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Abstract

Data on U.S. credit card markets display a large dispersion of interest rates at which

consumers borrow. To understand this dispersion, we build a search model with two

novel features: search effort/inattention and product differentiation. We calibrate the

model to match statistics on the interest rate distribution that borrowers pay. The model

fits these data well. Our analysis implies that low search effort accounts for almost all

the dispersion in interest rates, whereas product differentiation is negligible. We use the

calibrated model to study regulatory interventions in credit markets, such as caps on

interest rates and higher compliance costs for lenders.
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1 Introduction

After the financial crisis, legislators and regulators in several countries have been intervening

in markets for consumer financial products more aggressively than before. For example, in

the United States the Dodd-Frank Act of 2010 established the Consumer Financial Protection

Bureau, with the mission to supervise and regulate financial products for households, such

as mortgages and credit cards. In the United Kingdom, the Financial Service Act of 2012

created a new regulatory framework for financial services, establishing the Financial Conduct

Authority (FCA), with regulatory powers related to the marketing of financial services.

These regulations have taken many different forms, depending on the specific countries and

on the specific products. In some cases, they have directly constrained the prices and the fees of

some financial products, which have been either capped or banned, as many regulators viewed

these fees as “predatory”—i.e., targeting unsophisticated and poorly-informed households—

thereby increasing their debt levels. Specifically, the 2009 U.S. Credit Card Accountability

Responsibility and Disclosure Act explicitly prohibited lenders from charging some fees on

credit cards (Agarwal et al., 2015b). Similarly, in the U.K. the FCA has introduced regulatory

caps for several financial products: in November 2014 it enacted a price structure for payday

loans, capping the initial cost of a loan to a maximum of 0.8 percent per day; in November

2016, it restricted fees for individuals who want to access their pensions to a maximum of

one percent. Furthermore, the FCA is currently evaluating limits on fees for other products,

such as mutual fund fees (The Financial Times, Funds’ lucrative entry fees under attack, May

26, 2016) and mortgage origination fees (The Financial Times, Mortgage lenders under FCA

review for masking high fees, December 12, 2016).

In several other cases, regulatory agencies cracked down on lenders by increasing capital

requirements and/or tightening enforcement, thereby increasing their operating costs.

The broad goal of this paper is to study these two main form of regulations—i.e., the

regulation of fees and of their operating costs—in markets for consumer financial products,

with a special focus on how these regulations affect consumers’ incentives to acquire infor-

mation about these products. More specifically, many of these price regulations are predi-

cated on the assumptions that consumers may be poorly informed about some of these fees.

Hence, we develop a modeling framework that explicitly considers these information frictions.

Indeed, Sirri and Tufano (1998) and Hortaçsu and Syverson (2004) argue that information

frictions play a prominent role in mutual fund markets, and Allen et al. (Forthcoming) and

Woodward and Hall (2012) show their relevance in mortgage markets. Search theory allows
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exactly to incorporate these information frictions, also providing a flexible framework that has

been successfully used for structural estimation.1

We tailor our model to the U.S. credit card market. Specifically, Stango and Zinman (2016)

(henceforth SZ) report a large dispersion in the interest rates that consumers pay on their

credit cards, and they document that consumer characteristics—most notably, their credit-

worthiness, as captured by their credit score—does not account for this large heterogeneity.

Hence, to interpret this dispersion, we build a search model with two key features: search

effort/inattention and product differentiation. We calibrate the model to match the statistics

on the interest rate distribution that SZ report. The model fits these data reasonably well.

Our analysis implies that low search effort accounts for almost all the dispersion in interest

rates, whereas product differentiation is negligible.

We further use the calibrated model to understand the role of price caps and of higher

operating costs on equilibrium outcomes. Specifically, Fershtman and Fishman (1994) and

Armstrong et al. (2009) show that, in markets with search frictions à la Burdett and Judd

(1983), price caps may have the unintended consequences of increasing the equilibrium prices

paid by consumers. More precisely, they identify two opposing effects: 1) the direct effect of

regulation is to reduce prices for uninformed consumers who, before the regulation, were paying

high prices; and 2) the indirect effect is to reduce price dispersion, which reduces consumers’

incentives to acquire information about prices, thereby increasing suppliers’ market power and,

thus, prices. Armstrong et al. (2009) further show that, if consumers are heterogenous in their

costs of acquiring information, the introduction of a price cap has an ambiguous effect on the

equilibrium price paid by consumers, thereby leading to the possibility that equilibrium prices

may increase. Therefore, it is an empirical/quantitative question which of the two opposing

effects dominates and, thus, whether or not price caps have the intended consequences. The

calibrated model will allow us to determine which of the two opposing effect dominates and,

thus, whether or not price caps are beneficial to consumers.

We further use the calibrated model to simulate alternative market structures through

higher operating (i.e., entry) costs. Specifically, an interesting question in markets with

search frictions is how the entry of new suppliers affects consumers’ information acquisi-

tion, their search process, and, thus, welfare. Most notably, the insightful contribution of

Janssen and Moraga-González (2004) shows that an increase in the number of entrants could

reduce search, thereby leading to greater price dispersion and lower welfare. Hence, counter-

1Some recent papers that structurally estimate search models of consumer product markets include
Hortaçsu and Syverson (2004); Hong and Shum (2006); Wildenbeest (2011); Allen et al. (Forthcoming);
Gavazza (2016); Galenianos and Gavazza (2017).
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factual simulations will help us to understand the empirical relevance of these considerations.

2 Related Literature

The paper contributes to several strands of the empirical literature. The first is the literature

that studies credit card companies’ market power. In an important contribution, Ausubel

(1991) showed that interest rate on credit cards are substantially higher than lenders’ funding

costs and display limited intertemporal variability, citing search frictions as a potential de-

parture from a competitive market. Calem and Mester (1995) present empirical evidence on

consumers’ limited search and switching behavior. Stango (2002) studies credit card pricing

when consumers have switching costs. Grodzicki (2015) analyzes how credit card companies

acquire new customers. We contribute to this literature by building a framework that allows

us to quantify the effects of search frictions and consumer inertia on lenders’ loan pricing and

on consumers’ cost of borrowing.

Second, a vast literature in household finance studies whether or not consumers behave

optimally in credit markets: among others, Agarwal et al. (2008) and Agarwal et al. (2015a)

analyze consumer mistakes in the credit card market. Ru and Schoar (2016) studies how

credit card companies exploit consumers’ mistakes. In this strand of literature, the most

related paper is Woodward and Hall (2012), which studies consumers’ shopping effort in the

U.S. mortgage market. We contribute to this literature by developing and calibrating an

equilibrium model in which consumers’ shopping effort is endogenous, which allows us to

analyze how it adjusts after regulatory interventions.

Third, many countries have recently enacted reforms and introduced new regulations in

markets for consumer financial products (Campbell et al., 2011a,b). Several recent contribu-

tions provide descriptive analyses of the effects of these reforms. In the specific case of the

U.S. credit card market, Agarwal et al. (2015b) and Nelson (2018) analyze how regulatory

limits on credit card fees introduced by the 2010 CARD Act affect lender pricing and bor-

rowing costs exploiting rich data. We complement these papers by analyzing some of these

regulatory interventions in a quantitative model which focuses on key features—i.e., search

frictions and consumer inattention—that account for pricing in the credit card market.

Finally, this paper is related to the literature on the structural estimation of consumer

search models. Recent contributions include Hortaçsu and Syverson (2004), Hong and Shum

(2006), Wildenbeest (2011), Allen et al. (Forthcoming), Galenianos and Gavazza (2017), and

Salz (2016). We innovate on these previous empirical papers by incorporating in our model—

3



and, thus, by evaluating the quantitative importance of—additional features, such as en-

dogenous search effort, that, according to some theoretical papers, could potentially offset

the effects of the regulations that we study (Fershtman and Fishman, 1994; Armstrong et al.,

2009; Janssen and Moraga-González, 2004).

3 Data

The available data dictate some of the modeling choices of this paper. For this reason, we

describe the data before presenting the model. This description also introduces some of the

identification issues that we discuss in more detail in Section 5.2.

3.1 Data Sources

Our quantitative analysis combines several sources of data. More specifically, we exploit some

of the datasets that SZ use in their descriptive analysis of households’ credit card terms,

supplementing them with some aggregate statistics obtained from the Federal Reserve Board

and the Survey of Consumer Finances. We now describe these datasets in more detail.

The first dataset is an account-level panel that samples individuals and reports the main

terms of their credit-card accounts during (at most) 36 consecutive months between January

2006-December 2008, including their credit limit, the end-of-month balance, the revolving

balance, the annual percentage rate (APR), and the cash advance APR. The dataset also

reports limited demographic characteristics of the cardholders, such their household income

and their FICO credit score.2

The second dataset reports the terms of all credit card offers that a sample of individuals

receive in January 2007. This second dataset samples different individuals than those in the

first dataset, but allows us to measure the dispersions in offers that individuals receive in a

given month. As SZ emphasize, the dispersion in interest rates on all credit card offered to

a given individual in a given month removes any effect of individual-specific factors on the

cross-sectional distribution of interest rates on credit cards that individuals hold. We should

point out that we do not have access to the individual survey data and, thus, we exploit data

reported in tables of SZ.

We complement these datasets with some aggregate statistics: the fraction of individuals

with credit card debt, computed from the 2007 Survey of Consumer Finances; the aggregate

2We are grateful to Victor Stango for sharing this dataset with us.
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charge-off rate on credit card loans in the first quarter of 2007, reported by the Federal Reserve

Board; and the risk-free rate, computed as the interest rate of the one-month Treasury bill on

January 16th, 2007.3

3.2 Data Description

We use the first dataset on individuals’ credit-card terms to sum up one of the main results of

SZ’s descriptive analysis: a large dispersion of the interest rate distribution persists, even after

taking into account 1) different default risk across individuals, as measured by their FICO

scores; 2) different revolving balances across borrowers; and 3) different card characteristics

across borrowers, such as rewards. Specifically, the basic framework for this analysis is the

following equation:

Rijt = γXXit + γZZijt + ǫijt, (1)

where the dependent variable Rijt is the APR that individual i pays on credit card j in month

t; Xit are characteristics of individual i in month t, such as his default risk, measured by the

FICO score; Zijt are characteristics of individual i’s credit card j in period t, such as the

credit limit, rewards, and the credit balance; ǫijt are residuals.

The top panel of Table 1 reports the coefficient estimates of several specifications of equa-

tion (1); the bottom panel reports selected percentiles of the distribution of interest rates

calculated as:

R′

ijt = γ̂XX it + γ̂ZZ ijt + ǫ̂ijt,

where γ̂X and γ̂Z are the coefficient estimates, X it and Z ijt are the sample averages of the

covariates of each regression, and ǫ̂ijt are the estimates of the residuals.

Column (1) uses the raw data over the entire sample period, which exhibit a large dispersion

of interest rates, i.e., the difference between the 90th and the 10th percentiles equals 18.5

percentage points. Column (2) restricts the data to January 2007 (this is the date of our

other data sources), showing that the large dispersion of interest rates is almost identical

to that in (1), for two reasons: a) there is limited aggregate variation in interest rates over

time; and b) there is limited within-account variation in interest rates. Column (3) further

restricts the data to cards without introductory “teaser” rates (i.e., low initial rates that

reset to higher rates after an initial offer period); of course, interest rates increase relative

to those displayed in column (2), but the increase is minimal and the difference between the

3We retrieved the last two values from FRED, Federal Reserve Bank of St. Louis, series https://fred.
stlouisfed.org/series/CORCCACBS and https://fred.stlouisfed.org/series/DGS1MO, respectively.
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Table 1: Dispersion of Interest Rates

(1) (2) (3) (4) (5) (6)

FICO Score -0.024*** -0.022*** -0.021***

(0.001) (0.001) (0.002)

Reward Card 0.260 0.135

(0.178) (0.273)

Credit Limit -0.047*** -0.046*

(0.013) (0.024)

Credit Balance 0.065*** 0.004

(0.022) (0.032)

R2 0.749 0.752 0.789 0.127 0.130 0.092

Observations 382,567 9,167 8,575 4,375 4,299 2,578

Percentiles

10th 9.49 9.9 11.9 12.37 12.36 12.68

25th 12.99 13.99 14.24 15.24 15.19 15.84

50th 16.74 17.65 18.24 18.49 18.43 19.31

75th 20.24 20.24 20.99 21.45 21.62 23.82

90th 27.99 27.99 28.15 26.62 26.6 28.60

Notes: This table reports.

90th and the 10th percentiles slightly decreases to 16.25 percentage points. The specification

of column (4) further controls for the credit risk of the individual through the FICO score

(unfortunately, this is available for only 4,375 individuals out of 8,575); the corresponding

distribution of interest rates still display a large dispersion. The specification of column (5)

further controls for other card characteristics, such as the credit limit and an indicator variable

which equals one if the card features some rewards (e.g., frequent flier miles or cash back)

and zero otherwise, as well as the revolving balance. The specification of column (6) further

restricts the sample to cards with a revolving balance (i.e., cards used for borrowing beyond

the 25-day grace period), showing that the large dispersion of interest rates persists, i.e., the

difference between the 90th and the 10th percentiles equals 15.92 percentage points.

Overall, Table 1 confirms that borrower and card characteristics account for a small fraction

of the overall dispersion in interest rates that borrowers pay on their credit card, thereby

suggesting that frictional dispersion is a pervasive feature of the credit card market. Hence,

the model that we develop in Section 4 aims to bring about this dispersion through information

frictions, and the calibration of Section 5 aims to quantitatively match the percentiles of

specification (6) of Table 1.
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Table 2: Empirical Targets

Panel A: Accepted Offers

10th Percentile Accepted Offer Distribution 12.68

25th Percentile Accepted Offer Distribution 15.84

50th Percentile Accepted Offer Distribution 19.31

75th Percentile Accepted Offer Distribution 23.82

90th Percentile Accepted Offer Distribution 28.60

Panel B: Received Offers

Fraction Receiving 2+ Offers (%) 75.00

Median Number of Offers Received, Conditional on 2+ Offers 3.00

Average Number of Offers Received, Conditional on 2+ Offers 4.00

10th Percentile Distribution of Differences in Offered Rates 0.00

30th Percentile Distribution of Differences in Offered Rates 2.25

50th Percentile Distribution of Differences in Offered Rates 4.34

70th Percentile Distribution of Differences in Offered Rates 7.25

90th Percentile Distribution of Differences in Offered Rates 9.25

Panel C: Aggregate Statistics

Fraction with Credit Card Debt 36.70

Charge-Off Rate 4.01

Notes—This table provides the empirical targets of our calibrated model. Panel A reports statistics

on the interest rates that borrowers pay on their credit cards. Panel B displays statistics on credit

card offers that SZ report. Panel C reports auxiliary statistics.

Table 2 combines all empirical targets of our quantitative model. Panel A reproduces the

percentiles of the distribution of interest rates derived in Table 1. Panel B reports statistics on

credit card offers that SZ document. Specifically, Section 5.1 of SZ recounts that approximately

75 percent of individuals received more than one credit card offer during January 2007 and,

among them, the median and the mean number of offers was three and four, respectively; for

these individuals who received at least two offers, Table 4 of SZ reports key percentiles of the

distribution of the difference between the highest and lowest offered interest rates at which

balances incur interest charges after the expiration of any introductory “teaser” period (if

any). Finally, Panel C reports auxiliary statistics on credit card markets, such the fraction of

individuals with credit card debt in the 2007 Survey of Consumer Finances and the aggregate

charge-off rate on credit card loans in the first quarter of 2007.
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Table 2 provides a rich description of the credit card market, with some striking patterns.

First, as we noted above, Panel A shows that the dispersion in the interest rates that borrowers

pay on their credit card debt is very large, even after we control for observable borrower and

card characteristics; this dispersion is informative of the extent of search frictions. Second,

Panel B points out that many individuals receive multiple credit card offers at substantially

different interest rates. Moreover, the within-individual dispersion in received offers in Panel

B and cross-sectional dispersion in Panel A seem to suggest that many borrowers do not accept

the offers with the lowest interest rates. Our model seeks to capture these features in two

different ways: 1) consumers may not pay attention to all the offers that they receive; and

2) consumers may have idiosyncratic preferences for unobservable card features. In summary,

these data seem to call for investigating the role of search frictions, search effort/inattention,

and idiosyncratic preferences in the credit card market.

Despite all of their advantages, however, these data pose some challenges. First, they are

mostly cross-sectional, and, therefore, we do not observe borrowers’ and lenders’ behavior

over time. Specifically, we do not observe how frequently borrowers switch across credit cards.

Hence, in the absence of more-detailed measurement on borrowers’ switching behavior, we

will seek to match the cross-sectional distribution through a static model. Moreover, while

the theory can accommodate multidimensional heterogeneity of borrowers and/or lenders,

our cross-sectional data make it difficult to identify such a model. Thus, we focus on a

parsimonious framework with borrowers’ heterogeneity in their willingness to pay for credit

and lenders’ heterogeneity in their funding costs, and we let other parameters be common

across individuals. We discuss the implications of these data limitations for our results further

in Section 7.

4 The Model

The economy is populated by measure 1 of borrowers and measure Λ of potential lenders.

Borrowers are heterogeneous in their marginal valuation of a loan z, which is distributed

according to a smooth distribution M(·) with connected support [z, z]. Potential lenders are

heterogeneous in their marginal cost of providing a loan k, which is distributed according to

a smooth distribution Γ(·) with connected support [k, k]. Potential lenders can pay cost χ

to enter the market, where L and G(·) denote the measure of entrants and the distribution

of their marginal costs, respectively. Every borrower wants to take a loan of size b to fund
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consumption and every lender has one loan of size b to give.4

Matching between borrowers and lenders is subject to frictions. Each lender sends one loan

offer with an associated interest rate to a randomly-chosen borrower. Each borrower receives

a random number of offers, examines every offer with some probability which depends on his

search effort and decides which offer to accept.5 Specifically, the number of offers received by

a borrower follows a Poisson distribution with parameter L (the lender-borrower ratio) and

the borrower examines each offer with independent probability s ∈ [0, 1], where s is his search

effort. The borrower’s effective number of offers, therefore, follows a Poisson distribution with

parameter s ∗ L. A borrower who exerts search effort s incurs cost q(sL) which is strictly

increasing, strictly convex and satisfies q(0) = q′(0) = 0.

Each loan offer is characterized by its cost to the borrower c, which has two components.

The first component is the interest rate R that is chosen by the lender. The second component

is an idiosyncratic utility draw e which is i.i.d. across borrowers and represents every other

aspect of the loan that might affect the borrower’s valuation. R is drawn from the distribution

FR(·) (to be determined in equilibrium) with support [R,R] and e is drawn from a smooth

distribution Fe(·) with zero mean and support in a connected subset of (−∞,∞). The overall

cost of a loan is c = R+e and might be greater or lower than R depending on the idiosyncratic

draw.

A type-z borrower’s utility from taking a loan with interest rate R and idiosyncratic draw

e is

b
(

z −R − e
)

and his utility from not taking a loan is zero. Anticipating equilibrium behavior, a type-z

borrower chooses the loan offer with the lowest overall cost among the offers that he examines,

conditional on the cost being less than z. A loan offer with R + e > z generates negative

utility and is, thus, never accepted.

The ex ante value of a type-z borrower is equal to the expected value of his best loan Vz(s)

(which depends on search effort s) net of the cost of search effort, q(sL):

Vz(s)− q(sL) (2)

4A lender should be interpreted as a loan contract rather than a lending company (say, a credit card
company). We do not model credit card companies explicitly.

5The random allocation of offers across borrowers leads to urn-ball matching which, for large numbers of
borrowers and lenders, is described by a Poisson distribution. See Butters (1977).
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We denote the optimal effort choice of a type-z borrower by s(z).

A lender’s revenues per-dollar-lent are equal to the interest rate R net of a cost ρ(R) that

represents the risk that the borrower does not repay. We assume that ρ(0) = 0, ρ′(R) > 0

and ρ′′(R) ≥ 0 to capture the observation that borrowers are more likely to default on higher

interest-rate loans, possibly because of informational asymmetries (e.g. (Adams et al., 2009;

Einav et al., 2012) ) which, however, we will not model explicitly.

The lender’s profit conditional on giving a loan is equal to revenues minus the lender’s

marginal cost, k. The expected profits of a type-k lender who offers interest rate R, πk(R),

are given by the probability of making a loan, denoted by P (R), times the loan’s profits:

πk(R) = b
(

R(1− ρ(R))− k
)

P (R). (3)

Notice that the borrower’s idiosyncratic shock affects the lender’s payoff only through the

probability of making a loan, P (R).

We denote the optimal interest rate choice of a type-k lender by R(k) which, combined

with lenders’ entry decisions, determines the interest rate distribution FR(·).

We are now ready to define the equilibrium.

Definition 1 An equilibrium consists of borrowers’ search effort {s(z)} and lenders’ entry

and interest rate choices {L,G(·), FR(·)} such that borrowers maximize their ex ante value

(2), lenders maximize their expected profits (3), there is free entry of lenders and the expected

profits of all entrants exceed the entry cost χ.

We proceed by determining the borrowers’ and lenders’ optimal choices separately and

then proving the existence of equilibrium.

4.1 Borrowers’ choices

We characterize borrowers’ optimal search effort s(z) taking as given the measure of lenders

in the market L and some interest rate distribution FR(·) (the type distribution of lenders

G(·) does not directly affect borrowers’ choices).

We begin by rewriting Vz(s) in a more convenient way. Denote the value to a z-borrower

of receiving n offers by vz(n), where vz(0) = 0. The expected value of loan offers for a type-z
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borrower who exerts search effort s is:

Vz(s) =

∞
∑

n=0

e−sL(sL)n

n!
vz(n) (4)

Note that search effort only affects the arrival rate of offers and does not enter vz(n).

To determine vz(n) for n ≥ 1, recall that the borrower chooses the loan offer with the

lower overall cost c. Let Fc(·) denote the distribution of c. Since the overall loan cost c is the

sum of two independent random variables (R and e) it is distributed according to

Fc(c) =

∫

∞

−∞

FR(c− e)dFe(e) =

∫ R

R

Fe(c− R)dFR(R)

The distribution of the lowest cost out of n ≥ 1 draws from Fc(·) is:

F̄c(c|n) = 1−
(

1− Fc(c)
)n

Therefore the value to a z-borrower of receiving n ≥ 1 offers is:

vz(n) = b

∫ z

−∞

(

z − c
)

dF̄c(c|n) (5)

The optimal effort choice s(z) solves:

V ′

z (s) = q′(sL)L (6)

The following proposition characterizes s(z).

Proposition 2 The optimal search effort of a type-z borrower, s(z), is unique, continuous

and strictly increasing and solves

∞
∑

n=0

e−sL(sL)n

n!

(

vz(n+ 1)− vz(n)
)

= q′(sL) (7)

where vz(0) = 0 and vz(n) is defined by equation (5) for n ≥ 1.

Proof. We first show that vz(n) is strictly increasing and strictly concave in n. The cost

distribution for a low n first order stochastically dominates that for a high n (proving that

vz(n) is increasing in n) and the derivative of the cost distribution for a high n first order
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stochastically dominates that for a low n (proving concavity):

dF̄c(c|n)

dn
= −

(

1− Fc(c)
)n

log
(

1− Fc(c)
)

> 0

d2F̄c(c|n)

dn2
= −

(

1− Fc(c)
)n
(

log
(

1− Fc(c)
)

)2

< 0

Therefore vz(n+ 1) > vz(n) and vz(n+ 2)− vz(n+ 1) < vz(n+ 1)− vz(n) for all n.

Differentiating equation (4) with respect to s:

V ′

z(s) =
∞
∑

n=1

(

−
e−sL(sL)n

n!
vz(n)L+

e−sL(sL)n−1

(n− 1)!
vz(n)L

)

=
(

−

∞
∑

n=0

e−sL(sL)n

n!
vz(n) +

∞
∑

n=0

e−sL(sL)n

n!
vz(n+ 1)

)

L

=

∞
∑

n=0

e−sL(sL)n

n!

(

vz(n + 1)− vz(n)
)

L > 0

As a result, the borrower’s expected value of offers is strictly increasing in search effort.

Furthermore, the expected value of loan offers is strictly concave in search effort:

V ′′

z (s) =
∞
∑

n=1

(

−
e−sL(sL)n

n!
+
e−sL(sL)n−1

(n− 1)!

)

(

vz(n + 1)− vz(n)
)

L2

=

∞
∑

n=0

e−sL(sL)n

n!

(

vz(n+ 2)− vz(n+ 1)−
(

vz(n+ 1)− vz(n)
)

)

L2 < 0

Therefore, equation (6) has a unique solution s(z) which yields the optimal search effort for a

type-z borrower. Furthermore, the solution to that equation varies continuously with z.

Finally notice that:

∂vz(n)

∂z
= b

∫ z

−∞

dF̄c(c|n) = b
(

1−
(

1− Fc(z)
)n
)

> 0

⇒
∂Vz(s)

∂z
=

∞
∑

n=1

e−sL(sL)n

n!
b
(

1−
(

1− Fc(z)
)n
)

> 0

Therefore higher valuation borrowers put greater value to increasing arrival rates of lenders

and therefore they exert more search effort. This completes the proof of proposition 2.
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4.2 Lenders’ choices

We characterize the optimal interest rate of a type-k lender (R(k)), aggregate the actions of

lenders who enter the market to arrive at the interest rate distribution (FR(·)) and characterize

the lenders’ entry decisions (L, G(·)), given borrowers’ actions (s(z)).

To simplify notation, we denote the arrival rate of offers to a type-z borrower by αz =

s(z)L.

We begin with a lemma that provides a partial characterization of entering lenders’ types.

Lemma 3 There is k∗ such that lenders enter if only if k ≤ k∗. k∗ is lower than the interest

rate which maximizes a loan’s revenues.

Proof. Equilibrium profits are strictly decreasing in k, as a low-cost lender can always offer

the high-cost lender’s interest rate and earn higher profits. Therefore, in equilibrium there is

some cutoff k∗ such that lender enter the market if and only if k ≤ k∗.

Our assumption that ρ(R) is increasing and convex imply that revenues conditional on

giving a loan (R(1 − ρ(R))) are maximized at some R̃. A potential lender with k > R̃

necessarily makes negative profits in the market and, therefore, k∗ ≤ R̃.

A loan with interest rate R is accepted if the borrower who receives it examines the offer,

if the offer yields the lowest overall cost from every offer examined by the borrower taking

into account the idiosyncratic component of all offers, and if the offer’s overall cost is below

the borrower’s type z. The next lemma characterizes the probability that a loan with interest

rate R is accepted, P (R).

Lemma 4 Given FR(·), L and s(z), the probability of making a loan when offering interest

rate R is continuous and differentiable and it is given by:

P (R) =

∫ z

z

s(z)

∫ z−R

−∞

e
−αz

∫
R

R
Fe(R+e−x)dFR(x)

dFe(e)dM(z) (8)

Furthermore P ′(R) < 0.

Proof. Denote the probability that a loan offer with total cost c is accepted by a type-z

borrower by Pc(c, z). If z ≥ c the offer is accepted if it is the lowest-cost offer received, which

occurs with probability
(

1−Fc(c)
)n

when the borrower examines n additional offers. If c > z
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then the offer is not accepted. Therefore:

Pc(c, z) =
∞
∑

n=0

e−αzαn
z

n!

(

1− Fc(c)
)n

= e−αzFc(c)

= e
−αz

∫
R

R
Fe(c−x)dFR(x)

, if c ≤ z (9)

Pc(c, z) = 0, if c > z (10)

Denote by PR(R, z) the probability that a type-z borrower accepts a loan offer with interest

rate R. The offer is accepted if the loan’s overall cost (including the idiosyncratic component)

is less than z and if every other offer which is examined has higher cost. Integrating over the

potential values of the idiosyncratic shock yields:

PR(R, z) =

∫

∞

−∞

Pc(R + e)dFe(e)

=

∫ z−R

−∞

e
−αz

∫
R

R
Fe(R+e−x)dFR(x)

dFe(e) (11)

A loan offer with interest rate R is accepted if the receiving borrower (of some type

z) examines the offer (probability s(z)) and it is preferable to any other offer he examines

(probability PR(R, z)). Therefore, the probability a loan with interest rate R is accepted is:

P (R) =

∫ z

z

s(z)PR(R, z)dM(z)

=

∫ z

z

s(z)

∫ z−R

−∞

e
−αz

∫
R

R
Fe(R+e−x)dFR(x)

dFe(e)dM(z) (12)

which yields equation (8).

Equation (12) shows that P (R) is continuous and differentiable in R, since Fe(·) is assumed

to be smooth. The probability of giving a loan is strictly decreasing the interest rate:

P ′(R) = −

∫ z

z

s(z)
[

∫ z−R

−∞

e
−αz

∫
R

R
Fe(R+e−x)dFR(x)

(

αz

∫ R

R

F ′

e(R + e− x)dFR(x)
)

dFe(e)

+e−αz

∫
R

R
Fe(z−x)dFR(x)

F ′

e

(

z − R
)

]

dM(z) < 0.

This completes the proof of lemma 4.

We proceed to characterize the optimal interest rate schedule R(k) and the distribution of
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interest rate offers FR(·).

Proposition 5 Given L, G(·) and s(z), the lenders’ optimal interest rate choice is charac-

terized as follows:

1. The profit-maximizing interest rate of a type-k lender R(k) is unique, continuous and

increasing in k.

2. R(k) solves the following functional equation:

∫ z

z

s(z)

∫ z−R(k)

−∞

e
−αz

∫
k

k
Fe

(

R(k)+e−R(x)
)

dG(x)
dFe(e)dM(z)

=
R(k)(1− ρ(R(k)))− k

1− ρ(R(k))− Rρ′(R(k))

∫ z

z

s(z)
[

∫ z−R(k)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k)+e−R(x)
)

dG(x)
(

αz

∫ k∗

k

F ′

e

(

R(k)

+e− R(x)
)

dG(x)
)

dFe(e) + e
−αz

∫
k
∗

k
Fe

(

z−R(x)
)

dG(x)
F ′

e(z − R(k))
]

dM(z). (13)

3. The interest rate distribution is given by FR(x) = G
(

R−1(x)
)

.

Proof. The optimal interest rate for a type-k lender solves:

π′

k(R) = b
(

1− ρ(R)− Rρ′(R)
)

P (R) + b
(

R(1− ρ(R))− k
)

P ′(R) = 0.

Note that this expression is positive for R = 0 and negative at R̃ (the revenue-maximizing

interest rate). Therefore an optimal choice R(k) ∈ (0, R̃) exists and is continuous in k. In the

case of multiple roots, the lender chooses the solution that yields higher profits.

The cross-partial of profits with respect to lender type and interest rate is positive:

∂πk(R)

∂k
= −bP (R),

∂2πk(R)

∂k∂R
= −bP ′(R) > 0,

which implies that R′(k) > 0.

Since the optimal interest rate is strictly increasing in the lender’s type, we have FR

(

R(k)
)

=

G(k) for k ∈ [k, k∗] and therefore:

FR(x) = G
(

R−1(x)
)

.
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Using this feature, we can rewrite equation (8) as follows:

P
(

R(k)
)

=

∫ z

z

s(z)

∫ z−R(k)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k)+e−R(x)
)

dG(x)
dFe(e)dM(z). (14)

Equation (14) defines the probability that a type-k lender gives a loan when he makes the

equilibrium choice R(k). This expression does not directly depend on the interest rate distri-

bution because it incorporates the result that the offered interest rate is strictly decreasing in

lender type.

The profits of a type-k lender who follows the strategy of a type-k̂ lender are:

πk
(

R(k̂)
)

= b
(

R(k̂)(1− ρ(R(k̂)))− k
)

∫ z

z

s(z)

∫ z−R(k̂)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k̂)+e−R(x)
)

dG(x)
dFe(e)dM(z).

Differentiating with respect to k̂ we have:

∂πk(R(k̂))

∂k̂
= bR′(k̂)(1− ρ(R(k̂))− Rρ′(R(k̂)))

∫ z

z

s(z)

∫ z−R(k̂)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k̂)+e−R(x)
)

dG(x)
dFe(e)dM(z)

−b
(

R(k̂)(1− ρ(R(k̂)))− k
)

∫ z

z

s(z)
[

∫ z−R(k̂)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k̂)+e−R(x)
)

dG(x)
(

αz

∫ k∗

k

F ′

e

(

R(k̂)

+e− R(x)
)

R′(k̂)dG(x)
)

dFe(e) +R′(k̂)e−αz

∫
k
∗

k
Fe

(

z−R(x)
)

dG(x)
F ′

e

(

z − R(k̂)
)

]

dM(z).

This derivative is equal to zero when k̂ = k. Therefore:

(1− ρ(R(k))−Rρ′(R(k)))

∫ z

z

s(z)

∫ z−R(k)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k)+e−R(x)
)

dG(x)
dFe(e)dM(z)

=
(

R(k)(1− ρ′(R(k)))− k
)

∫ z

z

s(z)
[

∫ z−R(k)

−∞

e
−αz

∫
k
∗

k
Fe

(

R(k)+e−R(x)
)

dG(x)
(

αz

∫ k∗

k

F ′

e

(

R(k) + e

−R(x)
)

dG(x)
)

dFe(e) + e
−αz

∫
k
∗

k
Fe

(

z−R(x)
)

dG(x)
F ′

e

(

z −R(k)
)

]

dM(z),

which yields equation (13) that defines the interest rate schedule R(k). This completes the

proof of proposition 5.

The characterization of lenders’ entry decisions is completed in the following proposition.

Proposition 6 Given s(z), lenders’ entry is characterized as follows:

1. There is a unique cutoff cost k∗ such that lenders enter if and only if k ≤ k∗.
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2. The measure of lenders in the market is given by L = ΛΓ(k∗) and the cost distribution

of entrants is G(k) = Γ(k)
Γ(k∗)

for k ≤ k∗.

3. The cutoff is defined by the solution to:

b
(

R(k∗)(1− ρ(R(k∗)))− k∗
)

∫ z

z

s(z)

∫ z−R(k∗)

−∞

e
−s(z)ΛΓ(k∗)

∫
k
∗

k
Fe

(

R(k∗)+e−R(x)
)

d
Γ(x)
Γ(k∗)dFe(e)dM(z) = χ

(15)

Proof. Lemma 3 shows that a lender enters the market if and only if his cost is below some

cutoff k∗. Consider a candidate cutoff for the market k∗ and notice that the measure of lenders

that enter the market is L = ΛΓ(k∗). Denote the profits of the highest-cost lender by πk∗ :

πk∗(R(k
∗)) = b

(

R(k∗)(1− ρ(R(k∗)))− k∗
)

P (R(k∗))

where

P (R(k∗) =

∫ z

z

s(z)

∫ z−R(k∗)

−∞

e
−s(z)ΛΓ(k∗)

∫
k
∗

k
Fe

(

R(k∗)+e−R(x)
)

d
Γ(x)
Γ(k∗)dFe(e)dM(z)

Note that the dependence of L and G(·) on k∗ is made explicit.

The profits of the highest-cost lender are decreasing in his type:

dπk∗

dk∗
= −bP

(

R(k∗)
)

+ b
(

R(k∗)
(

1− ρ(R(k∗))
)

− k∗
)∂P (R(k∗))

∂L
ΛΓ′(k∗)

which is negative because an increase in k∗ increases the measure of lenders in the market

which reduces the probability of giving out a loan. Therefore, given s(z), there is a unique k∗

that characterizes lender entry.

The cutoff k∗ is determined by equating the profits of the highest-cost seller with the entry

cost χ, as shown in equation (15).

4.3 Equilibrium Existence and Offer Distribution

We can now prove the existence of equilibrium and provide some additional characterization

results.

Based on the preceding results, the equilibrium can be described as a fixed point in the

space of continuous functions s(z) from [z, z] to [0, 1]. From an arbitrary initial s(z), propo-
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sitions 5 and 6 characterize the lenders’ entry and interest rate decisions {L,G(·), FR(·)};

given lenders’ actions, proposition 2 characterizes borrowers’ search effort s(z). The space is

complete under the sup norm and therefore a fixed point (and an equilibrium) exist.

Proposition 7 An equilibrium exists.

In equilibrium, the distribution HR(R) of accepted offers equals:

HR(R) =
1

1− P̄

∫ R

R

P (R)dFR(R), (16)

where P̄ =
∫ R

R

(

1−P (R)
)

dFR(R) is the fraction of rejected offers, P (R) is defined by equation

(8) and FR(·) is the distribution of offered interest rates. Intuitively, HR(R) weights each

interest rate offer R by its probability P (R) of being accepted and the distribution is rescaled

to account for the aggregate rejection rate.

5 Quantitative Analysis

The model does not admit an analytic solution for all endogenous outcomes. Hence, we

choose the parameters that best match moments of the data with the corresponding moments

computed from the model’s numerical solution. We then study the quantitative implications

of the model evaluated at the calibrated parameters.

5.1 Parametric Assumptions

The calibration requires that we make several parametric assumptions. We borrow some

parametric assumptions about the distributions of buyers’ and sellers’ heterogeneity from

papers that structurally estimate search models of the labor market and our prior work on the

retail market for illicit drugs (Galenianos and Gavazza, 2017). Specifically, given the similarity

in modeling frameworks and empirical targets between this paper and those predecessors, we

choose a lognormal distribution with parameters µz and σz for the distribution of buyers’

preferences z. Moreover, we parametrize the distribution of sellers’ costs k as the sum of the

risk-free rate—we use the interest rate of the one-month Treasury bill at November 16th, 2007,

which equals 3.78 percent—and an heterogeneous spread, drawn from a lognormal distribution

with parameters µk and σk and upper-truncation point k∗.
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We normalize the size of the loan to b = 1. We further assume that: 1) the product

differentiation parameter e has a normal distribution with mean zero and standard deviation

σe; 2) the cost of effort q(sΛ) equals α0 (sΛ)
α1 ; and 3) the charge-off rate ρ(R) equals βR.

Finally, we assume that the interest rates on accepted offers are measured with errors.

Specifically, we assume that the reported accepted rates R̂ and the “true” accepted rate R are

related as: R̂ = Rη, where η is a measurement error, drawn from a lognormal distribution with

parameters (µη, ση), and with mean to equal 1—i.e., measurements are unbiased; hence, the

parameters (µη, ση), satisfy µη = −0.5σ2
η . The assumption of measurement error on wages is

quite common in the literature that structurally estimates search models of the labor market.

In our application, it is plausible that surveyed borrowers may report the interest rates that

they pay on their credit card debt with error. Measurement error could also account for some

unobserved factor that our static model does not consider (i.e., adjustment of the interest

rate after the offer is accepted), thereby allowing us to fit the distribution of accepted rates

better. For example, Table 2 shows that this distribution displays a large dispersion, and the

measurement η allows the model to capture this feature of the data.

5.2 Calibration

We choose the vector ψ = {Λ, σe, µk, σk, µz, σz, ση, α0, α1, β} that minimizes the distance be-

tween the target moments m reported in Table 2 and the corresponding moments of the

model.

Specifically, for any value of the vector ψ, we solve the model of Section 4 to find its

equilibrium: the distribution FR(·) of offered interest rates and borrowers’ search effort λ(s)

that are consistent with each other. Once we solve for these optimal policy functions of

borrowers and lenders, we can compute the equilibrium distributions of the number of received

offers and of accepted rates. In practice, we simulate these distributions and the moments

m (ψ) corresponding to those reported in Table 2 on received offers and on accepted offers, as

well as the aggregate statistics on the fraction of credit card borrowers and on the charge-off

rate.

We choose the parameter vector ψ that minimizes the criterion function

(m (ψ)−m)′ Ω (m (ψ)−m) ,

where m (ψ) is the vector of stacked moments simulated from the model evaluated at ψ and

m is the vector of corresponding sample moments. Ω is a symmetric, positive-definite matrix;
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we use the identity matrix.

5.2.1 Data Generating Process

Matching the moments reported in Table 2 requires that we account for the fact that the

data generating process may be unusual, since we combine two separate datasets, collected

for different purposes. Specifically, it seems plausible to us that the dataset on received offers

reports all offers that borrowers receive (whose arrival rate is Λ), and not exclusively the

offers that borrowers consider in equilibrium, which may be lower than the offered received

because of borrowers’ endogenous search effort/inattention s may be less than full effort s = 1.

We derive in Appendix A the average number of offers and the distribution of the difference

between the highest and lowest offers that borrowers receive under the assumption that the

arrival rates if these offers is Λ.

However, lenders send these offers anticipating that borrowers will consider them according

to their equilibrium λz. Hence, the moments on the empirical distribution of accepted offers

reflect consumers’ endogenous search effort λz.

5.2.2 Identification

The identification of the model is similar to that of other structural search models. Specifically,

although the model is highly nonlinear, so that (almost) all parameters affect all outcomes,

the identification of some parameters relies on some key moments in the data.

The moments on the number of offers that borrowers receive identify the offer rate pa-

rameter Λ. Moreover, the moments of the distribution of the difference between the highest

and lowest offered interest rates identify the parameters of the distribution G(k) of sellers’

heterogeneity, and they contribute to the identification of the parameters of the distribution

M(z) of buyers’ heterogeneity. More precisely, Appendix A shows how the distribution of the

difference between the highest and lowest offered interest rates depends on the distribution

FR(x) of offered rates and Proposition 5 shows that FR(x) = G
(

R−1(x)
)

, which would allow

us to non-parametrically recover the distribution G(k) of sellers’ costs k; in practice, because

we use the percentiles of the distribution of the difference between the highest and lowest

offered interest rates reported in Panel B of Table 2 only, we specify a parametric lognor-

mal distribution for G(k). Moreover, because borrowers accept interest rates R only if they

(together with the product differentiation e) are lower than their willingness to pay z, the

distribution of offered rates—and the distribution of accepted rates, as well—is informative
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about the distribution of z.

Conditional on G(k), the moments of the distribution of buyers’ accepted interest rates

identify the parameters of the search effort distribution α0 and α1, the parameter of the

product differentiation distribution σe, and, as we argued above, they contribute to the iden-

tification of the parameters of the distribution M(z) of buyers’ preferences. Specifically, the

difference between the distribution of offers and the distribution of accepted offers, along with

the aggregate fraction of individuals with credit card debt, are informative about borrowers’

search effort and product differentiation. In particular, the model with search effort but with-

out product differentiation cannot fully account for the joint distribution of accepted offers

and received offers, and the differentiation parameter e allows the empirical model to match

this feature of the data more closely; thus, this feature of the model contributes to the iden-

tification of the parameter σe of the distribution of e. Moreover, as the comparative statics

of Section 5.5 and Figures 5 and 6 will further clarify, high product differentiation and low

search effort relax price competition and, thus, lenders offer credit cards high interest rates

when the standard deviation σe of the product differentiation parameter e is large and/or

when search effort is low. Hence, the model can account for the observed high level of offered

interest rates and for observed difference between the offer distribution and the accepted offer

distribution in two cases: 1) high value of the product differentiation; and 2) a low search

effort. However, these two cases have opposite implications for the fraction of individuals

with debt: the former increases this fraction, whereas the latter decreases it. Thus, aggregate

fraction of individuals with credit card debt contributes to the identification of the parameters

of the product differentiation distribution and of the search effort function.

Moreover, as in structural search models of the labor market, the data sometimes display

events that should not occur according to the model, and these “zero-probability events”

identify the parameters of the distribution of the measurement error η. In search models of

the labor markets, these events include job-to-job transitions that feature a wage decrease,

for example. Instead, our model without this measurement error cannot fully account for the

observed heterogeneity in (i.e., the standard deviation of) accepted rates, and the measurement

error η allows the empirical model to match this feature of the data; thus, this difference

between the theory and the data identifies the parameter ση of the distribution of η.

Finally, the aggregate charge-off rate identifies the parameter β of the functional form of

the charge-off rate ρ(R). The fraction of borrowers further contributes to the identification of

the parameters of the distribution of borrowers’ willingness to pay z.
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Table 3: Calibrated Parameters

Λ 2.650 σe 0.210

µk 0.843 σk 0.743

µµ 3.537 σµ 0.391

α0 9.034 α1 2.203

k∗ 12.928 ση 0.278

β 0.002

Notes—This table reports the calibrated parameters.

5.3 Calibrated Parameters and Model Fit

Table 3 reports the calibrated parameters.

The parameters µk, σk and k∗ of the distribution of costs k imply that lenders’ average

costs equal 648 basis points and, thus, they display a small spread of 270 basis points over the

risk-free rate. Moreover, the heterogeneity of lenders’ costs in small—i.e., it equals 164 basis

points. The parameters µz and σz of the distribution of z mean that borrowers’ willingness

to pay for credit is, on average, large and displays large heterogeneity. Figure 1 plots the

distributions of lenders’ costs (left panel) and borrowers’ willingness to pay; the interval of

values over which they overlap is small, implying that there are large gains from trade in this

market.

The value of Λ indicates that sellers send, on average, approximately 2.7 credit card offers.

However, the parameters α0 and α1 imply that buyers consider only a small fraction of these

offers, as the cost of effort increases rapidly in λ: the cost of effort to evaluate an average

number of offers per period equal to λ = 1 corresponds to α0 = 21.103, or 2,110 basis points,

whereas the cost of effort to evaluate an average number of offers per period equal to λ = 2

corresponds to α0λ
α1 = 94.62, or 94,624 basis points. [These seem too large, obviously.]

The value of σe implies that the standard deviation of the product differentiation parameter

is small, relative to the overall heterogeneity in lenders’ costs and borrowers’ preferences.

Specifically, the variance of e accounts for approximately one percent of the overall variance

of c = R + e. In the next section, we will perform some comparative statics that further

illustrate how σe affects the equilibrium distributions of offered and accepted rates.

The parameter β implies, for example, that the charge-off rate βR on a credit card with

an interest rate of 20 percent equals 4.4 percent and raising the interest rate to 25 percent
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Figure 1: Distribution of lenders’ costs (left panel) and borrowers’ willingness to pay (right panel).

increases the charge-off rate by 1.1 percentage point to 5.5 percent.

Finally, the calibrate that ση equals 0.273, which means that the variance of the mea-

surement error on the accepted rates equals 0.278. This value, along with those of the other

estimates, implies that the model without measurement error η accounts for 55 percent of the

dispersion of accepted interest rates observed in the data, and that the error η improves the

fit, in particular by rationalizing the lowest- and the highest-R credit card loans.6

Table 4 presents a comparison between the empirical moments and the moments calculated

from the model at the calibrated parameters. The model matches the percentiles of the

distribution of accepted rates remarkably well, whereas it slightly overpredicts the percentiles

of the distribution of the difference between the highest and lowest offered interest rates; finally,

it matches quite closely the aggregate statistics on the fraction of credit card borrowers and

the charge-off rate.

5.4 Model Implications

We study the implications of the model evaluated at the parameters reported in Table 3.

The left panel of Figure 2 displays lenders’ optimal offered rate R(k) as a function of their

cost k, for values of the cost k from the risk free rate up to the cutoff value k∗ that the free

6Of course, if we calibrate the model without measurement error, the estimated variance of accepted R

increases.
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Table 4: Model Fit

Data Model

10th Percentile Accepted Offer Distribution 12.68 12.87

25th Percentile Accepted Offer Distribution 15.84 15.53

50th Percentile Accepted Offer Distribution 19.31 19.09

75th Percentile Accepted Offer Distribution 23.82 23.65

90th Percentile Accepted Offer Distribution 28.60 28.54

Fraction Receiving 2+ Offers (%) 75.00 74.22

Median Number of Offers Received, Conditional on 2+ Offers 3.00 3.00

Average Number of Offers Received, Conditional on 2+ Offers 4.00 3.32

10th Percentile Distribution of Differences in Offered Rates 0.00 1.38

30th Percentile Distribution of Differences in Offered Rates 2.25 3.48

50th Percentile Distribution of Differences in Offered Rates 4.34 5.31

70th Percentile Distribution of Differences in Offered Rates 7.25 7.02

90th Percentile Distribution of Differences in Offered Rates 9.25 9.13

Fraction with Credit Card Debt 36.70 36.35

Charge-Off Rate 4.01 4.14

Notes—This table reports the values of the empirical moments and of the moments calculated at the

calibrated parameters reported in Table 3.

entry condition 15 determines. Lenders’ offered rates are strictly increasing in their costs k, as

Proposition 5 states. The average markup, computed as R(k)(1−ρ(R(k)))−k

k
to take into account

the charge-off rate ρ(R(k)), equals 197 percent and the median markup equals 212 percent,

indicating that markups are skewed, as the lowest-cost lenders have markups in excess of 220

percent, whereas the highest-cost lenders have markups below 100 percent.

The right panel of Figure 2 displays borrowers’ optimal search effort λ(z) as a function of

their willingness to pay z, for values of the willingness to pay z up to 200. Since the lowest-

valuation borrowers (i.e., those whose valuations are below 15) have a willingness to pay that is

below almost all offered interest rates and the product differentiation parameter e has a small

variance, these borrowers do not exert any search effort. More generally, the search effort is

low—i.e., on average, borrowers evaluate 0.53 offers—and only borrowers whose willingness

to pay z is in the highest 15 percent of the distribution choose λ(z) larger than 1.

Figure 3 displays the probability P (R) that borrowers accept a credit card offer with an

interest rate R. This probability is obviously decreasing, but perhaps its most striking feature

is that, because of borrowers’ low search effort, it is quite flat—i.e., borrowers’ demand is quite

24



replacemen

Willingness to Pay z

S
ea
rc
h
E
ff
or
t
λ
z

In
te
re
st

R
at
e
R
(k
)

Cost k
0 42.65 85.35 9 12.9

0

0.75

1.5

10

20

30

Figure 2: The left panel displays lenders’ optimal interest rate R(k) as a a function of their cost k,
and the right panel displays borrowers’ optimal search effort λz as a function of their willingness to
pay z.
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Figure 4: The solid line displays the cumulative distribution function HR(R) of accepted interest
rates and the dashed line displays the cumulative distribution function FR(R) of offered rates.

inelastic: on average, it equals −1.26. The average probability P (R) equals 0.13, which, scaled

up by the aggregate mass of lenders Λ ≈ 2.7, matches the aggregate fraction of individuals

with credit card debt of 36 percent.

Figure 4 plots the distribution FR(R) of offered rates and the distribution HR(R) of ac-

cepted rates. Of course, the distribution of offered rates first-order stochastically dominates

the distribution of accepted rates. However, the difference between the two distributions is

small—e.g., the mean of the distribution of accepted rates equals 18.92, whereas that of the

distribution of offered rates equals 19.72. Two reasons account for this small difference: 1)

borrowers’ search effort λ(z) is low, as we recount above; and 2) borrowers do not always ac-

cept the offer with the lowest interest rate, because of the product-differentiation parameter e.

However, this second factor is quantitatively negligible, as the standard deviation σe is small:

the mean of the distribution of accepted rates would be almost identical if borrowers were to

always choose the offer with the lowest interest rates.7

7Of course, this is not an equilibrium argument, as the endogenous distribution of offered rates FR(·)
depends on the product differentiation e.
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5.5 Comparative Statics

We further illustrate the working of our model through three comparative statics. The first two

vary the two set of parameters that are the main focus of our framework—i.e., the standard

deviation σe of the product differentiation e and the parameter α0 that scales the marginal

cost of search effort. The third one varies the parameter β that affects the aggregate charge-off

rate.

Product Differentiation. Figure 5 compares outcomes of the model at the calibrated

parameters (solid line) to those of the model when we increase the standard deviation σe of

the product differentiation e (dashed line) while holding all other parameters at their calibrated

values. Since σe is calibrated to be small, we increase it fivefold.

The top panels show interesting outcomes. Most notably, the top left panel shows that

the interest rate function R(k) increases substantially when product differentiation is more

important for borrowers. The reason is that, a larger σe means that product differentiation

affects consumers’ choice across lenders relatively more; thus, lenders compete less aggressively

by offering higher interest rates.

The top right panel shows that a higher σe induces borrowers to decrease their search

effort. This is the result of two opposite effects. Specifically, the increase in the product

differentiation parameter induces borrowers to search more aggressively, since they are more

likely to receive an offer with product feature e that they value highly. However, the increase in

the product differentiation parameter induces lenders to increase their interest rates, thereby

decreasing borrowers’ expected surplus and, thus, their search effort. The increase in interest

rates outweighs the increase in product differentiation and, thus, search effort decreases.

The bottom-left panel displays the probability P (R) that borrowers accept an offer with

interest rate R. Because all lenders offer higher interest rates when σe is higher, the acceptance

probability of an offer with a given R increases relative that of the baseline case. Demand

becomes more inelastic—i.e., the average elasticity equals −1.13 compared to −1.26 in the

baseline case. However, the average acceptance probability across lenders as well as the

fraction of individuals with credit card debt are lower than in the baseline case—i.e., 0.12

and 0.32 vs. 0.13 and 0.36, respectively—indicating that the increase in interest rates may

outweigh borrowers’ benefits from larger values of e and, thus, borrowers may be worse off

when σe is higher.

The bottom-right panel displays the distribution of offered rates (thin lines) and of accepted

rates (thick lines). Both distributions obtained in the model with a higher σe (dashed lines)
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Figure 5: These panels display model outcomes model at the calibrated parameters (solid line) and
in the case when σ′

e = 5σe (dashed line). The top left panel displays lenders’ optimal interest rate
R(k) as a a function of their cost k; the top right panel displays borrowers’ optimal search effort λz

as a function of their willingness to pay z; the bottom left panel displays the probability P (R) that
borrowers accept an offer with interest rate R; and the bottom right panel displays the distribution
FR(R) of offered rates (thick lines) and the distribution HR(R) of accepted rates (thin lines).
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first-order stochastically dominate the corresponding distributions obtained in the model at

the calibrated σe (solid lines). In both cases, it is intuitive, as both offered rates and accepted

rates are higher if product differentiation matters more for consumers’ choices. The average

offer rate increases from 19.78 in the baseline case at the calibrated parameters to 25.76 in the

case with σe is higher, whereas the standard deviation of offers increases from 3.50 to 5.83,

thereby reiterating that offered rates are higher and more dispersed if product differentiation

matters more for borrowers. Similarly, the average accepted rate increases from 18.92 to

24.30, whereas the standard deviation of accepted rates increases from 3.42 to 5.45. Of

course, accepted rates differ more substantially at higher percentiles than at lower percentiles:

the 10th percentile increases by approximately four percentage points—i.e., from 14.73 to

18.80—whereas the 90th percentile increases by approximately nine percentage points—i.e.,

from 24.07 to 32.98.

Figure 5 also helps us understand why the calibrated model delivers a small value of σe :

interest rates would be even higher than they currently are if σe was larger.

Cost of Effort. Figure 6 compares outcomes of the model at the calibrated parameters

(solid line) to those of the model when we decrease the parameter α0 of the cost of effort by

50 percent (dashed line) while holding all other parameters at their calibrated values.

The top-left panel shows that the interest rate function R(k) is lower than that in the

baseline case, as all lenders uniformly decrease their interest rates. The top-right panel ex-

plains why this happens: since the cost of effort is lower, on average borrowers increase their

search effort—most notably high-valuation borrowers.

The bottom-left panel shows that the probability P (R) that borrowers accept an offer with

a given interest rate R increases relative that of the baseline case, since borrowers’ search effort

is higher. Demand becomes more elastic—i.e. the average elasticity equals −1.36—relative to

the baseline case. Moreover, lenders decrease their rates and obviously borrowers accept offers

with lower rates with a higher probability. These two forces increase the average acceptance

probability across lenders as well as the fraction of individuals with credit card debt relative to

their values in the baseline case—i.e., 0.17 and 0.46 vs. 0.13 and 0.36, respectively—indicating

that borrowers are better off when α0 is lower.

The bottom-right panel of Figure 6 displays the distribution of offered rates (thick lines)

and of accepted rates (thin lines). Both distributions obtained in the model with a lower

α0 (dashed lines) are first-order stochastically dominated by the corresponding distributions

obtained in the model at the calibrated α0 (solid lines). This is because low-cost lenders

lower their offered rates when the cost of effort is lower and, thus, borrowers’ search more.
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Figure 6: These panels display model outcomes at the calibrated parameters (solid line) and in the
case when α′

0 = 0.5α0 (dashed line). The top left panel displays lenders’ optimal interest rate R(k)
as a a function of their cost k; the top right panel displays borrowers’ optimal search effort λz as
a function of their willingness to pay z; the bottom left panel displays the probability P (R) that
borrowers accept an offer with interest rate R; and the bottom right panel displays the distribution
FR(R) of offered rates (thick lines) and the distribution HR(R) of accepted rates (thin lines).
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The average offered and accepted rates equal 17.37 and 16.18, respectively, and the standard

deviation of offered and accepted rates equal 3.73 and 3.55, respectively, when the cost-of-

effort parameter α0 is half of the calibrated value. As the bottom plots shows, the lower cost

of effort affects lower percentiles and higher percentiles in similar ways: for instance, the 10th

percentile of the distribution of accepted rates equals 12.10 (versus 14.73 in the calibrated

model) and the 90th percentile equals 21.69 (versus 24.07 in the calibrated model).

Charge-off Rate. Figure 7 compares outcomes of the model at the calibrated parameters

(solid line) to those of the model when we increase the parameter β of the charge-off rate

fourfold (dashed line), while holding all other parameters at their calibrated values.

The top-left panel shows that lenders charge lower interest rates, as the function R(k)

lies above that of the baseline case. The reason is that borrowers are more likely to default

on higher-interest-rate loans and this curbs lenders’ optimal rates; hence, if charge-off rate

increases, as a higher parameter β captures, the restraint on lenders’ rates increases and, thus,

their optimal rates decrease. Notably, the decrease is larger for those lenders that charge higher

interest rates, since these lenders are those that experience higher default rates and, thus, are

harmed the most when the default rate increases.

The top-right panel shows how borrowers’ search effort respond to these higher rates, dis-

playing contrasting effects between low-valuation and high-valuation borrowers. Specifically,

since interest rates are lower in this counterfactual case relative to the baseline case, the

expected benefits of a credit card loan for low-valuation borrowers are higher; hence, they

increase their search effort. High-valuation borrowers are more likely to receive multiple offers

than low-valuation borrowers. Since the top-left panel shows that the dispersion of inter-

est rates has decreased in the counterfactual case, the increase in the search effort of these

high-valuation borrowers is lower than that of low-valuation borrowers because the gains of

comparison shopping are lower when the dispersion of rates is lower. However, the top-right

panel shows that the quantitative importance of these effects is minimal.

The bottom-left panel shows that the probability P (R) that borrowers accept an offer

with a given interest rate R decreases relative that of the baseline case, since lenders decrease

their rates and, thus, borrowers are more likely to accept offers with lower rates. However,

lenders decrease their rates and obviously borrowers accept offers with lower rates with a

higher probability. These two forces push into opposite directions the changes in the average

acceptance probability across lenders as well as the fraction of individuals with credit card

debt relative to their values in the baseline case, so that the overall changes are negligible,

though positive—i.e., 0.134 and 0.366 vs. 0.131 and 0.357, respectively. Demand becomes less
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Figure 7: These panels display model outcomes at the calibrated parameters (solid line) and in the
case when β′ = 4β (dashed line). The top left panel displays lenders’ optimal interest rate R(k)
as a a function of their cost k; the top right panel displays borrowers’ optimal search effort λz as
a function of their willingness to pay z; the bottom left panel displays the probability p(R) that
borrowers accept an offer with interest rate R; and the bottom right panel displays the distribution
FR(R) of offered rates (thick lines) and the distribution HR(R) of accepted rates (thin lines).
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elastic relative to the baseline case: its average elasticity equals −1.20.

The bottom right-panel of Figure 6 displays the distribution of offered rates (thick lines)

and of accepted rates (thin lines). Both distributions obtained in the model with a higher

β (dashed lines) are first-order stochastically dominated by the corresponding distributions

obtained in the model at the calibrated lower β (solid lines). The average offered and accepted

rates equal 18.10 and 17.26, respectively, and the standard deviation of offered and accepted

rates equal 3.40 and 3.32, respectively, when the parameter β of charge-off rate is larger than

its calibrated value.

6 Policy Experiments

In this Section, we use our model to study two policy experiment, motivated by recent regu-

latory interventions: 1) A cap on the interest rate, captured by a maximum rate R̄; 2) Higher

compliance costs for lenders, captured by a higher fixed cost Φ. The goal of both experiments

is to study how borrowers’ search effort and lenders’ offered rates respond and, thus, the

equilibrium distribution of accepted rates.

6.1 Cap on Interest Rates

As we recount in the Introduction, several countries recently introduced price controls in

markets for some consumer financial products, and are currently considering intervening in a

larger number of these product markets. The goal of this section is to study the effects of a

price cap on the equilibrium of our model.

Most notably, the literature highlights that these price caps may have unintended conse-

quences: Fershtman and Fishman (1994) and Armstrong et al. (2009) show that, in markets

with search frictions, price caps may increase the equilibrium prices paid by consumers. The

reason is that price caps may reduce price dispersion and this reduction decreases consumers’

search efforts, thereby increasing suppliers’ market power and, thus, prices. This indirect

effect may dominate the direct effect of price caps on those consumers who were paying

prices higher than the cap before the regulation. Thus, the introduction of a price cap has

a theoretically ambiguous effect on the equilibrium price paid by consumers. Therefore, it

is an empirical/quantitative question which of the two opposing effects dominates and, thus,

whether or not price caps benefit borrowers; our calibrated model—which features the margins

of adjustment that the literature focuses on—is well suited to answer this question.
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Figure 8: These panels display model outcomes at the calibrated parameters (solid line) and in the
case when interest rates are capped at 22.5 percent (dashed line). The top left panel displays lenders’
optimal interest rate R(k) as a a function of their cost k; the top right panel displays borrowers’
optimal search effort λz as a function of their willingness to pay z; the bottom left panel displays the
probability P (R) that borrowers accept an offer with interest rate R; and the bottom right panel
displays the distribution FR(R) of offered rates (thick lines) and the distribution HR(R) of accepted
rates (thin lines).
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We study this counterfactual case in general equilibrium—i.e., we require that lenders’ free

entry condition (15) holds. Thus, some lenders may exit the market, in which case we decrease

the aggregate arrival rate of offers to a new value Λ′ proportionally. More precisely, the new

arrival rate equals Λ′ = ΛG(k∗∗)
G(k∗)

, where k∗∗ is the marginal cost of the marginal lender—i.e.,

the lender that satisfies the free entry condition (15)—in the counterfactual case, and k∗ is

the marginal cost of the marginal lender in the baseline case.

Figure 8 compares outcomes of the model at the calibrated parameters (solid line) to those

of the model with the price cap of R̄ = 22.5 percent, while holding all other parameters at

their calibrated values.

The top-left panel shows interesting outcomes. First, the highest-cost lenders exit the

market, even tough the cap is above their marginal cost. Specifically, frictions are such that,

even if these lenders were to decrease their interest rates substantially, their market share would

not increase as much as to allow them to cover their fixed costs; hence they exit. Second, all

surviving lenders charge lower interest rates, as the function R(k) lies strictly below that of

the baseline case. In particular, the lender with marginal cost k∗∗ finds it worthwhile to drop

its rate to satisfy the cap constraint, rather than exit; similarly, all other lenders with lower

marginal costs charge slightly below their higher-cost competitors.

The top-right panel shows how borrowers’ search effort respond to these higher rates, dis-

playing the indirect and direct effects that Fershtman and Fishman (1994) and Armstrong et al.

(2009) emphasize. Specifically, low-valuation borrowers increase their search effort to obtain

a credit card loan, since the cap reduces the level of interest rates relative to the baseline

case. However, the increase in search effort of high-valuation borrowers is lower than that

of low-valuation borrowers, since the price cap reduces the dispersion of interest rates across

lenders and, thus, reduces the benefits of comparison shopping.

The bottom-left panel displays the probability P (R) that borrowers accept an offer with

interest rate R. The acceptance probability of an offer with a given R decreases relative that

of the baseline case because the price cap reduces lenders’ rates and, thus, borrowers are less

likely to accept an offer with a given R and more likely to accept offers with lower Rs. The

average acceptance probability across lenders as well as the fraction of individuals with credit

card debt increase relative to the baseline case, though the changes are small—i.e., 0.146

and 0.374 vs. 0.131 and 0.357, respectively. On average, demand is more elastic than in the

baseline case: the average elasticity equals −1.33 vs. −1.26 in the baseline case. Overall,

these changes indicate that the price cap increases consumer welfare.

The bottom right panel of Figure 8 displays the distribution of offered rates (thick lines)
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and of accepted rates (thin lines). Both distributions in the case of a interest rate ceiling

(dashed lines) are first-order stochastically dominated by the corresponding distributions ob-

tained in baseline case with no ceiling (solid lines). The average offered and accepted rates

equal 16.36 and 15.68, respectively, and the standard deviation of offered and accepted rates

equal 2.79 and 2.70, respectively.

6.2 Higher Compliance Costs

A second set of regulations that have been introduced since the Financial Crisis featured

increased compliance costs on lenders. Through the lenses of our model, this can be interpreted

as an increase in lenders’ fixed cost Φ and, thus, our model is well-suited to understand the

effect of this increase on the market equilibrium.

The increase in the fixed costs will share with our previous counterfactual about the

introduction of a price cap the feature that highest-costs lenders will exit the market; thus,

this counterfactual with larger fixed costs will allow us to understand how much the results

displayed in Figure 8 obtain because of the exit of these highest-cost lenders. Moreover,

Janssen and Moraga-González (2004) shows that a decrease in the number of active firms

could increase search effort because it may decrease price dispersion, possibly leading to higher

average prices.

To facilitate the comparison with our price cap experiment of Figure 8, we increase the

fixed cost Φ so that the marginal lender has marginal cost equal to k∗∗—i.e., the marginal cost

of the lender that satisfies the free entry (15) condition in the case of the price cap R̄ = 22.5.

In practice, this implies that the new fixed cost Φ′ is 16-percent larger relative to that of

the baseline case. We further decrease the aggregate arrival rate of offers to a new value Λ′

correspondingly—i.e., the new arrival rate equals Λ′ = ΛG(k∗∗)
G(k∗)

.

Figure 9 compares outcomes of the model at the calibrated parameters (solid line) to

those of the model with a higher fixed cost Φ. Overall, the panels of Figure 9 show that the

outcomes of this counterfactual case are quite similar to those of the baseline case. Specifically,

the top-left panel shows that, while the highest-cost lenders exit the market, all other lenders

charge rates that are almost identical to their optimal rates in the baseline case. As a result,

borrowers search effort changes minimally, as the top-right panel documents. The bottom-

left panel displays the probability P (R) that borrowers accept an offer with interest rate R

changes because borrowers do not accept offers with the highest interest rates, since borrowers

that offered them in the baseline case are no longer in the market. The average acceptance
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Figure 9: These panels display model outcomes at the calibrated parameters (solid line) and in
the case when the fixed cost Φ′ = 1.16Φ (dashed line). The top left panel displays lenders’ optimal
interest rate R(k) as a a function of their cost k; the top right panel displays borrowers’ optimal search
effort λz as a function of their willingness to pay z; the bottom left panel displays the probability
P (R) that borrowers accept an offer with interest rate R; and the bottom right panel displays the
distribution FR(R) of offered rates (thick lines) and the distribution HR(R) of accepted rates (thin
lines).
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probability across lenders as well as the fraction of individuals with credit card debt increase

relative to the baseline case, though the changes are small—i.e., 0.142 and 0.364 vs. 0.131 and

0.357, respectively. The average elasticity of demand equals −1.34 (vs. −1.26 in the baseline

case). Overall, these changes indicate that higher compliance costs may increase consumer

welfare, although this increase is lower than that obtained through price caps. The bottom

tight panel of Figure 9 show that the distributions of offered rates (thick lines) and of accepted

rates (thin lines) in a market with a higher fixed cost Φ (dashed line) first-order stochastically

dominate the corresponding distributions obtained in the baseline case (solid lines), as the

highest-rate lenders are no longer active. The average offered and accepted rates equal 18.39

and 17.61, respectively, and the standard deviation of offered and accepted rates equal 3.11

and 3.04 respectively. Hence, the magnitudes of the changes in these interest rate statistics

relative to those of the baseline case are small, most notably when we compare them to those

that we obtained under the experiment of the price cap displayed in Figure 8.

7 Conclusions

This paper develops a framework to study frictions in credit card markets. We focus on two

features to explain the observed large dispersion in the interest rates that individuals pay on

their credit cards: endogenous (low) search effort and product differentiation.

We calibrate the model using data on the U.S. credit card market. The model fits the

data reasonably well. Our analysis implies that low search effort accounts for almost all the

dispersion in interest rates, whereas product differentiation is negligible.

We should point out that these results obtain in a model with important limitations and,

thus, we believe that it can be enhanced in several ways. As we recount in Section 3, our

cross-sectional data impose some limitations on what our model can identify in the data,

and richer data on borrowers and lenders would allow us to enrich our current framework.

Specifically, multidimensional heterogeneity is difficult to identify with our data; thus, our

model focuses on a single dimension of heterogeneity across borrowers—i.e., their willingness

to pay for credit—and across lenders—i.e., their funding cost—and restricts other parameters

to be homogeneous across individuals. Many structural search models share these features

due to similar data constraints, and one objective of this paper is to adapt and to enrich these

models to understand two key characteristics—i.e., product differentiation and consumer lim-

ited search effort/inattention—of credit card markets. Nonetheless, our theoretical framework

delivers a large dispersion in credit card offers, and our quantitative analysis is successful in
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matching this large heterogeneity observed in the data.

For these main reasons, we view this paper as a first step in quantifying the role of search

effort/inattention in search markets. The quantitative analysis clarifies the data requirements

to calibrate/estimate such a model and how the parameters are identified, and the calibration

delivers a sense of the magnitudes involved, allowing us to assess which forces dominate.

Nonetheless, we hope that the future availability of richer data will allow us to incorporate

additional features of credit card markets and other markets for consumer financial product.

39



References

Adams, W., L. Einav, and J. Levin (2009): “Liquidity Constraints and Imperfect Infor-

mation in Subprime Lending,” American Economic Review, 99, 49–84.

Agarwal, S., S. Chomsisengphet, C. Liu, and N. S. Souleles (2015a): “Do Con-

sumers Choose the Right Credit Contracts?” The Review of Corporate Finance Studies, 4,

239–257.

Agarwal, S., S. Chomsisengphet, N. Mahoney, and J. Stroebel (2015b): “Regu-

lating Consumer Financial Products: Evidence from Credit Cards,” The Quarterly Journal

of Economics, 130, 111–164.

Agarwal, S., J. C. Driscoll, X. Gabaix, and D. Laibson (2008): “Learning in the

Credit Card Market,” Working Paper 13822, National Bureau of Economic Research.

Allen, J., R. Clark, and J.-F. Houde (Forthcoming): “Search Frictions and Market

Power in Negotiated Price Markets,” Journal of Political Economy.

Armstrong, M., J. Vickers, and J. Zhou (2009): “Consumer Protection and the Incen-

tive to Become Informed,” Journal of the European Economic Association, 7, 399–410.

Ausubel, L. M. (1991): “The Failure of Competition in the Credit Card Market,” The

American Economic Review, 81, 50–81.

Burdett, K. and K. L. Judd (1983): “Equilibrium Price Dispersion,” Econometrica, 51,

955–969.

Butters, G. R. (1977): “Equilibrium Distributions of Sales and Advertising Prices,” Review

of Economic Studies, 44, 465–491.

Calem, P. S. and L. J. Mester (1995): “Consumer Behavior and the Stickiness of Credit-

Card Interest Rates,” The American Economic Review, 85, 1327–1336.

Campbell, J. Y., H. E. Jackson, B. Madrian, and P. Tufano (2011a): “The Regula-

tion of Consumer Financial Products: An Introductory Essay with Four Case Studies,” in

Moving forward: the future of consumer credit and mortgage finance, ed. by N. P. Retsinas

and E. S. Belsky, Brookings Institution Press, chap. 7, 206–244.

40



Campbell, J. Y., H. E. Jackson, B. C. Madrian, and P. Tufano (2011b): “Consumer

Financial Protection,” Journal of Economic Perspectives, 25, 91–114.

Einav, L., M. Jenkins, and J. Levin (2012): “Contract Pricing in Consumer Credit

Markets,” Econometrica, 80, 1387–1432.

Fershtman, C. and A. Fishman (1994): “The ’Perverse’ Effects of Wage and Price Con-

trols in Search Markets,” European Economic Review, 38, 1099–1112.

Galenianos, M. and A. Gavazza (2017): “A Structural Model of the Retail Market for

Illicit Drugs,” American Economic Review, 107, 858–896.

Gavazza, A. (2016): “An Empirical Equilibrium Model of a Decentralized Asset Market,”

Econometrica, 84, 1755–1798.

Grodzicki, D. (2015): “Competition and Customer Acquisition in the US Credit Card

Market,” Mimeo, Pennsylvania State University.

Hong, H. and M. Shum (2006): “Using Price Distributions to Estimate Search Costs,” The

RAND Journal of Economics, 37, 257–275.
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APPENDIX

A Auxiliary Results

A.1 Distribution of Offers in the Survey

We pointed out in Section 5.2 that it seems plausible that survey respondents report all offers

that they receive, not only those that they would consider if they were not surveyed. We

now derive the distribution of the number of offers and the distribution of the difference

between the offers with the smallest and the largest interest rates under the assumption that

respondents report all offers that they receive.

The expected number of offers for a borrower who receives n ≥ 2 offers is:

E[n|n ≥ 2] =
Λ
(

1− e−Λ
)

1− e−Λ − Λe−Λ
.

We obtain the unconditional probability that the difference between the highest and lowest

offers is less than x by summing Prob[RH − RL ≤ x|n] over all possible numbers of offers,

n ≥ 2, whose arrival rate equals Λ:

D(x) =
Λe−Λ

1− e−Λ − Λe−Λ

∫ R

R

F ′

R(RL)
(

eΛ(FR(RL+x)−FR(RL)) − 1
)

dRL.

A.2 Distribution of Accepted Offers

We now provide an alternative way to derive the distribution of accepted interest rates by

examining borrowers’ choices.

Consider a type-z borrower. Let Qz denote the probability that a type-z borrower does

not get a loan. This occurs if he receives/examines no offer or if the cost of all offers is greater

than his valuation. Therefore:

Qz =
∞
∑

n=0

e−λzλnz
n!

(

1− Fc(z)
)n

= e−λzFc(z)

∞
∑

n=0

e−λz

(

1−Fc(z)
)

(

λz
(

1− Fc(z)
)

)n

n!

= e−λzFc(z)
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The share of borrowers without a loan is:

Q =

∫ z

z

e−λzFc(z)dM(z)

The lowest-cost offer when examining n offers is distributed according to 1−
(

1−Fc(c)
)n
.

The cost distribution of accepted offers for type-z borrowers is:

Hc(c, z) =
1

1−Qz

(

∞
∑

n=0

e−λzλnz
n!

(

1−
(

1− Fc(c)
)n
))

=
1

1−Qz

(

1− e−λzFc(c)

∞
∑

n=0

e−λz

(

1−Fc(c)
)

(

λz
(

1− Fc(c)
)

)n

n!

)

=
1− e−λzFc(c)

1−Qz

=
1

1−Qz

(

1− e
−λz

∫
R

R
Fe(c−x)dFR(x)

)

, if c ≤ z

Hc(c, z) = 1, c > z

The distribution of accepted interest rates for type-z borrowers is:

HR(R, z) =

∫ z−R

−∞

Hc(R + e, z)dFe(e)

=
1

1−Qz

∫ z−R

−∞

(

1− e
−λz

∫
R

R
Fe(R+e−x)dFR(x)

)

dFe(e).

The distribution of accepted interest rates across all borrowers is:

HR(R) =
1

1−Q

∫ z

z

sz

∫ z−R

−∞

(

1− e
−λz

∫
R

R
Fe(R+e−x)dFR(x)

)

dFe(e)dM(z). (A1)
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