +Mi′jMi′j′)|+

+C |(MjjMii′ +Mji′Mij)(Mj′j′Mii′ +Mj′i′Mij′)| .

|EA3,ijA3,i′j′| ≤C(Pii′Pjj′ + Pij′Pi′j)
2.

Given inequality (10) and the symmetry of summation, and statements (a)-(e) proved

in Lemma S1.2 in the Supplementary Appendix, we obtain that the last two terms in

equation (9) 
onverge to zero. �

Proof of Theorem 3. Denote λi =MiΠ, then

Φ̂ =
2

K

∑

i

∑

j 6=i
P̃ 2
ij (ηi +∆Πi) (Miη +∆λi) (ηj +∆Πj) (Mjη +∆λj) .

Let us de�ne Φ̂0 =
1
K

∑
i

∑
j 6=i P̃

2
ijηiMiηηjMjη. Assumption 2 guarantees that the varian
e

of ηi = ei+∆·vi is uniformly bounded. Lemma 2 with ξi = (ηi, ηi, ηi)
′
gives

∣∣∣Φ̂0 − Φ
∣∣∣→p 0

uniformly over bounded ∆. Lemma 3 with ξi = (ηi, ηi, ηi, ηi)
′
implies Φ̂− Φ̂0 →p 0. �

Lemma 3 Let ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i , ξ

(4)
i )′ be independent mean zero 4 × 1 random ve
tors,

su
h that E‖ξi‖4 < C. Let Assumption 1 hold. Assume that λ′λ ≤ C
K
Π′Π and ∆2 · Π′Π

K
→ 0

as N → ∞. Then

1

K

∑

i

∑

j 6=i
P̃ 2
ij

(
ξ
(1)
i +∆Πi

) (
Miξ

(2) +∆λi
) (
ξ
(3)
j +∆Πj

) (
Mjξ

(4) +∆λj
)
−

− 1

K

∑

i

∑

j 6=i
P̃ 2
ijξ

(1)
i Miξ

(2)ξ
(3)
j Mjξ

(4) →p 0.

Proof of Lemma 3. We write the main expression of interest as a polynomial of fourth

power in∆: ∆4A4+∆3A3+∆2A2+∆A1 and prove that all terms are negligible∆lAl →p 0

by showing that their means and varian
es 
onverge to zero. Noti
e that for expressions

with identi
al stru
ture but di�erent 
omponents of ξi, the proof of their negligibility is

exa
tly the same. Thus for simpli
ity we abuse the notation and drop the supers
ripts to

ξi when we 
an 
onsolidate these expressions. For example, we write the expression for one
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of the terms in A3 as
1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξj, whi
h 
olle
ts both

1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(1)
j

and

1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(3)
j . We also treat ξi in all expressions below as s
alar.

A4 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjλj ;

A3 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiλjξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjMjξ;

A2 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiλjξiξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijλiξiΠjMjξ+

+
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiΠiξjMjξ +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiΠjMiξMjξ;

A1 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiξiMjξξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiMiξξjMjξ.

Term A4 is deterministi
. We use bound (10) and Lemma S1.3 (d):

∆4|A4| ≤
C∆4Π′Πλ′λ

K
≤ C∆4(Π′Π)2

K2
→ 0.

Term A3 is mean zero. Using the inequality V ar(X+Y ) ≤ 2V ar(X)+2V ar(Y ) we have:

∆6V ar(A3) ≤
C∆6

K2


∑

j

(
∑

i

P 2
ij|Πi||λi|

)2

λ2j +
∑

k

(
∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjMjk

)2

 ≤

≤ C∆6

K2

(
(λ′λ)2Π′Π +

∑

i,i′,j,j′

P 2
ij|ΠiλiΠj |P 2

i′j′|Πi′λi′Πj′|
∑

k

|MjkMj′k|
)

≤

≤ C∆6

K2

(
(λ′λ)2Π′Π+ (Π′Π)2λ′λ

)
≤ C∆6(Π′Π)3

K3
→ 0.

For the �rst inequality, we apply Assumption 2 and bound (10). Then we use Cau
hy-

S
hwarz inequality for the �rst summand:

(∑
i P

2
ij |Πi||λi|

)2 ≤ Π′Πλ′λ. For the se
ond

summand, we apply Lemma S1.1 (ii) and Lemma S1.3 (
). Finally, we apply Lemma S2.1

and S2.2 to get ∆2A2 →p 0 and ∆A1 →p 0. �
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Proof of Theorem 4. The infeasible version of AR statisti
s under β = β0 +∆ is:

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0)

=
∆2

√
K
√
Φ

∑

i

∑

j 6=i
PijΠiΠj +

2∆√
K
√
Φ

∑

i

(
∑

j 6=i
PijΠj

)
ηi +

1√
K
√
Φ

∑

i

∑

j 6=i
Pijηiηj. (11)

The �rst term in (11) is deterministi
 and equals to ∆2 µ2√
K
√
Φ
. The se
ond term has mean

zero and varian
e

∆2

KΦ

∑

i

(
∑

j 6=i
PijΠj

)2

V ar(ηi) ≤
Cc2

KΦ

∑

i

w2
i ≤

CΠ′Π

K
→ 0.

Here we used that varian
e of ηi is bounded by Assumption 2,

∑
j 6=i PijΠi = wi, and

the �nal bound is proven in Lemma S1.4. Thus, the se
ond term 
onverges to zero in

probability uniformly over |∆|2 ≤ c. The third term in (11) is asymptoti
ally standard

normal due to Lemma 1. Finally, we noti
e that

AR(β0) =

√
Φ

Φ̂

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0),

and apply Theorem 3. This �nishes the proof of statement (4).

Now 
onsider the 
ase when

µ2√
K
√
Φ
→ ∞ and ∆ 6= 0 is �xed. Above we proved that

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0) =

µ2

√
K
√
Φ
∆2 + op(1) +Op(1).

Finally, Theorem 3 implies that

Φ̂
Φ

→p 1. As a result, we have AR(β0) →p ∞ when

µ2√
K
√
Φ
→ ∞ and ∆ 6= 0 is �xed. This lead to reje
tion probability 
onverging to 1. �

Proof of Theorem 5. Denote

Q = (Qee, QXe, QXX)
′ =

1√
K

N∑

i=1

∑

j 6=i
Pij (eiej , Xiej , XiXj)

′ .
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Lemma A2 in Chao et al. (2012) implies that Σ−1/2
(
Qee, QXe, QXX − µ2√

K

)′
⇒ N(0, I3),

where Σ is the asymptoti
 
ovarian
e matrix of Q, with some of its elements written

below:

Ψ =
1

K

N∑

i=1

∑

j 6=i
P 2
ijγiγj +

1

K

N∑

i=1

∑

j 6=i
P 2
ijσ

2
i ς

2
j +

1

K

N∑

i=1

(
∑

j 6=i
PijΠj)

2σ2
i = AV ar(QXe),

Υ =
2

K

N∑

i=1

∑

j 6=i
P 2
ijς

2
i ς

2
j +

4

K

N∑

i=1

ς2i (
∑

j 6=i
PijΠj)

2 = AV ar(QXX), (12)

τ =
2

K

N∑

i=1

∑

j 6=i
P 2
ijς

2
i γj +

2

K

N∑

i=1

γi(
∑

j 6=i
PijΠj)

2 = ACov(QXe, QXX), ̺ =
τ√
Ψ
√
Υ
.

Note that êi = Yi−Xiβ̂JIV E = ei −Xi(β̂JIV E − β) and (β̂JIV E − β0) = QXe/QXX . Thus,

Wald(β0) =
Q2
Xe

∑N
i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj

,

where the denominator expands to

N∑

i=1

(
∑

j 6=i
PijXj

)2
êiMiê

Mii
+

N∑

i=1

∑

j 6=i
P̃ 2
ijMiXêiMjXêj =

=





N∑

i=1

(
∑

j 6=i
PijXj

)2
eiMie

Mii
+

N∑

i=1

∑

j 6=i
P̃ 2
ijMiXeiMjXej



−

− QXe

QXX





N∑

i=1

(
∑

j 6=i
PijXj

)2(
eiMiX

Mii
+
XiMie

Mii

)
+ 2

N∑

i=1

∑

j 6=i
P̃ 2
ijMiXeiMjXXj



+

+
Q2
Xe

Q2
XX





N∑

i=1

(
∑

j 6=i
PijXj

)2
XiMiX

Mii
+

N∑

i=1

∑

j 6=i
P̃ 2
ijMiXXiMjXXj



 .

Applying Lemma S3.1 from the Supplementary Appendix to the expanded expression of

the denominator, we show the terms appearing in the bra
es 
onverge to Ψ, 2τ and Υ

respe
tively. Then

Wald(β0) =
Q2
Xe

Ψ− 2 QXe

QXX
τ +

Q2

Xe

Q2

XX
Υ
(1 + op(1)) =

Q2
Xe/Ψ

1− 2 QXe/
√
Ψ

QXX/
√
Υ
̺+

Q2

Xe

Q2

XX

Υ
Ψ

(1 + op(1)).
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Lemmas 2 and 3 applied to Υ̂ with ξi = (vi, vi, vi, vi)
′
and ∆ = 1 give F̃ = QXX√

Υ
(1 +

op(1)). Thus, the statement of Theorem 5 holds where we denote

(
ξ, ν − µ2√

K
√
Υ

)
to be

the Gaussian limit of (QXe√
Ψ
, QXX√

Υ
− µ2√

K
√
Υ
). �

Proof of Corollary 1. Denote x = µ2√
K
√
Υ
. If x > 2.5 then due to Theorem 5:

Px{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ Px{Wald(β0) ≥ χ2

1,0.95} ≤ 0.10.

If x ≤ 2.5 then due to the asymptoti
 gaussianity of F̃ :

Px{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ Px{F̃ > 4.14} ≤ 0.05.

Finally, for any x > 0:

Px {H0 is reje
ted } = P{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95}+

+P{F̃ > 4.14 and AR(β0) ≤ z21,0.95} ≤ 0.10 + P{AR(β0) ≤ z21,0.95} ≤ 0.15.

8.1 Simulation Details

To 
reate many instruments, we intera
t QOB dummies with dummies for year of birth

(YOB) and pla
e (state) of birth (POB). Intera
ting three QOB dummies with nine YOB

and 50 POB dummies generates 180 ex
luded instruments. The ex
luded instruments are

Zi = ((1{Qi = q, Ci = c})′q∈{2,3,4},c∈{31,...,39}, 1{Qi = q, Pi = p})′q∈{2,3,4},p∈{50 states})
′,

where Qi, Ci, Pi are i's QOB, YOB and POB respe
tively. Note, that Zi are not group

instruments in the stri
t sense as they are not mutually ex
lusive. We ex
lude instruments

with

∑N
i=1 Zij < 5 to satisfy the balan
ed instruments assumption (Assumption 1).

To in
rease the amount of omitted variable bias, we follow Angrist and Frandsen

(2019) by taking the LIML model as the ground truth, where the out
ome variable is Yi

(in
ome), the endogenous variable Xi (highest grade 
ompleted) is instrumented by Zi

and the 
ontrol variables are a full set of POB-by-YOB intera
tions. Spe
i�
ally, starting
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with the full 1980 
ensus sample, we 
ompute the average Xi in ea
h QOB-YOB-POB 
ell

s̄(q, c, p) . We then estimate LIML and retain ŷ(c, p), the se
ond-stage �tted value after

subtra
ting β̂LIMLXi where β̂LIML is the LIML estimate of the returns to s
hooling. We

also retain the varian
e of LIML residuals ω(Qi, Ci, Pi) to mimi
 the heteroskedasti
ity.

The simulation model we 
onsider is then

ỹi = ȳ + 0.1s̃i + ω(Qi, Ci, Pi)(νi + κ2ǫi)

s̃i ∼ Poisson(µi),

for independent standard normal νi and ǫi. Here ȳ = 1
N

∑
i ŷ(Ci, Pi) and µi = max{1, γ0+

γ′ZZi+κ1νi} where γ0+γ′ZZi is the proje
tion of s̄(Qi, Ci, Pi) onto a 
onstant and Zi. We

set κ1 = 1.7 and κ2 = 0.1 following Angrist and Frandsen (2019).
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