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Abstract

The communication revelation principle of mechanism design states that any out-

come that can be implemented using any communication system can also be imple-

mented by an incentive-compatible direct mechanism. In multistage games, we prove

that the communication revelation principle holds for conditional probability perfect

Bayesian equilibrium (CPPBE), but fails for sequential equilibrium. Our main re-

sult is that, nonetheless, the following implementation revelation principle holds: an

outcome is implementable in sequential equilibrium if and only if it is implementable

in (canonical) CPPBE, or equivalently if and only if it is a sequential communication

equilibrium outcome as defined by Myerson [Myerson, R.B. (1986), “Multistage Games

with Communication,”Econometrica, 54, 323-358].

∗For helpful comments, we thank Dirk Bergemann, Drew Fudenberg, Dino Gerardi, Shengwu Li, George
Mailath, Roger Myerson, Alessandro Pavan, Harry Pei, Ludovic Renou, Juuso Toikka, and Bob Wilson; sem-
inar participants at Austin, Bocconi, Collegio Carlo Alberto, Cowles, Harvard-MIT, LSE, NYU, Princeton,
Queen Mary, Stony Brook, UCL, UCLA, and UCSD; and the anonymous referees. Wolitzky acknowledges
financial support from the NSF and the Sloan Foundation.



1 Introduction

What we will call the communication revelation principle states that any social choice func-

tion that can be implemented by any mechanism can also be implemented by a direct mech-

anism where communication between players and the mechanism designer or mediator takes

a circumscribed form: players communicate only their private information to the mediator,

and the mediator communicates only recommended actions to the players. This result was

developed throughout the 1970s, reaching its most general formulation in the principal-agent

model of Myerson (1982), which treats one-shot games with both adverse selection and moral

hazard. The importance of the communication revelation principle mostly comes from its

usefulness in characterizing the set of implementable outcomes. The revelation principle thus

does two things at once: it characterizes implementable outcomes, and it characterizes the

minimal communication system required for implementation.

More recently, there has been a surge of interest in the design of dynamic mechanisms and

information systems.1 The standard logic of the revelation principle applies immediately to

dynamic models, if these models are studied under the solution concept of Nash equilibrium

(NE): this approach leads to the concept of communication equilibrium introduced by Forges

(1986). But NE is not usually a satisfactory solution concept in dynamic models: follow-

ing Kreps and Wilson (1982), economists prefer solution concepts that require rationality

even after off-path events and impose “consistency”restrictions on players’beliefs, such as

sequential equilibrium (SE) or various versions of perfect Bayesian equilibrium (PBE). And

it is unknown whether the revelation principle holds for these stronger solution concepts,

because– as we will see– expanding players’opportunities for communication expands the

set of consistent beliefs at off-path information sets.

The contribution of the current paper is to resolve this question by establishing revelation

principles for PBE and SE in multistage games. We will show that the communication

revelation principle holds for PBE but fails for SE. Nonetheless, our main result establishes

that the implementation side of the revelation principle remains valid even for SE.

1For dynamic mechanism design, see for example Courty and Li (2000), Battaglini (2005), Eső and
Szentes (2007), Bergemann and Välimäki (2010), Athey and Segal (2013), and Pavan, Segal, and Toikka
(2014). For dynamic information design, see for example Kremer, Mansour, and Perry (2014), Ely, Frankel,
and Kamenica (2015), Che and Hörner (2017), Ely (2017), and Renault, Solan, and Vieille (2017).
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The key prior paper on the revelation principle (“RP”henceforth) in multistage games

is Myerson (1986). In this beautiful paper, Myerson introduces the concept of sequential

communication equilibrium (SCE), which is a kind of PBE– what we will call a conditional

probability perfect Bayesian equilibrium (CPPBE)– in a multistage game played with direct

communication: in every period, players report their private information, and the mediator

recommends actions. Myerson discusses how the logic of the RP suggests that restricting

attention to direct communication is without loss of generality, but he does not state a

formal RP theorem. His main result instead provides an elegant and tractable characteri-

zation of SCE: a SCE is a communication equilibrium in which players avoid codominated

actions, which are actions that cannot be motivated by any belief consistent with a player’s

own information and the presumption that her opponents will avoid codominated actions

in the future.2 Myerson’s paper also proves an equivalence between conditional probability

systems– the key objects used to restrict off-path beliefs in his solution concept– and limits

of beliefs derived from full-support probability distributions over moves. This result estab-

lishes an analogy between Myerson’s belief restrictions and the consistency requirement of

Kreps and Wilson. However, the analogy is not exact, because the probability distributions

over moves used to generate beliefs in Myerson’s approach need not be strategies: for exam-

ple, some conditional probability systems can be generated only by supposing that a player

takes different actions at two nodes in the same information set.3

Myerson’s paper thus leaves open two important questions: First, when one formu-

lates the CPPBE concept more generally– so that it can be applied to any communication

system– is it indeed without loss of generality to restrict attention to direct communication?

Second, is there an equivalence between implementation in CPPBE and implementation in

SE, so that Myerson’s characterization still applies under the more restrictive consistency

requirement of Kreps and Wilson?

We answer both of these questions in the affi rmative: we prove the communication RP

for CPPBE, and we prove that implementation in CPPBE is equivalent to implementation in

SE. The first of these results may be viewed as a formalization of ideas implicit in Myerson.

2We review Myerson’s characterization and the definition of codomination in Section 2.5.
3This gap between Myerson’s solution concept and sequential equilibrium has been noted before. See, for

example, Fudenberg and Tirole (1991).
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The second– which we refer to as the implementation revelation principle for SE– is quite

subtle and (to us) unexpected. Indeed, we show that the communication RP fails for SE.4

We thus show

SCE = CPPBE (C∗) =
⋃
C∈C

CPPBE (C) =
⋃
C∈C

SE (C) = SE (C∗∗) ) SE (C∗) , (1)

where “solution concept(C)”means the set of equilibrium outcome distributions with com-

munication system C, C∗ is the direct communication system, C is the set of “all”commu-

nication systems, and C∗∗ denotes a particular “quasi-direct”communication system, which

we describe later on.

Our results have a concise and practical message for applied dynamic mechanism design:

to calculate the set of outcomes implementable in sequential equilibrium by any communica-

tion system, simply calculate the set of outcomes implementable in Nash equilibrium without

codominated actions, using direct communication. These two sets are always the same, even

though actually implementing some outcomes as sequential equilibria might require using

the richer communication system C∗∗.

Let us preview the intuition for our main result: the implementation RP for SE, or

SCE ⊆
⋃
C∈C SE (C).5 By Myerson’s result, a SCE is a communication equilibrium where

all actions that are ever played (on or off path) can be motivated by some belief consistent

with a player’s own information. Such a belief can be generated in accordance with Kreps-

Wilson consistency by specifying that all players tremble with substantial probability (along

a sequence of strategy profiles converging to the equilibrium) and then honestly report their

trembles to the mediator, and the mediator appropriately conditions his recommendations

on the reported actions. An obstacle to this construction is that a player who trembles

4This failure has nothing to do with the failure of revelation principle-like results in settings with hard
evidence (Green and Laffont, 1986), common agency (Epstein and Peters, 1999; Martimort and Stole, 2002),
limited commitment (Bester and Strausz, 2000, 2001), or computational limitations (Conitzer and Sandholm,
2004). More relevant are Dhillon and Mertens (1996; Example 1), who show that the communication RP
fails for the solution concept of “perfect correlated equilibrium,” which describes outcomes that can be
implemented in trembling-hand perfect equilibrium; and Gerardi and Myerson (2007), who show that both
the communication and implementation RPs fail for SE when the mediator cannot tremble (see Section 5.2).

5The reverse inclusion is a corollary of the (simpler) communication RP for CPPBE:
⋃
C∈C SE (C) ⊆⋃

C∈C CPPBE (C) because SE is a refinement CPPBE, and
⋃
C∈C CPPBE (C) = CPPBE (C∗) = SCE

by the communication RP for CPPBE.
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to an action for which she must be punished in equilibrium will not honestly report her

deviation. To circumvent this problem, the mediator may (with probability converging to

0) promise in advance that he will disregard a player’s report almost-surely. However, to

afford the mediator the ability to make such an advance promise, the communication system

must be enriched with an extra message. This augmentation results in the quasi-direct

communication system C∗∗. Note that the mediator’s “promise to ignore reports” is made

with equilibrium probability 0, so our construction is “canonical on path.”6

The failure of the communication RP for SE can be avoided if the game satisfies ap-

propriate full support conditions. We clarify what conditions are required. In particular,

the communication RP is always valid in single-agent settings, as well as in settings with

adverse selection but no moral hazard (a class of games which encompasses much of the

recent literature on dynamic mechanism design).

By way of further motivation for the paper, we note that there seems to be some uncer-

tainty in the literature as to what is known about the RP in multistage games. A standard

approach in the dynamic mechanism design literature is to cite Myerson and then restrict

attention to direct mechanisms without quite claiming that this is without loss generality.

Pavan, Segal, and Toikka (2014, p. 611) are representative:

“Following Myerson (1986), we restrict attention to direct mechanisms where,

in every period t, each agent i confidentially reports a type from his type space

Θit, no information is disclosed to him beyond his allocation xit, and the agents

report truthfully on the equilibrium path. Such a mechanism induces a dynamic

Bayesian game between the agents and, hence, we use perfect Bayesian equilib-

rium (PBE) as our solution concept.”

Our results provide a foundation for this approach, while also showing that Nash and

PBE are outcome-equivalent in pure adverse selection settings like this one.7

6In our definition of sequential equilibrium, therefore, it is important to allow the mediator to tremble.
See Section 5.2 for a discussion of what happens if the mediator cannot tremble.

7A caveat is that much of the dynamic mechanism design literature assumes continuous type spaces to
facilitate the use of the envelope theorem, while we restrict attention to finite games to have a well-defined
notion of sequential equilibrium. We discuss this point in Section 5.2.
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For variants of other well-known models, naïvely applying the RP can produce serious

mistakes. For example, Kremer, Mansour, and Perry (2014) consider a setting where an

information designer wants to facilitate social learning by encouraging players to explore a

risky option; a leading example is persuading commuters to explore different routes.8 The

authors claim that the communication RP is established for their setting by Myerson. In

fact, it is valid only because of special features of the model, especially the absence of payoff

externalities among the players. In a variant of their model where commuters choose routes

repeatedly and face congestion externalities, the communication RP for SE is not guaranteed.

However, our theorem implies that the implementation RP remains valid.

More generally, our simple positive results for single-agent settings and settings with

adverse selection but no moral hazard imply that the subtleties at the heart of our paper

are most relevant for multi-agent, multi-stage games with moral hazard: that is, multi-agent

dynamic information design. Papers on this topic include Gershkov and Szentes (2009),

Aoyagi (2010), Halac, Kartik, Liu (2014), Kremer, Mansour, and Perry (2014), Che and

Hörner (2017), Sugaya and Wolitzky (2017), Ely (2017), Doval and Ely (2019), and Makris

and Renou (2019). We hope our work will allow this emerging literature to use the RP with

more confidence. To this end, we provide a compact summary of our results at the end of

the paper.

1.1 Example

Before presenting the model, we give an example that illustrates how letting the mediator

make advance promises to disregard players’reports can expand the set of implementable

outcomes. This phenomenon is the basic explanation both for why (for SE) the communi-

cation RP fails and the implementation RP holds.

There are two players (in addition to the mediator) and three periods.

In period 1, player 1 takes an action a1 ∈ {A,B,C}.

In period 2, player 1 observes a signal θ ∈ {n, p}, with each realization equally likely.

Then, the mediator (“player 0”) takes an action a0 ∈ {A,B}.
8See also Che and Hörner (2017).
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In period 3, the mediator and player 2 observe a common signal s ∈ {0, 1}, where s = 1

if and only if a0 6= a1. Then, player 2 takes an action a2 ∈ {N,P} (“Not punish,”“Punish”).

Player 1’s payoff equals 1{a0 6=a1∧a1 6=C}−1{a2=P}−3×1{a1=C}, and player 2’s payoff equals

−1{(a1,θ)6=(C,p)}1{a2=P}. In particular, player 1 wants to mismatch her action with the medi-

ator’s action; action C is strictly dominated for player 1; and player 2 is willing to punish

player 1 iff a1 = C and θ = p.

Consider the outcome distribution 1
2

(A,A,N) + 1
2

(B,B,N). It is trivial to construct

a canonical NE (i.e., a NE with direct communication where in equilibrium players report

their information honestly and obey the mediator’s recommendations) that implements this

outcome: the mediator sends message/recommendation m1 = A and m1 = B with equal

probability, plays a0 = m1, and recommends m2 = N if s = 0 and m2 = P if s = 1;

meanwhile, players are honest and obedient. Moreover, this NE is sequential iff player 2

believes with probability 1 that (a1, θ) = (C, p) when s = 1 andm2 = P . Thus, 1
2

(A,A,N)+

1
2

(B,B,N) is implementable in sequential equilibrium iff this belief is consistent.

Myerson shows that any NE outcome where players do not take codominated actions at

any (possibly off-path) history is a SCE outcome. Our main result is that exactly the same

set of outcomes is implementable in SE, but we may need to allow non-canonical equilibria.

In this example, the action a2 = P is not codominated at the history following following

signal s = 1, because a2 = P is an optimal action for player 2 if (a1, θ) = (C, p). Our main

result thus implies that 1
2

(A,A,N) + 1
2

(B,B,N) is implementable in some SE. We now

explain intuitively why 1
2

(A,A,N) + 1
2

(B,B,N) is not implementable in any canonical SE,

but is implementable in a non-canonical SE.9

Impossibility for canonical SE: In a canonical SE, player 1 obeys all recommendations

from the mediator. Since a1 = C is strictly dominated, this implies that the mediator can

only ever recommend m1 ∈ {A,B}. If player 1 mistakenly plays the strictly dominated

action C after such a recommendation, she will subsequently (for each possible realization

of θ) make whatever report
(
â1, θ̂

)
minimizes the probability that m2 = P . Since s = 1

whenever a1 = C, Bayes’ rule then implies that Pr ((a1, θ) = (C, p) |s = 1,m2 = P ) = 1
2
.

Hence, player 2 will not follow the recommendation m2 = P when s = 1, so the desired

9For the details, see the proof of Proposition 5.
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outcome is not implementable in a canonical SE.

Possibility for non-canonical SE: Why does enriching the communication system

overturn this negative result? Suppose the mediator can tremble by giving a “free pass”

to player 1 in period 1. If player 1 gets a free pass in period 1, the mediator will always

recommendm2 = N , barring another mediator tremble. Now, when player 2 is recommended

m2 = P , he can believe that the mediator trembled by giving player 1 a free pass in period 1,

player 1 trembled to a1 = C, player 1 honestly reported
(
â1, θ̂

)
= (C, p), and the mediator

trembled again by recommending m2 = P . This new possibility can rationalize player 2’s

belief that (a1, θ) = (C, p).

More precisely, consider the following sequence of strategy profiles, indexed by k ∈ N:

Mediator’s strategy: In period 1, the mediator recommends A and B with equal prob-

ability, while trembling to a third message, “?” (the “free pass”), with probability 1
k
. In

period 2, if m1 ∈ {A,B}, the mediator plays m0 = m1; if m1 = ?, he plays A and B with

probability 1
2
each. In period 3, if m1 ∈ {A,B}, the mediator recommends m2 = N if s = 0

and m2 = P if s = 1; if m1 = ?, with probability 1− 1
k
he recommends m2 = N (regardless

of
(
â1, θ̂

)
and s), and with probability 1

k
he recommends m2 = P if

(
â1, θ̂

)
= (C, p) and

m2 = N otherwise.

Players’strategies: If m1 ∈ {A,B}, player 1 takes a1 = m1 and trembles to each other

action with probability 1
k4
; if m1 = ?, she plays A and B with probability 1

2
each, while

trembling to C with probability 1
k
. Player 1 always reports her action and signal honestly.

Player 2 always takes a2 = m2.

Note that honesty is always optimal for player 1: if m1 ∈ {A,B}, then any deviation

from a1 = m1 leads to a2 = P with probability 1 regardless of player 1’s report; while if

m1 = ?, then a2 = N with probability 1 regardless of her report.

Now suppose player 2 observes s = 1 and m2 = P . There are two possible explanations:

either (i) player 1 trembled after m1 ∈ {A,B}, or (ii) the mediator trembled to m1 = ?,

player 1 trembled to a1 = C, player 1 honestly reported
(
â1, θ̂

)
= (C, p), and the mediator

trembled again tom2 = P . Case (i) occurs with probability of order 1
k4
, while case (ii) occurs

with probability of order 1
k3
. Hence, player 2 believes with probability 1 that (a1, θ) = (C, p).

This belief rationalizes a2 = P , as is required to implement the desired outcome.
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The remainder of the paper is organized as follows. Section 2 defines the model and

solution concepts and presents the main theorem, which collects results from Sections 3

and 4. Section 3 presents the (positive and negative) communication RP results. Section 4

presents the implementation RP for SE. Section 5.1 summarizes our results, and Section 5.2

discusses possible extension. Proofs are deferred to the appendix.

2 Multistage Games with Communication

2.1 Model

As in Forges (1986) and Myerson (1986), we consider multistage games with communication.

A multistage game G is played by N + 1 players (indexed by i = 0, 1, . . . , N) over T periods

(indexed by t = 1, . . . , T ). Player 0 is a mediator who differs from the other players in three

ways: (i) the players communicate only with the mediator and not directly with each other,

(ii) the mediator is indifferent over outcomes of the game (and can thus “commit” to any

strategy), (iii) “trembles”by the mediator may be treated differently than trembles by the

other players.10 In each period t, each player i (including the mediator) has a set of possible

signals Si,t, a set of possible actions Ai,t, a set of possible reports to send to the mediator Ri,t,

and a set of possible messages to receive from the mediator Mi,t. These sets are all assumed

finite. This formulation lets us capture settings where the mediator receives exogenous signals

in addition to reports from the players, as well as settings where the mediator takes actions

(such as choosing allocations for the players). Note also the artificial assumption that the

mediator “communicates with himself,”which simplifies notation. Throughout the paper,

for any set Yi,t indexed by i and t, we let Y t
i =

∏t−1
τ=1 Yi,τ , Yt =

∏N
i=0 Yi,t, Y

t =
∏t−1

τ=1 Yτ , and

Y = Y T+1. For example, Y t is the vector of Yτ’s at the beginning of period t.

Let H t = St × Rt × M t × At denote the set of possible histories of signals, reports,

messages, and actions (“complete histories”) at the beginning of period t, with H1 = ∅. Let

Z = HT+1 denote the set of terminal nodes of the game. Let X t = St × At denote the set

of possible histories of signals and actions (“payoff-relevant histories”) at the beginning of

10We also use male pronouns for the mediator and female pronouns for the players.
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period t. Given a complete history ht = (st, rt,mt, at) ∈ H t, let h̊t = (st, at) denote the

projection of ht onto X t. Let X = XT+1 = S×A denote the set of payoff-relevant outcomes

of the game. Let ui : X → R denote player i’s payoff function, where u0 is a constant

function.

The timing within each period t is as follows:

1. A signal st ∈ St is drawn with probability p (st|xt), where xt ∈ X t is the current

payoff-relevant history. Player i observes si,t, the ith component of st.

2. Each player i chooses a report ri,t ∈ Ri,t to send to the mediator.

3. The mediator chooses a message mi,t ∈Mi,t to send to each player i.

4. Each player i takes an action ai,t ∈ Ai,t.

We refer to the tuple Γ := (N, T, S,A, u, p) as the base game and refer to the pair

C := (R,M) as the communication system. Assume without loss of generality that Si,t =⋃
xt∈Xt supp pi (·|xt) for all i, t, where pi denotes the marginal distribution of p. The imple-

mentation problem asks, for a given base game Γ and a given equilibrium concept, which

distributions ρ ∈ ∆ (X) arise in equilibrium for some communication system C?

We now introduce histories, strategies, and beliefs. For each i, let H t
i = Sti×Rt

i×M t
i ×Ati

denote the set of player i’s possible histories of signals, reports, messages, and actions at

the beginning of period t. When a complete history ht ∈ H t is understood, we let hti =

(sti, r
t
i ,m

t
i, a

t
i) denote the projection of h

t onto H t
i . Similarly, h̊

t
i = (sti, a

t
i) denotes the payoff-

relevant component of hti . We also let H
R,t
i = H t

i ×Si,t and H
A,t
i = HR,t

i ×Ri,t×Mi,t denote

reporting and acting histories for player i, respectively.

A behavioral strategy for player i is a function σi =
(
σRi , σ

A
i

)
=
(
σRi,t, σ

A
i,t

)T
t=1
, where

σRi,t : HR,t
i → ∆ (Ri,t) and σAi,t : HA,t

i → ∆ (Ai,t). This standard definition requires that a

player uses the same mixing probability at all nodes in the same information set. Let Σi be

the set of player i’s strategies, and let Σ =
∏N

i=0 Σi.

A belief for player i 6= 0 is a function βi =
(
βRi , β

A
i

)
=
(
βRi,t, β

A
i,t

)T
t=1
, where βRi,t : HR,t

i →
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∆
(
HR,t

)
and βAi,t : HA,t

i → ∆
(
HA,t

)
.11 We write σRi,t

(
ri,t|hR,ti

)
for σRi,t

(
hR,ti

)
(ri,t), and

similarly for σAi,t, β
R
i,t, and β

A
i,t. When the meaning is unambiguous, we omit the superscript

R or A and the subscript t from σi and βi, so that, for example, σi can take as its argument

either hR,ti or hA,ti .

A mediation plan is a function f = (ft)
T
t=1, where ft : Rt+1 → Mt maps a profile of

reports up to and including period t to a profile of period-t messages.12 A mixed mediation

strategy is a distribution µ ∈ ∆ (F ), where F denotes the set of pure mediation plans. A

behavioral mediation strategy is a function φ = (φt)
T
t=1, where φt : Rt+1 ×M t → Mt maps

past reports and messages to current messages. Since the mediator can receive signals and

take actions in our model, he must choose both a mediation plan f and a report/action

strategy σ0. However, we can equivalently view the mediator as choosing only f , while a

separate “dummy player” chooses σ0. The distinctive feature of the mediator is thus the

choice of f , while the strategy σ0 plays no special role in the analysis and is included only

for the sake of generality. As we will see, whether it is most convenient to view the mediator

as choosing a pure, mixed, or behavioral mediation strategy depends on the solution concept

under consideration. All three perspectives will be used in this paper. In contrast, we always

view players (including player 0) as choosing behavioral strategies.

Denote the probability distribution on Z induced by behavioral strategy profile σ and

mediation plan f by Prσ,f , and denote the corresponding distribution for a mixed or behav-

ioral mediation strategy by Prσ,µ or Prσ,φ, respectively. Denote the corresponding probability

distribution on X (the “outcome distribution”) by ρσ,f , ρσ,µ, or ρσ,φ. As usual, probabili-

ties are computed assuming that all randomizations (by the players and the mediator) are

stochastically independent. We refer to a pair (σ, f), (σ, µ), or (σ, φ) as simply a profile.

We extend players’payoff functions from terminal histories to profiles in the usual way,

writing ūi (σ, f) for player i’s expected payoff at the beginning of the game under profile

(σ, f), and writing ūi (σ, f |ht) for player i’s expected payoff conditional on reaching the

complete history ht. Note that ūi (σ, f |ht) does not depend on player i’s beliefs, as ht is a

single node in the game tree. The quantities ūi (σ, µ), ūi (σ, φ), and ūi (σ, φ|ht) are defined
11Since the mediator is indifferent over outcomes, there are no optimality conditions on the mediator’s

strategy, and hence no need to introduce beliefs for the mediator.
12Myerson (1986) calls such a function a feedback rule.
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analogously. In contrast, we avoid the “bad”notation ūi (σ, µ|ht), as this cannot be defined

when Prσ,µ (ht) = 0.

A Nash equilibrium (NE) is a profile (σ, µ) such that ūi (σ, µ) ≥ ūi (σ
′
i, σ−i, µ) for all

i 6= 0, σ′i ∈ Σi. (Or put φ in place of µ; the definitions are equivalent by Kuhn’s theorem.) In

the context of games with communication, a NE is also called a communication equilibrium

(Forges, 1986).

2.2 Conditional Probability Perfect Bayesian Equilibrium

We consider perfect Bayesian equilibria in which beliefs are derived from a common con-

ditional probability system (CPS) on F × Z. Recall that a CPS on a finite set Ω is a

function µ (·|·) : 2Ω × 2Ω\∅ → [0, 1] such that (i) for all non-empty C ⊆ Ω, µ (·|C) is a

probability distribution on C, and (ii) for all A ⊆ B ⊆ C ⊆ Ω with B 6= ∅, we have

µ (A|B)µ (B|C) = µ (A|C). Given a CPS µ̄ on F × Z, f ∈ F , and Y, Y ′ ⊂ Z, we write

µ̄ (f) =
∑

z∈Z µ̄ (f, z) and µ̄ (Y |f, Y ′) =
∑

y∈Y µ̄ (y|f, Y ′). A conditional probability perfect

Bayesian equilibrium (CPPBE) is a profile (σ, µ) together with a CPS µ̄ on F ×Z such that

• [CPS Consistency] For all f, i, t, hR,ti , hA,ti , hR,t, hA,t, rt,mt, at, st+1, we have

µ̄ (f) = µ (f) , µ̄
(
rt|f, hR,t

)
=
∏N

i=0 σ
R
i

(
ri,t|hR,ti

)
,

µ̄
(
at|f, hA,t

)
=
∏N

i=0 σ
A
i

(
ai,t|hA,ti

)
, µ̄

(
st+1|f, hA,t, at

)
= p

(
st+1|̊hA,t, at

)
,

µ̄
(
mt|f, hR,t = (st+1, rt,mt, at) , rt

)
= 1{mt=f(rt,rt)}.

(2)

(In these equations, the first argument of f (·|·) must be read as a subset of Z. For

example, µ̄
(
rt|f, hR,t

)
=
∑

z∈Z′ µ̄
(
z|f, hR,t

)
, where Z ′ is the set of all terminal nodes

z with period-t report profile rt.)

• [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ H

R,t
i , we have

∑
f∈F,hR,t∈HR,t

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ, f |hR,t

)
≥

∑
f∈F,hR,t∈HR,t

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, σ−i, f |hR,t

)
.

(3)

11



• [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ H

A,t
i , we have

∑
f∈F,hA,t∈HA,t

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ, f |hA,t

)
≥

∑
f∈F,hA,t∈HA,t

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, σ−i, f |hA,t

)
.

(4)

Note that, in an unmediated game, (i) µ̄ reduces to a CPS on Z, (ii) µ̄
(
f, hA,t|hA,ti

)
reduces to a belief β

(
hA,t|hA,ti

)
, (iii) (3) disappears, and (iv) (4) reduces to the standard

definition of sequential rationality. In the context of unmediated games, the CPPBE con-

cept is not really new. For example, Fudenberg and Tirole (1991), Battigalli (1996), and

Kohlberg and Reny (1997) study whether imposing additional independence conditions on

top of CPPBE leads to an equivalence with sequential equilibrium in general games. In

contrast, our main result is that CPPBE and sequential equilibrium are always outcome-

equivalent in games with communication. The basic reason why independence conditions

are not required to obtain equivalence with sequential equilibrium in games with commu-

nication is that the correlation allowed by CPPBE can be replicated through correlation in

the mediator’s messages.13

For games with communication, the definition of CPPBE follows Myerson in specifying

that the mediator plays a mixed (rather than behavioral) strategy and in defining µ̄ as a CPS

on F × Z, rather than Z alone. This approach models the mediator’s trembles in normal

form rather than agent-normal form and thus leads to a more permissive solution concept.14

If the mediator instead trembled in agent-normal form, the communication RP for CPPBE

(Proposition 1 below) would not hold.15

13Mailath (2019) defines a notion of “almost perfect Bayesian equilibrium,” which appears to coincide
with CPPBE in unmediated multistage games, though this remains to be proved. Most other notions of
“perfect Bayesian equilibrium”(e.g., Fudenberg and Tirole (1991), Watson (2017)) impose some form of “no
signaling what you don’t know,”which is not required by CPPBE.
14The observation that normal form trembles lead to more permissive solution concepts than agent-normal

form trembles is due to Selten (1978).
15In particular, the proof of Proposition 5 would go through for canonical CPPBE if the mediator trembled

in agent-normal form.
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2.3 Sequential Equilibrium

Our definition of sequential equilibrium in a game with communication is simply Kreps-

Wilson (1982) sequential equilibrium in the N+1 player game where the mediator is treated

just like any other player. That is, a sequential equilibrium (SE) is an assessment (σ, φ, β)

consisting of behavioral strategies σ for the players, a behavioral strategy φ for the mediator,

and beliefs β for the players, such that

• [Sequential rationality of reports] For all i 6= 0, t, σ′i, and h
R,t
i , we have

∑
hR,t∈HR,t

βi

(
hR,t|hR,ti

)
ūi
(
σ, φ|hR,t

)
≥

∑
hR,t∈HR,t

βi

(
hR,t|hR,ti

)
ūi
(
σ′i, σ−i, φ|hR,t

)
.

• [Sequential rationality of actions] For all i 6= 0, t, σ′i, and h
A,t
i , we have

∑
hA,t∈HA,t

βi

(
hA,t|hA,ti

)
ūi
(
σ, φ|hA,t

)
≥

∑
hA,t∈HA,t

βi

(
hA,t|hA,ti

)
ūi
(
σ′i, σ−i, φ|hA,t

)
.

• [Kreps-Wilson Consistency] There exists a sequence of full-support behavioral strategy

profiles
(
σk, φk

)∞
k=1

such that limk→∞
(
σk, φk

)
= (σ, φ);

βi

(
hR,t|hR,ti

)
= lim

k→∞

Prσ
k,φk

(
hR,t

)
Prσ

k,φk
(
hR,ti

)
for all i 6= 0, all hR,ti ∈ H

R,t
i , and all hR,t ∈ HR,t with i-component hR,ti ; and

βi

(
hA,t|hA,ti

)
= lim

k→∞

Prσ
k,φk

(
hA,t

)
Prσ

k,φk
(
hA,ti

)
for all i 6= 0, all hA,ti ∈ H

A,t
i , and all hA,t ∈ HA,t with i-component hA,ti .

In this definition, the mediator takes a behavioral strategy and trembles in agent-normal

form, just like each of the players. An alternative definition, where the mediator cannot

tremble at all, would yield a more restrictive version of sequential equilibrium, for which our

main results would not hold. We discuss this possibility in Section 5.2.
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Theorem 1 of Myerson (1986) shows that every sequence of full-support probability dis-

tributions induces a CPS (see also Rényi, 1955). Hence, for any base game and any com-

munication system C, we have NE (C) ⊇ CPPBE (C) ⊇ SE (C), where for any solution

concept S ∈{NE,CPPBE, SE}, S (C) denotes the set of outcome distributions ρ ∈ ∆ (X)

that arise in equilibrium under solution concept S with communication system C.

2.4 The Main Result

Given a base game (N, T, S,A, u, p), the direct communication system C∗ = (R∗,M∗) is given

by R∗i,t = Ai,t−1 × Si,t and M∗
i,t = Ai,t, for all i and t: that is, players’reports are actions

and signals and the mediator’s messages are “recommended” actions. Define the quasi-

direct communication system C∗∗ = (R∗,M∗∗) by R∗i,t = Ai,t−1 × Si,t and M∗∗
i,t = Ai,t ∪ {?},

for all i and t, where ? denotes an arbitrary extra message. That is, under quasi-direct

communication, in every period a single extra message from the mediator to each player is

permitted. Denote the set of all finite communication systems by C.16 We prove

Theorem 1 For any base game,

⋃
C∈C

CPPBE (C) = CPPBE (C∗) =
⋃
C∈C

SE (C) = SE (C∗∗) . (5)

In addition, for some base game,

⋃
C∈C

SE (C) ) SE (C∗) . (6)

The first equality in (5) is the communication revelation principle for CPPBE. This

formalizes the “revelation principle” implicit in Myerson. We actually prove a stronger

version of this equality, namely that with communication system C∗ it suffi ces to consider

“canonical”equilibria, where players are honest and obedient. This is proved as Proposition

4 below.
16This notion may be formalized by identifying each report or message with a natural number, so that,

letting N denote the set of all finite subsets of the natural numbers, we have C =
∏T
t=1

∏N
i=0 (N ×N ).
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The second equality in (5) is the implementation revelation principle for SE. This is the

key part of the theorem. It characterizes the set of outcomes implementable in SE, and in

particular shows that it is possible to combine the tractability of Myerson’s characterization

of canonical CPPBE (reviewed in the next subsection) with Kreps-Wilson consistency.

The third equality in (5) may be called the quasi-communication revelation principle for

SE. It shows that any outcome implementable in SE with any communication system is also

implementable in SE with quasi-direct communication. The role of the extra message ? is

analogous to the “free pass”message in the opening example and is explained further in

Section 4. The second and third equalities are both proved as Proposition 7.

Finally, (6) is the failure of the communication revelation principle for SE. This was

previewed in the opening example and is proved below as Proposition 5.

2.5 Mediation Range, Sequential Communication Equilibrium, and

Myerson’s Characterization

Much of the importance of Theorem 1 comes from the fact that the set CPPBE (C∗) admits

a remarkably simple characterization: it is the set of sequential communication equilibrium

outcomes, which Myerson shows equals the set of communication equilibrium outcomes with

canonical strategies in which no player is ever recommended a codominated action. To present

our proof of Theorem 1 and to understand its significance, it is necessary to review these

concepts here.

A sequential communication equilibrium is essentially a canonical CPPBE. To formalize

this, note that at first glance there appears to be a conflict between the possibility that the

mediator can tremble and the requirement that, in a canonical equilibrium, players obey

the mediator’s recommendations. For example, a player will never follow a recommendation

to play a strictly dominated action, so obedience and mediator trembles are inconsistent if

the mediator can tremble to any message. We must therefore consider restrictions on the

mediator’s possible messages.

Following Myerson, a mediation range Q = (Qi)i 6=0 specifies a set of possible messages

Qi (r
t
i ,m

t
i, ri,t) ⊆ Mi,t that can be received by each player i 6= 0 when the history of com-
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munications between player i and the mediator is given by (rti ,m
t
i, ri,t). Denote the set of

mediation plans consistent with mediation range Q by

F |Q =
{
f ∈ F : fi

(
rt+1
i

)
∈ Qi

(
rt−1
i ,

(
fi
(
rτ+1
i

))t−1

τ=1
, ri,t

)
∀i, t, rt+1

i

}
.

Next, given a canonical game (Γ, C∗) and a mediation rangeQ, the fully canonical strategy

profile σ∗ is defined by letting players report honestly and obey the mediator’s recommen-

dation at all histories consistent with Q: that is, we have

• [Honesty] σRi
(
hR,ti

)
= (ai,t−1, si,t) for all h

R,t
i ∈ H

R,t
i such that mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ )

for all τ < t, and

• [Obedience] σAi
(
hA,ti

)
= mi,t for all h

A,t
i ∈ H

A,t
i such that mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ ) for all

τ ≤ t.

Later on, this will be contrasted with a more general notion of canonical strategies,

where honesty and obedience are required only for players who have not previously lied to

the mediator. Also, since the artificial assumption that the mediator “communicates with

himself” is purely for notational convenience, there is no loss in assuming throughout the

paper that C0 = C∗0 and σ0 = σ∗0.

Denote the set of terminal, canonical-game histories consistent with Q and honest be-

havior by the players by

Z|Q =
{
z ∈ Z : ri,t = (ai,t−1, si,t) and mi,t ∈ Qi

(
rti ,m

t
i, ri,t

)
∀i, t

}
.

A sequential communication equilibrium (SCE) is then a mixed mediation strategy µ ∈

∆ (F ) in a canonical game (Γ, C∗) together with a mediation range Q and a CPS µ̄ on

F |Q × Z|Q such that

• [CPS consistency] For all f ∈ F |Q, i, t, hR,t = (st+1, rt,mt, at) ∈ ZR,t|Q, hA,t =
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(st+1, rt+1,mt+1, at) ∈ ZR,t|Q, mt, at, and st+1, we have

µ̄ (f) = µ (f) , µ̄
(
rt|f, hR,t

)
= 1{rt=(at−1,st)},

µ̄
(
at|f, hA,t

)
= 1{at=mt}, µ̄

(
st+1|f, hA,t, at

)
= p

(
st+1|̊hA,t, at

)
,

µ̄
(
mt|f, hR,t, rt

)
= 1{mt=f(rt,rt)}.

• [Sequential rationality of honesty] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i =

(
st+1
i , rti ,m

t
i, a

t
i

)
∈

HR,t
i such that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ ) for all τ < t, we have

∑
f∈F |Q,hR,t∈HR,t

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ∗, f |hR,t

)
≥

∑
f∈F |Q,hR,t∈HR,t

µ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, σ

∗
−i, f |hR,t

)
.

• [Sequential rationality of obedience] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i =

(
st+1
i , rt+1

i ,mt+1
i , ati

)
∈

HA,t
i such that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ ) for all τ ≤ t, we have

∑
f∈F |Q,hA,t∈HA,t

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ∗, f |hA,t

)
≥

∑
f∈F |Q,hA,t∈HA,t

µ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, σ

∗
−i, f |hA,t

)
.

(7)

The definition of a SCE is similar to the definition of a CPPBE with the direct commu-

nication system C∗. (Of course, the general definition of a CPPBE allows C 6= C∗.) There

are however two differences:

1. SCE requires not only direct communication, but also canonical equilibrium (i.e., play-

ers are required to be honest and obedient).

2. SCE imposes sequential rationality for each player only at histories consistent with

the pre-specified mediation range Q, and only at histories at which the player has not

previously lied to the mediator.

These differences turn out to be immaterial.

Proposition 1 For any base game Γ and any outcome distribution ρ ∈ ∆ (X), there exists

a SCE µ ∈ ∆ (F ) with ρ = ρσ
∗,µ if and only if ρ ∈ CPPBE (C∗).

17



Myerson characterizes the set of SCE in terms of codominated actions. Intuitively, an

action ai,t is codominated for player i at history (xti, si,t) if it is not optimal for any be-

lief over
(
xt−i, s−i,t

)
, given that other players avoid codominated actions in future peri-

ods. Formally, consider a canonical game (Γ, C∗). Given a correspondence B that speci-

fies a set of actions Bi(x
t
i, si,t) ⊂ Ai,t for each i, t, and (xti, si,t) ∈ X t

i × Si,t, let Et (B) ={
f ∈ F : fi (r

τ+1) /∈ Bi

(
rτ+1
i

)
∀i, τ > t, rτ+1 ∈ Xτ × Sτ

}
be the set of pure mediation strate-

gies that avoid actions in B after period t. Such a correspondence B is a codomination corre-

spondence if, for every period t and every probability distribution π ∈ ∆ (F ×X t × St) with

π (Et (B)×X t × St) = 1 and π (f, xt, st) > 0 for some (f, xt, st) with fi (xt, st) ∈ Bi (x
t
i, si,t)

for some i, we have

∑
(f,xt,st)∈F×Xt×St

:fi(xt,st)=ai,t

π
(
f, xt, st

)
ū
(
σ∗, f |xt, st

)
<

∑
(f,xt,st)∈F×Xt×St

:fi(xt,st)=ai,t

π
(
f, xt, st

)
ū
(
σ′i, σ

∗
−i, f |xt, st

)

for some i, (xti, si,t), ai,t ∈ Bi (x
t
i, si,t), and σ

′
i ∈ Σi. Finally, let D denote the union of all

codomination correspondences (which is itself a codomination correspondence), and say that

an action ai,t ∈ Ai,t is codominated at history (xti, si,t) if ai ∈ Di(x
t
i, si,t). Myerson’s main

result is

Proposition 2 (Myerson (1986; Theorem 2, Lemma 1)) For any base game Γ and

any outcome distribution ρ ∈ ∆ (X), there exists a SCE µ ∈ ∆ (F ) with ρ = ρσ
∗,µ if and only

if there exists a NE (σ∗, µ) in (Γ, C∗) such that ρ = ρσ
∗,µ and Qi (r

t
i ,m

t
i, ri,t) ∩Di(r

t+1
i ) = ∅

for all i, t, rt+1
i , and mt

i.

3 The Communication RP

This section analyzes the communication RP. In addition to proving
⋃
C∈C CPPBE (C) =

CPPBE (C∗) and
⋃
C∈C SE (C) ) SE (C∗) (the first and last parts of Theorem 1), we also

clarify for what solution concepts and classes of games the classical communication RP holds

(which, in addition to requiring C = C∗, requires that players are honest and obedient).

The section is organized as follows. Section 3.1 states the communication RP. Section

18



3.2 presents the communication RP for CPPBE. Section 3.3 notes that, in general, the

communication RP fails for SE. Section 3.4 gives conditions under which the communication

RP holds for SE.

3.1 Statement of the Communication RP

Given a canonical game (Γ, C∗) a strategy profile σ ∈ Σ together with a mediation range Q

is canonical if the following conditions hold:

1. [Previously honest players are honest] σRi
(
hR,ti

)
= (ai,t−1, si,t) for all h

R,t
i ∈ H

R,t
i such

that ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r
τ
i ,m

τ
i , ri,τ ) for all τ < t.

2. [Previously honest players are obedient] σAi
(
hA,ti

)
= mi,t for all h

A,t
i ∈ H

A,t
i such that

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r
τ
i ,m

τ
i , ri,τ ) for all τ ≤ t.

For any game G = (Γ, C) and mediation range Q, let G|Q denote the game where the

mediator is restricted to sending messages in Q: that is, if at history (ht, st, rt) the history

of communications between some player i and the mediator is (rti ,m
t
i, ri,t), then all messages

mi,t /∈ Qi (r
t
i ,m

t
i, ri,t) are deleted from the game tree. Note that, for any Q, any strategy

profile σ ∈ Σ induces a strategy profile in the restricted game G|Q.

Given a canonical game (Γ, C∗) a canonical strategy profile σ ∈ Σ together with a medi-

ation range Q such that σ is an equilibrium in G|Q is a canonical equilibrium.

For any game G = (Γ, C), let G∗ = (Γ, C∗) denote the canonical game with the same

base game as G. A classical statement of the RP is as follows:17

Communication Revelation Principle For any game G, any distribution over outcomes

X that arises in any equilibrium of G also arises in a canonical equilibrium of G∗.

Forges (1986) established the communication RP for NE.

Proposition 3 (Forges (1986; Proposition 1)) The communication RP holds for NE.

17Townsend (1988) extends the RP by requiring a player to be honest and obedient even if she has
previously lied to the mediator, and correspondingly lets a player report her entire history of actions and
signals every period (thus giving players opportunities to “confess”any lie). Theorem 1 shows that enriching
the communication system in the way does not expand the set of implementable outcomes.
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As we build on this result, we reprise the proof in our notation in the appendix. The

intuition is that, in any non-canonical game (Γ, C), we may view each player as reporting

her signals and actions to a “personal mediator”under her control, who then communicates

with a “central mediator”via communication system C, and then recommends actions to

the player. Each player may as well be honest and obedient vis a vis her personal mediator,

since she controls her personal mediator’s strategy. Now, view the collection of the N

personal mediators together with the central mediator as a single mediator in the canonical

game (Γ, C∗), where player i’s personal mediator now automatically executes her equilibrium

communication strategy from the non-canonical game. Then it remains optimal for each

player to be honest and obedient, as each player has access to fewer deviations when she

cannot directly control her personal mediator.

3.2 The Communication RP for CPPBE

Our first substantive result formalizes the communication RP for CPPBE implicit in Myer-

son.

Proposition 4 The communication RP holds for CPPBE. In particular,
⋃
C∈C CPPBE (C) =

CPPBE (C∗).

This is much more subtle than the corresponding result for NE. The issue is that it is not

obvious how to translate a CPS µ̄ on F ×Z in a non-canonical game to a corresponding CPS

in the canonical game. We therefore give an indirect proof, building on Myerson’s results.

By Proposition 1, an outcome distribution ρ ∈ ∆ (X) arises in a SCE if and only if it arises

in a canonical CPPBE. By Proposition 2, an outcome distribution arises in a SCE if and only

if it arises in a NE in which codominated actions are never played with positive probability.

Since every (possibly non-canonical) CPPBE is a NE, to prove Proposition 4 it suffi ces to

show that, in every CPPBE, codominated actions are never played with positive probability.

This is proved as Lemma 4 in the appendix.

In proving Propositions 1 and 4, we introduce the notions of a “quasi-strategy,”which

is simply a partially defined strategy, and a “quasi-equilibrium,”which is a profile of quasi-

strategies where incentive constraints are satisfied wherever strategies are defined. We say
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that a quasi-equilibrium is “valid” if no unilateral deviation by a player can ever lead to

a history where another player’s quasi-strategy is undefined. We show that it makes no

difference whether we consider fully specified CPPBE or (valid) quasi-CPPBE. This is useful

in proving Propositions 1 and 4, as it saves us from having to specify what a player does

after she lies to the mediator or after she receives a message outside the mediation range,

and it also lets us assume that a previously honest player always believes her opponents have

also been honest. A similar approach is useful in the SE analysis in Section 9.

3.3 Failure of the Communication RP for SE

In contrast to the situation for NE or CPPBE, we have

Proposition 5 The communication RP does not hold for SE. Furthermore,
⋃
C∈C SE (C) )

SE (C∗).

The failure of the communication RP for SE was previewed in the introduction. The

stronger result that
⋃
C∈C SE (C) ) SE (C∗) (without restricting to honest and obedient

strategies) is proved by extending the opening example to include two extra players in such

a way as to ensure that action C must be recommended at some history. This implies that a

recommendation to play C cannot be used to substitute for the extra “free pass”message, so

the set of possible messages must be expanded. In addition, the analysis of these examples

is robust to perturbations of the payoff functions and the target outcome distribution, so the

failure of the communication RP for SE is generic.

3.4 Suffi cient Conditions for the Communication RP for SE

In light of Proposition 5, it is natural to ask when the communication RP for SE does hold.

We give three simple suffi cient conditions.

First, the communication RP holds under a full support condition: any NE outcome

distribution under which no player can perfectly detect another’s deviation is a canonical

SE outcome distribution. This result may be “folk knowledge,”but we are not aware of a

reference.
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Second, the communication RP holds in single-agent settings. This follows as a trivial

corollary of the full-support result. It is applicable to many models of dynamic moral hazard

(e.g., Garrett and Pavan, 2012) and dynamic information design (e.g., Ely, 2017).

Third, the communication RP holds in games of pure adverse selection: that is, if |Ai,t| =

1 for all i 6= 0 and t ∈ {1, ..., T}. In a pure adverse selection game, players report types to

the mediator, the mediator chooses allocations, and players take no further actions. Much of

the dynamic mechanism design literature assumes pure adverse selection (e.g., Pavan, Segal,

and Toikka (2014) and references therein).

Recall that, given a distribution ρ ∈ ∆ (X), ρi denotes the projection of ρ ontoXi. Let ‖·‖

denote the sup norm on∆ (X): for distributions ρ, ρ′ ∈ ∆ (X), ‖ρ− ρ′‖ = maxx∈X |ρ (x)− ρ′ (x)|.

Proposition 6 The following hold:

1. For any game G, if (σ, φ) is a NE and supp ρσ,φi =
⋃
σ′−i∈Σ−i

supp ρ
σi,σ

′
−i,φ

i for all i 6= 0,

then ρσ,φ is a canonical SE outcome distribution.

2. If N = 1 then any NE outcome distribution is a canonical SE outcome distribution.

3. If G is a game of pure adverse selection then any NE outcome distribution is a canonical

SE outcome distribution.

Parts 1 and 2 are fairly straightforward. Part 3 follows from noting that the construction

in Proposition 7 is canonical in pure adverse selection games.

4 The Implementation RP

Our main result is that every SCE outcome is implementable in SE for some communication

system (in particular, with quasi-direct communication). The failure of the communication

RP for SE thus poses no obstacle to the characterization of SE-implementable outcomes.

Proposition 7 For any base game, an outcome distribution arises in SE for some com-

munication system if and only if it arises in a canonical CPPBE (equivalently, a SCE).
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In addition, every such outcome distribution arises in SE with quasi-direct communication.

Hence,

CPPBE (C∗) =
⋃
C∈C

SE (C) = SE (C∗∗) .

Proposition 7 completes the proof of Theorem 1.

As every SE is a CPPBE and the communication RP holds for CPPBE (Proposition 4),

we have

CPPBE (C∗) ⊇
⋃
C∈C

SE (C) .

The substance of Proposition 7 is thus that every canonical CPPBE outcome distribution

arises as a SE with quasi-direct communication:

CPPBE (C∗) ⊆ SE (C∗∗) .

Recall that the quasi-direct communication system C∗∗ = (R∗,M∗∗) is given by R∗i,t =

Ai,t−1 × Si,t and M∗∗
i,t = Ai,t ∪ {?} for all i 6= 0 and t, where ? denotes an arbitrary extra

message. In our construction, message ? is not used on path. Moreover, players are honest

and follow all recommendations other than ?, as long as they have done so in the past. The

construction is thus “almost”canonical.18 In addition, the extra message ? is unnecessary

when each player has at least one codominated action at every information set. In that case,

the mediator can use the “recommendation”of the codominated action to mean ?.

Message ? corresponds to the “free pass” in the opening example. As in that example,

the role of message ? is to signal to players that they should tremble with higher probability.

(When a player instead receives a message mi,t 6= ?, she plays ai,t = mi,t and trembles

with much smaller probability.) In addition, after receiving ?, a player’s future reports to

the mediator are inconsequential (barring future mediator trembles), so honesty is optimal.

Based on these honest reports, the mediator’s future trembles can be specified so that,

conditional on a player receiving a future recommendation to take any non-codominated

action, the player’s beliefs are those required to motivate that action. For instance, in the
18A second way in which our construction is not canonical is that a previously honest but disobedient

player may not be honest. This difference from Myerson’s approach arises because the SE solution concept
limits the consistent beliefs available to a disobedient player (in particular, she cannot believe that her own
deviation was correlated with deviations by other players), which makes ensuring honesty diffi cult.
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example, when player 2 receives recommendation m2 = P , he believes that the mediator

trembled first to m1 = ? and then to m2 = P after (â1, θ̂) = (C, p), which generates the

required belief to motivate a2 = P . Note that it is the possibility that one’s opponents

received message ?, trembled, and then reported truthfully that motivates a given player to

follow her recommendation.

Propositions 4 and 7 jointly imply that the implementation RP holds for any notion of

PBE which is stronger than CPPBE but weaker than SE. Many notions of PBE that impose

some form of “no signaling what you don’t know” fall into this category, such as PBE

satisfying Battigalli’s (1996) “independence property”or Watson’s (2017) “plain PBE.”

We end this section by sketching the proof of Proposition 7.

It is useful to first briefly review Myerson’s proof that the outcome of every NE where

codominated actions are never played is a SCE, as we build on this proof. Myerson first

constructs an arbitrary SCE with the property that all non-codominated actions are rec-

ommended at each history with positive probability along a sequence of move distributions

converging to the equilibrium. He then constructs another equilibrium where the mediator

mixes this “full-support” SCE with the target NE. By specifying that trembles are much

more likely in the former equilibrium, after any history in the mixed equilibrium that lies

off-path in the target NE, players believe that the full-support CPPBE is being played, and

therefore follow all non-codominated recommendations. Taking the mixing probability to

0 yields a SCE with the same outcome as the target NE, in which all non-codominated

recommendations are incentive compatible.

Our construction starts with an arbitrary “full-support”NE: more precisely, a NE in

the unmediated, perturbed game where each player must take each action at each history

with independent probability at least εk. Here, εk → 0 along a sequence of strategy profiles

indexed by k converging to the equilibrium, but this convergence is slow compared to other

possible trembles: that is, action trembles in the full-support NE are relatively likely. In the

SE we construct, the mediator uses the off-path message ? to signal to a player that the full-

support NE is being played. Since the full-support NE is an equilibrium in the unmediated

game, a player who receives message ? believes that her future reports are almost-surely in-
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consequential, and thus reports honestly.19 In particular, when the mediator implements the

full-support NE, he recommends mi,t ∈ Ai,t according to the equilibrium strategy of player

i with probability 1 − √εk and recommends mi,t = ? with probability
√
εk, independently

across players. Player i obeys each recommendation mi,t ∈ Ai,t (with negligible tremble

probability) and, and after ?, takes ai,t according to her equilibrium strategy but trembles

with probability
√
εk. Since the mediator tremble to mi,t = ? is independent across players,

from the other players’perspectives, it is as if player i plays her NE strategy while trembling

with probability
√
εk ×

√
εk = εk.

In order to provide on-path incentives, the mediator must also be able to recommend

specific, non-codominated punishment actions. To make these recommendations incentive

compatible, we mix in trembles to mediation plans that recommend all motivatable actions

(as in Myerson’s construction). A key step in our construction is to show that, since trembles

in the full-support NE are relatively likely and players who believe this equilibrium is being

played report truthfully, the mediator tremble probabilities can be chosen to generate the

beliefs required to motivate each non-codominated action.

An important diffi culty is posed by histories that involve multiple surprising signals or

recommendations: for example, a player may receive a 0-probability recommendation to

play some action a in period t and update her beliefs about the mediation plan accordingly,

but may then observe another surprising (i.e., conditional 0-probability) recommendation

to play some action a′ in a later period t′. We need to ensure that every non-codominated

recommendation in period t′ is incentive compatible, no matter what recommendations were

made in earlier periods. This is challenging, because there is no guarantee that the mediation

plan that motivates action a in period t is consistent with the mediation plan that motivates

action a′ in period t′.

To deal with this, we introduce an additional layer of trembles, whereby the mediator may

tremble to recommend any motivatable action even while he still “intends” to implement

the full-support NE. These trembles are less likely than both action trembles within the full-

support NE and the mediator trembles to mediation plans that rationalize non-codominated

19This step is absent in Myerson’s proof, as the SCE/CPPBE solution concept allows mediator trembles
to be directly correlated with player trembles about which the mediator has no information.
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actions. Therefore, when a player receives a 0-probability recommendation to play action a in

period t, she believes with probability 1 that the mediator has trembled to the mediation plan

that motivates action a; but when she later receives another surprising recommendation to

play action a′ in period t′, she switches to believing that, in fact, her period-t recommendation

was due to a recommendation tremble “within” the full-support NE (and thus that, in

retrospect, she might have been better-off disobeying the period-t recommendation), while

the current, period-t′ recommendation to play a′ indicates a tremble to the mediation plan

that motivates a′.20

To complete the construction, this “motivating equilibrium” (the mixture of the full-

support NE, the mediation plans that motivate each non-codominated action, and the addi-

tional layer of trembles) is mixed with the original target NE, with almost all weight on the

latter. Players therefore believe that the mediator follows the target NE until they observe

a 0-probability signal or recommendation. Subsequently, players assign probability 1 to the

motivating equilibrium, and therefore obey all non-codominated recommendations. Since

the original NE did not involve codominated actions, all on- and off-path recommendations

are incentive compatible.

5 Conclusion

5.1 Summary

Our main result is that the implementation RP holds for SE: to calculate the set of out-

comes implementable in SE by any communication system, it suffi ces to calculate the set of

canonical CPPBE outcomes, or equivalently the set of outcomes of canonical NE in which

players avoid codominated actions.

We also show that the stronger communication RP holds for CPPBE, but not for SE. In

particular, while the set of SE-implementable outcomes equals the set of canonical CPPBE

outcomes, it may be necessary to allow one extra message to implement some of these

20This additional layer of trembles is also not needed in Myerson’s proof, because the SCE/CPPBE
solution concept allows mediator trembles to off-path recommendations to be directly correlated with the
earlier player trembles needed to rationalize such recommendations.

26



outcomes as SE.

There are however some important settings where the communication RP does hold for

SE. These include games where no player can perfectly detect another’s deviation, games

with a single agent, and games of pure adverse (a class that includes much of the dynamic

mechanism design literature).

5.2 Discussion

Sequential Equilibrium without Mediator Trembles In defining sequential equilib-

rium in games with communication, one must take a position on whether or not the mediator

is “allowed to tremble,”or more precisely whether players are allowed to attribute off-path

observations to deviations by the mediator instead of or in addition to deviations by other

players. In the current paper, the mediator can tremble. If the mediator cannot tremble, one

obtains a more restrictive version of sequential equilibrium, which in the previous version of

this paper we called “machine sequential equilibrium”(MSE), to indicate that the mediator

follows his equilibrium strategy mechanically and without error. Gerardi and Myerson (2007;

Example 3) showed that, in general, both the communication and implementation RPs can

fail for MSE: that is,
⋃
C∈CMSE (C) ) MSE (C∗) and CPPBE (C∗) )

⋃
C∈CMSE (C).

However, the previous version of this paper showed that Claims 1 and 2 of Proposition 6

hold for MSE, as does a “virtual-implementation”version of Claim 3. Thus, whether the

mediator can tremble or not is “almost irrelevant”in games of pure adverse selection.

Infinite Games The dynamic mechanism design literature often assumes a continuum of

types or actions to facilitate the use of the envelope theorem, while we restrict to finite games

to have a well-defined notion of SE. We conjecture that the communication RP for CPPBE

can be extended to infinite games under suitable measurability conditions. In the current

paper, we prove the communication RP for CPPBE in two steps: (i) we show that players

avoid codominated actions in any CPPBE, and (ii) we appeal to Myerson’s Theorem 2 to

show that the outcome of any NE where players avoid codominated actions is implementable

in a canonical CPPBE. The extension of (i) to infinite games is straightforward; the diffi culty

is extending (ii), as Myerson also worked with finite games, and in particular relied on
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characterizing CPS’s as limits of full-support move distributions, which is not possible in

infinite games. However, we believe Myerson’s results can be generalized to infinite games

by instead relying on an alternative characterization of CPS’s as lexicographic probability

systems (Halpern, 2010). This is an interesting question for future research.

Non-Multistage Games Some recent models of dynamic information design go beyond

multistage games to consider general extensive-form games that lack a common notion of

period (e.g., Doval and Ely, 2019). Modeling communication equilibrium in general extensive-

form games is a long-standing open issue, and different approaches are possible (e.g., Forges,

1986; von Stengel and Forges, 2008). What version of the RP might apply in such games is

thus another open question.

References

[1] Aoyagi, M. (2010), “Information Feedback in a Dynamic Tournament,”Games and
Economic Behavior, 70, 242-260.

[2] Athey, S. and I. Segal (2013), “An Effi cient Dynamic Mechanism,”Econometrica, 81,
2463-2485.

[3] Battaglini, M. (2005), “Long-Term Contracting with Markovian Consumers,”American
Economic Review, 95, 637-658.

[4] Battigalli, P. (1996), “Strategic Independence and Perfect Bayesian Equilibria,”Journal
of Economic Theory, 70, 201-234.

[5] Bergemann, D. and J. Välimäki (2010), “The Dynamic Pivot Mechanism,”Economet-
rica, 78, 771-789.

[6] Bester, H. and R. Strausz (2000), “Imperfect Commitment and the Revelation Principle:
The Multi-Agent Case,”Economics Letters, 69, 165-171.

[7] Bester, H. and R. Strausz (2001), “Contracting with Imperfect Commitment and the
Revelation Principle: The Single Agent Case.”Econometrica, 69, 1077-1098.

[8] Che, Y.-K. and J. Hörner (2018), “Recommender Systems as Mechanisms for Social
Learning,”Quarterly Journal of Economics, 133, 871-925.

[9] Conitzer, V. and T. Sandholm (2004), “Computational Criticisms of the Revelation
Principle,”Proceedings of the 5th ACM conference on Electronic Commerce.

[10] Courty, P. and L. Hao (2000), “Sequential Screening,”Review of Economic Studies, 67,
697-717.

28



[11] Doval, L. and J. Ely (2019), “Sequential Information Design,”working paper.

[12] Dhillon, A. and J.-F. Mertens (1996), “Perfect Correlated Equilibria,”Journal of Eco-
nomic Theory, 68, 279-302.

[13] Ely, J.C. (2017), “Beeps,”American Economic Review, 107, 31-53.

[14] Ely, J., A. Frankel, and E. Kamenica (2015), “Suspense and Surprise,” Journal of
Political Economy, 123, 215-260.

[15] Epstein, L.G. and M. Peters (1999), “A Revelation Principle for Competing Mecha-
nisms,”Journal of Economic Theory, 88, 119-160.
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Appendix: Omitted Proofs

6 Proof of Proposition 3

We give a more formal version of the argument of Forges (1986; Proposition 1).

Fix a gameG and a NE (σ, φ). We construct a canonical NE
(
σ̃, φ̃

)
inG∗ with ρσ̃,φ̃ = ρσ,φ.

Let σ̃ = σ∗: players are honest and obedient at every history. The mediator’s strategy is
constructed as follows:
Denote player i’s period t report by r̃i,t = (ãi,t−1, s̃i,t) ∈ Ai,t−1 × Si,t, with Ai,0 = ∅. In

period 1, given report r̃i,1, the mediator draws a “fictitious report”ri,1 ∈ Ri,1 (the set of pos-
sible reports in G) according to σRi (s̃i,1) (player i’s equilibrium strategy in G, given period-1
signal s̃i,1), independently across players. Given the resulting vector of fictitious reports
r1 = (ri,1)i, the mediator draws a vector of “fictitious messages”m1 ∈ M1 (the set of possi-
ble messages in G) according to φ (m1|r1). Next, given (s̃i,1, ri,1,mi,1), the mediator draws an
action recommendation m̃i,1 ∈ Ai,1 according to σAi (m̃i,1|s̃i,1, ri,1,mi,1), independently across
players. Finally, the mediator sends message m̃i,1 to player i.
Recursively, for t = 2, . . . , T , given player i’s reports r̃i,τ = (ãi,τ−1, s̃i,τ ) for each τ ≤ t

and the fictitious reports and messages (ri,τ ,mi,τ ) for each τ < t, the mediator draws ri,t ∈
Ri,t according to σRi (s̃ti, r

t
i ,m

t
i, ã

t
i, s̃i,t), independently across players.

21 Given the resulting
vector rt = (ri,t)i, the mediator draws mt ∈ Mt according to φ(mt|rt,mt, rt). Next, given
(s̃i,t, ri,t,mi,t), the mediator draws m̃i,t ∈ Ai,t according to σAi (m̃i,t|s̃ti, rti ,mt

i, ã
t
i, s̃i,t, ri,t,mi,t),

independently across players.22 Finally, the mediator sends message m̃i,t to player i.

That this profile satisfies ρ(σ̃,φ̃) = ρ(σ,φ) follows by induction from the beginning of the
game: given that players are honest and obedient, (r̃ti , r

t
i ,m

t
i) equals player i’s period-t history

in the non-canonical game G, so, conditional on each vector (r̃ti , r
t
i ,m

t
i)i, the variables ri,t,

mi,t, and ai,t are all chosen with the same probabilities as in G.
We claim that the profile is also a NE. To see this, fix a player i. We show that player

i cannot attain a payoff above ui
(
σ̃, φ̃

)
from using any strategy, even if the notion of a

“strategy” for player i is extended to allow player i to observe (si,t, r̃i,t, ri,t,mi,t, m̃i,t, ai,t)
in each period t (rather than only (si,t, r̃i,t, m̃i,t, ai,t)), and furthermore to directly choose
ri,t as a function of (sti, r̃

t
i , r

t
i ,m

t
i, m̃

t
i, a

t
i, si,t, r̃i,t) (rather than having the mediator choose ri,t

as a pre-specified function of (r̃ti , r
t
i ,m

t
i, r̃i,t)). (In this thought experiment, the rest of the

mediator’s strategy– i.e., the determination of r−i,t, mt, and m̃t as a function of the other
variables available to the mediator– is held constant.) Let Σ̄i be the set of such extended
strategies for player i.
We first note that, for any extended strategy σ̄i, there is another extended strategy

σ̄′i ∈ Σ̄i that does not condition on m̃t
i and satisfies ρ

σ̄′i,σ̃−i,φ̃ = ρσ̄i,σ̃−iφ̃. This follows be-
cause neither the mediator nor any other player j 6= i conditions on m̃t

i; formally, such
a strategy can be constructed by letting player i draw an alternative message m̂i,t with

21If (ŝti, â
t
i, ŝi,t) is not a possible history for player i (that is, if there is no

(
st−i, a

t
−i, s−i,t

)
and

(
σ′, φ′

)
such that Pr(σ

′,φ′)(
(
ŝti, s

t
−i
)
,
(
âti, a

t
−i
)
, (ŝi,t, s−i,t)) > 0), the mediator can draw ri,t ∈ Ri,t arbitrarily (e.g.,

uniformly at random).
22Again, if (ŝti, â

t
i, ŝi,t) is not a possible history, the mediator can draw m̃i,t randomly.
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probability σAi (m̂i,t|s̃ti, rti ,mt
i, ã

t
i, s̃i,t, ri,t,mi,t) at each history (s̃ti, r

t
i ,m

t
i, ã

t
i, s̃i,t, ri,t,mi,t), and

subsequently follow σ̄i with m̂i,t in place of m̃i,t. Next, for any extended strategy σ̄′i that
does not condition on m̃t

i, there exists another extended strategy σ̄
′′
i that also does not con-

dition on r̃ti and satisfies ρ
(σ̄′′i ,σ̃−i,φ̃) = ρ(σ̄′i,σ̃−i,φ̃). This follows because, given that rti is now

under the control of player i rather than the mediator, r̃ti enters the mediator’s strategy only
through the determination of m̃t

i, which strategy σ̄
′
i does not condition on; formally, such a

strategy can be constructed by letting player i draw an alternative report r̂i,t with probabil-
ity σ̄′Ri (r̂i,t|sti, r̂ti , rti ,mt

i, m̂
t
i, a

t
i, si,t) at each history (sti, r̂

t
i , r

t
i ,m

t
i, m̂

t
i, a

t
i, si,t). Here, r̂

t
i = ∅ for

t = 1 and for t ≥ 2, recursively replace r̃t with r̂t.
Note that an extended strategy for player i that does not condition on m̃t

i or r̃
t
i can

be viewed as, for each t, a mapping from (Sti , R
t
i,M

t
i , A

t
i, Si,t) to Ri,t, and a mapping from

(Sti , R
t
i,M

t
i , A

t
i, Si,t, Ri,t,Mi,t) to Ai,t– or, equivalently, as a strategy in the non-canonical

game G. Moreover, for any such strategy σ̄i, we have ρσ̄i,σ̃−i,φ̃ = ρσ̄i,σ−i,φ, by the same
reasoning as for why ρσ̃,φ̃ = ρσ,φ. Since σ is a NE of G, it follows that player i cannot attain
a payoff above ui

(
σ̃, φ̃

)
in the canonical game by using any extended strategy that does

not condition on m̃t
i or r̃

t
i . Hence, player i cannot attain such a payoff by using any actually

available strategy in the canonical game. That is, σ̃ is a NE in the canonical game.

7 Results for CPPBE

This section contains our analysis of CPPBE, culminating in the proofs of Propositions 1
and 4.

7.1 Quasi-Strategies and Quasi-CPPBE

Fix a game G = (Γ, C). For each player i, a quasi-strategy (χi, Ji) for player i consists of

1. A set of histories Ji =
∏T+1

t=1 J
R,t
i ∪ JR,t+i ∪ JA,ti ∪ JA,t+i with JR,ti ⊂ HR,t

i , JR,t+i ⊂
HR,t
i ×Ri,t, J

A,t
i ⊂ HA,t

i , JA,t+i ⊂ HA,t
i ×Ai,t for each t, such that (i) for every h

R,t
i ∈ J

R,t
i

there exists hT+1
i ∈ JT+1

i that coincides with hR,ti up to period t, and (ii) for every
hT+1
i ∈ JT+1

i and every hR,ti ∈ HR,t
i that coincides with hT+1

i up to period t, we have
hR,ti ∈ J

R,t
i , (iii) the same conditions hold for JR,t+i , JA,ti , JA,t+i .

2. A function χi =
(
χR,ti , χA,ti

)T
t=1
, where χR,ti : J ti → ∆ (Ri,t) and χ

A,t
i : J ti → ∆ (Ai,t) for

each t.

Let J =
∏N

i=0 Ji. Note that h
t ∈ J t if and only if hti ∈ J ti for all i.

A quasi-strategy for the mediator (ψ, P, F |P ) consists of

1. A set of reports P =
∏T+1

t=1 P
t with P t ⊂ Rt for each t, such that for every rt ∈ P t

there exists rT+1 ∈ P T+1 that coincides with rt up to period t.

2. A set F |P , where each f ∈ F |P consists of, for each t = 1, . . . , T , a function ft : P t →
Mt.
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3. A probability distribution ψ ∈ ∆ (F |P ).

We say a quasi-strategy profile (χ, ψ, J, P, F |P ) is valid if

1. For each f ∈ F |P , ht ∈ J t, i 6= 0, σi ∈ Σi, and
(
sT+1
−i , r

T+1,mT+1
−i , a

T+1
−i
)
with either(

sT+1
−i , r

T+1
−i ,mT+1

−i , a
T+1
−i
)
6∈ JT+1

−i or rT+1 6∈ P , we have Pr(σi,χ−i,f)
((
sT+1
−i , r

T+1,mT+1
−i , a

T+1
−i
)
|ht
)

=
0. That is, no unilateral player-deviation leads to a history where either the media-
tor’s or another player’s quasi-strategy is undefined. This implies in particular that
Pr(σi,χ−i,f) (·|ht) is a well-defined probability distribution on Z, and ūi

(
σi, χ−i, f |hA,t

)
is a well-defined expected payoff.

2. For each i 6= 0 and hti ∈ J ti , there exist ht−i ∈ J t−i and f ∈ F |P such that p(sτ |xτ ) > 0
andmi,τ = f (rτ+1) for all τ ≤ t, where sτ , xτ , and rτ are the corresponding components
of history

(
hti, h

t
−i
)
. That is, every history in J ti is “explicable”by some opponents’

history ht−i ∈ J t−i.

Finally, a quasi-CPPBE
(
χ, ψ, J, P, F |P , ψ̄

)
is a valid quasi-strategy profile (χ, ψ, J, P, F |P )

together with a CPS ψ̄ on F |P × J such that no player has a profitable deviation from a
history in Ji:

1. [CPS consistency] For all f, t, hR,ti ∈ J
R,t
i , hA,ti ∈ J

A,t
i , hR,t ∈ JR,t, hA,t ∈ JA,t, rt,mt, at, st+1,

we have

ψ̄ (f) = ψ (f) , ψ̄
(
rt|f, hR,t

)
=
∏N

i=0 χ
R
i

(
ri,t|hR,ti

)
,

ψ̄
(
at|f, hA,t

)
=
∏N

i=0 χ
A
i

(
ai,t|hA,ti

)
, ψ̄

(
st+1|f, hA,t, at

)
= p

(
st+1|̊hA,t, at

)
ψ̄
(
mt|f, hR,t, rt

)
= 1{mt=f(rt,rt)},

2. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ J

R,t
i , we have∑

f∈F |P ,hR,t∈J

ψ̄
(
f, hR,t|hR,ti

)
ūi
(
χ, f |hR,t

)
≥

∑
f∈F |P ,hR,t∈J

ψ̄
(
f, hR,t|hR,ti

)
ūi
(
σ′i, χ−i, f |hR,t

)
.

(8)

3. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ J

A,t
i , we have∑

f∈F |P ,hA,t∈J

ψ̄
(
f, hA,t|hA,ti

)
ūi
(
χ, f |hA,t

)
≥

∑
f∈F |P ,hA,t∈J

ψ̄
(
f, hA,t|hA,ti

)
ūi
(
σ′i, χ−i, f |hA,t

)
.

(9)

Let ρ(χ,ψ) ∈ ∆ (X) denote the outcome distribution induced by valid quasi-strategy profile
(χ, ψ). The following lemma says that it is without loss to consider quasi-CPPBE rather
than fully specified CPPBE.

Lemma 1 For any game G = (Γ, C) and any outcome distribution ρ ∈ ∆ (X), we have
ρ ∈ CPPBE(C) if and only if ρ = ρ(χ,ψ) for some quasi-CPPBE profile

(
χ, ψ, J, P, F |P , ψ̄

)
.
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Proof. Fix a game G. One direction of the lemma is immediate: If (σ, µ, µ̄) is a CPPBE in
G and we let χ = σ, ψ = µ, J = Z, P = R, F |P = F , and ψ̄ = µ̄, then

(
χ, ψ, J, P, F |P , ψ̄

)
is a quasi-CPPBE with ρ(χ,ψ) = ρ(σ,µ).
For the converse, fix a quasi-CPPBE

(
χ, ψ, J, P, F |P , ψ̄

)
. We say that a move distribution

on FP × J is a triple
(
αF , αR, αA

)
, where αF ∈ ∆(F |P ), αR =

(
αR,t

)T
t=1

with αR,t : F |P ×
JR,t → ∆(Rt), and αA =

(
αA,t

)T
t=1

with αA,t : F |P × JA,t → ∆(At). A move distribution
on FP × J has full support if (i) for each f ∈ F |P , αF (f) > 0, (ii) for each f ∈ F |P and
hR,t ∈ JR,t, αR,t(rt|f, hR,t) > 0 if and only if (hR,t, rt) ∈ JR,t, and (iii) for each f ∈ F |P and
hA,t ∈ JA,t, αA,t(at|f, hA,t) > 0 if and only if (hA,t, at) ∈ JA,t.
By Myerson’s Theorem 1, every CPS is the limit of conditional probabilities derived

from a sequence of full support move distributions. Thus, there exists a sequence of move
distributions

(
αF,k, αR,k, αA,k

)
k∈N with full support on F |P ×J such that (i) α

F,k(f)→ ψ (f)

for all f ∈ F |P , (ii) αR,k(rt|f, hR,t)→
∏N

i=0 χ
R
i

(
ri,t|hR,ti

)
for all rt ∈ Rt, h

R,t ∈ JR,t, and (iii)
αA,k(at|f, hA,t)→

∏N
i=0 χ

A
i (ai,t|hA,ti ) for all at ∈ At, hA,t ∈ JA,t. For each k, let

εk = min
f∈F |P ,t,(hR,t,rt,mt,at)∈Jt+1

min{αF,k,t(f), αR,k,t(rt|f, hR,t), αA,k,t(at|f, hR,t, rt,mt)}. (10)

Given f ∈ F |P , let F (f) = {f ′ ∈ F : f ′(ht) = f (ht) ∀t, ht ∈ J t}. For k ∈ N, consider
the following auxiliary game

(
Γk, C

)
:

1. The mediator uses a mixed mediation strategy µk ∈ ∆ (F ) defined as follows: (i) with
probability 1 − εk

k
, draw f ∈ F |P according to αF,k ∈ ∆(F |P ), and then draw f ′ ∈ F

uniformly at random from F (f); (ii) with probability εk
k
, draw f ′ ∈ F uniformly at

random from F .

2. Each player i chooses probability distributions σki (·|h
R,t
i ) ∈ ∆(Ri,t) and σki (·|h

A,t
i ) ∈

∆(Ai,t) for each t, h
R,t
i ∈ HR,t

i \J
R,t
i , hA,ti ∈ HA,t

i \J
A,t
i . At histories hti ∈ J ti , player i

has no choice to make, and we formally set σki (·|h
R,t
i ) = χi

(
·|hR,ti

)
and σki (·|h

A,t
i ) =

χi

(
·|hA,ti

)
.

3. Given f (drawn from µk) and strategy profile σk, the distribution ofHT+1 is determined
recursively as follows:

Given f ∈ F and hR,t ∈ HR,t, each rt ∈ Rt is drawn with probability(
1− εk

k

∣∣{r̃t ∈ Rt :
(
hR,t, r̃t

)
6∈ JR,t+}

∣∣)αR,k(rt|f, hR,t) if hR,t ∈ JR,t ∧
(
hR,t, rt

)
∈ JR,t+,

εk
k

if hR,t ∈ JR,t+ ∧
(
hR,t, rt

)
6∈ JR,t+,∏N

i=0

((
1− εk

k
|Ri,t|

)
σR,ki (ri,t|hR,ti ) + εk

k

)
if hR,t 6∈ JR,t.
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Given f ∈ F and hA,t ∈ HA,t, each at ∈ At is drawn with probability(
1− εk

k

∣∣{(ãt, s̃t+1) ∈ At × St+1 :
(
hR,t, ãt, s̃t+1

)
6∈ JA,t+}

∣∣)
×αA,k(at|f, hA,t)

if hA,t ∈ JA,t ∧
(
hR,t, at

)
∈ JA,t+,

εk
k

if hA,t ∈ JA,t ∧
(
hR,t, at

)
6∈ JA,t+,∏N

i=0

((
1− εk

k
|Ai,t|

)
σR,ki (ri,t|hR,ti ) + εk

k

)
if hA,t 6∈ JA,t.

Then, given at ∈ At, each st+1 ∈ St+1 is drawn with probability p
(
st+1|̊hA,t, at

)
.

4. Given realized outcome x, player i’s payoff is ui(x).

Note that the strategy set in
(
Γk, C

)
is a product of simplices. In addition, each player

i’s utility is continuous in σk and affi ne (and hence quasi-concave) in σki . Hence, the Debreu-
Fan-Glicksberg theorem guarantees existence of a NE in

(
Γk, C

)
. Moreover, since

(
µk, σk

)
has full support on F × Z for any strategy profile σk in

(
Γk, C

)
, Bayes’rule defines a CPS

µ̄k on F × Z.
So let (µk, σk, µ̄k)k denote a sequence of NE σk and corresponding CPS’s µ̄k in

(
Γk, C

)
.

Taking a subsequence if necessary to guarantee convergence, let (µ, σ, µ̄) = limk(µ
k, σk, µ̄k).

We claim that (µ, σ, µ̄) is a CPPBE in (Γ, C). Since µ̄ is a CPS as the limit of conditional
probabilities, it remains to verify sequential rationality. We consider reporting histories hR,ti ;
the argument for acting histories hA,ti is symmetric.
There are two cases, depending on whether or not hR,ti ∈ J

R,t
i . If hR,ti /∈ JR,ti , then hT+1

i /∈
JT+1
i for all hT+1

i that follow hR,ti , so by inspection player i’s expected payoff conditional on

hR,ti is continuous in µk, σk, εk, and k. Since σki
(
·|hR,ti

)
is sequentially rational in

(
Γk, C

)
(as

(
µk, σk

)
is a NE in

(
Γk, C

)
with full support), it follows that σi

(
·|hR,ti

)
is sequentially

rational in (Γ, C).
Now consider the case where hR,ti ∈ J

R,t
i . Note that, for each hT+1

i ∈ JT+1
i and

(
f, hT+1

−i
)
6∈

F |P × JT+1
−i , there exists

(
f ′, h′T+1

−i
)
∈ F |P × JT+1

−i such that

lim
k

µ̄k(f, hT+1
i , hT+1

−i )

µ̄k(f ′, hT+1
i , h′T+1

−i )
= 0.

This follows because in
(
Γk, C

)
each “tremble” leading to a history outside J occurs with

probability at most εk/k, while every history hT+1
i ∈ JT+1

i occurs with positive probability
given move distribution

(
αF,k, αR,k, αA,k

)
(this is an implication of the second condition in

the definition of a valid quasi-strategy profile), and with this distribution each move occurs
with probability at least εk.
Therefore, for each f ∈ F |P and hR,ti ∈ J

R,t
i , we have µ̄(f, hR,t−i |h

R,t
i ) = ψ̄(f, hR,t−i |h

R,t
i ), and

the conditional probability that
(
f, hR,ti

)
∈ F |P × JR,ti equals 1. Hence, the fact that (8)

holds with CPS ψ̄ implies that σi(·|hR,ti ) = χi

(
·|hR,ti

)
is sequentially rational in (Γ, C).
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7.2 Quasi-CPPBE and Mediation Ranges

The following lemma says that the ability to restrict the mediator’s messages to lie in some
mediation range does not expand the set of implementable outcomes. Let Q (G) denote the
set of all possible mediation ranges in game G.

Lemma 2 For any game G, we have CPPBE (G) =
⋃
Q∈Q(G) CPPBE (G|Q).

Proof. If we let Q be the trivial mediation range that never excludes any messages
(i.e., Qi (r

t
i ,m

t
i, ri,t) = Mi,t for all i, t, rti ,m

t
i, ri,t), then G = G|Q. Hence, CPPBE (G) ⊆⋃

Q∈Q(G) CPPBE (G|Q).
It remains to show that, for any mediation rangeQ, we haveCPPBE (G|Q) ⊆ CPPBE (G).

Fix a mediation range Q and a CPPBE (σ, µ, µ̄) in G|Q. For each i and t, let

JR,ti =
{
hR,ti ∈ H

R,t
i : mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ ) ∀τ < t

}
and

JA,ti =
{
hA,ti ∈ H

A,t
i : mi,τ ∈ Qi (r

τ
i ,m

τ
i , ri,τ ) ∀τ ≤ t

}
,

let JR,t+i =
{(
hR,ti , ri,t

)
: hR,ti ∈ J

R,t
i

}
and JA,t+i =

{(
hA,ti , ai,t

)
: hA,ti ∈ J

A,t
i

}
, let P = R,

and let

F |P =
T∏
t=1

{
ft :

t∏
τ=1

Rτ → Q
(
rt, (fτ (rτ , rτ ))

t−1
τ=1 , rt

)}
.

Note that J = Z|Q (the set of terminal nodes in G|Q) and F |P = F |Q (the set of pure
mediation strategies in G|Q). Hence, (σ, J) is a player quasi-strategy profile in G, (µ, P, F |P )
is a quasi-strategy for the mediator inG, and µ̄ is a CPS on F |P×J inG. Moreover, the quasi-
strategy profile (σ, µ, J, P, F |P ) is valid in G, since (i) histories outside J cannot arise under
any mediation strategy in F (so the first condition in the definition of a valid quasi-strategy
profile is satisfied) and (ii) every message history in J can arise for some mediation strategy
in F (so the second condition is also satisfied). Finally, the conditions for (σ, µ, µ̄) to be a
CPPBE in G|Q are precisely the conditions for (σ, µ, J, P, F |P , µ̄) to be a quasi-CPPBE in
G. Hence, the latter is a quasi-CPPBE in G, so Lemma 1 implies that ρ(σ,µ) ∈ CPPBE (G).

7.3 SCE Implies Quasi-CPPBE

Lemma 3 For any game G and any SCE (µ,Q, µ̄), there exists a canonical CPPBE with
outcome distribution ρ(σ∗,µ).

Proof. In the canonical game G∗, let

JR,ti =

{
hR,ti ∈ H

R,t
i :

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r
τ
i ,m

τ
i , ri,τ ) ∀τ < t

}
and

JA,ti =

{
hA,ti ∈ H

A,t
i :

ri,τ = (ai,τ−1, si,τ ) and mi,τ ∈ Qi (r
τ
i ,m

τ
i , ri,τ ) ∀τ ≤ t

}
,
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let

JR,t+i =
{(
hR,ti , ri,t

)
: hR,ti ∈ J

R,t
i and ri,t = (ai,t−1, si,t)

}
and

JA,t+i =
{(
hA,ti , ai,t

)
: hA,ti ∈ J

A,t
i and ai,t ∈ Ai,t

}
,

let P = R, and let

F |P =
T∏
t=1

{
ft :

t∏
τ=1

Rτ → Q
(
rt, (fτ (rτ , rτ ))

t−1
τ=1 , rt

)}
.

Consider the quasi-strategy profile (χ, ψ, J, P, F |P ) where χi is honest and obedient at each

hti ∈ J ti (i.e., χ
R,t
i

(
hR,ti

)
= (ai,t−1, si,t) for all h

R,t
i ∈ JR,ti and χA,ti

(
hA,ti

)
= mi,t for all

hA,ti ∈ JA,ti ). This quasi-strategy profile is valid, since (i) histories outside Ji can arise
only if player i is dishonest or the mediator uses a strategy outside F |P and (ii) every
message history in J can arise for some mediation strategy in F |P . Moreover, by inspection,
(χ, ψ, J, P, F |P , µ̄) is a quasi-CPPBE in G∗ if and only if (µ,Q, µ̄) is a SCE. Hence, the former
is a quasi-CPPBE in G∗, so Lemma 1 implies that ρ(χ,ψ) ∈ CPPBE (C∗).

7.4 CPPBE and Codominated Actions

We now show that, in any CPPBE, players do not take codominated actions at any history.

Lemma 4 For any game G and CPPBE (σ, µ, µ̄), suppσi(h
A,t
i )∩Di(̊h

A,t
i ) = ∅ for all i and

hA,ti ∈ H
A,t
i .

7.4.1 Proof of Lemma 4

Fix a game G and a CPPBE (σ, µ, µ̄). The sequential rationality condition at history hA,ti is∑
f∈F,hA,t∈HA,t,x∈X

µ̄(f, hA,t|hA,ti ) Prσ
(
x|f, hA,t

)
ui (x)

= max
σ′i∈Σi

∑
f∈F,hA,t∈HA,t,x∈X

µ̄(f, hA,t|hA,ti ) Prσ
′
i,σ−i

(
x|f, hA,t

)
ui (x) . (11)

Let Σ∗i,t denote the set of continuation strategies for player i starting with the period t action
phase in the canonical game G∗ that do not depend on mt

i. Let F
∗ denote the set of pure

mediation strategies in G∗. We wish to prove the following lemma, which replaces hA,t in
(11) with its payoff-relevant component (xt, st):

Lemma 5 There exists a CPS µ̂ on F ∗ × X t × St × At such that, for each i, xti ∈ X t
i ,
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si,t ∈ Si,t, m̃i,t ∈
⋃
hA,ti :̊hA,ti =(xti,si,t)

suppσAi (hA,ti ), and σ′i ∈ Σ∗i,t, we have∑
f̂∈F ∗,(xt,st)∈Xt×St,x∈X

µ̂(f̂ , xt, st|xti, si,t, m̃i,t) Prσ
∗
(
x|f̂ , xt, st

)
ui (x)

≥
∑

f̂∈F ∗,(xt,st)∈Xt×St,x∈X

µ̂(f̂ , xt, st|xti, si,t, m̃i,t) Prσ
′
i,σ
∗
−i

(
x|f̂ , xt, st

)
ui (x) . (12)

Inequality (12) is equivalent to (7), the sequential rationality of obedience condition in
the definition of SCE. Hence, by Myerson’s Lemma 1, (12) implies that m̃i,t /∈ Di (x

t
i, si,t).

This completes the proof of Lemma 4.
To prove Lemma 5, we define an auxiliary game Gk and construct an equilibrium in Gk

for which (11) is the sequential rationality constraint and (12) is a relaxed version of this
constraint. The game Gk is equal to the restriction of G∗ from periods t to T , with an “initial
state”(xt, st) drawn from µ̄k(xt, st), where

(
µ̄k
)
k∈N is a sequence of full-support CPS’s that

converge to µ̄ as k → ∞. When (xt, st) is drawn, each player i observes (xti, si,t), and the
mediator observes (xt, st). Finally, the mediator’s strategy is fixed as follows: after observing
(xt, st), the mediator draws a mediation plan f and a “fictitious history”hA,t according to
µ̄k(f, hA,t|xt, st). In period t, the mediator recommends m̃i,t ∈ Ai,t according to σAi (m̃i,t|hA,ti ),
independently across players. For the rest of the game, the mediator takes some behavioral
strategy φf,hA,t , independent of k.

Lemma 6 There exists (φf,hA,t)f∈F,hA,t∈HA,t such that, for each (xti, si,t) and
m̃i,t ∈

⋃
hA,ti :̊hA,ti =(xti,si,t)

suppσi(h
A,t
i ), we have∑

f∈F,hA,t∈HA,t,x∈X

µ̄(f, hA,t|xti, si,t, m̃i,t) Prσ
∗ (
x|φf,hA,t , hA,t, m̃i,t

)
ui (x)

= max
σ′i∈Σ∗i,t

∑
f∈F,hA,t∈HA,t,x∈X

µ̄(f, hA,t|xti, si,t, m̃i,t) Prσ
′
i,σ
∗
−i
(
x|φf,hA,t , hA,t, m̃i,t

)
ui (x) , (13)

where σ∗ is the fully canonical strategy and µ̄ is the mediator’s limit strategy, given by

µ̄(f, hA,t |̊hA,ti , m̃i,t) = lim
k

µ̄k (̊hA,t |̊hA,ti )µ̄k(f, hA,t |̊hA,t)σAi (m̃i,t|hA,ti )

µ̄k (̊hA,ti )µ̄k(f, hA,ti |̊h
A,t
i )σAi (m̃i,t|hA,ti )

.

Proof. Construction of φf,hA,t: This is similar to the usual revelation principle ar-
gument (e.g., the proof of Proposition 3). Denote player i’s period t + 1 report by by
r̃i,t+1 ∈ Ai,t×Si,t+1. Given (hA,ti , r̃i,t+1), the mediator draws a “fictitious report”ri,t+1 ∈ Ri,t+1

according to σRi,t+1(hA,ti , r̃i,t+1).23 Next, given rt+1, the mediator calculates a vector of “fic-
titious messages”mt+1 = f(hA,t, rt+1). Finally, the mediator draws action recommendation
m̃i,t+1 ∈ Ai,t+1 according to σAi (hA,ti , ãi,t, s̃i,t+1, ri,t+1,mi,t+1), independently across players,
and sends message m̃i,t+1 to player i.

23As in the proof of Proposition 3, ri,τ and (in what follows) m̃i,τ can be chosen arbitrarily if player i’s
fictitious history is infeasible.
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Recursively, for each t′ > t+1, given player i’s reports r̃i,τ = (ãi,τ−1, s̃i,τ ) for each t ≤ τ ≤
t′ and the fictitious reports and messages (ri,τ ,mi,τ ) for each t ≤ τ < t′, the mediator draws
ri,t′ ∈ Ri,t′ according to σRi (hA,ti , ãi,t, s̃i,t+1, ri,t+1,mi,t+1, . . . , ri,t′−1,mi,t′−1, ãi,t′−1, s̃i,t′). Next,
given rt′ ,the mediator calculates mt′ = f(hA,t, rt+1, . . . , rt′). Finally, the mediator draws
m̃i,t′ ∈ Ai,t′ according to σAi (hA,ti , ãi,t, s̃i,t+1, . . . , ri,t′ ,mi,t′), independently across players, and
sends message m̃i,t′ to player i.
Proof of (13): Suppose (13) is violated for some (xti, si,t) and m̃i,t ∈

⋃
hA,ti :̊hA,ti =(xti,si,t)

suppσi(h
A,t
i ).

Then, there exist hA,ti with µ̄(hA,ti |̊h
A,t
i , m̃i,t) > 0 and σ′i ∈ Σ∗i,t such that∑

f∈F,hA,t,x∈X

µ̄(f, hA,t|hA,ti , m̃i,t) Prσ
∗ (
x|φf,hA,t , hA,t, m̃i,t

)
ui (x)

<
∑

f∈F,hA,t,x∈X

µ̄(f, hA,t|hA,ti , m̃i,t) Prσ
′
i,σ
∗
−i
(
x|φf,hA,t , hA,t, m̃i,t

)
ui (x) . (14)

By definition of µ̄,

µ̄(hA,ti |̊h
A,t
i , m̃i,t) = lim

k

µ̄k(hA,ti |̊h
A,t
i )σAi (m̃i,t|hA,ti )∑

h′A,ti
µ̄k(h′A,ti |̊h

A,t
i )σAi (m̃i,t|h′A,ti )

.

Hence, µ̄(hA,ti |̊h
A,t
i , m̃i,t) > 0 implies m̃i,t ∈ suppσAi (hA,ti ).

Note that φf,hA,t is constructed so that the conditional distribution of x given f , h
A,t,

and m̃i,t (when players follow σ∗) is the same as the conditional distribution of x given (f, σ)

and realization ai,t = m̃i,t ∈ suppσAi (hA,ti ). Hence, in order to prove (13), it suffi ces to show
that there exists a strategy in G∗ that attains the expected payoff in the second line of (14).
The argument is similar to the proof of Proposition 3. Suppose that in game Gk player i

can additionally observe the fictitious information hA,ti , (ri,τ )
T
τ=t+1, and (mi,τ )

T
τ=t+1. We can

view any strategy σ′i in G
k as such an extended strategy, one that simply ignores the fictitious

information. Now, as in the proof of Proposition 3, there is another extended strategy σ′′i
that does not condition on (m̃i,τ )τ≥t and satisfies ρ

σ′i,σ−i,f = ρσ
′′
i ,σ−i,f for each f (conditional

on hA,ti , m̃i,t). And, as in the same proof, there is yet another extended strategy σ′′′i ∈ Σ̄i

that does also not condition on (r̃i,τ )τ≥t and satisfies ρ
σ′i,σ−i,f = ρσ

′′′
i ,σ−i,f . We can now view

σ′′′i as a strategy in G, and it attains the higher expected payoff in (14). This contradicts
(11), and therefore establishes (13).
Given (13), we establish (12) by applying Kuhn’s theorem and summing over payoff-

irrelevant information.
Proof of Lemma 5. By Kuhn’s theorem, for each k, there exists a mixed mediation
strategy µk ∈ ∆ (F ∗) such that∑
f∈F,hA,t∈HA,t

µ̄k
(
f, hA,t, m̃t|xt, st

)
Prσ

(
x|φf,hA,t , hA,t, m̃t

)
=
∑
f̂∈F ∗

µk
(
f̂ |xt, st

)
Prσ

(
x|f̂ , xt, st

)
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for each (xt, st), m̃t, x, and σ ∈ Σ∗.24 By Bayes rule, this implies∑
f,hA,t

lim
k
µ̄k(f, hA,t|xti, si,t, m̃i,t) Prσ

(
x|φf,hA,t , hA,t, m̃i,t

)
=

∑
f̂∈F ∗

lim
k
µ̂k(f̂ , xt, st|xti, si,t, m̃i,t) Prσ

(
x|f̂ , xt, st

)
, (15)

where µ̂k is determined by µ̄k, µk, and Bayes’rule:

µ̂k(f̂ , xt, st|xti, si,t, m̃i,t) =
µ̄k (xt, st)µ

k
(
f̂ |xt, st

)
∑

f̂ ′,x′t−i,s
′
−i,t:

f̂ ′i(xti,x′t−i,si,t,s′−i,t)=m̃i,t

µ̄k
(
xti, x

′t
−i, si,t, s

′
−i,t
)
µk
(
f̂ ′|xti, x′t−i, si,t, s′−i,t

) .

Define µ̂ = limk→∞ µ̂
k. By (15), for each σ ∈ Σ∗ we have∑

f,hA,t,x

lim
k
µ̄k(f, hA,t|xti, si,t, m̃i,t) Prσ

(
x|φf,hA,t , hA,t, m̃i,t

)
ui (x)

=
∑

f̂∈F ∗(xt,st),x

lim
k
µ̂k(f̂ , xt, st|xti, si,t, m̃i,t) Prσ

(
x|f̂ , xt, st

)
ui (x) .

Hence, (13) implies (12).

7.5 Proof of Propositions 1 and 4

Proposition 1: By Lemma 3, for each SCE µ, there exists ρ ∈ CPPBE (C∗) with ρ = ρσ
∗,µ.

Conversely, take ρ ∈ CPPBE(C∗). By Lemma 4, players do not take codominated actions
at any history. Since every CPPBE is a NE, Proposition 3 implies that there exists a fully
canonical NE with outcome ρ where players do not take codominated actions at any history.
Hence, by Proposition 2, there exists a SCE µ with ρ = ρσ

∗,µ.
Proposition 4: Since Lemma 4 does not require that C = C∗, the same argument just

given implies that, for any C and ρ ∈ CPPBE(C), there exists a SCE µ with ρ = ρσ
∗,µ.

Hence, by Lemma 3, there exists a canonical CPPBE with outcome ρ.

8 Proof of Proposition 5

While
⋃
C∈C SE (C) ) SE (C∗) implies that the communication RP does not hold for SE,

for expositional clarity we prove the proposition in two steps: we first prove that, in the
opening example, the outcome distribution 1

2
(A,A,N) + 1

2
(B,B,N) is implementable in

non-canonical SE but not in canonical SE; and then we extend the example to prove that⋃
C∈C SE (C) ) SE (C∗).

24On the right-hand side, we omit the period t recommendation m̃t, as it equals f̂(xt, st).
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8.1 Failure of the Communication RP in the Opening Example

Possibility for Non-Canonical SE By Propositions 1 and 2 and Theorem 7, we need
only construct a canonical NE that implements 1

2
(A,A,N) + 1

2
(B,B,N) in which players

do not take codominated actions at any history. Such a NE is: the mediator recommends
m1 = A and m1 = B with equal probability, plays m0 = m1, and recommends m2 = N if
s = 0 and m2 = P if s = 1. Note that each a1 ∈ {A,B} and N are never codominated, and
a2 = P is not codominated after s = 1 as P is optimal if (a1, θ) = (C, p).

Impossibility for Canonical SE Since a1 = C is strictly dominated, if a canonical SE
implements 1

2
(A,A,N) + 1

2
(B,B,N), the mediation range Q1 (∅) must be equal {A,B}.

That is, the mediator can never recommend m1 = C (even as the result of a tremble).
Note that, for each strategy for the mediator and player 2 and each realization of(

m1, â1, θ̂, s
)
, the resulting probability Pr

(
m2 = P |m1, a1, θ, â1, θ̂, s

)
does not depend on

(a1, θ). Now, conditional on reaching history (m1, a1 = C, θ), player 1 chooses her report(
â1, θ̂

)
to minimize Pr (m2 = P ) (since, in a canonical equilibrium, a2 = P iffm2 = P ). Since

a1 = C implies s = 1, and when a1 = C player 1 must be willing to report
(
â1, θ̂

)
= (C, θ)

for each value of θ, we have

Pr
(
m2 = P |m1, â1 = C, θ̂ = n, s = 1

)
= Pr

(
m2 = P |m1, â1 = C, θ̂ = p, s = 1

)
.

In addition, if a canonical SE implements 1
2

(A,A,N) + 1
2

(B,B,N), it must satisfy

Pr (m2 = P |m1, â1 = C, s = 1) > 0

for each m1 ∈ {A,B}. Otherwise, given that player 2 never plays a2 = P with positive
probability when s = 0 (since s = 0 implies a1 6= C), player 1 could guarantee a payoff
of 1

2
by playing A and B with equal probability and reporting â1 = C. Hence, for each

m1 ∈ {A,B},

Pr
(
m2 = P |m1, â1 = C, θ̂ = n, s = 1

)
= Pr

(
m2 = P |m1, â1 = C, θ̂ = p, s = 1

)
> 0.

Since player 1 honestly reports each (a1, θ) in a canonical SE,

Pr (m2 = P |m1, a1 = C, θ = n, s = 1) = Pr (m2 = P |m1, a1 = C, θ = p, s = 1) > 0.

Hence, along any sequence of completely mixed profiles indexed by k converging to the
equilibrium,

lim
k

Prk (m2 = P |m1, a1 = C, θ = n, s = 1) = lim
k

Prk (m2 = P |m1, a1 = C, θ = p, s = 1) > 0.

(16)
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Therefore,

Pr ((a1, θ) = (C, p) |s = 1,m2 = P )

= lim
k

Prk ((a1, θ) = (C, p) , s = 1,m2 = P )

Prk (s = 1,m2 = P )

= lim
k

Prk (m2 = P | (a1, θ) = (C, p) , s = 1) Prk ((a1, θ) = (C, p) , s = 1)(
Prk (m2 = P | (a1, θ) = (C, p) , s = 1) Prk ((a1, θ) = (C, p) , s = 1)

+ Prk (m2 = P | (a1, θ) 6= (C, p) , s = 1) Prk ((a1, θ) 6= (C, p) , s = 1)

)
≤ lim

k

Prk (m2 = P | (a1, θ) = (C, p) , s = 1) Prk ((a1, θ) = (C, p) , s = 1)(
Prk (m2 = P | (a1, θ) = (C, p) , s = 1) Prk ((a1, θ) = (C, p) , s = 1)

+ Prk (m2 = P | (a1, θ) = (C, n) , s = 1) Prk ((a1, θ) = (C, n) , s = 1)

)
= lim

k

Prk (m2 = P | (a1, θ) = (C, p) , s = 1)

Prk (m2 = P | (a1, θ) = (C, p) , s = 1) + Prk (m2 = P | (a1, θ) = (C, n) , s = 1)

=
1

2
,

where the second-to-last line follows because θ = n or p with equal probability, independent
of a1 and s, and the last line follows since (16) holds for each m1 ∈ {A,B}, which are
the only possible values for m1. This implies that player 2 will not follow recommendation
m2 = P when s = 1 in any canonical SE. Hence, a2 = P cannot be played with positive
probability at any history in any canonical SE. Given this, player 1 can guarantee a payoff
of 1

2
by mixing A and B, so 1

2
(A,A,N) + 1

2
(B,B,N) cannot implemented.

8.2 Extending the Example

In the extended example, there are four players (in addition to the mediator) and four
periods, with the following timing:
Period 1. No signals are observed. Player 1 takes an action a1 ∈ {A1, B1}.
Period 2. The mediator observes a1. Player 2 takes a2 ∈ {A2, B2, C2} and player 3

takes a3 ∈ {A3, B3}.
Period 3. Player 2 observes θ ∈ {n, p} with equal probability. The mediator takes

a0 ∈ {A0, B0}.
Period 4. The mediator and player 4 observe s ∈ {0, 1}, where s = 0 iff a1 = A1 and

a2 6= a0. Player 4 takes a4 ∈ {N,P}.
Player 1’s payoff equals 1{a1=B1} − 1{a2=C2}1{a4=P}. Player 2’s payoff is given by

A0 B0

A2 0− 1{a4=P} 1− 1{a4=P}
B2 1− 1{a4=P} 0− 1{a4=P}
C2 −3− 1{a4=P} −3− 1{a4=P}

A0 B0

A2 1− 1{a4=P} 1− 1{a4=P}
B2 1− 1{a4=P} 1− 1{a4=P}
C2 0 0

a1 = A1 a1 = B1

.

Player 3’s payoff is constant. Player 4’s payoff equals 1{(a1,a2,θ)6=(A1,C2,p)}1{a4=N}.
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Note that we have omitted time subscripts on Ai since each player moves only once. We
do the same for Mi.
Consider the target outcome distribution where (i) 1

2
A1 + 1

2
B1 is played in period 1, (ii)

when A1 is played in period 1, 1
2

(A2, A3, A0) + 1
2

(B2, B3, B0) is played in periods 2 and 3,
(iii) when B1 is played in period 1, (A2, A3, A0) is played in periods 2 and 3, and (iv) N is
played in period 4. We claim that this distribution is implementable in SE, but not with
C = C∗.

Possibility for C 6= C∗ Again, it suffi ces to implement the target distribution in a canon-
ical NE in which players do not take codominated actions at any history. Consider the
following mediator strategy: The mediator draws m1 ∈ {A1, B1} with equal probability.
When m1 = a1 = A1, the mediator draws m2 ∈ {A2, B2} with equal probability, and

recommends m0 = m2 = m3. If s = 0, he recommends m4 = N ; if s = 1, he recommends
m4 = P .
When m1 = A1 but a1 = B1, the mediator recommends m2 = C2, m3 = A3, and m4 = P .
When m1 = B1 (regardless of a1), the mediator recommends m2 = A2, m3 = A3,

m0 = A0, and m4 = N .
It is straightforward to check that this is a NE. Moreover, no codominated actions are

recommended: For player 4, after s = 0, P is codominated; and after s = 1, no action is
codominated, since (a1, a2, θ) 6= (A1, C2, p) is feasible. Given this, no action is codominated
for player 2, as each a2 ∈ {A2, B2} can be optimal after a1 = A1, and a2 = C2 is optimal after
a1 = B1 when a4 = P is anticipated. Given that a2 = C2 and a4 = P are not codominated,
neither is a1 = A1.

Impossibility for C = C∗ Suppose towards a contradiction that such a SE exists. In
what follows, each fraction p/q should be read as limk→∞ p

k/qk, where pk, qk > 0 denote
probabilities along a sequence of strategy profiles converging to the equilibrium.
For each player i and action ai that is played with positive probability in the target

distribution, assume without loss that ai is played with positive probability after m1 = a1.
Moreover, since the on-path actions of players 2 and 3 must be perfectly correlated, it is
without loss to assume that, for i ∈ {2, 3}, ai ∈ {Ai, Bi} is played with probability 1 after
mi = ai. Further, to deter a deviation by player 1 following m1 = A1, player 2 must play
a2 = C2 with probability 1 after some message, which without loss we take to be m2 = C2.
Since player 3 is indifferent among all outcomes, we can also let a3 = m3 with probability
1. Finally, since player 4 moves last, the usual static revelation principle argument implies
that we can let a4 = m4 with probability 1.
Note that C2 is strictly dominated conditional on a1 = A1 and weakly dominated

conditional on a1 = B1. Since player 2 is willing to take C2 after m2 = C2, we have
Pr (a1 = B1|m2 = C2) = 1. Since a1 and a2 are independent conditional on m2, this implies
Pr (a1 = B1|m2 = C2, a2 = A2) = 1. Hence, if player 2 trembles to a2 = A2 after m2 = C2,

she believes that a1 = B1 with probability 1, and she therefore chooses her report
(
â2, θ̂

)
to minimize the probability that a4 = P . Since player 2 can always report as if she took
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a2 = C2, this implies that

Pr (a1 = B1, a4 = P |m2 = C2, a2 = A2)

≤ Pr (a1 = B1, a4 = P |m2 = C2, a2 = C2) .

Note that if Pr (a1 = B1, a4 = P |m2 = C2, a2 = A2) < 1 then player 2 would deviate to A2

after m2 = C2. So this probability must equal 1, and hence

Pr (a1 = B1, a4 = P |m2 = C2, a2 = C2) = 1.

Since a1 = B1 implies s = 1, we have

Pr (a1 = B1,m4 = P, s = 1|m2 = C2, a2 = C2) = 1.

Finally, since a2 = C2 with probability 1 after m2 = C2, we have

Pr (a1 = B1, a2 = C2,m4 = P, s = 1|m2 = C2) = 1. (17)

On the other hand, since player 4 to be willing to take N after s = 1 and m4 = P , we
have Pr (a1 = A1, a2 = C, θ = p|s = 1,m4 = P ) = 1. In particular,

1 =

(
Pr (m2 = C2) Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2 = C2)
+
∑

m2 6=C2 Pr (m2) Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)

)
(

Pr (m2 = C2)
∑

a1,a2
Pr (a1, a2,m4 = P, s = 1|m2 = C2)

+
∑

m2 6=C2 Pr (m2)
∑

a1,a2
Pr (a1, a2,m4 = P, s = 1|m2)

) .

Since (a+ c) / (b+ d) < (a/b) + (c/d) for all positive numbers a, b, c, d, the right-hand side
is no more than

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1, |m2 = C2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2 = C2)

+
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2)
.

Note that

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1, |m2 = C2)

≤ Pr (a1 = A1, a2 = C2,m4 = P, s = 1, |m2 = C2) = 0 (by (17)).
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Hence,

1 =
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)∑
a1,a2

Pr (a1, a2,m4 = P, s = 1|m2)

=
∑

m2 6=C2

Pr (a1 = A1, a2 = C2, θ = p,m4 = P, s = 1|m2)

Pr (a1 = A1, a2 = C2,m4 = P, s = 1|m2)

=
∑

m2 6=C2

Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

Pr (m4 = P |a1 = A1,m2, a2 = C2)
, (18)

where the second line drops the event (a1, a2) 6= (A1, C2) from the denominator (giving a
necessary condition) and the third line uses the fact that a2 = C2 implies s = 1.
Now, after a2 = C2, player 2 is strictly better off if player 4 takes N if a1 = A1, and

player 2 is indifferent if a1 = B1. Moreover, Pr (a1 = A1|m2) > 0 for each m2 6= C2. Hence,

each m2 6= C2, after (m2, a2 = C2) player 2 chooses her report
(
â2, θ̂

)
to minimize the

probability that a4 = P , and hence the probability m4 = P (since a4 = m4 with probability
1), independent of θ. Therefore, for each m2 6= C2,

Pr (θ = P,m4 = P |a1 = A1,m2, a2 = C2) = Pr (θ = P ) Pr (m4 = P |a1 = A1,m2, a2 = C2) ,

and thus ∑
m2 6=C2

Pr (θ = p,m4 = P |a1 = A1,m2, a2 = C2)

Pr (m4 = P |a1 = A1,m2, a2 = C2)
=

1

2
.

This contradicts (18).

9 Results for SE

This section contains our analysis of SE, culminating in the proofs of Propositions 6 and 7.

9.1 Quasi-Strategies and Quasi-SE

As we did for CPPBE, we begin by introducing notions of quasi-strategy and quasi-equilibrium.
For each player i, the definition of a quasi-strategy (χi, Ji) is the same as in Section 7.1. For
the mediator, a quasi-strategy (ψ,K) consists of

1. A set of histories K =
∏T

t=1K
t ∪Kt+ with Kt ⊆ Rt+1 ×M t and Kt+ ⊆ Rt+1 ×M t+1

such that (i) for each (rt+1,mt) ∈ Kt, there exists
(
rT+1,mT

)
∈ KT that coincides

with (rt+1,mt) up to period t, (ii) for every (rT+1,mT ) ∈ KT and every (rt+1,mt) that
coincides with (rT+1,mT ) up to period t, we have (rt+1,mt) ∈ Kt, and (iii) the same
conditions hold for Kt+.

2. A function ψ =
(
ψt
)T
t=1
, where ψt : Kt → ∆ (Mt).

We write ht ∈ (J,K) if hti ∈ J ti and (rt,mt) ∈ Kt−1,+ (or, (rt+1,mt) ∈ Kt if ht includes rt,
or (rt+1,mt+1) ∈ Kt+ if ht includesmt), where hti and (rt+1,mt) and are the relevant elements
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of ht. A strategy profile (σ, φ) has full support on (J,K) if (i) for each (rt+1,mt) ∈ Kt,
ψ(mt|rt+1,mt) > 0 if and only if (rt+1,mt+1) ∈ Kt+, (ii) for each hR,ti ∈ J

R,t
i , σRi (ri,t|hR,ti ) > 0

if and only if (hR,ti , ri,t) ∈ JR,t+i , and (iii) for each hA,ti ∈ J
A,t
i , σAi (ai,t|hA,ti ) > 0 if and only if

(hA,ti , ai,t) ∈ JA,t+i .
We say a quasi-strategy profile (χ, ψ, J,K) is valid if

1. For each ht ∈ (J,K), i 6= 0, σi, and hT+1
−i 6∈ (J−i, K), we have Pr(σi,χ−i,ψ) (hT+1

−i |ht
)

= 0.

2. For each i 6= 0, hti ∈ J ti , and full-support strategy profile (σ, φ) over (J,K), we have
Pr(σ,φ) (hti) > 0.

3. For each full-support strategy profile (σ, φ) over (J,K), we have Pr(σ,φ)
(
hT+1 ∈ (J,K)

)
=

1.

Finally, a quasi-SE (χ, ψ, J,K, β) is a valid quasi-strategy profile (χ, ψ, J,K) and a belief
system β such that:

1. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi, and h
R,t
i ∈ J

R,t
i , we have∑

hR,t∈(J,K)

β
(
hR,t|hR,ti

)
ūi
(
χ, ψ|hR,t

)
≥

∑
hR,t∈(J,K)

β
(
hR,t|hR,ti

)
ūi
(
σ′i, χ−i, ψ|hR,t

)
.

2. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi, and h
A,t
i ∈ J

A,t
i , we have∑

hR,t∈(J,K)

β
(
hA,t|hA,ti

)
ūi
(
χ, ψ|hA,t

)
≥

∑
hA,t∈(J,K)

β
(
hA,t|hA,ti

)
ūi
(
σ′i, χ−i, ψ|hA,t

)
.

3. [Kreps-Wilson consistency] There exists a sequence of strategy profiles
(
σk, φk

)∞
k=1

such
that

(
σk, φk

)
has full support over (J,K) for each k, limk→∞

(
σk, φk

)
(ht) = (χ, ψ) for

each ht ∈ (J,K), and

β
(
ht|hti

)
= lim

k→∞

Prσ
k,φk (ht)

Prσ
k,φk (hti)

for each hti ∈ J ti and ht ∈ (J,K). Note that validity of (χ, ψ, J,K) implies Pr(σ
k,φk) (hti) >

0 for each hti ∈ J ti .

As for CPPBE, it is without loss to consider quasi-SE rather than fully specified SE.

Lemma 7 For any game G = (Γ, C) and any outcome distribution ρ ∈ ∆ (X), we have
ρ ∈ SE(C) if and only if ρ = ρ(χ,ψ) for some quasi-SE profile (χ, ψ, J,K, β).

Proof. The proof is similar to the proof of Lemma 1.
Fix a game G. One direction is immediate: If (σ, φ, β) is a SE in G, then define (χ, ψ) =

(σ, φ) and J ti = H t
i , K

t = Rt ×M t−1, and Kt+ = Rt ×M t. Then, (χ, ψ, J,K, β) is quasi-SE
with ρ(χ,ψ) = ρ(σ,φ).
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For the converse, fix a quasi-SE (χ, ψ, J,K, β) and a converging sequence
(
σ̃k, φ̃

k
)
k
with

full support over (J,K). For each k,

εk = min
(hR,ti

,ri,t)∈JR,t+i
,(hA,ti

,ai,t)∈JA,t+i
,(rt+1,mt+1)∈Kt+

min{σ̃R,ki (rt|hR,ti ), σ̃A,ki (ai,t|hA,ti ), φ̃
k
(mt|rt+1,mt)}.

Consider the following auxiliary game
(
Γk, C

)
:

1. The mediator chooses probability distributions φk(·|rt+1,mt) ∈ ∆(Mt) for each (rt+1,mt) ∈
(Rt+1 ×M t) \Kt. At histories (rt+1,mt) ∈ Kt, the mediator has no choice to make,

and we set φk(·|rt+1,mt) = φ̃
k
(·|rt+1,mt).

2. Each player i chooses probability distributions σR,ki (·|hR,ti ) ∈ ∆(Ri,t) and σ
A,k
i (·|hA,ti ) ∈

∆(Ai,t) for each t, hR,ti ∈ HR,t
i \J

R,t
i , hA,ti ∈ HA,t

i \J
A,t
i . At histories hti ∈ J ti , player

i has no choice to make, and we set σR,ki (·|hR,ti ) = σ̃R,ki

(
·|hR,ti

)
and σA,ki (·|hA,ti ) =

σ̃A,ki

(
·|hA,ti

)
.

3. Given
(
σk, φk

)
, the distribution of HT+1 is determined recursively as follows:

Given hR,t ∈ HR,t, each ri,t ∈ Ri,t is drawn independently across players with proba-
bility(

1− εk
k

∣∣∣{r̃i,t ∈ Ri,t :
(
hR,ti , r̃i,t

)
6∈ JR,t+i

}∣∣∣) σ̃R,ki (ri,t|hR,ti ) if hR,ti ∈ J
R,t
i ∧

(
hR,ti , ri,t

)
∈ JR,t+i ,

εk
k

if hR,ti ∈ J
R,t
i ∧

(
hR,ti , ri,t

)
/∈ JR,t+i ,(

1− εk
k
|Ri,t|

)
σR,ki (ri,t|hR,ti ) + εk

k
if hR,ti /∈ JR,ti .

Given (rt,mt−1) ∈ Rt ×M t−1, each mt is drawn with probability

(1− εk
k
|{m̃t ∈Mt: (rt+1,mt, m̃t) 6∈ Kt+}|)φ̃k(mt|rt+1,mt) if (rt+1,mt) ∈ Kt ∧ (rt+1,mt+1) ∈ Kt+,

εk
k

if (rt+1,mt) ∈ Kt ∧ (rt+1,mt+1) /∈ Kt+,(
1− εk

k
|Mt|

)
φk(mt|rt+1,mt) + εk

k
if (rt+1,mt) /∈ Kt.

Given hA,t ∈ HA,t, each ai,t ∈ Ai,t is drawn independently across players with proba-
bility(

1− εk
k

∣∣∣{ãi,t ∈ Ai,t :
(
hA,ti , ãi,t

)
6∈ JA,t+i

}∣∣∣) σ̃A,ki (ai,t|hA,ti ) if hA,ti ∈ J
A,t
i ∧

(
hA,ti , ai,t

)
∈ JA,t+i ,

εk
k

if hA,ti ∈ J
A,t
i ∧

(
hA,ti , ai,t

)
/∈ JA,t+i ,(

1− εk
k
|Ai,t|

)
σA,ki (ai,t|hA,ti ) + εk

k
if hA,ti /∈ JA,ti .

Then, given at ∈ At, each st+1 ∈ St+1 is drawn with probability p
(
st+1|̊hA,t, at

)
.

The rest of the proof is the same as the proof of Lemma 1.
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In addition, as for CPPBE, restricting the mediator’s messages to lie in some mediation
range does not expand the outcome set.

Lemma 8 For any game G, we have SE (G) =
⋃
Q∈Q(G) SE (G|Q).

Proof. The same as the proof of Lemma 2.
Finally, in the proofs of Propositions 6 and 7, it will be convenient to describe the

mediator’s strategy in terms of first choosing a period-t “state”θt ∈ Θt as a function of the
mediator’s history (rt,mt) and the past states θt = (θ1, . . . , θt−1), and then choosing period-t
messages mt as a function of the vector

(
θt, rt,mt, θt, rt

)
. When convenient, we will include

these states as part of the mediator’s history. In such cases, the realizations of past θt are
included in K.

9.2 Proof of Proposition 6

We first slightly strengthen Proposition 3. Fixing a base game Γ, let Σ (C) denote the
strategy set in game G = (Γ, C).

Lemma 9 For any game G = (Γ, C), if (σ, φ) is a NE then ρ(σ,φ) is the outcome dis-

tribution of a canonical NE
(
σ̃, φ̃

)
such that, for all i 6= 0,

⋃
σ′−i∈Σ−i

supp ρ
(σi,σ′−i,φ)
i ⊇⋃

σ̃′−i∈Σ−i(C∗)
supp ρ

(σ̃i,σ̃′−i,φ̃)
i .

This says the canonical equilibrium provides the “least feedback”to the players.
Proof. We show that, for the strategy profile

(
σ̃, φ̃

)
constructed in the proof of Proposition

3,
⋃
σ′−i∈Σ−i

supp ρ
σi,σ

′
−i,φ

i ⊇
⋃
σ̃′−i∈Σ−i(C∗)

supp ρ
σ̃i,σ̃

′
−i,φ̃

i . This follows because, for any σ̃′ ∈

Σ (C∗), one can construct a strategy profile σ′ ∈ Σ such that ρ
σi,σ

′
−i,φ

i = ρ
σ̃i,σ̃

′
−i,φ̃

i as follows:
In period 1, given signal si,1, player i draws a fictitious type report r̃i,1 ∈ Si,1 according to

σ̃′Ri (si,1). Player i then sends report ri,1 ∈ Ri,1 according to σRi (r̃i,1). Next, after receiving
message mi,1 ∈Mi,1, player i draws a fictitious action recommendation m̃i,1 ∈ Ai,1 according
to σAi (r̃i,1, ri,1,mi,1). Finally, player i takes action ai,1 ∈ Ai,1 according to σ̃′Ai (si,1, r̃i,1, m̃i,1).
Recursively, given h̃ti = (si,τ , r̃i,τ , m̃i,τ , ai,τ )

t−1
τ=1, vector of reports and messages (ri,τ ,mi,τ )

t−1
τ=1,

and signal si,t, player i draws a fictitious type report r̃i,t ∈ Ai,t−1 × Si,t according to
σ̃′Ri (h̃ti, si,t). Player i then sends ri,t ∈ Ri,t according to σRi ((r̃i,τ , ri,τ ,mi,τ ) , r̃i,t)

t−1
τ=1.

25 Next,
after receiving message mi,t ∈ Mi,t, player i draws a fictitious action recommendation
m̃i,t ∈ Ai,t according to σAi ((r̃i,τ , ri,τ ,mi,τ )

t−1
τ=1 , r̃i,t, ri,t,mi,t). Finally, player i takes action

ai,t ∈ Ai,t according to σ̃′Ai (h̃ti, si,t, r̃i,t, m̃i,t).
Moreover, in this construction the honest and obedient strategy σ̃i is mapped to the

original equilibrium strategy σi, so
⋃
σ′−i∈Σ−i

ρ
σi,σ

′
−i,φ

i ⊇
⋃
σ̃′−i∈Σ−i(C∗)

ρ
σ̃i,σ̃

′
−i,φ̃

i and hence⋃
σ′−i∈Σ−i

supp ρ
σi,σ

′
−i,φ

i ⊇
⋃
σ̃′−i∈Σ−i(C∗)

supp ρ
σ̃i,σ̃

′
−i,φ̃

i .

25If (r̃i,τ )
t
τ=1 is not a possible history, player i draws ri,t arbitrarily, and similarly for m̃i,t and ai,t in what

follows.

48



We now prove Claim 1. Consider the fully canonical strategy profile (σ∗, φ∗) constructed
in the proof of Proposition 3. Let χ = σ∗, let

J ti =
{
hti ∈ H t

i : h̊ti ∈ supp ρσ
∗,φ∗

i ∧ ri,τ = (ai,τ−1, si,τ ) ∀τ ≤ t− 1
}
for all i, t,

let ψ = φ∗, and let

Kt = {
(
rt+1,mt

)
∈ Rt+1 ×M t : mτ ∈ suppφ∗(rτ+1,mτ ) ∀τ ≤ t− 1}.

By Lemma 9, hti ∈ J ti iff h̊ti ∈
⋃
σ̃′−i∈C∗(Σ−i)

supp ρ
(σ∗i ,σ̃′−i,φ∗)
i and ri,τ = (ai,τ−1, si,τ ) ∀τ ≤ t− 1.

Therefore, (χ, ψ, J,K) is valid. Moreover, Proposition 3 implies that, for strategy profile
(χ, ψ), (3) and (4) are satisfied at all histories hR,ti , hA,ti ∈ J ti : this follows since these are
on-path histories, so ex ante optimality implies sequential rationality. Hence, Claim 1 follows
from Lemma 7.
To prove Claim 2, note that the condition supp ρσi =

⋃
σ′−i∈Σ−i

supp ρ
σi,σ

′
−i

i is vacuous
when N = 1. Hence, the result follows from Claim 1.

9.3 Proof of Proposition 7

We must show that CPPBE(C∗) ⊆ SE (C∗∗). By Propositions 1 and 2, it suffi ces to show
that SE (C∗∗) contains all outcomes that are implementable in a canonical NE in which
codominated actions are never recommended at any history.
Under quasi-direct communication, we say that player i is faithful at history hti =

(sti, r
t
i ,m

t
i, a

t
i) if ri,τ = (ai,τ−1, si,τ ) for each τ < t and ai,τ = mi,τ for each τ < t with

mi,τ ∈ Ai,τ (i.e., with mi,τ 6= ?). That is, player i is faithful at history hti if thus far she has
been honest and has followed all action recommendations.

Full-Support Nash Equilibrium Let (εk)k∈N satisfy εk → 0 and k (εk)
NT /

∣∣AT ∣∣ → ∞.
For each k, let σk be a NE in the unmediated, εk-perturbed game (i.e., the game where each
player is constrained to play each action with probability at least εk at each information set),
such that the sequence

(
σk
)
k∈N converges to a NE σ̂ in the unperturbed game. For each

(xti, si,t), let B̂i (x
t
i, si,t) = Ai,t \ supp σ̂i,t (xti, si,t) denote the set of actions that are taken at

(xti, si,t) only when player i trembles.
We can implement each full-support strategy profile σk in the mediated, unperturbed

game where the mediator trembles but players are faithful. Suppose the mediator indepen-
dently performs all randomizations in the limit NE σ̂ for each player i at the beginning of the
game. Denote the resulting mixed strategy for the mediator by µ̂. Note that, since σ̂ does
not have full support, neither does µ̂: that is, we have not yet introduced mediator trembles.
It will be convenient to write f<t ∈ supp µ̂<t if there exists f≥t such that

(
f<t, f≥t

)
∈ supp µ̂,

where f<t and f≥t denote mediation plans before and after period t. Define fi ∈ supp µ̂i
and f<ti ∈ supp µ̂<ti analogously, focusing on the mediation plan for player i.
Now let

(
σ̂k, µ̂

)
denote the strategy profile in the mediated game where players are honest

and obedient, while trembling uniformly over actions with probability εk. Let Prσ̂
k,µ̂ denote

the resulting probability distribution. Note that σ̂k converges to the fully canonical strategy
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σ∗. By construction, (σ∗, µ̂) = limk→∞
(
σ̂k, µ̂

)
is a quasi-SE, together with χ = σ∗, ψ = µ̂,

(J,K) = {(f, z) : Prσ̂
k,µ̂ (f, z) > 0},26 and belief system

βσ
∗,µ̂
(
f, h̊R,t|hR,ti

)
= lim

k→∞

µ̂ (f) Prσ̂
k,µ̂
(̊
hR,t|f

)
Prσ̂

k,µ̂
(
hR,ti

) .

Since σ̂ is a NE, for each hR,ti with Prσ̂
k,µ̂
(
hR,ti

)
> 0 and any continuation strategy σ′i from

period t, we have∑
f∈supp µ̂,̊hR,t

βσ
∗,µ̂
(
f, h̊R,t|hR,ti

)
ūi

(
σ∗|f, h̊R,t

)
≥

∑
f∈supp µ̂,̊hR,t

βσ
∗,µ̂
(
f, h̊R,t|hR,ti

)
ūi

(
σ′i, σ

∗
−i|f, h̊R,t

)
,

(19)

where ūi
(
σ∗|f, h̊R,t

)
is defined as ūi

(
σ∗|f, hR,t

)
with the history hR,t corresponding to the

payoff-relevant history h̊R,t with honest reports and messages given by f .

Rationalizing Non-Codominated Actions Let F ∗ =
{
f ∈ F : fi(r

t+1) ∈ Ai,t \Bi(r
t+1
i ) ∀i, t, rt+1

}
,

and let F ∗≥t =
{
f≥t ∈ F≥t : fi(r

τ+1) ∈ Ai,τ \Bi(r
τ+1
i ) ∀i, τ ≥ t, rτ+1

}
. As in Myerson’s

Lemma 3, the contrapositive of the definition of codomination requires that there exist dis-
tributions (πt)

T
t=1 with πt ∈ ∆

(
F ∗≥t ×X t × St

)
for each t such that the following conditions

hold:27

1. Each non-codominated action is recommended: for each i, t, and (xti, si,t), letting
supp (xti, si,t) = {mi,t ∈ Ai,t : ∃

(
f≥t, xt−i, s−i,t

)
with πt

(
f≥t, xt, st

)
> 0 and f≥ti (xt, st) =

mi,t} denote the support of f≥ti at (xti, si,t) under πt, we have

supp(xti, si,t) = Ai,t \Bi(̊h
R,t
i ).

2. Honesty and obedience is optimal under πt on path: for each i and t, letting Prσ
∗,πt(f≥t, h̊T+1,mt:T ) =

πt

(
f≥t, h̊R,t

)
Prσ

∗,f≥t (̊hT+1,mt:T |̊hR,t) with mt:T = (mt, . . . ,mT ), for each τ ≥ t, each

(̊hR,τi ,mt:τ
i ) with Prσ

∗,πt (̊hR,τi ,mt:τ
i ) > 0, and each continuation strategy σ′i from period

τ , we have ∑
f≥t∈F ∗≥t ,̊hR,τ

βσ
∗,πt
(
f≥t, h̊R,τ |̊hR,τi ,mt:τ

i

)
ūi

(
σ∗|f≥t, h̊R,τ

)
≥

∑
f≥t∈F ∗≥t ,̊hR,τ

βσ
∗,πt
(
f≥t, h̊R,τ |̊hR,τi ,mt:τ

i

)
ūi

(
σ′i, σ

∗
−i|f≥t, h̊R,τ

)
, (20)

26Here we view f as a mediator state drawn at the start of the game, and include it in K.
27Myerson (1986) relies on the existence of a sequence π1t , ..., π

L
t for each t such that

⋃L
l=1 suppl(xti, si,t) =

Ai,t \Bi(̊hR,ti ) and (20) holds for each πlt. Given such a sequence, the distribution πt := 1
L

∑L
l=1 π

l
t satisfies

both of our conditions, so we work with a single distribution πt for each t.
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where βσ
∗,πt
(
f≥t, h̊R,τ |̊hR,τi ,mt:τ

i

)
= Prσ

∗,πt(f≥t, h̊R,τ ,mt:τ
i )/Prσ

∗,πt (̊hR,τi ,mt:τ
i ).

“Motivating Equilibrium”Construction We define a sequence of quasi-strategy pro-
files

(
σk, φk

)
k
, where the quasi-SE strategies for the desired “motivating equilibrium”are

(σ, φ) := limk

(
σk, φk

)
.

Players’strategies σk: Each player i is faithful: she plays ai,t = mi,t after each mi,t ∈ Ai,t
and always reports ri,t = (ai,t−1, si,t). After receiving mi,t = ?, with probability 1 − √εk
player i takes ai,t according to σ̂i(xti, si,t), and with probability

√
εk she plays all actions with

equal probability.
Mediator’s strategy φk: At the beginning of the game, the mediator draws the following

three variables: First, for each player i and each period t, independently across i and t, he
draws θi,t ∈ {0, 1} with Pr (θi,t = 0) = 1−√εk. Second, again independently for each i and
t, he draws ζ i,t ∈ {0, 1} with Pr

(
ζ i,t = 0

)
= 1−

(
1
k

)T+1
. Third, independently for each i, he

draws f̂i from µ̂i. Given a vector ζ = ζT+1, let |ζ| =
∑

i,t ζ i,t be the l1-norm of ζ.
In each period t, the mediator has a state

ωt ∈
⋃

0≤t∗≤T,f∈F ∗,≥t∗ (t∗, f) ,

with initial state ω0 =
(

0, f̂
)
. Let ω = ωT+1. Given θ = θT+1 and ζ, for each period t, the

mediator recursively calculates the state ωt and recommends mi,t ∈ Ai,t ∪ {?} as follows:

• Notation: Denote the number of tuples
(
f<ti , θti,m

t
i

)
such that the mediator sends

mi,τ according to f<ti ∈ supp µ̂<ti if θi,τ = 0 and sends mi,τ = ? if θi,τ = 1 by

#Mi(x
t
i) =

∣∣∣∣{ (
f<ti , θti,m

t
i

)
∈ supp µ̂<ti × {0, 1}t−1 ×

∏t−1
τ=1 (Ai,τ ∪ {?})

: mi,τ = f<ti (xτi , si,τ ) ∀τ ≤ t− 1 s.t. θi,τ = 0, and mi,τ = ? ∀τ ≤ t− 1 s.t. θi,τ = 1

}∣∣∣∣ .
(21)

Let #M(xt) =
∏N

i=0 #Mi(x
t
i). In addition, for f

<t ∈ supp µ̂<t, let #(f<t) = |{f̃ ∈
supp µ̂ : f̃<t = f<t}| be the number of recommendation strategies f̃ ∈ supp µ̂ which
coincide with f<t for the first t− 1 period.

• Calculation of ωt: We define the distribution of ωt given ωt−1, rt+1, θ, and ζ. If
ωt−1 6= ω0 then ωt = ωt−1 for sure. If ωt−1 = ω0 then the mediator calculates the
probability of (ωt−1 = ω0, θ, ζ, r

t+1,mt) given σk and the construction of φk for up to
period t. Denote this probability by pk (ω0, θ, ζ, r

t+1,mt).

If pk(ω0, θ, ζ, r
t+1,mt) = 0 (that is, the mediator “knows”some player was unfaithful)

then ωt = ωt−1 for sure. If pk(ω0, θ, ζ, r
t+1,mt) > 0 then, for each f≥t ∈ F ∗≥t, the

mediator draws ωt =
(
t, f≥t

)
with probability

qk
(
ωt|ω0, θ, ζ, r

t+1,mt
)

=

(
1

k

)t+(T+1)|ζ|

× 1

pk(ω0, θ, ζ, rt+1,mt)
× πt(f

≥t, rt+1)

#(f̂<t)#M(rt)
,

and ωt = ω0 with the remaining probability. (With a slight abuse of notation, we write
#M(rt) since rt includes the report about xt.)
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As we will see, this tremble probability for ωt ensures that, at any history, conditional
on the mediator trembling to ωt =

(
t, f≥t

)
, the mediation plan and the payoff-relevant

history are distributed according to πt(f≥t, xt, st) given honesty (rt+1 = (xt, st)), since
pk, #(f<t), and #M(rt) cancel out the probability of reaching history (f<t, xt). More-
over, trembles for larger t are less likely.

• Calculation of mt: If ωt =
(

0, f̂
)
, then the mediator recommends mi,t = f̂i(r

t
i) if

ζ i,t = θi,t = 0, recommends mi,t = ? if ζ i,t = 0 and θi,t = 1, and recommends all non-
codominated actions Ai,t \ Bi(r

t+1
i ) with equal probability if ζ i,t = 1. If ωt =

(
t, f≥t

)
with t ≥ 1, then the mediator recommends mi,t = f≥ti (rt+1).

(Intuitively, ωt =
(

0, f̂
)
means the mediator intends to implement the mediated, full-

support NE; ωt =
(
t, f≥t

)
with t ≥ 1 means the mediator switched in period t to implement-

ing mediation plan f≥t; θi,t = 1 indicates a tremble signalling player i to play the unmediated
NE in period t; and ζ i,t = 1 indicates a tremble recommending all non-codominated actions
with positive probability while still intending to implement the mediated NE.)

Joint Distribution of Histories and Mediator States Let δk(hT+1, θ, ζ, ω) denote
the probability of

(
hT+1, θ, ζ, ω

)
under quasi-strategy profile

(
σk, φk

)
. Note that, for each

(ω0, θ, ζ, r
t+1,mt) such that pk(ω0, θ, ζ, r

t+1,mt) > 0, we have

pk(ω0, θ, ζ, r
t+1,mt) ≥ µ̂

(
f̂
)
× (εk)

NT

|AT | ×
(

1

k

)(T+1)|ζ|

.

Hence, for each (ω0, θ, ζ, r
t+1,mt) and ωt 6= ω0, we have

qk
(
ωt|ω0, θ, ζ, r

t+1,mt
)
≤
(

1

k

)t
×
∣∣AT ∣∣

(εk)
NT
× 1

µ̂
(
f̂
) × πt(f

≥t, rt+1)

#(f̂<t)#M(rt)
.

Since k (εk)
NT /

∣∣AT ∣∣→∞ as k →∞, this implies

lim
k→∞

qk
(
ωt|ω0, θ, ζ, r

t+1,mt
)

= 0. (22)

Given xt, f<t ∈ supp µ̂<t, θt, and ζt, let M t(xt, f<t, θt, ζt) denote the set of mt such that,
for each i and τ = 1, ..., t− 1, (i) mi,τ = f<ti (xτi , si,τ ) if ζ i,τ = θi,τ = 0, (ii) mi,τ = ? if ζ i,τ = 0
and θi,τ = 1, and (iii) mi,τ ∈ Ai,τ \Bi(x

τ
i , si,τ ) if ζ i,τ = 1.

If ω0 = · · · = ωt−1 =
(

0, f̂
)
and ωt = · · · = ωT =

(
t, f̃≥t

)
, we define t∗(ω) = t and
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f(ω) =
(
f̂<t, f̃≥t

)
. We have28

δk(h
T+1, θ, ζ, ω)

= 1{t∗(ω)=T+1} × Prφ
k

(ωt = ω0∀t)× Prφ
k

(θ, ζ)× µ̂(f(ω))× Prσ
k (
hT+1|f(ω), θ, ζ

)

+
T∑
t=1

1{t∗(ω)=t}
∑

f̃ :f̃<t=f<t(ω)


pk(ω0, θ, ζ, h̊

R,t,mt)
(

1
k

)t+(T+1)|ζ|

× 1

pk(ω0,θ
t,ζt ,̊hR,t,mt)

πt(f≥t(ω),̊hR,t)

#(f<t(ω))#M (̊ht)

×Prσ
∗
(̊
hT+1|̊hR,t, f≥t(ω)

)
×1{mt∈Mt (̊ht,f<t(ω),θt,ζt) and mτ=f≥t(ω)(̊hR,τ ) ∀τ≥t}

 .

Canceling out pk and 1
pk
, and

∑
f̃ :f̃<t=f<t(ω) and

1
#(f<t(ω))

, we have

δk(h
T+1, θ, ζ, ω)

= 1{t∗(ω)=T+1} × Prφ
k

(ωt = ω0∀t)× Prφ
k

(θ, ζ)× µ̂(f(ω))× Prσ
k (
hT+1|f(ω), θ, ζ

)
+

T∑
t=1

1{t∗(ω)=t}

( (
1
k

)t+(T+1)|ζ| πt(f≥t(ω),̊hR,t)

#M (̊ht)
Prσ

∗
(̊
hT+1|̊hR,t, f≥t(ω)

)
×1{mt∈Mt (̊ht,f<t(ω),θt,ζt) and mτ=f≥t(ω)(̊hR,τ ) ∀τ≥t}

)
.

Quasi-Sequential Equilibrium and its Validity Let K be the set of mediator histories
(r, θ, ζ, ω) consistent with φk. Let Ji be the set of player i’s histories hT+1

i such that (i)
mi,t ∈ Ai,t ∪ {?} \ Bi(r

t
i) ∀t, (ii) ri,t = (ai,t−1, si,t) ∀t, and (iii) ai,t = mi,t ∀t with mi,t ∈

Ai,t \Bi(r
t+1
i ).

We claim that (σ, φ, J,K, β) is valid (for any consistent beliefs β). Clearly, no faithful
strategies lead the mediator’s history out of K. Moreover, no unfaithful strategy of players
−i leads player i’s history out of Ji, since Ji is determined by the mediation range and
player i’s own behavior. Finally, we say history hT+1

i is compatible with a pure strategy
σi if, for all t, we have mi,t ∈ Ai,t ∪ {?} \ Bi(r

t+1
i ), ri,t = σRi (hR,ti ), and ai,t = σAi (hA,ti ).

To establish validity, it suffi ces to show that, for any faithful pure strategy σi, each hT+1
i

that is compatible with σi occurs with positive probability at profile
(
σi, σ

k
−i, φ

k
)
. Take (i)

f = f̂ ∈ supp µ̂ such that mi,t = f̂i(r
t+1
i ) for each t with mi,t ∈ Ai \ B̂i(r

t+1
i ), (ii) ωt = (0, f̂)

for each t, (iii) ζ i,t = 0 for each t with mi,t ∈ Ai,t ∪ {?} \ B̂i(r
t+1
i ) (and ζ i,t = 1 otherwise),

(iv) θi,t = 1 for each t with mi,t = ? (and θi,t = 0 otherwise), (v) ζj,t = 0 and θj,t = 1 for
each t and j 6= i. By definition of δk, (i)—(v) occurs with positive probability. Given (i)—(iv),
mT+1
i occurs with positive probability; and given (v), each player j takes each action with

probability at least
√
εk. Hence, hT+1

i occurs with a positive probability.
By Lemma 7, it suffi ces to show that, for β (Z|Z ′) = limk→∞

δk(Z∩Z′)
δk(Z′) ,

28Here h̊t is the projection of hT+1 on Xt.
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1. [Sequential rationality of reports] For all i 6= 0, t, σ′i ∈ Σi and all h
R,t
i ∈ J

R,t
i ,∑

ωt,θ,ζ,hR,t∈(J,K)

β
(
ωt, θ, ζ, h

R,t|hR,ti

)
ūi
(
σ, φ|ωt, θ, ζ, hR,t

)
≥

∑
ωt,θ,ζ,hR,t∈(J,K)

β
(
ωt, θ, ζ, h

R,t|hR,ti

)
ūi
(
σ′i, σ−i, φ|ωt, θ, ζ, hR,t

)
. (23)

2. [Sequential rationality of actions] For all i 6= 0, t, σ′i ∈ Σi and all h
A,t
i ∈ J

A,t
i ,∑

ωt,θ,ζ,hR,t∈(J,K)

β
(
ωt, θ, ζ, h

A,t|hA,ti

)
ūi
(
σ, φ|ωt, θ, ζ, hA,t

)
≥

∑
ωt,θ,ζ,hR,t∈(J,K)

β
(
ωt, θ, ζ, h

A,t|hA,ti

)
ūi
(
σ′i, σ−i, φ|ωt, θ, ζ, hA,t

)
. (24)

Mediator Trembles that Explain a Faithful History Given a faithful history hR,ti for
some i, t, we say (0, ζ) explains hR,ti if there exist f̂ ∈ supp µ̂, θ, and hR,t−i such that, for each
j and τ = 1, ..., t− 1, (i) mj,τ = aj,τ = f̂j (̊h

R,τ
j ) if ζj,τ = θj,τ = 0, (ii) mj,τ = ? if ζj,τ = 0 and

θj,τ = 1, and (iii) mj,τ = aj,τ ∈ Aj,τ \ Bj (̊h
R,τ
j ) if ζj,τ = 1, and also for each τ = 0, . . . , t− 1,

(iv) p (sτ+1|sτ , aτ ) > 0. We say (i)—(iii) hold for t = t0 if the first three conditions hold with
t = t0.
Given faithful hR,ti , we say (t∗, ζ) with t∗ ≥ 1 explains hR,ti if there exist f̂<t

∗ ∈ supp µ̂<t
∗
,

f≥t
∗
, θ, and hR,t−i such that (i)—(iii) hold for t = t∗, (iv) p (sτ+1|sτ , aτ ) > 0 for each τ =

0, ..., t− 1, (a) πt∗
(
f≥t

∗
, h̊R,t

∗
)
> 0, (b) mτ = aτ = f≥t

∗
(̊hR,τ ) for each τ = t∗, ..., t− 1, and

(c) Prσ
k
(̊
hR,t |̊hR,t∗ , f≥t∗

)
> 0.

Similarly, given a faithful history hA,ti , we say (0, ζ) explains hA,ti if (i)—(ii) hold for
τ = 1, ..., t − 1, (iii) holds for τ = 1, ..., t, and (iv) holds for τ = 0, ..., t − 1; and (t∗, ζ)
explains hA,ti if the above conditions are satisfied with “for each τ = t∗, ..., t−1”in condition
(b) replaced with “for each τ = t∗, ..., t.”
Let

Ξ =
⋃

0≤t∗≤T
⋃
ζ∈{0,1}NT (t∗, ζ) .

Order the elements of Ξ such that (t∗, ζ) < (t̃∗, ζ̃) if (i) |ζ| <
∣∣∣ζ̃∣∣∣ or (ii) |ζ| = ∣∣∣ζ̃∣∣∣ and t∗ < t̃∗.

That is, (t∗, ζ) < (t̃∗, ζ̃) if a tremble to πt∗ with ζj,τ = 1 for |ζ| values of j, τ is more likely
than a tremble to πt̃∗ with ζj,τ = 1 for

∣∣∣ζ̃∣∣∣ values of j, τ .
Given the specified order on Ξ, let ξ(hR,ti ) and ξ(hA,ti ) be the smallest triples (t∗, ζ) that

explain hR,ti and hA,ti , respectively. Since Ξ is a finite set and the distribution over player
i’s compatible histories has full support, these are well-defined. As the order reflects the
likelihood of trembles, the following lemma holds:
For any ζti ∈ {0, 1}

t−1, let
(
0, ζti

)
:=
(

0, ζ̃
t
)
with ζ̃

t

i = ζti, ζ̃ i,τ = 0 ∀τ ≥ t, and ζ̃j,τ = 0

∀j 6= i, τ . Define
(
t∗, ζt

∗

i

)
similarly.
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Lemma 10 For each faithful hR,ti and hA,ti , the following three claims hold:

1. ξ(hR,ti ) and ξ(hA,ti ) satisfy ζj,t = 0 for all j 6= i and t.

2. Either ξ(hR,ti ) =
(
0, ζti

)
for some ζti, or ξ(h

R,t
i ) =

(
t∗, ζt

∗

i

)
for some t∗ ≤ t and ζt

∗

i .
Likewise, either ξ(hA,ti ) =

(
0, ζti

)
for some ζti, or ξ(h

A,t
i ) =

(
t∗, ζt

∗

i

)
for some t∗ ≤ t and

ζt
∗

i .

3. We have

lim
k→∞

δk

(
ξ = ξ(hR,ti )|hR,ti

)
= 1, (25)

lim
k→∞

δk

(
ξ = ξ(hA,ti )|hA,ti

)
= 1. (26)

Proof. Claim 1: Whenever (t, ζ) with ζj,τ = 1 for some j 6= i and τ explains hR,ti or hA,ti , so

does
(
t, ζ̃
)
where ζ̃j,τ = 0 and ζ̃j′,τ ′ = ζj′,τ ′ for all (j′, τ ′) 6= (j, τ), as given aj,τ and [t = 0 or

τ < t∗],29 we can take ζj,τ = 0, θj,τ = 1, and mj,τ = ?, rather than ζj,τ = 1 and mj,τ = aj,τ .

The claim follows as
(
t, ζ̃
)
< (t, ζ).

Claim 2: By definition, whenever
(

0, ζt
′

i

)
with t′ > t explains hR,ti , so does

(
0, ζti

)
. In

addition, whenever (t′, ζt
′′

i ) with t′ > t explains hR,ti , so does (0, ζ̃
t

i) satisfying ζ̃ i,τ = ζ i,τ for

τ ≤ min {t′′, t} and ζ̃ i,τ = 0 for τ > min {t′′, t}. Finally, whenever
(
t′, ζt

′′

i

)
with t′′ > t′

explains hR,ti , so does
(
t′, ζt

′

i

)
. Hence, the conclusion for ξ(hR,ti ) holds.

The proof for ξ(hA,ti ) is the same, except that we also show ξ(hA,ti ) 6=
(
0, ζt+1

i

)
with

ζ i,t = 1. To see why this new condition holds, whenever
(
0, ζt+1

i

)
with ζ i,t = 1 explains

hA,ti , so does some
(
t∗, ζt

∗

i

)
with t∗ = t. This is because, given t∗ = t, for each rt+1

i , each
mi,t ∈ Ai,t \ Bi(r

t+1
i ), and each f̂<t ∈ supp µ̂<t, we have mi,t ∈ suppi(r

t+1
i ). Given the order

on ξ, we have ξ(hA,ti ) =
(
t∗, ζt

∗

i

)
.

Claim 3: We prove (25); the proof of (26) is analogous. Suppose (t∗, ζ∗) explains hR,ti .
Given Claim 1, we can take ζ∗j,t = 0 for each j 6= i and t. Since (i) any action profile aj,t is
taken with probability at least

√
εk/ |Aj,t| after each f̂ ∈ supp µ̂ given ζj,t = 0 and θj,t = 1,

and (ii) θj,t = 1 occurs with probability
√
εk, we have

δk

(
t∗, ζ, hR,ti

)
≥
(

1

k

)(T+1)|ζ∗|
(

1−
(

1

k

)Z)NT
(εk)

NT

|AT |

(
1

k

)t∗
ε,

where we take ε > 0 such that

πt
(
f≥t, xt, st

)
Prσ

∗ (
x|xt, st, f≥t

)
≥ ε ∀

(
t, x, f≥t

)
s.t. πt

(
f≥t, xt, st

)
Prσ

∗ (
x|f≥t, xt, st

)
> 0.

29Note that, given τ ≥ t∗, mj,t is independent of ζj,t.
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For each (t, ζ) 6= (t∗, ζ∗), if it does not explain hR,ti , then δk
(
t, ζ, hR,ti

)
= 0. If it does,

then

δk

(
t, ζ, hR,ti

)
≤
(

1

k

)(T+1)|ζ|(
1

k

)t
.

Since either |ζ∗| < |ζ| or [|ζ∗| = |ζ| and t∗ < t], we have

δk

(
t, ζ, hR,ti

)
δk

(
t∗, ζ, hR,ti

) ≤ 1
k(

1−
(

1
k

)T+1
)NT

(εk)NT

|AT | ε
.

Since k (εk)
NT /

∣∣AT ∣∣→∞, this ratio converges to 0, which implies (25).

Incentive Compatibility We now establish (23) and (24). By Lemma 10, there are two
cases:
Case 1: ξ(hR,ti ) =

(
0, ζti

)
or ξ(hA,ti ) =

(
0, ζti

)
.

Let Ω0 =
⋃
f̂∈supp µ̂

(
0, f̂
)
. Since Prφ

k

(ωt = ω0∀t) → 1, we see that ξ(hR,ti ) =
(
0, ζti

)
implies δk(ωT ∈ Ω0|hR,ti ) = 1, and ξ(hA,ti ) =

(
0, ζti

)
implies δk(ωT ∈ Ω0|hA,ti ) = 1.

For each i, t, and (xti, si,t), arbitrarily fix some action m
∗
i,t(x

t
i, si,t) ∈ Ai,t \ B̂i(x

t
i, si,t).

With a slight abuse of notation, we write

m∗i,t(h
R,t+1
i ) =

{
mi,t if mi,t ∈ Ai,t \ B̂i(̊h

R,t+1
i )

m∗i,t(̊h
R,t+1
i ) if mi,t 6∈ Ai,t \ B̂i(̊h

R,t+1
i )

,

where mi,t is the corresponding element of h
R,t+1
i . For each i and each faithful hR,ti with

δk

(
hR,ti

)
> 0, let λ(hR,ti ) be the history where each messagemi,τ is replaced bym∗i,τ (̊h

R,τ+1
i ) ∈

Ai,τ \ B̂i(̊h
R,τ+1
i ) for each τ ≤ t − 1. That is, we replace each action recommendation

outside the support of µ̂ with some fixed recommendation within the support. Note that
Prσ̂

k,µ̂
(
λ(hR,ti )

)
> 0 whenever δk

(
hR,ti

)
> 0. Define λ(hA,ti ) analogously.

Given ξ =
(
0, ζt−1

i

)
, all trembles are independent across players. Each player i can then

safely ignore the possibility that ζj,t = 1 for any j, since
(

1
k

)T+1
(the probability that ζj,t = 1)

is much less than εk (the probability that mj,t = ? and player j trembled). This suggests
that each player’s beliefs in the constructed quasi-SE coincide with those in the original
full-support NE, as confirmed by following lemma:

Lemma 11 The following two claims hold:

1. For each hR,ti and ζti satisfying ξ(h
R,t
i ) =

(
0, ζti

)
and each h̊R,t−i ∈ X t

−i × S−i,t, we have

lim
k
δk

(̊
hR,t−i |h

R,t
i

)
= lim

k
Prσ̂

k,µ̂
(̊
hR,t−i |λ(hR,ti )

)
. (27)
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2. For each hA,ti and ζti satisfying ξ(h
A,t
i ) =

(
0, ζti

)
and each h̊A,t−i ∈ X t

−i × S−i,t, we have

lim
k
δk

(̊
hA,t−i ,m−i,t|h

A,t
i

)
= lim

k
Prσ̂

k,µ̂
(̊
hA,t−i ,m−i,t|λ(hA,ti )

)
. (28)

Lemma 11 follows from applying Bayes’rule inductively on t. We relegate the proof to
the end of the appendix.
We now simplify (23). ξ(hR,ti ) =

(
0, ζti

)
implies δk(ωT ∈ Ω0|hR,ti ) = 1. Hence, we

can replace ωt with f̂ drawn from µ̂. Since θ and ζ are independent across periods,
β
(
θτ = ζτ = 0 ∀τ ≥ t|hR,ti

)
= 1. Hence, (23) simplifies to

∑
f̂∈supp µ̂,̊hR,t

β
(
f̂ , h̊R,t|hR,ti

)
ūi

(
σ∗|f̂ , h̊R,t

)
≥

∑
f̂∈supp µ̂,̊hR,t

β
(
f̂ , h̊R,t|hR,ti

)
ūi

(
σ′i, σ

∗
−i|f̂ , h̊R,t

)
.

By Lemma 11, this is equivalent to∑
f̂∈supp µ̂,̊hR,t

βσ
∗,µ̂
(
f̂ , h̊R,t|λ(hR,ti )

)
ūi

(
σ∗|f̂ , h̊R,t

)
≥

∑
f̂∈supp µ̂,̊hR,t

βσ
∗,µ̂
(
f̂ , h̊R,t|λ(hR,ti )

)
ūi

(
σ′i, σ

∗
−i|f̂ , h̊R,t

)
,

which follows from (19). The proof for (24) is the same.
Case 2: ξ(hR,ti ) =

(
t∗, ζt

∗−1
i

)
or ξ(hA,ti ) =

(
t∗, ζt

∗−1
i

)
.

In the next lemma, we abbreviate the event {ω : t∗(ω) = t and f≥t(ω) = f≥t} by f≥t.

Lemma 12 The following two claims hold:

1. For each hR,ti satisfying ξ(hR,ti ) =
(
t∗, ζt

∗

i

)
, each f≥t

∗ ∈ F≥t∗, and each h̊R,t−i ∈ X t
−i ×

S−i,t, we have

lim
k
δk

(
f≥t

∗
, h̊R,t−i |h

R,t
i , t∗, ζt

∗

i

)
=

πt∗(f
≥t∗ , h̊R,t

∗
) Prσ

(̊
hR,t|f≥t∗ , h̊R,t∗

)
∑

h̊′R,t−i ,f
′≥t πt∗

(
f ′≥t∗h̊R,t

∗

i , h̊′R,t
∗

−i

)
Prσ

(̊
hR,ti , h̊′R,t−i |f ′≥t

∗ , h̊R,t
∗

i , h̊′R,t
∗

−i

) .
(29)

2. For each hA,ti satisfying ξ(hA,ti ) =
(
t∗, ζt

∗

i

)
, each f≥t

∗ ∈ F≥t∗, and each h̊R,t−i ∈ X t
−i ×

S−i,t, we have

lim
k
δk

(
f≥t

∗
, h̊A,t−i |h

A,t
i , t∗, ζt

∗

i

)
=

πt∗(f
≥t∗ , h̊A,t

∗
) Prσ

(̊
hA,t|f≥t∗ , h̊A,t∗

)
∑

h̊′A,t−i ,f
′≥t πt∗

(
f ′≥t∗ , h̊A,t

∗

i , h̊′A,t
∗

−i

)
Prσ

(̊
hA,ti , h̊′A,t−i |f ′≥t

∗ , h̊A,t
∗

i , h̊′A,t
∗

−i

) .
(30)

Lemma 12 follows from another application of Bayes’rule. The proof is relegated to the
end of the appendix.
Given ξ(hR,ti ) =

(
t∗, ζt

∗−1
i

)
, player i believes that the mediator and players −i do not

tremble after period t∗, and that recommendations are independent of θ and ζ after period
t∗. Hence, by Lemma 12, (23) is equivalent to (20), and therefore follows from the definition
of πt∗. The proof for (24) is analogous.
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Final Construction Take any canonical NE in which codominated actions are never rec-
ommended. Let π∗ be the distribution of the mediator’s pure strategy in this target equi-
librium. At the beginning of the game, the mediator draws f ∈ F ∗ according to π∗ with
probability 1− 1

k
, and the mediator follows the motivating equilibrium strategy constructed

above with probability 1
k
. Players are faithful, and after receiving mi,t = ?, with probability

1−√εk player i takes ai,t according to σ̂i(̊hR,ti ), and with probability
√
εk she takes all actions

with equal probability.
Since f ∈ F ∗ does not recommend codominated actions and each player’s history has full

support, this quasi-strategy is valid. Moreover, beliefs are defined as the limit of

δ̃k (z, θ, ζ, ω) =

(
1− 1

k

)
π∗ (f, z) +

1

k
δk (z, θ, ζ, ω) ,

where when the mediator follows π∗ we define θ = ζ = 0 and ω = (0, f), where f is drawn
from π∗, and π∗ (f, z) is the probability of (f, z) when the mediator draws f from π∗.
As k → ∞, until player i observes an off-path recommendation or signal given π∗, she

believes the equilibrium follows π∗ (f, z). Faithfulness is optimal since π∗ is a NE. Once
player i observes an off-path recommendation or signal, she believes the equilibrium follows
δk (f, z). In this case, faithfulness is optimal by Lemma 7, (23), and (24).

Proof of Lemma 11 We prove (27); the proof of (28) is analogous. We will prove the

following: for each i, t, each faithful hR,ti with δk
(
hR,ti

)
> 0, each ζti, and each h̊

R,t
−i , there

exist numbers ϕRk (hR,ti , ζti) ≥ 0 and eRk
(
hR,ti , ζti, h̊

R,t
−i

)
≥ 0 such that

δk(h
R,t
i , ζti, h̊

R,t
−i |ωT ∈ Ω0) = ϕRk (hR,ti , ζti)

(
Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t−i ) + eRk

(
hR,ti , ζti, h̊

R,t
−i

))
,

limk→∞

eRk

(
hR,ti , ζti, h̊

R,t
−i

)
(

1
k

)T+1
≤ t.

(31)

(31) is suffi cient for (27), since the former implies, for each ζti,

lim
k
δk

(̊
hR,t−i |ζti, h

R,t
i

)
= lim

k
δk

(̊
hR,t−i |ζti, h

R,t
i , ωT ∈ Ω0

)
(since ξ(hR,ti ) =

(
0, ζti

)
)

= lim
k

ϕRk (hR,ti , ζti)
(

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i ) + eRk

(
hR,ti , ζti, h̊

R,t
−i

))
∑

h̊R,t′−i
ϕRk (hR,ti , ζti)

(
Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t′−i ) + eRk

(
hR,ti , ζti, h̊

R,t′
−i

)) (by (31))

= lim
k

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i ) + eRk

(
hR,ti , ζti, h̊

R,t
−i

)
∑

h̊R,t′−i
Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t′−i ) +
∑

h̊R,t′−i
eRk

(
hR,ti , ζti, h̊

R,t′
−i

)
= lim

k

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i )∑

h̊R,t′−i
Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t′−i )
,
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where the last equality follows as Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i ) ≥ (εk)

NT / |A|T , eRk
(
hR,ti , ζti, h̊

R,t
−i

)
≤(

1
k

)T+1
T , and k (εk)

NT / |A|T →∞.
We prove (31) by induction on t. Taking ϕRk (hR,1i , ζ1

i ) = eRk

(
hR,1i , ζ1

i , h̊
R,t
−i

)
= 1, (31)

holds for t = 1. Suppose it holds for t. Since θ, ζ, and randomizations under
(
σ̂k, µ̂

)
are

independent across players, we have

δk(h
R,t+1
i , ζti, h̊

R,t+1
−i , θt, ζt|ωT ∈ Ω0)

= δk(h
R,t
i , ζti, h̊

R,t
−i |ωT ∈ Ω0)

×


∏

j:θj,t=0,ζj,t=0

(
1−√εk

) (
1−

(
1
k

)T+1
)
σ̂j (̊h

R,t
j )(aj,t)

×
∏

j:θj,t=1,ζj,t=0

√
εk

(
1−

(
1
k

)T+1
)((

1−√εk
)
σ̂j (̊h

R,t
j )(aj,t) +

√
εk

|Aj,t|

)
×
∏

j:ζj,t=1

(
1
k

)T+1 1

|Aj,t|−|Bj (̊hR,tj )|


×p(st+1|̊hR,t, at). (32)

By the inductive hypothesis, the first line of (32) equals

ϕRk (hR,ti , ζti)
(

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i ) + eRk

(
hR,ti , ζti, h̊

R,t
−i

))
.

Note that

Prσ̂
k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i ) =

∏
j 6=i

(
(1− εk) σ̂j (̊hR,tj )(aj,t) +

εk
|Aj,t|

)
.

Defining

ϕ̃k

(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
=


1{ζi,t=0,mi,t=ai,t}

(
1−√εk

) (
1−

(
1
k

)T+1
)
σ̂i(̊h

R,t
i )(ai,t)

+1{ζi,t=0,mi,t=?}
√
εk

(
1−

(
1
k

)T+1
)((

1−√εk
)
σ̂i(̊h

R,t
i )(ai,t) +

√
εk

|Ai,t|

)
+1{ζi,t=1,mi,t=ai,t}

(
1
k

)T+1 1

|Ai,t|−|Bi (̊hR,ti )|


and

ẽk

(̊
hR,t+1
−i

)
=

∑
θ−i,t,ζ−i,t


∏

j 6=i:θj,t=0,ζj,t=0

(
1−√εk

) (
1−

(
1
k

)T+1
)
σ̂j (̊h

R,t
j )(aj,t)

×
∏

j 6=i:θj,t=1,ζj,t=0

√
εk

(
1−

(
1
k

)T+1
)((

1−√εk
)
σ̂j (̊h

R,t
j )(aj,t) +

√
εk

|Aj,t|

)
×
∏

j 6=i:ζj,t=1

(
1
k

)T+1 1

|Aj,t|−|Bj (̊hR,tj )|


−Prσ̂

k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i )

=

(
1

k

)T+1∏
j 6=i

 1

|Aj,t| −
∣∣∣Bj (̊h

R,t
j )
∣∣∣ − (1− εk) σ̂j (̊hR,tj )(aj,t)−

εk
|Aj,t|

 ,
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and summing (32) over
(
θ−i,t, ζ−i,t

)
, we have

δk(h
R,t+1
i , ζti, h̊

R,t+1
−i |ωT ∈ Ω0)

= ϕRk (hR,ti , ζti)
(

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i ) + eRk

(
hR,ti , ζti, h̊

R,t
−i

))
×
(

Prσ̂
k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i ) + ẽk

(̊
hR,t+1
−i

))
×ϕ̃k

(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
× p(st+1|̊hR,t, at). (33)

Next, define

ϕRk (hR,t+1
i , ζt+1

i ) = ϕRk (hR,ti , ζti)×
ϕ̃k

(̊
hR,ti ,mi,t, ai,t, ζ i,t

)
Prσ̂

k,µ̂
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

) .
We can write

δk(h
R,t+1
i , ζt+1

i , h̊R,t+1
−i ) (34)

= ϕRk (hR,t+1
i , ζt+1

i )


Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t−i )× Prσ̂
k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i )

×Prσ̂
k,µ̂
(
m∗i,t(h

R,t+1
i ), ai,t |̊hti

)
× p(st+1|̊hR,t−i , at)

+eRk

(
hR,t+1
i , ζti, h̊

R,t+1
−i

)
 ,

where eRk
(
hR,t+1
i , ζt+1

i , h̊R,t+1
−i

)
is defined to satisfy this equality given (33): that is,

eRk

(
hR,t+1
i , ζt+1

i , h̊R,t+1
−i

)
=

 ẽk

(̊
hR,t+1
−i

)
Prσ̂

k,µ̂(λ(hR,ti ), h̊R,t−i )

+eRk

(
hR,ti , ζti, h̊

R,t
−i

)(
Prσ̂

k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i ) + ẽk

(̊
hR,t+1
−i

)) 
×Prσ̂

k,µ̂
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

)
× p(st+1|̊hR,t, at).

Since the distribution of player i’s message and action is determined by her own history,

Prσ̂
k,µ̂
(
m∗i,t(h

R,t+1
i ), ai,t |̊hR,ti

)
= Prσ̂

k,µ̂(m∗i,t(h
R,t+1
i ), ai,t|λ(hR,ti ), h̊R,t−i , a−i,t).

Hence,

Prσ̂
k,µ̂(λ(hR,ti ), h̊R,t−i )× Prσ̂

k,µ̂(a−i,t|λ(hR,ti ), h̊R,t−i )× Prσ̂
k,µ̂
(
m∗i,t(h

R,t+1
i ), ai,t|̊hR,ti

)
× p(st+1|̊hR,t, at)

= Prσ̂
k,µ̂(λ(hR,t+1

i ), h̊R,t+1
−i ).
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Substituting this into (34), we have

δk(h
R,t+1
i , ζt+1

i , h̊R,t+1
−i ) = ϕRk (hR,t+1

i , ζt+1
i )

(
Prσ̂

k,µ̂(λ(hR,t+1
i ), h̊R,t+1

−i ) + eRk

(
hR,t+1
i , ζti, h̊

R,t+1
−i

))
.

Finally, we have

lim
k

eRk

(
hR,t+1
i , ζt+1

i , h̊R,t+1
−i

)
(

1
k

)T+1
≤ lim

k

ẽk

(̊
hR,t+1
−i

)
(

1
k

)T+1
+
eRk

(
hR,ti , ζti, h̊

R,t
−i

)
(

1
k

)T+1

(
1 + ẽk

(̊
hR,t+1
−i

))
≤ 1 + t,

where the last line uses limk
ẽk(̊hR,t+1−i )

( 1k)
T+1 ≤ 1 (and hence ẽk

(̊
hR,t+1
−i

)
→ 0) and the inductive

hypothesis that limk
eRk (hR,ti ,ζti ,̊h

R,t
−i )

( 1k)
T+1 ≤ t. Hence, (31) holds for t+ 1, as desired.

Proof of Lemma 12 We prove (29); the proof of (30) is analogous. From the definition

of δk, δk
(
f≥t

∗
, h̊R,t−i |h

R,t
i , t∗, ζt

∗

i

)
equals

A
∑

f<t
∗

i ,θt
∗
i ,(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i
πt∗
(
f≥t

∗
, h̊R,t

∗
)

Prσ
(̊
hR,t|f≥t∗ , h̊R,t∗

)
Bi

∏
j 6=iCjD

A
∑

h̊′R,t−i ,f
′≥t

∑
f<t
∗

i ,θt
∗
i ,(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i
πt∗
(
f ′≥t∗h̊R,t

∗

i , h̊′R,t
∗

−i

)
Prσ

(̊
hR,ti , h̊′R,t−i |f ′≥t

∗ , h̊R,t
∗

i , h̊′R,t
∗

−i

)
Bi

∏
j 6=iC

′
jD
′
,

(35)
where the summation is taken over f<t

∗
i ∈ supp µ̂<t

∗

i , θt
∗

i ∈ {0, 1}t
∗−1, and (f<t

∗
j , θt

∗

j ,m
t∗
j ) ∈

supp µ̂<t
∗

j × {0, 1}t∗−1 ×
∏t∗−1

τ=1 (Aj,τ ∪ {?}) ∀j, and we define

A =
(

1
k

)t∗+(T+1)|ζt∗i | , Bi = 1

#Mi (̊ht
∗
i )
,

Cj = 1

#Mj (̊ht
∗
j )
, C ′j = 1

#Mj (̊h′t
∗

j )
,

D = 1{mt∗∈Mt∗ (̊ht∗ ,f<t∗ ,θt
∗
,ζt
∗
i )}, D′ = 1{mt∗∈Mt∗ (̊ht

∗
i ,̊h

′t∗
−i ,f

<t∗ ,θt
∗
,ζt
∗
i )}.

Note that A and Bi cancel in (35). Moreover, we have

D = D00
i ×D01

i ×D?1
i ×

∏
j 6=i
(
D0
j ×D1

j

)
,

D′ = D00
i ×D01

i ×D?1
i ×

∏
j 6=i
(
D′0j ×D′1j

)
,

where

D00
i = 1{mi,τ=f<t

∗
i,τ (̊hR,τi ) ∀τ≤t∗−1 s.t. ζi,τ=θi,τ=0}, D01

i = 1{mi,τ=? ∀τ≤t∗−1 s.t. ζi,τ=0 and θi,τ=1},
D?1
i = 1{mi,τ∈Ai,τ\B(̊hR,τi ) ∀τ≤t∗−1 s.t. ζi,τ=1}, D0

j = 1{mj,τ=f<t
∗

j,τ (̊hR,τj ) ∀τ≤t∗−1 s.t. θj,τ=0},
D1
j = 1{mj,τ=? ∀τ≤t∗−1 s.t. θj,τ=1}, D′0j = 1{mj,τ=f<t

∗
j,τ (̊h′R,τj ) ∀τ≤t∗−1 s.t. θj,τ=0},

D′1j = 1{mj,τ=? ∀τ≤t∗−1 s.t. θj,τ=1}.
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Since (i) D00
i D

01
i D

?1
i cancels in (35), (ii) these terms are independent of f≥t, h̊R,t−i , and(

f<t
∗

j , θt
∗

j ,m
t∗
j

)
j 6=i, and (iii) these are the only terms that depend on (f<t

∗
i , θt

∗

i ), we can

simplify (35) by ignoring D00
i D

01
i D

?1
i and

∑
f<t
∗

i ,θt
∗−1
i
, obtaining

∑
(f<t

∗
j ,θt

∗
j ,m

t∗
j )

j 6=i
πt∗
(
f≥t

∗
, h̊R,t

∗
)

Prσ
(̊
hR,t|f≥t∗ , h̊R,t∗

)∏
j 6=i
(
CjD

0
jD

1
j

)
∑

h̊′t−i,f
′≥t
∑

(f<t
∗

j ,θt
∗
j ,m

t∗
j )

j 6=i
πt∗
(
f ′≥t∗ , h̊R,t

∗

i , h̊′R,t
∗

−i

)
Prσ

(̊
hR,ti , h̊′R,t−i |f ′≥t

∗ , h̊R,t
∗

i , h̊′R,t
∗

−i

)∏
j 6=i
(
C ′jD

′0
j D

′1
j

) .
(36)

Since D0
jD

1
j is the only term that depends on

(
f<t

∗
j , θt

∗

j ,m
t∗
j

)
and we have

Cj
∑

f<t
∗

j ,θt
∗
j ,m

t∗
j

D0
jD

1
j = 1

for each hR,tj by (21), (36) equals (29).
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