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Abstrat

We develop a onept of weak identi�ation in linear IV models in whih the number of instru-

ments an grow at the same rate or slower than the sample size. We propose a jakknifed version

of the lassial weak identi�ation-robust Anderson-Rubin (AR) test statisti. Large-sample in-

ferene based on the jakknifed AR is valid under heterosedastiity and weak identi�ation. The

feasible version of this statisti uses a novel variane estimator. The test has uniformly orret

size and good power properties. We also develop a pre-test for weak identi�ation that is re-

lated to the size property of a Wald test based on the Jakknife Instrumental Variable Estimator

(JIVE). This new pre-test is valid under heterosedastiity and with many instruments.

Key words: instrumental variables, weak identi�ation, dimensionality asymptotis.

JEL lassifiation odes: C12, C36, C55.

1 Introdution

Reent empirial appliations of instrumental variables (IV) estimation often involve many

instruments that together may or may not be strongly relevant. A prominent example is

Angrist and Krueger (1991), whih started the weak IV literature, uses 180 instruments by

interating dummies for the quarter of birth with state and year of birth. Other examples

inlude papers that employ an empirial strategy known as �judge design� (Maestas et

al., 2013; Sampat and Williams, 2015; Dobbie et al., 2018). Fueled by rih administrative

data, these papers use the exogenous assignment of ases to judges as instruments for

treatment. Sine eah judge an only proess a ertain number of ases out of the total

ourt ases, the number of judges (the number of instruments) is usually proportional

to the sample size. Another example is the famous Fama-MaBeth proedure in Asset
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Priing (Fama and MaBeth, 1973; Shanken, 1992), whih is equivalent to IV estimation

proedure with the number of instruments proportional to the number of assets.

This paper answers three questions in an environment with many instruments: how

to de�ne weak identi�ation, what to do if identi�ation is weak, and how to pre-test for

weak instruments. We model many-instrument asymptotis by allowing the number of

instruments to grow at most proportionally with the sample size. Firstly, we de�ne weak

identi�ation for linear IV models with many instruments by providing neessary and

su�ient onditions for the existene of a onsistent test. Seondly, we introdue a test

that works when there are many instruments, but is also robust to weak identi�ation and

heterosedastiity. Finally, we propose a pre-test for weak identi�ation. This pre-test

forms the basis for a two-step proedure that is analogous to that of Stok and Yogo

(2005). The two-step test ontrols size distortion under many-instrument asymptotis,

regardless of the strength of identi�ation or the presene of heterosedastiity.

For one of our main results, we de�ne weak identi�ation as a situation where an analog

of the onentration parameter divided by the square root of the number of instruments

stays bounded in large samples. We prove that even in a homosedasti model with

known ovariane, an asymptotially onsistent test does not exist if the ratio of the

onentration parameter over the square root of the number of instruments stays bounded

in large samples. Thus, a neessary ondition for a onsistent test to exist is that the

onentration parameter grows faster than the square root of the number of instruments.

Later, we show that this is also a su�ient ondition by onstruting a robust test that

beomes onsistent when this ondition is satis�ed.

We propose a new jakknifed version of the Anderson-Rubin (AR) test whih is robust

to both weak identi�ation and heterosedastiity in a model with many instruments. The

new test uses an asymptoti approximation based on a Central Limit Theorem (CLT) for

quadrati forms. The new AR test has the orret size regardless of identi�ation strength

and beomes onsistent as soon as the onentration parameter grows faster than the

square root of the number of instruments.

As an important tehnial ontribution, we introdue a novel variane estimator for

the quadrati form CLT. The target variane is a quadrati form of the individual (het-
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erosedasti) varianes of errors. We apply ross-�tting (Newey and Robins, 2018; Kline

et al., 2019) to produe unbiased proxies for the individual varianes of errors. We adjust

the quadrati form to remove the bias due to orrelations between proxies. We prove the

onsisteny of the new estimator under the null and loal alternatives.

Finally, we propose a new pre-test for weak identi�ation whih is easy to use and is

onsistent with our de�nition of weak identi�ation. An empirial researher an use our

pre-test to deide between employing our jakknife AR test if the pre-test suggests that

the identi�ation is weak or a Wald test based on the Jakknife Instrumental Variable

Estimator (JIVE, Angrist et al., 1999) if the pre-test suggests that the identi�ation is

strong. We guarantee the size of this two-step proedure. Chao et al. (2012) prove

that JIVE is onsistent in a heterosedasti model when the onentration parameter

grows faster than the square root of the number of instruments. Chao et al. (2012)

also derive a onsistent estimator of the JIVE standard error. The two-step proedure is

appealing beause when identi�ation is strong, the JIVE-Wald is more e�ient and easy

to implement and report.

Our pre-test is in the spirit of Stok and Yogo (2005), but it di�ers from theirs in

two important ways. Firstly, our pre-test allows for a general form of heterosedastiity,

while the pre-test proposed in Stok and Yogo (2005) works only under onditionally

homosedasti errors. Seondly, the Stok and Yogo (2005) pre-test is designed for a small

number of instruments and is based on the Two-Stage Least Squares (TSLS) estimator.

With many instruments TSLS is onsistent only when the onentration parameter grows

faster than the number of instruments, whih makes the Stok and Yogo (2005) pre-test

not very informative.

We apply our pre-test to Angrist and Krueger (1991) and �nd that their identi�ation

is strong. Consequently the JIVE on�dene set is reliable (has overage within 5%

tolerane level of the delared overage). Our weak identi�ation-robust jakknife AR

on�dene set is somewhat wider than the JIVE on�dene set but is still informative.

Relation to the Literature. Our paper ontributes to both the literature on weak

IV and the literature on many instruments. The weak IV literature relates identi�ation

strength to the size of the onentration parameter and proposes robust tests that work
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only when there are a small number of instruments. Generalizations to many weak in-

struments either strongly restrit the number of instruments (Andrews and Stok, 2007)

or work only under homosedastiity (Anatolyev and Gospodinov, 2011).

The many instruments literature mostly establishes onsisteny onditions for parti-

ular estimators. For example, Chao and Swanson (2005) show that in a homosedasti

model limited informationmaximum likelihood (LIML) and bias-orreted TSLS (BTSLS)

are onsistent when the onentration parameter grows faster than the square root of the

number of instruments. In a heterosedasti model, onsisteny of LIML and BTSLS re-

quires that the onentration parameter grows faster than the number of instruments. By

ontrast, JIVE remains onsistent when the onentration parameter grows faster than

the square root of the number of instruments (Chao et al. (2012)).

The remainder of this paper is organized as follows. In Setion 2 we introdue our

de�nition of weak identi�ation in an environment with many instruments. In Setion 3

we onstrut the jakknife AR test and establish its power properties. In Setion 4 we

present the pre-test and prove that it ontrols size. Setion 5 reports our pre-test results

for Angrist and Krueger (1991) and onduts a simulation exerise inspired by Angrist

and Frandsen (2019), and Setion 6 onludes. Some proofs and additional results may

be found in the Supplementary Appendix.

2 Weak Identi�ation with Many Instruments

We study the linear IV regression with a salar outome Yi, a potentially endogenous

salar regressor Xi and a K × 1 vetor of instrumental variables Zi:





Yi = βXi + ei,

Xi = Πi + vi,
(1)

for i = 1, ..., N. We denote Πi = E[Xi|Zi] and allow the instruments to a�et the en-

dogenous regressor in a non-linear way. All results in this paper hold onditionally on

a realization of the instruments. Thus, we treat the instruments as �xed (non-random)

and Πi as some onstants. The mean-zero errors (ei, vi) are independent aross i but not
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identially distributed and may be heterosedasti. We assume without loss of generality

that there are no ontrols inluded in our model as they may be partialled out.

Weak identi�ation under small K is studied extensively in the weak IV literature.

For Gaussian homosedasti errors (ei, vi) and linear �rst stage (Πi = π′Zi), the strength

of the instruments orresponds diretly to the onentration parameter,

π′Z′Zπ
σ2v

, where

σ2
v = V ar(vi). The onentration parameter equals the signal-to-noise ratio in the �rst-

stage regression and is related to the bias of the TSLS estimator and the quality of

Gaussian approximation for the TSLS t-statisti. For the general ase with homosedasti

errors, Staiger and Stok (1997) introdued weak instrument-asymptotis in whih one

onsiders a sequene of models so that the onentration parameter onverges to a onstant

as N → ∞. Under this asymptoti embedding, neither a onsistent estimator of β nor a

onsistent test of the null hypothesis that β equals some salar exists, and the test based

on the TSLS t-statisti severely over-rejets.

The magnitude of the onentration parameter is not a good indiator of identi�a-

tion strength when the number of instruments is large. We model large K by onsidering

K → ∞ as N → ∞, with the only restrition that K is at most a fration of N . Under

this many instrument-asymptotis, Theorem 1 below shows that the re-saled onentra-

tion parameter

π′Z′Zπ
σ2v

√
K

provides a haraterization of weak identi�ation in terms of the

onsisteny of tests.

Theorem 1 Assume we have a sample from model (1) with linear �rst stage Πi = π′Zi,

where the errors (ei, vi) are independently drawn from a Gaussian distribution N (0,Ω)

with a known ovariane Ω. Assume that the K×K matrix Z ′Z has rank K and K → ∞
as N → ∞. For any sample of size N let ΨN be the lass of all tests of size α for

testing the hypothesis H0 : β = β0, that is, any ψ ∈ ΨN is a measurable funtion from

{(Yi, Xi, Zi), i = 1, ..., N} to the interval [0, 1] suh that Eβ0,πψ ≤ α for any value of

π ∈ R
K
. Then for any β∗ 6= β0 we have

lim sup
N→∞

max
ψ∈ΨN


 min
π:π

′Z′Zπ

σ2
v
√

K
≤C

Eβ∗,πψ


 < 1.

The setting onsidered in Theorem 1 is quite favorable: the �rst stage is linear, errors
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are Gaussian and homosedasti with known ovariane matrix. So the only unknown

parameters are β and π. Theorem 1 states that even in this favorable setting there exists

no test that onsistently di�erentiates any β∗
from β0 if the ratio

π′Z′Zπ
σ2v

√
K

is bounded.

Indeed, for any test ψ we an �nd its guaranteed power Eβ∗,πψ by minimizing over the

alternatives (β∗, π) with bounded

π′Z′Zπ
σ2v

√
K
. We show that even the test that ahieves the

maximum guaranteed power has guaranteed power stritly less than one asymptotially.

Later we show that in a more general heterosedasti model we an onstrut a robust

test that beomes onsistent when

Π′Π√
K

→ ∞.

Theorem 1 an also be used to haraterize weak identi�ation in terms of onsistent es-

timation sine it implies there exists no onsistent estimator for β when

π′Z′Zπ√
K

is bounded.

Our result omplements the literature on estimation with many instruments. Chao and

Swanson (2005) show that with homosedasti errors, when K grows proportionally to the

sample size the TSLS estimator is onsistent only if

π′Z′Zπ
K

→ ∞, while LIML and BTSLS

estimators are onsistent when

π′Z′Zπ√
K

→ ∞. However, under heterosedastiity, even

when

π′Z′Zπ√
K

→ ∞, LIML and BTSLS beome inonsistent, but JIVE is still onsistent,

aording to Chao et al. (2012).

The proof of Theorem 1 builds on several lassial papers. Following the approah

of Andrews et al. (2006), we �rst redue the lass of tests to those based on a su�ient

statisti. Among these tests, the minimal power is ahieved by a test invariant to rotations

of the instruments. This observation allows us to further redue our attention to invariant

tests, whih depend on the data only through its maximal invariant under rotations. Then

we derive a limit experiment for K → ∞ similar to that derived in Andrews and Stok

(2007). In this limit experiment the minimax power is less than one. Finally we use the

argument of Müeller (2011) to bound the desired asymptoti minimax power using the

minimax power obtained in the limit experiment.

3 Jakknife AR

The goal of this setion is to introdue a test robust to weak identi�ation in the het-

erosedasti IV model when the number of instruments, K, is large.
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The existing weak IV literature proposes several weak identi�ation-robust tests of

the null hypothesis H0 : β = β0, when K is small. These tests have orret size when

the identi�ation is weak and beome onsistent when the identi�ation is strong. One

example is the Anderson-Rubin (AR) test. Spei�ally, the IV model (1) implies that

under a given null hypothesis H0 : β = β0, the exogeneity assumption holds E[Z ′e(β0)] =

0 for the implied error e(β0) = Y − β0X. Then under mild assumptions, the saled

sample analog

1√
N
Z ′e(β0) ⇒ N(0,Σ) satis�es a K-dimensional Central Limit Theorem.

The AR statisti is de�ned as

1
N
e(β0)

′ZΣ̂−1Z ′e(β0), where Σ̂ is a onsistent estimator of

V ar
(

1√
N
Z ′e
)
. The AR test rejets the null hypothesis when the AR statisti exeeds

the (1− α) quantile of the χ2
K distribution. The AR test has asymptotially orret size

regardless of the value of the �rst stage oe�ients Πi and is asymptotially onsistent

when an analog of the onentration parameter grows to in�nity.

Generalizing the AR statisti to the large-K setting is hallenging for multiple reasons.

Firstly, the ovariane matrix Σ has dimension K × K. Its onsistent estimation is

problemati if not impossible under general heterosedastiity. Seondly, the AR statisti

under the null has an improperly entered limit distribution beause χ2
K has a very large

mean. Thirdly, the K-dimensional Central Limit Theorem provides a poor approximation

to the AR statisti when K is large.

We propose an analog of the AR test that is heterosedastiity-robust and weak

identi�ation-robust in the presene of a large number of instruments. Denote the proje-

tion matrix P = Z(Z ′Z)−1Z ′
. Our test rejets the null of H0 : β = β0 when the jakknife

AR statisti

AR(β0) =
1

√
K
√

Φ̂

N∑

i=1

∑

j 6=i
Pijei(β0)ej(β0) (2)

exeeds the (1−α) quantile of the standard normal distribution. We defer the disussion

of the estimator of the variane Φ̂ to the next subsetion.

To address the hallenges with the existing AR statisti, the AR statisti we propose

uses the default homosedastiity-inspired weighting (Z ′Z)−1
in plae of Σ̂−1

. With the

(Z ′Z)−1
weighting, the existing AR statisti has a quadrati form e(β0)

′Pe(β0). However,

this quadrati form is not entered at zero as it ontains the term

∑N
i=1 Piie

2
i , and eah
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summand has positive mean. We thus remove this term from the quadrati form. This

re-entering an be referred to as leave-one-out or jakknife. In the ontext of onsistent

estimation under many instruments, this leave-one-out idea was introdued by Angrist et

al. (1999) and fruitfully exploited in a number of papers inluding Hausman et al. (2012)

and Chao et al. (2012). In order to reate a test of orret size based on our AR statisti,

we use a Central Limit Theorem for quadrati forms proved in Chao et al. (2012) that is

restated below.

Assumption 1 Assume P is an N×N projetion matrix of rank K, K → ∞ as N → ∞
and there exists a onstant δ suh that Pii ≤ δ < 1.

Lemma 1 (Chao et al. (2012)) Let Assumption 1 hold for matrix P . Assume the errors

ηi are independent, Eηi = 0, and there exists a onstant C suh that maxi Eη
4
i < C, then

1√
K
√
Φ

N∑

i=1

∑

j 6=i
Pijηiηj ⇒ N (0, 1),

where Φ = 2
K

∑N
i=1

∑
j 6=i P

2
ijV ar(ηi)V ar(ηj).

The assumption Pii ≤ δ < 1 implies that

K
N

= 1
N

∑N
i=1 Pii ≤ δ < 1. This assumption

is often referred to as a balaned design assumption. In the ase of group-dummies

instruments, Pii is equal to the ratio of the size of the group that observation i belongs

to over N . Assumption 1 an be heked for any spei� design.

While Lemma 1 requires K → ∞, the Gaussian approximation may work well for

smaller K as well. For example, if K is �xed and errors are homosedasti, then

1√
K
√
Φ

N∑

i=1

∑

j 6=i
Pijηiηj ⇒

χ2
K −K√
2K

as N → ∞.

We prove this statement in the Supplementary Appendix S4. While the limit here is

not Gaussian it is very well approximated by a standard normal distribution even for

relatively small K. The random variable

χ2

K−K√
2K

exeeds the 95% quantile of the standard

normal distribution at most 7% of the time for all K, and at most 6% of the time for

K > 40.
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3.1 Variane estimation

In order to ondut asymptotially valid inferene based on the normal approximation in

Lemma 1, we need an estimator for the sale parameter Φ, whih is onsistent under the

null. One `naive' estimator that ahieves this is Φ̂1 =
2
K

∑N
i=1

∑
j 6=i P

2
ije

2
i (β0)e

2
j (β0), whih

uses the square of the implied error as an estimator for the i-th error variane. Under

the null when ei(β0) = ei, the estimator Φ̂1 is onsistent under relatively mild onditions.

However, using Φ̂1 in a test would result in poor power. To see this, note that under an

alternative value of the parameter β = β0+∆, we an plug in the �rst stage and write the

implied error ei(β0) = Yi − β0Xi as the sum of a non-trivial mean ∆Πi and a mean-zero

random term ηi = ei +∆vi:

ei(β0) = ∆Πi + ηi.

While squaring ei(β0) makes it an unbiased estimator for V ar(ei) under the null, it is

biased under the alternative when ∆ 6= 0. The bias in Φ̂1 grows at the same order as the

fourth power of ∆, whih brings down the power of the test against distant alternatives.

In order to remove the bias in e2i (β0) under the alternatives, one may residualize the

implied error before squaring. However, this introdues a bias under the null. Denote

M = I−P and letMi be the ith row ofM . Even under the null, the squared residualized

error is biased E(Mie)
2 6= V ar(ei). This is beause the squared residual ontains not only

the squared error ei but also the square of regression estimation mistake. The latter an

be large when the number of regressors K is large.

This bias an be removed suessfully using the ross-�t variane estimator suggested

in Kline et al (2019) and Newey and Robins (2018). Namely, they show that a produt

of the implied error and residual ahieves both goals: it removes the linearly preditable

part of the implied error and remains an unbiased estimator of the variane

E

[
eiMie

Mii

]
= V ar(ei).

Our hallenge is that the sale parameter Φ de�ned in Lemma 1 is a quadrati form

with a double summation. Residuals Mie(β0) and Mje(β0) are orrelated sine they
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ontain the same estimation mistake. One an show that

E [eiMieejMje] = (MiiMjj +M2
ij)V ar(ei)V ar(ej).

Our proposed estimator of the sale parameter Φ re-weights eah term in the summation

to remove the bias desribed above:

Φ̂ =
2

K

N∑

i=1

∑

j 6=i

P 2
ij

MiiMjj +M2
ij

[ei(β0)Mie(β0)] [ej(β0)Mje(β0)] . (3)

We establish the onsisteny of Φ̂ under the null and extend this result to loal alternatives.

Assumption 2 Errors ǫi, i = 1, ..., N are independent with Eǫi = 0, maxi E‖ǫi‖6 < ∞,

and for some onstants c∗ and C∗
that do not depend on N

c∗ ≤ min
i

min
x

x′V ar(ǫi)x

x′x
≤ max

i
max
x

x′V ar(ǫi)x

x′x
≤ C∗.

Theorem 2 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ei,

then for β = β0, we have

Φ̂
Φ
→p 1 as N → ∞.

Theorem 2 ombined with Lemma 1 implies that under the null H0 : β = β0 our proposed

AR statisti has an asymptotially standard normal distribution. Sine no assumption

about identi�ation is made, the resulting AR test has asymptotially orret size regard-

less of the strength of identi�ation.

Theorem 3 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ǫi =

(ei, vi)
′
, and Π′MΠ ≤ C

K
Π′Π. Then for β = β0 + ∆ suh that ∆2 · Π′Π

K
→ 0, we have

Φ̂
Φ
→p 1 as N → ∞.

Theorem 3 establishes the onsisteny of the variane estimator when the null hy-

pothesis does not hold. We use Theorem 3 to derive loal power urves of the AR test

disussed in the next setion. The variane estimator (3) residualizes some implied errors

Mie(β0) to remove non-trivial mean of e(β0) under the alternative. The residualization

is omplete if the �rst stage is linear Πi = π′Zi. We do not impose suh an assumption
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in Theorem 3. Instead we require that the approximation of Πi by a linear ombination

of instruments improves with the number of instruments as measured by the L2 norm of

the approximation mistake, Π′MΠ.

3.2 Power of the Jakknife AR test

Let us introdue a jakknife measure of the information ontained in the instruments:

µ2 =
N∑

i=1

∑

j 6=i
PijΠiΠj .

Theorem 4 Let Pβ be a probability measure desribing the distribution of AR(β0) de�ned

in (2) and (3) under model (1) with parameter β = β0 +∆. Assume that the sequene of

�rst stage parameters Π satis�es the following assumptions: Π′MΠ ≤ C
K
Π′Π and

Π′Π
K

→ 0

as N → ∞. If Assumption 1 holds and the errors ǫi = (ei, vi)
′
satisfy Assumption 2, then

for any positive onstant c we have:

lim
N→∞

sup
|∆|2≤c

sup
z

∣∣∣∣Pβ{AR(β0) < z} − F

(
z − ∆2µ2

√
KΦ

)∣∣∣∣ = 0, (4)

where F (·) is the standard normal df. If the sequene of �rst stage parameters additionally

satis�es the ondition

µ2√
KΦ

→ ∞, then for any �xed ∆ 6= 0 the jakknife AR test is

asymptotially onsistent:

lim
N→∞

Pβ{AR(β0) < z} = 1.

Equation (4) of Theorem 4 haraterizes the loal power urves of the jakknife AR test.

The power under the alternative β = β0 +∆ is a funtion of the distane ∆ between the

alternative β and the null β0, the number of instruments K, a measure of identi�ation

strength µ2
and the degree of unertainty

√
Φ. Our jakknife AR statisti an be negative,

unlike the AR statisti from the small-K ase whih is always non-negative. We rejet

the null when AR(β0) exeeds the (1 − α) quantile of the standard normal distribution.

Under the alternative β = β0+∆, the AR statistis has a positive drift whih gives rise to
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a two-sided test. The seond statement of Theorem 4 shows that the AR test onsistently

distinguishes β from β0 as long as

µ2√
K
√
Φ
→ ∞.

Our measure of identi�ation strength, µ2
, has a form similar to the numerator of the

onentration parameter de�ned for the homosedasti small-K ase. Though the two

forms are similar, there is an important distintion between them. In our ase the signal

strength is measured by a jakknife form, while in the homosedasti small-K ase it is

measured by Π′PΠ =
∑N

i=1

∑N
j=1 PijΠiΠj . The instruments may a�et the endogenous

regressor in an arbitrarily non-linear way, and only the projetion of Π onto the linear

spae of the instruments is used by the linear IV regression. Thus the projetion matrix

appears naturally in our measure of identi�ation strength. If the e�et of instruments

on the regressor (Π) is well approximated by the linear �rst stage (Π′MΠ ≤ C
K
Π′Π), then

the strength of identi�ation has the same order as Π′Π in the sense that they grow to

in�nity or stay bounded simultaneously. Indeed, under Assumption 1 we have:

(
1− δ − C

K

)
Π′Π ≤ µ2 = Π′Π− Π′MΠ−

N∑

i=1

PiiΠ
2
i ≤ Π′Π.

Theorem 4 implies that

µ2√
K

→ ∞ is a su�ient ondition for the onsisteny of the

jakknife AR test. When the �rst stage is well approximated by linear ombination of

the instruments, this translates to a su�ient ondition of

Π′Π√
K

→ ∞. This ompliments

Theorem 1 whih implies that

Π′Π√
K

→ ∞ is neessary for the onsisteny of any test. It

is worth notiing that the ondition

Π′Π
K

→ 0 imposed by Theorem 4 is quite weak as it

overs both weakly and strongly identi�ed ases.

4 Pre-test for Weak Identi�ation

In a prominent paper, Stok and Yogo (2005) introdued a pre-test for weak identi�ation

that has gained enormous popularity in applied work. In homosedasti IV models with

small K, the onentration parameter fully haraterizes the worst bias of the TSLS as a

fration of the OLS bias and the worst rejetion rate of TSLS-Wald test. Sine the �rst

stage F statisti measures the onentration parameter, Stok and Yogo (2005) suggest
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a set of ut-o�s for the �rst stage F statisti, above whih a researher an guarantee

with high (prespei�ed) probability that the bias of TSLS is not larger than 10% of the

OLS bias, or that the TSLS-Wald statisti does not over-rejet by more than 5%. The

ut-o�s depend on the goal (bias or size) and the number of instruments. However, these

details seem to be mostly disregarded in empirial pratie, as the most ommon guidane

suggests a ut-o� of 10, regardless of the goal or the number of instruments.

As with any proedure of suh generality, it su�ers from multiple drawbaks. First,

the pre-test is valid only if the model is homosedasti. Andrews (2018) shows that in

models alibrated to ommonly-used data sets with heterosedastiity one may �nd ases

with the �rst stage F statistis exeeding 1000, that have large over-rejetions of the

TSLS-Wald test.

Seond, the TSLS estimator is less robust to weak identi�ation when K is large.

In a homosedasti model when K is growing proportionally to the sample size, the

TSLS estimator is onsistent only if

π′Z′Zπ
K

→ ∞, while LIML and BTSLS estimators are

onsistent when

π′Z′Zπ√
K

→ ∞ (see Chao and Swanson (2005)). In this ase, the pre-test

beomes too onservative. Indeed, if

π′Z′Zπ√
K

→ ∞ but

π′Z′Zπ
K

9 ∞, then the pre-test

most likely delares weak identi�ation as the expetation of the �rst stage F equals to

π′Z′Zπ
Kσ2v

+ 1, even though there exist onsistent estimators and a reasonable Wald-test an

be onstruted.

We propose a new pre-test for weak identi�ation that allows us to form a two-step

proedure: a researher �rst assesses instrument strength based on our pre-test and then

uses the JIVE-Wald test if the instruments appear strong and our jakknife AR test if they

appear weak. We an guarantee the size of suh two-step proedure in a heterosedasti

IV model with large K. Our pre-test uses an empirial measure of

µ2√
K
, whose value

haraterizes weak identi�ation as disussed in the previous setions:

F̃ =
1

√
K
√

Υ̂

N∑

i=1

∑

j 6=i
PijXiXj , (5)

here Υ̂ = 2
K

∑
i

∑
j 6=i

P 2

ij

MiiMjj+M2

ij
XiMiXXjMjX is an estimate of the variane Υ de�ned

13



in (12). The JIVE-Wald test uses the JIV2 estimator introdued in Angrist et al. (1999):

β̂JIV E =

∑N
i=1

∑
j 6=i PijYiXj∑N

i=1

∑
j 6=i PijXiXj

.

Our hoie of JIVE is based on two onsiderations. First, aording to Hausman et

al. (2012), in a heterosedasti IV model, when

π′Z′Zπ√
K

→ ∞, LIML and BTSLS beome

inonsistent, but JIVE is onsistent. Seond, the JIVE estimator is a ratio of two quadrati

forms similar to the jakknife AR statisti. We use the following estimator of the JIVE

variane, that is a ross-�t version of the estimator derived in Chao et al. (2012):

V̂ =

∑N
i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj

(∑N
i=1

∑
j 6=i PijXiXj

)2 ,

where êi = Yi −Xiβ̂JIV E . The Wald statisti is de�ned as Wald(β0) =
(β̂JIV E−β0)

2

V̂
.

Theorem 5 Let Assumption 1 hold for matrix P and Assumption 2 hold for errors ǫi =

(ei, vi)
′
. Assume that Π′MΠ ≤ CΠ′Π

K
and

Π′Π
K2/3 → 0 as N → ∞. Then for β = β0,

(
Wald(β0), F̃

)
⇒
(

ξ2

1− 2̺ ξ
ν
+ ξ2

ν2

, ν

)
, (6)

where ξ and ν are two normal random variables with means 0 and

µ2√
K
√
Υ
, unit varianes

and orrelation oe�ient ̺ de�ned in equation (12).

Theorem 5 shows that the distribution of the JIVE-Wald statistis an be quite dif-

ferent from its onventional χ2
1 limit when

µ2√
K
√
Υ
is small. If

µ2√
K
√
Υ
is large, then most

realizations of the random variable ν are large as well and the limit of the JIVE-Wald is

lose to the distribution of ξ2, whih is χ2
1. This suggests that

µ2√
K
√
Υ
is a good measure for

identi�ation strength. We notie that the limit expression for the JIVE-Wald statistis

is similar to the limit distribution derived by Stok and Yogo (2005, formula (2.22)) for

TSLS-Wald in homosedasti weak IV with small K.

Using Theorem 5 we an alulate the worst asymptoti rejetion rate of the JIVE-

14



Wald test as a funtion of

µ2√
K
√
Υ
= x:

Rmax
α (x) = max

̺∈[−1,1]
Px,̺

{
ξ2

1− 2̺ ξ
ν
+ ξ2

ν2

≥ χ2
1,1−α

}
,

where Px,̺ is the probability distribution of ξ, ν desribed in Theorem 5. For a typial

test with nominal size α = 5%, we �nd that

µ2√
K
√
Υ

= x > 2.5 implies Rmax
5% (x) < 10%.

Theorem 5 also allows us to onstrut a 5%-test for the null hypothesis that the unknown

strength of identi�ation parameter

µ2√
K
√
Υ
is higher than 2.5. This test is based on the

statisti F̃ and aepts whenever F̃ > 4.14. Using Bonferroni bounds we obtain the

following statement:

Corollary 1 Let all assumptions of Theorem 5 hold. Then a two-step test for the null

hypothesis H0 : β = β0 that aepts the null if F̃ > 4.14 and Wald(β0) < χ2
1,0.95 or if

F̃ ≤ 4.14 and AR(β0) < z0.95, has an asymptoti size smaller than 15%.

The pre-test we propose is to ompare F̃ with the ut-o� of 4.14. If F̃ exeeds the ut-

o� one may proeed using JIVE test/on�dene set, otherwise one is advised to employ

weak-identi�ation robust jakknife AR test. The attration of the two-step proedure is

that on�dene sets based on the JIVE-Wald test is relatively easy to onstrut and is

well understood by the pratitioners. As we illustrate in simulations, the Jakknife AR

on�dene sets tend to be wider than the JIVE-Wald on�dene sets when identi�ation

is strong. Simulations also suggest the Bonferroni bounds derived in Corollary 1 tend to

be onservative, as the atual size of the two-step test does not exeed 7%.

5 Empirial Illustration: Return to Eduation

Angrist and Krueger (1991) (AK91 in what follows) provided a motivating example for

the weak identi�ation literature, starting with the seminal work by Bound et al. (1995).

Staiger and Stok (1997) suggested that the relatively low value of the �rst stage F

statisti an be seen as a sign of potential weak instruments in the AK91 appliation.

Hansen et al. (2008) argued that �many instruments� may be a more relevant desription
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FF F̃ JIVE-Wald Jakknife AR

180 instruments 2.428 13.422 [0.066,0.132℄ [0.008,0.201℄

1530 instruments 1.27 6.173 [0.024,0.121℄ [-0.047, 0.202℄

Table 1: AK91 Pre-test Results

Notes: Results on pre-tests for weak identi�ation and on�dene sets for IV spei�ation underlying

Table VII Column (6) of Angrist and Krueger (1991) using the original data. FF is the �rst stage F

statisti of Stok and Yogo (2005), F̃ is the statisti introdued in (5). The JIVE-Wald on�dene set is

desribed in Setion 4. The jakknife AR on�dene set is based on analytial test inversion.

of the identi�ation issue enountered in AK91, as instruments are possibly not weak

olletively. They suggested that estimators other than TSLS may restore the auray

for standard inferenes. We apply our proposed pre-test statistis F̃ to the original AK91

appliation to assess whether instruments are weak given that there are many of them.

The original AK91 appliation estimated the e�et of shooling (Xi) on log weekly

wage (Yi) using quarter of birth as instruments in a sample of 329,509 men born 1930-39

from the 1980 ensus.

3

There are multiple spei�ations in the original AK91 study. We

fous on the spei�ation with 180 instruments and also an extension of this spei�ation

using 1530 instruments. The 180 instruments inlude 30 quarter and year of birth in-

terations (QOB-YOB) and 150 quarter and state of birth interations (QOB-POB). For

the seond spei�ation with 1530 instruments, we also inlude full interations among

QOB-YOB-POB. Table 1 reports the �rst stage F statistis (FF), our proposed pre-test

statistis F̃ introdued in (5), on�dene sets based on the JIVE-Wald and jakknife AR

statistis. While the �rst stage F statisti is below 10 and the pre-test from Stok and

Yogo (2005) would point toward weak identi�ation for both spei�ations, the instru-

ments turn out to be strong in both spei�ations based on our pre-test. As a result,

the reported on�dene sets based on a norminal 5% JIVE-Wald test are reliable, as the

atual size is at most 15%. The on�dene sets based on our jakknife AR statisti are

wider, yet still informative.

3

With this sample size, we annot vetorize alulations involving P
2

ij (for jakknife AR and pre-test)

due to memory onstraint. However, it is still relatively fast to exeute the non-vetorized ode, whih

takes around 20 minutes.
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N K Avg. F̃ OLS 2SLS 2SLS LIML LIML JIVE JIVE

bias bias size bias size bias size

4,923 154 4.99 0.26 0.17 96.6% -0.001 0.6% -0.03 5%

3,209 135 3.35 0.26 0.19 95.7% -0.05 2.7% -0.06 5.2%

1,599 111 1.77 0.26 0.21 92.3% -0.89 14.5% 1.22 3.6%

Table 2: AK91 Simulation Results: Bias of di�erent estimators and Size of Non-robust Tests

5.1 Monte Carlo Experiments

Through Monte Carlo simulations we show that the jakknife AR and the pre-test we

develop are robust to many weak instruments unlike anonial IV estimators. To illustrate

the pratial importane of many weak instruments, we attempt to preserve the struture

of AK91. Spei�ally, we adopt the simulation design by Angrist and Frandsen (2019).

There is very little endogeneity in the original AK91, whih makes it hard to study the

biases of di�erent estimators. Thus, we follow Angrist and Frandsen (2019) to introdue

additional omitted variable bias to the simulated data. The simulated data has a nonlinear

�rst stage and is heterosedasti. We deviate from Angrist and Frandsen (2019) in two

respets. First, we vary the sample size N of the simulated data to be 1.5%, 1% and 0.5%

of the original sample size. This is to vary the identi�ation strength. We report the

identi�ation strength by the average F̃ aross simulations. Simulations with sample size

equal to 1.5% of the original sample size produe strong identi�ation in our de�nition, 1%

still produe strong identi�ation but lose to the weak identi�ation region, while 0.5%

produe weak identi�ation.When we redue the sample size we also need to exlude the

instruments of the groups that are no longer populated. Seond, both in data simulation

and in estimation we do not inlude ontrols in order to isolate the impliations of many

instruments. The Appendix provides more details on our simulation design.

We evaluate the performane of ommon estimators and tests based on 1000 simulation

draws. In Table 2, we report the bias and Wald tests size of OLS, 2SLS, LIML and JIVE

estimators. For the Wald test based on the LIML estimator, we alulate the standard

errors as in Hansen et al. (2008). They orreted the anonial standard error estimator

to be robust to many instruments, but this test is not robust to heterosedastiity, as

LIML itself is inonsistent under heterosedastiity. For the Wald test based on the
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N K Avg. FF Avg. F̃ jakknife AR pre-test two-step test

4,923 154 1.63 4.99 5.1% 70.5% 5.8%

3,209 135 1.44 3.35 5.6% 26.7% 6.6%

1,599 111 1.24 1.77 6.3% 4.5 % 7.2%

Table 3: AK91 Simulation Results: Size of Robust Tests

JIVE estimator, we alulate the heterosedastiity-robust standard errors as desribed

in Setion 4.

We �nd that due to many instruments 2SLS has large bias even under strong identi�-

ation. While Hausman et al. (2012) show LIML is inonsistent under many instruments

and heterosedastiity, LIML is not too biased in our simulated data, as long as identi�-

ation is not weak. We �nd that JIVE has low bias when identi�ation is strong, but its

bias inreases when identi�ation is weak. The Wald test based on either LIML or JIVE

is not robust to many weak instruments, and we �nd substantial size distortion for LIML

under weak identi�ation. Surprisingly we do not �nd large size distortion for JIVE.

In Table 3 we report the rejetion frequeny of the robust test we developed in this

paper based on the jakknife AR test statisti. We �nd that the jakknife AR ontrols

size even under weak identi�ation. Our proposed pre-test also ontrols size and is able to

swith to the JIVE-Wald test when identi�ation is strong. In ontrast, the �rst stage F

statistis of Stok and Yogo (2005) (FF) are very small even under strong identi�ation,

whih makes it not very informative.

Finally, in Table 4 we ompare the length of on�dene intervals formed by inverting

various tests. In partiular, when identi�ation is strong, jakknife AR on�dene sets

are longer (less e�ient) but are not unreasonably long ompared to the Wald tests based

on LIML and JIVE. In this ase, a pre-test an improve the e�ieny by swithing to the

Wald test based on JIVE. As with the anonial AR test, the jakknife AR test an result

in on�dene intervals with in�nite length. We report the probability of in�nite length in

the last olumn of Table 4, and note that suh probability inreases as identi�ation gets

weaker.
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N K Avg. F̃ 2SLS LIML JIVE jakknife AR in�nite jakknife AR

4,923 143 4.99 0.18 1.14 0.81 1.66 0.4%

3,209 135 3.35 0.20 1.23 1.41 2.76 14.2%

1,599 111 1.77 0.24 1.46 5244 6.89 51.1%

Table 4: AK91 Simulation Results, Length of Con�dene Interval

6 Conlusion

In this paper, we argue that we an haraterize weak identi�ation as an environment

with many instruments when an analog of the onentration parameter staying bounded

relative to the square root of the number of instruments in large samples. We introdue a

jakknifed version of the AR test that is robust to our de�nition of weak identi�ation and

heterosedastiity. We also propose a pre-test for weak identi�ation and orrespondingly

a two-step testing proedure in the spirit of Stok and Yogo (2005). Unlike the pre-test

proposed by Stok and Yogo (2005), our two-step test ontrols size distortion even under

heterosedastiity and with many instruments. As an empirial example, our pre-test

rejets weak identi�ation in Angrist and Krueger (1992) where up to 1530 instruments

are used.
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8 Appendix with Proofs

Let C be a universal onstant (that may be di�erent in di�erent lines but does not depend

on N or K). Denote σ2
i = V ar(ei), ς

2
i = V ar(vi), γi = cov(ei, vi), and P̃

2
ij =

P 2

ij

MiiMjj+M2

ij
.

Proof of Theorem 1. Denote A to be an upper-triangular matrix, suh that AΩA′ =

I2. The su�ient statisti in model (1) is


 ξ1

ξ2


 = (A⊗ IK) ·


 (Z ′Z)−1/2Z ′Y

(Z ′Z)−1/2Z ′X


 ∼ N




 β̃Π

Π


 , I2K




(7)

where β̃ = (1, 0)A(β, 1)′ is a (known) linear one-to-one transformation of β. Denote the

orresponding null and alternative as β̃0 and β̃∗
. We denote also Π = (Z′Z)1/2π

σv
, whih

is one-to-one transformation of π. It is enough to restrit attention to the tests that

depend on the data through su�ient statistis only. Indeed, for any test ψ ∈ ΨN we may

onstrut a test ψS = E(ψ|ξ1, ξ2) whih depends on the data only through the su�ient
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statistis. Due to the law of iterated expetations the size and the power of ψS is the

same as the initial ψ.

Let U be the group of rotations on R
K
, that is U ∈ U are suh U ′U = IK . No-

tie that the model is invariant to group U , namely if (ξ1, ξ2) satisfy model (7) with

parameters (β̃,Π) then (Uξ1, Uξ2) satisfy model (7) with parameters (β̃, UΠ). Note that

Π′Π = (UΠ)′(UΠ). This implies that for any funtion f we have E(β̃,Π)f(Uξ1, Uξ2) =

E(β̃,UΠ)f(ξ1, ξ2).

We all a test ψ = ψ(ξ1, ξ2) invariant to rotations i� for any U ∈ U we have

ψ(Uξ1, Uξ2) = ψ(ξ1, ξ2) for all realizations of (ξ1, ξ2). The maximum in Theorem 1 is

ahieved at an invariant test. Indeed, take any test ψ ∈ ΨN that has size α, that is,

E(β̃0,Π)ψ(ξ1, ξ2) ≤ α for all Π. Let us onsider a new test ψ∗(ξ1, ξ2) =
∫
U∈U ψ(Uξ1, Uξ2)dU,

where the integral is taken uniformly over the unit sphere in R
K
. By onstrution, ψ∗

is

an invariant test as for any Ũ ∈ U , we have UŨ ∈ U for all U ∈ U so that

ψ∗(Ũξ1, Ũξ2) =

∫

U∈U
ψ(UŨξ1, UŨξ2)dU =

∫

U∈U
ψ(Uξ1, Uξ2)dU.

E(β̃0,Π)ψ
∗(ξ1, ξ2) =

∫

U∈U

{
E(β̃0,Π)ψ(Uξ1, Uξ2)

}
dU =

∫

U∈U

{
E(β̃0,UΠ)ψ(ξ1, ξ2)

}
dU ≤ α.

So, it has orret size. Now we hek that the minimal power of ψ∗
ahieved over alter-

natives (β̃∗,Π) with Π suh that

Π′Π√
K

= C is not smaller than that of ψ. Assume that the

minimum of power for test ψ is ahieved at the alternative Π∗
: minΠ′Π√

K
=C

E(β̃∗,Π)ψ(ξ1, ξ2) =

E(β̃∗,Π∗)ψ(ξ1, ξ2). Then, similarly to above:

min
Π′Π√

K
=C

E(β̃∗,Π)ψ
∗(ξ1, ξ2) = min

Π′Π√
K

=C

∫

U∈U

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU ≥

≥
∫

U∈U
min

Π′Π√
K

=C

{
E(β̃∗,UΠ)ψ(ξ1, ξ2)

}
dU = E(β̃∗,Π∗)ψ(ξ1, ξ2).

All invariant tests depend on the data only through maximal invariant. Thus, we should

only onsider tests that depend on the data through statistis Q = (Q1, Q2, Q3) =
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(ξ′1ξ1, ξ
′
1ξ2, ξ

′
2ξ2). If Π

′Π/
√
K → C then Q onverges to the following distribution:




ξ′
1
ξ1−K√
2K

ξ′
1
ξ2√
K

ξ′
2
ξ2−K√
2K


⇒ N







β̃2 C√
2

β̃C

C√
2


 , I3


 =




Q∞,1

Q∞,2

Q∞,3


 = Q∞. (8)

Aording to Theorem 1 of Müeller (2011) the limit of the maximal power of tests in

experiment based on Q is bounded above by the maximal power ahieved in the limit

experiment desribed on Q∞ as de�ned in the right hand side of equation (8). Notie

that the maximal ahievable power Eβ̃∗,Cψ
∗(Q∞) is stritly less than 1 for any �xed β∗

and �xed C. Indeed, the best ahievable power in the limit experiment (8) is no more

than the best ahievable power in the experiment when C is known. If C is known, the

optimal test follows from the Neyman-Pearson lemma, and is less than 1.

Proof of Theorem 2. Assumptions 1 and 2 imply

1 ≥ 1

K

∑

i

∑

j 6=i
P 2
ij =

1

K

∑

i

∑

j

P 2
ij −

1

K

∑

i

P 2
ii ≥ 1− δ

1

K

∑

i

Pii = 1− δ.

Thus, (1 − δ)(c∗)2 < Φ < (C∗)2 and it is su�ient to prove that Φ̂ − Φ →p 0. The last

statement holds due to Lemma 2 applied to ξi = (ei, ei, ei)
′. �

Lemma 2 Let Assumption 1 hold. Assume the errors ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i )′ are indepen-

dent mean zero random vetors with maxi E‖ξi‖6 < C. Then as N → ∞, we have:

1

K

∑

i

∑

j 6=i

{
P 2
ij

MiiMjj +M2
ij

[
ξ
(1)
i Miξ

(2)
] [
ξ
(1)
j Mjξ

(3)
]
− P 2

ijE

[
ξ
(1)
i ξ

(2)
i

]
E

[
ξ
(1)
j ξ

(3)
j

]}
→p 0.

Proof of Lemma 2. Notie that

1

K

∑

i

∑

j 6=i
P 2
ijE

[
ξ
(1)
i ξ

(2)
i

]
E

[
ξ
(1)
j ξ

(3)
j

]
=

1

K

∑

i

∑

j 6=i
P̃ 2
ijE

[
ξ
(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j

]
.

De�ne ξij = ξ
(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3) − E

[
ξ
(1)
i Miξ

(2)ξ
(1)
j Mjξ

(3)
]
, then we need to prove that

1
K

∑
i

∑
j 6=i P̃

2
ijξij →p 0. Sine 1

K

∑
i

∑
j 6=i P̃

2
ijξij has zero mean, it is su�ient to show that
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the variane of eah term in expression (9) de�ned below onverges to zero (here I4 is a

summation over distint indexes (i, i′, j, j′)):

E

(
1

K

∑

i

∑

j 6=i
P̃ 2
ijξij

)2

=
1

K2

∑

i

∑

j 6=i
P̃ 4
ijEξ

2
ij+

+
1

K2

∑

i

∑

j 6=i

∑

i′ 6={i,j}
P̃ 2
ijP̃

2
ii′Eξijξii′ +

1

K2

∑

I4

P̃ 2
ijP̃

2
i′j′Eξijξi′j′. (9)

First, we prove that maxi,j Eξ
2
ij < C. We expand ξij = A1,ij + A2,ij + A3,ij , where:

A1,ij =MiiMjj

(
ξ
(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j − E[ξ

(1)
i ξ

(2)
i ξ

(1)
j ξ

(3)
j ]
)
+M2

ij

(
ξ
(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j − E[ξ

(1)
i ξ

(3)
i ξ

(1)
j ξ

(2)
j ]
)
,

A2,ij =ξ
(1)
i ξ

(1)
j

∑

i′ 6={i,j}

(
MiiMji′ξ

(2)
i ξ

(3)
i′ +Mii′Mijξ

(2)
i′ ξ

(3)
i +MjjMii′ξ

(2)
i′ ξ

(3)
j +Mji′Mijξ

(2)
j ξ

(3)
i′

)
,

A3,ij =ξ
(1)
i ξ

(1)
j

∑

i′ 6={i,j}

∑

j′ 6={i,j}
Mii′Mjj′ξ

(2)
i′ ξ

(3)
j′ .

It is su�ient to show that maxi,j EA
2
s,ij is bounded for all s = 1, 2, 3. The moment on-

dition implies EA2
1,ij ≤ C

(
MiiMjj +M2

ij

)2 ≤ C. Below we use that non-zero orrelations

between summands in As,ij imply that some indexes must oinide. We also use Lemma

S1.1 from the Supplementary Appendix:

EA2
2,ij ≤ C

∑

i′

(MiiMji′ +Mii′Mij +MjjMii′ +Mji′Mij)
2 ≤ C,

EA2
3,ij ≤ C

∑

i′ 6={i,j}

∑

j′ 6={i,j}

(
P 2
ii′P

2
jj′ + |Pii′Pjj′Pij′Pji′|

)
≤ C.

Next notie that

P̃ 2
ij =

P 2
ij

MiiMjj +M2
ij

≤ P 2
ij

(1− Pii)(1− Pjj)
≤ 1

(1− δ)2
P 2
ij . (10)

Lemma B1 in Chao et al (2012) gives that

∑
i

∑
j 6=i P

4
ij ≤ K and

∑
i

∑
j 6=i
∑

j′ 6=i,j′ 6=j P
2
ijP

2
ij′ ≤

K. Thus, given the bound on maxi,j Eξ
2
ij < C and by Cauhy-Shwarz inequality

maxi,j,k |Eξijξik| < C, the �rst two terms in expression (9) onverge to zero.

For the last term in (9), sine i, i′, j, j′ are all distint, we have EA1,ijAs,i′j′ = 0 for
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s = 2, 3, and EA2,ijA3,i′j′ = 0. The non-zero terms in Eξijξi′j′ are

|EA2,ijA2,i′j′| ≤C |(MiiMjj′ +MijMij′)(Mi′i′Mjj′ +Mi′jMi′j′)|+

+C |(MjjMii′ +Mji′Mij)(Mj′j′Mii′ +Mj′i′Mij′)| .

|EA3,ijA3,i′j′| ≤C(Pii′Pjj′ + Pij′Pi′j)
2.

Given inequality (10) and the symmetry of summation, and statements (a)-(e) proved

in Lemma S1.2 in the Supplementary Appendix, we obtain that the last two terms in

equation (9) onverge to zero. �

Proof of Theorem 3. Denote λi =MiΠ, then

Φ̂ =
2

K

∑

i

∑

j 6=i
P̃ 2
ij (ηi +∆Πi) (Miη +∆λi) (ηj +∆Πj) (Mjη +∆λj) .

Let us de�ne Φ̂0 =
1
K

∑
i

∑
j 6=i P̃

2
ijηiMiηηjMjη. Assumption 2 guarantees that the variane

of ηi = ei+∆·vi is uniformly bounded. Lemma 2 with ξi = (ηi, ηi, ηi)
′
gives

∣∣∣Φ̂0 − Φ
∣∣∣→p 0

uniformly over bounded ∆. Lemma 3 with ξi = (ηi, ηi, ηi, ηi)
′
implies Φ̂− Φ̂0 →p 0. �

Lemma 3 Let ξi = (ξ
(1)
i , ξ

(2)
i , ξ

(3)
i , ξ

(4)
i )′ be independent mean zero 4 × 1 random vetors,

suh that E‖ξi‖4 < C. Let Assumption 1 hold. Assume that λ′λ ≤ C
K
Π′Π and ∆2 · Π′Π

K
→ 0

as N → ∞. Then

1

K

∑

i

∑

j 6=i
P̃ 2
ij

(
ξ
(1)
i +∆Πi

) (
Miξ

(2) +∆λi
) (
ξ
(3)
j +∆Πj

) (
Mjξ

(4) +∆λj
)
−

− 1

K

∑

i

∑

j 6=i
P̃ 2
ijξ

(1)
i Miξ

(2)ξ
(3)
j Mjξ

(4) →p 0.

Proof of Lemma 3. We write the main expression of interest as a polynomial of fourth

power in∆: ∆4A4+∆3A3+∆2A2+∆A1 and prove that all terms are negligible∆lAl →p 0

by showing that their means and varianes onverge to zero. Notie that for expressions

with idential struture but di�erent omponents of ξi, the proof of their negligibility is

exatly the same. Thus for simpliity we abuse the notation and drop the supersripts to

ξi when we an onsolidate these expressions. For example, we write the expression for one
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of the terms in A3 as
1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξj, whih ollets both

1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(1)
j

and

1
K

∑
i

∑
j 6=i P̃

2
ijΠiλiλjξ

(3)
j . We also treat ξi in all expressions below as salar.

A4 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjλj ;

A3 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiλjξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjMjξ;

A2 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiλjξiξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijλiξiΠjMjξ+

+
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiΠiξjMjξ +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiΠjMiξMjξ;

A1 =
1

K

∑

i

∑

j 6=i
P̃ 2
ijλiξiMjξξj +

1

K

∑

i

∑

j 6=i
P̃ 2
ijΠiMiξξjMjξ.

Term A4 is deterministi. We use bound (10) and Lemma S1.3 (d):

∆4|A4| ≤
C∆4Π′Πλ′λ

K
≤ C∆4(Π′Π)2

K2
→ 0.

Term A3 is mean zero. Using the inequality V ar(X+Y ) ≤ 2V ar(X)+2V ar(Y ) we have:

∆6V ar(A3) ≤
C∆6

K2


∑

j

(
∑

i

P 2
ij|Πi||λi|

)2

λ2j +
∑

k

(
∑

i

∑

j 6=i
P̃ 2
ijΠiλiΠjMjk

)2

 ≤

≤ C∆6

K2

(
(λ′λ)2Π′Π +

∑

i,i′,j,j′

P 2
ij|ΠiλiΠj |P 2

i′j′|Πi′λi′Πj′|
∑

k

|MjkMj′k|
)

≤

≤ C∆6

K2

(
(λ′λ)2Π′Π+ (Π′Π)2λ′λ

)
≤ C∆6(Π′Π)3

K3
→ 0.

For the �rst inequality, we apply Assumption 2 and bound (10). Then we use Cauhy-

Shwarz inequality for the �rst summand:

(∑
i P

2
ij |Πi||λi|

)2 ≤ Π′Πλ′λ. For the seond

summand, we apply Lemma S1.1 (ii) and Lemma S1.3 (). Finally, we apply Lemma S2.1

and S2.2 to get ∆2A2 →p 0 and ∆A1 →p 0. �
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Proof of Theorem 4. The infeasible version of AR statistis under β = β0 +∆ is:

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0)

=
∆2

√
K
√
Φ

∑

i

∑

j 6=i
PijΠiΠj +

2∆√
K
√
Φ

∑

i

(
∑

j 6=i
PijΠj

)
ηi +

1√
K
√
Φ

∑

i

∑

j 6=i
Pijηiηj. (11)

The �rst term in (11) is deterministi and equals to ∆2 µ2√
K
√
Φ
. The seond term has mean

zero and variane

∆2

KΦ

∑

i

(
∑

j 6=i
PijΠj

)2

V ar(ηi) ≤
Cc2

KΦ

∑

i

w2
i ≤

CΠ′Π

K
→ 0.

Here we used that variane of ηi is bounded by Assumption 2,

∑
j 6=i PijΠi = wi, and

the �nal bound is proven in Lemma S1.4. Thus, the seond term onverges to zero in

probability uniformly over |∆|2 ≤ c. The third term in (11) is asymptotially standard

normal due to Lemma 1. Finally, we notie that

AR(β0) =

√
Φ

Φ̂

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0),

and apply Theorem 3. This �nishes the proof of statement (4).

Now onsider the ase when

µ2√
K
√
Φ
→ ∞ and ∆ 6= 0 is �xed. Above we proved that

1√
K
√
Φ

∑

i

∑

j 6=i
Pijei(β0)ej(β0) =

µ2

√
K
√
Φ
∆2 + op(1) +Op(1).

Finally, Theorem 3 implies that

Φ̂
Φ

→p 1. As a result, we have AR(β0) →p ∞ when

µ2√
K
√
Φ
→ ∞ and ∆ 6= 0 is �xed. This lead to rejetion probability onverging to 1. �

Proof of Theorem 5. Denote

Q = (Qee, QXe, QXX)
′ =

1√
K

N∑

i=1

∑

j 6=i
Pij (eiej , Xiej , XiXj)

′ .
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Lemma A2 in Chao et al. (2012) implies that Σ−1/2
(
Qee, QXe, QXX − µ2√

K

)′
⇒ N(0, I3),

where Σ is the asymptoti ovariane matrix of Q, with some of its elements written

below:

Ψ =
1

K

N∑

i=1

∑

j 6=i
P 2
ijγiγj +

1

K

N∑

i=1

∑

j 6=i
P 2
ijσ

2
i ς

2
j +

1

K

N∑

i=1

(
∑

j 6=i
PijΠj)

2σ2
i = AV ar(QXe),

Υ =
2

K

N∑

i=1
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j 6=i
P 2
ijς

2
i ς

2
j +

4

K

N∑

i=1

ς2i (
∑

j 6=i
PijΠj)

2 = AV ar(QXX), (12)

τ =
2

K

N∑

i=1

∑

j 6=i
P 2
ijς

2
i γj +

2

K

N∑

i=1

γi(
∑

j 6=i
PijΠj)

2 = ACov(QXe, QXX), ̺ =
τ√
Ψ
√
Υ
.

Note that êi = Yi−Xiβ̂JIV E = ei −Xi(β̂JIV E − β) and (β̂JIV E − β0) = QXe/QXX . Thus,

Wald(β0) =
Q2
Xe

∑N
i=1

(∑
j 6=i PijXj

)2
êiMiê
Mii

+
∑N

i=1

∑
j 6=i P̃

2
ijMiXêiMjXêj

,

where the denominator expands to

N∑

i=1

(
∑

j 6=i
PijXj

)2
êiMiê

Mii
+

N∑

i=1

∑

j 6=i
P̃ 2
ijMiXêiMjXêj =

=
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(
∑

j 6=i
PijXj

)2
eiMie

Mii
+
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i=1

∑

j 6=i
P̃ 2
ijMiXeiMjXej



−

− QXe
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(
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j 6=i
PijXj

)2(
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Mii
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XiMie

Mii

)
+ 2
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i=1

∑

j 6=i
P̃ 2
ijMiXeiMjXXj
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+
Q2
Xe
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i=1

(
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j 6=i
PijXj

)2
XiMiX

Mii
+

N∑

i=1

∑

j 6=i
P̃ 2
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 .

Applying Lemma S3.1 from the Supplementary Appendix to the expanded expression of

the denominator, we show the terms appearing in the braes onverge to Ψ, 2τ and Υ

respetively. Then

Wald(β0) =
Q2
Xe

Ψ− 2 QXe

QXX
τ +

Q2

Xe

Q2

XX
Υ
(1 + op(1)) =

Q2
Xe/Ψ

1− 2 QXe/
√
Ψ

QXX/
√
Υ
̺+

Q2

Xe

Q2

XX

Υ
Ψ

(1 + op(1)).
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Lemmas 2 and 3 applied to Υ̂ with ξi = (vi, vi, vi, vi)
′
and ∆ = 1 give F̃ = QXX√

Υ
(1 +

op(1)). Thus, the statement of Theorem 5 holds where we denote

(
ξ, ν − µ2√

K
√
Υ

)
to be

the Gaussian limit of (QXe√
Ψ
, QXX√

Υ
− µ2√

K
√
Υ
). �

Proof of Corollary 1. Denote x = µ2√
K
√
Υ
. If x > 2.5 then due to Theorem 5:

Px{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ Px{Wald(β0) ≥ χ2

1,0.95} ≤ 0.10.

If x ≤ 2.5 then due to the asymptoti gaussianity of F̃ :

Px{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95} ≤ Px{F̃ > 4.14} ≤ 0.05.

Finally, for any x > 0:

Px {H0 is rejeted } = P{F̃ > 4.14 and Wald(β0) ≥ χ2
1,0.95}+

+P{F̃ > 4.14 and AR(β0) ≤ z21,0.95} ≤ 0.10 + P{AR(β0) ≤ z21,0.95} ≤ 0.15.

8.1 Simulation Details

To reate many instruments, we interat QOB dummies with dummies for year of birth

(YOB) and plae (state) of birth (POB). Interating three QOB dummies with nine YOB

and 50 POB dummies generates 180 exluded instruments. The exluded instruments are

Zi = ((1{Qi = q, Ci = c})′q∈{2,3,4},c∈{31,...,39}, 1{Qi = q, Pi = p})′q∈{2,3,4},p∈{50 states})
′,

where Qi, Ci, Pi are i's QOB, YOB and POB respetively. Note, that Zi are not group

instruments in the strit sense as they are not mutually exlusive. We exlude instruments

with

∑N
i=1 Zij < 5 to satisfy the balaned instruments assumption (Assumption 1).

To inrease the amount of omitted variable bias, we follow Angrist and Frandsen

(2019) by taking the LIML model as the ground truth, where the outome variable is Yi

(inome), the endogenous variable Xi (highest grade ompleted) is instrumented by Zi

and the ontrol variables are a full set of POB-by-YOB interations. Spei�ally, starting
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with the full 1980 ensus sample, we ompute the average Xi in eah QOB-YOB-POB ell

s̄(q, c, p) . We then estimate LIML and retain ŷ(c, p), the seond-stage �tted value after

subtrating β̂LIMLXi where β̂LIML is the LIML estimate of the returns to shooling. We

also retain the variane of LIML residuals ω(Qi, Ci, Pi) to mimi the heteroskedastiity.

The simulation model we onsider is then

ỹi = ȳ + 0.1s̃i + ω(Qi, Ci, Pi)(νi + κ2ǫi)

s̃i ∼ Poisson(µi),

for independent standard normal νi and ǫi. Here ȳ = 1
N

∑
i ŷ(Ci, Pi) and µi = max{1, γ0+

γ′ZZi+κ1νi} where γ0+γ′ZZi is the projetion of s̄(Qi, Ci, Pi) onto a onstant and Zi. We

set κ1 = 1.7 and κ2 = 0.1 following Angrist and Frandsen (2019).
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