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Abstract

The U.S. government spends about $165B per year on highways and bridges, or
about 1% of GDP. Much of it is spent through “scaling” procurement auctions, in
which private construction firms submit unit price bids for each piece of material re-
quired to complete a project. The winner is determined by the lowest total cost—given
government estimates of the amount of each material needed—but, critically, they are
paid based on the realized quantities used. This creates an incentive for firms to skew
their bids—bidding high when they believe the government is underestimating an item’s
quantity and vice versa—and raises concerns of rent-extraction among policymakers.
For risk averse bidders, however, scaling auctions provide a distinctive way to generate
surplus: they enable firms to limit their risk exposure by placing lower unit bids on
items with greater uncertainty. To assess this effect empirically, we develop a structural
model of scaling auctions with risk averse bidders. Using data on bridge maintenance
projects undertaken by the Massachusetts Department of Transportation (MassDOT),
we present evidence that bidding behavior is consistent with optimal skewing under
risk aversion. We then estimate bidders’ risk aversion, the risk in each auction, and
the distribution of bidders’ private costs. Finally, we simulate equilibrium item-level
bids under counterfactual settings to estimate the fraction of MassDOT spending that
is due to risk and evaluate alternative mechanisms under consideration by MassDOT.
We find that scaling auctions provide substantial savings to MassDOT relative to lump
sum auctions and suggest several policies that might improve on the status quo.
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1 Introduction

Infrastructure investment underlies nearly every part of the American economy and con-

stitutes hundreds of billions of dollars in public spending each year.1 Infrastructure is also

politically popular: voters and policy-makers alike support increasing spending on infrastruc-

ture projects by as much as 100% over the next decade.2 However, infrastructure projects

are often complex and subject to unexpected changes. Uncertainty can be costly to the firms

implementing construction—many of whose businesses are centered on public works. The

mechanisms used to procure construction work can play a key role in mitigating firms’ expo-

sure to risk. Limiting risk makes prospective contracts more lucrative to firms and increases

competition, thereby reducing tax payer expenditures.

In this paper we study the mechanism by which contracts for construction work are

allocated by the Highway and Bridge Division in the Massachusetts Department of Trans-

portation (MassDOT). As in 36 other states, MassDOT uses a scaling auction, whereby

bidders submit unit price bids for each item in a comprehensive list of tasks and materials

required to complete a project. The winning bidder is determined by the lowest sum of unit

bids multiplied by item quantity estimates produced by DOT project designers. The winner

is then paid based on the quantities ultimately used in completing the project.

A common concern among policy-makers is that bidders may extract rents from the

DOT by “skewing” their bids: placing high unit bids on items that will over-run the DOT

estimates and low unit bids on items that will under-run. Bid-skewing has been documented

as far back as 1935, and referred to as commonplace as recently as 2009 (Skitmore and

Cattell (2013)). Previous work on timber auctions (Athey and Levin (2001)) and highway

construction (Bajari, Houghton, and Tadelis (2014)) has demonstrated evidence that bidders

skew correctly on average and that the most competitive bidders skew in a similar way. This

suggests that competitive bidders are similarly able to predict which items will over/under-

run.

As we demonstrate, the markup charged to the DOT depends not only on the level

of competition in the auction, but also on the uncertainty about the ultimate needs of

a project—conditional on the DOT’s specification—as well as the degree of risk aversion

that contending bidders face. If bidders are risk neutral and equally informed, bid-skewing

1According to the CBO, infrastructure spending accounts for roughly $416B or 2.4% of GDP annually
across federal, state and local levels. Of this, $165B—40%—is spent on highways and bridges alone.

2Recent polls have consistently shown around 70% of voters in support of increased infrastructure spending
along the lines of the $1.5 trillion plan outlined by the Trump administration. See YouGov and Gallop for
example. A major infrastructure bill is expected to entertain bi-partisan support following the 2018 election
(Nilson (2018)). This is in addition to a 2015 bill passed with bi-partisan support to increase infrastructure
spending by $305 billion over five years. ((Berman (2015)).
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produces no additional cost to the DOT in equilibrium. Contractors choose their bids using

refined quantity estimates, and any information rent is competed away. Risk averse bidders,

however, use bid skewing to balance the uncertainty in a project across the different items

involved. As in the risk neutral case, bidders generally submit higher bids for items they

believe will over-run the DOT quantity estimates. However, the incentive to raise bids on

items predicted to over-run is dampened by the level of noise in this prediction. Moreover,

the risk lowers the value of a project to bidders, causing them to bid less aggressively and

consequently extract higher payments from the DOT.

Notably, risk averse bidders will generally submit interior bids—unit bids that are above

zero—whereas risk neutral bidders will submit “penny” bids—unit bids of essentially zero—

on all but the items that are predicted to overrun by the largest amount, absent an external

force to prevent this.3 This matches the observations in our data, in which the vast majority

of unit bids are interior, but no significant penalty for penny bidding has ever been exercised.4

Moreover, taking uncertainty and risk aversion into account has significant implications

for comparisons across auctions. Risk neutral bidders would profit identically under a scaling

auction, a lump sum auction—in which bidders bid a total project price and are responsible

for all realized costs—or anything in between. Risk averse bidders, however, are sensitive to

the differences in risk exposure under each of these mechanisms. Scaling auctions compensate

bidders for every unit that is ultimately used. As such, the only risk that bidders are exposed

to (upon winning the auction) is the risk that they “mis-optimized” in selecting their bid

spread across items given the ex-post quantity realizations. Under a lump sum auction,

however, bidders bear the entirety of the cost risk involved in the project. If the realized

quantities are substantially larger than the predicted values used during bidding, the winning

bidder is liable for the differences, with no further compensation.5 In equilibrium, bidders

will insure themselves against the risk that they face by submitting higher overall bids. Thus,

scaling auctions, in which the level of risk from uncertainty about the ex-post quantities in a

project can be minimized by the bidders, are predicted to produce substantially lower overall

costs to the DOT.

Our contributions are three-fold. First, we construct a parsimonious model of competitive

bidding in a scaling auction with risk averse bidders who shoulder uncertainty over the

quantities that will ultimately be used. We show that risk aversion and uncertainty are

3See section 2 for a discussion of the model predictions under risk neutral and risk averse bidders.
4In a few rare instances, the DOT responded to suspicious bids by scrapping the auction all together and

revising the specification for the project before putting it up for auction again. In these instances, the same
bidders were able to participate, and so any cost incurred was minimal.

5This analysis precludes ex-post hold up problems and the like, in which the bidder might sue the DOT
for additional compensation. Considerations of this sort would further increase the costs to the DOT, and
so our analysis serves as a conservative estimate of the total effect.
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sufficient to explain interior bids, in contrast to previous work, which relies on heuristic

penalties on penny bids. We then provide reduced form evidence that the bidding behavior

observed in our data is consistent with the predictions of our model. Furthermore, we

demonstrate how our model can be used to evaluate the cost that the DOT incurs due

to uncertainty in its project specifications. Second, we estimate a structural model for

uncertainty and optimal bidding in our data. We employ a two-stage procedure to estimate

the level of risk in each project, the degree of risk aversion, and the distribution of bidders’

private costs. In the first stage, we estimate a model of bidder uncertainty using the history

of predicted and realized item quantities. In the second stage, we use the specification of

equilibrium unit bids implied by our model to construct a GMM estimator for risk aversion

and bidder cost types. Third, we use our structural estimates to simulate counterfactual

auction equilibria in which: (1) the DOT eliminates all uncertainty about item quantities;

(2) the DOT employs a µ-risk-sharing auction in which it compensates bidders for µ times

the prespecified estimated quantity and 1− µ times the realized quantity of each item used.

Finally, we calculate bounds on the cost of entry for an additional bidder to each auction,

as well as the cost savings to the DOT from an additional entry.

Using the first counterfactual results, we assess the DOT’s cost from uncertainty by taking

the difference in the expected amount paid to the winning bidder in the baseline auction

(the auction used in the status quo) and in the counterfactual setting with all uncertainty

removed. We find that the DOT’s cost in the baseline auction is only $2,145—or 0.70%—

higher, on average, than in the counterfactual auction with no uncertainty. However, this

estimate reflects the sum of two opposing forces that are shifted by the counterfactual: risk

and prediction. In the baseline, bidders use a best prediction (given available information)

of the ultimate item quantities. These predictions may be inaccurate in-sample, and so the

bids submitted may not be optimal (from the bidders’ perspective, after observing the ex-

post quantities). By contrast, in the counterfactual setting with all uncertainty eliminated,

bidders know the exact quantities that will be used and optimize accordingly. Consequently,

the DOT winds up paying more than in the baseline for some projects. To isolate the effect of

risk itself, we repeat the counterfactual exercise under the assumption that bidders’ quantity

predictions are correct (but bidders still interpret these predictions as coming from noisy

signals as before) in the baseline. In this case, there is no bidder mis-optimization in the

baseline, and so the DOT strictly saves money from eliminating risk: $172,513 (13.74%) on

average.

Using the second set of counterfactual results, we assess the extent and direction to which

DOT costs would change if the DOT switched from the scaling auction to an alternative in
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which part or all of the amount paid to the winning bidder is fixed at the time of bidding.6

A mechanism of this sort curbs bidders’ ability to skew their bids: in the limiting case of a

lump sum auction, bidders are paid the amount that they bid and so, there is no advantage

to spreading unit bids across items in any particular way. It may also offer benefits to the

DOT by reducing its burden in project specification and budgeting flexibility.7 However,

mechanisms of this sort effectively shift risk from the DOT to the bidders. As such, they

lower the expected value of winning each auction and induce higher, less aggressive bids.

We estimate that switching to a lump sum auction would increase DOT costs by 128% on

average (85% on median). The losses do not scale linearly with the amount of risk sharing,

however. We estimate that if the DOT were to pay the winning bidder her unit bid multiplied

by a 50-50 split of the ex-ante and ex-post quantities for each item, costs would increase by

6.84% on average (3.47% on median).

Finally, while major improvements to quantity estimation may be difficult to achieve

across the board, efforts to increase competition may offer an additional channel to improve

DOT cost efficiency. We estimate that adding an additional bidder to each auction results in

an average DOT savings of $82,583 (8.90%). Furthermore, our estimates of lower bounds on

bidders’ cost of entry suggest that an increased (guaranteed) payment of as little as $2,316

(on average) could incentivize an additional entry.

Our analysis is enabled by a rich and detailed data set, provided to us by the Highway

and Bridge division of the Massachusetts Department of Transportation. For each auction

in our study, we observe the full set of items involved in construction, along with ex-ante

estimates and ex-post realizations of the quantity of each item, a blue book DOT estimate of

the market unit rate for the item, and the unit price bid that each bidder who participated

in the auction submitted. Furthermore, our setting is particularly conducive to the study

of risk aversion. Bridge maintenance projects are highly standardized, and so heterogeneity

across projects is well captured by the characteristics observed in our data. The winner of

each auction is determined entirely by the expected cost of the project given the bidder’s

unit bids. Participating bidders are all pre-qualified by the DOT and neither historical per-

formance, nor external quality considerations play a role in the allocation of contracts. In

addition, while there is substantial variation between the ex-ante DOT estimates and the

6To highlight the effects of the counterfactual policies themselves, we report the results of all coun-
terfactuals assuming that bidders have correct quantity estimates (but still interpret these estimates with
uncertainty) in both the baseline and the counterfactual. Results in the case that bidders use the quantity
predictions estimated in our first stage are similar. We report them in the appendix for robustness.

7Neither moral hazard nor hold up problems are considered in our model. Moral hazard might make lump
sum auctions more attractive as imposing more risk on bidders would induce more thrifty uses of material.
However, the extent of moral hazard is limited by the contractors’ ability to influence quantities given DOT
restrictions and supervision. Hold up problems would strengthen our results.
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ex-post realizations of item quantities, all changes to the original project specification must

be approved by an on-site DOT project manager or engineer, limiting the scope of moral

hazard. Finally, while previous work on highway procurement auctions has discussed the role

of ex-post renegotiation of unit-prices and a disincentive for bid skewing due to a possibility

of having a winning bid rejected by the DOT, neither of these forces is applicable in our

setting. Unit price renegotiation occurs in a negligible number of cases in our data, and

MassDOT does not reject the winning bidder as a matter of policy.8

Connections and Contributions to the Related Literature

Our paper follows a rich literature on strategic manipulation in scoring auctions, and is

closest in spirit to Athey and Levin (2001) and Bajari, Houghton, and Tadelis (2014).9 Athey

and Levin (2001) first established the theoretical framework demonstrating that bid-skewing

arises in equilibrium when bidders are better informed about ex-post quantities than the

auctioneer. Using a general modeling framework, Athey and Levin establish a number of

empirical predictions and test them in the context of US timber auctions. Notably, they

test the hypothesis that bidders have superior information (beyond what is given to them

by the auctioneer) by comparing the direction of bid skews: profitable skews are indicative

of superior information. They find significant evidence of superior information, as well as

evidence that there is little informational differentiation between the top two bidders. We

discuss analogous exercises in our reduced form section and find similar results in our setting

as well. Furthermore, Athey and Levin note that the absence of total skewing (e.g. penny

bidding) in their setting is inconsistent with risk neutral bidders in their model, and suggest

risk aversion as a more fitting explanation for what they observe. Using the Athey and Levin

framework, we construct a structural model that allows us to quantify the costs—realized

and hypothetical—of scaling auctions in practice.

Bajari, Houghton, and Tadelis (2014) (“BHT”) studies a setting similar to ours: the

auctions used to procure highway construction contracts in California. As in our setting,

BHT observe item-level unit bids submitted in a scaling auction in which awards are allocated

based on engineers’ quantity estimates, but compensated based on realized quantities.10

8In a handful of cases, MassDOT has withdrawn the auction all together after receiving bids, citing inter-
nal mis-estimation in the project specification, and has re-posted the auction anew after making adjustments.
The same bidders were eligible to participate in the revised auction.

9More recently, De Silva, Dunne, Kosmopoulou, and Lamarche (2016) apply a framework similar to
Bajari, Houghton, and Tadelis (2014) to assess the effects of a DOT’s commitment to reducing the scope of
project changes.

10There are several notable differences between the setting in Bajari, Houghton, and Tadelis (2014) and
ours. Unlike MassDOT, the California DOT imposes tighter limits on quantity overruns, and does occa-
sionally reject bidders with mathematically unbalanced bids. Furthermore, while the overall level of bid
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However, the study’s main focus is on adaptation costs—costs incurred from disruptions

in work-flow due to inadequate preliminary planning. BHT propose a structural model for

bidding in which bidders are risk-neutral and have correct (on average) expectations over

what the final quantity of each item used will be. They then use conditions derived from

this model in conjunction with data on ex-post negotiated change orders, adjustments to

unit prices, extra work-orders, and deductions (due to failures on the part of the contractor)

to identify the expected cost of these adjustments that is paid by the California DOT.

Our paper differs from Bajari, Houghton, and Tadelis (2014) in several significant ways.

First, because BHT is primarily concerned with measuring adaptation costs, it does not

aim to predict bids at the item level. By contrast, our paper is focused on predicting bids

for auctions in counterfactual settings. Our approach incorporates risk and risk aversion to

rationalize interior bids, allowing us to capture substitution patterns between items with a

micro-founded generative model of unit bid setting.11 Our model characterizes equilibrium

bids at the auction-bidder-item level as a function of the item’s historical quantity variance,

the bidder’s private cost type and distribution of opponent types, and the level of risk aversion

in the auction. Our identification strategy leverages variation in unit bids across auctions

that each bidder participated in, as well as variation across auctions that items identified by

the DOT as “highly skewed” appeared in.12

Our approach allows us to estimate the distribution of bidder cost types in each auction,

as well as the coefficient of bidder risk aversion. These parameters, along with those governing

the item quantity distributions, jointly characterize the equilibrium bid distribution in each

setting.13 Using our estimates, we are able to predict the equilibrium bids that would arise

in each counterfactual. We can thus assess policy-relevant outcomes: the expected cost

to the DOT, as well as the utility to prospective bidders (which may impact entry). To

our knowledge, no counterfactual analysis of scaling auctions, nor any assessment of their

performance in the context of mechanism design has been done before.

skewing, as evidenced by the relationship between quantity overruns and price overruns (as in figure 7)
across all highway and bridge projects in Massachusetts is similar to that in California, this relationship is
particularly pronounced among the bridge maintenance projects that our analysis focuses on.

11Bajari et al. model bidders as risk neutral, but subject to a heuristic penalty function in bidders’
utility that convexly penalizes deviations of unit bids from the DOT’s cost estimates for each item. They
estimate that the penalty coefficient is small and negative (suggesting bid-skewing is encouraged, rather than
penalized), but not statistically significant. As part of preparing our paper, we replicated their methodology
on our data set, and found our model substantially better in back-predicting item bid spreads.

12By contrast, Bajari et al. use aggregate optimality conditions such that each observation entering their
moment condition is at the bidder-auction level. They then estimate a mean cost type across all bidders and
auctions, as well as mean coefficients on adaptation costs, etc.

13Note that one cannot evaluate counterfactual outcomes by extrapolating from the empirical score distri-
bution. Changes to the auction setting will change the equilibrium score distribution, and so it is necessary
to compute the equilibrium from primitives in each counterfactual.
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More generally, our paper relates to the literature on multi-dimensional auctions, and

scoring auctions in particular (auctions in which bids on different dimensions of interest are

aggregated into a single-dimensional score to determine the winner). Che (1993) character-

izes the equilibria of auctions that employ a two-dimensional scoring rule (quality and price)

with single-dimensional bidder types. Asker and Cantillon (2008) extend this to a more

general setting, allowing for multi-dimensional bidder types and general quasi-linear scoring

rules, by showing that a mapping of multi-dimensional attributes onto a single dimensional

“pseudo-type” is sufficient to characterize equilibria up to payoff equivalence. Both of these

papers assume that bidders are risk neutral, and the result on “pseudo-types” does not ex-

tend directly to the risk averse case. In our paper, we model single-dimensional bidder types,

as this is the most parsimonious way to ensure a unique monotonic equilibrium.14 However,

we plan to extend our approach to a more general type space in future work. Furthermore,

while our identification strategy leverages the particular properties of scaling auctions, our

work may provide methodological insights for estimation and prediction in more general

multi-dimensional auctions as well.

Our paper also relates to a rich literature on the theory and estimation of equilibrium

bidding in auctions with risk averse bidders. Maskin and Riley (1984) and Matthews (1987)

first characterized the optimal auction in the presence of risk averse bidders with independent

private values (IPV). While we do not relate our results to the optimal mechanism in this

version of the paper, an evaluation of the DOT cost savings under the optimal mechanism,

following Matthews (1987), is under preparation for a future draft. Campo, Guerre, Perrigne,

and Vuong (2011) first established semi-parametric identification results for estimating risk

aversion parameters in single-dimensional first price auctions in an IPV setting. As in their

approach, we exploit the heterogeneity across items being auctioned and a parameterization

of the bidders’ utility function for identification. However, as our identification leverages the

optimal spread of unit bids across items at each bidder’s equilibrium score, we do not require

any restrictions on the distribution of the bidders’ private value distribution for estimation.

Our paper is structured as follows. In Section 2, we give an overview of how the play-

ers involved with procurement auctions—contractors and DOT managers—have treated bid

skewing in practice. We then present an illustrative example of equilibrium bidding in our

setting to demonstrate how uncertainty, risk aversion, and competition influence the inter-

14To see why a multi-dimensional bidder type model is substantially more complicated, note that a mono-
tonic equilibrium in our setting requires a single-dimensional ranking of bidder types: a bidder with a better
type should have a higher chance of winning (and therefore a lower score). Whereas in the risk neutral case
(as in Bajari et al. (2014)), better bidders are those with lower expected costs for completing a project,
risk averse bidders are compared by the certainty equivalent of their profits from completing a project. As
demonstrated in section 2, the certainty equivalent entails an interaction between bidders’ item costs and
item bids, making straight-forward comparisons in a general case difficult.
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pretation of bids that we may see in practice. In section 3, we discuss our dataset and

present reduced form evidence that the bids we observe in our data support our model.

In section 4, we present a full theoretical model of equilibrium bidding. In section 5, we

present a structural model for estimating the auction primitives that underlie the bids in our

data. In section 6, we present our structural estimates. Finally, in section 7, we present our

counterfactual predictions and discuss their implications for policy.

2 Bid Skewing and Material Loss to the DOT

2.1 Scaling Auctions in Highway and Bridge Procurement

Like most other states, Massachusetts manages the construction and maintenance for its

highways and bridges through its Department of Transportation (DOT). In order to develop

a new project, DOT engineers assemble a detailed specification of what the project will

entail. This specification includes an itemized list of every task and material (item) that is

necessary to complete the project, as well as the engineers’ estimates of the quantity with

which each item will be needed, and a market unit rate for its cost. The itemized list of

quantities is then advertised to prospective bidders.15

Any contractor who has been pre-qualified for a given project can submit a bid for the

contract to implement it. Pre-qualification entails that the contractor is able to complete

the work required, given their staff and equipment. Notably, it does not depend on past

performance in any way. In order to submit a bid, a contractor posts a per-unit price for

each of the items specified by the DOT. Since April 2011, all bids have been processed

through an online platform, Bid Express, which is also used by 36 other state DOTs.16 All

bids are private until the completion of the auction.

Once the auction is complete, each contractor is given a score, computed by the sum of

the product of each item’s estimated quantity and the contractor’s unit-price bid for it. The

bidder with the lowest score is then awarded the rights to implement the project. In the

process of construction, it is common for items to be used in quantities that deviate from the

DOT engineer’s specification. All changes, however, must be approved by an on-site DOT

manager. The winning contractor is ultimately paid the sum of her unit price bid multiplied

by the actual quantity of each item used.

While contractors’ ability to influence the item quantities that are ultimately used is

limited, bidders may be able to predict which items will over/under-run the DOT’s estimates.

15The DOT’s estimate of market rates are not advertised to prospective bidders, and are used primarily
for internal budgeting purposes.

16Scaling auctions using paper-bids were used for over a decade prior to the introduction of Bid Express.
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Consequently, DOT officials have expressed concerns that bidders may manipulate unit prices

to take advantage of government inaccuracies and extract rents from the taxpayer till.

2.2 Views of Bid Skewing by Contractors and DOT Managers

Bid Skewing Among Contractors

The practice of unbalanced bidding—or bid skewing—in scaling auctions appears, in the

words of one review, “to be ubiquitous” (Skitmore and Cattell (2013)). References to bid

skewing in operations research and construction management journals date as far back as

1935 and as recently as 2010. A key component of skewing is the bidders’ ability to predict

quantity over/under-runs and optimize accordingly. Stark (1974), for instance, characterizes

contemporary accounts of bidding:

Knowledgeable contractors independently assess quantities searching for items

apt to seriously underrun. By setting modest unit bids for these items they can

considerably enhance the competitiveness of their total bid.

Uncertainty regarding the quantities that will ultimately be used presents a challenge to

optimal bid-skewing, however. In an overview of “modern” highway construction planning,

Tait (1971) writes:

...there is a risk in manipulating rates independently of true cost, for the quanti-

ties schedule in the bill of quantities are only estimates and significant differences

may be found in the actual quantities measured in the works and on which pay-

ment would be based.

In order to manage the complexities of bid selection, contractors often employ experts

and software geared for statistical prediction and optimization. Discussing the use of his

algorithm for optimal bidding in consulting for a large construction firm, Stark (1974) notes

a manager’s prediction that such software would soon become widespread—reducing asym-

metries between bidders and increasing allocative efficiency in the industry.

...since the model was public and others might find it useful as well, it had the

longer term promise of eroding some uncertainties and irrelevancies in the ten-

dering process. Their elimination...increased the likelihood that fewer contracts

would be awarded by chance and that his firm would be a beneficiary.

Since then, an assortment of decision support tools for estimating item quantities and op-

timizing bids has become widely available. A search on Capterra, a web platform that

facilitates research for business software buyers, yields 181 distinct results. In a survey on
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construction management software trends, Capterra estimates that contractors spend an av-

erage $2,700 annually on software. The top 3 platforms command a market share of 36%

and surveyed firms report having used their current software for about 2 years—suggesting

a competitive environment. Asked what was most improved by the software, a leading 21%

of respondents said, “estimating accuracy”, while 14% (in third place) said “bidding”.

DOT Challenges to Bid Skewing

Concerns that sophisticated bidding strategies may allow contractors to extract excessively

large payments have led to a number of lawsuits about the DOT’s right to reject suspicious

bids. The Federal Highway Administration (FHWA) has explicit policies that allow officials

to reject bids that are deemed manipulative. However, the legal burden of proof for a

manipulative bid is quite high. In order for a bid to be legally rejected, it must be proven

to be materially unbalanced.17

A bid is materially unbalanced if there is a reasonable doubt that award to the

bidder ... will result in the lowest ultimate cost to the Government. Consequently,

a materially unbalanced bid may not be accepted.18

However, as the definition for material unbalancedness is very broad, FHWA statute requires

that a bid be mathematically unbalanced as a precondition. A mathematically unbalanced

bid is defined as one, “structured on the basis of nominal prices for some work and inflated

prices for other work.”19 In other words, it is a bid that appears to be strategically skewed.

In order to discourage bid skewing, many regional DOTs use concrete criteria to define

mathematically unbalanced bids. In Massachusetts, a bid is considered mathematically

unbalanced if it contains any line-item for which the unit bid is (1) over (under) the office

cost estimate and (2) over (under) the average unit bid of bidders ranked 2-5 by more than

25%.

In principle, a mathematically unbalanced bid elicits a flag for DOT officials to examine

the possibility of material unbalancedness. However, in practice, such bids are ubiquitous,

and substantial challenges by the DOT are very rare. In our data, only about 20% of projects

do not have a single item breaking MassDOT’s overbidding rule, and only about 10% of

projects do not have a single item breaking the underbidding rule. Indeed, most projects

have a substantial portion of unit bids that should trigger a mathematical unbalancedness

flag.20 However, only 2.5% of projects have seen bidders rejected across all justifications, a

17See Federal Acquisition Regulations, Sec. 14.201-6(e)(2) for sealed bids in general and Sec. 36.205(d)
for construction specifically (Cohen Seglias Pallas Greenhall and Furman PC (2018)).

18Matter of: Crown Laundry and Dry Cleaners, Comp. Gen. B-208795.2, April 22, 1983.
19Matter of: Howell Construction, Comp. Gen. B-225766 (1987)
20See figures 20a and 20b in the appendix for more details.
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handful of which were due to unbalanced bids.21

The Difficulty of Determining ‘Materially Unbalanced’ Bids

A primary reason that so few mathematically unbalanced bids are penalized is that material

unbalancedness is very hard to prove. In a precedent-setting 1984 case, the Boston Water

and Sewer Commission was sued by the second-lowest bidder for awarding a contract to R.J.

Longo Construction Co., Inc., a contractor who had the lowest total bid along with a penny

bid. The Massachusetts Superior Court ruled that the Commission acted correctly, since the

Commission saw no evidence that the penny bid would generate losses for the state. More

specifically, no convincing evidence was presented that if the penny bid did generate losses,

the losses would exceed the premium on construction that the second-lowest bidder wanted

to charge (Mass Superior Court, 1984).22 In January 2017, MassDOT attempted to require

a minimum bid for every unit price item in a various locations contract due to bid skewing

concerns. SPS New England, Inc. protested, arguing that such rules preclude the project

from being awarded to the lowest responsible bidder. The Massachusetts Assistant Attorney

General ruled in favor of the contractor on August 1, 2017.

In fact, there is a theoretical basis to question the relationship between mathematical

and material unbalancedness. As we demonstrate, bid skewing plays dual roles in bidders’

strategic behavior. On the one hand, bidders extract higher ex-post profits by placing higher

bids on items that they predict will overrun in quantity. On the other hand, bidders reduce

ex-ante risk by placing lower bids on items, regarding which they are particularly uncertain.

Moreover, when bidders are similarly informed regarding ex-post quantities, the profits from

predicting overruns are largely competed away in equilibrium, but the reduction in ex-ante

risk is passed on to the DOT in the form of cost-savings.

21Note that MassDOT does not reject individual bidders, but rather withdraws the project from auction
and possibly resubmits it for auction after a revision of the project spec.

22In response to this case, MassDOT inserted the following clause into Subsection 4.06 of the MassDOT
Standard Specifications for Highways and Bridges: “No adjustment will be made for any item of work
identified as having an unrealistic unit price as described in Subsection 4.04.” This clause, inserted in the
Supplemental Specifications dated December 11, 2002, made it difficult for contractors to renegotiate the
unit price of penny bid items during the course of construction. An internal MassDOT memo from the time
shows that Construction Industries of Massachusetts (CIM) requested that this clause be removed. One
MassDOT engineer disagreed, writing that “if it is determined that MHD should modify Subsection 4.06 as
requested by CIM it should be noted that the Department may not necessarily be awarding the contract to
the lowest responsible bidder as required.” The clause was removed from Subsection 4.06 in the June 15,
2012 Supplemental Specifications.
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2.3 An Illustrative Example

Consider the following simple example of infrastructure procurement bidding. Two bidders

compete for a project that requires two types of inputs to complete: concrete and traffic

cones. The DOT estimates that 10 tons of concrete and 20 traffic cones will be necessary to

complete the project. Upon inspection, the bidders determine that the actual quantities of

each item that will be used – random variables that we will denote qac and qar for concrete and

traffic cones, respectively – are normally distributed with means E[qac ] = 12 and E[qar ] = 16

and variances σ2
c = 2 and σ2

r = 1.23 We assume that the actual quantities are exogenous to

the bidding process, and do not depend on who wins the auction in any way. Furthermore,

we will assume that the bidders’ expectations are identical across both bidders.24

The bidders differ in their private costs for implementing the project. They have access

to the same vendors for the raw materials, but differ in the cost of storing and transporting

the materials to the site of construction as well as the cost of labor, depending on the site’s

location, the state of their caseload at the time and firm-level idiosyncrasies. We therefore

describe each bidder’s cost as a multiplicative factor α of market-rate cost estimate for each

item: cc = $8/ton for each ton of Concrete and cr = $12/pack for each pack of 100 traffic

cones. Each bidder i knows her own type αi at the time of bidding, as well as the distribution

(but not realization) of her opponent’s type.

To participate in the auction, each bidder i submits a unit bid for each of the items: bic

and bir. The winner of the auction is then chosen on the basis of her score: the sum of her

unit bids multiplied by the DOT’s quantity estimates:

si = 10bic + 20bir.

Once a winner is selected, she will implement the project and earn net profits of her unit bids,

less the unit costs of each item, multiplied by the realized quantities of each item that are

ultimately used. At the time of bidding, these quantities are unrealized samples of random

variables.

Bidders are endowed with a standard CARA utility function over their earnings from the

23As we discuss in section 4, we assume that the distributions of qac and qar are independent conditional on
available information regarding the auction. This assumption, as well as the assumption that the quantity
distributions are not truncated at 0 (so that quantities cannot be negative) are made for the purpose of
computational traceability in our structural model. Note that if item quantities are correlated, bidders’ risk
exposure is higher, and so our results can be seen as a conservative estimate of this case.

24These assumptions align with the characterization of highway and bridge projects in practice: the
projects are highly standardized and all decisions regarding quantity changes must be approved by an on-
site DOT official, thereby limiting contractors’ ability to influence ex-post quantities.
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project with a common constant coefficient of absolute risk aversion γ:

u(π) = 1− exp(−γπ).

Note that bidders are exposed to two sources of risk: (1) uncertainty over winning the

auction; (2) uncertainty over the profits that they would earn at the realized ex-post quantity

of each item.

The profit π that bidder i earns is either 0, if she loses the auction, or

π(bi, αi, c,qa) = qac · (bic − αicc) + qar · (bir − αicr),

if she wins the auction. Bidder i’s expected utility at the time of the auction is therefore

given by:

E[u(π(bi, αi, c,qa))] =

1− Eqa
[
exp

(
−γ · π(bi, αi, c,qa)

)]︸ ︷︷ ︸
Expected utility conditional on winning

 × (Pr{si < sj}).︸ ︷︷ ︸
Probability of winning with si = 10bic + 20bir

That is, bidder i’s expected utility from submitting a set of bids bic and bir is the product of

the utility that she expects to get (given those bids) if she were to win the auction, and the

probability that she will win the auction at those bids. Note that the expectation of utility

conditional on winning is with respect to the realizations of the item quantities qac and qar ,

entirely.

As the ex-post quantities are distributed as independent Gaussians, the expected util-

ity term above can be rewritten in terms of the certainty equivalent of bidder i’s profits

conditional on winning:25

1− exp
(
−γ · CE(bi, αi, c,qa)

)
,

where the certainty equivalent of profits CE(bi, αi, c,qa) is given by:

E[qac ] · (bic − αicc) + E[qar ] · (bir − αicr)︸ ︷︷ ︸
Expection of Profits

−
[
γσ2

c

2
· (bic − αicc)2 +

γσ2
r

2
· (bir − αicr)2

]
.︸ ︷︷ ︸

Variance of Profits

(1)

Furthermore, as we discuss in section 4, the optimal selection of bids for each bidder i

can be described as the solution to a two-stage problem:

Inner: For each possible score s, choose the bids bc and br that maximize CE({bc, br}, αi, c,qa),
subject to the score constraint: 10bc + 20br = s.

25See section 4 and the appendix for a detailed derivation.
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Outer: Choose the score s∗(αi) that maximizes expected utility E[u(π(bi(s), αi))], where bi(s)

is the solution to the inner step, evaluated at s.

That is, at every possible score that bidder i might consider, she chooses the bids that

sum to s for the purpose of the DOT’s evaluation of who will win the auction, and maximize

her certainty equivalent of profits conditional on winning. She then chooses the score that

maximizes her total expected utility.

To see how this decision process can generate bids that appear mathematically unbal-

anced, suppose, for example, that the common CARA coefficient is γ = 0.05, and consider

a bidder in this auction who has type αi = 1.5.26 Suppose, furthermore, that the bidder has

decided to submit a total score of $500. There are a number of ways in which the bidder

could construct a score of $500. For instance, she could bid her cost on concrete, bic = $12,

and a dollar mark-up on traffic cones: bir = ($500 − $12 × 10)/20 = $19. Alternatively,

she could bid her cost on traffic cones, bir = $18, and a two-dollar mark-up on traffic cones:

bic = ($500− $18× 20)/10 = $14. Both of these bids would result in the same score, and so

give the bidder the same chances of winning the auction. However, they yield very different

expected utilities to the bidder. Plugging each set of bids into equation (1), we find that the

first set of bids produces a certainty equivalent of:

12× ($0) + 16× ($1)− 0.05× 2

2
× ($0)2 − 0.05× 1

2
× ($1)2 = $15.98,

whereas the second set of bids produces a certainty equivalent of

12× ($2) + 16× ($0)− 0.05× 2

2
× ($2)2 − 0.05× 1

2
× ($0)2 = $23.80.

In fact, further inspection shows that the optimal bids giving a score of $500 are bic = $47.78

and bir = $1.12, yielding a certainty equivalent of $87.98. The intuition for this is precisely

that described by Athey and Levin (2001), and the contractors cited by Stark (1974): the

bidder predicts that concrete will overrun in quantity – she predicts that 12 tons will be used,

whereas the DOT estimated only 10 – and that traffic cones will underrun – she predicts that

16 will be used, rather than the DOT’s estimate of 20. When the variance terms aren’t too

large (relatively), the interpretation is quite simple: every additional dollar bid on concrete

is worth approximately 12/10 in expectation, whereas every additional dollar bid on traffic

cones is worth only 16/20.

However, the incentive to bid higher on items projected to overrun is dampened when

the variance term is relatively large. This can arise when the coefficient of risk aversion is

26That is, for each ton of concrete that will be used will cost, the bidder incur a cost of αi×cc = 1.5×$8 =
$12, and for each pack of traffic cones that will be used, she will incur a cost of αi × cr = 1.5× $12 = $18.
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relatively high or when the variance of an item’s ex-post quantity distribution is high. More

generally, as demonstrated in equation (1), the certainty equivalent of profits is increasing in

the expected quantity of each item, E[qac ] and E[qar ], but decreasing in the variance of each

item σ2
c and σ2

r .

(a) Score = $500 (b) Score = $1000

Figure 1: Certainty equivalent as a function of her unit bid on traffic cones, for the example
bidder submitting a score of $500 or $1,000.

Moreover, the extent of bid skewing can depend on the level of competition in the auction.

Figure 1 plots the bidder’s certainty equivalent as a function of her unit bid on traffic cones

when she chooses to submit a total score of (a) $500, and when she chooses to submit a score

of (b) $1,000. In the first case, the bid that optimizes the certainty equivalent is very small,

bir = $1.12. In the second case, however, the optimal bid is much higher at bir = $23.33.

The reason for this is that a low bid on traffic cones implies a high bid on concrete. A high

markup on concrete decreases the bidder’s certainty equivalent at a quadratic rate. Thus, as

the score gets higher, there is more of an incentive to spread markups across items, rather

than bidding very high on select items, and very low on others.

2.4 Bid Skewing in Equilibrium

As we discuss in section 4, the auction game described above has a unique Bayes Nash

Equilibrium. This equilibrium is characterized following the two-stage procedure described

on in section 4.2: (1) given an equilibrium score s(α), each bidder of type α submits the

vector of unit bids that maximizes her certainty equivalent conditional on winning, and sums

to s(α); (2) The equilibrium score is chosen optimally, such that there does not exist a type

α and an alternative score s̃, so that a bidder of type α can attain a higher expected utility

with the score s̃ than with s(α).

The optimal selection of bids given an equilibrium score depends on the bidders’ expecta-
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tions over ex-post quantities and the DOT’s posted estimates, as well as on the coefficient of

risk aversion and the level of uncertainty in the bidders’ expectations. High overruns cause

bidders to produce more heavily skewed bids, whereas high risk aversion and high levels of

uncertainty push bidders to produce more balanced bids.

In addition to influencing the relative skewness of bids, these factors also have a level effect

on bidder utility. Higher expectations of ex-post quantities raise the certainty equivalent

conditional on winning for every bidder. Higher levels of uncertainty (and a higher degree

of risk aversion), however, induce a cost for bidders that lowers the certainty equivalent.

Consequently, higher levels of uncertainty lower the value of participating for every bidder

and result in less aggressive bidding behavior, and higher costs to the DOT in equilibrium.

To demonstrate this, we plot the equilibrium score, unit-bid distribution and ex-post

revenue for every bidder type α in our example. To illustrate the effects of risk and risk

aversion on bidder behavior and DOT costs, we compare the equilibria in four cases. First,

we compute the equilibrium in our example laid out on page 11 when bidders are risk averse

with CARA coefficient γ = 0.05, and when bidders are risk neutral (e.g. γ = 0). To hone in

on the effects of risk in particular, and not mis-estimation, we will assume that the bidders’

expectations of ex-post quantities are perfectly correct (e.g. the realization of qac is equal to

E[qac ], although the bidders do not know this ex-ante, and still assume their estimates are

noisy with Gaussian error).

Next, we compute the equilibrium in each case under the counterfactual in which uncer-

tainty regarding quantities is eliminated. In particular, we consider a setting in which the

DOT is able to discern the precise quantities that will be used, and advertise the project

with the ex-post quantities, rather than imprecise estimates. The DOT’s accuracy is com-

mon knowledge, and so upon seeing the DOT numbers in this counterfactual, the bidders

are certain of what the ex-post quantities will be (e.g. σ2
c = σ2

r = 0).

Risk Neutral Bidders Risk Averse Bidders

Noisy Quantity Estimates $326.76 $317.32
Perfect Quantity Estimates $326.76 $296.26

Table 1: Comparison of Expected DOT Costs

In Table 1, we present the expected (ex-post) DOT cost in each case. This is the ex-

pectation of the amount that the DOT would pay the winning bidder qac b
w
c + qar b

w
r at the

equilibrium bidding strategy in each setting, taken with respect to the distribution of the

type of the lowest (winning) bidder.27 When bidders are risk neutral (γ = 0), the equilib-

27In order to simulate equilibria, we need to assume a distribution of bidder types. For this ex-
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rium cost to the DOT does not change when the DOT improves its quantity estimates. The

reason for this is that since γ = 0, the variance term in equation (1) is zero regardless of

the level of the noise in quantity predictions. As the bidders’ quantity expectations E[qac ]

and E[qar ] are unchanged, the expected revenue of the winning bidder (corresponding to the

expected cost to the DOT) is unchanged as well.

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 2: Equilibrium DOT Cost/Bidder Revenue by Bidder Type

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 3: Equilibrium Score Functions by Bidder Type

In figure 2a, we plot the revenue that each type of bidder expects to get in equilibrium

when bidders are risk neutral. The red line corresponds to the baseline setting, in which

the DOT underestimates the ex-post quantity of concrete, and overestimates the ex-post

quantity of traffic cones. The black line corresponds to the counterfactual in which both

quantities are precisely estimated, and bidders have no residual uncertainty about what the

quantities will be. Note that while the ex-post cost to the DOT is the same whether or

not the DOT quantity estimates are correct, the unit bids and resulting scores that bidders

ample, we assume that bidder types are distributed according to a truncated lognormal distribution,
α ∼ LogNormal(0, 0.2) that is bounded from above by 2.5. There is nothing special about this particu-
lar choice, and we could easily have made others with similar results.
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submit are different. In figure 3a, we plot the equilibrium score for each bidder type when

bidders are risk neutral. The score at every bidder type is smaller under the baseline than

under the counterfactual in which the DOT discerns ex-post quantities. This is because the

scores in the counterfactual correspond to the bidders’ expected revenues, while the scores

in the baseline multiply bids that are skewed to up-weight overrunning items by their under-

estimated DOT quantities. See the appendix for a full derivation and discussion of the risk

neutral case.

(a) Risk Neutral Bidders (b) Risk Averse Bidders: γ = 0.05

Figure 4: Equilibrium Unit Bids by Bidder Type

Figure 4a plots the unit bid that each type of bidder submits in equilibrium when bidders

are risk neutral. As before, the red lines correspond to the baseline setting in which the DOT

mis-estimates quantities, whereas the black lines correspond to the counterfactual setting in

which the DOT discerns ex-post quantities perfectly. The solid line in each case corresponds

to the unit bid for concrete bc(α) that each α type of bidder submits in equilibrium. The

dashed line corresponds to the equilibrium unit bid for traffic cones br(α) for each bidder

type. Notably, in every case, the optimal bid for each bidder puts the maximum possible

amount (conditional on the bidder’s equilibrium score) on the item that is predicted to

overrun the most, and $0 on the other item. This is a direct implication of optimal bidding

by risk neutral bidders, absent an external impetus to do otherwise. As noted by Athey and

Levin (2001), this suggests that the observations of interior or intermediately-skewed bids

in our data, as well as in Athey and Levin’s, are inconsistent with a model of risk neutral

bidders. Other work, such as Bajari, Houghton, and Tadelis (2014) have rationalized interior

bids by modeling a heuristic penalty for extreme skewing that represents a fear of regulatory

rebuke. However, no significant regulatory enforcement against bid skewing has ever been

exercised by MassDOT, and discussions of bidding incentives in related papers as well as in

Athey and Levin (2001) suggest that risk avoidance is a more likely dominant motive.

In figures 2b, 3b and 4b, we plot the equilibrium revenue, score and bid for every bidder

type, when bidders are risk averse with the CARA coefficient γ = 0.05. Unlike the risk-
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neutral case, the DOT’s elimination of uncertainty regarding quantities has a tangible impact

on DOT costs. When the DOT eliminates quantity risk for the bidders, it substantially

increases the value of the project for all of the bidders, causing more competitive bidding

behavior. Seen another way, uncertainty regarding ex-post quantities imposes a cost to the

bidders, on top of the cost of implementing the project upon winning. In equilibrium, bidders

submit bids that allow them to recover all of their costs (plus a mark-up). When uncertainty

is eliminated, the cost of the project decreases, and so the total revenue needed to recover

each bidder’s costs decreases as well. Note, also, that the elimination of uncertainty results

in different levels of skewing across the unit bids of different items. Whereas under the

baseline, bidders with types α > 1.6 place increasing interior bids on traffic cones, when risk

is eliminated, this is no longer the case. However, this is subject to a tie breaking rule –

when the DOT perfectly predicts ex-post quantities, there are no overruns, and so there is

no meaningful different to over-bid on one item over the other. The analysis of the optimal

bid (conditional on a score) here is analogous to that under risk neutrality, and so we defer

details to the appendix.

CARA Coeff Baseline No Quantity Risk Pct Diff

0 $326.76 $326.76 0%
0.001 $326.04 $325.62 0.13%
0.005 $323.49 $321.41 0.64%
0.01 $321.01 $316.88 1.29%
0.05 $317.32 $296.26 6.64%
0.10 $319.83 $285.57 10.71%

Table 2: Comparison of expected DOT costs under different levels of bidder risk aversion

While the general observation that reducing uncertainty may result in meaningful cost

savings to the DOT, the degree of these savings depends on the baseline level of uncertainty

in each project, as well as the degree of bidders’ risk aversion and the level of competition in

each auction (constituted by the distribution of cost types and the number of participating

bidders). To illustrate this, we repeat the exercise summarized in Table 1 over different

degrees of risk aversion and different levels of uncertainty. In Table 2, we present the expected

DOT cost under the baseline example and under the counterfactual in which the DOT

eliminates quantity risk, as well as the percent difference between the two, for a range

of CARA coefficients.28 The bolded row with a CARA coefficient of 0.05 corresponds to

28 That is, in the baseline, the DOT posts quantity estimates qec = 10 and qer = 20, while bidders predict
that E[qac ] = 12 and E[qar ] = 18 with σ2

c = 2 and σ2
r = 1. In the No Quantity Risk counterfactual, the DOT

discerns that qec = qac = 12 and qer = qar = 18, so that σ2
c = σ2

r = 0.
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the right hand column of Table 1. We repeat this exercise across different magnitudes of

prediction noise in Table 22, in the appendix.

3 Data and Reduced Form Results

3.1 Data

Our data comes from MassDOT and covers highway and bridge construction and mainte-

nance projects undertaken by the state from 1998 to 2015. We are limited by the extent

of MassDOT’s collection and storage of data on its projects. 4,294 construction and main-

tenance projects are in the DOT’s digital records, although the coverage is sparse prior to

the early 2000s. If we keep only the projects for which MassDOT has digital records on 1)

identities of the winning and losing bidders; 2) bids for the winning and losing bidders; and

3) data on the actual quantities used for each item, we are left with 2,513 projects, 440 of

which are related to bridge maintenance. We focus on bridge projects alone for this paper,

as these projects are particularly prone to item quantity adjustments. Coverage is especially

poor in the first few years of the available data and is especially good since 2008, when

MassHighway became MassDOT and a push to improve digital records went into effect.29

MassDOT began using an online procurement service, called Bid Express, in April 2011.

Prior to Bid Express, each contractor submitted his bids in paper form and MassDOT

personnel then manually entered the bid data into an internal data set. The shift from a

paper process to an online process thus likely helped data collection efforts and improved

data accuracy.

The rules of the procurement process were the same, however, before and after April

2011. All bidders who participate in an auction have been able to see, ex-post, how everyone

bid on each item. And all contractors have had access to summary statistics on past bids

for each item, across time and location. Officially, all interested bidders find out about

the specifications and expectations of each project at the same time, when the project is

advertised (a short while before it opens up for bidding). Only those contractors who have

been pre-qualified at the beginning of the year to do the work required by the project can bid

on the project. Thus, contractors do not have a say in project designs, which are furnished

either in-house by MassDOT or by an outside consultant.

Once a winning bidder is selected, project management moves under the purview of an

engineer working in one of 6 MassDOT districts around the state. The Project Manager

assigns a Resident Engineer to monitor work on a particular project out in the field and

29See table 20 for a breakdown of the number of projects in our data, by year.
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to be the first to decide whether to approve or reject underruns, overruns, and Extra Work

Orders (EWOs).30 Underruns and overruns, as the DOT defines them and as we will define

them here, apply to the items specified in the initial project design and refer to the difference

between actual item quantities used and the estimated item quantities. EWOs refer to work

done outside of the scope of the initial contract design and are most often negotiated as

lump sum payments from the DOT to the contractor. For the purposes of our discussion and

analyses, we will focus on underruns and overruns in projects relating to bridge construction

and maintenance, as this is a focal point of interest to the DOT, as well as an area with a

fair amount of uncertainty for the bidders.

Statistic Mean St. Dev. Pctl(25) Median Pctl(75)

Project Length (Estimated) 1.53 years 0.89 years 0.88 years 1.48 years 2.01 years
Project Value (DOT Estimate) $2.72 million $3.89 million $981,281 $1.79 million $3.3 million
# Bidders 6.55 3.04 4 6 9
# Types of Items 67.80 36.64 37 67 92
Net Over-Cost (DOT Quantities) −$286,245 $2.12 million −$480,487 −$119,950 $167,933
Net Over-Cost (Ex-Post Quantities) −$26,990 $1.36 million −$208,554 $15,653 $275,219
Extra Work Orders $298,796 $295,173 $78,775 $195,068 $431,188

Table 3: Summary Statistics

Table 3 provides summary statistics for the bridge projects in our data set. We measure

the extent to which MassDOT overpays the projected project cost in two ways. First, we

consider the difference between what the DOT ultimately pays the winning bidder (the sum

of the actual quantities used, multiplied the winning bidder’s unit bids) and the DOT’s initial

estimate (the sum of the DOT’s quantity estimates, multiplied by the DOT’s estimate for

each item’s unit cost). Summary statistics for this measure are presented in the “Net Over-

Cost (DOT Quantities)” row of table 3. While it seems as though the DOT is saving money

on net, this is a misrepresentation of the costs of bid skewing. As we demonstrated in section

2, the DOT’s estimate, which can be thought of the score evaluated using the DOT’s unit

costs as bids, is not representative of the ex-post amount to be paid at those bids. Rather, a

more appropriate metric is to compare the amount ultimately spent against the dot product

of the the DOT’s unit cost estimates and the actual quantities used. This is presented in

the “Net Over-Cost (Ex-Post Quantities)” row of table 3. The median over-payment by

this metric is about $15,000, but the 25th and 75th percentiles are about -$210,000 and

$275,000. Figure 5 shows the spread of over-payment across projects. As we will show in our

counterfactual section, the distribution of over-payment corresponds to the potential savings

from the elimination of risk.

30The full approval process of changes in the initial project design involves N layers of review.
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Figure 5: Net Over-Cost (Ex-Post Quantities) Across Bridge Projects

Description of Bidders

Across our data set, there are 2,883 unique project-bidder pairs (e.g. total bids submitted)

across the 440 projects that were auctioned off. There are 116 unique firms that participate,

albeit to different degrees. We distinguish firms that are rare participants by dividing firms

into two groups: ‘common’ firms, which participate in at least 30 auctions within our data

set, and ‘rare firms‘, which participate in less than 30 auctions. We retain the individual

identifiers for each of the 24 common firms, but group the 92 rare firms together for purposes

of estimation. Common firms constitute 2,263 (78%) of total bids submitted, and 351 (80%)

of auction victories.

Bidder Name No. Employees No. Auctions Participated

MIG Corporation 80 297
Northern Constr Services LLC 80 286

SPS New England Inc 75 210
ET&L Corp 1 201

B&E Construction Corp 9 118
NEL Corporation 68 116

Construction Dynamics Inc 22 113
S&R Corporation 20 111

New England Infrastructure 35 95
James A Gross Inc 7 78

Table 4: Number of employees is drawn from estimates on LinkedIn and Manta
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Common Firm Common Firm Rare Firm

Number of Firms 24 92
Total Number of Bid Submitted 2263 620

Mean Number of Bid Submitted Per Firm 94.29 6.74
Median Number of Bid Submitted Per Firm 63.0 2.5

Total Number of Wins 351 89
Mean Number of Wins Per Firm 14.62 0.97

Median Number of Wins Per Firm 10 0

Mean Bid Submitted $2,774,941 $4,535,310
Mean Ex-Post Cost of Bid $2,608,921 $4,159,949

Mean Ex-Post Overrun of Bid 9.7% 21.97%

Proportion of Bids on Projects in the Same District 28.19 15.95
Proportion of Bids by Revenue Dominant Firms 51.67 11.80

Mean Specialization 24.44 2.51
Mean Capacity 10.38 2.75

Mean Utilization Ratio 53.05 25.50

Table 5: Comparison of Firms Participating in <30 vs 30+ Auctions

Table 4 presents the number of auctions participated in by each of the top 10 most com-

mon firms, as well as estimates of the number of full time employees on their payrolls. While

the employee count numbers presented here are estimates, and may not include additional

labor hired on a project-by-project basis, these firms are all relatively small, private, family-

owned businesses.31 Table 5 presents summary statistics of the two firm groups. The mean

(median) common firm submitted bids to 94.29 (63) auctions and won 14.62 (10) of them.

The mean total bid (e.g. the score) submitted is about $2.8 million, while the mean ex-post

DOT cost implied by the firm’s unit bids is $2.6 million. The mean ex-post cost overrun

(the percent difference of the sum of unit bids multiplied by the ex-post quantities and the

sum of blue book costs multiplied by the ex-post quantities) is 9.73%. By contrast, the

mean (median) rare firm submitted bids to 6.74 (2.5) auctions and won 0.97 (0) of them.

The mean total bid and ex-post scores are quite a bit larger than the common firms – $4.5

million and $4.2 million respectively, and this is reflected in a substantially larger ex-post

31All 24 most common firms in our sample are privately owned, and so there is no publicly available,
verifiable information on their revenues or expenses. The numbers of employees presented here are drawn
from Manta, an online directory of small businesses, and cross-referenced with LinkedIn, on which a subset
of these firms list a range of their employee counts. Note that there is some ambiguity as to who “counts”
as an employee, as such firms often hire additional construction laborers on a project-by-project basis. The
“family owned” label is drawn from the firms’ self-descriptions on their websites.

23

www.manta.com


overrun: 21.97% on average.

In addition to the firm’s identity, there are a number of factors which may influence its

competitiveness in a given auction. One such factor is the firm’s distance from the project.

Although we do not observe precise locations for each project in our data, we observe which

of the 6 geographic districts that MassDOT jurisdiction is broken into each project belongs

to. We then geocode the headquarters of each firm by district, and compare districts for

each project-bidder pair. Among common firms, 28.19% of bids were on projects that were

located in the same district as the bidding firm’s headquarters. By contrast, only 15.95% of

bids among rare firms were in matching districts.

Another measure of competitiveness is specialization—firms with extensive experience

bidding on and implementing a certain type of project may find it cheaper to implement an

additional project of the same sort. Our data involves three distinct project types, according

to the DOT taxonomy: Bridge Reconstruction/Rehabilitation projects, Bridge Replacement

projects, and Structures Maintenance projects. We calculate the specialization of a project-

bidder pair as the share of auctions of the same project type that the bidding firm has placed

a bid on within our dataset. The mean specialization of a common firm is 24.44%, while the

mean specialization of a rare firm is 2.51%. As projects have varying sizes, we compute a

measure of specialization in terms of project revenue as well. We define a revenue-dominant

firm (within a project-type) as a firm that has been awarded more than 1% of the total money

spent by the DOT across projects of that project type. Among common firms, 51.67% of bids

submitted were by firms that were revenue dominant in the relevant project type; among

rare firms, the proportion of bids by revenue dominant firms is 11.8%.

A third factor of competitiveness is each firm’s capacity – the maximum number of DOT

projects that the firm has ever had open while bidding on another project – and its utilization

– the share of the firm’s capacity that is filled when she is bidding on the current project.32

The mean capacity is 10.38 projects among common firms and 2.75 projects among rare

firms. This suggests that rare firms generally have less business with the DOT (either be-

cause they are smaller in size, or because the DOT constitutes a smaller portion of their

operations). The mean utilization ratio, however, is 53.05% for common firms and 25.5% for

rare firms. This suggests that firms in our data are likely to have ongoing business with the

DOT at the time of bidding, and are likely to have spare capacity during adjacent auctions

that they did not participate in.33

32We measure capacity and utilization with respect to all projects with MassDOT recorded in our data –
not just bridge projects.

33Note that while we do not take dynamic considerations of capacity constraints into consideration, we
find our measure of capacity to be a useful metric of the extent of a firm’s dealings with the DOT, as well
as its size.
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Description of Quantity Estimates and Uncertainty

As we discuss in section 2, scaling auctions improve social welfare by enabling risk-averse

bidders to insure themselves against uncertainty about the item quantities that will ulti-

mately be used for each project. The welfare benefit is particularly strong if the uncertainty

regarding item ex-post quantities varies across items within a project, and especially so if

there are a few items that have particularly high variance. When this is the case, bidders in

a scaling auction can greatly reduce the risk that they face by placing minimal bids on the

highly uncertain items (and higher bids on more predictable items).34

Our data set includes records of 2,985 unique items, as per MassDOT’s internal taxonomy.

Spread across 440 projects, these items constitute 29,834 unique item-project pairs. Of the

2,985 unique items, 50% appear in only one project. The 75th, 90th and 95th percentiles of

unique items by number of appearances in our data are 4, 16 and 45 auctions, respectively.35

For each item, in every auction, we observe the quantity with which MassDOT predicted

it would be used at the time of the auction – qet in our model – the quantity with which the

item was ultimately used – qat – and a blue book DOT estimate for the market rate for the unit

cost of the item. The DOT quantities are typically inaccurate: 76.7% of item observations in

our data had ex-post quantities that deviated from the DOT estimates. Figure 6a presents a

histogram of the percent quantity overrun across observations of items. The percent quantity

overrun is defined as the difference of the ex-post quantity of an item observation and its

DOT quantity estimates, normalized by the DOT estimate:
qat−qet
qet

. In addition to the 23.3%

item-project observations in which quantity overruns are 0%, another 18% involve items

that aren’t used at all (so that the overrun is equal to -100%). The remaining overruns are

distributed, more or less symmetrically, around 0%. Furthermore, quantity overruns vary

across observations of the same item in different auctions. Figure 6b plots the mean percent

quantity overrun for each unique item with at least 2 observations against its standard

deviation . While a few items have standard deviations close to 0, the majority of items

have overrun standard deviations that are as large or larger than the absolute value of their

34A number of different factors may influence the extent of item over/under-runs in a given project: the
type of maintenance needed, underlying state of the structure, time since assessment and skill of the project
designer, chief among them. While our dataset is insufficient to robustly estimate the causal effects of these
features on overruns, we present a brief discussion of the variation observed across DOT designers and project
managers in the appendix.

35Part of the reason that so many unique items appear so rarely in our data is that the DOT taxonomy
is very specific. For instance, item 866100 – also known as ”100 Mm Reflect. White Line (Thermoplastic)”
– is distinct from item 867100 – ”100 Mm Reflect. Yellow Line (Thermoplastic),” although clearly there
is a relationship between them. In order to take these similarities into account, we project item-project
pairs onto characteristic space constructed by natural language parsing of the item descriptions, as well as
a number of numerical item-project features. We discuss this at greater length in the estimation section.
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means. That is, the percent overrun of the majority of unique items varies substantially

across observations.36 While this is a coarse approximation of the uncertainty that bidders

face with regard to each item—it does not take item or project characteristics into account,

for example—it is suggestive of the scope of risk in each auction.

(a) Histogram of the percent quantity
overrun across item-project pairs.

(b) Plot of the mean against the standard
deviation of percent quantity overruns

within each unique item.

Figure 6

3.2 Reduced Form Evidence for Risk Averse Bid Skewing

As in Athey and Levin (2001) and Bajari, Houghton, and Tadelis (2014), the bids in our

dataset are consistent with a model of similarly informed bidders who bid strategically to

maximize expected utility. In figure 7, we plot the relationship between quantity overruns

and the percent by which each item was overbid above the blue book cost estimate by the

winning bidder.37 The binscatter is residualized. In order to obtain it, we first regress

percent overbid on a range of controls and obtain residuals. We then regress percent overrun

on the same controls and obtain residuals. Finally, to obtain the slope in red, we regress the

residuals from the first regression on the residuals from the second. Controls include the DOT

36The statement of majority here is with respect to items that appear multiple times.
37The percent overbid of an item is defined as bt−ct

ct
× 100 where bt is the bid on item t and ct is the blue

book unit cost estimate of item t. The percent quantity overrun is similarly defined as
qat−q

e
t

qet
× 100 where

qat is the amount of item t that was ultimately used and qet is the DOT quantity estimate for item t that is
used to calculate bidder scores.
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estimate of total project cost, initially stated project length in days, number of bidders, and

fixed effects for the year in which the project was opened for bidding, project type, resident

engineer, project manager, and project designer, as well as item fixed effects. Specifications

that exclude item fixed effects or include an array of additional controls produce a very

similar slope.38 We use a similar procedure for all residualized bin-scatters in this section.

Figure 7: Residualized bin-scatter of item-level percent winner overbid against percent quantity
overrun

As figure 7 demonstrates, there is a significant positive relationship between percent

quantity overruns and percent overbids by the winning bidder. A 1% increase in quantity

overruns corresponds to a 0.085% increase in overbids on average.39 This suggests that

the winning bidder is able to correctly predict which items will overrun on average. As in

the example in Section 2, items predicted to overrun generally recieve higher bids. Thus,

as higher bids correspond to items that overran in our data, we conclude that bidders are

informed beyond the DOT quantity estimates and skewing strategically.

Furthermore, the bid skewing relationship is similar across bidders beside the winner.

Figure 8a plots the residualized bin-scatter of percent overbids against percent quantity

overruns for the winning bidder and the second-place bidder in each auction. With the

exception of a few outlying points, the relationship between overbids and overruns is very

similar between the top two bidders. In the appendix, we show that this relationship is even

stronger when we restrict the comparison to projects in which the first two bidder submit

similar total scores. Figure 8b plots a residualized bin-scatter of the winning bidder’s unit

38For each graph, we truncate observations at the top and bottom 1%. This is done for the purposes of
clarity as outliers can distort the visibility of the general trends. We include untruncated versions in an
online appendix for robustness.

39See the appendix for a full regression report.
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bid for each item against the second place bidder’s bid for the same item. Overall, the

direction of skewing corresponds strongly between the top two bidders – a higher overbid

by the winning bidder corresponds to a higher overbid by the second place bidder as well.40

Together, these figures suggest that bidders have access to the same information regarding

quantity overruns.

(a) Residualized bin-scatter of item-level
percent overbid by the rank 1 (winning) and

rank 2 bidder, against percent quantity
overrun.

(b) Bin-scatter of item-level percent overbids
by the rank 2 bidder against the rank 1

(winning) bidder.

Figure 8

While our data suggests that bidders do engage in bid skewing, there is no evidence of

total bid skewing, in which a few items are given very high unit bids and the rest are given

“penny bids”. The average number of unit bids worth $0.10 or less by the winning bidder

is 0.51—or 0.7% of the items in the auction. The average number for unit bids worth $0.50,

$1.00, and $10.00, respectively is 1.68, 2.85 and 13.91, corresponding to 2.8%, 4.73%, and

23.29% of the items in the auction. This observation is consistent with previous studies of

bidding in scaling auctions. Athey and Levin (2001) argue that the interior bids observed in

their data are suggestive of risk aversion among the bidders. While they acknowledge that

other forces, such as fear of regulatory rebuke, may provide an alternative explanation for

the lack of total bid skewing, they note that risk avoidance was the primary explanation

given to them in interviews with professionals.

In addition to interior bids, risk aversion has several testable theoretical implications.

First, risk averse bidders are predicted to bid more aggressively on projects that are worth

40Note that the percent overbids in figure 8b appear to be substantially larger than those in figure 8a.
This is because while large overbids occur in the data, they are relatively rare and so are averaged down in
the percent quantity overrun binning of figure 8a.
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more. A true reduced form test for this would require a ceteris perebis comparison of bid

outcomes on identical auctions that only vary on project size. However, a suggestive proxy

for aggressive bidding is the percent net over-cost: the percent by which the total amount

paid to the winner in each project exceeds the total project value given by the DOT’s blue

book unit cost estimates. As shown in figure 9, this relationship is generally negative in our

data. Interpreting percent net over-cost as a proxy for markups, this suggests that bidders

extract less rents (percentage-wise) in auctions with higher stakes, as risk averse behavior

would imply.

Figure 9: Bin-scatter of the percent net over-cost against the total DOT estimate for the project
cost. DOT estimates are calculated with blue book cost estimates and ex-post quantity

realizations.

Furthermore, as we discuss in section 2, risk averse bidders balance the incentive to bid

high on items that are projected to overrun with an incentive to bid lower on items that are

uncertain. As such, we would expect bidders to bid lower on items that – everything else

held fixed – have higher uncertainty. While we do not see observations of the same item in

the same context with identifiably different uncertainty, we present the following suggestive

evidence. In figures 10a and 10b, we plot the relationship between the unit bid for each item

in each auction by the winning bidder, and an estimate of the level of uncertainty regarding

the ex-post quantity of that item (in the context of the particular auction). To calculate the

level of uncertainty for each item, we use the results of our first stage estimation, discussed

in section 5.41 For every item, in every auction, our first stage gives us an estimate of the

41As we discuss in section 5, we fit a model for the distribution of the ex-post quantity of each item in
each auction. The model has two parts: first, we model the ex-post quantity of each item observation as a
linear function of the DOT quantity estimate for that item and a vector of item-auction specific features,
given a Gaussian error. Second, we model the variance of the Gaussian error in each observation to a
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variance of the error on the best prediction of what the ex-post quantity of that item would

be, given the information available at the time of bidding.

(a) Residualized bin-scatter of item-level
percent absolute overbid against the square
root of estimated item quantity variance.

(b) Bin-scatter of item-level percent
difference in cost contribution, against the

square root of estimated item quantity
variance

Figure 10

In figure 10a, we plot a residualized binscatter of the winning bidder’s absolute percent

overbid on each item against the item’s standard deviation – the square root of the estimated

prediction variance. The relationship is negative, suggesting that holding all else fixed,

bidders bid closer to cost on items with higher variance, limiting their risk exposure.42 Note,

however, that this analysis does not directly account for the trade-off between quantity

overruns and uncertainty. As in equation (1), a bidder’s certainty equivalent increases in the

predicted quantity of each item, but decreases in the item’s quantity variance. To account

for this trade-off, we consider the following alternative metric for bidding high on an item:

%∆ Cost Contribution from t =

btqat∑
p
bpqap
− ctqet∑

p
ctqep

ctqet∑
p
ctqep

× 100

This is the percentage difference in the proportion of the total revenue that the winning

lognormal distribution, the mean of which is also a linear function of the DOT quantity estimate and
item-auction features. We fit this model jointly just Hamiltonian Monte Carlo using the full history of item-
auction observations in our data set. Intuitively this is akin to projecting the ex-post quantity of each item
observation onto its DOT estimate and feature vector, and then parametrically fitting the resulting residuals
to a lognormal distribution.

42To account for the impact of quantity expectations, we include %∆qt as a control in the specification
when residualizing. However, a significant negative relationship persists even if we exclude it.
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bidder earned that was due to item t, and the proportion of the DOT’s initial cost estimate

that item t constituted. In figure 10b, we plot the residualized bin scatter of the %∆ Cost

Contribution due to each item against the item’s quantity standard deviation. The negative

relationship here is particularly pronounced, providing further evidence that bidders allocate

proportionally less weight in their expected revenue to items with high variance, as our model

of risk averse bidding predicts.

4 A Structural Model for Bidding With Risk Aversion

4.1 Setup

A procurement project is characterized by T items, each of which is needed in a different

quantity. MassDOT (henceforth, “the buyer” or ‘the DOT”) initiates an auction for the

project by posting a list of the T items, along with a vector of estimated quantities qe =

{qe1, . . . , qeT}, with which it expects each item to be used. Once the auction is complete, the

project is implemented in full by the winning bidder using the actual (ex-post) quantity

qat for each item t. The actual quantities qa = {qa1 , . . . , qaT} are assumed to be fixed but

unknown at the time of the auction. That is, from the perspective of the buyer and the

bidders, the vector of actual quantities qa is an exogenous random variable. The realization

of qa is independent of which bidder wins the auction, and at what price.43

The auction is simultaneous with sealed bids, but both the set of m > 1 participating

bidders and the buyer’s quantity estimates qe are fixed and common knowledge to all par-

ticipants at the start of the auction. In addition, prior to the auction, the bidders receive a

symmetric noisy signal qb = {qb1, . . . , qbT} of what the ex post quantities for the project will

be:

qbt = qat + εt where εt ∼ N (0, σ2
t ). (2)

For simplicity, we assume that the signals are common across bidders. Thus, all bidders have

the same expected value qbt for the actual quantity of item t, and the same variance σ2
t , with

which this estimate is off.44

43This assumption, which follows Bajari, Houghton, and Tadelis (2014) and Athey and Levin (2001),
precludes the possibility of asymmetric moral hazard. In our reduced form section, we argue that the
similarity in projected overruns by the winning bidder and the runner-up suggests that if moral hazard affects
bidding, its effects are anticipated symmetrically by bidders so that this assumption, too, will not harm our
estimates greatly. It also precludes substitutability between items. While we cannot rule substitutions out,
we argue that their scope is limited as only items on the DOT designer’s project specification may be used
for construction.

44It is not without loss of generality to assume that signals are common across bidders. However, we make
this assumption for the sake of tractability.
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Bidders differ in their private cost of production along a single dimensional efficiency

multiplier α. At the time of the auction, every item t has a commonly-known market

unit cost ct. This cost represents that market price of the materials—generally things like

concrete, traffic cones, etc., which are standard and competitive—at the scale necessary

for the project. However, the bidders vary in their labor and transportation costs, storage

capacity, etc., yielding a multiplicative (dis)advantage over competitors. In particular, for

every item t in the project, bidder i faces a unit cost of αict where αi is the bidder’s efficiency

(multiplier) type. The efficiency type of each bidder i is drawn independently from a common,

publicly known distribution with a well behaved density f(αi) over a compact subset [α, α]

of R+.45 Each bidder privately observes only her own efficiency type prior to the auction,

but the distribution of competitor types is common knowledge.

To participate, each bidder i submits a vector of unit prices bi = {bi1, . . . , biT}, setting the

amount per unit that she will be paid for each item if she wins. The winner of the auction

is determined according to a first-price scoring rule. Each bidder i is given a score based on

her unit bids and the DOT quantity estimates:

si =
T∑
t=1

bitq
e
t .

The bidder with the lowest score wins the contract and implements the project in full. Upon

the completion of the project, the actual (ex-post) quantities qa of the items are realized,

and the winning bidder is paid her unit bid bit multiplied by the ex-post quantity qat for each

item. The winning bidder is responsible for securing all of the materials and labor for the

project privately, and so she also incurs a cost of αict multiplied by qat for each item.46

Finally, we model the bidders as risk averse, with a standard CARA utility function over

their earnings from the project and a common constant coefficient of absolute risk aversion

γ:47

u(π) = 1− exp(−γπ). (3)

45The assumption that the distribution of efficiency types is common (e.g. not specific to individual
bidders) is not critical to our analysis, and relaxing it would not substantially change our estimation method
or results, although it might impact the counterfactuals.

46Note that only the winner of the auction incurs any costs. All losing bidders receive no further cost nor
revenue from the project at hand, once the auction is complete.

47Note that equation (3) can be thought of as a normalization of the CARA utility function ui(π) =
exp(−γw) − exp(−γw(w + π)) where w is the bidder’s wealth independently of the auction, and γw = γ

w
is the unnormalized CARA coefficient. When w is the same across all of the bidders in the auctions, this
normalization is without loss of generality. While this is a strong assumption, we will maintain it throughout
the main part of this paper for the purpose of tractability in this draft
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The profit π that bidder i earns is either 0, if she loses the auction, or

π(bi, αi, c,qa) =
T∑
t

qat · (bit − αict),

if she wins the auction. Note that as qa is a random variable from the bidder’s perspective

at the time of bidding, her profit from winning is stochastic as well.

Bidder i choose her bids so as to maximize her expected utility at the time of the auction:1− Eqa

[
exp

(
−γ

T∑
t=1

qat · (bit − αict)

)]
︸ ︷︷ ︸

Expected utility conditional on winning

 · (Pr{si < sj for all j 6= i})︸ ︷︷ ︸
Probability of winning with si = bi · qe

(4)

where we suppress the common auction characteristics c,qe,qa as arguments in the utility

and profit functions for ease of exposition. This is bidder i’s expected utility over her profit

if she were to win the auction, multiplied by the probability that her score – at the chosen

unit bids – will be the lowest one offered, so that she will win. Note that the expectation in

the first term is with respect to qa.

Bidders form their expectations based on the posterior distribution of each qat given by

equation (2) at their signals qbt and σ2
t . The expected utility of bidder i can therefore be

rewritten:(
1− Eε

[
exp

(
−γ

T∑
t=1

(qbt − εt) · (bit − αict)

)])
· (Pr{si < sj for all j 6= i})

=

(
1− exp

(
−γ

T∑
t=1

qbt (b
i
t − αict)−

γσ2
t

2
(bit − αict)2

))
· (Pr{si < sj for all j 6= i}).

where the first equality is given by rewriting qat = qbt − εt, so that the expectation operator

in the profit term is with respect to the distribution of ε. The second equality follows from

the closed form solution to this expectation.48

4.2 Equilibrium Bidding Behavior

We now characterize the Bayesian Nash Equilibrium of the static first-price sealed bid scoring

auction described in the previous section. Our setting is similar to Bajari, Houghton, and

Tadelis (2014), which uses a special case of the Asker and Cantillon (2008) model, in which

48E[exp(−γcε)] = exp(−γµεc+
γ2σ2

ε

2 c2)) when c is a constant and ε ∼ N (µε, σ
2
ε).
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the project and its value to the buyer are fixed and independent of the winning bidder.

We consider a linear scoring auction game with independent private values that can be

characterized by a uni-dimensional “pseudo-type”— each bidder’s efficiency multiplier type

α.49 As in Bajari, Houghton, and Tadelis (2014) and Asker and Cantillon (2008), the optimal

bidding problem in our setting can be decomposed into two parts: (1) given an efficiency

type α, choose the optimal score s; (2) given a score s, choose the optimal bid vector b

subject to the constraint that b · qe = s. As we describe below, the optimal choice of b

conditional on a choice of s, a type α, and the auction characteristics, is deterministic and

independent of competitive considerations. Therefore, at the optimum, the value of winning

the auction to a bidder of type α, submitting a score s – that is, the bidder’s expected utility

from winning the auction using the optimal vector of bids b that yield s – is determined

entirely by her choice of s, and is monotonically increasing in s. Following a sub-case of

Lebrun (2006), this game has a unique monotonic equilibrium in pure strategies.

We derive the equilibrium as follows for an arbitrary bidder i with efficiency type αi:

1. Given a (winning) score s, we find the optimal bid vector bi(s) s.t.
∑T

t=1 b
i
t(s)q

e
t = s.

To do this, we solve the convex optimization program:

max
bi(s)

[
1− exp

(
−γ

T∑
t=1

qbt (b
i
t(s)− αict)−

γσ2
t

2
(bit(s)− αict)2

)]
(5)

s.t.
T∑
t=1

bit(s)q
e
t = s

Note that the objective function is separable in t and concave, and so this optimization

problem will have a unique global maximum. Moreover, applying the monotone transforma-

tion T (f(x)) = −log(−f(x)− 1), we can characterize the solution to (5) by the constrained

quadratic program:

max
bi(s)

[
γ

T∑
t=1

qbt (b
i
t(s)− αict)−

γσ2
t

2
(bit(s)− αict)2

]
(6)

s.t.
T∑
t=1

bit(s)q
e
t = s.

49Another related reference is Che (1993), which employs a uni-dimensional bidder type, referred to as the
bidders’ “productive potential”.
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The solution to this program is given by:50

b∗i,t(s) = αict +
qbt
γσ2

t

+
qet

σ2
t

T∑
p=1

[
(qep)2

σ2
p

]
(
s−

T∑
p=1

[
αicpq

e
p +

qbpq
e
p

γσ2
p

])
. (7)

2. Let b∗i (s) be the optimal mapping from score to bid distribution for bidder i, as in

equation (7). We find the optimal score for bidder i by maximizing her expected

utility given the equilibrium distribution of opponent scores.

Let Hj(·) be the CDF of contractor j’s score. Then by bidding a score of s, bidder i

obtains an expected profit of:

E[ui(πi(s)] =

(
1− exp

(
−γ

T∑
t=1

qbt (b
∗
i,t(s)− αict)−

γσ2
t

2
(b∗i,t(s)− αict)2

))
︸ ︷︷ ︸

Expected utility conditional on winning

·

(∏
k 6=i

(1−Hk(s))

)
︸ ︷︷ ︸

Prob of win w/ s = b∗
i · qe

where the first phrase in parentheses is i’s expected utility from the total profit that she

stands to make from winning the auction, and the second phrase is the probability that s

is the lowest score given the equilibrium score distributions Hj(·) for competing contractors

j 6= i.

As is standard in auction theoretic analysis (see Milgrom and Segal (2002), for example),

the optimal strategy is described by the first order condition:

γ
T∑
t=1

(
qbt − γσ2(b∗i,t(s

∗
i )− αict)

) ∂b∗i,t(s∗i )
∂s

=

∑
k 6=i

hj(s∗)

1−Hj(s∗)

[
exp

(
γ

T∑
t=1

qbt (b
∗
i,t(s

∗
i )− αict)−

γσ2
t

2
(b∗i,t(s

∗
i )− αict)2

)
− 1

]
, (8)

where hj(·) is the pdf of contractor j’s score distribution. Note that the exponent on the

RHS is one over the certainty equivalent of the profit from winning - we will denote this as

exp(γπ̄) as shorthand for expositional purposes. Substituting
∂b∗i,t(s

∗
i )

∂s
by taking the derivative

50Note that this formulation of the optimal bid program does not explicitly constrain unit bids to be
non-negative. This is not with loss of generality, and we apply the additional non-negativity constraint when
computing counterfactual bids. However, as all observed bids are positive (meaning that the non-negativity
constraint did not bind), this ‘unconstrained’ program serves as a very useful approximation to the solution
of the fully constrained program. In particular, while the fully constrained program does not have a closed
form solution and must be solved with interior point algorithms or the like, the ‘unconstrained’ version has a
closed form solution that is linear in our parameters of interest. As we show in section 6, the bids predicted
by our estimated model do quite well at matching the data.
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of equation (7) with respect to s and evaluating it at s∗i , we obtain a global optimality first

order condition:

γ2

T∑
p=1

[
(qep)2

σ2
p

]
(

T∑
p=1

[
αicpq

e
p +

qbpq
e
p

γσ2
p

]
− s∗i

)
=
∑
k 6=i

hj(s∗i )

1−Hj(s∗i )
[exp(γπ̄)− 1] . (9)

Note, however, that while equation 9 characterizes the equilibrium score s∗i for bidder i,

the equilibrium vector of bids conditional on s∗i is defined entirely by the optimality of the

bids with respect to bidder i’s expected utility from winning the auction using s∗i . That

is, conditional on an equilibrium choice of score, the optimal bids for bidder i are given by

equation 7, evaluated at the equilibrium score.

5 Econometric Model

We now present a multi-step estimation procedure to estimate the model described in the

previous section. We split our parameters into two categories: (1) statistical/historical

parameters, which we estimate in the first stage and (2) economic parameters, which we

estimate in the second stage. The first set of parameters characterizes the bidders’ beliefs

over the distribution of actual quantities. The estimation procedure for this stage will use

the full history of auctions in our data to build a statistical model of bidder expectations

using publicly available project characteristics. However, it will not take into account bid-

ding incentives in any particular auction. By contrast, the second stage will estimate the

coefficient of risk aversion γ for each project type, and each bidder’s efficiency type α in each

auction that she participates in. In this stage, we take the first stage estimates as fixed and

construct moments for GMM estimation using the optimality of observed bids submitted by

each bidder i in auction n, given our model, as described in equations (7) and (9).

Stage 1a: Estimating the Posterior Distribution of qat

In the model presented in section 4, we did not take a stance on what the signals in equation

(2) are based on. The reason for this was to emphasize the flexibility of our model with

respect to possible signal structures: the only required assumption is that conditional on

all of the information held at the time of bidding, the posterior distribution of each qat can

be approximated by a normal distribution with a commonly known mean and variance. In

particular, it allows for correlations between items, as well as complicated forms of correlation

between the bidders’ beliefs and the DOT’s expectations.

For the purpose of estimation, however, we make an additional assumption. We assume
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that the posterior distribution of each qat is given by a statistical model that conditions on

qet , item characteristics (e.g. the item’s type classification), observable project characteristics

(e.g. the project’s location, project manager, designer, etc.), and the history of DOT projects.

This assumption can be thought of in several ways. It can be interpreted as an additional

component of the structural model: the bidders use a statistical estimation procedure to

assess the likelihood of item quantities, and consequently, the value of the project, prior to

bidding. The DOT quantities, item and project characteristics are indeed all publicly known

at the time of bidding, as are historical records of DOT projections and ex-post quantities.

Furthermore, it is likely that firms do precisely this when forming their bids. There is a

competitive industry of software for procurement bid management that touts sophisticated

estimation of project input quantities and costs. Alternatively, this assumption could be

thought of as the econometrician’s model of the signal mean qbt and variance σ2
t for each item

t.

In particular, denote an auction by n and the items involved in auction n by t ∈ T (n).

We model the realization of the actual quantity of item t in auction n by:

qat,n = q̂bt,n + ηt,n where ηt,n ∼ N (0, σ̂2
t,n) (10)

such that q̂bt,n = β0,qq
e
t,n + ~βqXt,n and σ̂t,n = exp(β0,σq

e
t,n + ~βσXt,n). (11)

Here, q̂bt,n is the posterior mean of qat,n and σ̂t,n is the square root of its posterior variance—

linear and log-linear functions of the DOT estimate for item t, qet,n, and a matrix of item-

project characteristics Xt,n. We estimate this model with Hamiltonian Monte Carlo as an

efficient implementation of a likelihood method optimized for a GLM and use the posterior

mode as a point estimate for the second stage of estimation.51 We demonstrate the goodness

of fit in section 6.

Stage 2: Estimating Cost Types and the CARA Coefficient

We now discuss our econometric model for the estimation of the CARA coefficient of risk

aversion γ and bidder-auction efficiency types αin. The key to our identification strategy

lies in the heterogeneity of unit bids that we observe in our data. Our data set contains

a unit bid for every item, submitted by every participating bidder in every auction that

51Note that it is possible to estimate our first and second stage jointly using Hamiltonian Monte Carlo,
adding further fidelity to the effect of the first stage estimates on the second stage moments along the entire
posterior distribution. However, as we prefer GMM for the second stage for this version, we make do with
the posterior mode. We could also simply run the second stage GMM along the posterior distribution and
compute a full second stage posterior this way, but this would be very computationally burdensome, and so
we do not do so at this time.
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we see. In particular, we have three main sources of heterogeneity: (1) bids submitted by

different bidders in an auction with the same project characteristics, item, etc.; (2) bids

submitted by the same bidders across different items and different auctions with different

project characteristics, etc.; (3) bids submitted for the same items by bidders across different

auctions with different project characteristics, quantity projections and participating bidders.

Denote auctions by n, the bidders participating in the auction by i and the items involved

in the auction by t.The model of optimal bidding described in section 4 predicts that the

optimal unit bid for item t for a bidder of type αin in auction n is given by:

b∗t,i,n(s∗i,n) = αinct,n +
qbt,n
γσ2

t,n

+
qet,n

σ2
t,n

Tn∑
p=1

[
(qep,n)2

σ2
p,n

]
(
s∗i,n −

Tn∑
p=1

[
αicp,nq

e
p,n +

qbp,nq
e
p,n

γσ2
p,n

])
, (12)

where s∗i,n is the optimal score for this bidder, such that s∗i,n =
Tn∑
t

qet,nb
∗
t,i,n(s∗i,n), and

γ2

Tn∑
p=1

[
(qep,n)2

σ2
p,n

]
(

Tn∑
p=1

[
αincp,nq

e
p,n +

qbp,nq
e
p,n

γσ2
p,n

]
− s∗i,n

)
=
∑
k 6=i

hn(s∗i,n)

1−Hn(s∗i,n)
[exp(γπ̄)− 1] , (13)

where π̄ =
∑Tn

t=1 q
b
t,n(b∗t,i,n(s∗i,n)− αinct,n)− γσ2

t,n

2
(b∗t,i,n(s∗i,n)− αict,n)2.

As discussed above, we identify qbt,n and σ2
t,n with a statistical model of ex-post quantities

conditional on item-project characteristics using the full history of auctions in our data. To

reduce the dimensionality of our parameter space, we model the bidder-auction efficiency type

αin onto a bidder-specific fixed effect and a regression model of bidder-auction characteristics:

αin = αi + βαXi,n.

Finally, We make the following assumption to connect our first stage estimates to our bid

data and close our model:

Assumption 1. Let bdt,i,n denote the unit bid for item t submitted by bidder i in auction n,

as observed in our data. Each observed unit bid is equal to the optimal bid b∗t,i,n, subject to

an IID, mean-zero measurement error νt,i,n:

bdt,i,n = b∗t,i,n + νt,i,n

where

E[νt,i,n] = 0 and νt,i,n⊥Xt,n, Xi,n
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Assumption 1 states that each unit bid observed in our data is given by the optimal bid

implied by our model – at the true underlying parameters – subject to an idiosyncratic error

that is independent across draws, and orthogonal to auction-item and auction-bidder charac-

teristics. Such an error might come about because of rounding/smudging in the translation

between the bidder’s optimal bidding choice and the record that appears to the DOT (and

consequently, to the econometrician). One might alternatively frame this error as an opti-

mization error: the optimal choice of bids is a numerical solution to a constrained quadratic

program that may not produce numbers that are convenient to report in currency. To see

the need for Assumption 1, note that an auction with T items and I bidders has T × I

unit bids, our model allows for only T quantity predictions, T item variance terms, I bidder

efficiency types, and 1 coefficient of risk aversion as free parameters to explain these bids.

Absent an additional assumption, a model in which all T ×I bids must match the bids in our

data would be rejected in most cases. It is not, however, strictly necessary for our model to

assert independence in error within bidder or project. We will therefore examine relaxations

of the independence assumption in an upcoming revision.

Note that Assumption 1 implies that the optimal score s∗i,n is also observed with error:

s∗i,n =
Tn∑
t

bdi,t,nq
e
t,n + ν̄i,n = sdi,n + ν̄i,n,

where ν̄i,n = −
Tn∑
t=1

νt,i,nq
e
t,n is also mean-zero, conditional on the project characteristics of

auction n. Write θ2 = (γ, {αi}, ~βα|β0,q, ~βq, β0,σ, ~βσ, ~βs, ~σs). By definition, the bidder-item-

auction level error on each unit bid is given by:

νt,i,n = bdt,i,n −αinα
i
nα
i
n

ct,n − qet,n

σ2
t,n

∑
p∈T (n)

[
(qep,n)2

σ2
p,n

]
 ∑
p∈T (n)

cp,nq
e
p,n


−

1

γγγ

 qbt,n
σ2
t,n

−
qet,n

σ2
t,n

∑
p∈T (n)

[
(qep,n)2

σ2
p,n

]
 ∑
p∈T (n)

qbp,n
σ2
p,n

qep,n


−

qet,n

σ2
t,n

∑
p∈T (n)

[
(qep,n)2

σ2
p,n

] [sdi,n + ν̄i,nν̄i,nν̄i,n
]
. (14)

where

αin = αi + βαXi,n. (15)
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Note that νi,t,n is linear in αin and 1
γ
, as well as in ν̄i,n. Furthermore, under Assumption

1, since E[νt,i,n] = 0 and is orthogonal to the matrix of item-auction features Xt,n and

bidder-auction features Xi,n, we have that E[ν̄i,n] = 0 as well.

We therefore define a demeaned bid error

ν̃t,i,n = νi,t,n −
qet,n

σ2
t,n

∑
p∈T (n)

[
(qep,n)2

σ2
p,n

] ν̄i,n, (16)

and form the following moment conditions, under Assumption 1:

E [ν̃t,i,n · Zt,i,n|Xt,n, Xi,n] = 0,

where Z is each of the following instruments:

• Indicator for unique firm IDs52

• Indicator for being a “top skewed item”

• The bidder-auction feature vectors that comprise Xi,n.

Identification

The three types of instruments above correspond to three types of moments.

The first type of moment, constructed by interactions with firm ID dummies, can be

interpreted as follows: the average bid error that a bidder with unique firm ID i submitted,

across all auctions that i participated in, is asymptotically zero. There are 25 such moments,

one for each unique bidder id i. These moments inform the fixed effects αi, correspondingly.

The second moment focuses on items that were deemed as “top skew items” according to

the DOT Engineering Office. These items are flagged as frequently being given noticeably

high or low bids. According to our model, the variation in these bids is reflective of level

of bidders’ responses to the uncertainty regarding the quantities of these items (in absolute

terms and relative to the remainder of the project). As such, we focus on this set of items

to identify the coefficient of risk aversion, γ. The moment can be interpreted as follows: the

average bid errors submitted on “top skew items” is asymptotically zero in the number of

auctions in which these items are involved.

The third type of moment, which interacts bid errors with bidder-auction characteristics,

can be interpreted as follows: the average bid error submitted in an auction n is orthogonal

to each of the 14 bidder-auction features Xj
i,n, and asymptotically zero in the number of

52We include a unique ID for for all firms involved in at least 10 auctions, and a grouped ID for all firms
involved in 9 or less auctions. These correspond to unique αi parameters.
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auctions. There are 14 such moments, one for each column of the feature matrix Xi,n. Each

of these moments can be thought of as informing the identification of the coefficient βjα.

For complete details on the moment construction, see section ??. Note that our moment

conditions use only the optimality of bidders’ unit price bids (given the scores that are

observed in equilibrium).53

5.1 Bayesian Sampling with Hamiltonian Monte Carlo

In addition to our main GMM approach, we estimate a (fully) parametric version of our

structural model using Hamiltonian Monte Carlo.54 Bayesian analysis facilitates the mod-

eling of hierarchical relationships in bidders’ efficiency types – across auctions for the same

bidders, and across bidders in similar auctions. In our GMM approach, we account for these

relationships in the form of bidder fixed effects, and a regression function of auction-bidder

characteristics. However, a more sophisticated GMM treatment would be difficult, given the

high dimensionality of the parameter space and the amount of data available. As such, we

consider both approaches in our paper. We present the details of a preliminary Bayesian

specification for the second stage of our structural estimation along with results from an

HMC fit of the model in section E of the appendix.

6 Estimation Results

Our structural estimation procedure consists of two parts. In the first stage, we estimate

the distribution of the ex-post quantity of each item conditional on its item-auction charac-

teristics using Hamiltonian Monte Carlo. We present parameter estimates for the regression

coefficients on the predicted quantity term q̂bt,n as well as the variance term σ̂2
t,n in table 14 in

the appendix. A histogram of the resulting variance terms themselves are plotted in figure

11, below. Prior to estimation, all item quantities were scaled so as to be of comparable

value between 0 and 10. As demonstrated in the histogram, the majority of variance terms

are between 0 and 3, with a trailing number of higher values.55 In addition, we demonstrate

the model fit of our first stage in figure 16 and table 13 in the appendix.

In the second stage, we estimate a common CARA coefficient γ, as well as a bidder-

auction specific efficiency type αin = αi + βαXi,n for every bidder-auction pair in our data

53This is conceptually similar to the classical GPV use of the empirical bid distribution to model bidders’
beliefs over the distribution of opponent bids that they face.

54Hamiltonian Monte Carlo is an efficient algorithm for sampling the posterior distribution of a statistical
model. See Betancourt (2017) for an accessible complete explanation.

55Although we do not plot it here, in general, higher variances correspond to higher quantity predictions
as well.
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Figure 11: A histogram of standard deviation estimates for each item t in each project n

using the GMM estimator presented in section 5. We summarize the results in tables 6, 7 and

8. The full parameter estimates are presented in table 15 in the appendix. The coefficient of

risk aversion γ in our data is estimated to be about 0.046. An individual with this level of

risk aversion would require a certain payment of $23 to accept a 50-50 lottery to either win

or lose $1,000 with indifference, and $2,223 to accept a 50-50 lottery to win or lose $10,000.56

As we report in table 6, the 95% confidence interval around our estimate is (0.032, 0.264).

This interval is generated by a bootstrap, in which the data set of auctions is sampled (at

the auction level) with replacement in each iteration.57

Parameter Estimate 95Pct CI

γ̂ 0.046 (0.032,0.264)

Table 6

In table 7, we present summary statistics of our estimates of bidder-auction efficiency

types.58 We break down the results by project type to highlight the differences between

56Note that the CARA coefficient we estimate here is only identified up to a dollar scaling. For numerical
efficiency, we scaled all dollar values by $1,000 in estimation and counterfactual simulation. Our results do
not depend on the scaling, however. As we have verified, if we scale by an order of magnitude more (or less),
the estimated CARA coefficient scales down (or up) by an order of magnitude correspondingly.

57At the moment, the bootstrap is only over the second stage, holding the first stage estimates fixed. A
full two-stage bootstrap, which requires substantially more computation time, will be presented in a future
draft.

58There are a few of decisions made by the econometrician in estimation. We considered different thresholds
on the number of auctions in which a firm must have participated in order to have a separate firm fixed
effect. We also identified several outlying items: items that constituted large fractions of the project cost
and were always estimated and used in unit quantities. These items might better be represented as lump
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α̂in

Project Type Mean St Dev 25% Median 75%

All 0.975 0.261 0.822 0.949 1.139
Bridge Reconstruction/Rehab 1.019 0.25 0.85 1.005 1.225

Bridge Replacement 0.996 0.219 0.855 1.009 1.159
Structures Maintenance 0.919 0.312 0.782 0.873 0.978

Table 7: Summary statistics of αin estimates by project type.

different types of construction. An efficiency of 1 would suggest that the bidder faces costs

exactly at the rates represented by MassDOT’s blue book. Our results show that the median

bidder overall has an efficiency type of 0.949, consistent with estimates of bidder costs by

previous papers.59 There is heterogeneity across project types, however. We estimate that

the median bidder in a bridge rehabilitation project has an efficiency type of about 1.005,

suggesting that she is about 0.5% less efficient than the DOT estimates. The median bidder

in structures maintenance projects, however, has an efficiency type of about 0.873, suggesting

that she is about 12.7% more efficient than the DOT estimates.

In table 8, we present the ex-post markups for each winning bidder given their efficiency

type:

Markup =

∑
t q

a
t,n · (bt,i,n − αinct,n)∑
t q

a
t,n · (αinct,n)

.

This is the bidder’s total ex-post profit from the project, normalized by her total cost. The

numerator is given by the sum of the quantity of each item that was ultimately used qat,n,

multiplied by the bidder’s profit from that item – her unit bid bt,i,n minus her private cost for

that item, given by her efficiency type αin multiplied by the blue book market rate estimate

ct,n. The denominator is calculated similarly, summing over the bidder’s private costs only.

The median markup for a winning bidder in our data set, overall, is about 5.74%. There

is heterogeneity across project types: the median within bridge replacement projects is

1.43%, for instance, while it is 10.56% for structures maintenance projects. Moreover, there

is substantial variation within project types as well. The mean winner markups for bridge

replacement and structures maintenance projects are 12.8% and 23.9% respectively. This

may be due to the heterogeneity in projects as well as the ex-post accuracy of bidders’

quantity predictions. Furthermore, the 25th percentile of markups is negative for each of the

sum items, over which uncertainty is poorly captured in our quantity model. The substance of our results
is robust to these considerations, however. We will present the results under different thresholds and when
large lump items are excluded in the appendix as a robustness check.

59See Bajari, Houghton, and Tadelis (2014) and Bhattacharya, Roberts, and Sweeting (2014), for example.

43



Bidder Markups

Project Type Mean St Dev 25% Median 75%

All 17.03% 60.88% -12.84% 5.74% 27.53%
Bridge Reconstruction/Rehab 11.39% 35.88% -15.61% 7.34% 23.07%

Bridge Replacement 12.8% 67.43% -12.34% 1.43% 23.67%
Structures Maintenance 23.9% 62.12% -9.66% 10.56% 39.13%

Table 8: Summary statistics of estimated winning bidders’ markups given α̂in

projects as well. This may be due, in part, to inaccurate prediction of the ex-post quantities.

However, note that the ex-post markup calculation does not take into account extra work

orders. While we do not estimate profits on the extra work orders in our paper, and so

cannot evaluate exactly how extra work orders would affect ex-post profits, this is a key

component of BHT’s estimation and likely make up the difference in mark-ups.

Finally, we demonstrate the fit of our structural model in figures 18 and 19, and table

16 in the appendix. Figure 18 plots the unit bids predicted by our model on the x-axis, and

the unit bids observed in our data on the y-axis. Figure 19 plots a quantile-quantile plot of

our model predicted bids against the data bids. While bid predictions are not perfect, the

correspondence between predictions and data is quite good. Table 16 presents a regression

analysis of the predictiveness of our model fit on the observed data. Our model fit predicts

data bids with an R-squared of 0.879.

7 Counterfactual

7.1 Perfectly Predicted DOT Quantities

In order to draw conclusions from our results, we return to the discussion in section 2. How

much money would the DOT save if it were able to perfectly predict the actual quantities

that will be required for each project?

To answer this question, we solve for the equilibrium in each of the auctions in our bridge

projects dataset, under the counterfactual setting in which the DOT perfectly predicts the

actual quantities. We assume that the DOT’s accuracy is common knowledge and so the

bidders believe that the actual quantities will be equal to the DOT’s projections with variance

approaching zero when making their bidding decisions.60

60In particular, we exclude considerations of short term gains that the DOT might make by accurately
predicting actual quantities while the bidders use noisy signals. As we assume that the bidders form their
beliefs over actual quantities using statistics over historical data, any such gains would be short lived as the
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Note that it is not sufficient to simply invert the econometric model of bidding described

in section 5 using our parameter estimates and the counterfactual conditions. The reason

for this is that the distribution of competitors’ scores is defined in equilibrium. As we

demonstrated in section 2, the score that a bidder with efficiency type α will submit in

equilibrium depends on the DOT quantity estimates (as well as the bidders’ beliefs and

all other auction characteristics). It follows that the equilibrium score distribution itself

depends on the DOT quantities, and so we need to solve for the equilibrium from auction

primitives afresh in each setting.

An equilibrium of an auction in our setting is determined by the following primitives: the

vector of DOT quantity estimates qqqe, the vector of bidder quantity model predictions, qqqb,

the vector of bidder model variances, σσσ2, the vector of DOT cost estimates ccc, the coefficient

of risk aversion γ, and the distribution of the efficiency types of bidders participating in the

auction. To evaluate our counterfactuals, we compute the equilibrium bids twice: first in

the baseline setting and second in the counterfactual setting. For the baseline setting, we

use the DOT estimates qqqe and ccc from the data, and the bidder quantity model parameters q̂qqb

and σ̂σσ2 from the first stage of our estimation. For the coefficient of risk aversion, we use the

estimate γ̂ = 0.046 from the second stage of our estimation. For the distribution of bidder

efficiency types, we use a parametric projection of the empirical distribution of the efficiency

type estimates α̂in from our second stage onto auction characteristics.61 The details of the

equilibrium construction are presented in section A of the appendix.

In Figure 12, we plot a histogram of the (a) percentage and (b) dollar savings to the DOT

from the perfect quantity prediction counterfactual. To calculate these savings, we compute

the equilibrium bids for every efficiency type α twice: first under the baseline setting, and

second under the counterfactual setting in which the DOT and bidder quantity estimates

are equal to the true ex-post quantities, qqqe = qqqb = qqqa, and the bidders face no uncertainty,

σσσ2 ≈ 0.62 In each case, we calculate the expected total amount that the DOT would pay

the winning bidder in equilibrium: the expected value of the sum of the lowest efficiency

type’s unit bids multiplied by the ex-post item quantities qqqa.63 The dollar gains in figure 12b

are computed by taking the difference between the expected DOT cost under the baseline

bidders would eventually realize that the DOT’s quantities are accurate.
61Our model assumes that bidders in a given auction are ex-ante IID, and so the distribution of bidder

types must be auction, rather than bidder-auction, specific.
62We use σσσ2 ≈ 0 rather than σσσ2 = 0 in order to avoid numerical overflow issues.
63More concretely, let g(α) and G(α)by the density and cumulative probability functions of bidders’

efficiency types in a given auction. Let g1(α) = Ng(α)(1 − G(α))N−1 be the density of the first order
statistic of g—the density of the lowest type bidder, when there are N bidders in the auction. Denote b∗t (α)
as the equilibrium bid for item t for a bidder with efficiency type α in that auction. The expected DOT cost

is given by
∫ α
α
g1(α̃)

∑
t
qat b
∗
t (α̃)dα̃.
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setting, and under the counterfactual setting for each auction. The percent gains in figure

12a are given by dividing the dollar saving amount in each auction by the expected DOT

cost under the baseline. Finally, we present the bidder utility gains from the counterfactual

setting in figure 12c. We calculate bidder utility gains by taking the difference between the

(ex-ante) certainty equivalent of a bidder participating in each auction under the baseline and

the analogous certainty equivalent under the counterfactual setting.64 We present summary

statistics for all three metrics in table 9.

We predict that the median expected saving to the DOT from eliminating uncertainty

about ex-post quantities is about $2,203 or 0.23% of the baseline expected project cost.

However, the standard deviation of savings is about $24,704 (4.25%) and the 25th and 75th

percentiles are -$9,355 (-1.02%) and $13,987 (1.60%) respectively. This is reflective of the two

opposing forces in effect when the DOT eliminates uncertainty. On the one hand, eliminating

uncertainty drives bidder risk down, thereby increasing the value of the project to all of the

bidders and causing them to bid more aggressively. On the other hand, the counterfactual

allows bidders to optimize their bid choices with regard to the true quantities qqqa that will

be used in the project, whereas in the baseline, bidders optimize on the basis of quantity

projections qqqb, which often differ from the true quantities. That is, whereas in the baseline,

bidders optimize unit bids with regards to quantity predictions that may be inaccurate (and

so, the bids may not be optimal with respect to the realized quantities, which the winner is

ultimately paid for), in the counterfactual with no uncertainty, the bidders always optimize

unit bids with respect to the actual quantities that will be used. As a result, in the auctions

where bidders “mis-optimized” under the baseline, the DOT bears a higher cost under the

counterfactual. Notably, the ex-ante value of the auction to bidders does not change very

much between the baseline and the counterfactual. The median increase in bidders’ ex-

ante certainty equivalents under the counterfactual is a mere $17.61, and the 25th and 75th

percentiles are $3.76 and $43.35, respectively. This reflects the degree to which optimal

bid selection in equilibrium allows bidders to insure themselves against risk. The value of

the project rises in equilibrium, adding to the certainty equivalent, but this is offset by

competition and an inability to profitably skew. Consequently, the certainty equivalent rises

for some auctions, falls for others, but all in all stays much the same.

The projected expected DOT savings from eliminating risks detailed in table 9 and figure

12 reflect the two channels by which eliminating uncertainty changes the bidders’ problem:

(1) it eliminates risk, raising the value of the project and encouraging more aggressive bids;

(2) it gives bidders access to the accurate ex-post quantities, allowing bidders to perfectly

64The certainty equivalent is defined as the amount of money that would make a bidder indifferent between
participating in the auction or forgoing the auction to accept that amount with no uncertainty.
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Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $2,145.37 $24,704.09 − $9,354.61 $2,203.49 $13,987.89
% DOT Savings 0.70% 4.25% −1.02% 0.23% 1.60%
Bidder Gains $6.64 $145.87 $3.76 $17.61 $43.35

Table 9: Summary of expected DOT percent and dollar savings and bidder utility gains (in
dollars) from the counterfactual setting in which the DOT reports perfectly accurate actual

quantity estimates. Note: Results are truncated at the top and bottom 1% to exclude extreme
outliers from the mean/SD calculations.

(a) DOT % Savings (b) DOT Dollar Savings

(c) Winning Bidder Utility Gains

Figure 12: Percent and dollar expected DOT ex-post Savings, and bidder utility gains from a
counterfactual in which risk is eliminated. The median is highlighted in red in each case.
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optimize their unit bids with respect to ex-post profits. In order to disentangle these two

effects, we repeat the counterfactual exercise under the assumption that in the baseline,

bidders’ quantity projections qqqb are equal to the ex-post quantities qqqa (but that bidders still

perceive the projections to be noisy with variance σ̂σσ2). In this case, bidders always optimize

correctly with respect to ex-post quantities, and so the second channel, by which eliminating

risk can hurt DOT savings, is shut down. The resulting expected DOT savings and bidder

utility gains are reported in table 10 and figure 13. Absent bidder mis-optimization due

to inaccuracies in their quantity projections, the median expected saving to the DOT is

$125,187 or 11.98% of the (adjusted) baseline expected cost. This can be thought of as

an aggressive estimate of the potential savings from eliminating risk, whereas the previous

estimate is a conservative estimate. Notably, the bidder ex-ante utility gains remain modest

with a median certainty equivalent gain of $4.81 from the counterfactual. This is because

ex-ante utility is evaluated with respect to bidder beliefs – according to which equilibrium

bids are optimized – rather than ex-post quantities. As such, the difference in baseline

quantity predictions has little effect on the ex-ante total certainty equivalent of each auction

(although it does change the particular choices of optimal bids across items).

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $172,513.80 $165,129.50 $61,569.34 $125,187.10 $226,318.90
% DOT Savings 13.74% 9.05% 7.18% 11.98% 18.25%
Bidder Gains $19.16 $124.55 −$8.48 $4.81 $37.64

Table 10: Summary of expected DOT percent and dollar savings and bidder utility gains (in
dollars) from the counterfactual setting in which the DOT reports perfectly accurate actual

quantity estimates, relative to a baseline in which bidders accurately predict ex-post quantities,
but believe their predictions to be noisy. Note: Results are truncated at the top and bottom 1%

to exclude extreme outliers from the mean/SD calculations.

7.2 Alternative Risk Sharing Mechanisms: Lump Sum and µ-

sharing Auctions

While highway and bridge procurement around the United States is predominately done

through scaling auctions, public procurement in other departments of American DOTs, as

well as in DOTs around the world, often employs auction mechanisms that place significantly

more risk on contractors. The simplest example of this is a lump sum auction in which con-

tractors submit a single total bid for completing the project. Subsequently, the winning

contractor is responsible for all project costs incurred, independently of whether or not they
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(a) DOT % Savings (b) DOT Dollar Savings

Figure 13: Percent and dollar expected DOT ex-post Savings, and bidder utility gains from a
counterfactual in which risk is eliminated, relative to a baseline in which bidders accurately

predict ex-post quantities, but believe their predictions to be noisy. The median is highlighted in
red in each case.

exceed initial projections. Lump sum auctions have several properties that make them at-

tractive to DOT officials. First, they require less detailed specifications from DOT engineers

as bidding does not require a comprehensive itemized list of tasks and materials.65 Second,

they incentivize the winning bidder to minimize costs (as all costs are privately incurred and

not directly compensated), thereby reducing the scope for moral hazard. However, lump

sum auctions have worrisome incentive properties as well. First, because compensation is

fixed at the time of bidding, projects that greatly exceed their scope are more likely to suffer

from hold-up problems in which the winning contractor insists on negotiating additional pay-

ments before completing the project. Moreover, as we note in section 2, lump sum auctions

greatly increase contractors’ exposure to risk. The increased risk exposure reduces the value

of winning the auction, and causes risk averse bidders to bid less aggressively, resulting in

substantially higher costs to the DOT.

In this section, we evaluate the extent to which shifting risk exposure onto contractors, as

in a lump sum auction, may be costly to the DOT. To hone in on the effect of risk exposure in

65Around 2007, the MBTA – the segment of MassDOT responsible for construction and maintenance of
the public transportation system in Massachusetts – switched from scaling auctions to lump sum auctions
for the majority of its procurement. We spoke to the chief engineer about the decision for this transition in
2017. Chief among his reasons was the assertion that the scope of MBTA projects is much more difficult to
define (and therefore spec out ex-ante) than of highway and bridge projects. We interpreted this to mean
that the difficulty/costs of producing a comprehensive list of items for MBTA projects was high. We sought
data to compare costs after the switch, but were unable to obtain bidding or quantity records from before
the switch.
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particular, we maintain the main assumptions of our baseline model. Bidders are identical

apart from a private, independently drawn, efficiency type α. The DOT advertises each

project with a comprehensive list of items and (often inaccurate) quantity estimates qqqe.

Bidders receive a common signal of what the ex-post quantities will be, which provides them

with a vector of quantity projections qqqb and a vector of variances of the projection noise σσσ2.

We define a µ-sharing auction for µ ∈ [0, 1], as a scaling auction in which the winning

bidder is paid ∑
t

(µqat + (1− µ)qet ) · bt,

upon completion of the project. That is, for every item t involved in the project, the winning

bidder is paid her bid bt multiplied by µ times the actual quantity of t used, plus (1 − µ)

times the ex-ante DOT estimate for the quantity of t. When µ = 0, this is equivalent to

a lump-sum auction, as the bidder is paid entirely based on her score, bbb · qqqe. When µ = 1,

this is a standard scaling auction as in the baseline model. In general, the equilibrium bids

for a bidder i with efficiency type αi is characterized as in section 4.2 with the following

adjustment. The certainty equivalent in the constrained quadratic program to determine

the optimal distribution of bids, conditional on a candidate score (as in in equation 6) is

replaced by its µ-sharing analog:

γ
∑
t

(1− µ)btq
e
t + (µbt − αct)qbt︸ ︷︷ ︸

Expected Profits

− γσ
2
t

2
(µbt − αct)2︸ ︷︷ ︸
Risk Term

.

We defer a detailed derivation of the equilibrium to the appendix. As in the previous section,

we calculate the change in expected DOT costs between a baseline auction in which bidders

are paid according to the ex-post quantities qqqa alone (e.g. µ = 1) and a µ-sharing auction

for µ ∈ (0, 1]. In each case, we use the DOT estimates qqqe, ex-post quantities qqqa and blue

book costs ccc from the data – as before – as well as our structural estimates for the CARA

coefficient γ̂ and the distribution of efficiency types conditional on auction characteristics.

To focus in on the effect of the risk shifting alone, we shut down the bidder mis-optimization

channel and assume that bidders’ quantity projections qqqb are equal to the actual ex-post

quantities qqqa, but that bidders still perceive the projections to be noisy with variance σ̂σσ2,

from our first stage estimation. We present the percent change in expected DOT costs under

a lump sum auction in figure 14a, and under a 1
2
-sharing auction in figure 14b. The median

expected loss from moving to a lump sum auction is 84.84%, while the median expected loss

from a 1
2
-sharing auction is 3.47% – both with fat tails. Summary statistics for each case are

presented in table 11.66

66Note that small increases in risk may in fact reduce the DOT spending ex-post, as they may cause
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(a) DOT % Cost Change
Lump Sum (µ = 0)

(b) DOT % Cost Change
µ = 1/2

Figure 14: Histogram of expected DOT percent cost change from switching to a µ-sharing auction
with µ = 0 (lump sum) and µ = 1/2.

DOT % Cost Change Mean St. Dev. 25% Median 75%

Lump Sum −127.93% 129.70% −175.11% −84.84% −38.08%
µ = 1/2 −6.84% 12.00% −9.49% −3.47% 0.39%

Table 11: Summary of expected DOT percent cost change from switching to a µ-sharing auction
with µ = 0 (lump sum) and µ = 1/2. Note: Results are truncated at the top and bottom 1% to

exclude extreme outliers from the mean/SD calculations.

51



8 Entry

It is well known that an increase in competition benefits an auctioneer. In this section we

evaluate the entry of an additional contractor to each auction in our data. First, we estimate

the expected amount that the DOT would save if an additional contractor were to enter.

We do this by computing the equilibrium bid function in each auction under the baseline (as

in the counterfactuals described in figure 12), and then under an extension of the baseline

in which the number of bidders is increased by one. We calculate the expected cost savings

in each auction by taking the difference between the expected amount paid by the DOT

to the winning bidder in the baseline, and in the counterfactual with an additional bidder

participating. Next, we estimate bounds on the cost of entry for a prospective bidder in a

procedure akin to Pakes, Porter, Ho, and Ishii (2015), using the assumption that bidders enter

if they anticipate to profit more than the cost of entry and total entry is set in equilibrium.

8.1 An Equilibrium Model of Entry

Each auction is advertised to a set of prospective (pre-approved) contractors. Upon receiving

an advertisement, each prospective bidder observes the common auction characteristics: the

location of the project, identity of involved DOT employees, the vector of DOT quantity

estimates qqqe and the blue book cost estimates, ccc, as well as the refined quantity signals com-

ponents qqqb and σσσ2. Given this information, each bidder is also able to infer the distribution

of efficiency types of the prospective contractors.67 However, in order to discover her own

(private) efficiency type, each bidder must invest a fixed amount K. For simplicity, we as-

sume that K is common across bidders. The timeline of each prospective bidder’s interaction

with the auction is therefore as follows:

1. Bidder observes project characteristics and the entry cost

2. Bidder calculates the expected utility of entering and determines whether or not to

participate

3. If she participates:

• Bidder observes her private efficiency type α

• Bidder chooses optimal unit bids given α, according to the equilibrium strategy

bidders to place larger bids on items with lower expected overruns (and lower risk) at a competitive score
(even if the score itself rises).

67As before, we assume that this distribution is the same for all prospective bidders conditional on auction
characteristics.
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The expected utility of entry is as follows:

E[u(π)|N∗] =

∫ α

α

[E[u(π(s(α̃), α̃)|N∗)] · f(α̃)] dα̃

whereN∗ is the equilibrium number of bidders participating in the auction, and E[u(π(s(α̃), α̃)|N∗)]
is the expected utility from participating in the auction (and paying K) given efficiency type

α̃. In order for N∗ to be the equilibrium number of bidders, it must be that the N∗th bidder

found it profitable to enter, whereas the N∗ + 1st bidder did not. That is:

E[u(π)|N∗] ≥ 0 ≥ E[u(π)|N∗ + 1].

As such, the certainty equivalent of E[u(π)|N∗ + 1] (absent an entry cost) provides a lower

bound on K, and the certainty equivalent of E[u(π)|N∗] provides an upper bound on K.68

We plot the distribution of upper and lower bounds on the cost of entry K in each auction

in figures 15a and 15b, respectively. In figure 15c, we plot the expected savings to the

DOT from the entry of an additional bidder. Summary statistics are presented in table 12.

The median lower (upper) bound on entry costs is $1,959 ($2,147), while the median DOT

savings amount to $49,335. The distribution of DOT savings is quite fat tailed, however.

While the mean lower (upper) bound on entry costs is $2,316 ($2,567), the mean DOT saving

is $82,583. This suggests that there is substantial potential value to encouraging entry with

a relatively modest guaranteed bonus payment to the winning bidder.

Statistic Mean St. Dev. 25% Median 75%

Net DOT Savings $82,583.25 $87,568.51 $22,296.89 $49,335.35 $103,379.50
% DOT Savings 8.90% 8.45% 2.06% 5.65% 13.47%
Entry Cost Lower Bound $2,315.80 $1,524.88 $1,264.95 $1,959.42 $3,135.44
Entry Cost Upper Bound $2,567.53 $1,683.76 $1,369.73 $2,147.20 $3,445.23

Table 12: Summary of the welfare impacts of an additional bidder (not paying an entry cost) to
each auction. Note: Results are truncated at the top and bottom 1% to exclude extreme outliers

from the mean/SD calculations.

68See Lemma 1 in the appendix for a formal proof.
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(a) Distribution of lower bounds on the cost of
entry

(b) Distribution of upper bounds on the cost
of entry

(c) Distribution of the expected dollar savings
to the DOT from the entry of an additional

bidder to each auction

Figure 15: Welfare impacts of an additional entry to each auction
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9 Conclusion

This paper studies the bidding behavior of construction firms that participate in scaling pro-

curement auctions hosted by the Massachusetts Department of Transportation. In particular,

we analyze the incentives for bidders to strategically skew their bids. We show that while

bidders do skew, placing high bids on items they predict will overrun the DOT’s quantity

estimates and low bids on items they predict will underrun, this is not necessarily indicative

of rent extraction. For risk averse bidders, skewing facilitates diversifying bidders’ exposure

to the risk of items being used in quantities far outside their expectations. In a competitive

environment, such as the one in MassDOT’s bridge maintenance auctions, skewing generates

substantial savings to the DOT. If bidders were compensated entirely based on the DOT’s

quantity estimates (or equivalently, using a lump sum auction), they would not be able to

skew their bids. However, in this case, bidders would be responsible for all unanticipated

modifications to the project specification and raise their bids on the whole to account for

the added risk. Our estimates suggest that the DOT would subsequently pay nearly 85%

more for the median project.

While switching to a lump sum auction would increase DOT expenditures, increasing

bidders’ exposure to risk a little bit may not be as harmful. A mixed compensation auction

in which bidders are paid half on the DOT’s estimates and half on the realized quantities

only increases the median project’s cost to the DOT by 3.5%. For a few projects, this mixed

auction may even save the DOT a little. This suggests that policies that limit bidders’

ability to fully optimize their bids—such as the minimum bid requirement considered by

MassDOT—may be helpful in reducing DOT expenditures. In an upcoming draft of this

paper, we examine a counterfactual with a minimum bid requirement to find out.
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A Scaling Equilibrium Construction

We construct the unique pure-strategy, monotonic equilibrium of a DOT procurement auc-

tion with DOT quantities qqqe, bidder quantity signals qqqb and variances σσσ2, DOT cost estimates

ccc, and I participating bidders. Each bidder has a privately observed efficiency type αi, that

is publicly known to have been drawn from a well-behaved probability distribution over a

bounded domain [α, α]. We denote the CDF and pdf of this distribution by F (α) and f(α),

respectively.

In particular, for our counterfactual simulations, we assume that αi is distributed accord-

ing to a bounded log-normal distribution with a mean that depends on project characteristics,

and a project-type-specific variance:

αin ∼ LogNormal(µαn, σ
α
n

2) (17)

where µαn = Xnβα and σαn is project-type specific. We estimate ~βα and ~σαn from the estimated

distribution of α types, using Hamiltonian Monte Carlo with MC Stan. We continue to use

F (·) and f(·) to refer to the CDF/PDF of this distribution for the remainder the derivation

for notational convenience.

The equilibrium assigns a unique equilibrium score s(α) to each efficiency type α. It is

monotonic in the sense that s(·) is strictly increasing in α:

α > α′ ⇐⇒ s(α) > s(α′), for each pair α, α′ ∈ [α, α] .

Under this condition, the probability that s(αi) is smaller than s(αj) in equilibrium is equal

to the probability that αi is smaller than αj, for any αi and αj. We can therefore write the

equilibrium expected utility of an arbitrary bidder i, using the distribution of α:

E[u(π(s(α), α))] =

(
1− exp

(
−γ

T∑
t=1

qbt (b
∗
t (s(α))− αct)−

γσ2
t

2
(b∗t (s(α))− αict)2

))
︸ ︷︷ ︸

Expected utility conditional on winning

·

(∏
k 6=i

(1− F (α))n−1

)
,︸ ︷︷ ︸

Prob of win w/ s(α) = b∗(s(α)) · qe

where n is the number of bidders participating in the auction. In order for s(·) to hold in

equilibrium, it must be optimal for every bidder of efficiency type α to submit s(α) as her

score. By the envelope theorem, this is ensured when the first order condition of expected

utility with respect to s(α) holds:

∂E[u(π(s̃, α))]

∂s̃
|s̃=s(α) = 0.
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Evaluating the derivative and rearranging, we characterize the equilibrium score function by

the solution to the Ordinary Differential Equation:

s′(α)
T∑
t=1

[(
γqbt − γ2σ2(b∗t (s(α))− αct)

) ∂b∗t (s(α))

∂s

]
= [exp(γπ̄(α))− 1]

∑
j 6=i

f(α)

1− F (α)
, (18)

where π̄(α) =
∑T

t=1 q
b
t (b
∗
t (s(α))−αct)− γσ2

t

2
(b∗t (s(α))−αict)2 and the bidding function b(s(α))

is optimal (given α). That is, given an equilibrium score s(α), the bidding function solves:

max
b(s(α))

[
1− exp

(
−γ

T∑
t=1

qbt (bt(s(α))− αct)−
γσ2

t

2
(bt(s(α))− αct)2

)]
(19)

s.t.
T∑
t=1

bt(s(α))qet = s

bt(s(α)) ≥ 0 for each item t.

Note that for the counterfactual, we add the further restriction that the optimal bid vector

be non-negative. In principle, this restriction should always hold, but we ignored it for the

purpose of estimation as all observed bids are positive. For the counterfactual however, it

is possible that the optimal unrestricted bids would be negative, and so it is important to

include the restriction explicitly. With the additional non-negativity constraint, the convex

programming problem in 19 has no closed form solution and must be solved numerically.

However, given a solution that determines which of the items have interior bids (rather than

zero bids) at the optimum, the solution can be characterized as follows:

b∗t (·) = max


αct +

qbt
γσ2
t

+
qet

σ2
t

∑
t:b∗t (·)>0

[
(qet )

2

σ2t

]
(
s(α)−

∑
t:b∗t (·)>0

[
αctq

e
t +

qbt
γσ2
t
qet

])
0

(20)

Note that when all items have interior bids, this is equivalent to equation 7. We solve the

ODE in (18) numerically using a state-of-the-art stiff ODE solver using the DifferentialEqua-

tions library in Julia.69 At every evaluation of equation (20) in the ODE solver, we compute

the optimal bid vector at every score by numerically solving the program in (19) using the

IPOPT optimization suite through JuMP framework. We then compute the partial deriva-

69We would like to particularly thank the lead developer of DifferentialEquations.jl for helping us work
through numerical issues in getting this to work.
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tive
db∗t (·)
s

using the (analytical) derivative of equation (20), evaluated at the optimal bids

found with the numerical solver.

Note that this ODE is unique up to a boundary condition. As such, to ensure that this

indeed characterizes an equilibrium, we require that the highest possible efficiency type α

submits a score s(α), that provides zero profit at the optimal bidding strategy. We compute

s(α) numerically using this critereon directly, and use this to initialize the ODE solver.

B Entry Cost Proofs

Lemma 1. Consider an auction in which N∗ bidders enter in equilibrium given an entry cost

K. The cost of entry K is bounded from below by the certainty equivalent of participating

in the auction, absent an entry cost, when N∗ + 1 bidders participate. K is bounded from

above by the certainty equivalent of participating in the auction absent an entry cost when

N∗ bidders participate.

Proof. We break our proof into two steps. First, we argue that if a bidder of type α prefers

to enter an auction at a cost of K, then:

(1− exp(−γπ̄(α))) · (1− F (α))N
∗−1 ≥ 1− exp(−γK) (21)

where

π̄(α) =
T∑
t=1

qbt (b
∗
t (s(α))− αct)−

γσ2
t

2
(b∗t (s(α))− αict)2

is the bidder’s certainty equivalent of profits conditional on winning the auction. This

condition states that the bidder’s expected utility of participating in the auction absent the

entry cost K is at least as large as her utility of “keeping” K and not participating.

To see this, consider a bidder of type α and knows her type, but must still pay an entry

fee of K in order to enter a given scaling auction, in which there are N∗−1 opposing bidders.

In order for the bidder to prefer to enter the auction, she must expect that her utility upon

entering will be higher than her utility otherwise:

E[u(π(s(α), α))] ≥ 0, (22)
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E[u(π(s(α), α))] = (1− exp(γK))︸ ︷︷ ︸
Utility on entering and losing

·

[
1−

(∏
k 6=i

(1− F (α))N
∗−1

)]
︸ ︷︷ ︸

Prob of losing

+

(
1− exp

(
γK − γ

T∑
t=1

qbt (b
∗
t (s(α))− αct)−

γσ2
t

2
(b∗t (s(α))− αict)2

))
︸ ︷︷ ︸

Expected utility conditional on entering and winning

·

(∏
k 6=i

(1− F (α))N
∗−1

)
︸ ︷︷ ︸

Prob of win w/ s(α)

.

Substituting and rearranging inequality 22, we obtain that the bidder prefers to enter if

and only if:

[1− exp(γK) · exp(−γπ̄(α))]·(1−F (α))N
∗−1+[1− exp(γK)] ≥ [1− exp(γK)]·(1−F (α))N

∗−1

Rearranging once more, we obtain:

1− exp(γK)
[
1− [1− exp(−γπ̄(α))] · (1− F (α))N

∗−1
]
≥ 0

and so,

exp(−γK) ≥ 1− [1− exp(−γπ̄(α))] · (1− F (α))N
∗−1

from which we obtain

[1− exp(−γπ̄(α))] · (1− F (α))N
∗−1 ≥ 1− exp(−γK).

as in equation 21.

Lower Bound

We now derive a lower bound on K by considering the entry of the N∗+1st bidder, where N∗

is the equilibrium number of entrants to the auction given the entry cost K. By definition

of N∗, it is unprofitable (in expectation) for the N∗ + 1st bidder to enter. That is,∫ α

α

[E[u(π(s(α̃), α̃))|N∗ + 1] · f(α̃)] dα̃ ≤ 0,

where E[u(π(s(α̃), α̃))|N ] is the bidder’s expected utility from entering given N total entrants

(including her) if she turns out to have type α̃, as defined above.
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We proceed as follows. Let Eα[·] denote the integral over α:
∫ α
α

[·] f(α̃)dα̃.

Eα[E[u(π(s(α̃), α̃))|N∗ + 1]] =

Eα
[
(1− exp(γK)) ·

(
1− (1− F (α))N

∗)]
+ Eα

[
(1− exp(γK) exp(−γπ̄(α))) · (1− F (α))N

∗]

= 1− exp(γK) ·
(
1− Eα

[
(1− F (α))N

∗]
+ Eα

[
exp(−γπ̄(α)) · (1− F (α))N

∗])
. (23)

Rearranging equation (23), we have that if Eα[E[u(π(s(α̃), α̃))]|N∗ + 1] ≤ 0, then:

1− exp(−γK) ≥ Eα
[
(1− exp(−γπ̄(α))) · (1− F (α))N

∗]
. (24)

That is, the utility of having K dollars is greater than a bidder’s expected utility of entering

the auction at zero cost when there are N∗ + 1 total entrants. Solving inequality (24) for

K, we obtain that the certainty equivalent of entering the auction at zero cost given N + 1

bidders provides a lower bound on the cost of entry.

Upper Bound

We now derive an upper bound on K by considering the entry of the N∗th bidder. By

definition of N∗ as the equilibrium number of entrants, it is profitable in expectation for this

bidder to enter. ∫ α

α

[E[u(π(s(α̃), α̃))|N∗] · f(α̃)] dα̃ ≥ 0.

Writing Eα[·] for the integral over α:
∫ α
α

[·] f(α̃)dα̃ as before, and rearranging as before, we

obtain that we have that if Eα[E[u(π(s(α̃), α̃))]|N∗] ≥ 0, then:

1− exp(−γK) ≤ Eα
[
(1− exp(−γπ̄(α))) · (1− F (α))N

∗−1
]
. (25)

That is, the utility of having K dollars is lower than a bidder’s expected utility of entering

the auction at zero cost when there are N∗ total entrants. Solving inequality (25) for K,

we obtain that the certainty equivalent of entering the auction at zero cost given N bidders

provides an upper bound on the cost of entry. �
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C Technical Details

C.1 Econometric Details

Let bdt,i,n denote the unit bid observed by the econometrician for item t, by bidder i in

auction n. Let θ = (θ1, θ2) be the vector of variables that parameterize the model prediction

for each bid b∗t,i,n(θ), as defined by equation 12. The subvector θ1 refers to parameters

estimated in the first stage, as detailed in section C.1.1. The subvector θ2 refers to parameters

estimated in the second stage, as detailed in section C.1.2. By Assumption 1, the residual

of the optimal bid for each item-bidder-auction tuple with respect to its noisily observed

bid: νt,i,n = bdt,i,n − b∗t,i,n(θ), is distributed identically and independently with a mean of zero

across items, bidders and auctions. Furthermore, νt,i,n is orthogonal to the identity and

characteristics of each item, bidder and auction.70

Our estimation procedure treats each auction n as a random sample from some unknown

distribution. As such, auctions are exchangeable. Each auction n has an associated set of

bidders who participate in the auction, I(n), as well as an associated set of items that receive

bids in the auction, T (n). I(n) and T (n) are characteristics of auction n and so are drawn

according to the underlying distribution over auctions themselves. For each bidder i ∈ I(n)

and item t ∈ T (n), our model assigns a unique true bid b∗t,i,n(θ) at the true parameter vector

θ.

Items t ∈ T (n) are characterized by a P × 1 vector, Xt,n, of features. Bidders i ∈ I(n)

are characterized by a J × 1 vector, Xi,n, of features. The construction of Xt,n and Xi,n

is discussed in detail in section C.2. Estimation proceeds in two stages. In the first stage,

we estimate θ1, the subvector of parameters that governs bidders’ beliefs over ex-post item

quantities, using a best-predictor model estimated with Hamiltonian Monte Carlo. In the

second stage, we estimate θ2, which characterizes bidders’ risk aversion and cost types, using

a GMM estimator.

C.1.1 First Stage

In the first stage, we use the full dataset of auctions available to us in order to estimate a best-

predictor model of expected item quantities conditional on DOT estimates and project-item

characteristics, as well as the level of uncertainty that characterizes each projection.

Each observation is an instance of a type of item t, being used in an auctioned project n.

Each observation (t, n) is associated with a vector of item-auction characteristic features

70It is not strictly necessary to assume IIDness across bidders and items. However, allowing for further
heterogeneity complicates estimation substantially and so we defer this to a robustness check using Bayesian
methods in a future revision.
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Xt,n, the construction of which is discussed in section C.2 below. For simplicity, we employ

a linear model for the expected quantity of item t in auction n, q̂bt,n as a function of the the

DOT quantity estimate qet,n and Xt,n.71 In order to model the level of uncertainty in the

projection q̂bt,n, we model the distribution of the quantity model fit residuals (ηt,n = qat,n− q̂bt,n)

with a lognormal regression function of qet,n and Xt,n as well. The full model specification

is below. While we could fit this in two stages (first, fit the expected quantity and then fit

the distribution of the residuals), we do this jointly using Hamiltonian Monte Carlo (HMC)

with the MC Stan probabilistic programming language. We then take the posterior modes

of the estimated distributions and use them as point estimates for the second stage.

qat,n = q̂bt,n + ηt,n where ηt,n ∼ N (0, σ̂2
t,n) (26)

such that q̂bt,n = β0,qq
e
t,n + ~βqXt,n and σ̂t,n = exp(β0,σq

e
t,n + ~βσXt,n). (27)

Denote θ1 = (β0,q, ~βq, β0,σ, ~βσ, ~βs, ~σs) for the vector of first stage parameters, and let θ̂1 be

the posterior modes of θ1, produced by the first stage HMC estimation. Thus, θ̂1 specifies,

for each item t ∈ T (n) in each auction n, the model estimate of bidders’ predictions for the

item’s quantity: q̂bt,n as well as the variance of that prediction, σ̂2
t,n.

C.1.2 Second Stage

Denote θ2 = (γ, α1, . . . , αI , β1
α, . . . , β

J
α) for the vector of second stage parameters, where I is

the number of unique firm IDs and J is the number of auction-bidder features. Note that θ2

is (1 + I + J)-dimensional.

We estimate θ2 in the second stage, using a GMM framework, evaluated at the first stage

estimates θ̂1:

θ2 = arg minEn
[
g(θ2, θ̂1)′Wg(θ2, θ̂1)

]
where g(θ2|θ̂1) is a vector of moments, as a function of θ2, evaluated at the estimates of θ1

obtained in the first stage, and W is a weighting matrix. We make use of the following 3

types of moments, asymptotic in the number of auctions N . The first type of moment states

that the average residual of a unit bid submitted by each (unique) bidder i is zero across

auctions. There are I such moments, where I is the number of unique bidders.72 The second

71In principle, any statistical model (not necessarily a linear one) would be sound, and we intend to discuss
robustness tests to the final results using different machine learning algorithms for the first stage in a future
version of this paper.

72To simplify notation, we do not distinguish between ‘unique’ bidders—e.g. bidders who appear in
30+ auctions—and rare bidders, whom we group into a single unique bidder ID for the purposes of this
econometrics section. For the latter group, we treat all observations of rare bidders as observations of the
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type of moment states that the average residual of a unit bid submitted for a an item labeled

as a“top skew item” by the DOT chief engineer’s office is zero across auctions. There is one

such moment. The third type of moment states that the average residual on a unit bid

submitted in each auction is zero, independently of the auction-bidder characteristics of the

bidder submitting the bid. There are J such moments—one for each of the auction-bidder

characteristics. In total, there are (1 + I + J) moments, so that the GMM estimator is just

identified. As such, the choice of W does not affect efficiency, and we weight each moment

equally as a default.

m1
i (θ2|θ̂1) = En

 1

|T (n)|
∑
t∈T (n)

ν̃t,i,n(θ2|θ̂1) · 1i∈I(n)


m2
s(θ2|θ̂1) = En

 1

|I(n)| · |Ts|
∑
i∈I(n)

∑
t∈T (n)

ν̃t,i,n(θ2|θ̂1) · 1i∈I(n) · 1t∈Ts


m3
j(θ2|θ̂1) = En

 1

|I(n)| · |T (n)|
∑
i∈I(n)

∑
t∈T (n)

ν̃t,i,n(θ2|θ̂1) · 1i∈I(n) ·Xj
i,n


For each auction n, we denote I(n) as the set of bidders involved in n, T (n) as the set of

items used in n, and Ts as the subset of items that were labeled as “top skew items” by

the DOT chief engineer’s office. All moments are formed with respect to the de-meaned bid

residual:

ν̃t,i,n(θ2|θ̂1) = bdt,i,n− αin(θ2)αin(θ2)αin(θ2)

ct,n − qet,n

σ̂2
t,n

∑
p∈T (n)

[
(qep,n)2

σ̂2
p,n

]
 ∑
p∈T (n)

cp,nq
e
p,n




− 1

γ(θ2)γ(θ2)γ(θ2)

 q̂bt,n
σ̂2
t,n

−
qet,n

σ̂2
t,n

∑
p∈T (n)

[
(qep,n)2

σ̂2
p,n

]
 ∑
p∈T (n)

q̂bp,nq
e
p,n

σ̂2
p,n




−
qet,n

σ̂2
t,n

∑
p∈T (n)

[
(qep,n)2

σ̂2
p,n

] [sdi,n] .
The residual terms in the moments are de-meaned in the sense that they use the observed

score sdi,n in the formulation of the optimal bid for (t, i, n), rather than the true optimal score,

same single bidder, who may enter a given auction more than once, with a different draw of auction-bidder
characteristics, but the same bidder fixed effect determining his efficiency type.
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s∗i,n. That is, since sdi,n is composed of noisily observed unit bids, the de-meaned residual

ν̃t,i,n(θ2|θ̂1) omits an unobserved score error term:

ν̃t,i,n = νi,t,n −
qet,n

σ2
t,n

∑
p∈T (n)

[
(qep,n)2

σ2
p,n

] ν̄i,n, (28)

where

ν̄i,n = −
Tn∑
t=1

νt,i,nq
e
t,n. (29)

However, as bid residuals νt,i,n are assumed to be mean zero and independent of auction and

item characteristics, En[ν̄i,n], and the unobserved score error term is mean zero as well. Thus,

the use of demeaned bid residuals does not pose a bias for our GMM estimation procedure.

In this draft, we compute standard errors for θ2 at the point estimates of θ1, without ac-

counting for the uncertainty in the point estimates themselves. In this case, the asymptotic

variance of θ2 follows the standard just-identified GMM form:

√
n(θ̂2 − θ0

2)
d−→ N (0, V )

where V = (Γ∆Γ)′, for

Γ = E
[
∂g

∂θ2

(θ0
2, θ

0
1)

]
and ∆ = E

[
g(θ0

2, θ
0
1)g(θ0

2, θ
0
1)′
]
.

In an upcoming draft, we will revise the standard error computations to account for the

uncertainty in the estimation of θ1. In this case, the asymptotic variance will be given

by the standard two-step GMM sandwich formula (see Chamberlain (1987) for reference).

However, as we detail below, we compute the standard errors presented in the text by

bootstrap, rather than in-sample asymptotic approximation.

Estimation Procedure

To summarize, we estimate our parameters in a two-stage procedure. In the first stage, we

estimate the informational parameters that model bidders’ expectations over item quantities

and competing scores. In the second stage, we use a two-step optimal GMM estimator to

estimate the economic parameters:

1. Estimate θ̂1 = (β̂0,q,
~̂
βq, β̂0,σ,

~̂
βσ,

~̂
βs, ~̂σs) and initialize θ2
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2. Solve:

θ̂2 = min
θ2

{
1

I

∑
i

m1
i (θ2|θ̂1)2 +m2

s(θ2|θ̂1)2 +
1

J

J∑
j=1

m3
j(θ2|θ̂1)2

}

where I is the set of unique firm IDs, and J is the number of columns in Xi,n. This

optimization problem is solved subject to the constraint that αin(θ2) be non-negative

for every i and n.73

We calculate standard errors by a bootstrap procedure. In the current version, we only

bootstrap over step 2 (however, in an upcoming version, we will draw samples from the pos-

terior distribution in step 1 so as to account for the uncertainty in the first stage estimation).

In particular, we draw auctions at random with replacement from the total set of auctions

in our sample, and repeat the step 2 optimization procedure. We repeat this 1000 times.

The confidence interval presented in the results section corresponds to the 5%th and 95%th

percentile of the parameter estimates across the bootstrap draws.

C.2 Projecting Items and Bidder-Auction Pairs onto Character-

istic Space

Our dataset consists of 440 bridge projects with a total of 218,110 unit bid observations.

Of these, there are 2,883 unique bidder-project pairs and 29,834 unique item-project pairs.

Each auction has an average of 6.55 bidders and 67.8 items. Of these, there are 116 unique

bidders and 2,985 unique items (as per the DOT’s internal taxonomy). In order to keep

the computational burden of our estimator within manageable range, while still capturing

heterogeneity across bidders and items within and across projects, we project item-project

and bidder-project pairs onto characteristic space.

We first build a characteristic-space model of items as follows. The DOT codes each item

observation in two ways: a 6-digit item id, and a text description of what the item is. Each

item id comprises a hierarchical taxonomy of item classification. That is, the more digits two

items have in common (from left to right), the closer the two items are. For example, item

866100 – also known as ”100 Mm Reflect. White Line (Thermoplastic)” – is much closer to

item 867100 – ”100 Mm Reflect. Yellow Line (Thermoplastic)”, than it is to item 853100 –

”Portable Breakaway Barricade Type Iii”, and even farther from item 701000 – ”Concrete

73This is a computationally efficient approach to impose the theoretical restriction that bidder costs are
positive (so that bidders do not gain money from using materials). One could alternatively impose this
through an additional moment condition. However, this would add a substantial computational burden
as indicators for non-negativity are non-differentiable functions. We provide estimates without the non-
negativity constraint as a robustness check. The results do not differ to an economically significant degree.
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Sidewalk”. To leverage the information in both the item ids and the description, we break

the ids into digits, and tokenize the item description.74 We then add summary statistics for

each item: the relative commonness with which the item is used in projects, the average

DOT cost estimate for that item, and dummies that indicate whether or not the item is

frequently used in a single unit quantity, and whether the item is often ultimately not used

at all.

We create an item-project level characteristic matrix by combining the item characteristic

matrix with project-level characteristics: the project category, the identities of the project

manager, designer and engineer, the district in which the project is located, the project

duration, the number of items in the project spec that the engineer has flagged for us as

”commonly skewed”, and the share of projects administered by the manager and engineer

that over/under-ran.75 The resulting matrix is very high dimensional, and so we project

the matrix onto its principle components, and use the first 15.76 In addition, we added 3

stand-alone project features: a dummy variable indicating whether the item is often given a

single unit quantity (indicating that its quantity is particularly discrete), the historical share

of observations of that item in which it was not used at all, and an indicator for whether or

not the item itself is a “commonly skewed” item. The result is the matrix Xt,n, used in the

estimation in equation (11).

To estimate the efficiency type αi,n for each bidder-auction pair, we combine each bidder’s

unique firm ID with the matrix of project characteristics described above, and a matrix of

project-bidder specific features. As a number of bidders only participate in a few auctions,

we combine all bidders who appear in less than 10 auctions in our data set into a single firm

ID. This results in 52 unique bidder IDs: 51 unique firms and one aggregate group. For

project-bidder characteristics, we compute the bidder’s specialization in each project type

– the share of projects of the same type as the current project that the bidder has bid on

– the bidder’s capacity – the maximum number of DOT projects that the DOT has ever

had open while bidding on another project – and the bidder’s utilization – the share of the

bidder’s capacity that is filled when she is bidding on the current project. We also include

dummies for whether or not the bidder is a fringe bidder, and whether or not the bidder’s

74That is, we split each description up by words, clean them up and remove common “stop” words. Then
we create a large dummy matrix in which entry i, j is 1 if the unique item indexed at i contains the word
indexed by j in its description. We owe a big thanks to Jim Savage for suggesting this approach.

75There are 11 items that have been flagged at our request by the cheif engineer: 120100: Unclassified
Excavation;129600: Bridge Pavement Excavation; 220000: Drainage Structure Adjusted; 450900: Contractor
Quality Control; 464000: Bitumen For Tack Coat; 472000: Hot Mix Asphalt For Miscellaneous Work; 624100:
Steel Thrie Beam Highway Guard (Double Faced); 851000: Safety Controls For Construction Operations
(Traffic Cones For Traffic Management); 853200: Temporary Concrete Barrier; 853403: Movable Impact
Attenuator; 853800: Temporary Illumination For Work Zone (Temporary Illumination For Night Work)

76We have tried replicating this using more/less principle components and the results are very stable.
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headquarters is located in the same district as the project at hand.77 Our Xi,n matrix has a

total of 14 columns, and so we have a total of 66 efficiency-type parameters to identify. We

use Xi,n and the unique bidder ideas to model αin in equation 15.

Finally, we make use of a project-level characteristic matrix Xn in our counterfactuals,

in order to parametrize the distribution of efficiency types in each auction. In principle,

we could use the bidder-auction matrix Xi,n here. However, this would require each bidder

to know the identities of her competitors. For the purpose of our main counterfactuals, we

focus on the simpler case in which the distribution of scores is homogenous across the bidders

participating in a given auction. Therefore, we construct Xn by taking an average of Xn

with respect to the bidders in auction n.

77We define ”fringe” similarly to BHT, as a firm that receives less than 1% of the total funds spent by
the DOT on projects within the same project type as the auction being considered, within the scope of our
dataset.
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D Estimation Results Tables

First Stage Model Fit

Figure 17: A bin scatter of actual quantities vs
model predictions

Dependent variable:

Actual Quantity

Predicted Quantity 0.812∗∗∗

(0.005)

Constant 0.291∗∗∗

(0.015)

Observations 29,834
R2 0.476

Table 13: Regression report for figure 16

First Stage Parameter Estimates
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Parameter Rhat n eff mean sd 2.5% 50% 97.5%

β0,σ 1.00 4000 -0.67 0.00 -0.67 -0.67 -0.66
βσ[1] 1.00 1655 -0.05 0.01 -0.06 -0.05 -0.04
βσ[2] 1.00 2120 0.02 0.00 0.01 0.02 0.03
βσ[3] 1.00 3275 -0.02 0.00 -0.03 -0.02 -0.01
βσ[4] 1.00 3516 0.00 0.00 -0.01 0.00 0.01
βσ[5] 1.00 4000 0.02 0.00 0.01 0.02 0.03
βσ[6] 1.00 3131 0.08 0.01 0.07 0.08 0.09
βσ[7] 1.00 2275 0.03 0.01 0.02 0.03 0.04
βσ[8] 1.00 1766 0.00 0.01 -0.01 0.00 0.01
βσ[9] 1.00 1917 -0.01 0.01 -0.02 -0.01 0.00
βσ[10] 1.00 1466 0.03 0.01 0.02 0.03 0.05
βσ[11] 1.00 1952 -0.03 0.01 -0.04 -0.03 -0.02
βσ[12] 1.00 2153 0.02 0.01 0.01 0.02 0.03
βσ[13] 1.00 2590 0.04 0.01 0.03 0.04 0.05
βσ[14] 1.00 2156 0.02 0.01 0.01 0.02 0.03
βσ[15] 1.00 2992 0.00 0.00 -0.01 0.00 0.01
βσ[16] 1.00 1856 -0.16 0.01 -0.18 -0.16 -0.15
βσ[17] 1.00 4000 0.07 0.00 0.06 0.07 0.08
βσ[18] 1.00 4000 0.02 0.00 0.02 0.02 0.03
β0,q 1.00 4000 0.82 0.00 0.82 0.82 0.83
βq[1] 1.00 3260 -0.02 0.00 -0.03 -0.02 -0.01
βq[2] 1.00 4000 -0.01 0.00 -0.02 -0.01 -0.01
βq[3] 1.00 4000 -0.03 0.00 -0.04 -0.03 -0.02
βq[4] 1.00 4000 0.02 0.00 0.01 0.01 0.02
βq[5] 1.00 4000 -0.02 0.00 -0.03 -0.02 -0.01
βq[6] 1.00 4000 0.01 0.00 0.00 0.01 0.01
βq[7] 1.00 4000 0.01 0.00 0.00 0.01 0.02
βq[8] 1.00 2744 -0.03 0.00 -0.04 -0.03 -0.02
βq[9] 1.00 4000 -0.03 0.00 -0.03 -0.03 -0.02
βq[10] 1.00 2374 -0.02 0.00 -0.03 -0.02 -0.01
βq[11] 1.00 4000 0.01 0.00 -0.00 0.01 0.01
βq[12] 1.00 4000 -0.00 0.00 -0.01 -0.00 0.00
βq[13] 1.00 4000 0.01 0.00 -0.00 0.01 0.01
βq[14] 1.00 3366 0.03 0.00 0.02 0.03 0.03
βq[15] 1.00 4000 0.01 0.00 0.00 0.01 0.02
βq[16] 1.00 2890 0.01 0.00 0.01 0.01 0.02
βq[17] 1.00 4000 -0.18 0.00 -0.19 -0.18 -0.17
βq[18] 1.00 4000 -0.01 0.00 -0.02 -0.01 -0.00

Table 14: First Stage Parameter Estimates
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Second Stage Parameter Estimates

Parameter Estimate 95Pct CI

γ̂ 0.046 (0.032,0.264)

β̂[1] -0.011 (-0.167,0.137)

β̂[2] -0.003 (-0.105,0.084)

β̂[3] 0.027 (-0.138,0.063)

β̂[4] 0.017 (-0.142,0.106)

β̂[5] -0.055 (-0.014,0.214)

β̂[6] 0.021 (-0.014,0.175)

β̂[7] 0.017 (-0.153,0.259)

β̂[8] 0.051 (-0.025,0.079)

β̂[9] -0.060 (-0.022,0.063)

β̂[10] -0.006 (-0.151,0.037)

β̂[11] -0.040 (-0.027,0.107)

β̂[12] -0.023 (-0.161,0.152)

β̂[13] 0.097 (-0.09,0.233)

β̂[14] 0.085 (-0.242,0.176)

Table 15: Parameter estimates for the Second Stage GMM estimation

Second Stage Model Fit

Figure 18: A scatter plot of actual quantities vs
model predictions.

Note: Unit bids are scaled so as to standardize
quantities so exact dollar values are not

representative.

Table 16: Regression report for figure 18

Dependent variable:

Data Bid

Predicted Bid 0.992∗∗∗

(0.001)

Constant 251.170
(163.912)

Observations 215,332
R2 0.879

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Figure 19: Quantile-Quantile plot of predicted bids against data bids. Quantiles are presented at
the 0.0001 level and truncated at the top and bottom 0.01% for clarity. The 45-degree line is

dashed in red for reference.
Note: Unit bids are scaled so as to standardize quantities so exact dollar values are not

representative.

E Bayesian Sampling

We make the following additional assumptions for a Bayesian approach.

First, we choose priors on the structural parameters. Note that the particular choice of

priors has/is being experimented with and results do not appear to be very sensitive to it

thus far.78

γ =
1

γraw
where γraw ∼ N+(10, 3)

αin ∼ N+(1, 0.5)

The key additional assumption is the modeling of the measurement error on observed bids.

For GMM, we assumed only that bdt,i,n = b∗t,i,n + νt,i,n with E[νt,i,n] = 0. For the Bayesian

approach, we model the distribution of IID draws:

νt,i,n ∼ N (0, σ2
b ),

where σb is given a prior distribution and estimated.79

Note, however, that by the formula for b∗i,t,n, the optimal bid (given the auction data and

structural parameters), the optimal bid for each item is a function of the optimal total score

78We model γ as an exponential transformation to allow for higher flexibility in its level estimate while
keeping the raw parameters on a similar scale for computational efficiency.

79We use the prior σb ∼ N (0, 3) at the moment.
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s∗i,n. We do not observe the optimal score, however - we observe only an ”observed” score

sdi,n =
∑
t∈T (n)

bdi,t,nq
e
t,n ≡ s∗i,n −

∑
t∈T (n)

νi,t,nq
e
t,n.

Note that by construction, the distribution of the error on the observed score is known

given the assumptions above:

∑
t∈T (n)

νi,t,nq
e
t,n ∼ N

0,

σ2
b

∑
t∈T (n)

[
(qet,n)2

] given qet,n and Xt,n

Putting these together, we model:

s∗i,n ∼ N

sdi,n,
σ2

b

∑
t∈T (n)

[
(qet,n)2

] and bdi,t,n ∼ N
(
b∗i,t,n(s∗i,n), σ2

b

)
Posterior Mode Results for Bridge Auctions The following are summary statistics

of the posterior mode of the HMC samples, analogous to those in section 6. Note that while

the estimated CARA coefficient here is higher than the GMM estimate, this is in part due

to the level of aggregation in the GMM estimate. While we aggregate bidders who appear

in less than 10 auctions together for GMM – assigning them the same bidder-specific fixed

effect – we treat each bidder-auction pair as an independent draw from the distribution of

efficiency types in this estimation procedure. In an upcoming revision, we will present results

for an extended Bayesian analysis in which relationships between bidder-auction draws are

modeled in a hierarchical fashion, and correlations between bid errors are allowed.

1/γ̂ SE

2.097 0.165

Table 17: Estimates for the CARA coefficient. Note that the modal γ̂ here is 1/2.097 ≈ 0.48.
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Project Type Mean Sd Q1 Median Q3

Bridge Reconstruction/Rehab 1.149 0.354 0.89 1.083 1.389
Bridge Replacement 1.137 0.319 0.89 1.091 1.326

Structures Maintenance 1.041 0.32 0.84 1.005 1.228

Table 18: Summary statistics of αin estimates by project type. Estimated α̂in are truncated at 1%
before summarizing so that means do not reflect outliers.

Project Type Mean Sd Q1 Median Q3

Bridge Reconstruction/Rehab 9.85% 27.17% -5.74% 3.23% 14.54%
Bridge Replacement 2.32% 19.26% -10.83% -0.55% 13.64%

Structures Maintenance 20.12% 47.42% -6.56% 5.87% 30.85%

Table 19: Summary statistics of estimated winning bidders’ markups given alpha α̂in. Estimated
α̂in are truncated at 1% before summarizing so that means do not reflect outliers.

F Additional Tables and Figures

F.1 Distribution of Projects by Year in Our Data

Year Num Projects Percent Cumul Percent

1 1998 1 0.227 0.227
2 1999 5 1.136 1.364
3 2000 5 1.136 2.500
4 2001 20 4.545 7.045
5 2002 27 6.136 13.182
6 2003 26 5.909 19.091
7 2004 25 5.682 24.773
8 2005 37 8.409 33.182
9 2006 21 4.773 37.955
10 2007 32 7.273 45.227
11 2008 53 12.045 57.273
12 2009 46 10.455 67.727
13 2010 61 13.864 81.591
14 2011 32 7.273 88.864
15 2012 24 5.455 94.318
16 2013 19 4.318 98.636
17 2014 6 1.364 100

Table 20: Distribution of projects by year in our data
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F.2 Shares of Projects with “Unbalanced” Bids

Most projects have a substantial portion of unit bids that should trigger a mathematical

unbalancedness flag.

(a) Share of projects (x-axis) that have
a particular share of their items

breaking the MassDOT overbidding
rule (y-axis)

(b) Share of projects (x-axis) that have
a particular share of their items

breaking the MassDOT underbidding
rule (y-axis)

Figure 20

F.3 Discussion of Quantity Uncertainty vis-a-vis Designer and

Project Manager Identities

Although many factors could influence the percent overrun for each item, one factor of note

is the identity of the designer, resident engineer and project manager in charge. A designer

who is less experienced, for example, might be more prone to mis-estimates in the project

specification. A project manager who is less experienced might be more prone to making

mistakes that necessitate changes. Figures 21a and 21b show the average absolute value

of percent quantity overruns across items in projects managed by each project manager

or designed by each designer, respectively. There are 53 unique project managers and 57

unique designers. The median project manager worked on 6 projects in our data set, with

a mean of 8.4 and a maximum of 38. The median designer worked on 3 projects, with

a mean of 7.8 and a maximum of 147 (this is the in-house MassDOT designer team, in

contrast to the others, who are consultants). While there is not a clear relationship between

absolute overruns and experience, and it is possible that the variation in overruns stems

from differences in the projects that each project manager/designer is involved with, the

heterogeneity in overruns across project managers and designers suggests that the choice

or training of the staff employed by MassDOT could be an avenue for reducing levels of

77



uncertainty.80

(a) Project Managers (b) Designers

Figure 21: Average absolute value of percent quantity overruns across items managed by each
project manager (a) and each designer (b).

G Additional Discussion of the Toy Model

G.1 Savings from Eliminating Risk by Risk and Risk Aversion

In this section, we present additional simulation results for the toy model discussed in section

2. The parameters of the example are described in Table 21 below. In Table 22, we present

DOT Estimates Bidders Expect Noise Var Bidder Cost
qe E[qa] σ2 α× c

Concrete 10 12 2 12

Traffic Cones 20 16 1 18

Table 21: Auction parameters from the toy model.

the percent difference between the baseline and the counterfactual across CARA coefficients

80The full distributions of the number of auctions that each project manager and designer participated in,
as well as a plot of average absolute overruns against the number of auctions are included in the appendix,
for reference.
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and the magnitude of the quantity noise variance. Each column corresponds to the percent

savings to the DOT from the No Quantity Risk counterfactual when the baseline quantity

variance term for each item is multiplied by the factor heading the column. For example,

in the column labeled 0.5, the baseline equilibrium is computed with σ2
c = 0.5 × 2 = 1 and

σ2
r = 0.5× 1 = 0.5. Similarly, the bolded column corresponds to the last column of Table 2,

and in the column labeled 2, the baseline equilibrium is computed with σ2
c = 2× 2 = 4 and

σ2
r = 2× 1 = 2.81

Magnitude of Prediction Noise
CARA Coeff 0.1 0.5 1 2

0 0% 0% 0% 0%
0.001 0.01% 0.06% 0.13% 0.26%
0.005 0.06% 0.32% 0.64% 1.30%
0.01 0.13% 0.63% 1.29% 2.62%
0.05 0.60% 3.17% 6.64% 10.38%
0.10 1.19% 6.42% 10.71% 5.65%

Table 22: Percent DOT savings from eliminating quantity uncertainty under different levels of
baseline uncertainty and bidder risk aversion

G.2 Worked Out Example of Risk Neutral Bidding

Two risk-neutral bidders compete for a project that requires two types of inputs to complete:

concrete and traffic cones. The DOT estimates that 10 tons of concrete and 20 traffic cones

will be necessary to complete the project. However, the bidders (both) anticipate that

the actual quantities that will be used – random variables that we will denote qac and qar

for concrete and traffic cones, respectively – are distributed with means E[qac ] = 12 and

E[qar ] = 10. We will assume that the actual quantities are exogenous to the bidding process,

and do not depend on who wins the auction in any way.

The bidders differ in their private costs for the materials (including overhead, etc.): each

bidder i incurs a privately known flat unit cost cic for each unit of concrete and cir for each

traffic cone used. Thus, at the time of bidding, each bidder i expects to incur a total cost

θi ≡ E
[
qac c

i
c + qar c

i
r

]
= 12cic + 10cir,

81Note that while the savings from eliminating risk are generally higher as prediction noise and risk aversion
get higher, the relationship may not always be monotonic. This is because when risk and risk aversion in an
auction is very high, bidders are incentivized to bid close to their costs across items so as to minimize their
exposure. That is, the variance term overwhelms the prediction term. Note that this is, in part, a result of
the CARA functional form.
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if she were to win the auction. Each bidder i submits a unit bid for each of the items: bic

and bir. The winner of the auction is then chosen on the basis of her score: the sum of her

unit bids multiplied the DOT’s quantity estimates:

si = 10bic + 20bir.

Once a winner is selected, she will implement the project and earn net profits of her unit

bids, less the unit costs of each item, multiplied by the realized quantities of each item

that are ultimately used. At the time of bidding, these quantities are unrealized samples of

random variables. However, as the bidders are risk-neutral, they consider the expected value

of profits to make their bidding decisions:

E[π(bic, b
i
r)|cic, cir] =E

[
(qac b

i
c + qar b

i
r)− (qac c

i
c + qar c

i
r)
]︸ ︷︷ ︸

Expected profits conditional on winning

× Prob(si < sj)︸ ︷︷ ︸
Probability of winning

=
(
(12bic + 10bir)− θi

)
× Prob

(
(10bic + 20bir) < (10bjc + 20bjr)

)
.

The key intuition for bid skewing is as follows. Suppose that the bidders’ expectations of

the actual quantities to be used are accurate. Then for any score s that bidder i deems

competitive, she can construct unit bids that maximize her ex-post profits if she wins the

auction. For example, suppose that bidder i has unit costs cic = $70 and cir = $3, and she has

decided to submit a score of $1000. She could bid her costs with a $5 markup on concrete

and a $9.50 markup on traffic cones: bic = $75 and bir = $12.50, yielding a net profit of $155.

However, if instead, she bids bic = $99.98 and bir = $0.01, bidder i could submit the same

score, but earn a profit of nearly $330 if she wins.

This logic suggests that the DOT’s inaccurate estimates of item quantities enable bidders

to extract surplus profits without ceding a competitive edge. If the DOT were able to predict

the actual quantities correctly, it would eliminate the possibility of bid skewing. In order for

bidder i to submit a score of $1000 in this case, she would need to choose unit bids such that

12bic + 20bir = $1000—the exact revenue that she would earn upon winning the auction. She

could still bid bir = $0.01, for example, but then she would need to bid bic = $83.33, resulting

in a revenue of $1000 and a profit of $130 if she wins the auction. A quick inspection shows

that no choice of bic and bir could improve her expected revenue at the same score.

It would follow that when bidders have more accurate assessments of what the actual item

quantities will be – as is generally considered to be the case – bids with apparent skewing are

materially more costly to the DOT. If the bidders were to share their expectations truthfully

with the DOT, it appears that a lower total cost might be incurred without affecting the

level of competition.
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However, this intuition does not take into account the equilibrium effect that a change in

DOT quantity estimates would have on the competitive choice of score. It is not true that

if a score of $1000 is optimal for bidder i under inaccurate DOT quantity estimates, then it

will remain optimal under accurate DOT estimates as well. As we demonstrate below, when

equilibrium score selection is taken into consideration, the apparent possibility of extracting

higher revenues by skewing unit bids is shut down entirely.

To illustrate this point, we derive the equilibrium bidding strategy for each bidder in our

example. In order to close the model, we need to make an assumption about the bidders’

beliefs over their opponents’ costs. Note that bidder i’s expected total cost for the project θi

is fixed at the time of bidding, and does not depend on her unit bids. For simplicity, we will

assume that these expected total costs are distributed according to some commonly known

distribution: θ ∼ F [θ, θ].

By application of Asker and Cantillon (2010), there is a unique (up to payoff equivalence)

monotonic equilibrium in which each bidder of type θ submits a unique equilibrium score

s(θ), using unit bids that maximize her expected profits conditional on winning, and add up

to s(θ). That is, in equilibrium, each bidder i submits a vector of bids {bc(θi), br(θi)} such

that:

{bc(θi), br(θi)} = arg max
{bc,br}

{
12bc + 40br − θi

}
s.t. 10bc + 50br = s(θi).

Solving this, we quickly see that at the optimum, br(θ
i) = 0 and bc(θ

i) = s(θi)/10 (to see

this, note that if br = 0, then the bidder earns a revenue of 12
10
· s(θi) whereas if bc = 0, then

the bidder earns a revenue of 40
50
· s(θi).)

The equilibrium can therefore be charcterized by the optimality of s(θ) with respect to

the expected profits of a bidder with expected total cost θ:

E[π(s(θi))|θi] =

(
12

10
· s(θi)− θi

)
· Prob

(
s(θi) < s(θj)

)
(30)

=

(
12

10
· s(θi)− θi

)
·
(
1− F (θi)

)
, (31)

where the second equality follows from the strict monotonicity of the equilibrium.82

As in a standard first price auction, the optimality of the score mapping is characterized

by the first order condition of expected profits with respect to s(θ):

∂E[π(s̃, θ)]

∂s̃
|s̃=s(θ) = 0.

82More concretely, a monotonic equilibrium requires that for any θ′ > θ, s(θ′) > s(θ). Therefore, the
probability that s(θi) is lower than s(θj) is equal to the probability that θi is lower than θj .
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Solving the resulting differential equation, we obtain:

s(θ) =
10

12

θ +

∫ θ
θ

[
1− F (θ̃)

]
dθ̃

1− F (θ)

 .
Thus, each bidder i will bid bc(θ

i) = s(θi)
10

and br(θ) = 0. If bidder i wins the auction, she

expects to earn a markup of:

E[π(θi)] = 12 · s(θ
i)

10
− θi (32)

=

∫ θ
θi

[
1− F (θ̃)

]
dθ̃

1− F (θi)
. (33)

More generally, no matter what the quantities projected by the DOT are – entirely correct or

wildly inaccurate – the winner of the auction and the markup that she will earn in equilibrium

will be the same.

In particular, writing qec and qer for the DOT’s quantity projections (so that a bidder’s

score is given by s = bcq
e
c + brq

e
r) and qbc and qbr for the bidders’ expectations for the actual

quantities, the equilibrium score function can be written:

s(θ) = min
{qec
qbc
,
qer
qbr

}
·

θ +

∫ θ
θ

[
1− F (θ̃)

]
dθ̃

1− F (θ)

 . (34)

Suppose that qer
qbr
≤ qec

qbc
. Then bidder i will bid b∗r(θ

i) = s(θi)
qer

and b∗c(θ
i) = 0. Consequently, if

bidder i wins, she will be paid qbr · b∗r(θi) =

[
θi +

∫ θ
θi [1−F (θ̃)]dθ̃

1−F (θi)

]
as in our example.

Note that the probability of winning is determined by the probability of having the lowest

cost type, in equilibrium, and so this too is unaffected by the DOT’s quantity estimates. That

is, the level of competition and the degree of markups extracted by the bidders is determined

entirely by the density of the distribution of expected total costs among the competitors.

The more likely it is that bidders have similar costs, the lower the markups that the bidders

can extract. However, regardless of whether the DOT posts accurate quantity estimates –

in which case, bidders cannot benefit from skewing their unit bids at any score – or not,

the expected cost of the project to the DOT will be the same in equilibrium. Therefore, a

mathematically unbalanced bid, while indicative of a discrepancy in the quantity estimates

made by the bidders and the DOT, is not indicative of a material loss to the government.
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