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Abstract

This paper analyzes non-fundamental volatility and efficiency in a class of large games
(including e.g. linear-quadratic beauty contests) that feature strategic interaction and
endogenous information acquisition. We adopt the rational inattention approach to
information acquisition but generalize to a large class of information costs. Agents may
learn not only about exogenous states, but also about endogenous outcomes. We study
how the properties of the agents’ information cost relate to the properties of equilibria in
these games. We provide the necessary and sufficient conditions information costs must
satisfy to guarantee zero non-fundamental volatility in equilibrium, and provide another
set of necessary and sufficient conditions to guarantee equilibria are efficient. We show
in particular that mutual information, the cost function typically used in the rational
inattention literature, both precludes non-fundamental volatility and imposes efficiency,
whereas the Fisher information cost introduced by Hébert and Woodford [2020] generates
both non-fundamental volatility and inefficiency.
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1 Introduction

In many economic environments, agents make choices under incomplete information and have
incentives to align their actions with both economic “fundamentals” and the actions of other
agents [Morris and Shin, 2002, Angeletos and Pavan, 2007]. These games of strategic interaction
form the underlying basis for many micro-founded macroeconomic environments; examples
include firms’ nominal price-setting decisions in New Keynesian models [Woodford, 2003],
firms’ real quantity choices in business cycle models [Angeletos and La’O, 2010, 2013], as well as
investors’ asset positions in models of financial trade [Grossman and Stiglitz, 1976, 1980].

In these games, agents’ beliefs over exogenous fundamentals and the endogenous actions
of others play a key role in determining equilibrium outcomes. But where do these beliefs
come from and how are they formed? In this paper we investigate the endogenous acquisition
of information within games of strategic interaction. We ask two questions. First, what
properties of the agents’ information acquisition costs guarantee that an equilibrium of the
game does or does not exhibit non-fundamental volatility? Second, what properties of the
agents’ information acquisition costs guarantee that an equilibrium is constrained efficient?

A substantial literature has studied non-fundamental volatility and efficiency in exogenous
information environments, that is, when agents form their beliefs based on an exogenously-
given set of signals. In these environments, aggregate equilibrium outcomes are typically
driven by both fundamentals as well as shocks orthogonal to fundamentals. The latter, “non-
fundamental,” shocks are rationalized as the result of errors in publicly-observed signals,
or more generally, correlated errors in beliefs—standard components of generic information
structures [Bergemann and Morris, 2013]. In fact, a robust positive prediction of these games is
that the greater the strategic complementarity in actions (i.e. the greater the incentive to align
actions with others), the greater the role of non-fundamental volatility in equilibrium outcomes
[Morris and Shin, 2002].

Non-fundamental volatility can help explain short-run fluctuations in asset prices or
business cycle activity that appear to be driven by “market sentiment” or “animal spirits”
[Angeletos and La’O, 2010, 2013]. It is tempting to give a normative interpretation to these
positive predictions and assume that non-fundamental volatility is a sign of inefficiency.
Angeletos and Pavan [2007] demonstrate that, with exogenously given information structures,
such conclusions are unwarranted.

But it is not obvious that non-fundamental volatility should be expected when agents
acquire their information endogenously. It is also not clear whether agents will acquire their
information efficiently, nor whether the questions of efficiency and non-fundamental volatility
are related. Our paper seeks to address these questions.



This paper. We study a general class of large games of strategic interaction. A continuum
of ex-ante identical agents take actions under incomplete information. Each agent has the
incentive to align her own action with exogenous fundamentals as well as with the endogenous
mean action. Agents must therefore form beliefs over these objects.

We allow information to be acquired endogenously. In particular, we adopt the rational
inattention approach to costly information acquisition proposed by Sims [2003]. However,
relative to the standard rational inattention framework, we make two important departures.

First, we do not assume the information acquisition cost is mutual information—the typical
cost function introduced by Sims [2003] and used widely throughout the rational inattention
literature. We instead consider a more general class of cost functions: costs that are “posterior-
separable” in the terminology of Caplin, Dean, and Leahy [2019]. This class nests the standard
mutual information cost function as a special case. However, it also includes other cost
functions that have been proposed in the literature, including LLR cost function of Pomatto
et al. [2018] and the Fisher information cost function proposed by Hébert and Woodford [2020].

Second, we do not restrict agents to acquiring information only about exogenous
fundamentals. Instead, we follow Denti [2019] and allow the rationally-inattentive agents in
our model to learn not only about exogenous states but also about endogenous mean actions.
This modeling choice is motivated by the agents’ incentives to align their actions with the
endogenous mean action, and hence learn about it.

Thus, in our framework, a continuum of rationally-inattentive agents acquire information
in a relatively unrestricted way about payoff-relevant states, payoff-irrelevant states, and
endogenous mean actions. The payoff-irrelevant states are the potential source of “non-
fundamental” volatility in our framework; they play a role similar to “noisy public signals” in
exogenous information environments.

Within this context, we answer the two questions posed above. What properties of the
agents’ information cost structures guarantee that an equilibrium of the game does or does
not exhibit non-fundamental volatility? And, what properties of the agents’ information cost
structures guarantee that an equilibrium exists that is or is not constrained efficient?! Through
this analysis, we answer a third question: are these properties related? That is, is non-
fundamental volatility synonymous with inefficiency?

We begin our analysis with a leading example: the classic linear-quadratic-Gaussian setting.
In this setting, with either the Fisher information cost function or mutual information, agents
optimally receive Gaussian signals. As a result, one might be tempted to think the two cost
functions make identical predictions. We show that this is false—with mutual information,
there is zero non-fundamental volatility and an efficient equilibrium exists, whereas with the
Fisher information cost function the equilibrium exhibits non-fundamental volatility and is

!Angeletos and Sastry [2019] consider the related question of what properties of information costs are
sufficient to ensure efficiency in a Walrasian context.
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inefficient.

This is our first indication that the cost function matters. But it leaves open the question
of what is it about these cost functions that lead to such divergent predictions. Our general
model and analysis is focused on answering this question, and showing that non-fundamental
volatility and efficiency are driven by separate properties.

Partial Monotonicity and Partial Invariance. Whether or not a cost function leads to non-
fundamental volatility or inefficiency depends on two key properties of the agents’ information
cost structures: what we call “partial monotonicity” and “partial invariance.”

We introduce and define partial monotonicity and partial invariance as properties of
posterior-separable cost functions, and in particular the divergences that define these cost
functions. Loosely speaking, a divergence can be thought of as a measure of the “distance”
between the prior and posterior. Partial monotonicity and partial invariance describe how this
divergence responds to different transformations of the prior and posterior.

Suppose an agent is uncertain about a multi-dimensional aggregate state, and receives a
signal that moves her posterior beliefs “away from” her prior in some dimension of the aggregate
state. This signal is, in a sense, more informative than another signal that leaves posterior beliefs
close to the prior in that dimension. This idea leads to a notion of monotonicity: a divergence is
monotonic if the cost decreases as we make the posterior more like the prior in some dimension.
But note that a divergence might be monotonic in some dimensions but not others—this is
essentially our definition of “partial monotonicity.”

Take for example, a two-dimensional state space, s € S and r € R. We will say that a cost
function is monotonic in R if the cost decreases when we replace the posterior’s conditional
distribution of r given s with the prior’s conditional distribution of r given s. That is, if we make
posteriors more like the prior in this one particular way, this decreases costs.

We define another concept we call “partial invariance.” Take again our two-dimensional
state space s € S and r € R. We will say that a cost function is invariant in R if, for any
prior and posterior with the same conditional distributions of r given s, the divergence between
them is the same regardless of what that conditional distribution is. That is, if their conditional
distributions of r given s are the same, only their marginal distributions on s matter for the
information cost.

The advantage of defining partial monotonicity and partial invariance in this way is that it
allows us to consider cost functions that are monotonic in one dimension, but not monotonic
in others, or invariant in one dimension, but not invariant in others.

The forms of partial monotonicity and partial invariance that we introduce are
generalizations of the invariance concept described in the literature on information geometry
[Chentsov, 1982, Amari and Nagaoka, 2007] and that derived from the behavioral “invariance-



under-compression” axiom of Caplin, Dean, and Leahy [2019]. Invariance in this sense has been
applied to particular economic applications by Hébert [2018] and Hébert and Woodford [2019].

The invariance and monotonicity properties described by these authors indicate whether
a cost function is invariant or monotone with respect to all possible dimensions of the state
space. In contrast, we show how the answers to the questions posed in this paper relate
to invariance and monotonicity of the cost function with respect to specific dimensions of
the state space. That is, the properties of equilibria in this class of games—namely, non-
fundamental volatility and constrained efficiency—depend on the partial monotonicity and
partial invariance properties of information costs that we define.

Results. In our framework agents may acquire information about payoff-relevant states,
payoff-irrelevant states, and endogenous aggregate actions. We consider information costs that
may be monotone or invariant in any;, all, or none of those dimensions.

We first ask: under what conditions does there exist an equilibrium of the game that exhibits
zero non-fundamental volatility? We find that monotonicity of the cost function in payoff-
irrelevant states is necessary and sufficient to ensure the existence of such equilibria for all
payoff functions, and generically necessary. The intuition behind this result is that with such
a cost function, it is always cheaper for agents to condition their signals on the payoff-relevant
states and aggregate actions than to condition their signals on the payoff-irrelevant states. But
this form of monotonicity rules out “public signals,” which are by definition not directly payoft-
relevant but more easily observed than the payoff-relevant state itself. As a result, it prevents all
shocks orthogonal to fundamentals from playing a role in equilibrium.

We then ask: under what conditions does an equilibrium exist that is constrained
efficient? We first provide necessary and sufficient conditions for efficiency when information
is exogenous, extending prior results by Angeletos and Pavan [2007] on efficiency in the use of
information to our more general setting. We then show that, provided there is efficiency in the
use of information, invariance of the cost function in endogenous aggregate actions is sufficient
and generically necessary for the existence of a constrained efficient equilibrium.

The intuition behind this result is the following. When cost functions are not invariant in the
aggregate action, agents’ actions affect the ease with which other agents acquire information.
For example, with the Fisher information cost function in our linear-quadratic example, if
agents take more extreme actions in response to their signals, the endogenous aggregate action
becomes less costly to observe. This is an externality—the planner would like to encourage
more extreme actions to reduce information acquisition costs.

Finally, we answer the third question: are the answers to our first two questions related?
Our results make evident that separate properties of the information cost determine whether
or not the equilibrium exhibits non-fundamental volatility and whether or not it is efficient. By



precisely defining these properties—namely, partial monotonicity and partial invariance—we
characterize the relationship between information costs and the properties of equilibria.

Mutual information, the standard cost function used in the rational inattention literature, is
monotone and invariant in all dimensions; as a result, this cost leads to zero non-fundamental
volatility and efficiency. However, alternative cost functions such as the Tsallis entropy cost
[Caplin, Dean, and Leahy, 2019] and the Fisher information cost [Hébert and Woodford, 2020]
have been proposed because they are better able to match observed experimental behavior (see,
e.g., Dean and Neligh [2019]). The Fisher information cost results in both non-fundamental
volatility and inefficiency, while the Tsallis entropy cost leads to non-fundamental volatility but
an equilibrium remains efficient.

Related Literature. A large literature has studied the positive and normative implications of
large games of strategic interaction and incomplete information, and applied these insights to
questions in macro, finance, and industrial organization (see Angeletos and Lian [2016] for a
recent survey). Much of this literature assumes linear-quadratic payoffs, Gaussian priors, and
exogenously specified Gaussian signals about exogenous states.

Several authors (e.g. Hellwig and Veldkamp [2009], Myatt and Wallace [2012], Colombo,
Femminis, and Pavan [2014], Pavan [2016]) endogenize information acquisition in the linear-
quadratic setting, allowing agents to choose the precision with which they observe an
exogenously specified set of Gaussian signals about exogenous states. In these papers,
the presence or absence of non-fundamental volatility depends on the assumed correlation
structure of the exogenously given signals (and, with precision choice across multiple signals,
agents’ incentives to coordinate).

Other authors (e.g. Mackowiak and Wiederholt [2009], Paciello and Wiederholt [2014],
Afrouzi [2019]) also endogenize information acquisition in this setting, but follow the rational
inattention approach of Sims [2003]. These models do not assume a particular set of available
signals; instead, agents can choose any signal structure, subject to a cost described by mutual
information. With quadratic payoffs, Gaussian priors, and mutual information costs, the agent’s
optimal signal is a Gaussian signal about economic fundamentals. As a result, equilibria exhibit
zero non-fundamental volatility.

Our paper also follows the rational inattention approach, but generalizes away from the
mutual information cost function. As a result, we are able to accommodate non-fundamental
volatility, building a bridge between these two seemingly distinct approaches.

Our study of efficiency builds on the work of Angeletos and Pavan [2007] and Colombo,
Femminis, and Pavan [2014]. Angeletos and Pavan [2007] study the question of constrained
efficiency in the class of linear-quadratic games with exogenous information structures. We
extend their results to multi-dimensional settings with general payoff functions, and obtain



necessary and sufficient conditions for efficiency in the use of information in our game.

However, we shut down a key channel present in Angeletos and Pavan [2007] by assuming
that only the cross-sectional mean of actions, but not the cross-sectional variance, enters
payoffs. This is important for understanding our results vis-a-vis Colombo, Femminis, and
Pavan [2014]. Colombo, Femminis, and Pavan [2014] study the efficiency of information
acquisition within the Angeletos and Pavan [2007] linear-quadratic setting; they show that
efficiency in the use of information does not guarantee efficiency in the acquisition of
information because the dispersion of actions enters payoffs—an externality not internalized
by agents. With this channel shut down in our game, their results imply that efficiency in the
use of information should guarantee efficiency in the acquisition of information.

Instead, we find that efficiency in the use of information is not sufficient for efficiency in
the acquisition of information because of a different externality: if agents’ actions affect other
agents’ information costs. The inefficiency we highlight is closely related to the informational
externality that arises when agents observe exogenous signals about endogenous objects such
as prices, as in Laffont [1985], Angeletos and Pavan [2009], Amador and Weill [2010], Vives
[2017], Angeletos, Iovino, and La’O [2020].

In a similar vein, Angeletos and Sastry [2019] allow rationally inattentive agents to learn from
prices in a Walrasian context with complete markets over states and signal realizations. They
find that invariance of the information cost is sufficient to ensure that a planner cannot improve
allocations by sending a message that reduces information costs.?

In considering a large class of possible information costs in a rational inattention problem,
and not just mutual information, we build on the work of Caplin, Dean, and Leahy [2019],
Pomatto et al. [2018], and Hébert and Woodford [2020]. Our focus on games with agents who
can acquire information about the endogenous actions of other agents builds on Denti [2019].
We adapt his approach to static games with a continuum of players. Relative to Denti [2019],
the “largeness” feature of our class of games permits a simpler definition of equilibrium, which
is essentially Bayesian Nash equilibrium in a static, simultaneous-move game. Our definition of
equilibrium can also be thought of as the limit of the dynamic process of strategic information
acquisition Denti [2019] introduces.

We begin with a linear-quadratic-Gaussian example to illustrate the role that the
information cost plays in determining whether or not equilibria exhibit non-fundamental
volatility and are efficient. Following this, we introduce and analyze the general class of models.

2That is, our paper and Angeletos and Sastry [2019] consider different planner’s problems (among
other differences). We employ the constrained efficiency concept in Angeletos and Pavan [2007] and
Colombo, Femminis, and Pavan [2014] for abstract games in which the planner may only control the
action functions and information choices of the players. Angeletos and Sastry [2019] consider a planner
who can send messages to the agents, who can in turn learn about the content of the message (as opposed
to prices or states directly). They ask a different question: whether in markets the price function is an
efficient conveyer of information in the sense of Hayek [1945].



2 A Linear-Quadratic-Gaussian Example

In this section we use a linear-quadratic-Gaussian example to illustrate the impact that
information costs can have on non-fundamental volatility and efficiency.

We consider a simple, stylized beauty-contest game, similar to the one studied in Morris and
Shin [2002]. A unit-mass continuum of ex-ante identical agents indexed by i € [0, 1] attempt to
choose an action to track both a fundamental state and the average action of the other agents.
Let s € R be the payoff-relevant dimension of the state, and let a’ € R be the action of agent
i. We define the aggregate action of all agents as a = fol a'di. The payoff of an agent who takes
action o’ when the aggregate action is a and the fundamental state is s is given by

u(a’,a,s) = —(1 - B)(a’ — 5)? — B(a’ — a)? (1)

where 3 € (0, 1) is a scalar.

The first component of (1) is a quadratic loss in the distance between the agent’s action
and the exogenous fundamental s; the second component is a quadratic loss in the distance
between the agent’s action and the aggregate action. The scalar 5 governs the extent of strategic
interaction in this game; for this example, we assume 5 > 0 so that actions are “strategic
complements.” We also assume that 5 < 1 so that there is a unique pure-strategy Nash
equilibria of this game under complete information, in which every agent takes the same action:
at =a = s, Vi.

In games with exogenous information, agents receive costless signals about the aggregate
state. Let w’ € R be the realization of agent i’s signal. With the quadratic payoffs in (1), each
agent’s optimal action is chosen according to the linear best response function

a'(w') = E[(1 — B)s + Balw], 2)

where E[|w’] denotes the agent’s expectations conditional on w?.

Our focus is on games with endogenous information acquisition by rationally inattentive
agents. For this example, we will consider two different information cost functions: mutual
information and the Fisher information cost function. With linear-quadratic payoffs and
Gaussian priors, both of these cost functions result in agents optimally choosing to observe a
one-dimensional Gaussian signal [Hébert and Woodford, 2020]. As a result, our example falls
into the tractable class of linear-quadratic-Gaussian games. However, we will see that these cost
functions lead to different conclusions about the existence of non-fundamental volatility and
whether equilibria are efficient.

We begin by discussing the issue of non-fundamental volatility, and then turn to the
question of efficiency.



2.1 Non-Fundamental Volatility

We allow agents to flexibly acquire signals of both the payoff-relevant state, s € R, as well as
a payoff-irrelevant state r € R, subject to a cost. We introduce the payoff-irrelevant states
as potential sources of non-fundamental volatility in equilibrium. Let z = (s,r)” denote the
aggregate state vector. To preserve the linear-quadratic-Gaussian structure of the model, we
assume that all agents have a common Gaussian prior over (s, ), with a prior mean of zero for
both variables and variance-covariance matrix of ¥. That is, z ~ A/ (0, X).

We consider equilibria in which the aggregate action a is a linear function of the aggregate
state. In particular, we guess and verify the functional form

a = 0gS + Qur, 3

for some constants &, and @,. Linearity of the aggregate action preserves the linear-quadratic
Gaussian nature of the individual agents’ problem. Under this assumption, the agent’s best
response after observing the signal v’ is

a'(w) = B[(1 — B + Bas)s + fay,r|w’] = E[T z|wi],
where 1 is a column vector of endogenous constants given by
v =(1- B+ fas, Ba,)". (4)

Consider now the individual agents’ problem in this game. With both mutual information
and the Fisher information cost function, agents will optimally choose to receive a one-
dimensional® Gaussian signal,

W=\lr+ aei, 5

where ) is a vector describing what the agent chooses to learn about, o2 is the variance of the
agent’s signal, and €' is a standard normal shock, i.i.d. across agents. That is, both cost functions
deliver Gaussian signals of the form in (5), but as we will show shortly, the two cost functions
have different implications for the agent’s optimal choices of (), o).

Given such a signal, the agent’s optimal action strategy follows from Bayesian updating (see
e.g. Hébert and Woodford [2020]):

W) =ow', a= v oA i 6)
Glmar, s as ATEN o2+ (ATEA) L
N—

"beta” between ATz and Tz update on ATz

3The one-dimensional nature of the signal is a consequence of the standard result in rational
inattention problems that it is without loss of generality to equate signals with recommended actions.



The agent’s unconditional expected payoff is —y7 3% (X, o)1,* where ¥ (), o) is the posterior
variance-covariance matrix given by

(BN, o)) t=2t o720, 7)

Due to the structure of the agents’ optimal signals, this matrix is independent of the realized
state and signal realizations, but depends on the agent’s choice of (), o).

Following Sims [2003] and Hébert and Woodford [2020], under both mutual and Fisher
information, the cost of information acquisition can be written a function of the prior and
posterior variance-covariance matrices ¥ and X“(\,0). In either case, the agent chooses
the parameters (\ o) of (5) subject to feasibility. The feasibility set is given by I' =
{\,o: |\l = |¢|,0 > 0}. The first constraint on this set is a normalization. Expression (7) makes
clear that scaling both A and o by the same constant does not change the posterior variance.
To simplify notation, for our analysis of non-fundamental volatility we adopt the convention
that |\| = |¢|. The second constraint that ¢ > 0 is called a “no-forgetting” constraint by
Van Nieuwerburgh and Veldkamp [2010], and reflects the fact that the agent cannot reduce
information costs by forgetting information.

Before continuing, we should note that with both of these cost functions, it is possible that
no optimum over (), o) exists, and the optimal policy is to receive a completely uninformative
signal (o — o). This leads to an equilibrium in which all agents choose an action equal to their
prior mean about s. In our results, we will assume that information costs are sufficiently small
to rule out this possibility. We next characterize what kind of information the agents choose to
gather.

Consider first the mutual information case.’

Example 1. With mutual information, the problem of the agent is

Jnin 972, o)y + 6 [In(det((2(A 0)) 7)) — In(det(E))] (8)

subject to (7), with 0 > 0. Substituting in (7), this simplifies to

min 7 Sy — o2 (wTE/\)2

WA g+ o 2ATEN).
(ro)er T o2y Toml+o ATEA) ®)

The first component of the agent’s objective function is her unconditional expected payoff.
The second component is the agent’s cost of information acquisition under mutual information.

“The unconditional expected payoff is —T ¥ (), o)y plus a constant. However, the constant term is
unaffected by the individual agent’s choices. We ignore it when considering the agent’s optimal choice of
(A, o), but must account for this constant when considering efficiency.

5See the proof of Proposition 1 for a more detailed derivation.



This is given by the difference in the log-determinant of the (inverse) posterior and prior
variance-covariance matrices. The parameter > 0 scales the cost of information.®
We contrast this problem to the case with the Fisher information cost function.

Example 2. With Fisher information, the problem of the agent is

(gi)gr YIS, o) + 0 [tr((Z9 (N, 0)) 1) — tr(Z7H)], (10)

subject to (7), where tr(-) is the trace operator, with 6 > 0. Substituting in (7), this simplifies to

min_ 7 ¥p — 072 (2N

—2 2
(roler o2y T M- (11)

The first component is again the agent’s unconditional expected payoff. The second
component is her cost of information acquisition under Fisher information. This given by the
difference in the trace of the (inverse) posterior and prior variance-covariance matrices.

Therefore, the only difference between the mutual information and Fisher information cases
is the functional form of information cost: the trace vs. the log-determinant. It is this difference
that leads to distinct predictions for the agent’s optimal choice of signal structure.

To understand the agent’s optimal signal structure in either case, let @° = v’z denote the
agent’s optimal action under complete information for a given . This is the action the agent
would choose if she herself faced no cost of information acquisition.

Under mutual information, the agent optimally receives a one-dimensional signal that
directly corresponds to her optimal complete info action, a’.” That is, the agent chooses

A" =1,

and as a result her signal is an unbiased, noisy version of a’.

In contrast, under Fisher information, the agent optimally receives a one-dimensional signal
that maximally covaries with @' under the resulting posterior.® That is, the agent’s optimal
choice of X satisfies the fixed point:

N € argmaxy |y " (X, 0)A. (12)

Both results are intuitive. It certainly seems logical to learn only about the optimal action &
and ignore everything else. On the other hand, it also seems perfectly natural to receive a signal
that maximally covaries with a'.

6Agents will find it optimal to gather some information if their uncertainty about the optimal action is
sufficiently large relative to the parameter 4. See the proofs of Propositions 1 and 2 for precise conditions.

"This follows from the invariance properties of mutual information, but can also be shown using the
first-order condition from (9).

8See Hébert and Woodford [2020]. This can also be shown using the first-order condition from (11).
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In either case, the agent’s optimal action is linear in her signal by (6), and her signal is linear
in the underlying state (5). Together, and aggregating across individuals, this implies that the
aggregate action is indeed linear in the state:

a=ao" ), (13)

thereby verifying our guess in (3). Finally, in order for (13) to coincide with (3), the equilibrium
vector (as, @, )’ must satisfy
(s, )T = a* ¥, (14)

and is therefore proportional to the agent’s optimal choice of A\*. That is, a linear equilibrium of
this game is a collection of parameters (a,, as, ¥, A, o, «) satisfying (4), (6), and (14), with (), o)
chosen optimally given 4. This leads to the following result.

Proposition 1. (i) Under mutual information, there exists a linear equilibrium. Any such
equilibrium features zero non-fundamental volatility: &, = 0.

(ii) With the Fisher information cost, there exists a linear equilibrium. Ifr and s are correlated
under the prior and 0 is sufficiently small, any such equilibrium features non-fundamental
volatility, &, # 0.

Proof. See the appendix, 11.1. O

Because agents choose different types of signal structures across the two cases, this leads to
distinct equilibrium properties. In the case of mutual information, the agent’s optimal signal is
one that directly tracks her complete-information action @', but ignores everything else. If all
agents choose \* = 1), in equilibrium ) must satisfy the fixed point:

Y= (1= per+ pa’y.

where e; = (1,0)7 and o* is a scalar function strictly less than one by equation (6). It
immediately follows that in any equilibrium, the second element of ¢» must be zero; hence,
a, = 0. Therefore, with mutual information, the equilibrium aggregate action does not depend
on the payoff-irrelevant state r.

In the case of Fisher information, the agent chooses a signal to maximize the covariance
between the signal w’ and optimal action ”z. If s and r are correlated (if the off-diagonal
elements of ¥ are non-zero), then this immediately rules out equilibria with zero non-
fundamental volatility. To see this, suppose by contradiction there exists an equilibrium in
which &, = 0, so that the second element of v is zero. In this case, as long as s and r are
correlated, the agent chooses a signal such that the second element of \* is non-zero: this choice
maximizes the covariance between her signal and her complete-information action (see (12)).
But if the second element of \* is non-zero, then by (14), &, must be non-zero, a contradiction.
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We conclude that all linear equilibria in the case of Fisher information generically feature non-
fundamental volatility. The only cases in which @, may be zero in equilibrium are the non-
generic cases in which s and r have zero correlation, or when no information is gathered in
equilibrium.

Mutual information and Fisher information therefore generate starkly different predictions
for the existence of non-fundamental volatility in equilibrium in the simple beauty-contest
game. The distinction stems from what these costs imply for agents’ optimal signal structures.
In the mutual information case, agents track their optimal action directly, but ignore everything
else—it would be costly to do otherwise. When all agents behave in this way, in equilibrium
there is no room for the payoff-irrelevant state r to affect equilibrium actions.

In contrast, in the Fisher information case, agents instead find it optimal to receive a signal
that depends at least somewhat on r, as this maximizes covariance with s. That is, it is cheaper
for agents to learn about s by partially observing r, rather than learn about s directly. This
optimal cost-saving behavior is what opens the door for variation in r to affect individual actions
and thereby, in equilibrium, aggregate actions.

One possible interpretation of r in this context is a noisy public signal. In exogenous
information environments, agents learn through costless public signals and base their actions
upon them. Common errors in these signals lead to variation in aggregate actions that is
orthogonal to fundamentals. In the Fisher information case, r plays the exact same role:
learning about r is not costless, but it is a “cheaper” way of learning about s than learning about
s alone.

2.2 Constrained Efficiency

Next, we consider the question of constrained efficiency in the beauty contest game. For
simplicity, we abstract from the payoff-irrelevant states r in our previous example and assume
s € Ris the only exogenous aggregate state.

To discuss efficiency in the context of our beauty contest game, we proceed in three steps.
The first step is to ask whether the game is constrained efficient under exogenous information,
that is, when agents cannot choose their information structure. The second step is to ask
whether the game is constrained efficient under endogenous information when agents may
acquire information about the exogenous aggregate state s. The third step is to ask whether
the game is constrained efficient under endogenous information when agents can learn not
only about the exogenous aggregate state s but also about the endogenous aggregate action a.

Step 1. We begin by asking first whether the equilibrium is constrained efficient under
exogenous information. Agents receive noisy signals w’ ~ N(s,0?) about s € R.
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Consider an equilibrium in which the aggregate action is a linear function of the state, a =
ass. The agent chooses a strategy a(w’) in order to maximize her expected payoffs,
V (0, as) = max E[u(a'(w), @ss, s)|w'] (15)
a’(w?)
The agent’s first-order condition to this problem is what gives rise to the linear private best
response function reported in (2). A symmetric equilibrium, then, is an individual strategy a(w)
(the same for all agents) and an aggregate action coefficient a;, such that optimality conditions
(2) hold along with, by the law of large numbers,

ass = Ela (w) |$] Vs € R (16)

Can a planner who controls how each agent responds to her own signal, but is unable to
share information across agents, improve welfare relative to the non-cooperative equilibrium?
To answer this question, we follow Angeletos and Pavan [2007] and solve a constrained planner’s
problem. The constrained planner chooses strategies a(w) in order to maximize expected utility
across all agents,

Wi(o) = gl(i}){ /]E [u(a(w), ass, s)] di (17)

subject to the constraint that the aggregate action a,s satisfies (16). Taking first-order conditions
with the linear-quadratic payoffs of (1), we find that the efficient “best response” function
dictated by the planner is given by

a(w) = E[(1 — 8)s + Bass|w],

and thereby coincides exactly with the agent’s private best response function in (2).

We conclude that in this particular game, by construction, the equilibrium use of
information is efficient. See Angeletos and Pavan [2007] and Section 7 of this paper for a detailed
discussion of the intuition behind this result.

Step 2. We now ask whether the equilibrium is constrained efficient under endogenous
information acquisition. We begin by allowing agents to choose the standard deviation of their
signals, o, subject to a cost. Let C(c*) be the cost of receiving a signal with standard deviation
o'. This cost could be based on mutual information, the Fisher information cost, or any other
cost—the details will not matter for our argument.

Consider the individual agent’s problem. Each agent takes a, as exogenous, and chooses
both an action strategy o and a standard deviation . Fixing the agent’s choice of ¢%, her choice
of o’ is exactly as in (15). The agent therefore chooses ¢* to maximize her private value minus
her information cost,

o' € argmax, oV (o, as) — C(o).

13



Can a planner who controls both how much information an agent acquires and how each
agent responds to her own signal improve welfare relative to the non-cooperative equilibrium?
Consider a planner that chooses a pair (a*, 0*) to maximize expected utility across all agents,
less their information cost.

Again, fix the planner’s choice of o* and observe that the problem of choosing o* is exactly
the planner’s problem with exogenous information, (17). The planner therefore chooses o* to
maximize the social value minus the information cost,

0" € argmax,~ W (o) — C(0).

It follows almost immediately that the planner’s optimal (a*,c*) is also an equilibrium.
To see this, again fix ¢ and consider the inner problem of both the agent and the planner.
We know that the planner’s optimal choice of « coincides with the equilibrium « in this “o-
subgame.” This in fact is true for any o-subgame, and is simply a restatement of the result that
the equilibrium use of information is efficient. It follows that for any o, the social value of ¢
forms an upper envelope of the private value:

W (o) = max V (o, as). (18)

Qs

That is, even if we were to ignore the mean-consistency requirement (16), the a, that maximizes
the private value is the same &, that solves the planner’s problem and thereby satisfies mean
consistency.

But observe from this equation that the planner’s optimal choice of ¢* coincides with
the agent’s best response to a; € argmaxs, V (0", as); therefore the solution to the planner’s
problem is an equilibrium. We conclude that in this particular game, efficiency in the use of
information implies efficiency in the acquisition of information when agents receive signals
only about exogenous states. Note that this result relies on the fact that only the mean action,
and not higher moments of the action distribution, enters the agents’ payoffs in (1); see
Colombo, Femminis, and Pavan [2014] for details.

Step 3. We now allow agents to learn not only about the exogenous fundamental s but also
about the endogenous aggregate action of other agents, a, as in Denti [2019].

To mirror our previous discussion of non-fundamental volatility, let z = (s,a)’ denote
the vector of objects the agents can learn about. To preserve the linear-quadratic-Gaussian
structure of the model, we continue to assume s ~ N(0,03) and consider linear equilibria of
the form a = ags. With either mutual or Fisher information, it remains the case that agents
optimally receive a one-dimensional Gaussian signal w’ of the form given by (5).

Unlike the previous step, agents may now learn about the aggregate action a. Consequently,
as in our analysis of non-fundamental volatility, agents have choices about both the noise in
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their signal (o) and what they learn about ()). In this case, because the aggregate action a is part
of the state vector z, the payoff-relevant dimension of the state is exogenous, v = (1 — 3, 3)T.
Note also that 2 = ys, where we define y = (1, a;)”. As a result, = is Gaussian, z ~ N(0, ¥) with
the degenerate variance-covariance matrix > = o3xx? .

Let us now fix the agent’s choice of o, and consider the optimal choice of A\ under
both mutual information and the Fisher information cost. For this analysis, we adopt the
normalization that x” A = 1, and consider the optimal choice of X in (8) and (10) from the
previous section (because these formulas are valid even with a degenerate prior). With this
normalization, the information cost depends on the choice of ), but the expected payoff
component of these two equations does not.

With mutual information, as discussed in the previous section, an optimal choice of \ is
proportional to the payoff-relevant dimension of the state space. With our normalization,
this is \* = (¢¥7x)~'4. In contrast, with the Fisher information cost, we can see from the
first-order condition of (10) that \* = (x”x)~'x. Again, with mutual information, the agent
receives a signal directly about the payoff-relevant dimension of the state, whereas with the
Fisher information cost the agent maximizes covariance with the payoff-relevant dimension of
the state.

Plugging in these choices for A* back into (8) and (10) , we see that the cost functions in
terms of o can be written in the mutual information case as

C(o)=0In(1+ 0_203),

and in the Fisher information case as

C(o,as) = . (19)

Let us now consider a planner who can choose (o*, 0*) as in step 2 of our analysis.’ The following
result is then immediate.

Proposition 2. (i) With mutual information, an optimum of the planner («*,0*) is also an
equilibrium. (ii) With the Fisher information cost, an equilibrium exists, but if 0 is sufficiently
small any optimum of the planner (o*, o*) is not an equilibrium.

Proof. See the appendix, 11.2. O

The result for mutual information follows directly from our analysis in step 2 and Colombo,
Femminis, and Pavan [2014]. As long as agents use their information efficiently in any o-
subgame, then the private value of information is the same as the social value. As a result, agents
behave exactly as the planner would dictate.

9That is, we do not allow the planner to choose \*. This is for expositional clarity and does not affect
our results.
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This is not the case with the Fisher information cost. In (19), the agent’s cost of information
acquisition depends on the strategies of others, and in particular it is decreasing in a,. Thus,
if agents make their actions more sensitive to their signals, this increases the sensitivity of
the aggregate action to the aggregate state, which in turn decreases the cost of information
acquisition for all agents. Agents do not internalize this effect when making their own
individually-optimal decisions. The planner on the other hand takes this externality into
account when maximizing welfare, and as a result, dictates a higher o and lower o* relative
to the non-cooperative equilibrium. Note that this externality exists only when agents gather
information in equilibrium, hence our assumption that 6 is sufficiently small.

The aforementioned externality does not exist when agents can only gather information
about exogenous states (step 2). Why does it arise here? Agents in this economy learn from both
the fundamental state and the aggregate action. With the Fisher information cost, it is cheaper
for agents to observe the aggregate action when it is highly sensitive to the aggregate state, that
is, when @ is larger. Fisher information thereby incorporates a scale effect into costs: when
aggregate actions are more extreme, they become more salient in the eyes of other agents, and
thereby less costly to observe. It is this scale effect on costs that the agents do not internalize.
Mutual information, on the other hand, is invariant to these scale effects, and as a result this
externality is absent.!’

2.3 Summary and Layout

We have shown that these two information cost structures have significantly different
equilibrium implications in this simple linear-quadratic beauty contest game. Under mutual
information, the equilibrium features zero non-fundamental volatility and is constrained
efficient. With the Fisher information cost, the equilibrium exhibits non-fundamental volatility
and is constrained inefficient. But what is it about these two cost functions that leads to such
divergent predictions? We formally address this question in the general framework that follows.

The remainder of this paper is organized as follows. In Section 3 we define the general class
of large games that we study. In Section 4 we define equilibria and prove its existence. In Section
5 we introduce and define certain properties of cost functions that we call partial monotonicity
and partial invariance. In Section 6 we characterize under what conditions equilibria do or do
not feature non-fundamental volatility. In Section 7 we define equilibria and efficiency under
exogenous information and characterize under what conditions there is efficiency in the use
of information. In Section 8 we show what needed in addition to efficiency in use to obtain
efficiency with endogenous acquisition of information. In Section 9 we conclude. All proofs are

10Angeletos and Sastry [2019] construct a related example in which the variance of prices enters
information costs, and show that this leads in their Walrasian setting to multiple, Pareto-ranked
equilibria.
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provided in the Appendix.

3 The General Game

We study large games of strategic interaction. These games generalize our simple example in
several respects. First, agents’ action spaces can be multi-dimensional, payoff functions are not
necessarily quadratic, and the aggregate action is not necessarily linear in the state variables.
Second, we do not restrict ourselves to Gaussian structures: agents can have arbitrary priors.
Third, we study a large class of information cost functions which includes mutual information
and Fisher information but also includes many others. Fourth, we allow for learning about both
payoff-irrelevant states and endogenous actions, rather than consider these things separately
as in our simple examples. In all of these respects, our general environment nests the example
of the previous section; however, to avoid certain technical complications and simplify our
exposition, we assume that the exogenous state space is finite.

3.1 Agents, Actions, and Payoffs

There is a unit mass continuum of agents, indexed by i € [0,1]. Agent ¢ chooses her action,
at € A C R Leta € A C R be the vector of aggregate actions, defined as the average action

1 .
EL:/ a'ds.
0

There is a finite set of exogenous payoff-relevant states, s € S. These states, along with

chosen by agents:

aggregate actions a, determine the agent’s payoffs. Agents have payoff functionu : A x A x S —
R; that is, an agent who takes action o’ € A in state s € S when the aggregate actionisa € A
receives payoff u(a’, @, s). Note that individual agents—each of whom is infinitesimal—do not
take into account how their own action affects the aggregate action when making their own
strategic choices. This assumption is a defining feature of “large games.”

We impose the following regularity assumption on the payoff functions and action space.

Assumption 1. A is non-empty, convex, and compact, and u(a',a,s) is continuously
differentiable on A x A foralls € S.

Assumption 1 will be sufficient, but not necessary, for our results.!! In particular, our results
could readily be extended to games with finitely many actions.

The last primitives of our environment are the agents’ information acquisition technologies,
which we describe next.

Note that Assumption 1 guarantees the existence of mixed strategy Nash equilibria under complete
information in games with continuous actions spaces. See, e.g., Fudenberg and Tirole [1991] theorem 1.2.
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3.2 Shocks and Information Acquisition

Shocks and Priors. In addition to the payoff-relevant, or “fundamental,” states, s € S, we
allow for a finite set of payoff-irrelevant states, » € R.

Agents are endowed with a common prior pg (s,7) over the exogenous states. Let Uy =
A (S x R) denote the space of probability measures over the exogenous states, with 1o € Up.
Note that the payoff-irrelevant states can be independent of the fundamental states, in which
case they can be interpreted as pure noise, or correlated, in which case they case they can
be interpreted as noisy signals about fundamentals. These states are payoff-irrelevant by
definition, but are a potential source of non-fundamental volatility in equilibrium.

We define a : S x R — A as a function mapping exogenous states to an aggregate action. Let
Abe the space of all such functions.!? One may think of @ € A as the “aggregate strategy,” as this
function will be determined endogenously by aggregating over the individual agents’ strategies.

We will allow agents to learn not only about the exogenous states, but also about
endogenous aggregate actions. Agents will optimally choose which objects to pay attention
to; in order to facilitate this choice, we specify their prior over the larger S x R x A space. Let
U = A (S x R x A) denote the space of probability measures over this space.

We construct the agents’ prior on this larger space from their prior on the exogenous states
o and the aggregate strategy & as follows. Let ¢ 5 : Uy x A — U denote a mapping from any pair
Lo, @ to its induced probability measure, defined as

QZ)A {/‘L076‘} (S,T,C_L) = Mo (S,’I“)(S((_I— @(S,T)), Vs € S,’I“ € Rad € Aa (20)

where §(-) is the Dirac delta function. We define the space of all probability measures that may
be generated on S x R x A by some pair (i, @), U C U, as

U={peUU:3 pely and acAd st. p=q¢z{poal}.

Given a prior po € Uy and an aggregate action function a € A, the induced prior on the larger
space p € U is given by u = ¢ 5{ 0, a}.

Agents’ strategies. We now consider the strategies of the agents. In games of imperfect
information with exogenous signals, an individual agent chooses her own action based on the
realization of her own signal w® € 2, where (2 is a signal alphabet. We assume 2 has a cardinality
weakly greater than R” (and hence the action space). In these games, an individual agent’s pure
strategy is a mapping from signals to actions, o’ : QO — A. Let A be the space of all possible pure
strategies.

12We are restricting the aggregate action to be a deterministic function of (s,r). However, r could
include elements that are independent of the rest of (s, r) and can be regarded as sunspots.
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In games with endogenous information acquisition, agents also choose their signal
structure. A signal structure is a conditional probability distribution function

ViSxRxA—AR).

where A (Q) is the space of probability measures on . That is, v* (w|s,r,a) denotes agent i’s
probability of observing signal w € Q conditional on (s,r,a). Let V be the space of all such
functions; the superscript indicates the signal alphabet. In what follows, it will also be useful to
consider signal structures that depend only on the exogenous states. We define V§! ¢ V as the
set of signal structures whose conditional probabilities depend only on the exogenous states.
That is,

V& = {v eV Viwls,ra) = vi(w|s,r,a@) Vs e S,r € R,a,a € A}.

Note that our setup allows agents to learn about the mean (or aggregate) action, but
precludes agents from learning about any other particular agent’s action.'”®* To summarize,
with endogenous information acquisition, an individual agent chooses both an action strategy
o' € A and a signal structure »* € V® in order to maximize his or her payoffs subject to a cost
of information acquisition.'* We discuss these costs after introducing some notation for signal
probabilities and posteriors.

Posterior distributions. Take any signal structure v € V* and prior 1 € U; together these
induce a joint distribution on S x R x A x Q. The marginal distribution on Q associated with
this joint distribution is the agent’s unconditional probability of observing signal w € €,

m{v, p} (w) = Z /AV (w|s,r,a) p(s,r a)da, (21)

seS,reR
with 7{v, u} € A(Q).

The joint distribution also induces posteriors over the S x R x A space. The agent’s posterior
over (s,r,a) conditional on observing any signal w € (2, is given by

" __ v(wls,ra)p(s,ra)
o () = AR, @2)

consistent with Bayes’ rule and assuming 7{v, u} (w) > 0. Note that, if © € &/ (meaning that a is
deterministic conditional on (s, ) under y), then p“{v, u} € U forallv € V¢, w € Q. We adopt
the convention that, for zero probability signals, posteriors are equal to priors.

We use these objects to define “uninformative” and “informative” signal structures.

13This choice, made for tractability, is motivated by the “largeness” feature of the game.
1By standard arguments in the rational inattention literature, it will be without loss of generality to
identify signals with actions, and hence to assume pure as opposed to mixed action strategies.
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Definition 1. A signal structure v is uninformative if for all w € Q such that n{v,u} (w) > 0,
w?{v, u} = u. A signal structure is informative if it is not uninformative, that is, if there exists an
w such that w{v, u} (w) > 0 and p*{v, u} # p.

Thus, informative signal structures are those that move posteriors away from the prior.
Armed with these definitions, we next describe the cost of information.

Cost of information acquisition. Agents face a cost of acquiring informative signal
structures. We generalize the standard rational inattention setup and define the cost of
information acquisition by a function

CP VU - R,

That is, given a prior p, an agent i which chooses signal structure v* € V¥ incurs information
costs C*(v*, 1), where the superscript  indicates the signal alphabet over which the agent
chooses its signal structure.

It is without loss of generality to impose the following assumptions on the cost function.

Assumption 2. Forallpy € U,
1. The cost function C*(v, 1) is zero if the signal structure v is uninformative.

2. Takev € V* and V' € V¥ for two signal alphabets Q and Q). If v Blackwell-dominates /' in
the sense of Blackwell [1953], then C*(v, i) > C¥ (V' ).

3. The cost function C}(v, 1) is convex in v.

As discussed by Caplin and Dean [2015], and invoking Lemma 1 of Hébert and Woodford
[2019],'° these assumptions are without loss of generality. That is, any behavior that could be
observed for a rationally inattentive agent with a cost function not satisfying the second and
third conditions could also be observed for a rationally inattentive agent with a cost function
satisfying those conditions, and the first condition is a normalization. The intuition for this
result comes from the possibility of the agent pursuing mixed strategies over actions conditional
on a signal realization and over choices of signal structures.

Our next assumption requires that the information costs we study are continuous. This
assumption is phrased in a somewhat technical fashion in order to account for the possibility
that the signal space (2 is not a finite set. Observe by the finiteness of S x R and A C R that A
can be viewed as a subset of RL*I51*I%l and endowed with the standard (Euclidean) topology.

5Lemma 1 of Hébert and Woodford [2019] allows us to replace the Caplin and Dean [2015] “mixture
feasibility” condition with convexity. Hébert and Woodford [2019] prove it in the context of a finite signal
alphabet, but nothing in the proof depends on the alphabet being finite.
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Assumption 3. Under the topology of weak convergence on V! and U, the cost function C* is
continuous in the product topology of V x U.

Assumption 2 by itself implies continuity in v (due to convexity), holding fixed . What
Assumption 3 adds is the requirement of continuity in (v, u).'6

Posterior-Separability. Finally, we restrict attention to information costs that are
“posterior-separable,” in the terminology of Caplin, Dean, and Leahy [2019]. Posterior-
separable cost functions can be written as the expected value of a divergence between the
agents’ posterior and prior beliefs. A divergence is a measure of how “close” or “far” two
distributions are from one another.!” To capture the idea that the action of other agents might
influence the cost of information, we define these divergences on the larger space of probability
measures, .

Take any signal structure v € V! and prior 1 € U. A posterior-separable cost function is a
cost function that can be written as

OO, 1) = / {1} (@) D( [, i} ) o, (23)
Q

where D : U xU — Ry is a divergence from the agents’ prior x to posterior p*, convex in its first
argument and continuous on i x U.'8

Assumption 4. The cost function C* is posterior-separable as defined by equation (23), with a
divergence D that is continuously differentiable in both arguments.

Mutual information, the standard rational inattention cost function, is posterior separable.
The associated divergence is the Kullback-Leibler divergence, defined in our context as

D (p||p) = Z / (s,r,a) ln s, )))da (24)

seS,reR (

Other posterior-separable cost functions include the Tsallis entropy cost function proposed
by Caplin et al. [2019], versions of the LLR cost function proposed by Pomatto et al. [2018],

16Note that continuity in (v, i) implies continuity in (v, @) holding fixed p.

17A divergence is a function of two probability measures that is weakly positive and zero if and only if
the measures are identical. Unlike a distance, a divergence does not need to be symmetric, nor does not
necessarily satisfy the triangle inequality.

18Convexity in the first argument is implied by Assumption 2 and continuity (under the weak topology)
by Assumption 3. Also note that we have defined the divergence D on U rather than the entire space
U = A(S x Rx A); all priors and posteriors in our problem will remain in 2/, and therefore it is unnecessary
to define the divergence on the entire space. By the finiteness of S, R and the definition of ¢/, elements
of U can be represented as a subset of RISI*IEIx(L+1) "and as a result differentiability for D can be defined
in the usual way. Finally, observe that, under the assumption of posterior-separability, the cost function
depends on the signal alphabet only through the domain of integration.
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and the neighborhood-based cost functions proposed by Hébert and Woodford [2020]. Hébert
and Woodford [2019] show that all differentiable information cost functions can be locally
approximated by a differentiable posterior-separable cost function.

Hereinafter, we impose Assumption 1 on action spaces and payoffs and Assumptions 2, 3,
and 4 on information costs. Before turning to our definition of equilibrium, we briefly discuss
one implication of these assumptions.

Recall that the set ¢/ is defined by the property that the aggregate action a is deterministic
conditional on the exogenous states (s, r). The following lemma demonstrates that, as a result,
for any signal structure v € V%, there is another signal structure that does not condition on
a, v € Vé), that generates the same signal probabilities and posteriors, and consequently (by
Assumption 4) the same information cost.

Lemma 1. Given anyv € V! and u € U, there is signal structure v' € V§! such that m{v,} =
m{V, u} and, forallw € Q, p“{v, u} = p<{v', u}.

Proof. See the appendix, 11.3. O

The intuition for this result is the following: zero-probability (s,r,a) events have no
impact on either unconditional signal probabilities or posteriors, and therefore do not change
information costs. Because these two signal structures result in identical posteriors, we will see
that the resulting distribution of actions in our game are also identical, and therefore from an
individual agent’s perspective the two signal structures are equivalent.

Why, then, do we consider the possibility that agents acquire information about the
endogenous actions of the others? The answer is that, despite the fact that it is without loss
of generality for an agent to choose a signal structure in V§!, the information cost of this signal
structure might nevertheless be influenced by the actions of others. To see this, observe that by
(28), the prior u € U depends the aggregate strategy a € A. As a result, the divergence D in (23)
might depend on & even if the signal structure v does not condition on a, because both the prior
and posteriors will be affected by a. This channel—aggregate actions affecting information
costs—is exactly the one illustrated by our beauty contest example with Fisher information. We
will eventually show that this can lead to an externality in our general game.

4 Equilibrium Definition and Existence

We proceed by defining our equilibrium concept and proving equilibrium existence.

To streamline our exposition, we first invoke the usual result in rational inattention
problems that it is without loss of generality to equate signals with actions. To do so, let o :
2 — A (A) denote a mixed strategy: a mapping from signal realizations w € (2 to distributions
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over actions, A (A). Given any mixed strategy o : Q@ — A (A) and signal structure v € V¢, we
may define the induced conditional distribution over actions, v : S x R x A — A(A), as

VA(a|s,r,a):/a(a|w)yﬂ(w]5,rja)dw. (25)
Q

Let V4 be the set of all conditional distributions over actions. Rather than write the problem of
the agent as a choice over both o and v}, we condense these choices and write the problem of
the agent as a choice over the conditional distribution of actions, vA e VA,

Each agent is infinitesimal, meaning that the agent treats the joint distribution of payoff-
relevant states, payoff-irrelevant states, and aggregate actions as exogenous. We will look for
symmetric Bayesian Nash equilibria in which all agents play best responses to the equilibrium
action function a € A4, all agents choose the same conditional distribution of actions v4, and
the equilibrium action function is generated by these conditional distributions.

We denote a symmetric strategy profile by

¢={vt al,

consisting of identical strategies v € V4 for all agents and an aggregate action function a € A.
We furthermore assume that, conditional on (s,r,a), the realizations of signals across agents
are independent. That is, it is only the distributions of actions, not the realizations, that are
identical across agents. This independence of realizations allows us to apply the law of large
numbers and require that each agent’s average action o’ be consistent with the mean action a in
the population [Uhlig, 1996]. We impose this as follows.

Definition 2. A symmetric strategy profile  is mean-consistent if it satisfies
/ a'vtails,r,a(s,r))da’ = a(s,r) VseS,reR, st puo(s,r)>0. (26)
A

By assuming that signal realizations are independent across agents, we are not ruling out
correlation in equilibrium actions. Instead, we are simply imposing that the only channel by
which agents may correlate is through their choice of how their actions condition on (s, r,a). In
particular, the exogenous state r allows agents to coordinate their actions on public signals or
sunspots.

We define an equilibrium in our game as follows.

Definition 3. Given a common prior ny € Uy, a symmetric Bayesian Nash equilibrium (BNE)
of the game is a mean-consistent strategy profile ¢ such that agents’ strategies v* € V4 are best

responses
v e argsup,, cya Z /_ [/ u (ai, a, S) v (ai|s,r, d) da®| pu(s,r,a)da — cA (1/,,u) , (27)
seS,reR A A
where

1= ¢x{po, a}. (28)
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Our equilibrium concept is based on Denti [2019]. Equilibrium Definition 3 is a hybrid of
a Bayesian Nash equilibrium and a Rational Expectations equilibrium. It is a Bayesian Nash
equilibrium in the sense that all agents play best responses given their beliefs, which we assume
to be formed according to Bayes’ rule. It is a Rational Expectations equilibrium [Grossman,
1976, Grossman and Stiglitz, 1980, 1976] in the sense that agents’ may learn from endogenous
aggregate variables while simultaneously choosing their own actions; thus beliefs are functions
of endogenous actions while actions are functions of endogenous beliefs. Consistency of beliefs
and actions is imposed by mean-consistency of strategy profiles (Definition 2) along with (28),
which is the usual requirement that agents best-respond to the equilibrium strategies of other
agents.

Our first result is that such an equilibrium exists.

Proposition 3. A symmetric BNE of the game exists.
Proof. See the appendix, 11.4. O

The proof of this result uses Kakutani’s fixed point theorem in the usual way, relying on the
finiteness of S x R, the continuity of the utility function, and the convexity and continuity of the
information cost function.

Having now established that our equilibria exist, we begin to study these equilibria. We
first investigate under what circumstances equilibria do or do not exhibit “non-fundamental”
volatility; we then study the circumstances under which equilibria are constrained efficient,
defining constrained efficiency as coinciding with the solution to a particular planner’s problem
(which we will define subsequently).

For both of these results, the focus of our investigation will be the relationship between
properties of the information cost function, in particular its associated divergence D, and the
properties of the equilibrium. We therefore begin by defining the properties of information
costs that will be the focus of our analysis.

5 Partial Monotonicity and Partial Invariance

In this section we define two concepts, “partial monotonicity” and “partial invariance,” as
properties of divergences. Mutual information exhibits both of these properties; Fisher
information exhibits neither property. We will later show how these two properties of
divergences are related to properties of the equilibria.

5.1 Coarsening and Embedding

We begin by introducing two types of operators, coarsenings and embeddings, which we define
with respect to different partitions of the state space. Coarsenings and embeddings are ways

24



of moving back and forth between joint and marginal distributions. Specifically, coarsenings
take joint distributions and transform them into marginal distributions, while embeddings
transform a marginal into a joint by adding a conditional distribution.

Consider first a “coarsening” that removes information about r» € R. We let Uy = A(S x A)
denote the space of probability measures on (S x A) and ur € Ug denote a particular
distribution on this space. The subscript R indicates the dimension (of the larger space) that
is missing, a convention we follow below. We define a coarsening function v : Y — Ur by

yri{p} (s,a) = Zu (s,r,a), Vs€ S,ac A (29)
rER
This operator takes a probability distribution i € I/ on the larger space (S x R x A) and projects
it onto the smaller state space (S x A). As indicated by its subscript, this coarsening “throws out”
all information about r € R, conditional on (s, a).

Consider now the opposite transformation, an “embedding,” that adds information about
r € R. Letting ¢p (r|s,a) denote a conditional distribution for » € R, conditional on (s,a),
we define an embedding function ¢ : Uy — U associated with the conditional distribution
function ¢z : S x A — A (R) by,

dr{pr} (s,r,a) = ¢r (r|s,a) ur (s,r,a), VseS,reR,acA. (30)

This operator takes a probability measure on the smaller space (S x A) and embeds it into the
larger space (S x R x A) using the information contained in ¢ . It thereby “adds” information
about r € R, conditional on (s, a)."

Any embedding ¢ is associated with a particular conditional distribution ¢, and in turn
any conditional distribution function defines a particular embedding. Thus, while there is only
one way to coarsen from U to Ug, there are many possible ways to embed from Ur, to U. Let op

denote the set of all possible embeddings from Up to .

5.2 Monotonicity and Invariance in R

Armed with these definitions of coarsenings and embeddings with respect to R, we are now able
to define our concepts of partial monotonicity and partial invariance with respect to R.

Consider a composition of the coarsening operator vz and a specific embedding ¢r € Prg.
Let nr : U x U — U denote the operation that coarsens its first argument in R, then embeds
using the conditional distribution defined by its second argument. We define this compositional
operator as follows:

_Ha2(sr,a) PO _
77R{,U17 MQ} (S, T, a) — ¢ vr{p=}(s,a) VR{Hl} (S» CL) %f’YR{MQ} (Sv 6}) >0 (31)
0 ifyr{pa} (s,a) = 0.

9To ensure that the resulting distribution on A(S x R x A) remains in ¢, we require that for all s € S
and a,a’ € A, the supports of ¢r(-|s,a) and ¢r(-|s,a’) do not intersect.
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To apply this operation, we require that vz {1 } be absolutely continuous with respect to yr{u2},
which we denote by yr{u1} < vr{u2}-

This compositional operator first takes the probability measure ;; € U on the larger space
and projects it onto the smaller state space (S x A) by coarsening it in R. It then takes
the resulting distribution and embeds it back into the larger space using not the conditional
distribution defined by x; € U, but instead the conditional distribution defined by s € /. That
is, it essentially replaces the conditional distributions of y; (of » € R conditional on s, a) with
those of 115. The end result is a distribution that is arguably “more like” 1.5 than 1 was originally.
Note that by construction, ng{u, u} = puforany u € U.

With this compositional operator, we define “monotonicity in R” as follows.

Definition 4. A divergence D : U x U — Ry is monotone in R if for all u,n* € U such that
Tr{n} <r{n}
D(p||p) = Dnr{n; pillp)- (32)

Recall that a divergence is a non-negative function of the prior and the posterior with no
requirements other than being equal to zero if and only if the prior and posterior are the same.
The above property compares the divergence of the prior . to the posterior p* after replacing the
posterior’s conditional distributions of € R, conditional on (s, a), with the divergence before
this replacement. Monotonicity captures the idea that if we make the posterior more like the
prior in this sense, then this reduces the divergence from the prior to the posterior.

We next define a different concept, “invariance in R.”

Definition 5. A divergence D : U x U — R, is invariant with respect to ®r, or invariant in R, if
Jorallp, i, i € U such that yr{p*} < yr{p} andyr{p'} < vr{n},

D(nr{p”, p}|lp) = Dnr{p®, w' Hing{w, 1'}). (33)

The above property compares the divergence of the prior 4 to the posterior . after replacing
both the prior and the posterior’s conditional distributions (of » € R conditional on s, a), which
may originally differ, with an identical conditional distribution from p’. Invariance captures
the idea that if the prior and posterior share a common conditional distribution, the exact
values of this conditional distribution should not matter for the divergence from the prior to
the posterior. This is different than monotonicity, which requires that replacing the posterior’s
conditional distributions of » € R with that of the prior reduces their divergence. Invariance
and monotonicity together require the divergence to shrink to the same value for all possible
conditional distributions (i.e. embeddings).

5.3 Invariancein A

We have thus far defined coarsenings, embeddings, monotonicity, and invariance only with
respect to partitions in » € R. However, we can define these concepts with respect to other
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dimensions as well, e.g. in s € S ora € A. For the purposes of our exercise, we now consider
coarsenings and embeddings with respect to partitions in @ € A and define invariance in A
along the same lines as our previous definition of invariance in R.

Consider Uy = A (S x R), the space of probability measures over the exogenous state space.
We define a coarsening function, vz : U — Uy, by

vilp} (s,r) = /u(s,r, a)da, VseS,reR. (34)
A

This operator takes a probability distribution x € U on the larger space (S x R x A) and projects
it onto the smaller state space (S x R). As indicated by its subscript, this coarsening “throws
out” all information about a € A, conditional on (s, 7).

Consider now an embedding that adds information about @ € A. We have in fact already
defined such an embedding; the function ¢ 5{10, &} defined in (20) is an embedding that maps
probability measures 1y € Uy on the smaller (exogenous) state space (S x R) to measures on the
larger one. The associated conditional distribution function for this embedding is given by

¢ilals,r)=6d(a—al(s,r)), VseSreRacA, (35)

that is, the degenerate distribution induced by the aggregate action function & (s,r). Any
aggregate action function & € A defines a particular embedding from U, to & with associated
conditional distribution (35), and the set ¢/ is defined by the property that for all 1 € U, there
exists a yy € Up and & € A such that = ¢ 5{10, a}. We can therefore think of A as defining the
set of all possible embeddings from ¢/, to U.

Armed with these definitions of coarsenings and embeddings with respect to a € A, we may
now define our concept of invariance in A, in a manner that is exactly analogous to our defining
of invariance in R (Definition 5). Consider again a composition of the coarsening operation and
a specific embedding, 7 : U x U — U, that coarsens its first argument in a € A, then embeds
using the conditional distribution defined by its second argument. This operator is

malin e} (s,r.@) = { bl valind (5:8) Tatuat (5,0) > 0 (36)
0 ifv4{p2} (s,a) =0,

which is the exact analog of (31). With this operator, we define invariance in A as follows.

Definition 6. A divergence D : U x U — R is invariant with respect to A, or invariant in A, if
forallp, i, " € U such that vz {p*} < vz{n}t and~ {1’} <~vx{n}

D(na{p®, p}llpw) = Dna{p®, u' Hina{w '} 37)

In our game, different aggregate strategies &,a’ € A will lead to different priors p, ' € U.
However, if the divergence D is invariant in A, we will demonstrate below that these different

27



priors do not lead to different information costs for signal structures that condition only on
exogenous states (v € V§!, as in Lemma 1). Consequently, with this form of invariance,
the aggregate action strategy will not matter for agents’ information costs, as in the linear-
quadratic-Gaussian example with mutual information.

5.4 Relation to the standard definition of invariance.

This leads to our next point, which is the relationship between the forms of partial monotonicity
and invariance we have defined and the stronger form of invariance discussed in other papers.
The literature has focused on divergences that are simply “invariant,” meaning that they are
both monotone and invariant with respect to all possible coarsenings and embeddings between
a larger space and a smaller space. These invariant divergences have been described in
the information geometry literature (see Chentsov [1982], Amari and Nagaoka [2007]), and
employed in economics by Hébert [2018] and Hébert and Woodford [2019]. Another term
for coarsening is “compression,” and invariant divergences have a close connection to the
invariance-under-compression axiom described in Caplin, Dean, and Leahy [2019]. Mutual
information, in particular, is invariant in this stronger sense, and hence is invariant and
monotone in both R and A. Fisher information, in contrast, is not invariant or monotone in
either of these senses, provided that agents are allowed to learn about endogenous actions.

Our generalization to partial monotonicity and partial invariance allows us to study
divergences that are invariant to some but not necessarily all partitions of the state space. In
particular our concepts of partial monotonicity and partial invariance are defined with respect
to partitions in certain dimensions, e.g. R and A. Our framework thereby allows for divergences
that may, for example, be invariant in R, but not invariant in 4, and vice-versa.

For example, consider the divergence defined by

D (p*||p) = 61 Dicr (1*[|pe) + 62 Z(Z/A“(S’ r,a)da)Dir, (1" ||n")
reR seS

where Dy is the Kullback-Leibler divergence and, for values of r occurring with positive
probability,

v ulsna) oo o p¥(s,ra)
e T T S e
Here, " € Ur and p“" € Uy, are the prior and posterior distributions on A(S x A) condition on
observing r € R.

When 6, = 0, this divergence is simply the KL divergence. When 6, > 0, there is an extra
penalty for having a distribution conditional on r under ¢ that deviates from the distribution
conditional on r under the prior x. In the limit as 6§ — oo, the cost to learn about r remains
unchanged, but it becomes impossible to learn anything aside from . In this limit, every agent
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will optimally choose to learn about r and only r even if  is not payoff-relevant (that is, if a does
not depend on r), provided that r is in some way correlated with the payoff-relevant variables.
Even away from this limit, it will generally be cheaper for the agent to choose signal structures
that vary in r, even if learning about r is less useful than learning directly about s. One very
straightforward interpretation of this cost function is that r is a public signal, and it is cheaper
for agents to observe this public signal than to observe either the fundamentals or other agents’
actions.

From this discussion, it is immediately apparent that this divergence is neither invariant nor
monotone in R. However, because of the invariance of the Kullback-Leibler divergence, it is also
straightforward to observe that this divergence is invariant and monotone in A. We therefore
conclude from this example that cost functions with one form of partial invariance but not the
other exist and are potentially interesting.

Armed with these definitions, we next demonstrate that monotonicity in R and invariance
in A are critical in determining the equilibrium properties of our game.

6 Non-Fundamental Volatility in Equilibrium

In this section we consider the question of whether the equilibrium depends on the payoft-
irrelevant exogenous state ». We begin by defining a notion of measurability; we will say an
equilibrium is s-measurable if the agents’ signal structures 4 and the aggregate strategy a do
not depend on 7.

Definition 7. An aggregate strategy a € A is s-measurable if, for alls € S andr,r' € R, a (s,r) =
a(s,r"). A symmetric BNE (Definition 3) ¢ = {v4,a} is s-measurable if & is s-measurable and if,
foralls € S andr,r' € R, v(d'|s,r,a(s,r)) = vi(a'|s, ', & (s,7")).

When the aggregate strategy a depends on r, the associated equilibrium exhibits non-
fundamental volatility in the sense that outcomes depend on non-payoff-relevant exogenous
states. When it does not, the associated equilibrium exhibits zero non-fundamental volatility.
By definition, if an equilibrium is s-measurable, it exhibits zero non-fundamental volatility.
However, if an equilibrium is not s-measurable, it could either be that the aggregate strategy

A conditions on r. In

& is not s-measurable, or that a is s-measurable but the signal structure v
the first of these situations, the economy exhibits non-fundamental volatility.

The second situation is non-generic. If v4 conditions on r, then by the mean-consistency
condition (Definition 2) we would generically expect that a(s,r) depends on r. The special
case in which this would not occur is if, under v4, r influences the higher moments of the
agents’ actions but not the mean action. This case is non-generic, in the sense that by slightly

perturbing the agents’ utility function, we can construct a new game with an equilibrium
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involving an & function that does depend on r. We discuss this issue in more detail in the
Appendix, Section 10. In what follows, we will treat the question of whether or not the
equilibrium is s-measurable as equivalent to the question of whether or not a is s-measurable,
which determines whether or not there is non-fundamental volatility.

6.1 Equilibrium Implications of Monotonicity in R

We begin by demonstrating that if the divergence D is monotone in R, an s-measurable
equilibrium (featuring zero non-fundamental volatility) exists.

Monotonicity in R has the implication that if an agent does not care about r per se, only how
it affects a, then there is no reason for the agent to acquire any information about r. Recall that
in our framework a signal structure v € V® is a conditional distribution. That is, v (w|s,, a) is
the probability of observing signal w € €2 conditional on the realization of (s, r, a).

Let us now define an operator vg : V¥ x Y — V¥ that removes from v € V® the conditioning
of the signal on r, while preserving the probabilities of each w € €2 conditional on (s, a),

2orer W (Wls, s a) (s, 1, a))
r{ip} (s,a)

vr{v, p} (w|s,r,a) = Vs € S,ac Ast.yr{p}(s,a) > 0.

From this definition, we can observe immediately that vr{v, u} (w|s,r,a) = vg{v, u} (w|s,’,a)
for all 7, " € R, which is to say that the signal structure does not condition on r. It also follows
immediately that 7{vr{v, u}, u} = 7{v, n}, which is to say that the unconditional probabilities
of each signal are preserved by this operator.

Our next lemma answers the following question: when is it always less costly (in terms of the
information cost) to avoid conditioning signals on r?

Lemma 2. (i) If the divergence associated with the cost function C** is monotone in R, then for all
priors i € U and all signal structures v € V*,

C (vr{v, u}, ) < C% (v, ).
(ii) If, for all priors i € U and all signal structuresv € V',
C? (vriv, u}, ) < C% (v, ),
then the divergence is monotone in R.

Proof. See the appendix, 11.5. O

Part (i) of Lemma 2 states that if the divergence is monotone in R, then the minimally-
informative signal structure is also the least-costly. One implication of this result is conditional
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independence: because the agents’ payoff never depends on r conditional on (s, a), the agent’s
optimal signal w will be independent of  conditional on (s,a). Part (ii) of Lemma 2 states the
converse: if removing conditioning on r always reduces information costs, then the divergence
is monotone in R. Put together, Lemma 2 tells us that monotonicity in R is equivalent to
the statement that paying attention to r is always costly. We now use this result to show that
monotonicity in R is sufficient for the existence of s-measurable equilibria.

Proposition 4. If the divergence associated with the cost function C** is monotone in R, then an
s-measurable symmetric BNE of the game exists.

Proof. See the appendix, 11.6. O

Our proofis essentially a restatement of our existence proof combined with an application of
part (i) of Lemma 2. The key observation is that with monotonicity in R, agents optimally choose
actions that conditional on (s, a), are independent of ». This is because conditional on (s, a),
an agent has no reason to acquire information about r: this would only increase the agent’s
information costs with no benefit. As a result, if agents face an s-measurable aggregate action
function @, they best-respond with a policy whose mean action is indeed s-measurable.

The sufficient conditions in Proposition 4 are in fact stronger than necessary: divergences
need not be R-monotone on all priors. Instead, it suffices for divergences to be R-monotone
only on priors that may occur in an s-measurable equilibrium. Intuitively, only these priors
matter when conjecturing the existence of an s-measurable equilibrium.

To weaken the conditions Proposition 4, we define /*~™“*%(1,9) C U to be the set of priors
that may be generated by s-measurable & given the exogenous prior 1y € Uy,

U (ug) = {u ceU:Jac Ast. p=dz{uo,a} and a(s,r) = a(s, ') Vs € S,r,r’ € R} ,

and define 2/*~"°* = U, e, U*~™°**(110) as the set of all s-measurable priors. We are now able to
state a version of Proposition 4 demonstrating that monotonicity in R on s-measurable priors
is both necessary and sufficient to ensure the existence of an s-measurable symmetric BNE,
regardless of the utility function.

Proposition 5. An s-measurable symmetric BNE of the game exists for all utility functions u
satisfying Assumption 1 if and only if the divergence associated with the cost function C% is
monotone in R on all priors p € U~ ().

Proof. See the appendix, 11.7. O

The intuition for this result is essentially the converse of our previous result. With non-
monotonicity in R, there are priors ;. € U such that agents optimally choose actions that,
conditional on (s, a), are not independent of r. This is because even if the agent has no particular
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concern for the value of r, she finds it cheaper to obtain signals correlated with r than to
gather no information about r at all. As a result, each agent best-responds with a policy that,
conditional on (s, a), varies in r, provided that the agent gathers any information at all.

We conclude that R-monotonicity on s-measurable priors is the key condition that
guarantees zero non-fundamental volatility. When this condition is violated, there are utility
functions that will generate non-fundamental volatility in equilibrium (because an equilibrium
exists by Proposition 3, and it is not s-measurable by Proposition 5).

To further extend our results, we consider cost functions that are generically non-monotone
in R. We define the “opposite” of monotonicity in R, relying on the “only-if” aspect of Lemma
(2). Consider any informative signal structure v € V§! that does not condition on r. We will say
that a cost function C* is “generically non-monotone in R” if, generically on the set of priors
u € U, the signal structure v is not the least-costly of all the signal structures that coarsen to v,
except at isolated points. Our use of the term generic follows Geanakoplos and Polemarchakis
[1986] and Farhi and Werning [2016].

Definition 8. A cost function C% is generically non-monotone in R if, generically on the set 1 €
us—meas, for all informative signal structures v € V§} such thatv = vg{v, u}, there exists av' € V!
withv = vr{V', u} such that

c? (V) < C (v, ).

We have defined generic non-monotonicity as a property of the cost function C* as
opposed to of the divergence purely for convenience. Note that monotonicity and generic
non-monotonicity are not exhaustive classes of cost functions; cost functions might exhibit
monotonicity in R for some priors but not others. We have little to say about whether s-
measurable equilibria will or will not exist in this case.

The reason we need a notion of generic non-monotonicity, as opposed to non-monotonicity
for all priors, is illustrated in our linear-quadratic-Gaussian example with the Fisher information
cost function. In that example, if under the prior s and r are independent, then even with the
Fisher information cost function the equilibrium will have zero non-fundamental volatility. This
situation is non-generic in the sense that even small amounts of correlation between s and r will
restore the result that the equilibrium features non-fundamental volatility.

Before presenting our result, we need one more definition. We will say that an equilibrium
is deterministic if the aggregate action is constant and agents do not acquire any information.

Definition 9. A symmetric BNE (Definition 3) ¢ = {v*,a} is deterministic if, for all s, s' € S and

r,r’ € R,a(s,r)=al(s,r) cmdl/A(ai]S,r,& (s,1)) = VA(ails’,r',(i (s',1")).

As we discussed in our linear-quadratic-Gaussian example, if the costs of acquiring
any information exceed the benefits (which can happen in that example with both mutual
information and Fisher information), there can be equilibria in which no information is
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acquired and the aggregate action is identical in all states. This is also a possibility in
our general game, but as our next result shows, if the cost function is non-monotone in R
and the equilibrium features some information gathering, then it will generically have non-
fundamental volatility.

Proposition 6. Ifthe cost function is generically non-monotone in R on the set of priorsU*~"¢%*,
then generically all symmetric BNE of the game are either not s-measurable or are deterministic.

Proof. See the appendix, 11.9. O

6.2 Interpretation and Remarks

When do equilibria exhibit non-fundamental volatility? In exogenous information
environments, non-fundamental volatility originates as errors in public signals. Noisy public
signals, or more generally correlated errors in beliefs, are natural components of generic
information structures [Bergemann and Morris, 2013]. In these environments, agents costlessly
observe public signals; as long as public signals contain information about fundamentals,
agents condition their actions on it. As a result, errors in these signals orthogonal to
fundamentals affect equilibrium outcomes.

However, under endogenous information acquisition, what appears to be a rather natural
property to impose on cost structures—monotonicity in R—Ileads to a surprising and strong
result: zero non-fundamental volatility in equilibrium. That is, if agents have no reason per
se to obtain information about » € R, and paying attention to r only increases costs, then
in equilibrium agents will optimally choose to ignore r. As a result, actions are conditionally
independent of r, and equilibria feature zero non-fundamental volatility. In fact, as we show
in Section 2, mutual information—the typical cost function used in the rational inattention
literature—produces this result.

To break this—to eliminate s-measurable equilibria altogether—we show that one must
break monotonicity in R. If cost functions are non-monotonic in R, then agents pay attention
to r, even conditional on s,a. And, because the realization of r is common across all agents,
it introduces correlated errors in agents’ actions, resulting in non-fundamental volatility in
equilibrium outcomes.

The variables » € R thereby play the role of “noisy public signals:” they capture the idea
that it is comparatively cheap for agents to observe r as opposed to receiving signals only about
fundamentals s. In fact, note that in the limit in which r is completely costless, they are identical
to costless public signals (e.g. as in the exogenous information case). Away from this limit, the
variables r € R are not costless, but are “salient.”

Our beauty contest example in Section 2 demonstrates that with Fisher information, the
equilibrium generically features non-fundamental volatility. It should now be clear that the
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underlying reason for why Fisher information and mutual information lead to such different
equilibrium properties is due to this particular difference in cost structure: mutual information
is monotonic in R, while Fisher information is not.

7 Efficiency under Exogenous Information

We next turn to the question of efficiency, and the connection between the cost functions and
informational externalities. To study inefficiencies with endogenous information acquisition,
we must first isolate inefficiencies that may arise in any other aspect of the game. In this section,
we consider a version of the game in which information is incomplete but exogenous. If the
equilibrium is constrained efficient in the game under exogenous information, then agents use
their information efficiently.

We first establish a sufficient condition that ensures the use of information is efficient.
Angeletos and Pavan [2007] provide a related condition in a linear-quadratic setting with one-
dimensional action spaces (like our beauty contest example). Our analysis in this section
generalizes their result to our game, which features multi-dimensional actions and general
payoffs. After we establish that our condition is sufficient, we show that it is also necessary
to guarantee constrained efficiency for all possible priors and signal structures.

In the subsequent section, we assume efficiency in the use of information, and ask what
more is needed to guarantee efficiency in the acquisition of information.

7.1 The Game under Exogenous Information

In the spirit of Lemma 1, we define our game with exogenous information by endowing agents
with a given signal structure ! € V§!. These signal structures are exogenous both in the
sense that agents do not choose them and in the sense that they condition only on exogenous
state variables.?’ We formalize the agent’s choice set under exogenous information in a slightly
unusual way, to emphasize the connection between games with exogenous information and
games with endogenous information.

All other features of the game—payoffs, action spaces, exogenous priors-remain the same.
Throughout this section we continue to impose Assumption 1 on action spaces and payoffs.
Because the agent no longer chooses his own signal structure and there are no information
costs, our assumptions on information acquisition costs are not applicable in this section.

201t is well-known that in games with exogenous information structures, allowing for signals about
endogenous objects introduces an informational externality; see e.g. Laffont [1985], Angeletos and Pavan
[2009], Amador and Weill [2010], Vives [2017], Angeletos, lovino, and La’O [2020]. In order to maintain a
clean benchmark, we abstract from such externalities in this section.
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Choice sets with exogenous signal structures. Recall that any mixed strategy o : Q —
A (A) and exogenously given signal structure v € V§! together define a conditional distribution
over actions, v € V§!, by (25). In the game with endogenous information, we wrote the agent’s
problem as a choice over his conditional distribution of actions, v4 € Y4, see Definition 3. In

Q2 as a

the exogenous information game, we instead endow the agent with a signal structure v
result, the agent’s only choice is his mixed strategy o.

But now observe that the mapping o can be thought of as a “garbling” in the sense of
Blackwell [1953]. That is, the conditional distributions v that arise from the signals v and
mixed strategies ¢ are weakly Blackwell-dominated by the conditional distributions »**. In fact,
by Blackwell’s theorem, the set of conditional action distributions v* € V4! that can be feasibly
created by any mixed strategy o are precisely those that are Blackwell-dominated by v

For any signal structure v € V§!, let B4 (1) C V4! denote the convex subset of conditional
action distributions in V§' that are Blackwell-dominated by »f%. In the game with exogenous
information, we can write the agent’s problem as a choice over conditional action distributions

v4 € BA(1?), given the exogenously endowed signal structure v € V§!.

7.2 Equilibrium and Efficiency Definitions

We are now in a position to define equilibrium and efficiency with exogenous information. As
in our definition of equilibrium in the original game with endogenous information (Definition
3), we focus on symmetric Nash equilibria in which all agents choose the same action strategy.

Definition 10. (Exogenous information game.) Given a common prior o € Uy and exogenous
signal structure vt € V§!, a symmetric Bayesian Nash equilibrium of the game under exogenous
information is a mean-consistent strategy profile ¢ such that agents’ strategies v* € Vi are best
responses

vA e sup Z / [/ u (ai,EL, s) v (ai\s,r, EL) da®| pu (s, r,a)da.
A A

v'eBA(v?) seS,reR
with p = ¢ 3{po, a}.

Our equilibrium definition under exogenous information mirrors our equilibrium definition
under endogenous information. In fact, Definitions 10 and 3 are nearly identical—the only
difference is that with endogenous information, agents face a convex cost of information (C4),
whereas with exogenous information, their choice of signal s