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1. INTRODUCTION

�is paper studies how the possibility of buyer learning in�uences dynamic monopoly pricing of
a durable good. Following Stokey (1979), we consider a forward-looking buyer (she) who decides
when to purchase a single unit of an object from a monopolist seller (he). Assuming that the buyer
knows her value for the object and this value remains constant over time, the classic result of
Stokey (1979) demonstrates that the seller’s optimal pricing strategy is to use a constant price
path. �e key insight is that lowering future prices leads to increased sale to low-value buyers,
but at the same time causes some high-value buyers to delay purchase. �is trade-o� results in a
net loss in pro�t.

Contrary to this benchmark, we consider a buyer who does not initially know her value for the
seller’s product. Instead, she receives information about the product’s worth or her idiosyncratic
needs, and updates her beliefs about her value over time. Consider a consumer deciding whether
and when to purchase a new car, as she worries that her current car may need some costly repairs.
Not knowing exactly what kinds of repairs will be needed or how much inconvenience they will
cause, she is imperfectly informed about her outside option, and therefore about her (net) lifetime
discounted value for a new car. Furthermore, suppose that the buyer can learn about her current
car’s quality from her mechanic. By providing information, the mechanic in�uences the buyer’s
willingness-to-pay for the new car and thus the seller’s pro�t as well.

With this example in mind, our theoretical question can be phrased as follows: Should the
presence of the mechanic (i.e., information arrival) qualitatively change how the car seller sets
prices? In particular, is it still optimal to keep prices constant, or does the possibility of buyer
learning make intertemporal price discrimination pro�table? In the la�er case, are there general
insights about the form of the optimal pricing policies?

1.1. An Example

�e following simple example illustrates how optimal pricing is sensitive to information arrival.
Suppose that a buyer has value v for the seller’s product, with P[v = 4] = 1

4
, P[v = 3] = 1

2
, and

P[v = 0] = 1
4
. For simplicity, we assume that transaction can occur in one of two periods, with

both parties discounting second period payo�s by a factor δ. First consider the “known-values”
case studied in Stokey (1979), where the buyer knows v at the beginning of period 1. In this
case, optimal dynamic pricing coincides with optimal static pricing; for the above distribution, a
constant price of 3 yields the optimal expected pro�t of 9

4
, with no delayed purchase.

If the buyer learns about her value over time, then the seller would like to tailor the pricing
strategy to the information arrival process. Suppose (the seller knows that) the buyer only knows
whether or not v = 4 in the �rst period, but learns v perfectly in the second period. Consider the
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pricing strategy which charges 4− δ in the �rst period and 3 in the second period. Given these
prices, a buyer with value 4 purchases in period one (since she is indi�erent), while a buyer with
value 3 purchases in period two. �is will lead to an expected pro�t of 1 + 5

4
δ. �us, declining

prices can facilitate price discrimination by inducing sale over time. Stokey’s result fails here
because, under this information arrival process, lowering the price to 3 in the second period leads
to additional sales that would not have happened if the price were equal to 3 in the �rst period.
We can further show this strategy is optimal for δ > 4

5
; see Online Appendix F.1 for details.1

But if the seller anticipated a di�erent information arrival process, then he might also price
discriminate using an increasing price path. To illustrate, suppose that the buyer instead learns
whether or not v = 3 in the �rst period and later learns v perfectly. �en charging 3 in the �rst
period and 4 in the second period enables sale to occur in both periods, yielding an expected
pro�t of 3

2
+ δ. �is turns out to be the optimal strategy for δ > 1

2
. Intuitively, information arrival

leads to delayed purchase by v = 4 buyers who only learn their value in the second period, and
increasing prices extract more surplus from these buyers than constant prices. �is does not occur
in Stokey’s known-values se�ing.2

1.2. Model and Results

�e preceding example illustrates the di�culty in providing a benchmark prediction regarding
the seller’s optimal pricing strategy in the presence of buyer learning.3 In this paper, we focus on
the case of a seller who does not know how the buyer receives information. We assume that the
buyer’s value is drawn from a commonly known distribution, and that the buyer learns her value
over time according to some information arrival process (which she knows). However, unlike
in the above example, the seller does not know the process and thus does not optimize against
any particular one. Instead, he commits to a pricing strategy that maximizes his pro�t guarantee
against all possible information arrival processes. In our baseline model, we consider the case of
very rich informational uncertainty, where information in each period can depend on the seller’s
potentially randomized pricing strategy, as well as on realized prices up to and including that
period. �is gives the most cautious pro�t benchmark for the seller.

Returning to the car buyer, the seller may not be able to determine the tests the mechanic will

1When δ ≤ 4
5 , it is optimal to sell only in the �rst period at a price of 2, while shu�ing down sale in the second period

by charging any price ≥ 3. �is strategy yields a higher pro�t of 2 for low δ.
2Apart from buyer learning, other channels through which a departure from constant prices may be optimal include
buyer budget constraint (Che and Gale (2000)), unequal discount factors between seller and buyer (Landsberger and
Meilijson (1985)), and buyer value shocks (Deb (2014), Conlisk (1984), and Garre� (2016)).

3In more general dynamic mechanism design frameworks, Courty and Li (2000) and Pavan, Segal and Toikka (2014)
have shown that the optimal selling mechanism depends sensitively on the process by which buyer value evolves, if
the seller knows this process.
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perform on the buyer’s car, and hence be uncertain about the buyer’s information (structure). �e
seller might even worry that the mechanic’s goal is to prevent the buyer from purchasing a new
car, which would need fewer repairs. More generally, if information relates to idiosyncratic tastes,
the seller might have limited ability to anticipate how a particular buyer discovers her preference
over time. He would therefore face uncertainty over how this buyer’s expected value evolves,
even if the ex-ante value distribution is commonly understood. �is seller would prefer a pricing
strategy that performs well in a variety of informational environments, rather than just one.

Our main result is that, under the robust objective, the seller optimally uses a constant price
path, for any time horizon and discount factor. �e optimal price and pro�t are both lower than
the known-values case, due to the distinct seller objective in our model. However, su�cient
uncertainty over the informational environment restores an important feature of Stokey (1979),
namely that the dynamic problem can be reduced to optimal static pricing. Notice that this
conclusion need not hold when the seller restricts to particular information arrival processes, as
demonstrated by the above example.

Toward this result, we �rst argue that by always charging the optimal price in the single-
period problem (which we describe below), the seller obtains the single-period pro�t guarantee
even if information arrives dynamically. �is claim is not immediate, since dynamic information
can induce the buyer to delay purchase and potentially hurt discounted pro�t. What we show,
however, is that the e�ect of delay on pro�t can be replicated by instead providing information in
period 1 in a way that lowers the probability of sale. Intuitively, when the seller uses a constant
price path, both seller pro�t and buyer payo� are determined by the discounted probability of
sale given the buyer’s true value. For any dynamic information structure, we can �nd a static
information structure that makes only one purchase recommendation in period 1, with appropriate
probabilities that maintain the total discounted probability of sale to each buyer type. In the formal
argument, we additionally verify that the buyer is willing to follow such a recommendation. As
a result, this static information structure is “outcome-equivalent” in terms of buyer and seller
surplus. �is equivalence, which we call the Replacement Lemma (Lemma 1), shows that constant
prices are robust to dynamic information.4 Our method of replacement turns out to be a useful tool
more generally; we demonstrate this in various extensions, where modi�ed versions of Lemma 1
are applied to reduce the dynamic problem to a static one.

�e natural next question is: Why does the seller not bene�t from intertemporal price dis-
crimination, for example, by lowering prices over time? We recall that the classic intuition from
the known-values case is based on the trade-o� between selling to more buyers at a lower price
(tomorrow) versus fewer buyers at a higher price (today). Given a �xed value distribution, this
4Although Lemma 1 is stated for the seller’s worst-case pro�t, its proof shows that with constant prices, the replacement
static information structure keeps both buyer and seller surplus the same.

4



trade-o� is optimized by selling with probability 1 to all buyers with value above a certain level,
where the “virtual value” equals zero. �is optimum is implemented by a constant price path. As
we have seen in Section 1.1, this standard intuition does not readily generalize in the presence
of buyer learning, since information arrival changes the value distribution and in�uences the
trade-o� between earlier and later sales. However, we restore this intuition under the robust
objective, by establishing a connection between our problem and the known-values case. We
�rst observe that, with a single period, the worst-case information structure recommends the
buyer purchase if and only if her value is above a price-dependent threshold. �e threshold is
monotonic in the price: In fact, it has the property that the buyer’s expected value, conditional on
being below the threshold, exactly equals the price—such an information structure minimizes the
probability of sale. �is solution suggests that our single-period problem can be thought of as
an as-if known-values problem, in which the prior value distribution is transformed to take into
account the mapping from prices to thresholds (which re�ect worst-case information).

Moving on to the dynamic problem, we generalize the threshold information structure to
threshold information arrival processes, which inform the buyer in each period whether her value
is above or below a threshold. Intuitively, threshold processes maximize the buyer’s expected
value when she is recommended to purchase (i.e., when her value is above the threshold), so as
to minimize her purchase probabilities and thus the seller’s pro�t. For any pricing strategy the
seller uses, we exhibit a threshold process such that buyer behavior and seller pro�t coincide with
the as-if known-values problem. �is connection recovers the trade-o� between selling to more
buyers at a lower price versus fewer buyers at a higher price, when evaluating probabilities of
sale according to the transformed value distribution (which does not change over time). As under
known values, the seller in our problem does not gain from intertemporal price discrimination.

�is analysis also reveals that a certain richness in the informational environment is necessary
in order to reduce dynamic pricing to a static problem. While the solution to our baseline model
provides a maximally cautious lower bound on the seller’s pro�t, non-constant pricing may
improve the pro�t guarantee if the seller is only concerned with a subset of possible information
arrival processes. We illustrate this with two extensions of our main model. First, we consider
cases where the buyer receives information infrequently, and show that a declining price path
out-performs a constant price path. We then present a variant of our model with many buyers
arriving over time, who share a common value and observe common signals. An increasing price
path turns out to be optimal in the patient limit.

Our analysis echoes others in the robust mechanism design literature, which highlight that
simple strategies can be optimal given su�cient uncertainty over the environment.5 Constant

5See, e.g., Chung and Ely (2007), Frankel (2014), Carroll (2015, 2017) and Yamashita (2015). Among these, the closest
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price paths are “simple” because the optimum can be achieved without knowing the buyer’s
arrival time or even the time horizon. Our result thus provides justi�cation for �rms to eschew
sophisticated pricing strategies, even when consumer learning is signi�cant. We �nd it reassuring
that the worst-case information arrival process always takes the threshold form, as introduced
above. �reshold information structures admit a natural interpretation as a “pass/fail” test, and
have been studied in a variety of applications, from �nance (Goldstein and Leitner (2018), Inostroza
and Pavan (2019)) to political economy (Alonso and Câmara (2016)).6 For our dynamic se�ing,
we generalize static information structures that involve a single threshold (as in these papers) to
dynamic information processes that involve multiple descending thresholds. So long as the seller
seeks robustness against at least this class of processes, our analysis is una�ected.

Our study of informationally robust pricing is inspired in part by Bergemann, Brooks and Morris
(2017), Du (2018) and Brooks and Du (2019). �e goal of this line of research is to move away from
speci�c assumptions about the informational environment, which may imply optimal mechanisms
that depend sensitively on these assumptions. Relative to the existing work, we introduce dynamic
informational robustness and demonstrate how constant pricing ensures robustness against
potential buyer delay.7 Prior literature has also studied pricing under uncertainty about the value
distribution—see Bergemann and Schlag (2011), Handel and Misra (2014), Caldentey, Liu and Lobel
(2016), Liu (2016), Chen and Farias (2018) and Carrasco et al. (2018).

Dynamic information arrival presents certain modeling challenges; in particular, there are
potentially many ways to model the interaction between information and prices over time. Our
main model allows information in each period to adapt to prices up to and including that period.
We view this generality as desirable, since it delivers the most cautious pro�t benchmark. For
example, the car seller mentioned above might worry that the buyer’s mechanic observes the new
car’s price before deciding what to reveal about the old car’s breakdown risk. In practice, a variety
of channels may lead to price-dependent information; see further discussion in Section 2.3. A less
cautious benchmark would have been to disallow such price-dependence. �is alternative model
was studied by Du (2018) for a single period, building on the earlier work of Roesler and Szentes
(2017). In Section 5, we study a dynamic version of that model and show that a randomization

to our paper is Carroll (2017), who shows how uncertainty over the correlation between a buyer’s demand for
di�erent goods leads the seller to price the goods independently. �e general link between dynamic allocations and
multi-dimensional screening has been noted in the literature. While it is interesting that we obtain a result similar to
Carroll (2017), our focus on information arrival and single-object purchase distinguishes from that work.

6Also related are Bergemann and Wambach (2015) and Li and Shi (2017). �ese papers discuss that threshold
information might arise via comparisons to past products for which buyer values are known. �reshold processes
might also arise if the product has several a�ributes that are sequentially revealed to the buyer, who has lexicographic
preference over these a�ributes.

7Most papers in robust mechanism design focus on static se�ings. As far as we are aware, Chassang (2013) and Penta
(2015) are among the few papers that study a dynamic robust objective.
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over constant price paths delivers the robustly optimal pro�t.
Methodologically, our analysis contains certain technical innovations that may be applicable

to other problems, particularly those that involve Bayesian persuasion. �e connection to the
persuasion literature (Kamenica and Gentzkow (2011) and many that follow) arises since our seller
is worried about an “adversarial nature” who a�empts to persuade buyers not to purchase the
product. Viewed from this perspective, our results provide a characterization of optimal persuasion
(i.e., worst-case information structure) by nature against a given pricing strategy. In particular,
our Proposition 3 shows it is without loss to restrict a�ention to threshold information arrival
processes. �is is a dynamic version of the optimality of interval persuasion previously established
for static models, such as in Kolotilin (2015) and Dworczak and Martini (2019). We also suspect
that our Replacement Lemma may have broader relevance to dynamic Bayesian persuasion, as it
suggests that certain instances of such problems may admit static solutions.

2. MODEL

Our baseline model adds buyer learning to an otherwise standard dynamic pricing se�ing. A
seller (he) sells a durable good at times t = 1, 2, . . . , T , where T ≤ ∞. For now, we assume there
is a single buyer (she), present at time t = 1, who can delay purchase to any later time; the case
where multiple buyers arrive over time will be discussed later. Both seller and buyer have discount
factor δ. �e product is costless for the seller to produce,8 while the buyer has unit demand. �e
buyer has (undiscounted) lifetime value v from purchasing the object, where v is drawn from a
distribution F and �xed over time. �e prior distribution F is common knowledge, with support
V ⊂ R+ and 0 < E[v] <∞. For expositional ease, we assume that F is a continuous distribution
with minimum value v; we explain how our results extend to discrete distributions in Appendix A.
As in the mechanic story above, the value v can also be interpreted as the buyer’s net value for
the seller’s product relative to an outside option that she learns about.

At time 0, the seller commits to a pricing strategy σ, which is a distribution over possible price
paths pT = (pt)

T
t=1 ∈ RT

+.9 �e buyer decides when to purchase based on her knowledge of the
seller’s strategy, the price in that period, as well as her belief about her value and what she expects
to learn about her value in the future.10 �e next subsection formalizes the learning process. A
8Introducing a cost of c per unit does not change the results for our main model. It is as if the prior distribution F
were “shi�ed down” by c, and the buyer might have a negative value. �e pressed distribution G in De�nition 1
below would simply be shi�ed down by c as well.

9�e commitment assumption is frequently made in the intertemporal pricing literature. In our se�ing, dropping
commitment would introduce further di�culties related to formalizing learning under ambiguity; see Epstein and
Schneider (2007) and Riedel (2009).

10We assume that the buyer knows her information arrival process, and is Bayesian about what information will be
received in the future. However, our analysis is unchanged if the buyer also faces uncertainty (and is maxmin) over
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buyer who never purchases the object obtains a payo� of 0.

2.1. Dynamic Information Structures

�e buyer does not directly know v; instead, she learns about it through signals that arrive over
time, via some information structure. To be precise, a dynamic information structure/information
(arrival) process I consists of:

• A set of possible signals for every time t ≥ 1, i.e., a sequence of sets (St)
T
t=1, and

• Probability distributions given by It : V × St−1 × P t → ∆(St), for all t with 1 ≤ t ≤ T .

Above, St−1 =
∏t−1

τ=1 Sτ denotes the set of possible past signal realizations, and P t := Rt
+

represents the set of possible past and current prices. To be fully rigorous, there should be a σ-�eld
associated with each St, and the mappings It are required to be measurable. We will however
omit these technical details, which do not a�ect the analysis.

To interpret the above de�nition, note that the distribution of the signal st at time t could
depend on the buyer’s true value v ∈ V , the history of her previous signal realizations st−1 =

(s1, . . . , st−1) ∈ St−1, as well as the history of all previous and current prices pt = (p1, p2, . . . , pt) ∈
P t. �e possibility for information to �exibly depend on realized prices distinguishes our model
from other papers using the robust approach, and we discuss this important assumption more
thoroughly in Section 2.3 below. For now, we simply point out that if the seller were to use a
deterministic price path, our de�nition would reduce to the usual de�nition that signal st occurs
with probability It(st | v, st−1). In that case we could omit the dependence on realized prices
since there is only one possible realization. As we discuss later, allowing for price-dependent
information only has bite when the seller randomizes.11

2.2. Seller’s Objective

Given the pricing strategy σ and the information process I , the buyer faces an optimal stopping
problem. Speci�cally, she chooses a stopping time τ ∗ adapted to the joint process of prices and
signals, so as to maximize the expected discounted value less price:

τ ∗ ∈ argmax
τ≥1

E
[
δτ−1(E[v|sτ , pτ ]− pτ )

]
.

future information, so long as she can interpret signals in the current period. �is extension is discussed in Online
Appendix E. In this sense, we do not impose extra rationality of the buyer beyond what is typically assumed in
static robust mechanism design.

11Since a deterministic (constant) price path is optimal in our main model, an alternative model where information
can further condition on future price realizations would yield the same result.

8



�e inner expectation E[v|sτ , pτ ] represents the buyer’s expected value conditional on realized
prices and signals up to and including period τ . �e outer expectation is taken with respect to the
evolution of prices and signals. We allow the stopping time τ to take any positive integer value
≤ T , or τ =∞ to mean the buyer never buys.

�e seller evaluates payo�s as if the information process chosen by nature were the worst
possible, given his pricing strategy σ and buyer’s optimizing behavior. Hence the seller’s payo� is:

sup
σ∈∆(PT )

inf
I,τ∗

E[δτ
∗−1pτ∗ ] s.t. τ ∗ is optimal given σ and I.

Note that when the buyer faces indi�erence, ties are broken against the seller. It will follow from
our analysis that when the prior distribution F is continuous, sup inf is achieved as max min.12

Breaking indi�erence in favor of the seller would not change our results, but would add cumber-
some details due to max min not being achieved.

2.3. Discussion

Relation to known-values. Our main model assumes that both parties start o� with the same
prior about the buyer’s value. In Section 4.2, we show that our constant price path result is
maintained when it is common knowledge that the buyer has a more informed prior. An extreme
case of this extension is when the buyer perfectly knows her value (and the seller knows that),
which corresponds to a discrete-time version of Stokey (1979). In this sense, our result extended
to the se�ing in Section 4.2 is a strict generalization of Stokey (1979).

Informational versus distributional uncertainty. We focus on the study of seller uncertainty
regarding buyer learning, and for this reason shut down any uncertainty about the prior distribu-
tion F . �is captures se�ings where heterogeneity in buyers’ willingness-to-pay is primarily due
to idiosyncratic tastes that are discovered over time. However, our framework can be extended to
accommodate aggregate value uncertainty. In Online Appendix D, we discuss how the presence of
distributional uncertainty–on top of informational uncertainty–would in�uence our analysis. We
show that for any set of possible value distributions, those distributions that are worst for pro�t
are minimal with respect to second-order stochastic dominance (�eorem 3). In particular, if the
seller does not know the value distribution but knows its mean and range, then the worst-case
distribution is supported on the extreme values, and the seller charges the optimal constant price
(given in our Proposition 1) against this �xed distribution.13 More generally, �eorem 4 shows

12�is result may fail if there is a large mass point at v. See the proof of Proposition 1 in Appendix A for details.
13�is relates to Carrasco et al. (2018), which considers a seller who does not know the distribution of the buyer’s

value, but knows some of its moments.
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that the worst-case distribution exists under regularity conditions.

Price-dependent information. A key assumption in our model is that the seller is maximally
cautious, in the sense that he does not rule out any information process for the buyer. In the spirit
of delivering the most cautious benchmark, our baseline model further allows for information to
be price-dependent.14 In reality, such price-dependence could occur through a number of channels:
For instance, if advertisements are displayed more prominently depending on price, if reviewers
consider price when deciding which products to write about, or if buyers are rationally ina�entive
and choose information based on the price.

Including price-dependent information additionally provides technical convenience in that
the ability of nature to respond to realized prices eliminates the seller’s incentive to randomize,
despite the maxmin objective.15 With the restriction to deterministic prices, we can describe the
solution to our problem (and its intuition) in a way similar to the known-values case of Stokey
(1979). As we show in Section 6, developing this analogy also helps us understand the boundaries
of the constant price path result.

Interestingly, when the seller’s uncertainty is restricted to price-independent information,
a randomization over constant price paths becomes optimal even though the analogy to the
known-values case is lost. We discuss this extension in Section 5.

3. ONE-PERIOD ANALYSIS

We start by analyzing the one-period problem. To solve this problem, we will de�ne a transformed
distribution of the prior F . �is transformation uses our assumption that F is continuous, with
minimum value v. Our main results in this paper extend to discrete distributions, though the
general de�nition requires additional care and is relegated to Appendix A.

De�nition 1. Given a continuous distribution F , its “pressed version” G is another distribution
de�ned as follows. For y > v, letL(y) = E[v | v ≤ y] denote the expected value (under F ) conditional
on the value not exceeding y.16 �en G(·) = F (L−1(·)) is the distribution of L(y) when y is drawn
according to F .

�e pressed distributionG is useful because for any realized price p, nature can only ensure that
the object remains unsold with probability G(p). To see this, �rst observe that any information
14As discussed in a decision theory framework by Ke and Zhang (2019), any assumption on how information interacts

with prices is related to the seller’s subjective model of the timing of nature’s moves relative to his own randomization.
In our dynamic se�ing, there are multiple ways one could model the timing of nature’s moves. Our main model
takes the most pessimistic perspective that nature moves in each period, a�er the seller’s randomization.

15�is is straightforward to see in one period, but also true in many periods as we show.
16�e conditional expected value L(y) is closely related to the notion of conditional value at risk/expected shortfall in

mathematical �nance, see e.g. Ma and Wong (2010).
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structure is outcome-equivalent to another that directly recommends one of two actions: to
purchase the good or not. Given this simpli�cation, the worst-case information structure must
have the following property: As long as the buyer is recommended to purchase with positive
probability, the buyer who is recommended not to purchase has expected value exactly p. Otherwise
nature could adjust its recommendation to further decrease the probability of sale.

Moreover, given that a buyer who does not buy has �xed expected value (in our case, p), one
can show that a threshold information structure maximize the probability of this recommendation
(see e.g. Kolotilin (2015)). In a threshold information structure, the buyer is told whether her
value is above or below a certain threshold. By the above de�nition of G, this threshold must be
L−1(p) = F−1(G(p)), making 1−G(p) the probability of sale.

�ese observations give us the following proposition:

Proposition 1. In the one-period model, a maxmin optimal pricing strategy is to charge a determin-
istic price p∗ that solves the following maximization problem:

p∗ ∈ argmax
p

p(1−G(p)). (1)

We call p∗ the one-period maxmin optimal price and similarly Π∗ = p∗(1−G(p∗)) the one-period
maxmin pro�t.

�e optimization problem (1) is exactly analogous to the seller’s problem under known values. If
the buyer knew her value, the seller would maximize p(1−F (p)). In our se�ing with informational
uncertainty, the di�erence is that the pressed distribution G takes the place of F . Our analysis in
the next section reveals how this analogy can be extended to the dynamic model.

�e following example illustrates our transformation:

Example 1. Let v ∼ Uniform[0,1], so that G(p) = min{2p, 1}. �en p∗ = 1
4
and Π∗ = 1

8
. With

only one period to sell the object, the seller charges a deterministic price 1
4
. In response, nature chooses

an information structure that tells the buyer whether or not v > 1
2
.

We mention that there are other information structures that induce the same worst-case pro�t for
the seller. For instance, nature can fully reveal the value when it is above the threshold 1

2
, since such a

buyer will purchase in any event.

In this example, relative to the known-values case, the seller charges a lower price and obtains
a lower pro�t under informational uncertainty. �e following proposition shows this comparison
is general:
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Proposition 2. For any distribution F , let p̂ be an optimal monopoly price under known values:

p̂ ∈ argmax
p

p(1− F (p)), (2)

and let Π̂ = p̂(1− F (p̂)) be the corresponding pro�t. �en any maxmin optimal price p∗ satis�es
p∗ ≤ p̂, and the maxmin pro�t satis�es Π∗ ≤ Π̂. Equality holds only if p∗ = p̂ = v.

Appealing to the “F -to-G transformation” allows us to derive further results on how the
seller’s maxmin pro�t varies with the prior distribution. Intuitively, greater variation in the prior
value distribution gives rise to greater uncertainty about what the buyer may learn. We would
thus expect that under the robust objective, the seller is worse o� if F decreases with respect to
second-order stochastic dominance. In Online Appendix D, we show this is indeed the case by
demonstrating that second-order stochastic dominance in F is equivalent to �rst-order stochastic
dominance in the pressed distribution G (Lemma 7).

4. MAIN RESULTS

With multiple periods, the following is our main result:

�eorem 1. �e seller’s maxmin optimal pro�t is Π∗, given any selling horizon T and discount
factor δ. �is maxmin pro�t is achievable by a constant price path of p∗ charged in every period.

As we saw through the example in Section 1.1, if the seller knew the information process,
he would want to adapt his pricing strategy to this particular process, in order to facilitate price
discrimination. Nonetheless, optimal prices for a �xed information process could increase or
decrease over time, depending on how one speci�es the process.

In contrast, �eorem 1 suggests that when facing uncertainty over buyer learning and adopting
a robust objective, the seller is best o� commi�ing to the simple strategy of a constant price. �us,
by using the robust approach, we are able to restore the benchmark prediction of optimal constant
pricing (Stokey (1979)) in a se�ing with buyer learning.

�e underlying mechanism for our result is more involved than the case of known values.
Indeed, information arrival may cause a buyer to delay purchase when facing a constant price
path—but we show this does not occur in the worst case. One may worry that constant price
paths perform well because they guard against some contrived information processes. As we
explain later in this section, this is not a concern for our problem. Our result is unchanged so
long as the seller seeks robustness against the intuitive class of “threshold information processes.”
Finally, while we believe it is of theoretical interest to generalize the classic result of Stokey (1979),
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perhaps more important are the assumptions that give rise to it.17 In this sense, our constant price
path result provides a benchmark to understand if and when restrictions on the informational
environment can lead to price dynamics. Later in Section 6, we present some results of this form,
where dynamic pricing out-performs constant pricing.

4.1. Proof Sketch of �eorem 1

Here we outline the arguments we use to prove �eorem 1; the detailed proofs can be found
in Appendix A. Our proof separately establishes a lower-bound and an upper-bound on the
seller’s pro�t guarantee. For the lower-bound, we argue that by using a constant price path,
the seller obtains at least Π∗ from the buyer under any information process. �is follows from
our Replacement Lemma, which shows that for non-decreasing prices, any dynamic information
structure can be replaced with a static one while weakly lowering pro�t. We then demonstrate a
matching upper-bound: No ma�er how the seller sets prices, nature can hold pro�t to at most
Π∗. �is part of the argument takes advantage of the intuition from the one-period analysis and
generalizes the threshold information structure appropriately to the dynamic se�ing.

Note that the upper-bound is by itself su�cient to imply that the seller’s maxmin pro�t is Π∗,
since he can choose to sell only in the �rst period and achieve the lower-bound. In fact, by Lemma
1 below, any increasing price path with p1 = p∗ would guarantee this pro�t. But the constant
price path of p∗ has an additional advantage of being stationary and thus robust to the possibility
of multiple buyers arriving over time. In Appendix A.3.4, we establish the unique optimality of
constant pricing in such an environment.

Below we provide some details of the two parts of our proof, respectively.

4.1.1. Lower-bound

Under known values, a buyer facing a constant price path would buy immediately or never, due
to impatience. In contrast, the promise of future information in our se�ing may induce the buyer
to delay, even with constant prices. A priori, such delay may hurt the seller’s pro�t. Nonetheless,
in the following lemma, we show that against a non-decreasing price path (among others), nature
cannot hurt the seller more than providing information only in the �rst period.

Lemma 1 (Replacement Lemma). Suppose that the seller uses a deterministic price path (pt)
T
t=1

satisfying p1 ≤ pt,∀t. �en the seller’s pro�t is minimized by an information structure that only
provides information in the �rst period.

17Although our main model does not nest the known-values se�ing, we present in Section 4.2 an extension that
embeds our main model as well as known values. A constant price path remains optimal in that extension, thereby
generalizing both Stokey’s result and �eorem 1.
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We call this result the “Replacement Lemma” because it shows that when prices increase over
time, any dynamic information structure can be replaced with a static information structure that
weakly decreases the seller’s pro�t. Since delay does not occur under a static information structure
and a non-decreasing price path, our previous one-period analysis shows that the seller obtains
pro�t at least p1(1−G(p1)), which equals Π∗ when choosing p1 = p∗. We note that the no-dealy
result is straightforward in se�ings without buyer learning (Stokey (1979), Riley and Zeckhauser
(1983)), where delayed purchase at the same price can only hurt the buyer due to discounting. In
our se�ing, a speci�c information arrival process can encourage delay even under constant prices.
But with a rich set of possible information arrival processes, our analysis shows that assuming
no-delay is without loss for understanding the range of payo� outcomes that can arise.

To construct such a replacement, we view the original dynamic information structure as
providing recommendations to the buyer to purchase or not at di�erent times. Whenever she was
recommended to purchase in period t, in the replacement information structure we have nature
recommend that she purchase in period 1 with probability δt−1. In other words, we “push and
discount” nature’s recommendation to period 1. �e key technical step is to show that the buyer
is still willing to follow nature’s recommendation; we do this by using her incentive compatibility
under the original information structure.18 Once this is proved, it follows that the discounted
probability of sale is unchanged, so that pro�t decreases (since prices are higher in future periods).

Looking ahead, we mention that similar methods of replacement play an important role for
analyzing two variations of our model. See Lemma 3 and Lemma 4 in later sections.

4.1.2. Upper-bound

�e second half of the proof of �eorem 1 involves constructing information processes that hold
the seller’s pro�t to Π∗, for any given pricing strategy. We look for information processes within
the following class:

De�nition 2. Suppose the prior value distribution F is continuous.19 A (descending) threshold

18We provide an intuitive explanation. On the one hand, a buyer who is recommended to purchase in the replacement
information structure has expected value at least p1, since she was originally recommended to purchase at some
price pt ≥ p1. On the other hand, we need to show that a buyer who is recommended not to purchase has expected
value at most p1. Suppose expected buyer surplus under the original information structure was U . Since purchasing
in period 1 regardless of the signal yields surplus E[v]− p1, we have U ≥ E[v]− p1. Under the replacement, buyers
recommended to purchase face the same discounted probability of purchase (δt−1) as in the original information
structure, and the expected value conditional on purchasing is unchanged as well. Since they now pay p1 ≤ pt,
these buyers generate surplus U ′ ≥ U , implying U ′ ≥ E[v]− p1. Now observe that E[v]− p1 is the total surplus
if every buyer purchases at price p1. �us, the remaining buyers who are not recommended to purchase would
generate (weakly) negative surplus E[v]− p1−U ′ if they were to purchase at price p1. Hence it is optimal for them
to follow the recommendation and not purchase.

19In case F has atoms, we provide a generalized de�nition at the beginning of Appendix A.
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information process involves a descending sequence of (possibly randomized) thresholds x1 ≥ x2 ≥
· · · ≥ xT , where each xt is measurable with respect to realized prices p1, . . . , pt.20 Under this process,
in each period t the buyer is told whether or not v > xt.

�is generalizes the threshold information structures we introduced in Section 3, when studying
the single-period problem.

By appealing to economic intuitions for our environment, we will construct a particular
threshold information process that allows us to prove the following lemma:

Lemma 2 (Pro�t Upper-bound). For any pricing strategy, there exists a threshold information
process and a corresponding optimal stopping time that lead to pro�t ≤ Π∗.

To explain our construction, we assume for simplicity that the seller charges a deterministic
price path (pt)

T
t=1. If the buyer knew her value, then we could �nd time periods 1 ≤ t1 <

t2 < · · · ≤ T and value cuto�s wt1 > wt2 > · · · ≥ 0, such that the buyer optimally buys in
period tj whenever her value is v ∈ [wtj , wtj−1

]. Here wtj is de�ned by the indi�erence condition
wtj − ptj = δtj+1−tj · (wtj − ptj+1

), and the fact that higher-value buyers purchase earlier is the
well-known “sorting property” established for example in Stokey (1979). �is implies that under
known values, the object would be sold with probability F (wtj−1

)− F (wtj) in period tj .
In our se�ing, we �nd a threshold information process such that in period tj , the object is

sold with probability G(wtj−1
)−G(wtj); that is, where the pressed distribution G replaces F . �e

thresholds de�ning the process are given as follows: In each period tj , the buyer is told whether
or not her value is in the lowest G(wtj)-percentile, so that the threshold is xtj = L−1(wtj) (see
De�nition 1). In other periods—that is, between any period tj and tj+1—no information is revealed,
and xt = xtj at these periods. As in the one-period analysis, these thresholds are chosen to make
the buyer indi�erent between purchasing and continuing without further information. �e buyer
therefore prefers to delay purchase when her value is below the threshold, as future information
can only improve her future payo�s. On the other hand, a buyer whose value is above the threshold
does not expect to receive further information, and hence purchases immediately.21

�e above observations show that G(wtj−1
) − G(wtj) is the probability of sale in period tj .

20We thank an anonymous referee for suggesting the terminology of “threshold information.”
21We mention that the analysis is unchanged if any buyer with value above the current threshold perfectly learns

her true value, since she purchases regardless. In this sense, the threshold information process we construct is
outcome-equivalent to one where higher-value buyers discover their true values earlier.
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We can then compute the seller’s pro�t as follows:

Π =
∑
j≥1

δtj−1ptj ·
(
G(wtj−1

)−G(wtj)
)

=
∑
j≥1

(δtj−1ptj − δtj+1−1ptj+1
) · (1−G(wtj))

=
∑
j≥1

(δtj−1 − δtj+1−1)wtj · (1−G(wtj))

≤ δt1−1 · Π∗,

(3)

where we assumed T =∞ for ease of illustration. �e second line above is by Abel summation,22

the third line uses type wtj ’s indi�erence between buying in period tj or tj+1, and the last
inequality holds because wtj(1−G(wtj)) ≤ Π∗ for each j. �is proves Lemma 2 when prices are
deterministic.

To summarize, the key idea is that threshold information processes can force the same trade-o�
between later and earlier sale, just as under known values. Using the pressed distribution, nature
can set the thresholds appropriately so that lowering prices in the future leads to (su�ciently) less
sale in the current period. �us the seller does not bene�t from intertemporal price discrimination,
and the single-period optimal pro�t guarantee remains an upper-bound in the dynamic se�ing.

�is same intuition applies when prices are random, although in this case the indi�erence types
wtj will be random variables and additional care is required. Formally, we de�ne vt to be the value
type that is indi�erent (under known values) between purchasing in period t and continuing to
future periods. We then let wt = min{v1, . . . , vt} to denote the “binding indi�erence type”, so that
a buyer with known value in (wt, wt−1] would optimally purchase in period t. �us, the probability
of sale in period t under known values is given by the random variable F (wt−1)−F (wt). Similar to
the above, we construct a threshold information process with thresholds L−1(wt) = F−1(G(wt)),
and show that it yields probability of sale G(wt−1) − G(wt). �is then enables us to write the
seller’s discounted pro�t as a convex sum of one-period pro�ts, generalizing the pro�t upper-bound
in (3). Details of this proof are le� to Appendix A.

4.1.3. Worst-case is �reshold Process

Having established the lower-bound as well as the upper-bound, we have completed the proof of
�eorem 1. However, we note that the threshold information process constructed in the above

22Abel summation says that
∑
j≥1 ajbj =

∑
j≥1

(
(aj − aj+1)

∑j
i=1 bi

)
for any two sequences {aj}∞j=1, {bj}∞j=1

such that aj → 0 and
∑j
i=1 bi is bounded. We take aj = δtj−1ptj and bj = G(wtj−1

)−G(wtj ).
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upper-bound argument is just one particular process that holds pro�t below Π∗. Example 2 in
Appendix A.3.3 shows that this process does not in general deliver the worst case pro�t.

Despite this, we show below that the worst case dynamic information structure always falls
within the class of threshold processes. �is generalizes the optimality of interval persuasion
(Kolotilin (2015)) to a dynamic se�ing.

Proposition 3. Given any pricing strategy σ, there exists a (descending) threshold information
process that minimizes the seller’s pro�t.

�e basic intuition is familiar from the one-period analysis: To hurt the seller, it is best to
maximize the buyer’s expected value when she is recommended to purchase, so as to minimize
the probability of such an event. �is is achieved by providing threshold information. �at said,
accommodating dynamics introduces a new challenge since nature needs to trade o� minimizing
the probabilities of sale in di�erent periods. Our proof in the appendix gets around this issue by
replacing an arbitrary information process with a threshold one, such that the buyer’s purchase
times are stochastically later. Note that if the buyer delays purchase, incentive compatibility
requires her expected payo� to increase, but social surplus must decrease due to discounting. We
conclude that the seller’s pro�t must be lower under the threshold information process.

Proposition 3 tells us that a seller concerned about the worst case need only worry about the
simple class of threshold processes. Nonetheless, it remains challenging to solve for the exact
worst-case (threshold) information process against any given pricing strategy.23 �is is due to
di�culties with determining buyer optimal stopping under arbitrary prices and information. For
this reason, we proved the upper-bound in �eorem 1 without computing the worst-case pro�t, but
rather constructed a particular process that allows for easy computation of pro�t. Our approach
takes advantage of the analogy to the known-values problem and delineates the intuitions for
why dynamic pricing is not pro�table for the seller.

4.2. Buyer with More Informed Prior

We now illustrate how a small extension of our model fully nests both our baseline model with
complete informational uncertainty and the known-values case studied in Stokey (1979). In this
extension we strictly generalize the constant price path result from the known-values case.

Speci�cally, we augment the model from Section 2 as follows: Suppose that, at time 0 and
before the seller chooses a pricing strategy, the buyer observes a signal s drawn according to some
initial information structure H. We suppose this information structure (i.e., how s is distributed
23With non-decreasing prices, the worst case has been characterized in the Replacement Lemma. Solving for the

exact worst-case process against a decreasing price path is an open question for future work.
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given v) is common knowledge, but the seller does not observe the realization of s. �us, in this
model, the buyer begins with weakly be�er information about her value than the seller. All other
aspects of the main model are maintained, except that we allow nature to provide information
conditional on s.24

To study this extension, we let Fs be the buyer’s posterior value distribution upon observing
signal s. �e same analysis shows that for this “prior” value distribution, the worst-case static
information structure involves a threshold. Hence, if we let Gs be the pressed distribution of Fs,
we have the following result:

Proposition 1’. In the one-period model where the buyer observes initial information structureH,
the seller’s maxmin optimal price p∗H is given by:

p∗H ∈ argmax
p

p(1− E[Gs(p)]), (4)

where the expectation is taken with respect to di�erent realizations of the initial signal s.

Denote the resulting one-period optimal pro�t by Π∗H. We can generalize �eorem 1 to this
se�ing by following the same arguments as outlined in Lemma 1 and Lemma 2:

�eorem 1’. Suppose that the buyer observes initial information structure H. �en the seller’s
maxmin optimal pro�t is Π∗H, given any selling horizon T and discount factor δ. �is maxmin pro�t
is achievable by a constant price of p∗H.

We return to our main model if H is uninformative, in which case the expectation in (4) is
simply G(p). On the other hand, if the initial signal s reveals the value v perfectly, then Gs(p)

is equal to 1 if p ≥ v and 0 if p < v. In that case, E[Gs(p)] = F (p), and we return to the
known-values case of Stokey (1979) (although in this case Lemma 1 and Lemma 2 are vacuously
true).

5. PRICE-INDEPENDENT INFORMATION

Our baseline model allows nature to provide information depending on all realized prices, deliver-
ing the most pessimistic pro�t guarantee for the seller. In this section, we study optimal pricing
when information does not vary with realized prices.25 With a single period, this modi�cation
24It is equivalent to think of the initial information structureH as a constraint on nature’s information choice in our

baseline model. �at is, we can view this extension as the seller seeking robustness only against those information
processes such that the signal in period 1 is more informative thanH in the sense of Blackwell (1953).

25Ruling out price-dependence requires less caution from the seller than our baseline model, but there may be cases
where this is justi�ed. For instance, suppose the seller is con�dent that consumers will learn about the product
from product reviewers who follow the seller closely. In that case the seller may think that whether he charges 99
dollars or 89 dollars will not impact the amount of information buyers have access to.
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connects to the recent models of Roesler and Szentes (2017) and Du (2018). �e setups in these
papers di�er from our formulation, but their results imply the solution to this variant of our
one-period model (with price-independent information). We describe these papers and results in
more detail below.

We then analyze the dynamic version of this model and �nd that the seller can achieve the
optimal pro�t guarantee by randomizing over constant price paths. In particular, we establish
another version of the Replacement Lemma (Lemma 3 below), which shows that against ran-
domized constant prices, nature cannot hurt the seller more than providing information only
in period 1. �us, by charging constant prices, the seller reduces the space of uncertainty from
dynamic information processes to static information structures. Since the buyer with a �xed value
distribution (induced by the static information structure) does not delay purchase when facing a
constant price path, the seller again reduces the dynamic selling problem to a static problem.

5.1. Static Model: Relation to Roesler-Szentes (2017) and Du (2018)

�is subsection describes a variant of our one-period model in which information does not depend
on the realized price. We will also explain how this alternative model connects to the recent
papers of Roesler and Szentes (2017) and Du (2018).

Formally, consider the following zero-sum game between the seller and nature, where nature
seeks to minimize the seller’s pro�t:

• �e seller’s strategy is a distribution of prices σ ∈ ∆(P ), where P = R+.

• Nature’s strategy is an information structure, consisting of a signal set S and a function
I : V → ∆(S), where I(v) is the distribution over signals observed by the buyer with true
value v.

• Finally, the buyer observes s and p, and purchases if and only if E[v | s] > p.

�e crucial change from our main model is that nature’s choice of information structure is now
independent of the realized price p. To re�ect this, we describe the distribution over signals by the
function I : V → ∆(S), rather than I : V × P → ∆(S) as we did before.

�is price-independent version of our one-period model relates to Roesler and Szentes (2017),
who study the following interaction between a buyer and a seller. As in our model, the buyer’s
value is drawn from a commonly known prior distribution, and the buyer (as well as the seller) does
not initially know her value. But in Roesler and Szentes (2017), the buyer chooses an information
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structure, while the seller sets a pro�t-maximizing price in response to this choice.26 Finally, the
buyer observes her signal and decides whether or not to purchase. Note that in this model, the
buyer seeks to maximize her own expected payo� and there is no adversarial nature. Nonetheless,
this is connected to our maxmin framework because Roesler and Szentes (2017) show that the
“buyer-optimal information structure” also minimizes the seller’s pro�t (their Corollary 1).27

Phrased in the context of the above zero-sum game, the results of Roesler and Szentes (2017)
characterize a minimax information structure that holds the seller’s pro�t to the lowest level.
Speci�cally, the Roesler-Szentes information structure induces posterior expected values with the
following distribution:

FB
W (s) =


0 s < W

1− W
s

s ∈ [W,B)

1 s ≥ B

(5)

where W and B are numbers that depend on the prior distribution F . As Roesler and Szentes
(2017) show, these numbers are such that the posterior distribution FB

W is a mean-preserving
contraction of the prior F , and that W is smallest possible subject to this constraint (see Appendix
B.1 for further details). When nature (or the buyer) chooses this information structure, the seller’s
pro�t is bounded above by W regardless of his pricing strategy.28

On the other hand, Du (2018) shows that the seller can also guarantee pro�t W in the above
zero-sum game. �is optimal pro�t guarantee is achieved if the seller charges a random price with
the following c.d.f.:29

D(p) =


0 p < W
log p

W

log S
W

p ∈ [W,S)

1 p ≥ S

(6)

�e number W is the same as in the Roesler-Szentes information structure; the number S belongs
to the interval [W,B], and is derived in Appendix B.1.30 In Online Appendix F.3, we further show

26�ere is no need to randomize in Roesler and Szentes (2017), since the seller moves a�er the information structure is
chosen. In related work, Terstiege and Wasser (2019) consider optimal buyer information acquisition that is robust
to potentially more information provided by the seller. Condorelli and Szentes (2018) study the problem where the
buyer chooses her optimal value distribution.

27In Online Appendix F.2, we provide a related Bayesian interpretation of our model and results.
28As Roesler and Szentes (2017) point out, this posterior value distribution is the least amount of information (in

terms of SOSD) that holds pro�t below W , but it is in general not the unique one. �is will not a�ect our analysis.
29�is construction generalizes Proposition 5 in Carrasco et al. (2018), who focus on prior distributions F with binary

support.
30One di�erence from Du (2018) is that he allows the seller to use general mechanisms that prescribe allocation

probabilities based on buyer reports. However, Du (2018) observes that with a single agent, the same outcome (i.e.,
pro�le of interim purchase probabilities) can be implemented using a randomization over posted prices, which
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that the seller’s optimal strategy is unique for generic prior distributions F .

Taken together, the results from these two papers tell us that W is the seller’s maxmin pro�t
in the one-period problem with price-independent information. For future reference, we denote
W by ΠRSD, a�er the authors of those papers. It is clear that ΠRSD is weakly larger than Π∗, and
in Online Appendix F.4 we characterize when the comparison is strict.

5.2. Dynamic Model with Price-Independent Information

We now present a dynamic version of the above model with price-independent information. We
re-de�ne a dynamic information arrival process I to be a sequence of signal sets (St)

T
t=1, and

probability distributions given by It : V × St−1 → ∆(St), for all t with 1 ≤ t ≤ T .
Similar to the preceding subsection, the interaction we study is a zero-sum game between the

seller and nature:

• �e seller chooses a pricing strategy σ ∈ ∆(P T ).

• Nature chooses an information process I .

• Given σ and I , the buyer chooses an optimal stopping time.

For this model, we characterize the seller’s optimal pricing strategy and nature’s worst-case
information structure in the following theorem:

�eorem 2. Suppose that information is independent of realized prices. �e seller’s maxmin optimal
pro�t is ΠRSD, given any selling horizon T and discount factor δ. �e seller can achieve this by
randomizing over constant price paths drawn from Du’s price distribution D(p) in (6). Nature can
force this pro�t upper-bound by only providing the Roesler-Szentes information structure to the buyer
in period 1.

It is not di�cult to understand nature’s information choice. By providing the static Roesler-
Szentes information structure, nature makes the buyer “know her value” to be drawn from the
distribution FB

W . By the result of Stokey (1979), this holds pro�t below ΠRSD. �us, the upper-
bound on seller pro�t is immediate in this model, unlike in our baseline model.

�e more striking feature of �eorem 2 is that the seller can guarantee ΠRSD by randomizing
over constant price paths. �is is proved via a generalization of the earlier Replacement Lemma
in Section 4.1.1.

coincides with our formulation.
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Lemma 3 (Replacement Lemma for Randomized Constant Price Paths). Suppose that the seller
randomizes over constant price paths, while nature provides information independently of the realized
price. �en the seller’s pro�t can be minimized by an information structure that only provides
information in period 1.

�is result embeds Lemma 1 as a special case when the seller charges a deterministic constant
price. However, the “push and discount” argument we used there to �nd a replacement static
information structure does not readily extend to the current se�ing. �is is because with random
prices, nature’s recommendation in a given period is not just a binary decision to purchase or not;
rather, any signal suggests a set of prices at which the buyer should purchase. Such information
is higher-dimensional than in the deterministic case, and we need new tools to generalize the
previous argument.

To address this di�culty, for any given dynamic information structure, we seek a replacement
static information structure that induces the same discounted probability of sale conditional on
each possible price realization. In our proof of Lemma 3, we introduce the concept of “cuto� prices”
for a given price-independent information process. �ese cuto� prices are the dual notion of
“cuto� values” used in the proof of Lemma 2: �ey represent the highest prices at which the
consumer would purchase in period t, given the information up until that time and the expected
future information.

It turns out that the distribution over cuto� prices is su�cient to determine the probability of
sale given any constant price path. Speci�cally, analogous to (3), the seller’s total pro�t (conditional
on any realized price) can be wri�en as a discounted sum of one-period pro�ts from buyers whose
values are given by the cuto� prices. �erefore, the same pro�t is obtained if the buyer is simply
informed of the cuto� price at a random period, drawn according to a Geometric(δ) distribution.31

�e remaining challenge is to show that this distribution of cuto� prices can be induced as the
buyer’s posterior expected values under some static information structure. We prove this by
applying the mean-preserving spread characterization of Rothschild-Stiglitz (1970), with some
additional technical details that we explain in Appendix B.

6. PRICE DYNAMICS UNDER RESTRICTIONS ON INFORMATION PROCESSES

Our main result provides a clear prescription for a monopolist who is completely uncertain about
how consumers will learn about his product: Keep the price �xed over time at the single-period
optimum. In this section, we consider two modi�cations of our main model, where our reduction
31When the seller charges a deterministic constant price p, the cuto� price �rst exceeds p precisely in the period

when the buyer would purchase under the original dynamic information structure. �us in that special case, the
current proof reduces to the “push and discount” argument in Section 4.1.1.
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to the one-period problem fails and dynamic selling strategies become optimal in the presence
of learning. In Section 6.1, we show how declining prices out-perform constant prices when the
seller believes that learning does not occur in every period (e.g., when information is somewhat
rare). Section 6.2 shows that introductory pricing is favored when buyers with common values
arrive over time and information is publicly observed.

6.1. Infrequent Information

In our main model information can arrive in each period. Here we study a stylized variant where
T = 2 and information is constrained to only arrive in one of the two periods. Formally, we restrict
to dynamic information structures (as de�ned in Section 2.1) with either signal set S1 or S2 being
a singleton. �is captures a se�ing where information is infrequent, and learning may not occur
every period. �e following result shows that the seller can now obtain a pro�t guarantee higher
than Π∗ with a decreasing price path. As a corollary, the optimal deterministic pricing strategy
involves decreasing prices. �is result highlights that the optimality of constant price paths relies
on the seller seeking robustness against dynamic information structures.

Proposition 4. Suppose that T = 2 and that the buyer either receives information in period one or
period two, but not both. Further suppose p∗ > v. �en for any δ ∈ (0, 1), there exists a price path
p1 > p2 = p∗ that guarantees pro�t strictly greater than Π∗.

�e intuition for this proposition goes back to the upper-bound argument (Lemma 2) in Section
4.1.2. �ere we showed how nature could use a threshold information process to hold pro�t below
Π∗. Against a decreasing price path, the constructed process involved two thresholds, one in each
period. However, only one threshold is allowed in the current se�ing. If nature were to remove
the threshold in the �rst period, then the buyer would purchase at the slightly higher price p1 to
avoid the cost of discounting.32 But if nature were to remove the threshold in the second period,
then the probability of sale would jump up in that period unless p∗ = v. Either way, pro�t would
strictly exceed Π∗, suggesting that nature can only hold the seller to the single-period pro�t level
by utilizing dynamic information.

32Note that given any price, the worst-case static information structure induces the same amount of buyer surplus
as no information. So in this problem, when p1 is equal to p2, the buyer strictly prefers to purchase in period one
(without any information) than to purchase later (facing worst-case information). By continuity, the same holds for
p1 slightly larger than p2.
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6.2. Common Values and Public Information

�is subsection shows that informational interdependence across buyers can favor increasing
prices.33 To discuss this possibility, we consider here multiple buyers who arrive over time. Note
that arriving buyers by itself presents no change to our constant price path result. Indeed, constant
prices guarantee the one-period maxmin pro�t from each buyer, delivering a lower-bound on
the seller’s total pro�t. On the other hand, so long as buyer values are independent or private
information structures are allowed, nature can minimize the seller’s pro�t from each buyer
simultaneously. Under either of these assumptions, constant price paths would remain optimal.

�is argument (in particular, the pro�t upper-bound) is no longer valid if buyers share both
value and information. Below we assume that all arriving buyers have the same value for the
product, and that all information is public to the buyers. More formally, we consider the following
interaction:

• First, the seller chooses a pricing strategy σ ∈ ∆(P T )

• Next, nature chooses an information process I = (It)
T
t=1, with It : V ×St−1×P t → ∆(St).

• �e value for the object is drawn, with v ∼ F .

• One new buyer arrives in each period t = 1, 2, . . . , T . All buyers value the object at v.

• Upon arrival (and in every period until they purchase), each buyer observes pt = (p1, . . . , pt)

and st = (s1, . . . , st). In every period, any buyer who has arrived and not purchased can
either purchase or delay, with payo�s discounted by a factor δ.

• �e seller chooses the pricing strategy assuming that I minimizes total discounted pro�t.

�e key distinction from our main model is that nature is more restricted when minimizing the
seller’s pro�t. Choosing an information structure for one buyer will in�uence the pro�t obtained
from later buyers, who will observe the entire signal history.

We characterize the seller’s pro�t guarantee per buyer in the patient limit, which establishes
an interesting connection to the results in Section 5.

Proposition 5. Consider the model with common values and public signals. Let ΠC(δ, T ) be the
seller’s maxmin discounted total pro�t with discount factor δ and time horizon T . We have:

lim
δ→1,T→∞

(1− δ) · ΠC(δ, T ) = ΠRSD.

33Optimal pricing when information is conveyed across buyers has been studied using the Bayesian approach, such
as in Bose et al. (2006, 2008). A key distinction is that we allow buyers to delay purchase.
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Figure 1: Illustration of price paths. Blue is δ = 0.9; Orange is δ = 0.95.

�is pro�t can be approximated by a sequence of strictly increasing price paths.

Figure 1 illustrates the price paths we use for this approximation, in the case of a uniform prior.
Starting o� at ΠRSD, prices increase and eventually �a�en at a level that converges as δ → 1 to
the number S from (6), where S ≈ 0.715 for the uniform distribution.34

To see why Proposition 5 holds, we �rst observe that nature can provide the Roesler-Szentes
information structure in the �rst period and hold pro�t below ΠRSD per buyer. In the opposite
direction, we look for increasing price paths that guarantee close to ΠRSD. �e following analogue
of the Replacement Lemma greatly simpli�es the analysis:

Lemma 4 (Replacement Lemma for Common Values). Consider the model with common values
and public signals. Suppose that the seller uses a deterministic and increasing price path. �en total
pro�t can be minimized by an information structure that only provides information in period 1.

Lemma 4 enables us to restrict a�ention to static information structures. To complete the
proof, we adapt Du’s random price distribution (6) to construct (deterministic) price paths for
which the pro�t under any static information structure approximates the single-period pro�t
under Du’s mechanism. As a consequence, per buyer pro�t guarantee converges to ΠRSD.

34To compute this, we use equation (24) in Appendix B. �ere we show that
∫ Ŝ
0
FBW (v) dv ≤

∫ Ŝ
0
F (v) dv, with

equality at Ŝ = S. �e �rst order condition implies FBW (S) = F (S), which gives 1− W
S = S in the uniform case.

Since W ≈ 0.2037 as pointed out in Roesler and Szentes (2017), we deduce S ≈ 0.715.
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7. CONCLUSION

In this paper, we have utilized a robust approach to study optimal monopoly pricing with dynamic
information arrival. In our baseline model, the monopolist’s optimal pro�t guarantee is what he
would obtain with only a single period to sell, and a constant price path delivers this optimal
pro�t. �e lesson from our paper is thus that, when seeking robustness against a su�ciently
rich class of information arrival processes, the dynamic problem reduces to the static one, as in
the known-values case. �is provides a useful benchmark, since performing a Bayesian analysis
with general information structures would typically disallow a parsimonious result similar to our
�eorem 1 (see the example in Section 1.1). We also identify several economically meaningful
restrictions on the informational environment that would lead to gains from non-constant pricing
strategies.

Our baseline model describes se�ings where the seller shares the buyer’s prior about her value,
but does not know how her expected value will evolve over time. For the car buyer discussed in
the Introduction, this re�ects that both seller and buyer understand the overall distribution of
breakdown probabilities, but the seller faces uncertainty about what the mechanic will convey
about the buyer’s idiosyncratic situation. In some other applications, it may be a strong assumption
that the value distribution is common knowledge but information is not. To address this concern,
we have discussed how our analysis extends to sellers facing distributional uncertainty on one hand
(Online Appendix D), as well as to sellers possessing some knowledge of the buyer’s information
on the other (Section 4.2). �e la�er extension demonstrates how our constant price path result can
be seen as a strict generalization of the known-values se�ing. We hope this connection between
the Bayesian and robust modeling approaches will be further explored in future work.

We view one contribution of this paper as introducing a robust objective into a dynamic
mechanism design problem. Dynamics complicate the characterization of agent behavior, which is
essential for understanding the performance of a given mechanism across di�erent (informational)
environments. �is di�culty suggests durable-goods pricing as a natural �rst se�ing to investigate
robust dynamic mechanisms, because a buyer’s decision is simply represented by the choice of
a stopping time. But in terms of economic motivation, dynamic robustness concerns are also
present in other applications. �e techniques developed in this paper may help other researchers
further extend the robust mechanism design literature to accommodate dynamics.
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A. PROOFS FOR THE MAIN MODEL

We �rst de�ne the pressed distribution G in cases where F need not be continuous.
DEFINITION 1’. Given a percentile α ∈ (0, 1], de�ne g(α) to be the expected value of the lowest
α-percentile of the distribution F . In case F is a continuous distribution, g(α) = 1

α

∫ F−1(α)

0
v dF (v).

In general, g is continuous and weakly increasing. Extending by continuity, we de�ne g(0) = v to be
the (essential) minimum of the value distribution F .

For β ∈ [v,E[v]], de�ne G(β) = sup{α ≥ 0 : g(α) ≤ β}. We extend the domain of this inverse
function to R+ by se�ing G(β) = 0 for β < v and G(β) = 1 for β > E[v].

We note that if F does not have a mass point at v, then g(α) is strictly increasing and G(β) is
its inverse function which increases continuously. If instead F (v) = m > 0, then g(α) = v for
α ≤ m and it is strictly increasing for α > m. In that case G(β) = 0 for β < v, a�er which it
jumps tom and increases continuously to 1. �us even when F is discrete, the pressed distribution
G is continuous except possibly at v.

While intuitive, the “lowest α-percentile” of the distribution F can be formally de�ned as
follows. If there exists w such that F (w) = α, then v is in the lowest α-percentile if and only if
v ≤ w. Otherwise, there must exist w such that F (w−) < α < F (w). Let m = F (w) − F (w−)

be the mass at w, and consider a random variable Uw that is independent of the true value v and
uniformly distributed on [0,m]. �en the lowest α-percentile are those pairs (v, Uw) such that
v < w, or v = w and Uw ≤ α− F (w−).

Next, we also present a generalized de�nition of threshold processes:
DEFINITION 2’. A (descending) threshold information process involves a descending sequence of
(possibly randomized) percentiles 1 ≥ α1 ≥ α2 ≥ · · · ≥ αT ≥ 0, where each αt is measurable with
respect to realized prices p1, . . . , pt. Under this process, in each period t the buyer is told whether or
not v is in the lowest αt-percentile of the distribution F .

In case the prior distribution F has atoms, this de�nition allows nature to “break the atom” in
providing information. For example, if F is supported on two values v < v, then nature could tell
the buyer whether 1) she is among a particular half of the buyers with value v, or 2) she is either
among the other half of the buyers with value v or among those with value v.

�e rest of this appendix provides proofs for Proposition 1, Proposition 2, �eorem 1, Proposi-
tion 3 and �eorem 1’.

A.1. Proof of Proposition 1

Given a realized price p, minimum pro�t occurs when there is maximum probability of signals
that lead the buyer to have posterior expectation ≤ p. First consider the information structure I
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that tells the buyer whether her value is in the lowest G(p)-percentile or above. By de�nition of
G, the buyer’s expectation is exactly p upon learning the former. �is shows that, under I , the
buyer’s expected value is ≤ p with probability G(p).

Now we show that G(p) cannot be improved upon. To see this, note that it is without loss
of generality to consider information structures which recommend the buyer to purchase or not.
Nature chooses an information structure that minimizes the probability of “purchase.” By Lemma
1 in Kolotilin (2015), this minimum is achieved by a threshold information structure, namely by
recommending purchase for v > y and not for v ≤ y. Since the buyer’s expected value given
v ≤ y cannot be greater than p, we have y ≤ F−1(G(p)). It is then easy to see that the particular
information structure I above, which sets y = F−1(G(p)), is the worst case.

�us, for any realized price p, the seller’s minimum pro�t is p(1 − G(p)). �e proposition
follows from the seller optimizing over p. From earlier discussion, we know that G is (almost)
continuous. Hence p∗ = arg maxp p(1−G(p)) exists except when F has a mass point at v and
v > p(1−G(p)),∀p. In the la�er case (for example when F is a point-mass), the maxmin pro�t
of v is not achievable due to tie-breaking. But for any ε > 0, the seller can guarantee pro�t v − ε
by choosing p = v− ε. Our subsequent results about the dynamic model continue to hold, so long
as the seller’s max min objective is replaced with sup inf .

A.2. Proof of Proposition 2

�e pro�t comparison Π∗ ≤ Π̂ is straightforward, because nature can always provide full infor-
mation to the buyer, so that

Π∗ = p∗(1−G(p∗)) ≤ p∗(1− F (p∗)) ≤ Π̂.

Equality requires p∗ = v (otherwise G(p∗) is strictly bigger than F (p∗)), as well as p̂ = p∗

(otherwise the second inequality is strict).

�e price comparison p∗ ≤ p̂ is more di�cult to show. We �rst present the proof assuming that
the distribution F is continuous. It su�ces to show that the function p(1−G(p)) strictly decreases
when p > p̂, until it reaches zero. By taking derivatives, we need to show G(p) + pG′(p) > 1 for
p > p̂ and G(p) < 1.

From de�nition, the lowest G(p)-percentile of the distribution F has expected value p. �at is,

pG(p) =

∫ F−1(G(p))

0

v dF (v),∀p ∈ [v,E[v]]. (7)
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Di�erentiating both sides with respect to p, we obtain

G(p) + pG′(p) =
∂

∂p
(F−1(G(p))) · F−1(G(p)) · F ′(F−1(G(p))) = G′(p) · F−1(G(p)). (8)

�is enables us to write G′(p) in terms of G(p) as follows:

G′(p) =
G(p)

F−1(G(p))− p
. (9)

�us,
G(p) + pG′(p) =

G(p) · F−1(G(p))

F−1(G(p))− p
. (10)

We need to show that the RHS above is greater than 1, or that F−1(G(p)) < p
1−G(p)

whenever
p > p̂ and G(p) < 1. �is is equivalent to G(p) < F ( p

1−G(p)
), which in turn is equivalent to

p

1−G(p)
·
(

1− F
(

p

1−G(p)

))
< p. (11)

From the de�nition of p̂, we see that the LHS above is at most p̂(1− F (p̂)) ≤ p̂ < p, as we claim
to show. Moreover, when p̂ > v, the last inequality p̂(1− F (p̂)) < p̂ is strict. Tracing back the
previous arguments, we see that G(p) + pG′(p) > 1 holds even at p = p̂. In that case we would
have the strict inequality p∗ < p̂ as desired.

For a general (potentially discrete) distribution F , the pressed distribution G is not necessarily
di�erentiable, and we need to proceed more carefully. Given a price p, de�ne

x(p) = min{v : F (v) ≥ G(p)}.

�e minimum exists because the c.d.f. F is right-continuous. �is x(p) will play the role of
F−1(G(p)) in the above analysis.

Speci�cally, we now show that similar to (9), the le�-derivative of G at p is given by G(p)
x(p)−p .

Formally, consider any small positive number ε. Recall that p ·G(p) is the integral of values in the
lowest G(p)-percentile of the distribution F , and (p− ε) ·G(p− ε) is the corresponding integral
in the lowest G(p− ε)-percentile. �us the di�erence p ·G(p)− (p− ε) ·G(p− ε) is the integral of
values between the G(p− ε)- and G(p)-percentile. By the de�nition of x(p), the values between
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these two percentiles are close to x(p) as ε→ 0.35 We can thus write

p ·G(p)− (p− ε) ·G(p− ε) = (G(p)−G(p− ε)) · (x(p) + o(1)),

where o(1) is a vanishing term as ε→ 0. Rearranging, we obtain

ε ·G(p− ε) = (x(p) + o(1)− p) · (G(p)−G(p− ε))

It follows that
G(p)−G(p− ε)

ε
=

G(p− ε)
x(p) + o(1)− p

→ G(p)

x(p)− p
,

as we desire to show.
Since G(p) is le�-di�erentiable, so is the pro�t function p(1−G(p)), whose le�-derivative is

computed to be (similar to (10))

1−G(p)− pG′le�(p) = 1− G(p) · x(p)

x(p)− p
.

If we can show x(p) < p
1−G(p)

for p > p̂, then G(p)x(p) > x(p)− p and so the pro�t function has
negative le�-derivative. �is will be su�cient to imply that p(1−G(p)) is strictly decreasing for
p ≥ p̂.36 Hence p∗ ≤ p̂.

Recall that x(p) is de�ned to be the smallest v such that F (v) ≥ G(p). So in order to show
x(p) < p

1−G(p)
, we only need to show

F

((
p

1−G(p)

)
−

)
> G(p),

where the LHS represents limε→0 F ( p
1−G(p)

− ε). Similar to what we did in the continuous distri-
bution case, the above inequality can be rewri�en as

p

1−G(p)
·
(

1− F
((

p

1−G(p)

)
−

))
< p.

35From the de�nition, for any δ > 0 it holds that F (x(p)− δ) < G(p). �us for ε small, F (x(p)− δ) < G(p)− ε,
which implies that the value at theG(p−ε)-percentile is at least x(p)−δ. On the other hand, since F (x(p)) ≥ G(p),
the value at the G(p)-percentile is at most x(p).

36Indeed, it su�ces to show that the function Π(p) = p(1−G(p)) is injective and thus strictly monotone for p ≥ p̂.
�is can be proved similar to Rolle’s �eorem: Suppose for contradiction that Π(p1) = Π(p2) at some prices
p2 > p1 ≥ p̂. Since the le�-derivative at p2 is negative, Π(p2 − ε) > Π(p2) for ε small. �us the continuous
function Π has an interior maximizer on the interval [p1, p2]. But then the le�-derivative at this maximizer must be
non-negative, leading to a contradiction.
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�is holds because the LHS is the pro�t from charging p
1−G(p)

under known values. By de�nition
of p̂, the pro�t is indeed bounded above by p̂(1− F (p̂−)) ≤ p̂ < p. Finally, whenever p̂ > v we
have F (p̂−) > 0, and so the above strict inequality holds even at p = p̂. �erefore p(1− G(p))

has negative le�-derivative at p = p̂, so that p∗ is strictly smaller than p̂. �is completes the proof.

A.3. Proof of �eorem 1

As discussed in the main text, the proof consists of a lower-bound and an upper-bound. For
the lower-bound on the seller’s pro�t guarantee, we will prove Lemma 1. �is is su�cient to
imply that when the seller charges a constant price path of p∗, his pro�t is minimized by a static
information structure which induces no delay. �us by our one-period analysis, the seller can
guarantee Π∗. As for the upper-bound, we will prove Lemma 2, which directly constructs an
information process (for any pricing strategy) that holds pro�t below Π∗. We address these two
parts in turn.

A.3.1. Lower-bound: Proof of Lemma 1

Fix a dynamic information structure I and an optimal stopping time τ of the buyer. Because prices
are deterministic, the distribution of signal st in period t only depends on previous signals (and
not on prices). We can also think about the stopping time τ as a function of signal realizations.

We will construct another information structure I ′ which only reveals information in the
�rst period, and which weakly reduces the seller’s pro�t. Consider a signal set S = {sH , sL},
corresponding to the recommendation to purchase or not, respectively. To specify the distribution
of these signals conditional on the true value v, let nature draw signals s1, s2, · · · according to
the original information structure I (and conditional on v). If, along this sequence of realized
signals, the stopping time τ results in purchasing the object, let the buyer receive the signal sH
with probability δτ−1. With complementary probability and when τ = ∞, let her receive the
other signal sL. In the alternative information structure I ′, nature reveals sH or sL in the �rst
period and provides no more information a�erwards.

We claim that under I ′, the buyer receiving the signal sL has expected value at most p1. To this
end, de�ne yt = E[v | τ = t] be the buyer’s expected value when she is recommended to purchase
in period t, under the original information structure. �is de�nition applies to 1 ≤ t ≤ T as well
as t =∞, in which case y∞ is the buyer’s expected value in case she is never recommended to
purchase. Note that under the original information structure, stopping at time τ must be weakly
be�er than stopping at time 1. �us

E[v]− p1 ≤ E
[
δτ−1 · (yτ − pτ )

]
, (12)
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where the RHS expectation is taken with respect to the distribution of the stopping time τ .
Since pτ ≥ p1, simple algebra reduces (12) to the following:

E[v] ≤ E
[
δτ−1yτ + (1− δτ−1)p1

]
. (13)

Observe that E[v] = E [E[v | τ ]] = E[yτ ]. �us the above inequality implies E [(1− δτ−1) · yτ ] ≤
E[(1− δτ−1)p1]. �at is,

p1 ≥
E [(1− δτ−1) · yτ ]

E[1− δτ−1]
. (14)

�e denominator E[1− δτ−1] can be rewri�en as P[sL], which is the probability of receiving sL
under the replacement information structure I ′. On the other hand, the numerator in (14) equals

E [P[sL | τ ] · E[v | τ ]] ,

which can be further rewri�en as

E [P[sL | τ ] · E[v | sL, τ ]] ,

because sL does not provide more information about v beyond τ .
With these, the above inequality (14) states that

p1 ≥
E [P[sL | τ ] · E[v | sL, τ ]]

P[sL]
= E[v | sL] (15)

just as we claimed.
�us, under the static information structure I ′ constructed above, a buyer who receives the

signal sL has expected value at most p1, which is also less than any future price. �is buyer
does not purchase under I ′. Furthermore, a buyer observes sH only if purchasing was incentive
compatible under the original information structure; since E[v | τ = t] ≥ pt ≥ p1 for all t, we
have E[v | sH ] ≥ p1. Such a buyer purchases in the �rst period under I ′ (as there is no future
information). It follows that the probability of sale under the replacement information structure
is E[δτ−1], and the seller’s pro�t is E[δτ−1] · p1. �is is no more than E[δτ−1 · pτ ], the discounted
pro�t under the original dynamic information structure. Hence the lemma.

A.3.2. Upper-bound: Proof of Lemma 2

In the main text we sketched an argument to prove Lemma 2 for deterministic price paths. Here we
provide a formal treatment of the general case, where the pricing strategy σ may be randomized.
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For clarity, the proof is broken down into four steps.

Step 1: Cuto� values. To begin, we de�ne a set of cuto� values. In each period t, given previous
and current prices p1, . . . , pt, a buyer who knows her value to be v prefers to buy in the current
period if and only if

v − pt ≥ max
τ≥t+1

E
[
δτ−t · (v − pτ ) | p1, . . . , pt

]
, (16)

where the RHS maximizes over all stopping times that stop in the future. It is easily seen that
there exists a unique value vt such that the above inequality holds if and only if v ≥ vt.37 �us, vt
is de�ned by the equation

vt − pt = max
τ≥t+1

E
[
δτ−t · (vt − pτ ) | p1, . . . , pt

]
, (17)

and it is a random variable that depends on realized prices pt and the expected distribution of
future prices σ(· | pt).

Next, let us de�ne for each t ≥ 1

wt = min{v1, v2, . . . , vt} = min{wt−1, vt}. (18)

For notational convenience, let w0 = ∞ and w∞ = 0. wt is also a random variable, and it is
decreasing over time.

Step 2: Construction of information process. Consider the following threshold information
process I . In each period t, the buyer is told whether or not her value is in the lowest G(wt)-
percentile. Providing this information requires nature to know wt, which depends only on the
realized prices and the seller’s pricing strategy.

Step 3: Buyer behavior under this process. �e following lemma describes the buyer’s optimal
stopping decision in response to σ and I :

Lemma 5 (Optimal Stopping). For any pricing strategy σ, let the information process I be constructed
as above. �en the buyer �nds it optimal to follow nature’s recommendation: She purchases in the
�rst period when told her value is above the G(wt)-percentile (and waits otherwise).

To prove this lemma, suppose period t is the �rst time that the buyer learns her value is above
the G(wt)-percentile. �en in particular, wt < wt−1, which implies wt = vt by (18). Given this
37�is follows by observing that both sides of the inequality are strictly increasing in v, but the LHS increases faster.
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signal, the buyer knows she will receive no more information in the future (because wt decreases
over time). She also knows her value is above the G(wt)-percentile, which is greater than wt = vt

(the average value below that percentile). By the de�nition of vt, such a buyer optimally purchases
in period t.

On the other hand, suppose that in some period t the buyer learns her value is below the
G(wt)-percentile. Since wt decreases over time, this signal contains more information than all
previous signals. By the de�nition of the pressed distribution G, this buyer’s expected value is
wt ≤ vt. Such a buyer prefers to delay her purchase even without additional information in the
future; the promise of future information does not change the conclusion. Lemma 5 follows.

Step 4: Pro�t decomposition. By Lemma 5, the buyer whose true value belongs to the percentile
range (G(wt), G(wt−1)] will purchase in period t. �us, the seller’s expected discounted pro�t
can be computed as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · pt

]
.

We rely on a technical result to simplify the above expression:

Lemma 6 (Price Equals Discounted Cuto�s). Suppose wt = vt ≤ wt−1 in some period t. �en

pt = E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]

(19)

which is a discounted sum of current and expected future cuto�s.

Using Lemma 6, we can rewrite the pro�t as

Π = E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) · E

[
T−1∑
s=t

(1− δ)δs−tws + δT−twT | pt
]]

= E

[
T∑
t=1

δt−1 · (G(wt−1)−G(wt)) ·

(
T−1∑
s=t

(1− δ)δs−tws + δT−twT

)]

= E

[
T−1∑
s=1

(1− δ)δs−1ws(1−G(ws)) + δT−1wT (1−G(wT ))

]
≤ Π∗.

(20)

�e second line uses the law of iterated expectations, as well as the fact that wt−1 and wt only
depend on the realized prices pt. �e next line follows from interchanging the order of summation,
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and the last inequality is because ws(1−G(ws)) ≤ Π∗ holds for every ws.

To complete the proof of the upper-bound, it only remains to show Lemma 6.

Proof of Lemma 6. We assume that T is �nite,38 and prove the result by induction on T − t. �e
base case t = T follows from wT = vT = pT . For t < T , from (17) we can �nd an optimal stopping
time τ ≥ t+ 1 such that39

vt − pt = E[δτ−t · (vt − pτ ) | pt],

which can be rewri�en as

pt = E[(1− δτ−t)vt + δτ−tpτ | pt]. (21)

We claim that in any period s with t < s < τ , vs ≥ vt so that ws = wt = vt by (18); while in
period τ (if τ < ∞), vτ ≤ vt and wτ = vτ ≤ wτ−1. In fact, if s < τ , then the optimal stopping
time τ suggests that the buyer with value vt weakly prefers to wait than to buy in period s. �us
by de�nition of vs, it must be true that vs ≥ vt. On the other hand, in period τ the buyer with
value vt weakly prefers to buy immediately, and so vτ ≤ vt.

By these observations, if τ =∞ (meaning the buyer never buys), we have

(1− δτ−t)vt + δτ−tpτ = vt =
T−1∑
s=t

(1− δ)δs−tws + δT−twT .

And if τ ≤ T , we can apply inductive hypothesis to pτ and obtain

(1− δτ−t)vt + δτ−tpτ =
τ−1∑
s=t

(1− δ)δs−tws + E

[
T−1∑
s=τ

(1− δ)δs−tws + δT−twT | pτ
]
.

Plugging the above two equations into (21) proves Lemma 6 as well as �eorem 1.

A.3.3. Example: Pro�t Can be Even Worse

�e threshold information process in the upper-bound argument directly generalizes the one-
period construction. Despite this analogy, however, this particular process is generally not the
worst case beyond a single period. Here we provide a concrete example to illustrate:

38�e in�nite-horizon version can be proved by using �nite-horizon approximations and applying the Monotone
Convergence �eorem. We omit the technical details.

39For completeness, we de�ne p∞ = 0.
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Example 2. Let T = 2, v = 0 or 1 with equal probabilities, and δ = 1/2. Suppose the seller sets
prices to be p1 = 11/40 and p2 = 1/10. Under these prices, a buyer with value 9

20
would be indi�erent

(in the �rst period) between purchase and delay. Hence the threshold information process constructed
before Lemma 5 induces expected value 9

20
when recommending the buyer not to purchase in the �rst

period. �is information process further induces expected value p2 = 1/10 when recommending the
buyer not to purchase in the second period.

If the probability of being recommended to purchase in period t (conditional on not having bought)
is rt, we have 1

2
= r1 + 9

20
(1− r1) and 9

20
= r2 + 1

10
(1− r2) because beliefs are martingales. �us

we obtain r1 = 1
11

and r2 = 7
18
. Pro�t under this information process is

p1 ·
1

11
+ (δp2) ·

(
1− 1

11

)(
7

18

)
≈ 0.0427 < 0.0858 ≈ Π∗.

Now suppose that instead, nature were to provide no information in the �rst period and reveal the
value perfectly in the second period. Note that the buyer would be willing to delay, since

E[v]− p1 ≤ δ · P[v = 1] · (1− p2) ,

which in fact holds with equality. Under this di�erent information process, the seller’s pro�t is
therefore δ · P[v = 1] · p2 = 1

40
< 0.0427.

�e intuitive explanation for this example is that nature can promise more information (relative
to our constructed process) to the buyer in the second period. �is creates option value and induces
delay, which hurts the seller’s pro�t when price in the second period is much lower. In light of
Lemma 1, prices declining over time are crucial for such an example. Conversely, this example
also shows that the Replacement Lemma only holds with non-decreasing prices.

A.3.4. Unique Optimality with Arriving Buyers

As Lemma 1 shows, the seller can guarantee pro�t at least Π∗ from a single buyer using any
increasing price path that starts with p∗. However, a strategy involving strictly increasing prices
would not be optimal in case additional buyers were to arrive a�er period 1. To make this point
most clear, we consider here a situation in which one buyer arrives in each period, with value
independently drawn from the prior distribution F . �is buyer then learns about her value over
time according to some information process, and optimally decides when to purchase.

Note that the independent values assumption distinguishes from the model considered in
Section 6.2. Speci�cally, in the current model nature can release information to minimize the pro�t
from di�erent buyers simultaneously. It follows that the seller’s total pro�t guarantee cannot
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exceed
∑T

t=1 Π∗ · δt−1 = Π∗ · 1−δT
1−δ . On the other hand, a constant price path of p∗ makes the

environment stationary and achieves this total pro�t guarantee.
�e following result additionally shows that constant pricing is the uniquely optimal strategy

in this se�ing:

Proposition 6. Suppose p∗ = arg minp p(1−G(p)) is unique in the one-period problem. �en in
the model with one buyer arriving in each period (with independent values), the constant price path
of p∗ uniquely achieves the maxmin total pro�t Π∗ · 1−δT

1−δ .

Proof. Since nature can independently minimize the pro�t from di�erent buyers, any pricing
strategy that guarantees total pro�t Π∗ · 1−δT

1−δ must guarantee Π∗ · δt−1 from the buyer arriving
in period t, for each 1 ≤ t ≤ T . In particular, pro�t from the �rst buyer must equal Π∗. From
inequality (20) above, we see this can only occur if ws = p∗ almost surely for each s. �us by
Lemma 6, p1 = p∗ with probability one. Similar consideration for later buyers shows that the
seller must always charge p∗ to achieve the total pro�t guarantee Π∗ · 1−δT

1−δ .

We note that the assumption of p∗ being unique in the one-period problem is satis�ed for
generic distributions F . Alternatively, uniqueness is guaranteed when the function p(1−G(p)) is
strictly quasi-concave in p, which can be ensured by a regularity condition on F (see Lemma 8 in
Online Appendix D).

A.4. Proof of Proposition 3

In the proof below, we �x an arbitrary information process, and then construct a threshold process
that leads to lower pro�t. For ease of exposition, we �rst assume the prior distribution F is
continuous.
Step 1: Construction of the threshold process. To begin, we assume the original (price-
dependent) dynamic information structure simply recommends the buyer to purchase or not
conditional on the realized prices so far. �is simpli�cation is known as the “revelation principle
for information design”; see Makris and Renou (2019) for a general treatment. Given such an
information process, we de�ne for 1 ≤ t ≤ T a random variable λt, which is the probability that
the buyer is recommended to purchase in period t (λt is adapted to the realized prices pt). Also
de�ne yt to be the buyer’s expected value given this recommendation. We further de�ne λT+1 to
be the probability that the buyer is never recommended to purchase, and yT+1 to be the expected
value conditional on this event.

We then construct a threshold process with price-dependent thresholds

∞ = v0 ≥ v1 ≥ v2 ≥ · · · ≥ vT ≥ vT+1 = 0,
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such that vt depends (only) on realized prices pt, and P[vt < v ≤ vt−1] = λt for every t and every
price history pt. When the prior distribution F is continuous, the condition F (vt−1)−F (vt) = λt

can be used to choose the thresholds vt iteratively, starting from t = T + 1 to smaller t.
Let zt denote the average value conditional on v belonging to the interval (vt, vt−1], then we

have the following inequality holding for every price history pT :

T+1∑
r=t+1

λr · yr ≥
T+1∑
r=t+1

λr · zr, ∀0 ≤ t ≤ T. (22)

�is follows from a key property of threshold information structures: Given a mass
∑T+1

r=t+1 λr of
buyers, their average value is minimized when they are precisely those buyers with value less
than vt, and this average is the RHS of (22) divided by

∑T+1
r=t+1 λr.

Step 2: Buyer incentives. Using (22), we are going to show that when the buyer learns her value
is below vt, she optimally delays purchase. To see this, consider a buyer who is recommended not
to purchase in period t under the original process I . Incentive compatibility requires

E

[
T+1∑
s=t+1

λs · (ys − pt) | pt
]
≤ E

[
T∑

s=t+1

δs−tλs · (ys − ps) | pt
]
.

Rearranging, this yields

E

[
T∑

s=t+1

(1− δs−t)λsys + λT+1yT+1 | pt
]
≤ E

[
T+1∑
s=t+1

λspt −
T∑

s=t+1

δs−tλsps | pt
]
.

Observe that
∑T

s=t+1(1− δs−t)λsys + λT+1yT+1 on the LHS above can be wri�en as a positive
linear combination of the LHS of (22) for di�erent t. So we can use (22) to replace ys by zs

everywhere without changing the inequality:

E

[
T∑

s=t+1

(1− δs−t)λszs + λT+1zT+1 | pt
]
≤ E

[
T+1∑
s=t+1

λspt −
T∑

s=t+1

δs−tλsps | pt
]
.

Rearranging again gives

E

[
T+1∑
s=t+1

λs · (zs − pt) | pt
]
≤ E

[
T∑

s=t+1

δs−tλs · (zs − ps) | pt
]
.

�is shows that under the threshold process, a buyer with value below vt should not purchase in
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period t.

Step 3: Pro�t comparison. By the above analysis, the threshold process I ′ ensures that any
buyer with value in (vt, vt−1] purchases in period t or later. If she indeed purchased in period t,
expected discounted pro�t from such a buyer would be δt−1λtpt (conditional on pt). If this buyer
were to delay purchase until later, discounted pro�t would be even lower because social surplus
decreases (due to discounting) while buyer surplus could only increase.

Hence we have shown that the seller’s total expected pro�t under the threshold information
process is bounded above by E[

∑T
t=1 δ

t−1λtpt], which is what he obtains under the original
information structure. �is proves Proposition 3 when F is a continuous distribution.

To prove the result for a general distribution F , we recall De�nition 2’ at the beginning of
Appendix A, which provides a suitably generalized de�nition of threshold processes. We can
carry out essentially the same proof as above, except that in the general case we let the threshold
process inform the buyer whether or not her value is in the lowest

∑T+1
r=t+1 λr-percentile of the

distribution F . �e rest of the proof holds without change.

A.5. Proof of �eorem 1’

On one hand, the Replacement Lemma implies that when using a constant price path of p, the
seller obtains pro�t at least p(1−Gs(p)) from the buyer with initial signal realization s. �us the
seller’s expected pro�t across di�erent initial signals is at least p(1− E[Gs(p)]), which yields the
pro�t guarantee Π∗H when optimally choosing p = p∗H.

On the other hand, we can generalize Lemma 2 to show that for any pricing strategy, there
exists a collection of information processes (one for each initial signal realization) that hold
expected pro�t below Π∗H. In fact, we can follow the same steps as in the proof of Lemma 2:
In each period t, a buyer with initial signal s is told whether or not her value is in the lowest
Gs(wt)-percentile of the distribution Fs. Such a buyer purchases if and only if her value is above
this percentile. Note that the binding cuto� values wt as de�ned in (17) and (18) depend on the
pricing strategy, but do not depend on the initial signal realization.

Under this information structure, total pro�t can be computed (similar to before) as

Π = Es

[
Ep,w

[
T∑
t=1

δt−1 · (Gs(wt−1)−Gs(wt)) · pt | s

]]
.

To be precise, Ep,w in the above equation indicates that the inner conditional expectation is taken
with respect to the process of prices and cuto�s, which are independent of s (but s does a�ect
the pressed distribution Gs). �e outer expectation Es then computes the average pro�t across
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di�erent possible initial signals s.
We can use the equalities in (20) to simplify the inner expectation above, and then exchange

the order of taking expectations. �is yields

Π = Es

[
Ew

[
T−1∑
t=1

(1− δ)δt−1wt(1−Gs(wt)) + δT−1wT (1−Gs(wT )) | s

]]

= Ew

[
T−1∑
t=1

(1− δ)δt−1wt(1− Es[Gs(wt)]) + δT−1wT (1− Es[Gs(wT )])

]
.

Note that we use “t” to replace the role of “s” in the penultimate line of (20), in order to avoid
confusion with the initial signal “s.”

Since by de�nition wt(1− Es[Gs(wt)]) ≤ Π∗H holds for each wt, the last displayed equation
implies Π ≤ Π∗H, as we desire to show.

B. PROOFS FOR THE PRICE-INDEPENDENT MODEL

In this appendix, we �rst review the solution to the one-period model without price-dependence.
�e analysis follows Du (2018), although we will represent his exponential mechanism as a random
price mechanism. A�er listing several useful properties of Du’s mechanism, we will present the
proof of �eorem 2.

B.1. Properties of Du’s Mechanism

For the one-period model, Du (2018) constructs a mechanism that guarantees pro�t ΠRSD re-
gardless of the buyer’s information structure. By viewing interim allocation probabilities as a
distribution function, we can equivalently implement Du’s mechanism as a random price with the
following c.d.f.:

D(x) =


0 x < W
log x

W

log S
W

x ∈ [W,S)

1 x ≥ S

(23)

Recall from the main text that W and B are parameters for the Roesler-Szentes information
structure; see (5). In the above we have an additional parameter S, which is characterized by
S ∈ [W,B] and ∫ S

0

FB
W (v) dv =

∫ S

0

F (v) dv (24)
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where FB
W is the distribution of posterior expected values under the Roesler-Szentes worst-case

information structure. To explain where S comes from, note that the LHS in (24) must not exceed
the RHS for all S because F is a mean-preserving spread of FB

W (Rothschild and Stiglitz (1970)).
When W is smallest possible, such a constraint must bind at some S.40

For completeness, we include a quick proof that the random price p ∼ D guarantees pro�t
W = ΠRSD. Consider the one-period model in which nature chooses a distribution F̃ of the
buyer’s posterior expected values. �en the seller’s pro�t is

Π =

∫ S

W

p(1− F̃ (p)) dD(p) =
1

log S
W

∫ S

W

(1− F̃ (p)) dp ≥ 1

log S
W

(
S −W −

∫ S

0

F̃ (p) dp

)
≥ 1

log S
W

(
S −W −

∫ S

0

F (p) dp

)
=

1

log S
W

(
S −W −

∫ S

0

FB
W (p) dp

)
= W.

�e second inequality follows because F is a mean-preserving spread of F̃ . �e next equality uses
(24), and the last equality uses (5).

B.2. Proof of Lemma 3 and�eorem 2

As discussed in the main text, �eorem 2 follows from Lemma 3. So we focus on proving the
lemma. �e proof is broken down into several steps.

In this proof, we start with a general (price-independent) dynamic information structure I .
We use it to construct an information structure that only provides information to the buyer in
period 1, while delivering lower pro�t to the seller.

Step 1: Cuto� prices and purchase probabilities. By assumption, the buyer’s expected value
follows a martingale process v1, v2, . . . that is autonomous (independent of the realized constant
price). We de�ne a sequence of cuto� prices adapted to the v-process:

vt − rt = max
τ>t

E[δτ−t(vτ − rt) | v1, . . . , vt];

qt = max {r1, . . . , rt}.

In case T is �nite, we extend these de�nitions to t > T by le�ing rt = vt = vT and qt = qT .

40Since the constraint
∫ x
0
FBW (v) dv ≤

∫ x
0
F (v) dv binds at x = S, the �rst order condition gives FBW (S) = F (S).

�is implies that not only F is a mean-preserving spread of FBW , but the truncated distribution of F conditional on
v ≤ S is also a mean-preserving spread of the corresponding truncation of FBW . In other words, the Roesler-Szentes
information structure has the property that any buyer with true value v ≤ S has posterior expected value at most
S. Likewise any buyer with true value v > S has posterior expected value greater than S. �is fact is also pointed
out by Ravid, Roesler and Szentes (2019), who call S a “separating price” in their se�ing.
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�ese cuto� prices are dual concepts of cuto� values de�ned in Appendix A. In particular, sale
occurs in period t precisely when the random constant price p belongs to [qt−1, qt). Moreover,
whenever qt = rt ≥ qt−1 we have the following analogue of Lemma 6:

vt = E

[∑
s≥t

(1− δ)δs−tqs | v1, . . . , vt

]
. (25)

Step 2: Pro�t decomposition. Suppose the seller draws a random price p from some c.d.f. H .
Let

π(q) =

∫ q

0

p dH(p)

denote the one-period pro�t from a buyer whose value is q. �en we can compute total pro�t to be

Π = E

[∑
t≥1

δt−1

∫ qt

qt−1

p dH(p)

]

= E

[∑
t≥1

δt−1(π(qt)− π(qt−1))

]

= E

[∑
t≥1

(1− δ)δt−1π(qt)

]
.

Step 3: Replacement. Given the qt process from Step 1, de�ne ṽ to be the random variable
that is equal to qt with probability (1 − δ)δt−1; let F̃ be the resulting distribution of ṽ. Step 2
implies that pro�t under the dynamic information process is also the pro�t in one period facing
the value distribution F̃ . To complete the proof, it su�ces to show that F̃ is the distribution of
posterior expected values under prior F and some static information structure; this is, F is a
mean-preserving spread of F̃ (see Rothschild-Stiglitz (1970)).

To do this, observe that F is a mean-preserving spread of the distribution of v∞ = limt→∞ vt.
So it su�ces to show that the la�er distribution is a mean-preserving spread of F̃ , i.e., the
distribution of v∞ should be second-order stochastically dominated by the (suitably averaged)
distribution of qt. For each real number x, let γ be a stopping time adapted to the v-process such

42



that qγ �rst exceeds x. �en

E

[∑
t≥1

(1− δ)δt−1(qt − x)+

]
= E

[
δγ−1

∑
t≥γ

(1− δ)δt−γ(qt − x)

]
= E

[
δγ−1(vγ − x)

]
≤ E[(v∞ − x)+],

where we use y+ to denote max{y, 0}. �e �rst equality follows from the de�nition of γ and the
fact that qt increases in t. �e second equality holds by (25), which can be applied here because
qγ > x ≥ qγ−1 by de�nition of γ; note that it also trivially holds when γ =∞, meaning qT < x.
To show the last inequality, we have vγ−x ≤ (vγ−x)+ ≤ E[(v∞−x)+ | v1, . . . , vγ] by martingale
property of the v-process and convexity of the positive part function.

SinceE
[∑

t≥1(1− δ)δt−1(qt − x)+
]
≤ E[(v∞−x)+] for each x, andE

[∑
t≥1(1− δ)δt−1qt

]
=

E[v1] = E[v] by (25), we conclude SOSD as desired. Lemma 3 and �eorem 2 then follow.

C. PROOFS FOR OTHER EXTENSIONS

C.1. Proof of Proposition 4

If information only arrives once, we will show that a seller who sets prices p2 = p∗ and p1 slightly
larger than p∗ can guarantee strictly more than Π∗. �e proof considers two cases (information
either in the �rst period or second):

Case 1: Information in period one. Let F̃ denote the distribution of posterior expected values
given the static information structure. �en pro�t can be computed as

Π = p1(1− F̃ (v1)) + δp2(F̃ (v1)− F̃ (v2))

= (1− δ)v1(1− F̃ (v1)) + δv2(1− F̃ (v2)),
(26)

where v1 = p1−δp2
1−δ and v2 = p2 are the threshold values for buying in period one and period two,

respectively. Since F is a mean-preserving spread of F̃ , we have∫ x

0

F (s) ds ≥
∫ x

0

F̃ (s) ds, ∀0 ≤ x ≤ 1.

By our choice, v2 = p2 = p∗ and v1 is slightly larger than p∗. �en for all x > v1 > p∗ the above
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inequality implies a joint upper-bound on F̃ (v1) and F̃ (v2) as follows:∫ x

0

F (s) ds ≥
∫ x

0

F̃ (s) ds ≥ (v1 − p∗)F̃ (p∗) + (x− v1)F̃ (v1), (27)

where the second inequality holds by monotonicity of the c.d.f. F̃ .

In particular, let us choose x = L−1(p∗) = F−1(G(p∗)). Note that G(p∗) > 0 ensures
x > p∗ > v, so for p1 close to p∗ we indeed have v1 ∈ (p∗, x). Moreover, p∗ = 1

F (x)

∫ x
0
s dF (s)

and so ∫ x

0

F (s) ds = xF (x)−
∫ x

0

s dF (s) = xF (x)− p∗F (x) = (x− p∗)G(p∗).

Combined with (27), we deduce the following inequality:

F̃ (v1)−G(p∗) ≤ v1 − p∗

x− v1

· (G(p∗)− F̃ (p∗)). (28)

Plugging into the objective function (26), we conclude that for v1 su�ciently close to p∗ and ε > 0

su�ciently small compared to v1 − p∗ (see below), it holds that

Π = (1− δ)v1(1− F̃ (v1)) + δp∗(1− F̃ (p∗))

≥ (1− δ)p∗(1− F̃ (v1)) + δp∗(1− F̃ (p∗)) + ε

= p∗
[
1−G(p∗) + δ(G(p∗)− F̃ (p∗))− (1− δ)(F̃ (v1)−G(p∗))

]
+ ε

≥ p∗(1−G(p∗)) + ε

= Π∗ + ε.

�e inequality in the second line holds whenever ε ≤ (v1 − p∗)(1− F̃ (v1)). As v1 → p∗, we have
lim sup F̃ (v1) ≤ G(p∗) < 1 from (28). �us we are able to choose some ε > 0 (depending on v1)
that satis�es this inequality. As for the inequality in the penultimate line above, it holds because
δ

1−δ ≥
v1−p∗
x−v1 and G(p∗)− F̃ (p∗) ≥ 0, the la�er of which follows from (28) and F̃ (v1) ≥ F̃ (p∗).

Hence when information only arrives in the �rst period, the seller guarantees more than Π∗.

Case 2: Information in period two. Suppose instead that the buyer only receives a signal in
the second period. If the information structure is such that the buyer prefers to purchase in period
one, pro�t clearly increases to p1. Below we focus on the situation where information in the
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second period makes the buyer willing to delay. �en incentive compatibility requires that

E[v]− p1 ≤ δ × expected buyer surplus in period two

Since δ < 1 and p1 is slightly larger than p2, buyer surplus in period two is greater than (and
bounded away from) E[v]− p2, which is the surplus under the worst-case threshold information
structure against price p2. Since this worst-case scenario maximizes buyer surplus subject to
probability of sale being equal to 1−G(p2), we deduce that actual probability of sale in period
two must be greater than (and bounded away from) 1−G(p2).

To proceed with the analysis, we assume without loss that there is exactly one signal s in
the second period that recommends the buyer to purchase. �en we can rewrite the incentive
compatibility condition as

E[v]− p1 ≤ δ · P[s] · (E[v | s]− p2). (29)

Since the probability of sale exceeds 1−G(p2), the expected value upon seeing s is less than (and
bounded away from) the average value conditional on value above the lowest G(p2)-percentile.
�is average value is exactly E[v]−p2G(p2)

1−G(p2)
. �us for some η > 0 independent of p1, we have

E[v | s]− p2 ≤
E[v]− p2G(p2)

1−G(p2)
− η − p2 =

E[v]− p2

1−G(p2)
− η.

�erefore we have the following pro�t lower-bound:

Π = δ · P[s] · p2 ≥ (E[v]− p1) · p2

E[v | s]− p2

≥ (E[v]− p1)p2

E[v]−p2
1−G(p2)

− η
,

where the �rst inequality uses the IC constraint (29).
As p1 → p2 = p∗, the RHS above is larger than p2(1−G(p2)) = Π∗, completing the proof of

the proposition.

C.2. Proof of Proposition 5

We �rst assume the truth of the Replacement Lemma. Let F̃ denote the distribution of posterior
valuations arising from an arbitrary static information structure. �en the seller’s total pro�t
under this information structure can be wri�en as:

(1− δ) · ΠC(δ, T ) = min
F̃

T∑
t=1

(1− δ)δt−1pt · (1− F̃ (pt)), (30)
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�e RHS can be interpreted as the pro�t in the one-period problem, when the seller charges a
random price that is equal to pt with probability (1− δ)δt−1. �us, as long as the seller chooses
p1, . . . , pT such that the distribution of this random price approximates Du’s distribution D(·), he
can guarantee pro�t close to ΠRSD.

To achieve this approximation, we equate the c.d.f. at the discrete points p1, . . . , pT . �is leads
to prices de�ned by D(pt) = 1− δt, or equivalently

pt = W · (S/W )1−δt .

As δ → 1 and T → ∞, these points p1, . . . , pT are densely distributed on the interval (W,S).
Hence their distribution converges to D(·), which proves the proposition. We turn to Lemma 4.

Proof of Lemma 4. �e proof strategy is analogous to Lemma 1, with di�erence due to the interde-
pendence of information and values across buyers. More precisely, �xing any (public) dynamic
information structure I , we will replace it with another information structure I ′ that only provides
a single public signal in the �rst period. Under this replacement, each buyer a (i.e., the buyer who
arrives in period a) either purchases in period a at the price pa, or never. Since prices increase
over time, we deduce that each buyer purchases at lower prices. If we can further ensure that the
discounted probability of sale to each buyer is lower than the original information structure, then
pro�t is necessarily decreased. �e construction is broken down into several steps below.

Step 1: Stopping times and critical buyers. We �rst de�ne a family of random variables
{τ(a)}Ta=1 adapted to the process of signals under the original information structure I . Each τ(a)

denotes the optimal stopping time of buyer a, i.e., this buyer �nds it optimal to purchase in period
τ(a) given signal realizations s1, . . . , sτ(a). Note that τ(a) ≥ a, since buyer a can only purchase
starting from that period. Due to public signals, we additionally have τ(a+ 1) = τ(a) whenever
τ(a) > a; this equality captures the observation that if buyer a delays purchase, then in every
future period she faces the same problem as the next buyer a+ 1.

Given these stopping times {τ(a)}, we de�ne a “critical set” C = {j1, j2, · · · , jn, T + 1} of
buyers as follows. To begin, j1 is the �rst buyer who delays purchase (formally, j1 = min{a :

τ(a) > a}). Next, j2 is the �rst buyer a�er τ(j1) that delays purchase (i.e., j2 = min{a > τ(j1) :

τ(a) > a}). So on and so forth, until we have reached some jn such that every buyer arriving a�er
period τ(jn) purchases immediately upon arrival (along the history of signals being considered).
To simplify some of the later exposition, we include a hypothetical buyer j = T + 1 into the
critical set C , and de�ne τ(T + 1) =∞. We note that the critical buyers and their stopping times
pin down the stopping behavior of all the buyers: Speci�cally, buyers a ∈ [jm, τ(jm)) all delay
purchase to period τ(jm), whereas each buyer a ∈ [τ(jm), jm+1) purchases immediately in period
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a (this also applies to a < j1 and a ≥ τ(jn)).41

Step 2: Replacement. Now we are ready to construct the replacement information structure I ′.
We take the signal set to be S∗ = {0, 1, . . . , T}, where the signal realization s∗ = i represents
nature’s recommendation that the �rst i buyers purchase upon arrival and that other buyers do
not purchase (buyer obedience will be veri�ed later). To generate these signals, we �x the true
value v and draw any history of signals s1, . . . , sT under the original information structure. �en,
in the replacement information structure, the probabilities of di�erent signals are given by

P[s∗ = i | s1, . . . , sT ] =

δ
∑

k<m τ(jk)−jk · (1− δτ(jm)−jm), if i = jm − 1 for some jm ∈ C(s1, . . . , sT );

0, otherwise.

Step 3: Lower probability of sale. Assuming that buyers follow nature’s recommendation not
to purchase, we now show that this signal structure leads to lower discounted probability of sale
to each buyer. From the above speci�cation of probabilities, we see that for each buyer a, the
probability of receiving s∗ ≥ a is

P[s∗ ≥ a | s1, . . . , sT ] = δ
∑

k≤m τ(jk)−jk ,

where jm is the last critical buyer up to and including a. Now notice that τ(jm)− jm ≥ τ(a)− a,
because if a ∈ [jm, τ(jm)) then τ(a) = τ(jm) so the RHS is smaller, and if a ∈ [τ(jm), jm+1) then
τ(a) = a and the RHS is again smaller. Hence, the probability of receiving s∗ ≥ a is

δ
∑

k≤m τ(jk)−jk ≤ δτ(jm)−jm ≤ δτ(a)−a.

It follows that buyer a’s discounted purchase probability in the replacement information structure
is at most δa · δτ(a)−a ≤ δτ(a), which is the probability under the original information structure.

Step 4: Buyer obedience. Finally, we verify that if buyer a receives signal s∗ = i < a, then she
optimally follows nature’s recommendation not to purchase the object. �at is, we need to show
that her expected value given s∗ = i is at most pa. Since all buyers have the same expectation
(under I ′) and prices are increasing over time, it is su�cient to consider a = i+ 1. We will prove
a stronger result, that conditional on the signal s∗ = a− 1 and on any realizations s1, . . . , sa for
which s∗ is possible, expected value is at most pa. Note that once s1, . . . , sa are �xed, then so are
the critical buyers up to and including a (because whether a buyer delays purchase only depends

41As an example, suppose T = 7, and buyers’ stopping times are 2, 2, 3, 6, 6, 6, 7. �en buyers 1, 4, 8(= T + 1) are
critical.
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on past information). Without loss we assume a is critical, since otherwise s∗ = a− 1 does not
occur.

Let a = jm be a critical buyer for the �xed signal history s1, . . . , sa. �en for each k < m,
the identity of the critical buyer jk and her stopping time τ(jk) < a are �xed. Below we show
E[v | s1, . . . , sa, s

∗ = a − 1] ≤ pa. For this we follow the proof of Lemma 1 in Appendix A.
For t > a, de�ne yt = E[v | s1, . . . , sa, τ(a) = t] to be buyer a’s expected value conditional on
the history s1, . . . , sa and conditional on being recommended to purchased in period t, under
the original information structure. Since purchasing in period τ(a) is by de�nition be�er than
purchasing in period a, we have

E [v | s1, . . . , sa]− pa ≤ E
[
δτ(a)−a · (yτ(a) − pτ(a)) | s1, . . . , sa

]
.

Note that pτ(a) ≥ pa, we thus have

E [v | s1, . . . , sa]− pa ≤ E
[
δτ(a)−a · (yτ(a) − pa) | s1, . . . , sa

]
.

Rearranging and using E[v | s1, . . . , sa] = E[yτ(a) | s1, . . . , sa] (Law of Iterated Expectations), we
can obtain

pa ≥
E
[
(1− δτ(a)−a) · yτ(a) | s1, . . . , sa

]
E [1− δτ(a)−a | s1, . . . , sa]

. (31)

�is is the analogue of (14) in the current se�ing.
Now recall that a = jm is a critical buyer, and the previous critical buyers j1, . . . , jm−1 as well

as their stopping times τ(j1), . . . , τ(jm−1) are determined by the signal history s1, . . . , sa. �us,
δ
∑

k<m τ(jk)−jk is a constant once we condition on s1, . . . , sa. (31) then implies that

pa ≥
E
[
δ
∑

k<m τ(jk)−jk(1− δτ(a)−a) · yτ(a) | s1, . . . , sa
]

E
[
δ
∑

k<m τ(jk)−jk(1− δτ(a)−a) | s1, . . . , sa
] , (32)

By construction, the term δ
∑

k<m τ(jk)−jk(1−δτ(a)−a) is precisely the probability that s∗ = jm−1 =

a− 1, conditional on the entire signal history s1, . . . , sT . We can also write it as the conditional
probability P[s∗ = a − 1 | s1, . . . , sa, τ(a)], since the remaining signals sa+1, . . . , sT a�ect the
distribution of s∗ only via the stopping time τ(a).

�erefore, (32) can be rewri�en as

pa ≥
E
[
P[s∗ = a− 1 | s1, . . . , sa, τ(a)] · yτ(a) | s1, . . . , sa

]
E [P[s∗ = a− 1 | s1, . . . , sa, τ(a)] | s1, . . . , sa]

. (33)

By the Law of Iterated Expectations again, the denominator is simply the conditional probability

48



P[s∗ = a−1 | s1, . . . , sa]. On the other hand, yτ(a) in the numerator is the conditional expectation
E[v | s1, . . . , sa, τ(a)], which is also E[v | s1, . . . , sa, τ(a), s∗ = a− 1] since s∗ does not provide
additional information about v beyond s1, . . . , sa and τ(a).

So we can further rewrite (33) as

pa ≥
E [P[s∗ = a− 1 | s1, . . . , sa, τ(a)] · E[v | s1, . . . , sa, τ(a), s∗ = a− 1] | s1, . . . , sa]

P[s∗ = a− 1 | s1, . . . , sa]
.

As the denominator P[s∗ = a − 1 | s1, . . . , sa] is a constant conditional on s1, . . . , sa, we can
absorb it into the numerator:

pa ≥ E
[
P[s∗ = a− 1 | s1, . . . , sa, τ(a)]

P[s∗ = a− 1 | s1, . . . , sa]
· E[v | s1, . . . , sa, τ(a), s∗ = a− 1] | s1, . . . , sa

]
Using the identity P[s∗=a−1 | s1,...,sa,τ(a)]

P[s∗=a−1 | s1,...,sa]
= P[τ(a) | s1,...,sa,s∗=a−1]

P[τ(a) | s1,...,sa]
, we arrive at

pa ≥ E
[
P[τ(a) | s1, . . . , sa, s

∗ = a− 1]

P[τ(a) | s1, . . . , sa]
· E[v | s1, . . . , sa, τ(a), s∗ = a− 1] | s1, . . . , sa

]
We can now show that the RHS above is equal to E[v | s1, . . . , sa, s

∗ = a − 1], which will
complete the proof. Indeed, the conditional expectation on the RHS is taken with respect to the
distribution of τ(a) conditional on s1, . . . , sa. It can thus be rewri�en as

∑
t>a

P[τ(a) = t | s1, . . . , sa]·
P[τ(a) = t | s1, . . . , sa, s

∗ = a− 1]

P[τ(a) = t | s1, . . . , sa]
·E[v | s1, . . . , sa, τ(a) = t, s∗ = a−1],

which is just∑
t>a

P[τ(a) = t | s1, . . . , sa, s
∗ = a− 1] · E[v | s1, . . . , sa, τ(a) = t, s∗ = a− 1].

�is is precisely E[v | s1, . . . , sa, s
∗ = a− 1].
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Online Appendix–Not for Publication

D. DISTRIBUTIONAL UNCERTAINTY

Our main model assumes that the seller knows the prior value distribution F . �is assumption
enables us to focus on “informational uncertainty”, which in�uences how the buyer’s expected
value evolves over time and is thus relevant for the seller’s dynamic pricing strategy. However,
our results also have implications for sellers who additionally face “distributional uncertainty”,
i.e., uncertainty about the distribution F . We discuss this extension below.

Formally, we consider here a seller who thinks the prior distribution F is chosen (by nature)
from a family of distributions F . �e buyer knows F to begin with, but can potentially receive
more information about her value via some process I , just as in our main model. �e seller
commits to a pricing strategy to maximize his worst-case pro�t, where the worst case is evaluated
with respect to all possible priors F ∈ F and all information processes I .

A special case of such a model is when F is the set of all distributions supported on an interval
[a, b], with a given mean µ ∈ (a, b). Let F0 be the distribution supported on the two extreme
values a, b, with mean µ. �en any distribution F ∈ F is a mean-preserving contraction of F0,
which means that F can be thought of as the distribution of posterior expected values under the
prior F0 and some static information structure. As a result, nature could replicate the choice of
any prior F by choosing F0 as the prior, and providing this information structure in period 1. �is
suggests that F0 is the worst-case prior distribution for the seller (intuitively because it leaves the
most amount of residual uncertainty). Given that the prior is now “�xed,” we can apply the results
for our main model to argue that a constant price path is the seller’s robustly optimal strategy.

In general, we have the following result:

Proposition 7. Suppose there exists a possible prior distribution F0 ∈ F and a price p0 with the
following properties:

1. p0 ∈ arg maxp p(1−G0(p)), where G0 is the pressed distribution of F0;

2. G0(p0) ≥ G(p0) for the pressed distribution G of any other F ∈ F .

�en the seller’s robustly optimal strategy is a constant price path of p0, with pro�t guarantee
Π0 = p0(1−G0(p0)).

Proof. Clearly, the seller cannot guarantee more than Π0 because nature can always choose
F0 as the prior. It thus remains to show that always charging p0 guarantees pro�t Π0 even
when nature can choose any distribution F ∈ F . �is follows from the Replacement Lemma

1



(Lemma 1), which implies that for any prior F ∈ F , a constant price path of p0 guarantees pro�t
p0(1−G(p0)) ≥ p0(1−G0(p0)) = Π0.

We can view nature’s choice of the prior distribution and the seller’s price as their respective
strategies in a zero-sum game. From this perspective, the two conditions in Proposition 7 together
imply that F0 and p0 constitute a saddle point of this game. In what follows, we demonstrate
su�cient conditions on the set F to guarantee the existence of a saddle point.

D.1. Su�cient Condition for Proposition 7: SOSD

First, we generalize the example before Proposition 7 to show that if F0 ∈ F is second-order
stochastically dominated by every F ∈ F , then F0 is the worst-case prior distribution. Intuitively,
when F0 �SOSD F , it can be obtained from F by moving toward lower values and/or mean-
preserving spreads. In the former case, F0 is concentrated on lower values compared to F , and is
thus a worse value distribution for pro�t. In the la�er case, F0 is a mean-preserving spread of F ,
which is also worse for pro�t in the presence of informational uncertainty as we discussed before.

�eorem 3. Suppose there exists a possible prior distribution F0 such that F0 �SOSD F holds for
every F ∈ F . Let G0 be the pressed distribution of F0. �en the seller’s robustly optimal strategy is a
constant price path of p0 ∈ arg maxp p(1−G0(p)), with pro�t guarantee Π0 = p0(1−G0(p0)).

�e formal proof follows from Proposition 7 and the lemma below, which relates second-order
stochastic dominance between two prior distributions to �rst-order stochastic dominance between
their pressed distributions. A version of this lemma appears as �eorem 2 in Ma and Wong (2010).

Lemma 7. F0 �SOSD F if and only if their pressed distributions satisfy G0 �FOSD G, i.e., G(p) ≤
G0(p),∀p.

Proof. We present the proof assuming that F and F0 are bounded continuous distributions; the
general case follows from an approximation argument. We will show that F dominates F0 in
SOSD if and only if for each t ∈ (0, 1], the expected value of the lowest t-percentile under F is
weakly higher than under F0, which is in turn equivalent to the statement that G(p) ≤ G0(p) for
every p.

In one direction, suppose F0 �SOSD F , then for each y ∈ R,∫ y

−∞
F (x) dx ≤

∫ y

−∞
F0(x) dx. (34)
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What we need to show is that for each t ∈ [0, 1],∫ t

0

F−1(q) dq ≥
∫ t

0

F−1
0 (q) dq. (35)

�is inequality clearly holds at t = 0, where both sides are 0. It also holds at t = 1, where the
two sides are the unconditional expectations of F and F0 respectively (E[F ] is higher because F
is be�er in SOSD). �us we just need to check interior extreme points t. By di�erentiating (35)
with respect to t, we only need to consider those t where F−1(t) = F−1

0 (t), which we denote by
y. �en, the LHS of (35) becomes∫ F (y)

0

F−1(q) dq =

∫ y

−∞
x dF (x) = yF (y)−

∫ y

−∞
F (x) dx = yt−

∫ y

−∞
F (x) dx.

Similarly the RHS of (35) is
yt−

∫ y

−∞
F0(x) dx.

Hence (35) follows directly from (34).
Conversely, suppose (35) holds and we want to deduce (34). Note that (34) holds for y → −∞,

where both sides are 0. It also holds for y →∞, where the di�erence between the RHS and LHS
of (35) is E[F ]− E[F0], which is positive because (35) holds at t = 1. �us again we only need to
check interior extreme points, which satisfy F (y) = F0(y). Denoting this common percentile by
t, we can then reverse the above calculation and deduce (34) from (35).

D.2. Another Su�cient Condition for Proposition 7: Regularity

In cases where there does not exist a distribution F0 that is worst in terms of SOSD, the following
result provides a di�erent su�cient condition for Proposition 7 to apply. We make use of Sion’s
minimax theorem to deduce that under certain assumptions, nature has a minmax prior distribution,
whereas the seller has a maxmin price.

�eorem 4. Suppose that the set of possible priors F has the following properties:

• �ere exists v <∞ such that each F ∈ F is supported on [0, v] and admits a density f ;

• F is closed with respect to the weak-∗ topology, and convex with respect to mixture;

• For each F ∈ F and its pressed distribution G, the function p(1−G(p)) is quasi-concave (i.e.,
single-peaked) in p for p ≥ 0.
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�en there exists F0 ∈ F and p0 ≥ 0 that satisfy the two conditions in Proposition 7. �e seller’s
robustly optimal strategy is a constant price path of p0, with pro�t guarantee Π0 = p0(1−G0(p0)).

�e quasi-concavity of p(1−G(p)) is characterized in the following lemma:

Lemma 8. Given F with density f and its pressed distribution G. �e function p(1 − G(p)) is
quasi-concave if and only if the function

∫ x
0
F (t)dt− xF 2(x) crosses zero exactly once or at a single

interval of points, from the above.
A su�cient condition is that 2t− 1−F (t)

f(t)
increases in t (weaker than the usual regularity condition).

Below we prove the lemma and the theorem in turn.

Proof of Lemma 8. Let x = L−1(p) be the value type below which the expected value is p. Since we
are concerned with quasi-concavity, we can equivalently write pro�t as a function of x. Speci�cally,

Π(x) = p · (1−G(p)) =

∫ x
0
tf(t) dt

F (x)
· (1− F (x)) =

∫ x
0
tf(t) dt

F (x)
−
∫ x

0

tf(t) dt.

Taking the derivative, we obtain

Π′(x) =
xf(x)F (x)− f(x)

∫ x
0
tf(t) dt

F 2(x)
− xf(x)

=
f(x)

F 2(x)
·
(
xF (x)−

∫ x

0

tf(t) dt− xF 2(x)

)
=

f(x)

F 2(x)
·
(∫ x

0

F (t) dt− xF 2(x)

)
.

�us, Π is quasi-concave/single-peaked in x if and only if Π′(x) is �rst positive then negative,
which is in turn equivalent to the statement that

∫ x
0
F (t)dt− xF 2(x) crosses zero exactly once,

from the above.
As for the su�cient condition, we can derive it by writing∫ x

0

F (t) dt− xF 2(x) =

∫ x

0

F (t) · (1− F (t)− 2tf(t)) dt.

If 1−F (t)
f(t)

− 2t is decreasing in t, then it is �rst positive then negative. �is implies the entire
integrand

h(t) := F (t)(1− F (t)− 2tf(t)) = F (t) · f(t) ·
(

1− F (t)

f(t)
− 2t

)
is �rst positive then negative. Hence so is the function

∫ x
0
h(t) dt, as we desire to show.
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Proof of �eorem 4. Each distribution F ∈ F can be viewed as a continuous c.d.f. on [0, v]. So
the set F is a subset of the topological vector space of continuous functions on [0, v], equipped
with the sup norm.42 By assumption F is convex. F is also compact because for any sequence
{Fn} ⊂ F , there is a subsequence that converges weakly to some distribution F (since the space
of probability distributions on an interval is weak-∗ compact). SinceF is weak-∗ closed, the limit F
belongs to F . As Fn converges weakly to the continuous distribution F , the c.d.f. of Fn converges
in the sup norm to F .43 Hence F is a compact convex subset of a topological vector space.

Now, for each F ∈ F and p ∈ [0, v], de�ne the (minimum) pro�t function

Π(F, p) = p(1−GF (p)),

where GF is the pressed distribution of F . For �xed F , this function is clearly continuous in p
and also quasi-concave by assumption. For �xed p, this function is continuous and quasi-convex
in F , as we show below. �us, we can apply Sion’s minimax theorem to deduce that

min
F∈F

max
p∈[0,v]

Π(F, p) = max
p∈[0,v]

min
F∈F

Π(F, p).

Let this maxmin/minmax pro�t be Π0, then there exists F0 ∈ F such that Π(F0, p) ≤ Π0 for all
p, and there exists p0 such that Π(F, p0) ≥ Π0 for all F ∈ F . Hence Π(F0, p0) = Π0 and the
pair (F0, p0) constitutes a saddle point. �at precisely implies p0 ∈ arg maxp p(1−G0(p)), and
G0(p0) ≥ G(p0) for any other pressed distribution G of any F ∈ F , as we desire to show.

It remains to verify the continuity and quasi-convexity of Π(F, p) as a function of F . For
quasi-convexity, we need to show that for any q, λ ∈ [0, 1], if GF1(p), GF2(p) ≥ q (so that
Π(F1, p),Π(F2, p) ≤ p(1 − q)), then GF (p) ≥ q also holds for the mixture distribution F =

λF1 + (1− λ)F2. By de�nition, the lowest GF1(p)-percentile of the distribution F1 has expected
value p. �us the condition GF1(p) ≥ q tells us that the lowest q-percentile of F1 has expected
value at most p, and the same holds for the distribution F2. By mixing the lowest q-percentile from
F1 with that from F2, we know that in the distribution F , some fraction q of types has expected
value at most p. Hence, the lowest q-percentile of F has expected value at most p, which then
implies that GF (p) ≥ q.

As for continuity, we need to show that if Fn → F in the sup norm, then GFn(p)→ GF (p)

42We restrict to continuous distributions so that the space of c.d.f. can be embedded in a topological vector space.
43�e argument is as follows: For each ε > 0, uniform continuity of F allows us to choose δ ≤ ε such that
|F (x)− F (y)| ≤ ε whenever |x− y| ≤ δ. Next, recall that weak convergence is equivalent to convergence in the
Lévy metric. �us for this δ, there exists N such that F (x− δ)− δ ≤ Fn(x) ≤ F (x+ δ) + δ for all x and n ≥ N .
It follows that Fn(x) ≤ F (x + δ) + δ ≤ F (x) + ε + δ ≤ F (x) + 2ε, and similarly Fn(x) ≥ F (x) − 2ε for all x
and n ≥ N . Hence Fn → F uniformly.
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for each p. We �rst show GF (p) ≥ lim supn→∞GFn(p). By passing to a subsequence, it su�ces
to show that for any α > 0, if each GFn(p) ≥ α then GF (p) ≥ α also holds. Speci�cally, the
condition GFn(p) ≥ α implies the lowest α-percentile of each Fn has expected value at most p.
�at is, ∫ F−1

n (α)

0

x dFn(x) ≤ αp.

Applying integration by parts to the LHS, we obtain

∫ F−1
n (α)

0

(α− Fn(x)) dx ≤ αp.

Fixing any ε > 0, then uniform convergence of Fn to F gives Fn(x) ≤ F (x) + ε for all large n
and all x. Moreover, for large n we have F−1

n (α) ≥ F−1(α− ε). �us, the preceding inequality
implies ∫ F−1(α−ε)

0

(α− ε− F (x)) dx ≤ αp.

Applying integration by parts again, we deduce for large n∫ F−1(α−ε)

0

x dF (x) ≤ αp.

Le�ing ε→ 0 we thus conclude that the lowest α-percentile of F has expected value at most p, so
that GF (p) ≥ α as desired.

A completely symmetric argument shows GF (p) ≤ lim infn→∞GFn(p). Hence the pro�t
function Π(F, p) is continuous in F , �nishing the proof.

E. BUYER UNCERTAINTY

One may wonder why the buyer in our model is so much be�er informed than the seller. In
particular, this issue may appear more salient in our dynamic se�ing (than models of robust static
mechanism design), since we have assumed that the buyer knows all future information structures.

Allowing for the buyer to face non-Bayesian uncertainty over information arrival leads to
technical di�culties related to how these beliefs update over time. Developing a general theory of
dynamic non-Bayesian updating is beyond the scope of this paper. However, we make two simple
observations regarding how our results would change if the buyer herself could face uncertainty
over the information process, evaluating her surplus assuming the worst-case information process.
For illustration, we focus on a �nite horizon T and deterministic price paths throughout.

Our �rst observation is that, without any restriction on how much uncertainty the buyer
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faces, nature can hold the seller down to zero pro�t. Intuitively, if the buyer only observes signal
realizations but does not understand the information structure generating these realizations, then
she could always expect her value to be low in the worst case. For a speci�c example, suppose
that nature can choose one of two possible information structures in each period t. One of these
information structures generates realization st = 1 if v ≥ pt and st = 0 otherwise, while the
other information structure generates st = 0 if v ≥ pt and st = 1 otherwise. Faced with such
uncertainty, the buyer receiving any realized st expects her value to be below pt in the worst case,
and thus does not purchase.

To rule out such a situation, we next consider a natural restriction on buyer uncertainty,
imposing that at each period t, the buyer knows the information structure in that period even
though she faces uncertainty over future information. Speci�cally, given the seller’s prices, the
interaction consists of the following:

• Nature chooses an information process I = (It)
T
t=1 with It : V × St−1 → ∆(St) for each t.

�is is not known to the buyer.

• �e buyer’s value is drawn, with v ∼ F .

• In each period t, the buyer learns the information structure It in that period that maps
V × St−1 to ∆(St), and also observes a signal realization st.

• Based on the history of information structures and signal realizations, the buyer forms a
Bayesian posterior about her value.

• Given her belief, the buyer decides whether or not to purchase in period t at the price pt,
assuming that if she does not purchase, future information structures will be worst possible
for her expected payo�.

We assume the buyer is sophisticated; that is, she knows that if she does not purchase in period t,
her period t+ 1 self will again assume the worst information structure for the future and expect
the period t+ 2 self to behave in the same way, so on and so forth.

As we show below, the buyer’s optimal behavior under any information process can be
determined by backward induction. Given this, the seller chooses prices to maximize his worst-
case pro�t across di�erent information processes.

Lemma 9. Suppose the buyer faces uncertainty about future information structures and is sophis-
ticated. Given any sequence of prices p1, . . . , pT and any (partial) history of signals s1, . . . , st, the
buyer optimally purchases in period t if and only if

E[v | s1, . . . , st]− pt > δτ−t (E[v | s1, . . . , st]− pτ ) , ∀τ ∈ {t+ 1, . . . , T,∞}, (36)
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where the RHS is interpreted to be 0 for τ =∞.

Proof. We prove this by backward induction. �e case where t = T is straightforward, as in this
case the buyer purchases if and only if her expected value exceeds pT . �is is precisely (36).

Suppose we have proved the result for any t′ > t. Going backwards to period t, there are two
cases to consider:

Case 1: (36) holds. Let vt = E[v | s1, . . . , st], then (36) becomes

vt − pt > δτ−t (vt − pτ ) , ∀τ ∈ {t+ 1, . . . , T,∞},

In this case we want to show that the buyer should purchase in period t. Indeed, if she does not
purchase, then she thinks it is possible for nature to provide no information in the future. Under this
particular information process, her future self will purchase in some period t′ ∈ {t+ 1, . . . , T,∞},
where t′ = ∞ indicates none of her future selves purchases.44 �us from period t buyer’s
perspective, her expected payo� from continuing into the future is δt′−t(vt − pt′) under this
process, which by assumption is smaller than vt − pt. Hence the worst-case payo� from delaying
purchase is worse than the payo� from purchasing in period t.

Case 1: (36) does not hold. We continue to use vt to denote the buyer’s expected value in period
t, then in this case we have the opposite inequality

vt − pt ≤ max
τ>t

δτ−t (vt − pτ ) .

We will show that the buyer should not purchase in period t. Speci�cally, we show that from period
t buyer’s perspective, her expected payo� from delaying purchase is at least vt − pt under any
future information process, so long as her future selves will act according to induction hypothesis.
For this, we claim a stronger result that given the behavior of future selves, expected payo� from
delaying purchase is at least maxτ>t δ

τ−t(vt − pτ ), under any future information process.
�is stronger claim can be proved by another backward induction. Suppose it holds for t+ 1.

In the case of period t, we �x an information process that starts in period t+ 1, and de�ne vt+1

to be the buyer’s expected value in period t+ 1, under this process. If the signal in period t+ 1

is su�ciently positive that vt+1 − pt+1 > δτ−t−1(vt+1 − pτ ) for all τ > t + 1, then the period
t + 1 buyer optimally purchases in that period. Expected payo� discounted to period t + 1 is
thus vt+1 − pt+1 = maxτ>t δ

τ−t−1(vt+1 − pτ ). Otherwise, the buyer delays purchase, which also
yields expected payo� at least maxτ>t+1 δ

τ−t−1(vt+1 − pτ ) = maxτ>t δ
τ−t−1(vt+1 − pτ ), by the

induction hypothesis.
44Given our induction hypothesis, this t′ is the �rst period a�er t such that vt − pt′ > δτ−t(vt − pτ ), ∀τ ∈
{t′ + 1, . . . , T,∞}. But this is not important for our argument.
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Hence, under any information process, expected payo� discounted to period t+ 1 is at least
maxτ>t δ

τ−t−1(vt+1 − pτ ). It follows that expected payo� from period t perspective is at least

δ · E
[
max
τ>t

δτ−t−1(vt+1 − pτ )
]
≥ δ ·max

τ>t
E
[
δτ−t−1(vt+1 − pτ )

]
= max

τ>t
δτ−t(vt − pτ ).

�is proves the above claim as well as the whole lemma.

We can use this lemma to show that our main result is unchanged in this model with buyer
uncertainty (about future information).

Proposition 8. Under the same assumption as the preceding lemma, a constant price path of p∗

achieves the seller’s optimal pro�t guarantee of Π∗.

Proof. On one hand, with a constant price path of p∗, the seller ensures that the uncertainty-averse
buyer only purchases in period 1 (because she anticipates no information in any future period).
�us, by our one-period analysis, the resulting pro�t is at least Π∗.45

On the other hand, we can use the same construction as in Lemma 2 to show that the seller
cannot get higher pro�t in the worst case. Speci�cally, recall the information process constructed
in the proof of Lemma 2. For the buyer who is told her value is below the current price-dependent
threshold G(wtj), her expected value makes her indi�erent between purchasing now and con-
tinuing without further information. Since no future information is the worst case with buyer
uncertainty, it is optimal for such a buyer to delay purchase just as in our main model. Similarly,
for the buyer whose value is above G(wtj), she should purchase in the current period regardless of
her true value, which remains true even with uncertainty. �us under this information process, the
distribution of purchase times of an uncertainty-averse buyer is no di�erent from our main model.
Hence the seller’s pro�t is also the same, which is bounded above by Π∗ as we have shown.

F. OTHER RESULTS

F.1. Known Information Arrival Process

�is appendix walks through details of the example in Section 1.1. Suppose the prior F is such
that P[v = 4] = 1

4
, P[v = 3] = 1

2
and P[v = 0] = 1

4
.

Case 1: Buyer learns whether or not v = 4 in period 1, and learns v in period 2. A buyer
who learns v 6= 4 has expected value for the object equal to 2. So in order to sell to such a buyer
45Note that buyer uncertainty simpli�es this part of the argument, which used to require the Replacement Lemma in

our main model.
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in period 1, the seller’s price is at most 2 in the �rst period. �e highest pro�t under such a selling
strategy is 2.

Suppose instead that the seller sets prices so that a buyer with v 6= 4 does not purchase in
period 1. �en, either the seller gives up selling to such buyers altogether, or his second period
price is at most 3 in order to sell to a buyer with v = 3. In the former case, pro�t comes only
from the buyer with v = 4 and is thus bounded above by 1

4
· 4 = 1. In the la�er case, pro�t from

the buyer with v = 4 is bounded above by 1
4
· (4− δ), where 4− δ is the highest price that can

be charged in period 1 such that this buyer does not delay (since delaying gives expected payo�
δ · (4− p2) ≥ δ). Combined with the observation that pro�t from the buyer with v = 3 is at most
δ · 1

2
· 3 = 3δ

2
, we conclude that total pro�t under this strategy is at most 1

4
· (4− δ) + 3

2
δ = 1 + 5

4
δ.

�e optimal pro�t is thus max{2, 1 + 5
4
δ}, and which strategy (p1 = 2, p2 ≥ 3 versus p1 =

4− δ, p2 = 3) is be�er depends precisely on whether or not δ ≤ 4
5
.

Case 2: Buyer learns whether or not v = 3 in period 1, and learns v in period 2. In this
case, the seller can again obtain pro�t 2 by selling to everyone at a price of 2 in the �rst period
(since a buyer who knows v 6= 3 has expected value 2).

Alternatively, the seller does not sell to a buyer with v 6= 3 in the �rst period. In this
case the prices p1 = 3, p2 = 4 leave the buyer with no surplus, and generate maximal pro�t
1
2
· 3 + δ · 1

4
· 4 = 3

2
+ δ. �is la�er strategy is be�er precisely when δ > 1

2
, as described in the

Introduction.

Maxmin optimal price and pro�t. Next, we compute theG transformation from the distribution
F , where F (v) = 1

4
for v ∈ [0, 3), F (v) = 3

4
for v ∈ [3, 4), and F (v) = 1 for v ≥ 4. Following

De�nition 1’ at the beginning of Appendix A, we compute:

g(α) =


0 α ≤ 1

4
3(α− 1

4
)

α
1
4
< α ≤ 3

4
3( 1

2
)+4(α− 3

4
)

α
3
4
≤ α ≤ 1

.

�e inverse function of g(α) gives us the pressed distribution G:

G(p) =


0 p < 0

3
4(3−p) 0 ≤ p < 2

3
2(4−p) 2 ≤ p < 2.5

1 p ≥ 2.5

One can verify that p(1−G(p)) is decreasing for p ∈ [2, 2.5]. Hence we have:
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p∗ = arg max
0≤p≤2

p

(
1− 3

4(3− p)

)
⇒ 1− 3

4(3− p∗)
− 3p∗

4(3− p∗)2
= 0⇒ p∗ =

3

2
.

Verifying that the objective function is concave on [0, 2] means that we have indeed found a global
maximum. �e pro�t guarantee corresponding to this price is Π∗ = 3

4
.

Finally, at the price p∗ = 3
2
, the worst-case information structure recommends purchase with

(conditional) probability 1 when v = 4, with probability 1
2

when v = 3, and with probability 0

when v = 0.

F.2. Alternative Interpretation of Π∗

In this appendix, we consider a game where the buyer (rather than nature) chooses information,
but where Π∗ also emerges as the seller’s equilibrium pro�t. �e motivation borrows from Roesler
and Szentes (2017), so we begin by reviewing their result.

Roesler and Szentes (2017) consider a game with the following timing: �e (single) buyer
�rst chooses an information structure I : R+ → ∆(S). �e seller then chooses a price p ∈ R to
maximize his pro�t. Finally, the buyer observes her signal and decides whether or not to purchase
the object. �ose authors show that in order to maximize payo�, the buyer acquires information
according to the distribution of posterior expected values FB

W (as described in Section 5.1). �is
turns out to simultaneously minimize the seller’s pro�t.

Recall that our one-period model di�ers from Roesler and Szentes (2017) in that we allow nature
to provide information depending on the realized price. Inspired by this di�erence, we modify the
above information acquisition game so that the buyer can acquire information depending on the
price. �at is, we maintain the same setup as in Roesler and Szentes (2017), except that the buyer
chooses a price-dependent information structure I : V × P → ∆(S).46

We characterize the outcome of this game in the following result:

Proposition 9. Consider the above information acquisition game where the buyer chooses a price-
dependent information structure. In any buyer-optimal Nash equilibrium of this game, the seller’s
pro�t is Π∗ and the buyer’s expected payo� is E[v]− Π∗.47

Similar to Roesler and Szentes (2017), trade occurs with probability 1 in equilibrium. However,
the buyer’s optimal payo� is higher in this game than in that model.
46We implicitly require the buyer to commit to acquiring information according to I a�er the price is realized. A

di�erent interpretation is that such information may be provided by a third party whose objective is to help the
buyer (rather than directly hurt the seller).

47We thank an anonymous referee for pointing out that sub-game perfect Nash equilibrium may not exist, because
there are price-dependent information structures against which the seller has no best response.
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Proof of Proposition 9. For each price p, let I∗(p) be the corresponding worst-case threshold infor-
mation structure in our main model. We �rst construct a Nash equilibrium as follows: �e buyer
chooses to acquire no information if p = Π∗, but for any other price he acquires information
according to I∗(p). �e seller chooses p = Π∗ against this price-dependent information structure,
and p = p∗ against any other information structure (which is o� the equilibrium path).

To see this is an equilibrium, observe that on path, trade occurs with probability 1 because
Π∗ < E[v] whenever F is non-degenerate. Hence the seller’s pro�t is Π∗ and the buyer’s payo� is
E[v] − Π∗, sharing all the surplus. By the de�nition of Π∗, choosing p = Π∗ is the seller’s best
response. It remains to check that the buyer cannot pro�tably deviate. Indeed, by se�ing the price
to be p∗, the seller obtains pro�t at least Π∗ when the buyer deviates. Since total surplus cannot
exceed E[v], buyer’s payo� is at most E[v]− Π∗. �is veri�es our equilibrium construction.

From the above discussion, we also know that the seller can always choose p = p∗ and
guarantee Π∗. So in every equilibrium, seller pro�t is at least Π∗ and buyer payo� cannot exceed
E[v]− Π∗. �is proves that the constructed equilibrium is buyer-optimal.

Note that the same argument works for an arbitrary horizon. �at is, suppose the buyer
chooses a (price-dependent) dynamic information structure to maximize her payo�, whereas the
seller responds with a pricing strategy. �en in every buyer-optimal equilibrium of this game, the
buyer receives E[v]− Π∗ and the seller obtains Π∗.

F.3. Uniqueness of Du’s Mechanism

Recall the random price mechanism from Section 5 and further discussed in Appendix B.1. In
general, there could be more than one point S for which (24) holds. If that was the case, the
seller’s optimal strategy in the one-period model with price-independent information would not
be unique.

Nonetheless, the point S is indeed unique for generic distributions F .48 �e intuition is simple:
(24) must bind at some S when W is smallest possible (subject to F being a mean-preserving
spread of FB

W ). But for (24) to bind at two di�erent points S would impose a non-generic constraint
on F . We omit the formal proof of this genericity result, which is tangential to the paper.

In the following result, we verify that the optimal price distribution is unique whenever S is
uniquely de�ned.

Lemma10. �ere is a uniquely-optimal random price distribution in the one-period price-independent
model if and only if (24) holds at a unique point S.
48A su�cient condition for S to be unique is that xF (x) is strictly convex. To see this, note that x(F (x)−FBW (x)) =
xF (x) + W − x is strictly convex, so it has at most two roots x0 < x1. Since F (x) > FBW (x) for x < x0, (24)
implies S cannot be the smaller root x0. Hence S must be the bigger root x1.

12



Proof. “Only if” follows from Appendix B.1, so we focus here on the “if” direction. Suppose S is
unique, we need to show any random price that guarantees W must be distributed according to
D(·). Let h(p) be the p.d.f. of the random price, then seller’s pro�t is given by

Π =

∫ 1

0

p · h(p) · (1− F̃ (p)) dp. (37)

where F̃ represents the distribution of posterior expected values that nature chooses to minimize
Π. Nature’s constraint is that F must be a mean-preserving spread of F̃ . �at is,∫ x

0

F̃ (v) dv ≤
∫ x

0

F (v) dv,

for all x ∈ (0, 1], with equality at x = 1.

By Roesler and Szentes (2017), choosing F̃ = FB
W forces Π ≤ W . On the other hand, seller’s

optimal pricing strategy guarantees Π ≥ W . So W is the value of the zero-sum game between
seller and nature, and whenever the seller uses an optimal strategy, F̃ = FB

W is a solution to
nature’s problem. By assumption, the above integral inequality constraint only binds at x = S

when F̃ = FB
W . Standard perturbation techniques thus imply that F̃ = FB

W is nature’s optimal
choice only if p · h(p) is a constant for p ∈ (W,S). Indeed, suppose that p · h(p) > p′ · h(p′)

for some p, p′ ∈ (W,S). �en starting with F̃ = FB
W , nature could increase F̃ around p and

correspondingly decrease it around p′. �e perturbed distribution is still feasible, but the pro�t is
reduced. Similarly, p · h(p) must also be a constant on the interval p ∈ (S,B). Let c1, c2 be these
constants.

We now show c2 = 0. Observe that h(p) must be supported on [W,B]. So we can alternatively
write

Π = c1

∫ S

W

(1− F̃ (p)) dp+ c2

∫ B

S

(1− F̃ (p)) dp.

Let nature �x F̃ (p) = FB
W (p) for 0 ≤ p ≤ S. �en

∫ 1

S
(1 − F̃ (p)) dp =

∫ 1

S
(1 − FB

W (p)) dp =∫ 1

S
(1− F (p)) dp. �is yields

Π = c1

∫ S

W

(1− FB
W (p)) dp+ c2

∫ 1

S

(1− FB
W (p)) dp− c2

∫ 1

B

(1− F̃ (p)) dp.

Given the seller’s choice of c1, c2, the �rst two terms above are constants. So nature’s problem is
to choose F̃ (p) for p ∈ (S, 1) to maximize c2

∫ 1

B
(1− F̃ (p)). Since

∫ 1

B
(1− FB

W (p)) = 0, F̃ = FB
W

can only be an optimal choice when c2 = 0.

To summarize, we have shown that the seller’s price density h(p) must be supported on [W,S]
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and p · h(p) is a constant. �is condition together with
∫ S
W
h(p) dp = 1 uniquely pins down h(p),

which is exactly the density function of D(x). Lemma 10 follows.

F.4. Comparison Between Π∗ and ΠRSD

Here we show that the pro�t benchmark ΠRSD is in general higher than Π∗, and the di�erence
may be signi�cant:

Lemma 11. ΠRSD ≥ Π∗ with equality if and only ifW = v = p∗. Furthermore, as the distribution
F varies, the ratio ΠRSD/Π

∗ is unbounded.

Proof. �e inequality ΠRSD ≥ Π∗ is obvious. Next, recall that Π∗ ≥ v (seller can charge v) and
W = ΠRSD. �us W = v implies ΠRSD ≤ Π∗, and equality must hold.

Conversely suppose W = ΠRSD = Π∗, then W = p∗(1 − G(p∗)). �is implies p∗ ≥ W .
Consider a seller who charges price p∗ against the Roesler-Szentes information structure FB

W . By
the unit elasticity of demand property, the seller’s pro�t is either W = Π∗ (when p∗ < B) or 0.
Since we showed in our main model that the seller can guarantee Π∗ with a price of p∗, pro�t
must be W and the Roesler-Szentes information structure is a worst case for the price p∗. �us
W ≥ p∗, because a worst-case information structure cannot induce a posterior expected value
strictly below p∗. We there conclude p∗ = W = Π∗ = p∗(1−G(p∗)), from which it follows that
G(p∗) = 0 and p∗ = v. �us W = v must hold.

Finally, the ratio ΠRSD/Π
∗ is unbounded even within distributions F that have binary support.

�is follows from Proposition 6 in Carrasco et al. (2018). However, we conjecture that this pro�t
ratio becomes bounded under certain regularity conditions on F .
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