# Health, Consumption, and Inequality

Jay H. Hong Josep Pijoan-Mas José Víctor Ríos-Rull

SNU CEMFI UPenn and UCL

#### PIER Conference Special Event, April 2019

Work in Progress (still)

#### **Motivation**

- Inequality is one of the themes of our time.
  - Large body of literature documenting inequality in labor earnings, income, and wealth across countries and over time
     Katz, Murphy (QJE 1992); Krueger *et al* (RED 2010); Piketty (2014)
     Kuhn, Ríos-Rull (QR 2016); Khun *et al* (2017)
- We also know of large socio-economic gradients in health outcomes
  - In mortality
     Kitagawa, Hauser (1973); Pijoan-Mas, Rios-Rull (Demography 2014)
     De Nardi et al (ARE 2016); Chetty et al (JAMA 2016)
  - In many other health outcomes
     Marmot *et al* (L 1991); Smith (JEP 1999)
     Bohacek, Bueren, Crespo, Mira, Pijoan-Mas (2018)
- ▷ We want to compare and relate inequality in health outcomes to pure economic inequality.

## The project

- 1 Write a model of consumption, saving and health choices featuring
  - (a) Health-related preferences
  - (b) Health technology
- 2 Use the FOC (only) to estimate (a) and (b)
  - Consumption growth data to estimate how health affects the marginal utility of consumption
  - Standard measures of VSL and HRQL to infer how much value individuals place on their life in different health states
  - Medical health spending, health transitions (and people's valuation of life) to infer health technology
- **3** Use our estimates to
  - Welfare analysis: compare different groups given their allocations
  - Ask what different groups would do if their resources were different and how much does welfare change
  - Evaluate public policies?

# Main empirical challenge

- Theory:
  - Out-of-pocket expenditures improve health
- Data:
  - Cross-section: higher spending leads to better health transitions across groups (education, wealth)
  - Panel: higher spending leads to worse outcomes
    - $\,\triangleright\,\,$  unobserved health shocks spur medical spending
- Add explicitly into the model
  - Unobserved shock to health between t and t + 1 that shapes
    - probability of health outcomes
    - the returns to health spending
  - Higher expenditure signals higher likelihood of bad health shock

# Model

# Life-Cycle Model (mostly old-age)

- 1 Individuals state  $\omega \in \Omega \equiv I \times E \times A \times H$  is
  - Age  $i \in I \equiv \{50, \dots, 89\}$
  - Education  $e \in E \equiv \{HSD, HSG, CG\}$
  - Net wealth  $a \in A \equiv [0, \infty)$
  - Overall health condition  $h \in H \equiv \{h_g, h_b\}$
- 2 Choices:
  - Consumption  $c \in \mathbb{R}_{++} o$  gives utility
  - Medical spending  $x \in \mathbb{R}_+ o$  affects health transitions
  - Next period wealth  $a' \in A$
- 3 Shocks:
  - Unobserved health outlook shock  $\eta$
  - Implementation error  $\epsilon$  in health spending
- **4** (Stochastic) Health technology:
  - Health transitions given by  $\Gamma^{ei}[h' \mid h, \eta, x\epsilon]$
  - Survival given by  $\gamma^{i}(h)$  (note no education or wealth)

## Uncertainty and timing of decisions

- **1** At beginning of period t individual state is  $\omega = (i, e, a, h)$
- 2 Consumption c choice is made
- **3** Health outlook shock  $\eta \in {\eta_1, \eta_2}$  with probability  $\pi_\eta$
- 4 Health spending decision  $x(\omega, \eta)$  is made
- **5** Medical treatment implementation shock log  $\epsilon \sim N\left(-\frac{1}{2}\sigma_{\epsilon}^2, \sigma_{\epsilon}^2\right)$ 
  - Once health spending is made, the shock determines actual treatment obtained  $\tilde{x} = x(\omega, \eta) \epsilon$
  - Allows for the implementation of the Bayesian updating of who gets the bad health outlook shock

# The Bellman equation

The retiree version

• The household chooses c,  $x(\eta)$ ,  $y(\eta)$  such that

$$\begin{aligned} \mathbf{v}^{ei}(h, \mathbf{a}) &= \max_{c, \mathbf{x}(\eta), \mathbf{y}(\eta)} \left\{ u^{i}(c, h) + \beta^{e} \gamma^{i}(h) \sum_{h', \eta} \pi^{ih}_{\eta} \int_{\epsilon} \Gamma^{ei}[h' \mid h, \eta, \mathbf{x}(\eta)\epsilon] \; \mathbf{v}^{e, i+1}[h', \mathbf{a}'(\eta, \epsilon)] \; f(d\epsilon) \right\} \end{aligned}$$

• s.t. the budget constraint and the law of motion for cash-in-hand

$$c + x(\eta) + y(\eta) = a$$
  
$$a'(\eta, \epsilon) = [y(\eta) - (\epsilon - 1)x(\eta)]R + w^{e}$$

The FOC give:

- One Euler equation for consumption c
- One Euler equation for health investments at each state  $\eta$

# FOC for consumption

- Optimal choice of consumption for individuals of type  $\boldsymbol{\omega}$
- Standard Euler equation for consumption w/ sophisticated expectation (Over survival, health tomorrow h', outlook shock η, and implementation shock ε)

$$u_{c}^{i}[h, c(\omega)] = \beta^{e} \gamma^{i}(h) R$$
$$\sum_{h'\eta} \pi_{\eta}^{ih} \int_{\epsilon} \Gamma^{ei}[h' \mid h, \eta, x(\omega, \eta)\epsilon] \quad u_{c}^{i+1}[h', c(\omega, \eta, h', \epsilon)] f(d\epsilon)$$

- Timing assumptions  $\Rightarrow$  consumption independent from shocks  $\eta$ ,  $\epsilon$
- Then, it is easy to estimate w/o other parts of the model:
  - expected transitions are the same for all individuals of same type  $\omega$

## FOC for health spending

- Individuals of type  $\omega$  make different health spending choices  $x(\omega, \eta)$  depending on their realized  $\eta$
- The FOC for individual of type  $\omega$  is  $\eta$ -specific:

$$\sum_{h'} \int_{\epsilon} \underbrace{\epsilon \frac{\Gamma_{x}^{ei}[h' \mid h, \eta, x(\omega, \eta)\epsilon]}{\text{improvement in health transition}}}_{k} \underbrace{\frac{v^{e,i+1}\{h', a'(\omega, \eta, \epsilon)\}}{\text{value of life tomorrow}}}_{\text{value of life tomorrow}} f(d\epsilon) = \underbrace{R \sum_{h'} \int_{\epsilon} \epsilon \Gamma^{ei}[h' \mid h, \eta, x(\omega, \eta)\epsilon] \ u_{c}^{i+1}[h', c(\omega, \eta, h', \epsilon)] \ f(d\epsilon)}_{\text{Expected utility cost of foregoes consumption}}$$

Expected utility cost of forgone consumption

- In order to use this for estimation we need to
  - Allocate individuals to some realization for  $\boldsymbol{\eta}$
  - Compute the value function

# **Estimation**

#### **Preliminaries**

- We group wealth data  $a_j$  into quintiles  $p_j \in P \equiv \{p_1, ..., p_5\}$ 
  - State space is the countable set  $\widehat{\Omega}\equiv {\it E}\times {\it I}\times {\it H}\times {\it P}$
- Functional forms
  - Utility function

$$u^{i}(h,c) = \alpha_{h} + \chi^{i}_{h} \frac{c^{1-\sigma_{c}}}{1-\sigma_{c}}$$

- Health transitions

$$\Gamma^{ie}(g|h,\eta,x) = \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{h} \frac{x^{1-\nu^{h}}}{1-\nu^{h}}$$

- Estimate several transitions in HRS data
  - Survival rates  $\widetilde{\gamma}_h^i$
  - Health transitions  $\widetilde{\mathsf{\Gamma}}\left(h_{g}|\omega
    ight)$
  - Health transitions conditional on health spending  $\widetilde{arphi}\left(h_{g}|\omega,\widetilde{x}
    ight)$
  - Joint health and wealth transitions  $\widetilde{\Gamma}(h', p'|\omega)$

Hong, Pijoan-Mas, Ríos-Rull Health, Consumption, and Inequality

#### **General strategy**

- Estimate vector of parameters  $\theta$  by GMM without solving the model
  - $\rightarrow~$  Use the restrictions imposed by the FOC
  - $\rightarrow\,$  Need to compute value functions with observed choices and transitions
- Two types of parameters
  - 1/ Preferences:  $\theta_1 = \{\beta^e, \sigma_c, \chi_h^i, \alpha_h\}$ 
    - Can be estimated independently from other parameters
    - Use consumption Euler equation to obtain  $\beta^e$ ,  $\sigma_c$ ,  $\chi^i_h$
    - Use VSL and HRQL conditions to estimate  $\alpha_h$
  - 2/ Health technology:  $\theta_2 = \{\lambda_{0\eta}^{ieh}, \lambda_{1\eta}^h, \nu^h, \pi_\eta, \sigma_\epsilon^2\}$ 
    - Requires  $\theta_1$  as input
    - Use medical spending Euler equations plus health transitions
    - <u>Problem</u>: we observe neither  $\eta_j$  nor  $\epsilon_j$
    - Need to recover posterior probability of  $\eta_i$  from observed health spending  $ilde{x}_i$

### Data: various sources

#### 1 HRS

- White males aged 50-88
- Health stock measured by self-rated health (2 states)
- ▷ Obtain the objects  $\widetilde{\gamma}_{h}^{i}$ ,  $\widetilde{\Gamma}(h_{g}|\omega)$ ,  $\widetilde{\varphi}(h_{g}|\omega, \widetilde{x})$ ,  $\widetilde{\Gamma}(h', p'|\omega)$
- 2 PSID (1999+) gives
  - Households headed by white males aged 50-88
  - Non-durable consumption
  - Out of Pocket medical expenditures
- 3 Standard data in clinical analysis
  - Outside estimates of the value of a statistical life (VSL)
  - Health Related Quality of Life (HRQL) scoring data from HRS

# Preliminary Estimates: Preferences

# Marginal utility of consumption

Consumption Euler equation

• We use the sample average for all individuals j of the same type  $\omega$  as a proxy for the expectation over  $\eta$ , h', and  $\epsilon$ 

$$\beta^{e} R \ \tilde{\gamma}_{h}^{i} \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} \frac{\chi_{h_{j}^{i}}^{i+1}}{\chi_{h}^{i}} \left(\frac{c_{j}^{\prime}}{c_{j}}\right)^{-\sigma} = 1 \qquad \forall \omega \in \widetilde{\Omega}$$

- Normalize  $\chi^i_g = 1$  and parameterize  $\chi^i_b = \chi^0_b \left(1 + \chi^1_b\right)^{(i-50)}$
- Use cons growth from PSID by educ, health, wealth quintiles

#### • We obtain

- Health and consumption are complements Finkelstein et al (JEEA 2012), Koijen et al (JF 2016)
- 2 More so for older people
- **3** Uneducated are NOT more impatient: they have worse health outlook

### Marginal utility of consumption Results

|                       | $\beta$ edu specific |          | $\beta$ common |          |
|-----------------------|----------------------|----------|----------------|----------|
| σ                     | 1.5                  |          | 1.5            |          |
| $\beta^d$ (s.e.)      | 0.8861               | (0.0175) | 0.8720         | (0.0064) |
| $eta^{m{h}}$ (s.e.)   | 0.8755               | (0.0092) | 0.8720         | (0.0064) |
| $eta^{c}$ (s.e.)      | 0.8634               | (0.0100) | 0.8720         | (0.0064) |
| $\chi^0_b$ (s.e.)     | 0.9211               | (0.0575) | 0.9176         | (0.0570) |
| $\chi^{1}_{b}$ (s.e.) | -0.0078              | (0.0035) | -0.0073        | (0.0035) |
| observations          | 15,432               |          | 15,432         |          |
| moment conditions     | 240                  |          | 240            |          |
| parameters            | 5                    |          | 3              |          |

Men sample (with r = 4.04%)

Notes: estimation with biennial data. Annual interest rate of 2%, annual  $\beta$ : 0.9413, 0.9357, 0.9292 in first column and 0.9338 in the second one.

### Marginal utility of consumption Results



Hong, Pijoan-Mas, Ríos-Rull Health, Consumption, and Inequality

# Value of life in good and bad health

We use standard measures in clinical analysis to obtain  $\alpha_g$  and  $\alpha_b$ 

- 1 Value of Statistical Life (VSL)
  - From wage compensation of risky jobs Viscusi, Aldy (2003)
  - Range of numbers: \$4.0M-\$7.5M to save one statistical life
  - This translates into \$100,000 per year of life saved
  - Calibrate the model to deliver same MRS between survival probability & cons flow Becker, Philipson, Soares (AER 2005); Jones, Klenow (AER 2016)
- Quality Adjusted Life Years (QALY)
  - Trade-off between years of life under different health conditions
  - From patient/individual/household surveys: no revealed preference
  - Use HUI3 data from a subsample of 1,156 respondents in 2000 HRS
  - Average score for  $h = h_g$  is 0.85 and for  $h = h_b$  is 0.60
  - Calibrate the model to deliver same relative valuation of period utilities in good and bad health

## The value functions

• The value achieved by an individual of type  $\omega$  is given by

$$v^{ei}(h,a) = u^{i}(c(\omega),h)$$
  
+  $\beta^{e}\gamma^{i}(h)\sum_{h'\eta}\pi^{ih}_{\eta}\int_{\epsilon}\Gamma^{ei}[h'|h,\eta,x(\omega,\eta)\epsilon]v^{ei+1}(h',a'(\omega,\eta,\epsilon))f^{x}(d\epsilon)$ 

with

$$a'\left(\omega,\eta,\epsilon
ight)=\left(a-c\left(\omega
ight)-\epsilon\,x\left(\omega,\eta
ight)
ight)\left(1+r
ight)+w^{\epsilon}$$

 We can compute the value function from observed choices and transitions without solving for the whole model by rewriting the value function in terms of wealth percentiles p ∈ P:

$$\mathbf{v}^{ei}(h,p) = \frac{1}{N_{\omega}} \sum_{j} \mathbf{I}_{\omega_{j}=\omega} u^{i}(c_{j},h_{j}) + \beta^{e} \widetilde{\gamma}_{h}^{i} \sum_{h',p'} \widetilde{\Gamma}\left[h',p'|\omega\right] \mathbf{v}^{ei+1}(h',p')$$

where we have replaced the expectation over  $\eta$  and  $\epsilon$  by the joint transition probability of assets and health,  $\widetilde{\Gamma}[h', p'|\omega]$ 

Hong, Pijoan-Mas, Ríos-Rull Health, Consumption, and Inequality

# Preliminary Estimates: health technology

#### The moment conditions: Preview

- For each  $\omega = (i, e, h, p)$ , we have four distinct moment conditions.
  - (M1) Health spending EE for  $\eta_{\rm g}$
  - (M2) Health spending EE for  $\eta_b$
  - (M3) Average Health transitions for  $x > \text{median}(x_{\omega})$
  - (M4) Average Health transitions for  $x < \text{median}(x_{\omega})$
- We have  $210 \times 4 = 840$  moment conditions
  - e: 3 edu groups= {HSD, HSG, CG}
  - $-i: 8 \text{ age groups} = \{50-54,55-59,60-64,65-69,70-74,75-79,80-84,85-89\}$
  - h: 2 health groups=  $\{h_g, h_b\}$
  - p: 5 wealth groups
  - $\,\triangleright\,$  This gives 240 cells in  $\omega\,$
  - But there are 30 cells that are empty (20 in age 85+, 5 in age 80-84)

#### The Problem

- Key problem: how to deal with unobserved health shock  $\eta$ 
  - Needed to evaluate the moment conditions (M1) to (M4)
- We construct the posterior probability of η given observed health investment x
  <sub>i</sub> and the individual state ω<sub>i</sub>

$$\Pr\left[\eta_{g}|\omega_{j},\widetilde{x}_{j}\right] = \frac{\Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]\Pr\left[\eta_{g}|\omega_{j}\right]}{\Pr\left[\widetilde{x}_{j}|\omega_{j}\right]}$$

- where  $Pr\left[\widetilde{x}_{j}|\omega_{j},\eta_{g}\right]$  is the density of  $\epsilon_{j}=\widetilde{x}_{j}/x\left(\omega_{j},\eta_{g}\right)$ 

- where 
$$Pr[\eta_g|\omega_j] = \pi_{\eta_g}$$

- where  $\Pr\left[\widetilde{x}_{j}|\omega_{j}
  ight] = \sum_{\eta} \Pr\left[\widetilde{x}_{j}|\omega_{j},\eta
  ight] \Pr\left[\eta|\omega_{j}
  ight]$
- We weight every individual observation by this probability

#### The Problem

- To obtain the posterior distributions we need to estimate
  - the contingent health spending rule,  $x(\omega, \eta)$
  - the variance of the medical implementation error,  $\sigma_{\epsilon}^2$
  - the probability distribution of health outlooks sock,  $\pi_{\eta_{\mathrm{g}}}$
- We identify all these objects through the observed health transitions  $\tilde{\varphi}(h_g|\omega,\tilde{x})$  as function of the state  $\omega$  and health spending  $\tilde{x}$

$$\underbrace{\Pr\left[h_{g} \mid \omega, \widetilde{x}\right]}_{\text{posterior}} = \Gamma\left[h_{g} \mid \omega, \eta_{g}, \widetilde{x}\right] \underbrace{\Pr\left[\eta_{g} \mid \omega, \widetilde{x}\right]}_{\text{posterior}} + \Gamma\left[h_{g} \mid \omega, \eta_{b}, \widetilde{x}\right] \underbrace{\left(1 - \Pr\left[\eta_{g} \mid \omega, \widetilde{x}\right]\right)}_{\text{posterior}}$$

# **The Problem**



х

## **Moment conditions**

Health Spending Euler Equation

• Moment conditions (M1) to (M2) identify the curvature  $\nu^h$  and slope  $\lambda^h_{1\eta}$  of the health technology

• 
$$orall \omega \in \widetilde{\Omega}$$
 and  $orall \eta \in \{\eta_{ extsf{g}}, \eta_{ extsf{b}}\}$  we have

$$\frac{1}{M_{\omega\eta}} \sum_{j} \mathbf{1}_{\omega_{j}=\omega} \tilde{x}_{j} \Gamma_{x}^{\mathbf{e}_{j}i_{j}}[h_{g}|h_{j},\eta,\tilde{x}_{j}] \left[ v^{\mathbf{e}_{j},i_{j+1}}(h_{g},p_{j}') - v^{\mathbf{e}_{j},i_{j+1}}(h_{b},p_{j}') \right] \Pr[\eta|\omega_{j},\tilde{x}_{j}] = R \frac{1}{M_{\omega\eta}} \sum_{j} \mathbf{1}_{\omega_{j}=\omega} \tilde{x}_{j} \left( \sum_{h'} \Gamma^{\mathbf{e}_{j}i_{j}}[h'|h_{j},\eta,\tilde{x}_{j}] \chi^{i_{j}+1}(h') \left[ c^{\mathbf{e}_{j},i_{j+1}}(h',p_{j}') \right]^{-\sigma_{c}} \right) \Pr[\eta|\omega_{j},\tilde{x}_{j}]$$

where  $M_{\omega\eta} = \sum_j \mathbf{1}_{\omega_j = \omega} \Pr[\eta | \omega_j, \tilde{x}_j]$ 

• Note we use  $c^{e,i}(h, p)$  (a group average consumption) and  $v^{e,i}(h, p)$ 

## **Moment conditions**

Average Health Transitions

• Moment conditions (M3) to (M4) identify the  $\lambda_{0\eta}^{ie}$ 

• 
$$orall \omega$$
 and  $X \in ig\{X_{L(\omega)}, X_{H(\omega)}ig\}$  we have

$$\widetilde{\Gamma}(h_{g}|\omega, X) = \sum_{\eta} \frac{1}{M_{\omega\eta X}} \sum_{j} \mathbb{1}_{\omega_{j}=\omega, \tilde{x}_{j} \in X} \left[ \lambda_{0\eta}^{ieh} + \lambda_{1\eta}^{ih} \frac{\tilde{x}_{j}^{1-\nu^{h}} - 1}{1-\nu^{h}} \right] \Pr[\eta|\omega_{j}, \tilde{x}_{j}]$$

where

$$\begin{aligned} &- M_{\omega\eta X} = \sum_{j} \mathbf{1}_{\omega_{j} = \omega, \tilde{x}_{j} \in X} \Pr[\eta | \omega_{j}, \tilde{x}_{j}] \\ &- X_{L(\omega)} = \{x <= \tilde{x}_{med}(\omega)\} \\ &- X_{H(\omega)} = \{x > \tilde{x}_{med}(\omega)\} \end{aligned}$$

## Estimates of $\nu$ and $\lambda_1$

- Less curvature in health production than in consumption
  - $\Rightarrow \frac{ceteris \ paribus}{(As \ in \ Hall, \ Jones} (QJE 2007), but completely different identification)$ 
    - But: in the cross-sectional data health expenditure shares unrelated to income
      - Poorer individuals have larger gains to leave bad health state
- Bad health outlook shock η<sub>b</sub> increases return to money (especially so in good health state)

| parameter                                         | with $\pi=$ 0.5                    |
|---------------------------------------------------|------------------------------------|
| $ u(h_g) u(h_b)$                                  | 1.2325 (0.022)<br>0.8204 (0.034)   |
| $\lambda_1(h_g, \eta_g) \ \lambda_1(h_g, \eta_b)$ | 0.0466 (0.0087)<br>0.0912 (0.0169) |
| $\lambda_1(h_b, \eta_g) \ \lambda_1(h_b, \eta_b)$ | 0.0019 (0.0006)<br>0.0022 (0.0007) |

# Estimates of $\lambda_0$ : Take 1

- Our estimates generate health transitions that are consistent with
  - More educated have better transitions
  - Older have worse transitions
  - Useful medical spending predicts worse transitions in the panel
- ▷ BUT: not enough separation of health transitions by wealth
  - Given our estimates of  $\lambda_1$  and  $\nu,$  observed differences of OOP medical spending across wealth types are too small

## Health transitions: Wealth Matters in Data not in Model Data dashed and model dot each wealth quintile



Hong, Pijoan-Mas, Ríos-Rull Health, Consumption, and Inequality

#### Estimates of $\lambda_0$ : Take 2

- Let's allow the  $\lambda_0$  to depend on wealth
- We parameterize the age and wealth dependence of  $\lambda_{0n}^{iehp}$  as follows

$$\lambda_{0\eta}^{iehp} = rac{\exp(L_{\eta}^{iehp})}{1+\exp(L_{\eta}^{iehp})}$$

where 
$$L_{\eta}^{iehp} = \mathtt{a}_{\eta}^{eh} + \mathtt{ap}_{\eta}^{eh} imes (p-3) + \mathtt{b}_{\eta}^{eh} imes (i-50)$$

• We normalize  $\pi_\eta = 1/2$  and estimate

$$\theta_{2} = \{\underbrace{\mathbf{a}_{\eta}^{\mathrm{eh}}, \mathbf{ap}_{\eta}^{\mathrm{eh}}, \mathbf{b}_{\eta}^{\mathrm{eh}}}_{\lambda_{0\eta}^{\mathrm{iehp}}}, \lambda_{1\eta}^{h}, \nu^{h}, \sigma_{\epsilon}^{2}\}$$

(This is 12+12+12+4+2+1 = 43 parameters)

• Now: Wealthier experience better health transitions



Hong, Pijoan-Mas, Ríos-Rull, Health, Consumption, and Inequality Note: Model(square), HRS(dashed), Note this is the old eq26. Not fitted in this estimation directly.

# $\lambda_0(\eta, i, e, h, p)$ graphically



Hong, Pijoan-Mas, Ríos-Rull Health, Consumption, and Inequality

## **So what to do about wealth-dependent transitions?** *Two strategies*

1 Pose unobserved types: something that increases wealth AND health

- Bad types dissave (cannot be done without fully solving the model).
   WHICH KILLS THE BEAUTY OF THE APPROACH!!!
- Non-linear (concave) pricing: difference in total health spending by wealth types is larger than in OOP
  - In preliminary estimates w/ MEPS data, the price of medical spending:
    - Declines with medical spending ⇒ concave pricing (copyaments lower for more severe treatments)
    - Is lower for the less educated individuals (copyaments lower in the public system)
    - Is higher in good health (copyaments higher for preventive care)
  - But: MEPS lacks data on wealth

# Conclusions

#### Conclusions

- We have identified preferences for health
  - Consumption is complement with health
  - Differential value of good health seems to be increasing with age.
  - Health is very valuable:
    - Back of the envelope calculation says that the better health of college educated than high school dropouts is worth 5 times the consumption of the latter group.
- Health technology
  - Health expenditures matter little
  - Wealth matters beyond health expenditures
    - Perhaps additional type differences
    - Perhaps concave pricing
    - Perhaps differential use of expenditures