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Abstract

An agent has access to multiple data sources, each of which provides information

about a di↵erent attribute of an unknown state. Information is acquired continu-

ously—where the agent chooses both which sources to sample from, and also how to

allocate resources across them—until an endogenously chosen time, at which point a

decision is taken. We show that the optimal information acquisition strategy proceeds

in stages, where resource allocation is constant over a fixed set of providers during each

stage, and at each stage a new provider is added to the set. We additionally apply this

characterization to derive results regarding: (1) endogenous information acquisition in

a binary choice problem, and (2) equilibrium information provision by competing news

sources.
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1 Introduction

Markets are increasingly saturated with large quantities of information about consumers,

which firms can use to learn about their preferences and behaviors. But since this information

is usually not designed for the exact problem that the firm or decision-maker faces, learning

often takes the form of acquiring and aggregating di↵erent kinds of information. A key

question then is how to optimally acquire information for this goal.

To fix ideas, suppose a hotel chain is considering whether to open a new location in

Puerto Rico, and wants to know the total amount of travel volume that the hotel would

experience. There is not a direct source of information about this, but the firm can acquire

data to learn about di↵erent aspects of its problem—for example, website tra�c to the

Puerto Rico tourism bureau helps the hotel to estimate tourism demand, while search data

for conference venues helps it to estimate business demand. Data aggregation of this form

is costly, not only because the firm needs to purchase the data, but also because the data

needs to be processed—raw data is often unstructured, and employees (e.g., statisticians in

a data science division) need to expend considerable e↵ort to organize and analyze the data.

In this work, we present a simple model for dynamic aggregation of information given

limited resources. Formally, a decision-maker (e.g., the management at the hotel chain) has

access to various data sources, each modeled as a Brownian motion whose drift is an unknown

attribute that the data source provides information about (e.g., tourism travel, business

travel). The decision-maker can continuously allocate a budget of resources (e.g., employee

hours) across these Brownian motions, where more resources allocated to any data source

results in greater precision of information about the corresponding attribute value. The

decision-maker acquires information until an endogenously chosen time, at which point he

implements a decision based on the information acquired so far. We assume that the variable

the decision-maker wants to learn (so called payo↵-relevant state) is a linear combination of

the attribute values. (In the example, total travel volume is a sum of demand from various

consumer segments.)

The key di�culty in the decision-maker’s information acquisition problem comes from

possible correlation across di↵erent attribute values. For example, one data source may

provide information about vacation travel demand from the U.S., while another provides

information about vacation travel demand from Canada, and we expect these values to be

positively correlated. Although these two demand levels enter additively into the firm’s

total demand forecast, their correlation means that information about one a↵ects the value

of information about the other. Thus, current information acquisitions have an immediate
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impact (reducing present uncertainty), as well as an impact on the future value of di↵erent

data sources. At any given moment, the decision-maker has to choose the optimal proportion

of resources to allocate to each source, taking into account the potential complementarity or

substitutability among the di↵erent sources.

Our main results demonstrate that under a condition on the prior belief, the optimal dy-

namic data acquisition strategy takes a simple form. Initially, the decision-maker exclusively

observes the single most informative data source, where “more informative” is evaluated with

respect to his prior belief over the unknown attribute values. At fixed times, the decision-

maker begins learning additionally from new data sources, dividing resources over these new

sources and the ones he was learning from previously. Eventually, the decision-maker learns

from all sources using a final and constant division of resources.

Crucially, the sources that are observed at each stage, and the way in which resources

are divided across them, are history-independent—that is, they do not depend on the signal

realizations. Thus, the decision-maker can completely determine its plan for information

acquisition at time t = 0. We also show that the optimal information acquisition strategy

is “robust” in the sense that it does not depend on the decision-maker’s discount factor or

payo↵ function, so long as the variable that the decision-maker wants to learn remains the

same.

The condition that we assume on the prior belief requires that the prior covariances of

the di↵erent attributes are not too large in magnitude compared to their variances. For the

case of two attributes, it is su�cient for the covariances to be smaller than the variances;

in general, how much smaller depends on the number of data sources. Intuitively, such

a condition puts an upper bound on the possible complementarity or substitution e↵ects

between di↵erent data sources. This helps to align the decision-maker’s short-run and long-

run information acquisition incentives, so that it is optimal to focus on the most informative

sources at any given moment.1 Although in general our condition puts some restriction on the

prior belief, we show that under optimal sampling from any prior belief, the decision-maker’s

posterior beliefs will eventually satisfy this condition, after which point our characterization

will hold.

Beyond the specific statements of the results, a main contribution of this paper is demon-

strating that in the present framework (i) the study of endogenous information acquisition is

quite tractable, permitting explicit and complete characterizations; and (ii) there is enough

richness in the setting to accommodate various economically interesting questions (e.g., about

1Formally, these are the sources that maximize the marginal reduction of the posterior variance about

the payo↵-relevant state. See Section 3.3 for details.
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comparative statics in primitives such as correlation across attributes). This makes the char-

acterizations useful for deriving new substantive results in settings motivated by particular

applications. We now illustrate this with two examples.

One such problem is endogenous information acquisition for binary choice. A large lit-

erature in economics and neuroscience (originating with Ratcli↵ and McKoon (2008)) has

studied how a consumer chooses between two goods of unknown payo↵s. A result in Fu-

denberg et al. (2018) characterizes the optimal way to learn about the two payo↵s prior to

making this decision, when these payo↵s are Gaussian and i.i.d.

The model studied in Fudenberg et al. (2018) is nested in our framework as the case of

two unknown attributes (the unknown payo↵s), where the decision-maker wants to learn the

di↵erence of these attributes (as this is a su�cient statistic for which payo↵ is larger). A

straightforward corollary of our main result generalizes the previously mentioned result in

Fudenberg et al. (2018) to correlated payo↵s.2 In addition, we use our characterization to

derive a new comparative static result with respect to prior uncertainty. An increase in the

initial uncertainty about either payo↵ results in a uniform change in attention: either weakly

more attention paid to learning about that payo↵ at every instant, or weakly less at every

instant. But the direction of this change depends on the degree of prior correlation between

the unknown payo↵s. Specifically, we show that an increase in initial uncertainty results in

uniformly more attention to that payo↵ when the two payo↵s are weakly correlated in the

prior, but results in uniformly less attention under strong prior correlation.

Our second application considers an extension of our environment in which the data

providers (e.g., news sources) are themselves strategic, and can control the precision of

the information they provide. We suppose that a mass of forward-looking decision-makers

optimally acquire information from the sources over time. Using our characterization of the

decision-makers’ optimal information acquisition strategy, we derive the sources’ equilibrium

choices of precision.

These precision levels turn out to be monotonically increasing in the providers’ discount

rate and in the prior correlation between the unknown attributes. Specifically, the more

patient the providers are, and the less correlated the attributes are, the lower the precision

of the signals. We show this by studying the optimal information acquisition strategy,

which starts with all resources directed towards one source (the more informative one), and

eventually divides resources across the two sources in a ratio that depends on their relative

levels of informativeness. When a source becomes more informative, it is more likely to

2We would expect payo↵s to be correlated if the values of the goods depend on a common source of un-

certainty—e.g., if the goods represent di↵erent portfolio choices, or consumer products with shared features.
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be the source initially attended to, but will receive fewer resources in the long-run (since

decision-makers need to spend less time to achieve the same level of information from that

source). Thus, patient data providers choose less informative signals, while impatient data

providers compete to be chosen initially. As far as we are aware, the e↵ect of information

precision on the time path of people’s information demand has not been noted in the previous

literature, and our exact characterizations are what allow us to study this.

Our analyses in Section 4 (information acquisition for binary choice) and Section 5 (com-

peting news sources) are only two problems whose solutions are facilitated by our main

results, and we hope that the characterizations we provide can be used in future work on

other applications.

1.1 Related Literature

Our model resembles, but is not nested within, the classic multi-armed bandit (MAB) frame-

work (Gittins, 1979; Bergemann and Välimäki, 2008). To see this, recall that in MAB, the

choice of which arm to pull plays the dual role of influencing the evolution of beliefs and

also determining flow payo↵s. In our setting, information acquisition choices influence the

evolution of beliefs, whereas actions—taken separately—determine payo↵s. Thus in our pa-

per, information acquisition decisions are driven by learning concerns exclusively, and the

exploration-exploitation trade-o↵ central to bandit models does not appear.3

We primarily build on a large literature about optimal dynamic information acquisition.

In contrast to an earlier focus in the literature on the choice of signal precisions (Moscarini

and Smith, 2001), our framework characterizes the choice between di↵erent kinds of infor-

mation, each providing information about a di↵erent unknown. Our model is closest in this

respect to Fudenberg et al. (2018) and Gossner et al. (2019). In Fudenberg et al. (2018), the

agent can learn about the (independent) values of two goods by observing the evolution of

di↵usion processes, and in Gossner et al. (2019), the agent can learn about the values of each

of K goods (again, independent) by observing Bernoulli signals.4 Compared to these papers,

3This feature distinguishes our results relative to a classic literature on “learning by experimentation”

(Easley and Kiefer, 1988; Aghion et al., 1991; Keller et al., 2005). In our paper, “myopic information

acquisition” (one that maximizes the reduction of posterior variance) is exactly optimal because it achieves

the fastest speed of learning. By contrast, Easley and Kiefer (1988) and Aghion et al. (1991) showed that

if there is a unique “myopically optimal policy” (one that maximizes the flow payo↵) at the limiting belief,

then the optimal policies eventually converge to this policy. This argument does not apply to our setting,

since every policy (i.e., resource allocation) is trivially myopic at the limiting belief, which is a point mass

at the true parameters. Uniqueness fails.
4Gossner et al. (2019) study the consequences of attention manipulations, where the agent is forced to
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we study a setting where the agent dynamically learns about many correlated attributes.5

Che and Mierendor↵ (2019) and Mayskaya (2019) also consider choice from a prescribed

set of information sources, but they focus on Poisson signals that confirm either one of two

states.

In the specific context of learning about multiple attributes, Klabjan et al. (2014) and

Sanjurjo (2017) study a “search” problem where each attribute value is perfectly learned

upon a single inspection. Working with general distributions, these authors show that an

attribute is “more attractive for discovery” than another attribute whenever its distribution is

a mean-preserving spread of the latter. Aside from having noisy signals, the main distinction

of our model is that we allow for correlation across attributes. Correlation translates into

complementarity or substitution e↵ects between di↵erent data sources, and thus plays a key

role in determining how the agent should aggregate information from these sources.

Another strand of the literature considers agents who choose from completely flexible

information structures at entropic (or more generally, “posterior-separable”) costs, such as

in Yang (2015), Steiner et al. (2017), Hébert and Woodford (2018), Morris and Strack (2019),

and Zhong (2019).6 Compared to these papers, our agent has access to a prescribed (physical)

set of signals, and acquires information under a resource/attention capacity constraint. Thus

the di↵erent signals in our setting are equally costly to acquire regardless of the current belief,

which is the key distinction from measuring information acquisition costs by the reduction

of uncertainty.7

In previous work (Liang et al., 2017), we studied a related setting in discrete time,

introduced the notion of “myopic information acquisition” and studied its (approximate)

optimality properties.8 We did not obtain a characterization of the optimal strategy itself.

attend initially to one particular attribute. This interesting question bears certain high-level resemblances

to our comparative statics in Section 4. However, we focus on consequences for the time path of attention,

instead of consequences for the final decision (which good is chosen), as Gossner et al. (2019) do.
5Relatedly, Callander (2011) considers sequential search from correlated signals. But the signals in Callan-

der (2011) come from a single Brownian motion path, which yields a special correlation structure. Similar

models are studied in Garfagnini and Strulovici (2016) and in Bardhi (2018).
6It is interesting that Steiner et al. (2017) also show how the solution to their dynamic problem reduces

to a series of static optimizations, similar to our multi-stage characterization. However, their argument is

based on the additive property of entropy and di↵ers from ours.
7Formally, we consider a sequential sampling problem in which the flow cost of acquiring information only

depends on the current time. Whereas in Morris and Strack (2019), for example, the flow cost is a function

of the current belief.
8In the present paper as well as in Liang et al. (2017), we study the complete path of information

acquisitions, but one corollary of the main results in these papers is that information acquisitions under
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Going beyond those results, the characterizations in the present paper precisely (and more

generally) describe the optimal path of attention allocations, which are useful in applications,

as we illustrate. The technical methods in this paper also di↵er from the prior work—see

Section 6 for further discussion.

Finally, this paper is related to recent work on data acquisition by firms. Azevedo et al.

(2019) study allocation of resources (i.e., test users) to learn about the quality of multiple

innovations. These authors show that the tail distribution of innovation quality crucially

a↵ects the (static) optimal experimentation strategy. Immorlica et al. (2018) consider dy-

namic allocations of a budget of data samples for learning about an evolving state, and

demonstrate near-e�ciency guarantees for certain classes of benchmark policies. Bonatti

and Cisternas (2019) analyze a dynamic game in which firms use a consumer’s “score” to

make inferences about his preferences and set prices. Di↵erent from these papers, we have a

setting in which the firm has to dynamically aggregate multiple sources of information. Our

characterizations trace out a time path of market demand for various kinds of information,

which is absent from the literature.

2 Model

An agent (i.e., firm) has uncertainty about the values of K attributes ✓ = (✓1, . . . , ✓K)0,9 and

his prior is that they are jointly normal with known mean vector µ 2 RK and covariance

matrix ⌃, where ⌃ has full rank. The agent wants to learn an unknown payo↵-relevant state

! =
P

K

i=1 ↵i✓i, which is a linear combination of these attribute values. The weight vector

↵ 2 RK is known and fixed, and we assume for ease of exposition that each coordinate ↵i is

strictly positive, so that the state depends positively on all of the attribute values. Because

any attribute value can be replaced with its negative, it is without loss to assume that the

weights are non-negative. Moreover, any source with zero weight can be dropped from the

model without a↵ecting our results (see Appendix D.6).

Time is continuous. There is a data source that provides information about each at-

tribute, and the agent divides his attention (i.e., resources) across these sources at every

instant. Formally, we assume that the agent has one unit of attention in total at every

point in time, and chooses attention allocations �1(t), . . . , �K(t) subject to �i(t) � 0 and

a myopic procedure will be asymptotically e�cient. In another working paper Liang and Mu (2019), we

provide a more thorough analysis of the conditions on the informational environment under which myopic

acquisitions lead to long-run (in)e�cient learning.
9Here and later, we use the apostrophe to denote vector or matrix transpose.
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P
i
�i(t)  1. See for example Fudenberg et al. (2018) and Che and Mierendor↵ (2019) for

recent models with fixed budgets of attention.

These choices influence the di↵usion processes X1, . . . , XK observed by the agent, in the

following way:

dX t

i
= �i(t) · ✓i · dt+

p
�i(t) · dBt

i
.

Above, each Bi is an independent standard Brownian motion, and the term
p

�i(t) is a

standard normalizing factor to ensure constant informativeness per unit of attention devoted

to each source.10 For example, devoting T units of time with full attention on source i (that

is, �i(t) = 1 at every time t in this interval) is equivalent to a single observation of the signal

✓i +N (0, 1/T ), or T observations of ✓i +N (0, 1).11

Although we have assumed that the drift of each Xi is proportional to an individual

attribute ✓i, the same analysis applies if this drift is instead some linear combination a0
i
· ✓

with ai 2 RK . This is because we can re-define the “primitive” attribute values ✓̃i = a0
i
· ✓.

Then, the vector of re-defined attributes ✓̃ = (✓̃1, . . . , ✓̃K)0 is again jointly normal, and the

payo↵-relevant state ! can be expressed as a (di↵erent) linear combination of ✓̃i. This

transformation is valid so long as the vectors a1, . . . , aK are linearly independent.

Let (⌦,P, {Ft}t2R+) describe the relevant probability space, where the information Ft

that the agent observes up to time t is the collection of paths
�
Xt

i

 K
i=1

. An information

acquisition strategy S is a map from observations
�
Xt

i

 K
i=1

into �({1, . . . , K}), representing
how the agent divides attention at each instant as a function of the observed di↵usion

processes. In addition to allocating his attention, the agent chooses how long to acquire

information for; that is, at each instant he determines (based on the history of observations)

whether to continue sampling information at some flow cost, or to stop acquiring information

and take an action. Formally, the agent chooses a stopping time ⌧ , which is a map from ⌦

into [0,+1] satisfying the measurability requirement {⌧  t} 2 Ft for all t.

At the endogenously chosen end time ⌧ , the agent will choose from a set of actions A and

receive the payo↵ u(a,!), where u is a known payo↵ function that depends on the action

taken a and the payo↵-relevant state !. The agent’s posterior belief about ! at this time

determines the action that maximizes his expected flow payo↵ E[u(a,!)].
10Having constant informativeness across sources implies that it is with loss to further normalize the

payo↵ weights ↵i to be equal. Indeed, our subsequent results indicate that the case of equal ↵i is special.

For example, with K = 2, Theorem 1 always holds when ↵1 = ↵2 but not in general.
11Note that this definition also treats “attention” and “time” in the same way, in the sense that devoting

1/2 attention to source i for a unit of time provides the same amount of information about ✓i as devoting

full attention to source i for a 1/2 unit of time.
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To summarize, the agent chooses his information acquisition strategy and stopping time

(S, ⌧) to maximize

max
S,⌧

E
h
max

a

E[u(a,!)|F⌧ ]� c(⌧)
i
,

where c(⌧) is a non-negative and weakly increasing function that measures the cost of waiting

until time ⌧ .12 Our focus throughout this paper is on the optimal information acquisition

strategy S. In general the strategies S and ⌧ should be determined jointly, but our results

will show that in many cases the optimal S can be characterized independently from the

choice of ⌧ .

Throughout the paper, we use the observation that after devoting qi units of attention

to each data source i, the agent’s posterior covariance matrix about (✓1, . . . , ✓K) is given by

(⌃�1 + diag(q))�1, (1)

where ⌃ is the prior covariance matrix and diag(q) is the diagonal matrix with entries

q1, . . . , qK . This formula reflects the general fact that in Gaussian environments, the posterior

precision matrix (i.e., inverse of the posterior covariance matrix) is the sum of the prior

precision matrix (⌃�1 in this case) and the signal precision matrix (diag(q) in this case).

Since the agent is ultimately interested in learning about ! =
P

K

i=1 ↵i✓i, what matters is his

posterior variance about !, as given by

V (q(t)) = ↵0(⌃�1 + diag(q))�1↵. (2)

See Appendix A for various properties of the V function.

3 Optimal Information Acquisition Strategy

Below we describe the optimal information acquisition strategy. We begin with the case of

two information sources, as the simpler setting allows us to derive slightly stronger results

and explain certain key intuitions. Following this we present results for the case of an

arbitrary (finite) number of sources, as well as an extended outline of our proof strategy.

3.1 K = 2

We begin by considering the case of two data sources and two attributes. The agent has a

prior  
✓1

✓2

!
⇠ N

  
µ1

µ2

!
,

 
⌃11 ⌃12

⌃21 ⌃22

!!

12Adding geometric or other forms of discounting to the model would not a↵ect any of the results.
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and access to two Brownian motions. He seeks to learn ! = ↵1✓1 +↵2✓2, where each ↵i > 0.

We impose the following restriction on the agent’s prior belief:

Assumption 1. The prior covariance matrix satisfies ↵1(⌃11 + ⌃12) + ↵2(⌃21 + ⌃22) � 0.

Since both variances ⌃11,⌃22 are positive, Assumption 1 can be understood as requiring

that the covariance ⌃12 is not too negative relative to the size of either variance. A su�cient

condition is for the weights on the two attributes to be equal (i.e., ↵1 = ↵2), in which case

Assumption 1 holds for all priors.13 A di↵erent su�cient condition is for the attributes to

be positively correlated (⌃12 = ⌃21 � 0), in which case Assumption 1 holds for all weights

↵1 and ↵2. We note that the set of beliefs satisfying Assumption 1 is absorbing: Once a

belief satisfies Assumption 1, all subsequent posterior beliefs (following any strategy, not

necessarily optimal) will as well.

Our next result establishes the optimal information acquisition strategy under this as-

sumption.

Theorem 1. Suppose Assumption 1 is satisfied. Define

t⇤1 :=
y1 � y2

x2
; t⇤2 :=

y2 � y1
x1

where x1 = ↵1 det(⌃), y1 = ↵1⌃11+↵2⌃12, x2 = ↵2 det(⌃), and y2 = ↵1⌃21+↵2⌃22. W.l.o.g.

let yi � yj. Then an optimal information acquisition strategy is history-independent and

hence can be expressed as a deterministic path of attention allocations (�1(t), �2(t))t�0. This

path consists of two stages:

• Stage 1: At all times t  t⇤
i
, the agent optimally allocates all attention to attribute i

(that is, �i(t) = 1 and �j(t) = 0).

• Stage 2: At all times t > t⇤
i
, the agent optimally allocates attention in the constant

proportion (�1(t), �2(t)) =
⇣

↵1
↵1+↵2

, ↵2
↵1+↵2

⌘
.

Under mild assumptions on the primitives, this optimal strategy is in fact unique up to the

stopping time ⌧ (after which attention allocations obviously do not matter). We defer the

technical discussion to Appendix A.3.

Thus there are two stages of information acquisition. In the first stage, which ends at

some t⇤, the agent allocates all of his attention to one of the attributes. After time t⇤, he

divides his attention across the attributes in a constant ratio across time. The long-run

13This follows from 2 · |⌃12|  2 ·
p
⌃11 · ⌃22  ⌃11 + ⌃22.
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instantaneous attention allocation is proportional to the weights ↵. Note that depending on

the agent’s stopping rule, Stage 2 of information acquisition may never be reached along some

histories of realized Brownian motion paths. But so long as the agent continues acquiring

information, his optimal attention allocations are as given above.

The characterization reveals that the optimal information acquisition strategy is com-

pletely determined from the prior covariance matrix ⌃ and the weight vector ↵. In particu-

lar, it does not depend on the agent’s cost of waiting or the functional form of u(a,!). Thus,

when the prior belief satisfies Assumption 1, the optimal information acquisition strategy

is constant across di↵erent objectives and also across di↵erent stopping rules. Relatedly,

we can solve for the optimal stopping rule in this setting as if information acquisition were

exogenously given by Theorem 1.

Below we illustrate this optimal information acquisition strategy using a few simple ex-

amples.

Example 1 (Independent Attributes). First consider the case of independent attributes. For

example, suppose the two unknown attribute values are distributed as
 

✓1

✓2

!
⇠ N

  
µ1

µ2

!
,

 
6 0

0 1

!!

under the agent’s prior, and he wants to learn ✓1 + ✓2. Then, applying Theorem 1, the

agent begins by putting all attention towards learning ✓1. At time t1 = 5/6, his posterior

covariance matrix is the identity matrix. After this time he optimally splits attention equally

between the two attributes, which are now symmetric.

Example 2 (Correlated Attributes). Now suppose the attributes are correlated; for example,

the unknown attribute values are distributed as
 

✓1

✓2

!
⇠ N

  
µ1

µ2

!
,

 
6 2

2 1

!!

under the agent’s prior, and he wants to learn ✓1+✓2. Applying Theorem 1, the agent begins

by putting all attention towards learning ✓1. At time t1 = 5/2, his posterior covariance matrix

as given by (1) becomes

 
3/8 1/8

1/8 3/8

!
, which makes the two attributes symmetric. After

this time he optimally splits attention equally between the two attributes.

Example 3 (Unequal Payo↵Weights). Consider the prior belief given in the previous example,

but suppose now that the agent wants to learn ✓1 + 2✓2. As before, the agent begins by
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putting all attention towards learning ✓1. Stage 1 ends at time t1 = 3/2, when the posterior

covariance matrix is

 
3/5 1/5

1/5 2/5

!
. After this time, he optimally acquires information in

the mixture (1/3, 2/3).

To interpret the optimal strategy, first consider the case of equal payo↵ weights (↵1 = ↵2),

as in Examples 1 and 2. Then, the condition y1 = ↵1⌃11 + ↵2⌃12 � ↵1⌃21 + ↵2⌃22 reduces

to ⌃11 � ⌃22. So Stage 1 involves a direct comparison of prior uncertainty about the two

attributes, where the agent initially chooses to learn exclusively about the attribute over

which he is more uncertain.

More generally, we can measure value of information by how much it reduces the variance

of the payo↵-relevant state !. Then the condition y1 � y2 equivalently says that the marginal

value of learning about attribute ✓1 exceeds that of learning about ✓2, according to the prior

belief. The expression

yi = ↵i⌃ii + ↵j⌃ij

takes into account the consequences of unequal payo↵ weights and possible correlation across

the attributes. The agent re-weights uncertainty about ✓i in proportion to the weight ↵i,

since (all else equal) an increase in ↵i means that the value of reducing uncertainty about ✓i

is larger. Correlation further implies that learning about ✓i results in a reduction of variance

not only about ✓i, but also about ✓j. The more the two attributes co-vary, the larger this

spillover e↵ect. Thus the marginal value of learning about ✓i includes the payo↵ consequences

to indirectly learning about ✓j, as seen in the above formula for yi.

Suppose without loss of generality that y1 � y2, then the agent initially learns exclusively

about ✓1, which has greater marginal value. As information about ✓1 accumulates, however,

the marginal values of learning either attribute evolve, with the marginal value of ✓1 de-

creasing faster than ✓2. Eventually, these marginal values equalize. From this point on, the

agent optimally acquires information in a constant ratio that is proportional to the weight

vector ↵. Dividing attention in this way achieves the most e�cient aggregation of informa-

tion about !. Moreover, as we show in the proof, acquisition of information proportional to

↵ maintains equal marginal values of the two data sources, so that acquiring information in

this mixture remains optimal.

We provide a more involved proof outline in Section 3.3, but the intuition can already

be seen through the examples above. In Examples 1 and 2, since the agent seeks to learn

✓1 + ✓2, the two attributes become symmetric once their posterior variances equalize. After

that, equal attention allocation maintains symmetry and equal marginal values.

12



Although symmetry is lost in Example 3, the posterior covariance matrix

 
3/5 1/5

1/5 2/5

!

at time t1 = 3/2 has the key property that the payo↵-relevant state ! = ✓1 + 2✓2 is inde-

pendent of ✓1 � ✓2 (since they are jointly normal and have zero covariance).14 As we show

in Lemma 5, this independence property implies equal marginal values.15 This explains why

the agent is willing to mix at time t1. The specific mixture (1/3, 2/3) ensures that every

subsequent posterior covariance matrix continues to have the independence property. Hence

equal marginal values are maintained, and the agent optimally follows this mixture at future

times as well.

3.2 General K

We now consider the case of general K, where we will show that the results for the K = 2

case extend qualitatively.

A key condition on the prior belief, parallel to the one stated in Assumption 1, is the

following:

Assumption 2. The prior covariance matrix satisfies |⌃ij|  1
2K�3 · ⌃ii, 8i 6= j.

This condition requires that the size of the covariance between every pair of attribute values

is bounded by an expression depending on the variances.16 For the case of two attributes, we

require only that the covariance ⌃12 is smaller in magnitude than both variances ⌃11 and ⌃22,

which would imply our previous Assumption 1.17 In general, the condition in Assumption 2

is more restrictive for larger numbers of sources K.

To interpret the use of Assumption 2, note that prior covariances measure the complemen-

tarity or substitution e↵ects across the information provided by di↵erent data sources (i.e.,

14Cov(✓1 + 2✓2, ✓1 � ✓2) = Var(✓1) + Cov(✓1, ✓2)� 2Var(✓2) = 3/5 + 1/5� 2⇥ 2/5 = 0.
15Indeed, Lemma 5 shows that the marginal value of learning ✓i is given by �2

i , where �i is the posterior

covariance between ! and ✓i. Thus the marginal values are equal if and only if Cov(!, ✓1) = ±Cov(!, ✓2);

that is, ! is independent of either ✓1 � ✓2 or ✓1 + ✓2.
16Note that this condition requires the covariances to be not too negative, and also not too positive, which

di↵ers from the previous Assumption 1. Loosely, the di↵erence between the K = 2 and K > 2 cases is that

with K > 2, the relationship between any two sources (i.e., whether they are complements/substitutes) is

a↵ected by observation of other sources outside of this pair. In particular, two sources that were previously

complementary can cease to be so when the agent (optimally) samples a third source, and their covariance

can switch sign along the path of information acquisition. This does not happen with K = 2.
17However, when K = 2 our previous Assumption 1 is strictly weaker. So Theorem 1 does not follow as a

corollary from Theorem 2 below.
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whether information from one data source increases or decreases the learning benefits from

other sources). Assumption 2 limits the magnitude of such complementarity/substitution,

so that the agent’s short-run and long-run information acquisition incentives are aligned. In

Section 3.4, we provide a counterexample to illustrate that misalignment can occur when

Assumption 2 is violated.

Under this assumption, the optimal information acquisition strategy is described as fol-

lows:

Theorem 2. Suppose Assumption 2 is satisfied. Then, there exist times

0 = t0  t1  · · ·  tK�1 < tK = +1

and nested sets

; = B0 ( B1 ( · · ·BK�1 ( BK = {1, . . . , K},

such that an optimal information acquisition strategy involves constant instantaneous atten-

tion is described by a deterministic path of attention allocations (�1(t), . . . , �K(t))t�0. This

path consists of K stages: For each 1  k  K, the instantaneous attention allocation is

constant at all times t 2 [tk�1, tk) and supported on the sources in Bk. In particular, the

optimal attention allocation at any time t � tK�1 is proportional to ↵.

The times tk as well as the attention allocations (and their support Bk) at each stage

can be determined directly from the primitives ↵ and ⌃, and are history-independent. In

Appendix C, we explain how to compute these times and sets. Theorem 2 thus tells us that

the agent can reduce the dynamic information acquisition problem to a sequence of K static

problems, each of which involves finding the optimal constant ratio of attention for a fixed

period of time (from tk�1 to tk). Moreover, as in the K = 2 case, the optimal information

acquisition strategy does not depend on the agent’s payo↵ function or waiting cost.

We again demonstrate this result in an example:

Example 4. Suppose there are three unknown attributes, and the agent’s prior over these

attribute values is 0

B@
✓1

✓2

✓3

1

CA ⇠ N

0

B@

0

B@
µ1

µ2

µ3

1

CA ,

0

B@
4 0 0

0 4 �1

0 �1 3

1

CA

1

CA

Note that the prior satisfies Assumption 2. The agent wants to learn ! = ✓1 + ✓2 + ✓3.

The optimal information acquisition strategy consists of three stages:

14



Stage 1. The agent begins by putting all attention towards learning ✓1. To interpret,

notice that negative correlation between attributes ✓2 and ✓3 reduces the overall uncertainty

about the sum ✓2+✓3; thus, the marginal value of learning ✓1 is initially higher than learning

either ✓2 or ✓3. The agent attends only to ✓1 until time t1 = 1/12, at which point his posterior

covariance matrix becomes 0

B@
3 0 0

0 4 �1

0 �1 3

1

CA ,

as given by (1). This posterior belief has the property that ! = ✓1 + ✓2 + ✓3 is independent

of ✓1 � ✓2, so as discussed the marginal values of learning ✓1 and learning ✓2 have equalized.

Since the posterior variance of ✓3 is smaller than ✓2, the marginal value of learning ✓3 is

strictly lower.

Stage 2. The agent next splits his attention between learning ✓1 and learning ✓2 in the

constant proportion (4/7, 3/7). These acquisitions reduce the marginal value of learning ✓1

and the marginal value of learning ✓2 at the same rate, thus maintaining the equality between

these marginal values. At time t2 = 13/44, the agent’s posterior covariance matrix is

0

B@
11/5 0 0

0 44/15 �11/15

0 �11/15 44/15

1

CA .

The marginal values of learning all three attributes have become the same, since at this time

! = ✓1 + ✓2 + ✓3 is independent of both ✓1 � ✓2 and ✓1 � ✓3.

Stage 3. From this time on, the agent acquires information evenly from each source via

the constant attention allocation (1/3, 1/3, 1/3).

We provide next an outline for the proof of this result, which also formalizes some of the

intuitions hinted at in the examples above—e.g., that the marginal values of learning about

di↵erent attributes in the set Bk are equal during each stage k.

3.3 Proof Outline for Theorems 1 and 2

The plan of the proof is to first define a uniformly optimal strategy, which minimizes the

agent’s posterior variance about ! at every possible stopping time. When uniformly optimal

strategies exist, they are the optimal information acquisition strategy. We then show that

15



under the assumption on the prior belief that we provide, uniformly optimal strategies do in

fact exist, and have the structure that we characterize.

Definition of a uniformly optimal strategy. At every time t, the agent’s past attention

allocations integrate to a cumulated attention vector

q(t) = (q1(t) . . . , qK(t))
0 2 RK

+

describing how much attention has been paid to each source. These cumulated attention

vectors q(t) determine the agent’s posterior variance about !, via the function V (q(t)) in-

troduced in (2).

Define the t-optimal cumulated attention vector to be

n(t) = argmin
q1,...,qK�0,

P
i
qi=t

V (q1, . . . , qK),

namely the allocation of t units of attention that minimizes posterior variance (among all

attention vectors that allocate a budget of t).18 We will say that an attention allocation

strategy is uniformly optimal if it integrates to the t-optimal vector at every time t.

Definition 1. Say that an information acquisition strategy S is uniformly optimal if the

induced cumulated attention vector at each time t is n(t), independently of signal realizations.

That is, the strategy S deterministically leads to minimum posterior variance about !

at every possible stopping time t. This is a strong property, and existence of such a strategy

is in general not guaranteed.

When a uniformly optimal strategy exists, it is optimal. By definition, if a cumu-

lated attention vector is t-optimal, it implies that the agent has learned as much about ! as

possible in the interval [0, t). Thus, if the agent stops acquiring information at time t (and

takes the optimal action), then his expected flow payo↵ is maximized among all strategies

that deterministically stop at t. The form of the payo↵ function u does not matter because,

due to normal beliefs, achieving minimum posterior variance means that the agent’s infor-

mation up to time t is Blackwell more informative than under any other strategy (Blackwell,

1951; Hansen and Torgersen, 1974).

Requiring that q(t) is t-optimal at every time t then implies that the information ac-

quisition strategy is most informative about ! at every history and maximizes expected

18We show in Lemma 6 that this minimizer is unique.
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payo↵s given any exogenous stopping time. In our Gaussian environment, such a strategy

also maximizes expected payo↵s even when the stopping time can be endogenously chosen;

this follows from a result of Greenshtein (1996) (see Lemma 7 in the appendix). Given this

discussion, whenever a uniformly optimal strategy exists, it must be the optimal strategy in

our problem.19 It remains to show that under Assumption 2, a uniformly optimal strategy

does exist, and has the structure described in Theorem 2.

Existence of a uniformly optimal strategy. To show that a uniformly optimal strategy

exists, we make use of the following simple lemma:

Lemma 1. A uniformly optimal strategy exists if and only if the t-optimal attention vector

n(t) weakly increases (in each coordinate) over time.

In words, we require that for every t0 > t, the optimal allocation of t0 units of attention to

have higher amount of attention allocated to each source compared to the optimal allocation

of t units. This is necessary and su�cient for a single information acquisition strategy to

achieve the optimal cumulated attention vectors at both times.

Suppose the agent has achieved the t-optimal vector n(t) at some time t, and is trying

to reach n(t0) at some future time t0 slightly larger than t. When the marginal value of

learning about some attribute is strictly largest at time t, it is optimal to focus on that

attribute for a while. More often, however, there will be multiple sources that have the same

maximal marginal value. In these cases, the agent turns from the “first-order” comparison of

marginal values to a “second-order” comparison of mixtures over this set of sources, since all

these mixtures have the same first-order e↵ect. Formally, di↵erent mixtures have the same

marginal value at time t, but due to second-order e↵ects that we describe below, they would

have di↵erent marginal values at future instants.20

19While it is possible to write down the Bellman equation for this control problem, the value function (as

a function of the current belief) is high-dimensional and di�cult to solve for explicitly, especially if we do

not have any structure on u(·) and c(·). Our argument based on Blackwell comparisons gets to the optimal

policy (i.e., attention allocation) without going through the value function. See also Appendix A.2.
20We mention that the idea of trying to maximize the marginal value of learning is known in the operations

research literature as knowledge-gradient ; see for example Frazier et al. (2008, 2009). These papers establish

the asymptotic optimality of knowledge-gradient strategies when the agent seeks to select the best one out

of K unknown payo↵s. Although we also study a (correlated) Gaussian environment, we have a di↵erent

decision problem based on a weighted sum of the unknowns, and the two settings overlap only when K = 2

as we discuss in Section 4. Moreover, our Theorems 1 and 2 show that knowledge gradient is exactly optimal

in many situations. In this sense our results complement those of Frazier et al. (2008, 2009), which give

general bounds on the potential loss of adopting knowledge-gradient.
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The optimal mixture depends (roughly) on whether the sources of information (that

maximize the marginal value at t) are substitutes or complements. If information about

di↵erent attributes are substitutes—so that information about attribute 1 has a negative

impact on the marginal value of information about attribute 2—then the agent prefers not

to observe both data sources in positive amounts from t to t0.21 Instead, he would ideally

like to take away some attention given to attribute 1 before time t and re-distribute it to

attribute 2 between t and t0. This would create a failure of monotonicity, since n1(t0) is

smaller than n1(t). In these situations there does not exist a uniformly optimal strategy, as

we illustrate by example in the next subsection.

In contrast, if information about di↵erent attributes are complements, then the agent

optimally chooses a positive mixture to take advantage of the complementarity. In this

case the t-optimal vectors are weakly increasing in all coordinates, and uniform optimality is

attainable. What we show in the proof is that Assumptions 1 and 2 are su�cient to guarantee

that di↵erent data sources are complements whenever their marginal values equalize.22 Thus

a uniformly optimal strategy exists under the stated assumptions.

Structure of the uniformly optimal strategy. When a uniformly optimal strategy

exists, the instantaneous attention allocations �(t) are simply the time-derivatives of the

t-optimal vectors n(t). Since n(t) itself is history-independent, so is �(t). This delivers the

first part of our theorems: existence of an optimal strategy that is deterministic.

It remains to characterize the structure of this strategy. By our discussion above, at

each time t the agent divides attention across learning those attributes that maximize the

marginal reduction of posterior variance. Suppose that n(t) is supported on some set Bk,

then these sources have the highest marginal value at time t. We demonstrate a specific

positive mixture over these sources, such that the marginal values of these sources remain

the same when the agent divides attention according to this mixture. This allocation is thus

optimal for a while after time t.23

Nonetheless, as beliefs about the attributes in Bk become precise, the marginal values of

21This intuition is rough because it does not take into account the substitution e↵ect a source of information

has with past sampling of the same source. More precisely, it is not optimal to observe both data sources in

positive amounts if and only if the substitution between them is su�ciently strong.
22The formal version of this claim is Lemma 10 in the appendix. Note that complementarity or substitution

of two data sources is captured by the relevant cross-partial derivative of the posterior variance function V ,

given in Lemma 5.
23Since V (q) is a convex function, the first-order condition of having equal marginal values is not only

necessary but also su�cient for a cumulated attention vector to be t-optimal.
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learning about the remaining attributes increase continuously relative to the value of learning

about those in Bk. Eventually some new data source(s) will have the same marginal value as

those in Bk. At this point the agent expands his observation set to include the new source(s),

and we can repeat the same reasoning. This yields the “nested-set” property in Theorems 1

and 2.

The final di�culty is to argue that given any observation set Bk, the specific mixture

over these sources that maintains equal marginal values is constant over time. For this we

directly compute the time-derivative of n(t): Since n(t) is characterized by equal partial

derivatives of V , its time-derivative is inversely related to the Hessian matrix (i.e., second

derivatives) of V . We are able to derive this Hessian matrix (Lemma 5) and use its properties

to characterize the evolution of n(t) (Lemmata 11 and 12). This completes the proof.

3.4 Arbitrary Priors

We next comment on optimal information acquisition for prior beliefs that do not satisfy the

assumptions given above.

It turns out that the agent’s posterior beliefs under optimal sampling from any prior belief

will eventually satisfy Assumption 2. In fact, optimal sampling is not required: Along any

path in which each data source receives infinite attention (which is necessary for complete

learning of ! and thus satisfied under optimal sampling), the agent’s beliefs will enter the

set of beliefs defined by Assumption 2.

Formally, consider the cumulated attention vector q(t) introduced earlier. We then have:

Lemma 2. Starting from any prior belief, the optimal information acquisition strategy has

the property that the induced cumulated attentions qi(t) ! 1 for each 1  i  K as t ! 1.
24

Lemma 3. Suppose qi(t) ! 1 for each 1  i  K. Then, the agent’s posterior beliefs

satisfy Assumption 2 at all su�ciently late times.

Once Assumption 2 is met, the characterization given in Theorem 2 holds (taking the

“prior” to be the posterior belief at that time). In particular, we can conclude from Lemma

2, Lemma 3 and Theorem 2 that:

Proposition 1. Starting from any prior belief, the optimal information acquisition strategy

is eventually a constant attention allocation (across all data sources) proportional to the

24We note that starting from a general prior belief, qi(t) can be a random variable depending on past

signal realizations. Thus the lemma asserts that each source receives infinite attention along every history.
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weight vector ↵.25

Thus, in general, the optimal information acquisition strategy will eventually have the

properties described in the previous subsections: independence of signal realizations, of the

payo↵ function u(a,!) and of the waiting cost c(⌧).

These robustness properties need not hold from t = 0 for all priors. Specifically, the

condition provided in Assumption 1 for K = 2 is not only su�cient but also necessary for

our characterization to hold independently of the agent’s payo↵ criterion—see the example

below and Proposition 4 for details. The condition we provide in Assumption 2 for general K

is su�cient but not necessary for the characterization to hold.26 Nonetheless, the constant
1

2K�3 in Assumption 2 is tight, in a sense that we formalize in Appendix D.7.

The following example illustrates how and why Theorem 1 might fail:

Example 5. There are two unknown attributes with prior distribution
 

✓1

✓2

!
⇠ N

  
µ1

µ2

!
,

 
10 �3

�3 1

!!
.

The agent wants to learn ✓1 + 4✓2.

Given q1 units of attention devoted to learning ✓1, and q2 devoted to ✓2, the agent’s

posterior variance about ! is given by (2). Simplifying, we have

V (q1, q2) =
2 + 16q1 + q2

(1 + q1)(10 + q2)� 9
.

The t-optimal cumulated attention vectors n(t) (see Section 3.3) are defined to minimize

V (q1, q2) subject to q1, q2 � 0 and the budget constraint q1 + q2  t.

These vectors do not evolve monotonically: Initially, the marginal value of learning ✓1

exceeds that of learning ✓2, since the agent has greater prior uncertainty about ✓1 (even

accounting for the di↵erence in payo↵ weights). Thus at all times t  1/4, the t-optimal

vector is (t, 0), and the agent learns only about attribute 1.

After a quarter-unit of time devoted to learning ✓1, the agent’s posterior covariance

matrix becomes

 
20/7 �6/7

�6/7 5/14

!
. Note that the two sources have equal marginal values

25More specifically, we show in the proof that there exists t depending only on ↵ and ⌃, such that the

optimal attention allocation at any time t � t is proportional to ↵. This holds independently of the payo↵

function or past signal realizations.
26That is, under alternative assumptions on ⌃ and ↵, optimal information acquisition may also consist of

K stages as described in Theorem 2. In fact, in the appendix we prove Theorem 2 under a weaker condition

than Assumption 2.
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at t = 1/4, since ! = ✓1 + 4✓2 is independent of ✓1 + ✓2 (see Footnote 15).27 However, to

maintain equal marginal values at future instants, it is actually optimal to take attention

away from attribute 1 and re-distribute it to attribute 2. Specifically, at all times t 2 (1/4, 1]

the t-optimal vector is given by n(t) =
��t+1

3 , 4t�1
3

�
, and the optimal cumulated attention

toward attribute 1 is decreasing in this interval.28

This failure of monotonicity occurs because at t = 1/4, the two sources of information

strongly substitute one another—by Lemma 5 in the appendix, the cross-partial @12V =

96/343 > 0, suggesting that the marginal value of either source (as measured by reduction in

the posterior variance V ) is lower after having learned from the other source. Consequently,

there does not exist a uniformly optimal strategy in this example (Lemma 1). Hence the

optimal information acquisition strategy varies according to when the agent expects to stop,

and Theorem 1 cannot hold independently of the payo↵ criterion (Lemma 8).

4 Application: Binary Choice

The framework we study relates to a large body of work regarding “binary choice tasks,”

in which an agent has a choice between two goods with payo↵s ✓1 and �✓2 (we introduce

the negative here for expositional simplicity), and can devote e↵ort towards learning about

these payo↵s before making his decision. The leading model in this domain, the drift-di↵usion

model (Ratcli↵ and McKoon, 2008), supposes that the agent observes a Brownian motion

whose drift depends on which good yields the higher payo↵. In our framework, this model

corresponds to a case in which the agent’s prior belief is supported on two points—either

(✓1,�✓2) = (✓0, ✓00) or (✓1,�✓2) = (✓00, ✓0) where ✓0 > ✓00 are known quantities. Thus the agent

has uncertainty over which good is better, but not over how much better it is.29 Fudenberg

et al. (2018) recently proposed a variation on this model to allow for the latter kind of

uncertainty. In their uncertain drift-di↵usion model, the agent has a jointly normal prior

over (✓1,�✓2), and has access to two Brownian motions with drifts corresponding to these

unknown payo↵s.

Both the classic DDM model and also Fudenberg et al. (2018) focus primarily on de-

27The key di↵erence between this counterexample and Example 3 is that here ! is independent of the sum

✓1 + ✓2, rather than the di↵erence ✓1 � ✓2. Although both cases imply equal marginal values, it turns out

that independence between ! and ✓1 � ✓2 is necessary for n(t) to be monotonic. To this end, Assumptions

1 and 2 essentially rule out the other possibility that ! is independent of ✓1 + ✓2.
28Subsequently, at times t 2 (1, 3], the t-optimal vector is n(t) = (0, t), allocating all attention to attribute

2. Finally, at times t � 3, n(t) =
�
t�3
5 , 4t+3

5

�
, allocating attention proportional to ↵.

29That is, the classic DDM assumes that the magnitude of ✓1 + ✓2 is known to the agent.
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riving the optimal stopping rule given exogenous information. In Section E of their paper,

Fudenberg et al. (2018) additionally consider a version of their model in which the agent

endogenously acquires information by choosing attention allocations (subject to an budget

constraint) that scale the drifts of the two Brownian motions. Indeed, this corresponds ex-

actly to our framework with K = 2 and equal payo↵ weights (since the payo↵ di↵erence

✓1 + ✓2 is a su�cient statistic for the agent’s decision). These authors impose further that

the agent’s prior is independent and symmetric—that is, ⌃ = I—and find that the agent

optimally devotes equal attention to both information sources at all times.

Applying Theorem 1 with ↵1 = ↵2 = 1, we obtain the following immediate generalization

of this result on optimal information acquisition.30

Corollary 1. Suppose K = 2, ↵1 = ↵2 = 1 and ⌃ii � ⌃jj. The agent’s optimal information

acquisition strategy (�1(t), �2(t)) consists of two stages:

• Stage 1: At all times

t  t⇤
i
=

⌃ii � ⌃jj

det(⌃)
,

the agent optimally allocates all attention to source i.

• Stage 2: At times t > t⇤
i
, the agent optimally allocates half of his attention to each

source.

When ⌃ = I, the thresholds are t⇤1 = t⇤2 = 0, so that the agent splits his attention

evenly from the beginning. This returns Theorem 5 in Fudenberg et al. (2018). Corollary 1

demonstrates that two aspects of their characterization generalize: Starting from an arbitrary

prior covariance matrice ⌃, the agent will eventually acquire information according to the

constant proportion (12 ,
1
2). Moreover, this proportion is optimal from the beginning whenever

the two unknown payo↵s have the same initial uncertainty. But whenever the prior belief is

ex-ante “asymmetric,” the agent initially devotes all attention to learning about the payo↵

he deems more uncertain.

We note additionally that, as Fudenberg et al. (2018) point out, their result does not

characterize “o↵-equilibrium” attention allocation (where the agent has paid unequal atten-

tion to the two sources in the past). In contrast, our corollary above applies to all prior

beliefs and thus allows for characterization of optimal information acquisition following any

history, including those in which the agent has previously behaved sub-optimally.

30Note that Fudenberg et al. (2018) additionally provide results about the optimal stopping time, which

we do not pursue here.
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From Corollary 1 we see that the prior belief a↵ects the agent’s attention strategy only

by determining which source is observed in Stage 1, and for how long that stage lasts. Thus,

changes in the prior belief result in the agent paying uniformly more or less attention to

either source. If we consider in particular the impact of changes in the initial uncertainty

about one of the payo↵s, we have the following comparative static:

Corollary 2. Suppose K = 2, ↵1 = ↵2 = 1 and ⌃ii � ⌃jj. Then, if ⌃jj � |⌃ij|, an increase

in ⌃ii results in uniformly higher attention towards source i (i.e., �i(t) is weakly larger at

every t). Otherwise if ⌃jj < |⌃ij|, an increase in ⌃ii results in uniformly lower attention

towards source i.

The case in which larger ⌃ii results in uniformly higher attention towards source i is

intuitive, since the agent wants to make up for greater initial uncertainty about ✓i. But the

comparative static is reversed when the covariance ⌃ij is larger in magnitude than ⌃jj. To

interpret this finding, note that whenever the two payo↵s are correlated, any information

acquired about ✓i also provides information about ✓j. So in general, an increase in ⌃ii has

two opposing e↵ects on t⇤
i
. On the one hand, greater asymmetry in the prior belief means it

should take longer time to “balance out” the beliefs (the intuition given above). On the other

hand, holding fixed ⌃ij and ⌃jj, larger ⌃ii decreases the correlation between the unknowns,

so that each unit of attention devoted to ✓i now reveals less about the other payo↵ ✓j. It

should then be faster for the posterior variance about ✓i to “catch up” with the posterior

variance about ✓j. Therefore, whether attention is uniformly increased or decreased depends

on which of these two e↵ects dominates. As stated in the corollary, the e↵ect of (decreased)

correlation is dominant when ⌃ij is large in magnitude; that is, when correlation is high to

begin with.

5 Application: Competing News Sources

Next, we apply our results to a setting in which the data sources are themselves strategic,

and can control the precision of the information that they provide.

For example, consider two news sources, each of which has expertise on a particular

topic—for example, one source may specialize in a politician’s financial dealings (i.e., how

corrupt he is), while another specializes in that politician’s handling of international relations

(i.e., how competent he is). The news sources primarily earn revenue by running ads on an

online site, so what they aim to maximize is time spent on their site. They do this by

strategically controlling how informative their articles are; for example, they may either
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reveal everything they know at once, or reveal it slowly across many articles. On the other

hand, readers care to learn the overall quality of the politician, which depends both on how

corrupt and how competent the politician is. We ask how informative the news articles will

be in equilibrium.

In more detail, we suppose that a mass of readers seek to learn the sum of attributes ✓1

and ✓2, and their common prior over these parameters is
 

✓1

✓2

!
⇠ N

  
µ1

µ2

!
,

 
1 ⇢

⇢ 1

!!
,

where ⇢ 2 (�1, 1) measures prior correlation between ✓1 and ✓2. Each of two news sources

i = 1, 2 (freely) chooses a noise variance �2
i
, so that a unit of time spent on their site generates

the signal

✓i + ✏i, ✏i ⇠ N (0, �2
i
).

Note that there is no cost for the news sources to provide more informative articles. Nonethe-

less, as we demonstrate below, in equilibrium the sources will choose strictly positive vari-

ances �i.

Readers optimally allocate attention given these noise variances (which are fixed across

time). Since we have assumed a common prior, all readers make the same information

acquisition decisions, and it is without loss to consider a single reader whose allocation at

time t is denoted (�1(t), �2(t)). To map this setting into our main model, we normalize the

noise terms to have unit variances as follows: Define ✓̃i = ✓i

�i

, so that each unit of time

spent on source i generates a signal about ✓̃i with standard Gaussian noise. Under this

transformation, the reader seeks to learn �1✓̃1 + �2✓̃2, and his prior covariance matrix over

(✓̃1, ✓̃2) is

⌃̃ =

 
1
�
2
1

⇢

�1�2

⇢

�1�2

1
�
2
2

!
.

Note that Assumption 1 is satisfied in this transformed problem, since

�1(⌃̃11 + ⌃̃12) + �2(⌃̃21 + ⌃̃22) = (1 + ⇢)

✓
1

�1
+

1

�2

◆
� 0.

Thus the optimal attention choices (�1(t), �2(t)) are characterized by Theorem 1.

Each news source i’s payo↵ is the discounted average attention paid to that source
R
e�rt�i(t)dt, where r is a (common) discount rate. We can interpret this as reduced form

for advertising revenue, where each news source receives a payo↵ proportional to the time
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the reader spends on its site.31

Proposition 2. The unique equilibrium is a pure strategy equilibrium (�⇤, �⇤) with

�⇤ =

r
1� ⇢

2r
.

Equilibrium precision (1/(�⇤)2 = 2r
1�⇢

) is monotonically increasing in the discount rate r and

also in the prior correlation ⇢.

Thus, the less patient the information providers are, the more precise the signals are in

equilibrium. Intuitively, when news source i increases the informativeness of the articles it

provides, there are two opposing e↵ects: On the one hand, weakly more attention is attracted

to i early on and it is more likely to be the source chosen in Stage 1, since i’s information

becomes more valuable initially. On the other hand, increasing precision lowers the long-run

frequency �i

�i+�j

with which i is viewed, since readers need to spend less time on site i to

achieve the same level of information about ✓i. Thus, less patient data providers compete

over short-run profits (i.e., being chosen in Stage 1) and provide precise signals, while patient

data providers compete for long-run profits (i.e., long-run frequency) and provide imprecise

signals. We are not aware of prior literature that studies this e↵ect of information precision

on the time path of people’s information demand.

Additionally, the more positively correlated the unknown attributes are (i.e., higher co-

variance ⇢), the higher the precision of signals provided in equilibrium. This is because (as

we derive in the proof of the proposition) the threshold t⇤
i
= (�j��i)�i

1�⇢
increases in ⇢, which

increases the value of being chosen in Stage 1. The competition for short-run profits thus

drives the news sources to be more informative.

The parameter ⇢ measures the degree to which what the news sources know overlap. The

case of ⇢ = 1 corresponds to full competition, in which case the sources choose perfectly

precise signals in equilibrium (�⇤ = 0). In general, the less substitutable the sources are

(smaller ⇢), the less competition there is and the more information is withheld.

From the perspective of social welfare, these comparative statics tell us that more infor-

mation is released into society (and hence society learns faster) when information providers

are less forward-looking, and when the information they provide is more similar. Note that

a crucial aspect of the game we have analyzed is that each news source has a “monopoly” on

31Here, for the sake of illustrating the equilibrium, we are considering the case where readers sample

forever. This corresponds to the limit as the waiting cost c(·) decreases to zero.
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some kind of information, so that agents eventually need to observe both sources. An inter-

esting direction for future work would be to consider the case in which there are redundancies

in the kinds of information provided by the di↵erent sources.

Finally, in Appendix G we generalize these insights to a game where K > 2 informa-

tion providers compete, and where agents seek to learn ✓1 + · · · + ✓K . Observe that the

transformed prior covariance matrix ⌃̃ does not in general satisfy Assumption 2.32 Nonethe-

less, we directly compute the uniformly optimal strategy (defined in Section 3.3) and show

that our K-stage characterization of optimal information acquisition extends to this setting.

Generalizing the result in Proposition 2, we find �⇤ =
q

1�⇢

Kr
to be the equilibrium precision

in the unique symmetric pure strategy equilibrium among competing news sources.

6 Comparison with Discrete Setting

Our continuous-time setting can be seen as the limit of a sequence of discrete-time models,

which we studied in earlier work Liang et al. (2017). We expand on the connection and

di↵erences in this section.

Consider the following formulation: There are K unknown attribute values ✓1, . . . , ✓K

that are jointly normal, and a payo↵-relevant state ! = ↵0 · ✓ with a known and positive

weight vector ↵. Time is discrete with period length �, and at each time t = 0,�, 2�, . . . ,

the agent chooses from among K information sources. Choice of source i produces an

independent observation of the signal

Yi = ✓i + ✏i, ✏i ⇠ N
✓
0,

1

�

◆
.

The agent also chooses when to stop acquiring information and face the decision problem.

This discrete-time model is a reformulation of Liang et al. (2017), and relates to our

continuous-time setting here in the following way. Imagine that in our continuous-time

model the agent is constrained to put all attention to one of the sources over each of the

time intervals [0,�), [�, 2�), etc. Then at time t, choosing source i means he will observe

the path of a di↵usion process with drift ✓i and unit volatility, from time t to t +�. As is

well known, the di↵erence between the values of this process at t and t + � is a su�cient

statistic for learning about ✓i. Thus the agent’s information from time t to t+� is equivalent

to a normal signal with mean ✓i ·� and variance �, which is just � ·Yi with Yi given above.

A key di↵erence is that the discrete model has non-divisible signals, and thus faces an

“integer problem.” As � ! 0, the long-run frequencies over signals in the discrete-time

32This can happen if ⇢ is large or if the chosen signal noise levels �1, . . . ,�K are very di↵erent.
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model converge to the optimal (instantaneous) attention allocation in continuous time, but

the necessity of an integer approximation complicates characterization of the full sequence of

information acquisitions. Studying the problem in continuous-time, as we do here, permits

a sharper characterization both of the optimal information acquisition strategy itself, and of

the conditions needed for this characterization to hold.

Another point of comparison is the notion of myopic information acquisition. In the

discrete setting of Liang et al. (2017), we defined a signal choice strategy to be myopic if

it maximizes the immediate reduction of posterior variance given any history. Our results

there demonstrated conditions under which the myopic strategy coincides with the optimal

strategy from the beginning, or eventually. The optimal attention allocation strategy for

the continuous-time model, characterized in the present paper, has a similar flavor of being

“myopic,” since at each time the agent divides attention across those sources that have the

greatest marginal reduction of posterior variance. As we explained, however, the optimal

allocation of attention is not pinned down by having the greatest marginal value at this

moment. Rather, given a set of sources that maximize the marginal value at time t, the

optimal mixture over them is chosen so that their marginal values remain equal at future

instants.
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Appendix

A Preliminaries

A.1 Posterior Variance Function

Given qi units of attention devoted to learning about each attribute i, the posterior variance

about ! can be written in two ways:

Lemma 4. It holds that

V (q1, . . . , qK) = ↵0 ⇥(⌃�1 + diag(q))�1
⇤
↵ = ↵0 ⇥⌃� ⌃(⌃+ diag(1/q))�1⌃

⇤
↵

where diag(1/q) is the diagonal matrix with entries 1/q1, . . . , 1/qk.

This function V extends to a rational function (quotient of polynomials) over all of RK

(i.e., even if some qi are negative).

Proof. The equality (⌃�1 + diag(q))�1 = ⌃ � ⌃(⌃ + diag(1/q))�1⌃ is well-known. To see

that V is a rational function, simply note that (⌃�1 + diag(q))�1 can be written as the

adjugate matrix of ⌃�1+diag(q) divided by its determinant. Thus each entry of the posterior

covariance matrix is a rational function in q.

The next lemma calculates the first and second derivatives of the posterior variance

function V :

Lemma 5. Given a cumulated attention vector q � 0, define

� := �(q) = (⌃�1 + diag(q))�1↵

which is a vector in RK
. Then the first and second derivatives of V are given by

@iV = ��2
i
, @ijV = 2�i�j ·

⇥
(⌃�1 + diag(q))�1

⇤
ij
.

Proof. From Lemma 4 and the formula for matrix derivatives, we have

@iV = �↵0(⌃�1 + diag(q))�1�ii(⌃
�1 + diag(q))�1↵ = �

⇥
e0
i
(⌃�1 + diag(q))�1↵

⇤2
= ��2

i

where ei is the i-th coordinate vector in RK , and �ii = ei · e0i is the matrix with “1” in the

(i, i)-th entry and “0” elsewhere. For the second derivative, we compute that

@ijV = �2�i·
@�i
@qj

= 2�i·e0i(⌃�1+diag(q))�1�jj(⌃
�1+diag(q))�1↵ = 2�i·

⇥
(⌃�1 + diag(q))�1

⇤
ij
·�j
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as we desire to show. The last equality follows by writing �jj = ej · e0j, and using e0
i
(⌃�1 +

diag(q))�1ej = [(⌃�1 + diag(q))�1]
ij
as well as e0

j
(⌃�1 + diag(q))�1↵ = e0

j
� = �j.

Corollary 3. V is decreasing and convex in q1, . . . , qK whenever qi � 0.

Proof. By Lemma 5, the partial derivatives of V are non-positive, so V is decreasing. Addi-

tionally, its Hessian matrix is

2 diag(�) · (⌃�1 + diag(q))�1 · diag(�),

which is positive semi-definite whenever q � 0. So V is convex.

These technical properties are used to show that for each t, the t-optimal vector n(t) is

unique:

Lemma 6. For each t � 0, there is a unique t-optimal vector n(t).

Proof. Suppose for contradiction that two vectors (r1, . . . , rK) and (s1, . . . , sK) both mini-

mize the posterior variance at time t. Relabeling the sources if necessary, we can assume

ri � si is positive for 1  i  k, negative for k + 1  i  l and zero for l + 1  i  K. Since
P

i
ri =

P
i
si = t, the cuto↵ indices k, l satisfy 1  k < l  K.

For � 2 [0, 1], consider the vector q� = � · r + (1 � �) · s which lies on the line segment

between r and s. Then by assumption we have V (r) = V (s)  V (q�). Since V is convex,

equality must hold. This means V (q�) is a constant for � 2 [0, 1]. But V (q�) is a rational

function in �, so its value remains the same constant even for � > 1 or � < 0. In particular,

consider the limit as � ! +1. Then the i-th coordinate of q� approaches +1 for 1  i  k,

approaches �1 for k + 1  i  l and equals ri for i > l.

For each q�, let us also consider the vector |q�| which takes the absolute value of each

coordinate in q�. Note that as � ! +1, diag(1/|q�|) has the same limit as diag(1/q�). Thus

by the second expression for V (see Lemma 4), lim�!1 V (|q�|) = lim�!1 V (q�) = V (r). For

large �, the first l coordinates of |q�| are strictly larger than the corresponding coordinates

of r, and the remaining coordinates coincide. So the fact that V is decreasing and V (|q�|) =
V (r) implies @iV (r) = 0 for 1  i  l.

Consider the vector � = (⌃�1+diag(r))�1↵. By Lemma 5, @iV (r) = ��2
i
for 1  i  K.

Thus �1 = · · · = �l = 0. Since � is not the zero vector,33 there exists j > l s.t. �j 6= 0. It

follows that @1V (r) = 0 > @jV (r). But then the posterior variance V would be reduced if

we slightly decreased the first coordinate of r (which is strictly positive since r1 > s1) and

increased the j-th coordinate by the same amount. This contradicts the assumption that r

is a t-optimal vector. Hence the lemma holds.
33This follows because ↵ is not the zero vector, by assumption.
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A.2 Optimality and Uniform Optimality

The following result ensures that a strategy that minimizes the posterior variance uniformly

at all times is an optimal strategy in any decision problem.

Lemma 7. A uniformly optimal strategy is dynamically optimal regardless of the payo↵

function u(·) or the waiting cost function c(·).

Proof. This is essentially a continuous-time version of Theorem 3.1 in Greenshtein (1996),

which establishes a Blackwell ordering over sequential experiments for dynamic decision

problems. In our environment with normal signals about an one-dimensional unknown (our

payo↵-relevant state !), this theorem implies that a sequence of signals Blackwell-dominates

another if and only if the former sequence leads to uniformly lower posterior variances. While

the general result of Greenshtein (1996) covers decision problems in which the agent takes

multiple actions, a simpler proof su�ces for the class of stopping problems considered in this

paper. The argument follows the proof of Theorem 5 in Fudenberg et al. (2018), with some

modifications. For completeness we reproduce this proof below, using our notation.

Fix any attention strategy S and denote by ES[·] the associated expectation operator,

and by ES
⇤
[·] the expectation operator associated with the uniformly optimal strategy S⇤.

The optimal stopping rule ⌧ (under S) is a solution to

sup
⌧

ES[max
a

E[u(a,!) | F⌧ ]� c(⌧)]. (3)

By the Dambis–Dubins–Schwartz Theorem (see for example Theorem 1.6 in Chapter V of

Revuz and Yor (1999)), there exists a Brownian motion (B⌫)⌫2[0,v0] such that

Bv0�vt
= E[! | Ft],

where v0 denotes the prior variance of !, and the random variable vt is the posterior variance

at time t under strategy S. This change of variables is a time change where the new scale is

the posterior variance.

For each v 2 (0, v0], define the stochastic process �v := inf{t : vt  v}. If the agent stops
with posterior variance v, his posterior expectation of ! is the value of Bv0�v. Denote by

U(·, ·) his maximum expected payo↵ when taking the optimal action given this belief, where

the arguments are the expected value and variance of !. Then by (3), the value of the agent

can be rewritten as34

sup
v

E [U(Bv0�v, v)� c(�v)] .

34This generalizes Fudenberg et al. (2018), where the U function is simply its first argument (in the special

case of binary choice).
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As the posterior variance vt is greater than the minimum posterior variance v⇤
t
under S⇤ at

all times t, we have that

�v � �⇤
v
:= inf{t : v⇤

t
 v} 8 v.

Consequently, the value under strategy S is smaller than the value under S⇤:

sup
⌧

ES[max
a

E[u(a,!) | F⌧ ]] = sup
v

E [U(Bv0�v, v)� c(�v)]

 sup
v

E [U(Bv0�v, v)� c(�⇤
v
)]

= sup
⌧

ES
⇤
[max

a

E[u(a,!) | F⌧ ]].

(4)

We also have a simple converse result:

Lemma 8. Fixing ⌃, ↵ and the payo↵ function u(·). Suppose an information acquisition

strategy is optimal for all cost functions c(·), then it is uniformly optimal.

Proof. Take an arbitrary time t and consider the cost function with c(⌧) = 0 for ⌧  t and

c(⌧) very large for ⌧ > t. Then the agent’s optimal stopping rule is to stop exactly at time

t. Since his information acquisition strategy is optimal for this cost function, the induced

cumulated attention vector must achieve t-optimality. Varying t yields the result.

A.3 Uniqueness of Optimal Information Acquisition

By Lemma 7, whenever a uniformly optimal strategy exists, it is the optimal information

strategy regardless of the form of u(·) and c(·). As we show in later appendices, Assumptions

1 and 2 guarantee existence. The results in Theorems 1 and 2 thus characterize the uniformly

optimal strategy.

Without further assumptions on u and c, there could exist other optimal information

acquisition strategies. For example, consider the cost function c(·) used in the proof of

Lemma 8. Under this cost function, the agent always stops at some fixed time ⌧ . Hence

any strategy that achieves the ⌧ -optimal vector n(⌧) gives the same, maximal amount of

information about ! at the stopping time. All such strategies are optimal for this problem,

and we cannot identify the attention allocation at any particular instant before ⌧ . Uniform

optimality, in particular t-optimality for t < ⌧ , is not necessary for optimal information

acquisition here.

Nonetheless, such counterexamples are non-generic. A careful inspection of the proof

of Lemma 7 suggests that whenever c(⌧) is strictly increasing in ⌧ , an attention allocation
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strategy S does as well as the uniformly optimal strategy S⇤ if and only if the following

holds:

For every v > 0 such that the agent stops with positive density at posterior variance v

under S, the posterior variances under S decrease to v at the same time as under S⇤.

That is, we require �v = �⇤
v
whenever the posterior variance v is realized under the

stopping rule.

We now introduce an assumption on the agent’s stopping rule:

Assumption 3. Given any attention allocation strategy S, any history of signal realizations

up to time t such that the agent has not stopped, and any t0 > t, there exists a positive

measure of continuation histories such that the agent optimally stops in the interval (t, t0].

To see how this condition implies S = S⇤ up to the stopping time, let us suppose for

contradiction that after some history, the strategy S deviates from uniform optimality. Then,

along this history, the posterior variances under S in the interval (t, t0] are strictly larger than

under S⇤ (for some t0 slightly bigger than t). By assumption, the agent stops in this interval

with positive probability. Thus we can take any posterior variance v achieved in this interval,

and deduce that v is reached slower under S than under S⇤. As discussed above, this is

su�cient to show that S performs strictly worse than S⇤.

In summary, we have the following result:

Proposition 3. Suppose the waiting cost c(·) is strictly increasing, and Assumption 3 is

satisfied. Then, any optimal information acquisition strategy coincides with the uniformly

optimal strategy at every history where the agent has not stopped.

We note that although Assumption 3 is stated in terms of the endogenous stopping rule,

it is satisfied in any problem where the agent always stops to take some action when he has

an extremely high (or low) expectation about !. This is in turn guaranteed if extreme values

of ! agree on the optimal action, and if the marginal cost of waiting is bounded away from

zero. These conditions on the primitives are rather weak, and are satisfied in most natural

applications of the model (e.g., binary choice with constant marginal waiting cost).

B Proof of Theorem 1

Define x1, x2, y1, y2 as in in Theorem 1:

xi = ↵i det(⌃), yi = ↵1⌃i1 + ↵2⌃i2.
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Given a cumulated attention vector q, let Q be a shorthand for the diagonal matrix diag(q).

Then by direct computation, we have

� : =
�
⌃�1 +Q

��1 · ↵

=
�
⌃�1 · (I + ⌃Q)

��1 · ↵

= (I + ⌃Q)�1 · ⌃ · ↵

= (I + ⌃Q)�1 ·
 

y1

y2

!

=
1

det(I + ⌃Q)

 
1 + q2⌃22 �q2⌃12

�q1⌃21 1 + q1⌃11

!
·
 

y1

y2

!

=
1

det(I + ⌃Q)

 
x1q2 + y1

x2q1 + y2

!
.

By Lemma 5, this implies the marginal values of the two sources are given by:

@1V (q1, q2) =
�(x1q2 + y1)2

det2(I + ⌃Q)
,

@2V (q1, q2) =
�(x2q1 + y2)2

det2(I + ⌃Q)
.

(5)

Note that Assumption 1 translates into y1 + y2 � 0. Under this assumption, we will

characterize the t-optimal vector (n1(t), n2(t)) and show it is increasing over time. Without

loss assume y1 � y2, then y1 is non-negative. Let t⇤1 = y1�y2

x2
. Then when q1 + q2  t⇤1 we

always have

x1q2 + y1 � y1 � x2q1 + y2,

since x1q2 � 0 and x2q1  x2(q1 + q2)  x2t⇤1 = y1 � y2. We also have

x1q2 + y1 � �(x2q1 + y2),

since x1q2, x2q1 � 0 and by assumption y1 + y2 � 0. Thus, (5) implies that @1V (q1, q2) 
@2V (q1, q2) at such attention vectors q. So for any budget of attention t  t⇤1, putting all

attention to source 1 minimizes the posterior variance function V . That is, n(t) = (t, 0) for

t  t⇤1.

For t > t⇤1, observe that (5) implies @1V (0, t) < @2V (0, t) as well as @1V (t, 0) > @2V (t, 0).

Thus the t-optimal vector n(t) is interior (i.e., n1(t) and n2(t) are both strictly positive). The

first-order condition @1V = @2V , together with (5) and the budget constraint n1(t)+n2(t) = t,

yields the solution

n(t) = (
x1t+ y1 � y2

x1 + x2
,
x2t� y1 + y2

x1 + x2
).
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Hence n(t) is indeed increasing in t. The instantaneous attention allocations �(t) are the

time-derivatives of n(t), and they are easily seen to be described by Theorem 1. In partic-

ular, the long-run attention allocation to source i is xi

x1+x2
, which simplifies to ↵i

↵1+↵2
. This

completes the proof.

B.1 Necessity of Assumption 1

We show here that the assumption y1 + y2 � 0 is also necessary for the existence of a

uniformly optimal strategy. The result generalizes Example 5 in the main text.

Proposition 4. Suppose Assumption 1 is violated. Then a uniformly optimal strategy does

not exist.

Proof. Suppose that y1+y2 < 0. First note that one of y1, y2 is positive, because ↵1y1+↵2y2 =

↵0⌃↵ > 0. So without loss we can assume y2 > 0 > �y2 > y1. Moreover, from ↵1y1+↵2y2 > 0

we obtain ↵2 > ↵1 and hence x2 > x1. Below we characterize the t-optimal attention vector

n(t):

1. If t  �(y1+y2)
x2

, then x1q2 + y1 is negative and has larger absolute value than x2q1 + y2

(which is positive) whenever q1 + q2 = t. By (5), this means @1V (q1, q2)  @2V (q1, q2),

and so n(t) = (t, 0). In words, with a very small budget, it is optimal to devote all

attention to source 1.

2. If �(y1+y2)
x2

< t < �(y1+y2)
x1

, then @1V (0, t) < @2V (0, t) and @1V (t, 0) > @2V (t, 0). These

imply that n(t) is interior, and the first-order condition yields

x1n2(t) + y1 = �(x2n1(t) + y2),

where we use the fact that for t in this range, x1q2 + y1 is always negative. Together

with n1(t) + n2(t) = t, we can solve that n(t) = (�x1t�y1�y2

x2�x1
, x2t+y1+y2

x2�x1
).

3. If �(y1+y2)
x1

 t  y2�y1

x1
, then (x2q1 + y2)2 � (x1q2 + y1)2 = (y2 � y1 � x1q2 + x2q1) · (y1 +

y2 + x1q2 + x2q1) � 0 whenever q1 + q2 = t. Thus @1V (q1, q2) � @2V (q1, q2), implying

that the t-optimal attention vector should be n(t) = (0, t).

4. Finally, if t > y2�y1

x1
, then it holds that @1V (0, t) < @2(0, t) and @1V (t, 0) > @2(t, 0). So

n(t) is interior and satisfies the first-order condition

x1n2(t) + y1 = x2n1(t) + y2,

since both terms are now positive. This together with n1(t) + n2(t) = t yields the

solution n(t) = (x1t+y1�y2

x1+x2
, x2t�y1+y2

x1+x2
) and completes the analysis.
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Note that in Case 2 above, as t increases in the range, n1(t) actually decreases. This proves

that a uniformly optimal strategy does not exist.

C An Algorithm for Finding the Optimal Information

Acquisition Strategy when K > 2

The next appendix provides a detailed proof of Theorem 2. Here we give an outline and

show how the times tk and sets Bk defined in Theorem 2 can be found recursively. Set Q0

to be the K ⇥K matrix of zeros, and t0 = 0. For each stage k � 1:

1. (Computation of the observation set Bk.) Define the K ⇥ 1 vector �k = (⌃�1 +

Qk�1)�1 · ↵ where ⌃ is the prior covariance matrix, and ↵ is the weight vector. The

set of attributes that the agent attends to in stage k is

Bk = argmax
i
|�k

i
|.

These are the sources whose marginal reduction of posterior variance is highest (see

Lemma 5).

2. (Computation of the constant attention allocation in stage k.) If |Bk| > k

then stage k is degenerate, and we proceed to stage k + 1 with Qk = Qk�1. Otherwise

we can re-order the attributes so that the k attributes in Bk are the first k attributes.

In an abuse of notation, let ⌃ be the covariance matrix for the re-ordered attribute

vector ✓. Define ⌃TL to be the k ⇥ k top-left submatrix of ⌃ and ⌃TR to be the

k ⇥ (K � k) top-right block. Finally let

↵k = (⌃TL)
�1 · (⌃TL, ⌃TR) · ↵

be a k ⇥ 1 vector. The agent’s optimal attention allocation in stage k is proportional

to ↵k; that is,

�k

i
=

(
↵k

i
/
P

i
↵k

i
if i  k

0 otherwise

As the agent acquires information in this mixture during stage k, the marginal values

of learning about di↵erent attributes in Bk remain the same, and strictly higher than

learning about any attribute outside of the set.
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3. (Computation of the next time tk.) For arbitrary t, define

Qk(t) := Qk�1 + (t� tk�1) · diag(�k).

Let tk be the smallest t > tk�1 such that the coordinates maximizing (⌃�1+Qk(t))�1 ·↵
are a strict superset of Bk.35 At this time, the marginal value of some attribute(s)

outside of Bk equalizes the attributes in Bk, and stage k + 1 commences, with Qk =

Qk(tk).

D Proof of Theorem 2

D.1 Weaker Assumption

Given Lemma 7, it is su�cient to show that the t-optimal vector n(t) is weakly increasing

in t, and that its time-derivative is locally constant as described in the theorem. We will in

fact prove the same result under the following weaker assumption:

Assumption 4. The inverse of the prior covariance matrix ⌃�1
is diagonally-dominant.

That is,

[⌃�1]ii �
X

j 6=i

|[⌃�1]ij| 81  i  K.

This is implied by Assumption 2 via the following lemma.

Lemma 9. Suppose the prior covariance matrix ⌃ satisfies Assumption 2, then its inverse

matrix satisfies [⌃�1]ii � (K � 1) · |[⌃�1]ij| for all i 6= j, and is thus diagonally-dominant.

Proof. By symmetry, we can focus on i = 1. Let xj = [⌃�1]1j for 1  j  K, and

without loss assume x2 has the greatest absolute value among x2, . . . , xK . It su�ces to show

x1 � (K � 1)|x2|.
35This smallest time can be computed as follows. For each j > k, consider the following (polynomial)

equation in t:
�
e0j · (⌃�1 +Qk(t))�1 · ↵

�2
=
�
e01 · (⌃�1 +Qk(t))�1 · ↵

�2
.

Any solution t > tk�1 is a time at which source j would have the same marginal value as sources 1, . . . , k.

Such a solution t necessarily exists, since at t = tk�1 the LHS is smaller by assumption, while at t = 1 the

LHS is bigger as the RHS is 0.

Let s(j) be the smallest solution to the above equation, for each fixed j > k. Then tk := minj>k s(j) is

the earliest time after tk�1 such that the sources having the greatest marginal value are a strict superset of

the first k sources.
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From ⌃�1 · ⌃ = I we have
P

K

j=1[⌃
�1]1j · ⌃j2 = 0. Thus

P
K

j=1 xj · ⌃2j = 0 because

⌃j2 = ⌃2j. Rearranging yields

|x1 · ⌃21| = |x2 · ⌃22 +
X

j>2

xj · ⌃2j| � |x2 · ⌃22|�
X

j>2

|xj · ⌃2j| � |x2 · ⌃22|�
X

i>2

|x2 · ⌃22|
2K � 3

,

where the last inequality uses |xj|  |x2| and |⌃2j|  1
2K�3 |⌃22| for j > 2. The above

inequality simplifies to

|x1 · ⌃21| �
K � 1

2K � 3
· |x2 · ⌃22|.

And since ⌃21  1
2K�3 |⌃22|, we conclude that |x1| � (K � 1)|x2| as desired. Note that

x1 = [⌃�1]11 is necessarily positive, thus x1 � (K � 1)|x2|.

D.2 Technical Property of �

The following technical lemma will be repeatedly used.

Lemma 10. Suppose ⌃�1
is diagonally-dominant. Given an arbitrary attention vector q,

define � as in Lemma 5 and denote by B the set of indices i such that |�i| is maximized.

Then �i is the same positive number for every i 2 B.

Proof. We use Q to denote diag(q). Since (⌃�1 +Q)�1↵ = �, we equivalently have

↵ = (⌃�1 +Q)�.

Suppose for contradiction that �i  0 for some i 2 B. Using the above vector equality for

the i-th coordinate, we have

0 < ↵i =
KX

j=1

[⌃�1 +Q]ij · �j.

Rearranging, we then have

[⌃�1 +Q]ii · (��i) <
X

j 6=i

[⌃�1 +Q]ij · �j 
X

j 6=i

|[⌃�1 +Q]ij| · |�j|,

which is impossible because ��i = |�j| for each j 6= i and [⌃�1 +Q]ii �
P

j 6=i
|[⌃�1 +Q]ij|.

Thus �i is positive for i 2 B. The result that these �i are the same follows from the definition

that their absolute values are maximal.
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D.3 The Last Stage

To prove Theorem 2 under Assumption 4, we first consider those times t when each of the

K sources has been sampled. The following lemma shows that after any such time, it is

optimal to maintain a constant attention allocation proportional to ↵

Lemma 11. Suppose ⌃�1
is diagonally-dominant. If at some time t, the t-optimal vector

satisfies @1V (n(t)) = · · · = @KV (n(t)), then the t-optimal vector at each time t � t is given

by

n(t) = n(t) +
t

↵1 + · · ·+ ↵K

· ↵.36

Proof. Consider increasing n(t) by a vector proportional to ↵. If we can show the equalities

@1V = · · · = @KV are preserved, then the resulting cumulated attention vector must be

t-optimal. This is because for the convex function V , a vector q minimizes V (q) subject to

qi � 0 and
P

i
qi = t if and only if it satisfies the KKT first-order conditions.

We check the equalities @1V = · · · = @KV by computing the marginal changes of each

@iV when the attention vector q = n(t) increases in the direction of ↵. Denoting diag(q) by

Q to save notation, this marginal change equals

�i :=
KX

j=1

@ijV · ↵j = 2
KX

j=1

�i�j
⇥
(⌃�1 +Q)�1

⇤
ij
· ↵j

by Lemma 5. Applying Lemma 10, we have �1 = · · · = �K . Thus the above simplifies to

�i = 2�2
1

KX

j=1

⇥
(⌃�1 +Q)�1

⇤
ij
· ↵j = 2�2

1�i = 2�3
1 .

Hence @1V = · · · = @KV continues to hold, completing the proof.

D.4 Earlier Stages

In general, we need to show that even when the agent is choosing from a subset of the

sources, the t-optimal vector n(t) is still increasing over time. This is guaranteed by the

following lemma, which says that the agent optimally attends to those sources that maximize

the marginal reduction of V , until a new source becomes another maximizer. For ease of

exposition we state the lemma under a slightly stronger assumption that ⌃�1 is strictly

diagonally-dominant. Later we will discuss how the lemma should be modified without this

strictness.
36That is, ni(t) = ni(t) +

t
↵1+···+↵K

· ↵i for each i.
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Lemma 12. Suppose ⌃�1
is strictly diagonally-dominant. Choose any time t and denote

B = argmin
i
@iV (n(t)) = argmax

i
|�i|.

Then there exists � 2 �K�1
supported on B and t > t such that n(t) = n(t) + (t� t) · � at

times t 2 [t, t].

The vector � depends only on ⌃,↵ and B. The time t is the earliest time after t at which

argmin
i
@iV (n(t)) is a strict superset of B. When |B| = K, it holds that t = 1 and � is

proportional to ↵, as given by Lemma 11.

Proof. Without loss we assume B = {1, . . . , k} with 1  k < K. Let q = n(t) and define �

as before. By Lemma 10, �i is the same positive number for i  k. Moreover, t-optimality

implies that qj = 0 whenever j > k. Otherwise the posterior variance could be reduced by

decreasing qj and increasing q1, as source 1 has strictly higher marginal value than source j.

We now use a trick to deduce the current lemma from the previous Lemma 11. Specif-

ically, given the prior covariance matrix ⌃, we can choose another basis of the attributes

✓1, . . . , ✓k, ✓̂k+1, . . . , ✓̂K with two properties:

1. each ✓̂j (j > k) is a linear combination of the original attributes ✓1, ✓2, . . . , ✓K ;

2. Cov[✓i, ✓̂j] = 0 for all i  k < j, where the covariance is computed according to the

prior belief ⌃.

Denote by ✓̃ the vector (✓1, . . . , ✓k)0, and by ✓̂ the vector (✓̂k+1, . . . , ✓̂K)0. The payo↵-relevant

state ! = ↵0 · ✓ can thus be rewritten as ↵̃0 · ✓̃ + ↵̂0 · ✓̂ for some constant coe�cient vectors

↵̃ 2 Rk and ↵̂ 2 RK�k. Using property 2 above, we can solve for ↵̃ from ⌃, ↵ and B:

↵̃ = (⌃TL)
�1 · (⌃TL, ⌃TR) · ↵ (6)

where ⌃TL represents the k⇥k top-left submatrix of ⌃ and ⌃TR is the k⇥ (K�k) top-right

block.

With this transformation, we have reduced the original problem with K sources to a

smaller problem with only the first k sources. To see why this reduction is valid, recall that

sampling sources 1 ⇠ k only provides information about ✓̃, which is orthogonal to ✓̂ according

to the prior. So as long as the agent has only looked at the first k sources, the transformed

attributes continue to satisfy property 2 above (zero covariances) under any posterior belief.

It follows that the posterior variance about ! is simply the variance about ↵̃0 · ✓̃ plus the

variance about ↵̂0 · ✓̂. Since the latter uncertainty cannot be reduced, the agent’s objective

39



(at those times when only the first k sources are attended to) is equivalent to minimizing

the posterior variance about ↵̃0 · ✓̃.
Thus, in this smaller problem, the prior covariance matrix is ⌃TL and the payo↵ weights

are ↵̃. Assuming that ↵̃ has strictly positive coordinates, we can then apply Lemma 11: As

long as the agent attends to the first k sources proportional to ↵̃, @1V = · · · = @kV continues

to hold.37 Moreover, at q = n(t), the definition of the set B implies that these k partial

derivatives are smaller (more negative) than the rest. By continuity, the same comparison

holds until some time t > t. Thus, when t 2 [t, t], the cumulated attention vector (under this

strategy) still satisfies the first-order condition B = argmin1iK
@iV and qj = 0 for j /2 B.

Since V is convex, this must be the t-optimal vector as desired.

It remains to prove that ↵̃i is positive for 1  i  k. To this end, define Q̃ =

diag(q1, . . . , qk) to be the k ⇥ k top-left submatrix of Q, and

�̃ = ((⌃TL)
�1 + Q̃)�1 · ↵̃. (7)

We will show that �̃ is just the first k coordinates of �. Indeed, observe that ((⌃TL)�1+Q̃)�1

is also the k ⇥ k top-left submatrix of (⌃�1 +Q)�1.38 Using (6) and (7), we have

�̃ = [(⌃�1 +Q)�1]TL · (⌃TL)
�1 · (⌃TL, ⌃TR) · ↵

= [(⌃�1 +Q)�1]TL · (↵1, . . . ,↵k)
0 + [(⌃�1 +Q)�1]TL · (⌃TL)

�1 · ⌃TR · (↵k+1, . . . ,↵K)
0.

On the other hand, from � = (⌃�1 +Q)�1 · ↵ we have

(�1, . . . , �k)
0 =
�
[(⌃�1 +Q)�1]TL, [(⌃�1 +Q)�1]TR

�
· ↵

= [(⌃�1 +Q)�1]TL · (↵1, . . . ,↵k)
0 + [(⌃�1 +Q)�1]TR · (↵k+1, . . . ,↵K)

0.

Comparing the above two formulas, �̃ is the first k coordinates of � so long as

[(⌃�1 +Q)�1]TL · (⌃TL)
�1 · ⌃TR = [(⌃�1 +Q)�1]TR,

which indeed holds.39

37To be rigorous, the conclusion should be about the function Ṽ (q1, . . . , qk), which is the posterior variance

about ↵̃0✓̃ in the smaller problem. But as discussed, this di↵ers from V (q1, . . . , qk, 0, . . . , 0) by a constant.
38This holds because (⌃�1 + Q)�1 = Q�1 � Q�1(Q�1 + ⌃)�1Q�1. Note that Q�1 is a block matrix:

its k ⇥ k top-left block is Q̃�1, and its k ⇥ (K � k) top-right block is zeros (its bottom-right block can be

seen as the diagonal matrix with infinities). So the top-left block of Q�1 � Q�1(Q�1 + ⌃)Q�1 is simply

Q̃�1�Q̃�1[(Q�1+⌃)�1]TLQ̃�1, which in turn is equal to Q̃�1�Q̃�1(Q̃�1+⌃TL)�1Q̃�1 = ((⌃TL)�1+Q̃)�1.
39Consider the identity (⌃�1 +Q)�1 · (⌃�1 +Q) = IK . The top-right block of the product is zeros, so by
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Hence �̃i = �i for 1  i  k, and it is the same positive number by Lemma 10. Rewriting

(7) as ↵̃ = ((⌃TL)�1 + Q̃) · �̃, we see that ↵̃i is proportional to the i-th row sum of the

matrix (⌃TL)�1+ Q̃, which is just the row sum of (⌃TL)�1 plus qi. A theorem of Carlson and

Markham (1979) says that if ⌃�1 is (strictly) diagonally-dominant, then so is (⌃TL)�1 for

any principal submatrix ⌃TL. Consequently the row sums of (⌃TL)�1 are all strictly positive,

implying that ↵̃i > 0.

D.5 Completing the Proof

We now apply Lemma 12 repeatedly to prove Theorem 2. Continuing to assume strict

diagonal dominance, we can apply Lemma 12 with t = 0 and deduce that up to some

time t1 = t > 0, t-optimality can be achieved by a constant attention strategy supported

on B1 = argmin1iK
@iV (0). Applying Lemma 12 again with t = t1, we know that the

agent can maintain t-optimality from time t1 to some time t2 with a constant attention

strategy supported on B2 = argmin1iK
@iV (n(t1)). So on and so forth. Since the sets

; = B0, B1, B2, . . . are nested by construction, we eventually have Bm = {1, . . . , K} for

some m, and consequently tm = 1.

Note that Bl+1 � Bl need not be a singleton for each l (i.e., two sources can simultane-

ously become new minimizers of @iV ). Thus m can be smaller than K, and the nested sets

B1, . . . , Bm and increasing times t1, . . . , tm do not necessarily satisfy the conclusion of The-

orem 2. However, this is easy to resolve by including “redundant” times. Formally, we set

tk = tl for any k satisfying |Bl|  k < |Bl+1|. We also choose B1, . . . , BK such that Bk+1�Bk

is a singleton for each k, and Bk = Bl whenever k = |Bl|. The nested sets B1, . . . , BK and

weakly increasing times t1, . . . , tK then satisfy the conclusions of Theorem 2. This completes

the characterization under the assumption that ⌃�1 is strictly diagonally-dominant.

block matrix multiplication we have

[(⌃�1 +Q)�1]TL · (⌃�1 +Q)TR = �[(⌃�1 +Q)�1]TR · (⌃�1 +Q)BR.

Next consider the identity ⌃ · (⌃�1 +Q) = IK +⌃(Q). The top-right block is again zeros, and we similarly

deduce

⌃TL · (⌃�1 +Q)TR = �⌃TR · (⌃�1 +Q)BR.

These two equalities together yield the desired result.
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D.6 Weak Diagonal Dominance and Zero Weights

Here we demonstrate how to prove Theorem 1 assuming only that ⌃�1 is weakly diagonally-

dominant. The di�culty that arises with this change is that in the proof of Lemma 12, we

cannot conclude that the optimal attention allocation has strictly positive coordinates on

B. Thus the agent does not necessarily mix over all of the sources that maximize marginal

reduction of variance.

This might lead to the failure of Theorem 2 for two reasons: First, it is possible that the

agent optimally divides attention across a subset of the sources that he has paid attention to

in the past, which would violate the requirement of nested observation sets. Second, when a

new source achieves maximal marginal value, the agent might (not attend to it and) use a

di↵erent mixture over the sources previously sampled, which would violate the requirement

of constant attention allocation for a given observation set.

We now show that neither occurs in our setting. In response to the first concern above,

note that we can still follow the proof of Lemma 12 to deduce that the optimal instantaneous

attention ↵̃i given to a source i 2 argmin
j
@jV (t) is proportional to the i-th row sum of

(⌃TL)�1 plus qi. Since (⌃TL)�1 is weakly diagonally-dominant, its row sums are weakly

positive. Thus ↵̃i > 0 whenever qi > 0. In words, any source that has received attention in

the past will be allocated strictly positive attention at every future instant.

To address the second concern, consider two times t̃ < t̂ with

argmin
j

@jV (n(t̃)) ( argmin
j

@jV (n(t̂)).

Reordering the attributes, we assume without loss that at time t̃ the first k̃ sources have the

highest marginal value, whereas at time t̂ this set expands to the first k̂ > k̃ sources. Let

↵̃ 2 Rk̃ and ↵̂ 2 Rk̂ be the optimal attentions associated with these subsets, as given by (6).

We want to show that if ↵̂ is supported on the same set of sources as ↵̃—i.e., more sources

maximize the marginal value, but the observation set is unchanged—then ↵̂ in fact coincides

with ↵̃ on their support. Indeed, by definition of ↵̂ (going back to the proof of Lemma 12)

we can write

! =
k̂X

i=1

↵̂i✓i + residual term orthogonal to ✓1, . . . , ✓k̂.

If ↵̂ has the same support as ↵̃, then the above implies

! =
k̃X

i=1

↵̂i✓i + residual term orthogonal to ✓1, . . . , ✓k̃,
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where we use the fact that any term orthogonal to the first k̂ attributes is clearly orthogonal

to the first k̃ attributes. This last representation of ! reduces to the definition of ↵̃. Hence

↵̂i = ↵̃i for 1  i  k̃, as we desire to prove.

We mention that our proof of Theorem 2 (and Theorem 1) extends without change to

cases where some payo↵ weights are zero, rather than strictly positive. In fact, because any

source with zero weight receives no attention in the long run, it never receives any attention

under the optimal strategy in environments where our characterization applies.40 Thus these

sources can be simply dropped from the model without a↵ecting our results.

D.7 Tightness of
1

2K�3

Finally, we provide an example to show that the constant 1
2K�3 in Assumption 2 is tight for

the existence of a uniformly optimal strategy.

Proposition 5. For any ⇢ > 1
2K�3 , there exists a prior covariance matrix ⌃ satisfying

|⌃ij|  ⇢ ·⌃ii for all i 6= j, as well as some weight vector ↵, such that uniform optimality is

unachievable.

Proof. Let ⌃ have diagonal entries 1 and o↵-diagonal entries �⇢, with ⇢ > 1
2K�3 . We also

choose ↵2 = · · · = ↵K = 1, and ↵1 equal to a small positive number.

For this problem, we will show that the t-optimal vector n(t) is not monotonic over time,

which implies the result via Lemma 1. Note that the last K � 1 sources have symmetric

prior and symmetric payo↵ weights. Thus, the posterior variance function V (q1, q2, . . . , qK)

is symmetric in its last K � 1 arguments. This implies that the t-optimal vector n(t) must

satisfy n2(t) = · · · = nK(t); otherwise its permutations would have the same posterior

variance, contradicting uniqueness of n(t).

Minimizing the posterior variance at time t thus simplifies to the following problem:

(n1, n2) 2 argmin
q1,q2�0, q1+(K�1)q2=t

V (q1, q2, . . . , q2).

That is, the agent optimally divides attention between source 1 and the remaining sources,

which always receive equal attention.

The posterior belief of such an agent can be derived by Bayesian updating on the following

K normal signals: ✓1 +N
⇣
0, 1

q1

⌘
and ✓i +N

⇣
0, 1

q2

⌘
for 2  i  K. We can show that in

40It may receive finite attention when our assumptions are violated.
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terms of predicting the payo↵-relevant state ↵1✓1 +
P

i>1 ✓i, the agent’s belief is the same as

if he had observed just two signals: ✓1 +N
⇣
0, 1

q1

⌘
, and 1

K�1

P
i>1 ✓i +N

⇣
0, 1

(K�1)q2

⌘
.41

Given this equivalence, we can relate t-optimal vectors in this problem with K sources

to t-optimal vectors in a smaller problem with just two sources. Specifically, define ✓⇤1 = ✓1,

✓⇤2 =
1

K�1

P
i>1 ✓i, ↵

⇤
1 = ↵1, ↵⇤

2 = K � 1. Then the payo↵-relevant state can be rewritten as

! = ↵⇤
1 · ✓⇤1 + ↵⇤

2 · ✓⇤2.

The discussion in the preceding paragraph shows that the posterior variance function V ⇤ in

this K = 2 problem satisfies

V ⇤(q1, q2) = V

✓
q1,

q2
K � 1

, . . . ,
q2

K � 1

◆
,

because on both sides the posterior variance is derived assuming that the agent had observed

the two signals ✓1+N
⇣
0, 1

q1

⌘
and 1

K�1

P
i>1 ✓i+N

⇣
0, 1

(K�1)q2

⌘
. Hence, t-optimality in this

smaller problem is equivalent to t-optimality in the original problem.

In this smaller problem, the prior covariance matrix ⌃⇤ about (✓⇤1, ✓
⇤
2) is

⌃⇤ =

 
1 �⇢

�⇢ 1�(K�2)⇢
K�1

!
.

In particular, since ⇢ > 1
2K�3 , ⌃

⇤
21+⌃⇤

22 is negative. Thus if ↵
⇤
1 = ↵1 is su�ciently small, this

K = 2 problem violates Assumption 1. By Proposition 4, we conclude that the t-optimal

cumulated attention vectors are not monotonic over time. The same holds for the original

problem, completing the proof.

E Proof of Proposition 1

E.1 Proof Outline

As discussed in the main text, we only need to prove that each source receives infinite

attention (Lemma 2) and that Theorem 2 applies at any posterior belief after each source is

41This can be proved by directly computing the posterior covariance matrix. Alternatively, note that the

signal 1
K�1

P
i>1 ✓i+N

⇣
0, 1

(K�1)q2

⌘
is the average of theK�1 signals ✓i+N

⇣
0, 1

q2

⌘
for 2  i  K considered

initially , so it contains weakly less information. However, it is su�cient for learning ! = ↵1✓1 +
P

i>1 ✓i

for the following reason: 1) it is su�cient for learning
P

i>1 ✓i, and 2) conditional on this sum, the original

K � 1 signals ✓i + N
⇣
0, 1

q2

⌘
only provide information about the di↵erences ✓i � ✓j (with i, j > 1). These

di↵erences are independent from ✓1 conditional on
P

i>1 ✓i (they are in fact independent from both), so the

extra information does not a↵ect the belief about ✓1 conditional on
P

i>1 ✓i.

44



su�ciently sampled. The latter is easy: Observe that the agent’s posterior precision matrix

is given by ⌃�1 +Q, where Q is the diagonal matrix with entries q1, . . . , qK . As qi ! 1 to

each i, clearly the matrix ⌃�1 +Q is diagonally-dominant. So the conclusion of Theorem 2

holds.42

It remains to prove Lemma 2. This is in turn implied by the following lemma:

Lemma 13. Fix ⌃ and ↵. Given any q 2 R+, there exists q 2 R+ such that the cumulated

attention vectors q(t) under the optimal strategy have the following property: Whenever

qi(t) < q for some source i, it holds that qj(t)  q for every source i.

Taking the contrapositive, this result says that whenever a source j has received attention

more than q, then each source i has received attention at least q. Since there necessarily

exists such a source j as t ! 1, the consequence is that all sources must eventually receive

cumulated attention � q. This lemma thus implies Lemma 2.

We now sketch how we prove the above lemma. First it is clear that the result for any q

follows from the result for any larger q. So we will assume q is large (to be formalized later).

We will then prove the result by choosing q even larger (also determined later). Suppose for

contradiction that after some history, the cumulated attention vector satisfies qi(t0) < q and

qj(t0) > q. By relabeling the signals, we can assume that

q1(t0), . . . , qk(t0) < q  qk+1(t0), . . . , qK�1(t0); qK(t0) > q.

That is, the cumulated attention devoted to each of the first k sources is “deficient,” whereas

source K has received “excessive” attention. We can further assume that source K continues

to receive positive attention in some interval (t0, t0 + ✏]; otherwise we can replace t0 by an

earlier time without changing these conditions.

Our proof method will be to construct a profitable deviation strategy (of how to allocation

attention) following this history, so that optimality is violated. Thanks to the main theorem

of Greenshtein (1996), any deviation strategy is profitable so long as it decreases the posterior

variance about ! at all future times. Given a deviation strategy, let q̃(t) denote the induced

cumulated attention vector, which is distinguished from q(t). Then the deviation is profitable

whenever the following inequality holds:43

V (q̃(t))  V (q(t)), 8t � t0.
42This argument shows that Assumption 4 is satisfied when each qi is large. It can be shown that in fact,

the stronger Assumption 2 is also satisfied if we take qi even larger (i.e. Lemma 3 holds).
43Such a deviation is strictly profitable if in addition V (q̃(t)) < V (q(t)) holds strictly for t 2 (t0, t0 + ✏],

which is verified below.
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E.2 The Deviation

We now construct such a deviation. Take any time T � t0, there are three cases:

(a) Suppose that the original strategy S devotes positive attention to source K at time

T . Then under the deviation strategy, the agent diverts this attention (evenly) toward

those sources i with q̃i(T ) < q.44 If no such source exists, the deviation strategy devotes

the same amount of attention to source K.

(b) Suppose that the original strategy devotes attention to some source in k+1, . . . , K�1.

Then the deviation strategy devotes the same attention to this source.

(c) Suppose that the original strategy devotes attention to source i  k. If q̃i(T ) < q

or q̃i(T ) = qi(t), then the deviation strategy also observes source i. Otherwise we

have q̃i(T ) = q > qi(T ), and in this case the deviation strategy diverts this amount of

attention to source K instead.

To interpret, the deviation strategy starts to deviate at time t0, when some source K has

been observed too often compared to some other sources 1, . . . , k. Following that history, the

deviation refrains from observing source K and instead devotes attention to sources 1, . . . , k,

until all of these “deficient” sources are no longer deficient, after which the deviation strategy

agrees with the original strategy in the amount of attention allocated to source i.

E.3 Four Kinds of Sources

Our end goal is to show that at any time T � t0, either q̃(T ) = q(T ), or V (q̃(T )) <

V (q(T )). This will show that the deviation is profitable. But to do that, we first provide

a categorization of the di↵erent sources and their cumulated attention vectors (under the

deviation strategy versus the original strategy).

1. For sources i 2 I1 ⇢ {1, . . . , k}, we have qi < q̃i < q (henceforth we fix T and use qi to

denote qi(T )). By construction, these sources have received equal attention diverted

from source K, under the deviation strategy. So for some x > 0 it holds that

q̃i = qi + x, 8i 2 I1.
44Formally, when the time derivative of qK(T ) is positive, we set the time derivative of q̃K(T ) to be zero,

and compensate it by increasing the time derivatives of q̃i(T ) for those signals i insu�ciently observed.
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2. For sources i 2 I2 ⇢ {1, . . . , k}, we have qi < q̃i = q. These are the sources that

have reached the target level q under the deviation strategy, but not under the original

strategy. Let xi denote the di↵erence q̃i � qi, then by construction we have xi  x,

which is defined above.

3. For sources i 2 I3, we have qi = q̃i � q. These include the sources k+1, . . . , K�1, which

the deviation strategy does not a↵ect. Also included are those sources in 1, . . . , k that

have reached cumulated attention q under both the original and deviation strategies.

4. Finally source K is the only source with qi > q̃i. In fact we have

qK � q̃K =
X

i<K

(q̃i � qi) = |I1| · x+
X

i2I2

xi.

Suppose q̃ 6= q, then either I1 or I2 is non-empty. We will use this characterization to

show V (q̃) < V (q).

E.4 Comparison of Posterior Variances

The following technical lemma is needed, and we prove it at the end:

Lemma 14. There exists a positive constant CH depending only on ⌃ and ↵, such that for

all q1, . . . , qK � 0,

@iV (q) � �CH

q2
i

, 81  i  K.

Moreover, there exists another positive constant CL such that the following holds when q is

large:

If q1, . . . , qK � q, then

@iV (q)  �CL

q2
i

, 81  i  K.

And if some qi < q, then there exists j such that

qj < q and @jV (q)  �CL

q2
.

To prove V (q̃) < V (q), first consider the case that I1 (defined in the previous subsection)

is the empty set. Let j 2 I2 be the source that maximizes xj = q̃j � qj. We then have

V (q̃) = V (q̃j, q̃�j)  V (qj, q̃�j)+(q̃j�qj)·@jV (q̃)  V (qj, q̃�j)�
xj · CL

q2
 V (q1, . . . , qK�1, q̃K)�

xj · CL

q2
.

(8)
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The first inequality uses the convexity of V . The second inequality uses the second part of

Lemma 14 (which applies because q̃i � q for all i when I1 is empty), as well as q̃j = q (since

j 2 I2). The last inequality uses the monotonicity of V and q̃i � qi for all but the last source.

On the other hand, we also have

V (q) � V (q1, . . . , qK�1, q̃K)+(qK�q̃K)·@KV (q1, . . . , qK�1, q̃K) � V (q1, . . . , qK�1, q̃K)�
(K � 1)xj · CH

(q̃K)2
,

(9)

where the first inequality is by convexity, and the second uses the first part of Lemma 14

and qK � q̃K =
P

i2I2 xi  (K � 1)xj by our choice of j.

Recall that q̃K � q. Thus whenever q is much larger compared to q, the above inequalities

(8) and (9) imply that V (q̃) < V (q), as we desire to show.

Next we consider the case where I1 is non-empty. By the third part of Lemma 14, we

can choose j 2 I1 such that @jV (q̃)  �CL

q2
. Then, similar to (8) we have

V (q̃)  V (q1, . . . , qK�1, q̃K)�
x · CL

q2
,

with x replacing the role of xj. Likewise, we have the following analogue of (9):

V (q) � V (q1, . . . , qK�1, q̃K)�
(K � 1)x · CH

(q̃K)2
,

where we used qK � q̃K = |I1| · x+
P

i2I2 xi  (K � 1)x.

Hence we are once again able to deduce V (q̃) < V (q) so long as q̃K � q is much larger

than q. This completes the proof of Proposition 1 modulo Lemma 14.

E.5 Proof of Lemma 14

In light of Lemma 5, the key will be to estimate the size of the di↵erent coordinates of

� = (⌃�1 +Q)�1 · ↵.
For the first part, note that the matrix norm of the posterior covariance matrix (⌃�1 +

Q)�1 is bounded above (by the norm of the prior covariance matrix ⌃). Thus for any possible

q, the vector � is bounded. We now write

↵ = (⌃�1 +Q) · �.

Comparing the i-th coordinate on both sides, we have ↵i = e0
i
· ⌃�1 · � + qi�i. This then

implies that the product qi�i is bounded across di↵erent possible q. Since @iV (q) = ��2
i
, the

first part of Lemma 14 is proved.
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For the second part, we use the matrix identity

(⌃�1 +Q)�1 = Q�1 �Q�1 · (⌃+Q�1)�1 ·Q�1.

So �i = e0
i
· (⌃�1 + Q)�1 · ↵ = ↵i

qi
� 1

qi
· e0

i
· (⌃ + Q�1)�1 · Q�1 · ↵. If q1, . . . , qK are all large,

then the term being subtracted is at most ↵i

2qi
, because the matrix norm of (⌃ + Q�1)�1 is

bounded above and the norm of Q�1 is small. Thus �i � ↵i

2qi
, implying that @iV  �↵

2
i

4q2
i

. The

second part of the lemma holds for CL = mini

↵
2
i

4 .

For the third part, let q1, . . . , qm < q  qm+1, . . . , qK . Suppose for the sake of contradic-

tion that @iV (q) > �CL

q2
for each 1  i  m, with CL defined above. Then |�i| < ↵i

2q < ↵i

2qi
for

1  i  m. Thus, ↵i � qi�i >
↵i

2 . We now rewrite ↵ = (⌃�1 +Q) · � as

⌃ · (↵�Q�) = �.

Since the i-th coordinate of ↵ � Q� is simply ↵i � qi�i, we deduce that the vector norm of

↵�Q� is bounded away from zero. So the above identity suggests that the norm of � is also

bounded away from zero. However, for 1  i  m we have |�i| < ↵i

2q by hypothesis, and for

i > m we know from the first part that |�i| 
p
CH

qi


p
CH

q
. Hence the norm of � is in fact

close to zero when q is large. This leads to a contradiction and completes the proof.

F Proof of Proposition 2

We first consider pure strategy equilibria, and then use the constant-sum feature of the

game to argue there are no mixed equilibria. Fix arbitrary �1, �2 > 0. From the agent’s

perspective, the informational environment is equivalent to one in which he seeks to predict

�1✓̃1 + �2✓̃2 and holds the prior belief

 
✓̃1

✓̃2

!
⇠ N

  
µ1

�1
µ2

�2

!
,

 
1
�
2
1

⇢

�1�2

⇢

�1�2

1
�
2
2

!!
.

Since Assumption 1 is satisfied, we can apply Theorem 1 to this transformed environment.

Without loss of generality we assume �1  �2 in equilibrium. Then the agent puts all

attention on source 1 until time t⇤1 = (�2��1)�1

1�⇢
. At all times after t⇤1, he allocates attention

in the constant proportion
⇣

�1
�1+�2

, �2
�1+�2

⌘
. Source 1’s payo↵ function is thus

U1(�1, �2) =

Z
t
⇤
1

0

e�rtdt+

Z 1

t
⇤
1

e�rt
�1

�1 + �2
dt =

1

r

✓
1� �2

�1 + �2
e�rt

⇤
1

◆
.
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The derivative with respect to the source’s action �1 is

@U1

@�1

����
(�1,�2)

=
�2

r(�1 + �2)2
e�rt

⇤
1

✓
1� r(�1 + �2)(2�1 � �2)

1� ⇢

◆
. (10)

Equilibrium requires

r(�1 + �2)(2�1 � �2)  1� ⇢ with equality if �1 < �2. (11)

On the other hand, since �1(t) + �2(t) = 1 at every t, the game has constant sum 1
r
. So

source 2’s payo↵ is simply

U2(�1, �2) =
1

r
� U1(�1, �2) =

�2

r(�1 + �2)
e�rt

⇤
1 .

The derivative with respect to its action �2 is

@U2

@�2

����
(�1,�2)

=
�1

r(�1 + �2)2
e�rt

⇤
1

✓
1� r(�1 + �2)�2

1� ⇢

◆
. (12)

Equilibrium requires

r(�1 + �2)�2 � 1� ⇢ with equality if �1 < �2 (13)

Combining (11) and (13), it is immediate that any pure strategy equilibrium must have

�1 = �2.45 Then the two inequalities (11) and (13) together give �1 = �2 =
q

1�⇢

2r = �⇤

as desired. Moreover, this is an equilibrium because (10) and (12) show that any deviation

(not just local deviations) is not profitable. In fact, given �j = �⇤, the unique best response

of source i is to choose the same �i. Since the game has a constant sum, this proves that

the pure strategy equilibrium we have found is the unique equilibrium, pure or mixed.

G Many Competing Providers

Here we demonstrate how the game in Section 5 generalizes to the case of K > 2 competing

data sources. We maintain essentially the same setup, except that the agent seeks to predict

✓1 + · · · + ✓K where the precision of information about each ✓i is controlled by a separate

data provider. Using the transformation ✓̃i = ✓i

�i

, we can reduce the agent’s information

acquisition problem to our main model with prior covariance matrix

⌃̃ =

0

BBBBB@

1
�
2
1

⇢

�1�2
. . . ⇢

�1�K

⇢

�1�2

1
�
2
2

. . . ⇢

�2�K

. . . . . . . . . . . .
⇢

�1�K

⇢

�2�K

. . . 1
�
2
K

1

CCCCCA
.

45Otherwise both inequalities hold equal, which yields 2�1 � �2 = �2 and again �1 = �2.
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and weight vector ↵̃ = (�1, . . . , �K)0.

Although ⌃̃ does not in general satisfy Assumption 2, it turns out that the optimal

attention allocations can still be characterized in the same way as Theorem 2, thanks to the

symmetry in this problem. Specifically, we have:

Lemma 15. Suppose �1  �2  · · ·  �K. For 1  k  K � 1, define

tk =
1

1� ⇢

kX

i=1

�i(�k+1 � �i)

and define tK = +1. Then for any k, the optimal attention allocation is constant at all

times t 2 [tk�1, tk) and supported on the first k sources, where each source i  k receives

attention proportional to its weight �i.

Using this result, it is straightforward to solve for the symmetric pure strategy equilibrium

of the game. Indeed, suppose the other sources all choose �2; then, source 1’s payo↵ when

choosing �1  � is given by

1

r

✓
1� (K � 1)�

�1 + (K � 1)�
· e

�r�1(���1)
(1�⇢)

◆
.

Di↵erentiating this w.r.t. �1 yields the first-order condition r·(�1+(K�1)�)·(2�1��)  1�⇢

at �1 = �, so that � 
q

1�⇢

Kr
.

On the other hand, by choosing �1 > �, source 1 gets

�1

�1 + (K � 1)�
· e

�r(K�1)�(�1��)
1�⇢ .

Di↵erentiating w.r.t. �1 yields another first-order condition r · �1 · (�1 + (K � 1)�) � 1� ⇢

at �1 = �. Thus � �
q

1�⇢

Kr
, showing such an equilibrium is unique.

Proof of Lemma 15. Fix any stage k and any time t 2 [tk�1, tk) with tk defined in the lemma.

Then, according to the lemma, the t-optimal attention vector n(t) satisfies

ni(t) =
�i(�k � �i)

1� ⇢
+

�i

�1 + · · ·+ �k

· (t� tk�1), 81  i  k (14)

and ni(t) = 0 for i > k. Conversely, if we can show this vector n(t) is indeed t-optimal, then

the lemma would follow.

Let q denote this attention vector for ease of exposition. To prove q minimizes the

posterior variance function, it is equivalent to check the first-order condition (noting that q

is supported on the first k sources):

@1V (q) = · · · = @kV (q) < min
i>k

@iV (q).
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Using Lemma 5, it su�ces to show

�1 = · · · = �k � �k+1 � · · · � �K > 0,

where as usual � = (⌃̃+diag(q))�1·↵̃. Observe that the prior covariance ⌃̃ in the transformed

problem can be written as

⌃̃ = diag(�)�1 · ⌃ · diag(�)�1,

with ⌃ being the matrix having “1”s on the diagonal and “⇢” everywhere o↵ the diagonal,

and � denoting the vector (�1, . . . , �K)0 (with a slight abuse of notation). From the above

discussion, � is also the weight vector ↵̃.

Thus, we can compute the key � vector as follows:

� = (⌃̃�1 + diag(q))�1 · ↵̃

= (diag(�) · ⌃�1 · diag(�) + diag(q))�1 · �

= (⌃�1 · diag(�) + diag(q/�))�1 · diag(�)�1 · �

= (⌃�1 · diag(�) + diag(q/�))�1 · 1,

where we use diag(q/�) to denote the diagonal matrix with entries q1/�1, . . . , qK/�K .

We let M denote the matrix ⌃�1 · diag(�) + diag(q/�). Then M · � = 1, so that

KX

j=1

Mij · �j = 1, 8i. (15)

We will use these identities to show that each �j is positive and �1 = · · · = �k are the largest

coordinates of �.

In fact, observe that ⌃�1 is the matrix with diagonal entries equal to a = 1+(K�2)⇢
(1�⇢)(1+(K�1)⇢)

and o↵-diagonal entries equal to b = �⇢

(1�⇢)(1+(K�1)⇢) . Thus fromM = ⌃�1·diag(�)+diag(q/�)

we deduce

Mij = b�j + ((a� b)�i +
qi
�i

) · �j=i,

with �j=i representing the indicator function for the event j = i. Plugging this into (15), we

then obtain ✓
(a� b)�i +

qi
�i

◆
· �i = 1�

KX

j=1

b�j�j, 8i.

Since the RHS is independent of i, we conclude that �1, . . . , �K have the same sign and each

�i is inversely proportional to (a� b)�i +
qi

�i

.

Now recall that � = (⌃̃�1 + diag(q))�1 · ↵̃. So ↵̃0 · � = ↵̃0 · (⌃̃�1 + diag(q))�1 · ↵̃, which is

positive since (⌃̃�1 +diag(q))�1 is a positive-definite matrix. It follows that the coordinates
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of � cannot all be less than or equal to zero. By the preceding analysis, they must all be

positive. Finally, to show �1, . . . , �k are equal and larger than the remaining coordinates, it

su�ces to consider their inverses, which are proportional to (a � b)�i +
qi

�i

. From (14) and

a� b = 1
1�⇢

we indeed have

(a� b)�i +
qi
�i

=
1

1� ⇢
· �k +

t� tk�1

�1 + · · ·+ �k

, 81  i  k.

The RHS is the same for i  k and smaller than (a � b)�k+1 when t < tk. This completes

the proof that �1 = · · · = �k � �k+1 � · · · � �K . Lemma 15 follows.
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