Health, Consumption, and Inequality

Jay H. Hong Josep Pijoan-Mas José Víctor Ríos-Rull

SNU CEMFI UPenn and UCL

PIER Conference Special Event, April 2019
Work in Progress (still)

Motivation

- Inequality is one of the themes of our time.
- Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time Katz, Murphy (QJE 1992); Krueger et al (RED 2010); Piketty (2014) Kuhn, Ríos-Rull (QR 2016); Khun et al (2017)
- We also know of large socio-economic gradients in health outcomes
- In mortality

Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014)
De Nardi et al (ARE 2016); Chetty et al (JAMA 2016)

- In many other health outcomes

Marmot et al (L 1991); Smith (JEP 1999)
Bohacek, Bueren, Crespo, Mira, Pijoan-Mas (2018)
\triangleright We want to compare and relate inequality in health outcomes to pure economic inequality.

The project

(1) Write a model of consumption, saving and health choices featuring
(a) Health-related preferences
(b) Health technology
(2) Use the FOC (only) to estimate (a) and (b)

- Consumption growth data to estimate how health affects the marginal utility of consumption
- Standard measures of VSL and HRQL to infer how much value individuals place on their life in different health states
- Medical health spending, health transitions (and people's valuation of life) to infer health technology
(3) Use our estimates to
- Welfare analysis: compare different groups given their allocations
- Ask what different groups would do if their resources were different and how much does welfare change
- Evaluate public policies?

Main empirical challenge

- Theory:
- Out-of-pocket expenditures improve health
- Data:
- Cross-section: higher spending leads to better health transitions across groups (education, wealth)
- Panel: higher spending leads to worse outcomes
\triangleright unobserved health shocks spur medical spending
- Add explicitly into the model
- Unobserved shock to health between t and $t+1$ that shapes
- probability of health outcomes
- the returns to health spending
- Higher expenditure signals higher likelihood of bad health shock

Model

Life-Cycle Model (mostly old-age)

(1) Individuals state $\omega \in \Omega \equiv I \times E \times A \times H$ is

- Age $i \in I \equiv\{50, \ldots, 89\}$
- Education $e \in E \equiv\{$ HSD, HSG, CG $\}$
- Net wealth $a \in A \equiv[0, \infty)$
- Overall health condition $h \in H \equiv\left\{h_{g}, h_{b}\right\}$
(2) Choices:
- Consumption $c \in \mathbb{R}_{++} \rightarrow$ gives utility
- Medical spending $x \in \mathbb{R}_{+} \rightarrow$ affects health transitions
- Next period wealth $a^{\prime} \in A$
(3) Shocks:
- Unobserved health outlook shock η
- Implementation error ϵ in health spending

4 (Stochastic) Health technology:

- Health transitions given by $\Gamma^{e i}\left[h^{\prime} \mid h, \eta, x \epsilon\right]$
- Survival given by $\gamma^{i}(h)$ (note no education or wealth)

Uncertainty and timing of decisions

(1) At beginning of period t individual state is $\omega=(i, e, a, h)$
(2) Consumption choice is made
(3) Health outlook shock $\eta \in\left\{\eta_{1}, \eta_{2}\right\}$ with probability π_{η}
(4) Health spending decision $x(\omega, \eta)$ is made
(5) Medical treatment implementation shock $\log \epsilon \sim N\left(-\frac{1}{2} \sigma_{\epsilon}^{2}, \sigma_{\epsilon}^{2}\right)$

- Once health spending is made, the shock determines actual treatment obtained $\tilde{x}=x(\omega, \eta) \epsilon$
- Allows for the implementation of the Bayesian updating of who gets the bad health outlook shock

The Bellman equation

The retiree version

- The household chooses $c, x(\eta), y(\eta)$ such that

$$
\begin{aligned}
v^{e i}(h, a)= & \max _{c, x(\eta), y(\eta)}\left\{u^{i}(c, h)+\right. \\
& \left.\beta^{e} \gamma^{i}(h) \sum_{h^{\prime}, \eta} \pi_{\eta}^{i h} \int_{\epsilon} \Gamma^{e i}\left[h^{\prime} \mid h, \eta, x(\eta) \epsilon\right] v^{e, i+1}\left[h^{\prime}, a^{\prime}(\eta, \epsilon)\right] f(d \epsilon)\right\}
\end{aligned}
$$

- s.t. the budget constraint and the law of motion for cash-in-hand

$$
\begin{aligned}
c+x(\eta)+y(\eta) & =a \\
a^{\prime}(\eta, \epsilon) & =[y(\eta)-(\epsilon-1) x(\eta)] R+w^{e}
\end{aligned}
$$

- The FOC give:
- One Euler equation for consumption c
- One Euler equation for health investments at each state η

FOC for consumption

- Optimal choice of consumption for individuals of type ω
- Standard Euler equation for consumption w/ sophisticated expectation (Over survival, health tomorrow h^{\prime}, outlook shock η, and implementation shock ϵ)

$$
\begin{aligned}
u_{c}^{i}[h, c(\omega)]= & \beta^{e} \gamma^{i}(h) R \\
& \sum_{h^{\prime} \eta} \pi_{\eta}^{i h} \int_{\epsilon} \Gamma^{e i}\left[h^{\prime} \mid h, \eta, x(\omega, \eta) \epsilon\right] \quad u_{c}^{i+1}\left[h^{\prime}, c\left(\omega, \eta, h^{\prime}, \epsilon\right)\right] f(d \epsilon)
\end{aligned}
$$

- Timing assumptions \Rightarrow consumption independent from shocks η, ϵ
- Then, it is easy to estimate w/o other parts of the model:
- expected transitions are the same for all individuals of same type ω

FOC for health spending

- Individuals of type ω make different health spending choices $x(\omega, \eta)$ depending on their realized η
- The FOC for individual of type ω is η-specific:

$$
\sum_{h^{\prime}} \int_{\epsilon} \underbrace{\epsilon \Gamma_{x}^{e i}\left[h^{\prime} \mid h, \eta, x(\omega, \eta) \epsilon\right]}_{\text {improvement in health transition }} \underbrace{v^{e, i+1}\left\{h^{\prime}, a^{\prime}(\omega, \eta, \epsilon)\right\}}_{\text {value of life tomorrow }} f(d \epsilon)=
$$

$$
R \sum_{h^{\prime}} \int_{\epsilon} \epsilon \Gamma^{e i}\left[h^{\prime} \mid h, \eta, x(\omega, \eta) \epsilon\right] u_{c}^{i+1}\left[h^{\prime}, c\left(\omega, \eta, h^{\prime}, \epsilon\right)\right] f(d \epsilon)
$$

Expected utility cost of forgone consumption

- In order to use this for estimation we need to
- Allocate individuals to some realization for η
- Compute the value function

Estimation

Preliminaries

- We group wealth data a_{j} into quintiles $p_{j} \in P \equiv\left\{p_{1}, \ldots, p_{5}\right\}$
- State space is the countable set $\widehat{\Omega} \equiv E \times I \times H \times P$
- Functional forms
- Utility function

$$
u^{i}(h, c)=\alpha_{h}+\chi_{h}^{i} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}
$$

- Health transitions

$$
\Gamma^{i e}(g \mid h, \eta, x)=\lambda_{0 \eta}^{i e h}+\lambda_{1 \eta}^{h} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}
$$

- Estimate several transitions in HRS data
- Survival rates $\widetilde{\gamma}_{h}^{i}$
- Health transitions $\widetilde{\Gamma}\left(h_{g} \mid \omega\right)$
- Health transitions conditional on health spending $\widetilde{\varphi}\left(h_{g} \mid \omega, \tilde{x}\right)$
- Joint health and wealth transitions $\widetilde{\Gamma}\left(h^{\prime}, p^{\prime} \mid \omega\right)$

General strategy

- Estimate vector of parameters θ by GMM without solving the model
\rightarrow Use the restrictions imposed by the FOC
\rightarrow Need to compute value functions with observed choices and transitions
- Two types of parameters

1/ Preferences: $\theta_{1}=\left\{\beta^{e}, \sigma_{c}, \chi_{h}^{i}, \alpha_{h}\right\}$

- Can be estimated independently from other parameters
- Use consumption Euler equation to obtain $\beta^{e}, \sigma_{c}, \chi_{h}^{i}$
- Use VSL and HRQL conditions to estimate α_{h}

2/ Health technology: $\theta_{2}=\left\{\lambda_{0 \eta}^{i e h}, \lambda_{1 \eta}^{h}, \nu^{h}, \pi_{\eta}, \sigma_{\epsilon}^{2}\right\}$

- Requires θ_{1} as input
- Use medical spending Euler equations plus health transitions
- Problem: we observe neither η_{j} nor ϵ_{j}
- Need to recover posterior probability of η_{j} from observed health spending \tilde{x}_{j}

Data: various sources

(1) HRS

- White males aged 50-88
- Health stock measured by self-rated health (2 states)
\triangleright Obtain the objects $\widetilde{\gamma}_{h}^{i}, \widetilde{\Gamma}\left(h_{g} \mid \omega\right), \widetilde{\varphi}\left(h_{g} \mid \omega, \tilde{x}\right), \widetilde{\Gamma}\left(h^{\prime}, p^{\prime} \mid \omega\right)$
2 PSID (1999+) gives
- Households headed by white males aged 50-88
- Non-durable consumption
- Out of Pocket medical expenditures
(3) Standard data in clinical analysis
- Outside estimates of the value of a statistical life (VSL)
- Health Related Quality of Life (HRQL) scoring data from HRS

Preliminary Estimates: Preferences

Marginal utility of consumption

Consumption Euler equation

- We use the sample average for all individuals j of the same type ω as a proxy for the expectation over η, h^{\prime}, and ϵ

$$
\beta^{e} R \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{\prime}}^{i+1}}{\chi_{h}^{i}}\left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma}=1 \quad \forall \omega \in \widetilde{\Omega}
$$

- Normalize $\chi_{g}^{i}=1$ and parameterize $\chi_{b}^{i}=\chi_{b}^{0}\left(1+\chi_{b}^{1}\right)^{(i-50)}$
- Use cons growth from PSID by educ, health, wealth quintiles
- We obtain
(1) Health and consumption are complements Finkelstein et al (JEEA 2012), Koijen et al (JF 2016)
(2) More so for older people
(3) Uneducated are NOT more impatient: they have worse health outlook

Marginal utility of consumption

Results

Men sample (with $r=4.04 \%$)

	β edu specific		β common	
σ	1.5		1.5	
β^{d} (s.e.)	0.8861	(0.0175)	0.8720	(0.0064)
β^{h} (s.e.)	0.8755	(0.0092)	0.8720	(0.0064)
β^{c} (s.e.)	0.8634	(0.0100)	0.8720	(0.0064)
χ_{b}^{0} (s.e.)	0.9211	(0.0575)	0.9176	(0.0570)
χ_{b}^{1} (s.e.)	-0.0078	(0.0035)	-0.0073	(0.0035)
observations	15,432		15,432	
moment conditions	240		240	
parameters	5		3	

Notes: estimation with biennial data. Annual interest rate of 2\%, annual $\beta: 0.9413,0.9357,0.9292$ in first column and 0.9338 in the second one.

Marginal utility of consumption

Results

$$
\frac{c_{g}}{c_{b}}=\left(\frac{\chi_{g}}{\chi_{b}}\right)^{1 / \sigma}= \begin{cases}1.057 & \text { at age } 50 \\ 1.268 & \text { at age } 85\end{cases}
$$

Value of life in good and bad health

We use standard measures in clinical analysis to obtain α_{g} and α_{b}
(1) Value of Statistical Life (VSL)

- From wage compensation of risky jobs Viscusi, Aldy (2003)
- Range of numbers: $\$ 4.0 \mathrm{M}-\$ 7.5 \mathrm{M}$ to save one statistical life
- This translates into \$100,000 per year of life saved
\triangleright Calibrate the model to deliver same MRS between survival probability \& cons flow Becker, Philipson, Soares (AER 2005); Jones, Klenow (AER 2016)
(2) Quality Adjusted Life Years (QALY)
- Trade-off between years of life under different health conditions
- From patient/individual/household surveys: no revealed preference
- Use HUI3 data from a subsample of 1,156 respondents in 2000 HRS
- Average score for $h=h_{g}$ is 0.85 and for $h=h_{b}$ is 0.60
\triangleright Calibrate the model to deliver same relative valuation of period utilities in good and bad health

The value functions

- The value achieved by an individual of type ω is given by

$$
\begin{aligned}
v^{e i}(h, a) & =u^{i}(c(\omega), h) \\
& +\beta^{e} \gamma^{i}(h) \sum_{h^{\prime} \eta} \pi_{\eta}^{i h} \int_{\epsilon} \Gamma^{e i}\left[h^{\prime} \mid h, \eta, x(\omega, \eta) \epsilon\right] v^{e i+1}\left(h^{\prime}, a^{\prime}(\omega, \eta, \epsilon)\right) f^{x}(d \epsilon)
\end{aligned}
$$

with

$$
a^{\prime}(\omega, \eta, \epsilon)=(a-c(\omega)-\epsilon \times(\omega, \eta))(1+r)+w^{e}
$$

- We can compute the value function from observed choices and transitions without solving for the whole model by rewriting the value function in terms of wealth percentiles $p \in P$:

$$
v^{e i}(h, p)=\frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} u^{i}\left(c_{j}, h_{j}\right)+\beta^{e} \widetilde{\gamma}_{h}^{i} \sum_{h^{\prime}, p^{\prime}} \widetilde{\Gamma}\left[h^{\prime}, p^{\prime} \mid \omega\right] v^{e i+1}\left(h^{\prime}, p^{\prime}\right)
$$

where we have replaced the expectation over η and ϵ by the joint transition probability of assets and health, $\widetilde{\Gamma}\left[h^{\prime}, p^{\prime} \mid \omega\right]$

Preliminary Estimates: health technology

The moment conditions: Preview

- For each $\omega=(i, e, h, p)$, we have four distinct moment conditions.
- (M1) Health spending EE for η_{g}
- (M2) Health spending EE for η_{b}
- (M3) Average Health transitions for $x>\operatorname{median}\left(x_{\omega}\right)$
- (M4) Average Health transitions for $x<\operatorname{median}\left(x_{\omega}\right)$
- We have $210 \times 4=840$ moment conditions
- e: 3 edu groups $=\{$ HSD, HSG, CG $\}$
$-i: 8$ age groups $=\{50-54,55-59,60-64,65-69,70-74,75-79,80-84,85-89\}$
- h : 2 health groups $=\left\{h_{g}, h_{b}\right\}$
- p: 5 wealth groups
\triangleright This gives 240 cells in ω
- But there are 30 cells that are empty (20 in age 85+, 5 in age 80-84)

The Problem

- Key problem: how to deal with unobserved health shock η
- Needed to evaluate the moment conditions (M1) to (M4)
- We construct the posterior probability of η given observed health investment \tilde{x}_{j} and the individual state ω_{j}

$$
\operatorname{Pr}\left[\eta_{g} \mid \omega_{j}, \widetilde{x}_{j}\right]=\frac{\operatorname{Pr}\left[\widetilde{x}_{j} \mid \omega_{j}, \eta_{g}\right] \operatorname{Pr}\left[\eta_{g} \mid \omega_{j}\right]}{\operatorname{Pr}\left[\widetilde{x}_{j} \mid \omega_{j}\right]}
$$

- where $\operatorname{Pr}\left[\widetilde{x}_{j} \mid \omega_{j}, \eta_{g}\right]$ is the density of $\epsilon_{j}=\widetilde{x}_{j} / x\left(\omega_{j}, \eta_{g}\right)$
- where $\operatorname{Pr}\left[\eta_{g} \mid \omega_{j}\right]=\pi_{\eta_{g}}$
- where $\operatorname{Pr}\left[\widetilde{x}_{j} \mid \omega_{j}\right]=\sum_{\eta} \operatorname{Pr}\left[\widetilde{x}_{j} \mid \omega_{j}, \eta\right] \operatorname{Pr}\left[\eta \mid \omega_{j}\right]$
- We weight every individual observation by this probability

The Problem

- To obtain the posterior distributions we need to estimate
- the contingent health spending rule, $x(\omega, \eta)$
- the variance of the medical implementation error, σ_{ϵ}^{2}
- the probability distribution of health outlooks sock, $\pi_{\eta_{g}}$
- We identify all these objects through the observed health transitions $\widetilde{\varphi}\left(h_{g} \mid \omega, \tilde{x}\right)$ as function of the state ω and health spending \tilde{x}

The Problem

Moment conditions

Health Spending Euler Equation

- Moment conditions (M1) to (M2) identify the curvature ν^{h} and slope $\lambda_{1 \eta}^{h}$ of the health technology
- $\forall \omega \in \widetilde{\Omega}$ and $\forall \eta \in\left\{\eta_{g}, \eta_{b}\right\}$ we have

$$
\begin{aligned}
& \frac{1}{M_{\omega \eta}} \sum_{j} 1_{\omega_{j}=\omega} \tilde{x}_{j} \Gamma_{\chi}^{e_{j} i_{j}}\left[h_{g} \mid h_{j}, \eta, \tilde{x}_{j}\right]\left[v^{e_{j}, i_{j+1}}\left(h_{g}, p_{j}^{\prime}\right)-v^{e_{j}, j_{j+1}}\left(h_{b}, p_{j}^{\prime}\right)\right] \operatorname{Pr}\left[\eta \mid \omega_{j}, \tilde{x}_{j}\right]= \\
& R \frac{1}{M_{\omega \eta}} \sum_{j} 1_{\omega_{j}=\omega} \tilde{x}_{j}\left(\sum_{h^{\prime}} \Gamma^{e_{j} i_{j}}\left[h^{\prime} \mid h_{j}, \eta, \tilde{x}_{j}\right] \chi^{i_{j}+1}\left(h^{\prime}\right)\left[c^{e_{j}, i_{j+1}}\left(h^{\prime}, p_{j}^{\prime}\right)\right]^{-\sigma_{c}}\right) \operatorname{Pr}\left[\eta \mid \omega_{j}, \tilde{x}_{j}\right] \\
& \quad \text { where } M_{\omega \eta}=\sum_{j} 1_{\omega_{j}=\omega} \operatorname{Pr}\left[\eta \mid \omega_{j}, \tilde{x}_{j}\right]
\end{aligned}
$$

- Note we use $c^{e, i}(h, p)$ (a group average consumption) and $v^{e, i}(h, p)$

Moment conditions

Average Health Transitions

- Moment conditions (M3) to (M4) identify the $\lambda_{0 \eta}^{i e}$
- $\forall \omega$ and $X \in\left\{X_{L(\omega)}, X_{H(\omega)}\right\}$ we have

$$
\begin{aligned}
& \widetilde{\Gamma}\left(h_{g} \mid \omega, X\right) \\
& \quad=\sum_{\eta} \frac{1}{M_{\omega \eta X}} \sum_{j} 1_{\omega_{j}=\omega, \tilde{x}_{j} \in X}\left[\lambda_{0 \eta}^{i e h}+\lambda_{1 \eta}^{i h} \frac{\tilde{x}_{j}^{1-\nu^{h}}-1}{1-\nu^{h}}\right] \operatorname{Pr}\left[\eta \mid \omega_{j}, \tilde{x}_{j}\right]
\end{aligned}
$$

where

- $M_{\omega \eta X}=\sum_{j} 1_{\omega_{j}=\omega, \tilde{x}_{j} \in X} \operatorname{Pr}\left[\eta \mid \omega_{j}, \tilde{x}_{j}\right]$
- $X_{L(\omega)}=\left\{x<=\tilde{x}_{\text {med }}(\omega)\right\}$
- $X_{H(\omega)}=\left\{x>\tilde{x}_{\text {med }}(\omega)\right\}$

Estimates of ν and λ_{1}

- Less curvature in health production than in consumption
\Rightarrow ceteris paribus, health expenditure shares increase with income (As in Hall, Jones (QJE 2007), but completely different identification)
- But: in the cross-sectional data health expenditure shares unrelated to income
- Poorer individuals have larger gains to leave bad health state
- Bad health outlook shock η_{b} increases return to money (especially so in good health state)

parameter	with $\pi=0.5$
$\nu\left(h_{g}\right)$	$1.2325(0.022)$
$\nu\left(h_{b}\right)$	$0.8204(0.034)$
$\lambda_{1}\left(h_{g}, \eta_{g}\right)$	$0.0466(0.0087)$
$\lambda_{1}\left(h_{g}, \eta_{b}\right)$	$0.0912(0.0169)$
$\lambda_{1}\left(h_{b}, \eta_{g}\right)$	$0.0019(0.0006)$
$\lambda_{1}\left(h_{b}, \eta_{b}\right)$	$0.0022(0.0007)$

Estimates of λ_{0} : Take 1

- Our estimates generate health transitions that are consistent with
- More educated have better transitions
- Older have worse transitions
- Useful medical spending predicts worse transitions in the panel
\triangleright BUT: not enough separation of health transitions by wealth
- Given our estimates of λ_{1} and ν, observed differences of OOP medical spending across wealth types are too small

Health transitions: Wealth Matters in Data not in Model

Data dashed and model dot each wealth quintile

Estimates of λ_{0} : Take 2

- Let's allow the λ_{0} to depend on wealth
- We parameterize the age and wealth dependence of $\lambda_{0 \eta}^{i e h p}$ as follows

$$
\lambda_{0 \eta}^{i e h p}=\frac{\exp \left(L_{\eta}^{i e h p}\right)}{1+\exp \left(L_{\eta}^{i e h p}\right)}
$$

where $L_{\eta}^{i e h p}=\mathrm{a}_{\eta}^{e h}+\mathrm{ap}_{\eta}^{e h} \times(p-3)+\mathrm{b}_{\eta}^{e h} \times(i-50)$

- We normalize $\pi_{\eta}=1 / 2$ and estimate

$$
\theta_{2}=\{\underbrace{\mathrm{a}_{\eta}^{e h}, \mathrm{ap}_{\eta}^{e h}, \mathrm{~b}_{\eta}^{e h}}_{\lambda_{0 \eta}^{\text {ehp }}}, \lambda_{1 \eta}^{h}, \nu^{h}, \sigma_{\epsilon}^{2}\}
$$

(This is $12+12+12+4+2+1=43$ parameters)

- Now: Wealthier experience better health transitions

Health transition with wealth dependent λ_{0}^{p}

$\lambda_{0}(\eta, i, e, h, p)$ graphically

So what to do about wealth-dependent transitions?

Two strategies
(1) Pose unobserved types: something that increases wealth AND health

- Bad types dissave (cannot be done without fully solving the model). WHICH KILLS THE BEAUTY OF THE APPROACH!!!
(2) Non-linear (concave) pricing: difference in total health spending by wealth types is larger than in OOP
- In preliminary estimates w/ MEPS data, the price of medical spending:
- Declines with medical spending \Rightarrow concave pricing (copyaments lower for more severe treatments)
- Is lower for the less educated individuals (copyaments lower in the public system)
- Is higher in good health (copyaments higher for preventive care)
- But: MEPS lacks data on wealth

Conclusions

Conclusions

- We have identified preferences for health
- Consumption is complement with health
- Differential value of good health seems to be increasing with age.
- Health is very valuable:
- Back of the envelope calculation says that the better health of college educated than high school dropouts is worth 5 times the consumption of the latter group.
- Health technology
- Health expenditures matter little
- Wealth matters beyond health expenditures
- Perhaps additional type differences
- Perhaps concave pricing
- Perhaps differential use of expenditures

