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Abstract

This paper provides new theorems for calculating the asymptotic distribution of

extremum estimators along sequences of parameters that lead to an unidentified limit.

These theorems are formulated for models that are doubly parameterized by structural

and reduced form parameters. This paper applies these theorems to weak identification

in factor models. Identification in factor models can be characterized in terms of a rank

condition on the factor loadings. Weak identification in factor models is complicated

by the fact that the boundary of the identified set may not be differentiable and the

limit of the objective function may be degenerate. The new theorems are capable

of handling these difficulties, yielding inference that is robust to failure of the rank

condition. Explicit robust inference procedures are proposed for two example models:

one model with one weak factor and one model with two factors that may be weak or

entangled. This paper also provides an empirical application of inference for entangled

factors in a model of parents investing in their children.

1 Introduction

Identification is an important condition for classical statistical theory. When identifica-

tion fails, standard results on consistency and asymptotic normality of estimators, as well

as valid inference using standard test statistics are no longer true. Furthermore, assump-

tions that ensure identification are often difficult to justify in empirical applications, and

researchers may be interested to check the sensitivity of their results to an identification

assumption. For these reasons, researchers benefit from robust inference procedures, which

do not rely on identification assumptions to be valid.

This paper provides a robust inference procedure for a class of models that are generically

identified. This means that almost everywhere in the parameter space, the parameters are
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identified, but there is a set of measure zero on which the parameters are not identified.

Generally, whether or not the true parameter belongs to the set of measure zero can be

formulated in terms of a rank condition.

In addition to being generically identified, the class consists of models that are doubly

parameterized by structural and reduced form parameters. The reduced form parameters

are always identified, while the structural parameters are only generically identified. The

structural parameters can be divided into two types: ψ, which is always identified, and π,

which may or may not be identified depending on the true value of ψ. The structure of

identification is a characterization of the set of values of ψ that lead to π being unidentified.

In doubly parameterized models, there exists a mapping from the structural to the reduced

form parameters that encapsulates the structure of identification. For a fixed value of ψ,

this mapping is invertible if and only if π is identified.

This paper advocates robust inference that proceeds in two steps. In the first step, a

test determines whether or not the rank condition is close to failing. In the second step,

a standard test statistic, either a Wald, a likelihood ratio, or a Lagrange multiplier test

statistic, is compared to a critical value. If the rank condition is close to failing, the test

statistic is compared to a robust critical value, while if the rank condition is not close to

failing, the test statistic is compared to a standard chi-squared critical value. The robust

critical value is chosen so that this procedure controls size whether or not identification holds.

Calculating the robust critical value involves characterizing the asymptotic distribution

of the test statistic along drifting sequences of parameters that converge to points of identi-

fication failure. These sequences are weakly identified and induce nonstandard limit theory

for estimators and test statistics. This paper provides new theorems for this nonstandard

limit theory along weakly identified sequences of parameters within the class of generically

identified, doubly parameterized models. The theorems assume regularity conditions on the

reduced form, including a quadratic expansion on the objective function, and smoothness

conditions on the mapping from structural to reduced form parameters. Under these as-

sumptions, the theorems characterize the limiting distribution of an extremum estimator for

the structural parameters.

These theorems are novel because of three technical difficulties that they can handle.

First, the structure of identification is allowed to be very flexible, imposing only smoothness

on the mapping from structural to reduced form parameters, rather than a particular form.

This more flexible structure of identification is handled by taking a Taylor series expansion

of the mapping that is globally valid over the identified set, out to the required order.

Second, the identified set for π, when π is not identified, may still be partially identified by

bounds that are allowed to depend on the other parameters, ψ, in a possibly nondifferentiable

way. This is handled by defining an auxiliary estimator, whose identified set does not depend
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on the other parameters, but drifts with the sample size. The discrepancy between the

distribution of the auxiliary estimator and the distribution of the original estimator can be

squeezed between the fixed, nondifferentiable boundary and the drifting boundary, showing

that it is negligible.

Third, an important step in the proof of the theorems is characterizing the limit of the

objective function as a stochastic process over the unidentified π parameters. Theorem 1

requires that this limit has a unique minimum over π almost surely. However, Theorem 2

allows for the possibility that this limit is degenerate and does not have a unique minimum.

Theorem 2 handles this degeneracy by restandardizing the objective function to a higher

rate so that higher-order terms that are nondegenerate become relevant in the limit.1

These theorems provide nonstandard limit theory for extremum estimators along weak

sequences of parameters in the class of generically identified models. This limit theory

extends to test statistics by the continuous mapping theorem. Robust critical values can

be calculated by taking the supremum over quantiles of the asymptotic distributions for a

comprehensive class of sequences. These robust critical values control asymptotic rejection

probabilities whether or not the true value of the parameter is identified, providing a valid

robust inference procedure.

The robust inference procedure presented in this paper is related to other robust inference

procedures that have been proposed in the literature. Andrews and Cheng (2012, 2013, 2014)

present a related procedure for robust inference. Their procedure requires a particular form

for the structure of identification, which is that the magnitude of a parameter, β, determines

the identification status of π. For some models, no reparameterization exists that satisfies

this structure, including Examples 1 and 2 in this paper. Also, Andrews and Cheng (2012,

2013, 2014) do not allow for the boundary of the identified set for π to depend on the

other parameters, ψ, nor do they allow for the limit of the objective function as a stochastic

process over π to be degenerate.2 Also note that there are models that the Andrews and

Cheng approach covers that are not covered by this paper. In particular, models that do not

have identified reduced form parameters do not fit into the class of models that this paper

considers, but are covered by Andrews and Cheng (2012, 2013, 2014).

For a given model, finding a reparameterization that fits the structure of Andrews and

Cheng (2012) may be difficult. Han and McCloskey (2016) provide a systematic reparam-

eterization procedure that leads to a reparameterized model that satisfies the structure of

Andrews and Cheng (2012). This reparameterization procedure may also be helpful for

1This method is similar to Sargan (1983) and Cho and White (2007), in which higher-order expansions
are necessary for limit theory. This paper is different from Sargan (1983) in that the parameters may not be
identified of any order. Instead, the higher-order terms are used for the limit theory. Cho and White (2007)
provide limit theory for mixture models, while this paper provides limit theory for a general class of models.

2In Andrews and Cheng (2012), dependence of the boundary of the identified set on ψ is excluded by
Assumption B1, and degeneracy in the limit of the objective function is excluded by Assumption C6.
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satisfying the structure in this paper, specified in Section 3.

McCloskey (2012) advocates a robust inference procedure that takes the supremum over

quantiles of the asymptotic distributions for a subset of the sequences, rather than a com-

prehensive class of sequences. The subset is determined in a data dependent way and size is

controlled by a Bonferroni bound. This is an appealing alternative for translating the limit

theory into a robust inference procedure.

I. Andrews and Mikusheva (2016a) provide a geometric approach to robust inference in

minimum distance models. Their method considers the null hypothesis as a manifold in the

reduced form parameter space and bounds a minimum distance test statistic using a bound

on the curvature of the null hypothesis. This bound holds for an asymptotically normal

estimator for the reduced form parameters. In contrast, this paper tests the hypothesis in

the structural parameter space using standard test statistics and characterizing nonstandard

limit theory under weak identification.

Chen, Christensen, O’Hara, and Tamer (2016) advocate a procedure for robust inference

based on Markov Chain Monte Carlo simulations to construct a confidence set for the identi-

fied set. They assume a quadratic expansion on the reduced form parameters that is closely

related to Assumption QE in this paper. They prove Bernstein-von Mises type theorems

for the posterior distribution of test statistics, while this paper characterizes the asymptotic

distributions of test statistics along weakly identified sequences of parameters.

There is also a very wide literature on robust inference in models defined by moment

equalities. These approaches are valid alternatives, but come with some drawbacks. First,

many of these approaches rely on special statistics for robust inference.3 In contrast, this

paper uses standard test statistics that are commonly used for standard inference and cal-

culates new critical values which are robust to weak identification. This implies that under

identification, the robust inference procedure numerically agrees with standard inference

with probability approaching 1. Second, many of these approaches work well for full vector

inference, but rely on projection or plug-in methods for subvector inference.4 The projection

methods can be very conservative and the plug-in methods require the nuisance parameters

to be identified. However, subvector inference in this paper follows naturally from the limit

theory for standard test statistics of subvector hypotheses. Finally, the moment equality

approach defines weak identification according to the rate of convergence of the moments,

or the Jacobian.5 In contrast, this paper defines weak identification according to the invert-

ibility of a mapping from structural to reduced form parameters. The invertibility definition

3Examples include Kleibergen (2005, 2007), I. Andrews (2016), Andrews and Guggenberger (2015, 2016),
and I. Andrews and Mikusheva (2016b).

4Examples include Dufour and Taamouti (2005), Guggenberger and Smith (2005), Otsu (2006), and
Chaudhuri and Zivot (2011).

5See Assumption C in Stock and Wright (2000).
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is more naturally related to identification, defined as the existence of a mapping from the

distribution of the data to the parameters. Furthermore, the reduced rank of the Jacobian

is the mechanism through which weak identification affects the first order asymptotics. The

invertibility definition allows a more full characterization of the effect of weak identification

on the asymptotics, to an arbitrary order. For these reasons, this paper advocates using the

invertibility definition of weak identification and robust inference using the robust critical

values in this paper.

Factor models have been used for a variety of applications in economics. One way that

factor models are used is by specifying structure on the factors and the errors and estimating

the distribution of the factors by (quasi) maximum likelihood.6 This type of factor model

has been studied by Anderson and Rubin (1956), Lawley and Maxwell (1971), and in a high

dimensional context by Bai and Li (2012, 2016).

Another way that factor models are used is to define the factors to be those random

variables that explain a maximal amount of the covariation between the observed variables.

These models tend to be estimated by principal components in a high dimensional context.7

Within this framework, Onatski (2012) has addressed the question of the asymptotic distri-

bution of the principal components estimator with weak factors. However, weak factors in

a high dimensional context are very different. In particular, the definition of weak factors

means that the strength of the signal has the same order as the noise. Weak factors in a high

dimensional context have the same strength as strong factors in a low dimensional context.

This paper considers weak factors in a low dimensional context that, in additional to not

dominating the noise, may also fail to be identified.

Also, Kleibergen (2009) considers tests of risk premia in linear factor models. Although

the risk premia may be weakly identified, the distribution of the factors is always strongly

identified because that paper considers the case where the factors are observed.

The identification status of factor models estimated by maximum likelihood can be char-

acterized by a rank condition on the factor loadings. When the rank condition fails, the

distribution of the factors is not identified. This occurs when a factor is weak, the number

of true factors is less than the specified number, or the factors are entangled, which means

that observed variables depend on the same linear combination of the factors. Simulations

by Briggs and MacCallum (2003) and Ximénez (2006, 2007, 2009, 2015) have shown that

standard estimation methods have difficulty detecting weak factors, as defined by the rank

condition on the factor loadings.

6Factor models have been used in this way to study school quality (see Black and Smith (2006) and Bernal,
Mittag, and Qureshi (2016)), personality psychology in economics (see Almlund, Duckworth, Heckman, and
Kautz (2011)), and parental investments in the skills of their children (see Cunha, Heckman, and Schennach
(2010)), among other applications.

7See Bai and Ng (2002).
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The previous literature on identification in factor models provides sufficient conditions for

identification generically over the parameter space.8 This paper provides a robust inference

procedure for the distribution of the factors, as well as the factor loadings, with respect to

failure of the rank condition. This is done by applying the general two step method. This

paper divides sequences of parameters converging to points of rank condition failure into

classes and applies Theorems 1 and 2 to characterize the asymptotic distributions of test

statistics within each class. Robust critical values are calculated by taking the supremum

over the quantiles of these asymptotic distributions. The resulting robust inference procedure

is uniformly valid over failure of the rank condition. To my knowledge, this is the only paper

that provides robust inference in factor models with respect to failure of identification.

The asymptotic distributions calculated for factor models tend to have mass points at

the endpoints of the identified set. These mass points correspond to Heywood cases, when

a variance parameter is estimated to be zero. A long-standing puzzle in factor models is

explaining why Heywood cases occur so often in finite samples.9 The limit theory in this

paper provides an explanation by characterizing asymptotic distributions for which Heywood

cases occur with positive probability in the limit.

This paper applies the robust inference approach to two example factor models. In the

first example, there is only one factor that may be unidentified. The rank condition reduces

to the number of nonzero factor loadings. The factor is strong if three factor loadings are

nonzero. The factor is unidentified if one or more factor loadings are zero. If only one factor

loading is nonzero, then the true model essentially has zero factors. This is a simple example

in which the technical difficulties of a nondifferentiable boundary of the identified set and

degeneracy in the limit of the objective function are present. Theorems 1 and 2 are required

to characterize the asymptotic distribution of test statistics along sequences of parameters

converging to points of rank condition failure.

In the second example, there are two factors, one or both of which may not be identified.

The rank condition allows for three ways that the factors may not be identified. First, one

of the observed variables may be irrelevant, in the sense that both factor loadings associated

with that observed variable are zero. Second, the second factor may be weak in the sense

that it does not have three factor loadings that are nonzero. This includes the case where

only one factor loading is nonzero, so the model has only one factor. Third, the factors may

be entangled in the sense that observed variables depend on the same linear combination of

the two factors. This paper applies the general two step inference approach to this example,

providing inference that is robust to rank condition failure.

This paper applies the second example to an empirical model of parents investing in

8For example, see Shapiro (1985) and Bekker and ten Berge (1997).
9See Heywood (1931) and the discussion of Heywood cases in Bollen (1989).
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their children.10 Cunha, Heckman, and Schennach (2010) estimate the production function

of skills in children as a function of parental investments. The model assumes that a variety

of observed variables of the home environment of the children can be summarized in two

parental investment factors—investment in cognitive skills and investment in noncognitive

skills. However, when they take the model to the data, they assume that there is only one

type of parental investments out of a concern for identification failure. This assumption

eliminates important questions about the relative effects of parental investment in cognitive

versus noncognitive skills. For example investment in noncognitive skills may be more effec-

tive for developing skills at a different age than investment in cognitive skills, or there may

be complementarities between investment in cognitive skills for one age and investment in

noncognitive skills for another age. In an attempt to allow for these more nuanced questions,

this paper takes the two parental investment model to the same data and performs robust

inference, which does not require identification, on the distribution of the parental invest-

ment factors. I find that for one age category the factors are entangled and not identified,

while for all the other age categories the factors are identified.

The rest of the paper proceeds as follows. Section 2 defines factor models, characterizes

identification in factor models according to a rank condition, and describes an example with

one factor. Section 3 defines a class of models and states theorems for characterizing asymp-

totic distributions of an extremum estimator along weakly identified sequences. Section 4

provides a procedure for robust inference in Example 1. Section 5 provides a procedure

for robust inference in Example 2. Section 6 reports the results of robust inference for the

distribution of parental investments in the cognitive and noncognitive skills of their children.

Section 7 concludes. An appendix contains additional calculations and proofs. There are

three additional documents, called Supplemental Materials 1, 2, and 3. Supplemental Mate-

rials 1 proves Theorems 1 and 2 for the general class of models and supplies additional limit

theory for strong and semi-strong sequences. Supplemental Materials 2 provides the details

for Example 1, a one factor model with a weak factor, stating and proving a theorem for

robust inference. Supplemental Materials 3 provides the details for Example 2, a two factor

model with possibly unidentified factors, stating and proving a theorem for robust inference.

2 Identification in Factor Models

This section discusses factor models which are a motivating example of the general theory

in Section 3. Factor models postulate the existence of unobserved variables (factors) that

10Other papers in this literature that use factor models in this way are Cunha and Heckman (2008),
Heckman, Pinto, and Savelyev (2013), Attanasio, Cattan, Fitzsimons, Meghir, and Rubio-Codina (2015),
Attanasio, Meghir, and Nix (2015), Lekfuangfu (2015), Agostinelli and Wiswall (2016a, 2016b), and Pavan
(forthcoming).
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explain the covariation between observed variables. A factor model is defined by the equation:

Xi = ΛFi + εi, (2.1)

where Xi is a p-vector of observed variables, Fi is an m-vector of unobserved factors, εi is

a p-vector of unobserved error terms, and Λ is a p ×m matrix of coefficients called factor

loadings. Let the covariance matrix of the factors be given by Σ and the covariance matrix of

the errors be given by a diagonal matrix, Φ. The parameters in Λ, Σ, and Φ can be grouped

together in a vector of parameters, θ.

Factor models can be used in a variety of ways depending on how the factors are defined.

This paper considers the case where the factors are assumed to be uncorrelated with the

errors and a normalization is placed on the factor loadings. This setup gives the model a

flexible measurement error interpretation, where the observed variables can be thought of as

measurements or proxies of the factors.

Assumption Normalization.

Λ =

[
Im

Λ̃

]
.

Remarks:

1. Assumption Normalization specifies that the upper m×m block of the factor loadings

is equal to the identity matrix. Λ̃ is a p−m×m matrix of parameters to be estimated.

2. Assumption Normalization solves an indeterminacy in the covariance equation,

Var(Xi) = ΛΣΛ′ + Φ.

For any invertible m × m matrix M , ΛΣΛ′ = ΛMM−1ΣM ′−1
M ′Λ′ = Λ̄Σ̄Λ̄′, where

Λ̄ = ΛM and Σ̄ = M−1ΣM ′−1
. This shows that there are m2 degrees of indeterminacy

in the covariance equation, matching the m2 number of restrictions imposed by the

normalization.

3. Assumption Normalization can be interpreted as fixing a definition of the factors. First,

the diagonal terms in the identity matrix specify the scale of the factors to be measured

in terms of the units of the first m observed variables. Second, the off diagonal zeros

in the identity matrix place restrictions on the covariation between the factors and

the observed variables. For example, the first factor is defined to be that common

component to the covariation in the data that is uncorrelated with observed variables

numbered 2 through m.
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4. In practice, the ordering of the variables is very important. The researcher should

choose very carefully which observed variables are used for the normalization and which

are free. For example, in the model of parental investments considered in Section 6,

the observed variables include the number of books the child owns and the number of

times the child goes to a museum. In this case, normalizing the parental investments in

cognitive skills to be measured in terms of the number of books is appropriate because

owning more books is not an investment in noncognitive skills. On the other hand,

normalizing the parental investments in cognitive skills to be measured in terms of

the number of trips to a museum would be inappropriate because a trip to a museum

constitutes investment in both cognitive and noncognitive skills. This illustrates that

the selection of the normalizing variables is important and the appropriateness of a

given selection depends on the application.

Identification in this model is determined by covariance matrix matching, where the

covariance of Xi is given by:

Var(Xi) = Ω(θ) := ΛΣΛ′ + Φ. (2.2)

The left hand side is always identified while the right hand side is a nonlinear function of

the parameters in the model. The model is identified if and only if this nonlinear function

can be inverted, solving for the parameters.

There are considerable technical complications that arise when searching for conditions

under which the nonlinear function can be inverted. This comes from the fact that inversion

depends on the true value of the parameters. In response to this, the literature on identifi-

cation in factor models has focused on verifying identification generically over the parameter

space. For example, Shapiro (1985) states that

“practitioners tend to disregard the problem, believing that for ‘not too big’

values of r the factor analysis model is ‘usually’ identified. This suggests an

investigation of the factor analysis model from the generic point of view.”11

He goes on to characterize identification generically by comparing the number of factors, m,

to the number of observed variables, p. He conjectures that the Ledermann12 bound,

2p+ 1−
√

8p+ 1

2
,

gives the maximum number of factors that are generically identified by p observed variables.

This formula comes from counting the number of separate equations in (2.2) compared to

11Italics in the original. In that paper, r is the number of factors, equivalent to m in this paper.
12First calculated by Ledermann (1937).
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the number of parameters. Shapiro proved that for m less than or equal to the Ledermann

bound, the factor model is generically locally identified. He conjectured that for m strictly

less than the Ledermann bound, the factor model is generically globally identified, which

was proved by Bekker and ten Berge (1997).

While Shapiro considers only generic identification, proving the validity of standard es-

timation and inference procedures requires full identification. The problem is that loss of

identification, even though it occurs on a set of measure zero in the parameter space, distorts

the finite sample distributions of the estimator and test statistics whenever the truth is in

a neighborhood of the loss of identification. This neighborhood may be shrinking with the

sample size, but is not negligible in the finite sample. The simulation evidence at the end of

this section shows that standard approaches are insufficient and an inference procedure that

explicitly considers identification failure is needed.

In factor models, a rank condition can be placed on the factor loadings, which determines

the identification status of the distribution of the factors. Anderson and Rubin (1956) provide

one such rank condition that is necessary and sufficient for identification when the number of

factors is one or two. This condition is sufficient if there are more factors, but not necessary.

Appendix C provides recommendations for models with more than two factors.

Assumption Rank Condition. Let Λ−j denote the matrix formed by deleting the jth row

of Λ. If, for every j = 1, ..., p, the rows of Λ−j can be rearranged into two matrices, both of

full rank, m, then Λ satisfies the rank condition.

Remarks:

1. This rank condition is on the factor loadings, a matrix of parameters, and is different

from a rank condition on the Jacobian of a set of moments, which is typically given as

a sufficient condition for local identification.13

2. The rank condition is an assumption that we do not want to make. It may be difficult to

justify in a particular application, or a researcher may want to check the sensitivity of

results to this assumption. This paper proceeds without this assumption by analyzing

the consequences of rank condition failure.

3. The statement of the rank condition is enigmatic, but reduces to more intuitive con-

ditions in the examples. Intuitively, the rank condition ensures that there is enough

information about the factors in the covariance structure of the observed variables.

This condition implies that for each factor, there are at least three observed variables

with nonzero factor loadings, a necessary condition for identification.

13See Rothenberg (1971) for a rank condition on a Jacobian.
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Example 1: One Factor

Consider the case where there is only one factor and three observed variables. In this

case, the factor loadings matrix is given by:

Λ =

 1

λ2

λ3

 ,
where λ1 = 1 represents the normalization. In this case, the rank condition reduces to:

λ2 6= 0 and λ3 6= 0. The other parameters in the model are σ2, the variance of the factor,

and φ1, φ2, and φ3, the variances of the errors.

In this example, we allow λ2 and λ3 to be close to or equal to zero. This means that

there are two ways the rank condition, and consequentially identification of the parameters,

can fail. The first way is that one of λ2 or λ3 is equal to zero while the other is nonzero.

In this case, only two of the variables are related to the factor, which is not enough for

identification. However, since there is some covariation, the factor is present and detectable

by the data.

The second way the rank condition can fail is if both λ2 and λ3 are equal to zero. This

is essentially a zero factor model because there is no factor that is common to the observed

variables. In this sense, this example encompasses an unknown number of factors (either

zero or one).

Simulations

This simulation section shows that standard inference procedures are insufficient in Ex-

ample 1, and an inference procedure that explicitly considers identification failure is needed.

The true values of the parameters are:

σ2 = 1, Φ =

 1 0 0

0 1 0

0 0 1

 ,
and the values of the factor loadings, λ2 and λ3, are allowed to vary. The sample size is n =

500, a typical sample size for the empirical application. With 10,000 simulations, I calculate

the finite sample distribution of σ̂2
n, the Gaussian maximum likelihood estimator of the factor

variance, σ2, as well as two asymptotic approximations. Figure 1 shows the finite sample

distribution (left column) for σ̂2
n compared to the asymptotic normal approximation (center

column) and a weak approximation (right column). The weak asymptotic approximation is

11



Finite Sample Normal Approx. Weak Approx.

λ2 = 0.36
λ3 = 0.36

λ2 = 0.27
λ3 = 0.27

λ2 = 0.18
λ3 = 0.18

λ2 = 0.09
λ3 = 0.09

Figure 1: Finite sample (n = 500), normal approximation, and weak approximation densities
of σ̂2

n in Example 1 when the true value of σ2 is 1.

derived from a sequence of true values of the parameters converging to a point where λ2 = 0

and λ3 = 0. For the simulations, the sequence is indexed by a local parameter that is given

by b = n1/2β1β2 = n1/2λ2λ3σ
4. More details on the weak asymptotic approximation can be

found in Section 4.1.

Also, Table 1 reports rejection rates of the null hypothesis, H0 : σ2 = σ2
0 using the Wald

test statistic, Wn(σ2
0), compared to standard chi-squared critical values.

Remarks on Figure 1 and Table 1:

1. The variance of the normal approximation diverges as λ2 and λ3 approach zero. This is

because of the loss of identification of σ2. The likelihood becomes flatter, corresponding

to an increase in the asymptotic variance.
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λ2 λ3 Rejection Rate

0.36 0.36 0.076
0.27 0.27 0.113
0.18 0.18 0.181
0.09 0.09 0.296

0 0 0.363

Table 1: Finite sample (n = 500) null rejection rates for a Wald test of the value of σ2 in
Example 1.

2. Both the shape and the dispersion of the finite sample distribution are poorly approx-

imated by the shape and dispersion of the normal approximation. However, the shape

and dispersion of the finite sample distribution are well approximated by the shape

and dispersion of the weak approximation.

3. The quality of the normal approximation deteriorates as the values of λ2 and λ3 go

to zero. However, the weak approximation retains it high quality as the values of λ2

and λ3 go to zero. In fact, the normal approximation is poor for very significant values

of the factor loadings. Ximénez (2007) performs related simulations and notes that

values of the factor loadings between 0.25 and 0.35 would not be considered “weak”

by practical standards.14

Weak asymptotics provides an explanation for the poor approximation for relatively

large values of λ2 and λ3. There exist weak sequences of parameters that converge

to points of rank failure at the n−1/4 rate.15 Compare this to the weak instrumental

variables (IV) model with one endogenous variable and one instrument, in which all

weak sequences converge to a point of rank failure at the n−1/2 rate or faster.16 This

means that, compared to the weak IV model, the area of the parameter space that is

affected by identification failure is much larger and shrinks much more slowly as the

sample size increases. This explains why weak identification has an effect for relatively

large values of the factor loadings. In this sense, the loss of identification in factor

models is more significant than the corresponding loss of identification in weak IV

models.

4. The finite sample distribution contains spikes near the left and right endpoints of the

14Briggs and MacCallum (2003) and Ximénez (2006, 2007, 2009, 2015) run simulations to determine the
ability of various estimation methods to detect weak factors.

15For example, λ1n = λ2n = n−1/4. Section 4.1 describes the different types of weak sequences in Example
1.

16See Staiger and Stock (1997).
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support. These spikes are also present in the weak approximation, but missing in the

normal approximation. These spikes correspond to Heywood cases that occur when one

of the variance parameters, either the variance of the factor or one of the variances of

the errors, is estimated to be zero.17 One of the long-standing puzzles in factor models

is explaining why Heywood cases occur so often in practice. Weak asymptotics provides

one explanation, by characterizing asymptotic distributions for which Heywood cases

occur with positive probability in the limit.

5. Looking now at Table 1, loss of identification leads to significant over-rejection when the

rank condition is close to failing. This over-rejection is as high as 36% for λ2 = λ3 = 0

and persists as λ2 and λ3 get larger, having a non-negligible effect when the factor

loadings are as large as λ2 = λ3 = 0.36.

Overall, these simulations show that under rank condition failure, the normal approxi-

mation is poor, the weak approximation is good, and the standard test based on the Wald

test statistic significantly over-rejects.

3 Robust Inference for a General Class of Weakly Iden-

tified Models

This section provides a general approach and useful tools for robust inference. Section

3.1 defines a class of models that includes factor models. Sections 3.2 and 3.3 state theorems

for characterizing asymptotic distributions along drifting sequences.

3.1 A Class of Models

This section defines a class of models for robust inference. The class can be described as

doubly parameterized by structural and reduced form parameters. Thus, the model has two

parameter spaces and two objective functions.

Definition Parameter Spaces.

(a) Let Θ ⊂ Θ̄ ⊂ Rdθ .

(b) For each θ ∈ Θ̄, let θ = (ψ, π) and dθ = dψ + dπ.

(c) Let h : Θ̄→ Rdh .

(d) Let δ : Θ̄→ Rdδ be defined by: δ(θ) = (ψ, h(ψ, π)).

17See Heywood (1931) and the discussion of Heywood cases in Bollen (1989).
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(e) Let ∆ = δ(Θ̄), and let ∆̄ ⊃ ∆.

Remarks:

1. Part (a) defines the structural parameter space, Θ. Θ is equipped with all of the

structure of a Euclidean space, including Lebesgue measure. θ is the parameter of

interest. Θ̄ is a slight expansion of the parameter space.

2. Part (b) separates the parameters in θ into two types, ψ and π. The different roles of ψ

and π are described later. dψ and dπ denote the lengths of the corresponding vectors.

In general, dX denotes the length of the vector X.

3. Part (c) defines h(ψ, π), a mapping from structural parameters to new parameters,

h ∈ Rdh .

4. Part (d) defines δ, a mapping from the structural parameters defined by the concate-

nation of the identity (for ψ) and h. δ are the reduced form parameters. Abusing

notation, we use δ and h to denote both the mapping from the structural parameters

and the reduced form parameters themselves.

5. Part (e) defines ∆ and ∆̄, the reduced form parameter space and a slight expansion.

The reduced form parameter, δ = (ψ, h), is always identified. The parameter that may

not be identified is π. If, for fixed ψ, h(ψ, π) can be inverted for a value of π, then π is

identified. However, if h(ψ, π) cannot be inverted for π, then π is not identified. In this way,

the value of ψ determines the identification status of π through the invertibility of h(ψ, π).

Definition Objective Functions.

(a) Let Xn denote the data with sample size n.

(b) For each δ ∈ ∆̄, let Prn,δ denote a distribution of Xn.18

(c) For each δ ∈ ∆̄, let Tn(δ) be a real valued random variable (a measurable function of

Xn).

(d) For each θ ∈ Θ̄, let Qn(θ) = Tn(δ(θ)).

Remarks:

18The distribution of Xn may also be indexed by another (possibly infinite dimensional) nuisance pa-
rameter, suppressed for notational simplicity. For example, the error distribution is an infinite dimensional
nuisance parameter that indexes factor models. This section requires that the parameter that determines
the identification status of π is finite dimensional and belongs to ψ.
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1. Prn,δ is sometimes written Prδ or Prθ, suppressing the dependence on the sample size.

Prθ is short for Prδ(θ).

2. Tn(δ) is the reduced form objective function, defined over the reduced form parameters.

Qn(θ) is the structural objective function, defined over the structural parameters.

3. This definition allows for (quasi) maximum likelihood, if Qn(θ) is a likelihood that

only depends on reduced form parameters, or minimum distance, in which Tn(δ) is a

quadratic form in δ and depends on the data through a first stage estimator of the

reduced form parameters.

The h(ψ, π) function is the key function, providing the link between the structural and

reduced form parameter spaces as well as the link between the structural and reduced form

objective functions.

Example 1, Continued. Example 1 can be reparameterized into the setup of Definition

Parameter Spaces and Definition Objective Functions. The reduced form parameters in this

model are the elements of the covariance matrix of the observed variables, equal to

Cov(Xi) = Ω(θ) =

 σ2 + φ1 λ2σ
2 λ3σ

2

λ2σ
2 λ2

2σ
2 + φ2 λ2λ3σ

2

λ3σ
2 λ1λ2σ

2 λ3
3σ

2 + φ3

 .
We can define a reparameterization by:

β1

β2

ζ1

ζ2

ζ3

π


=



λ2σ
2

λ3σ
2

σ2 + φ1

λ2
2σ

2 + φ2

λ2
3σ

2 + φ3

σ2


.

Then, the covariance matrix becomes:

Ω(θ) =

 ζ1 β1 β2

β1 ζ2 h(ψ, π)

β2 h(ψ, π) ζ3

 ,
where ψ = (β1, β2, ζ1, ζ2, ζ3) and h(ψ, π) = β1β2π

−1. The ψ and h parameters are identified

while the π parameter is identified if and only if β1 6= 0 and β2 6= 0. We assume the variance,

σ2, is positive, so that β1 = 0 if and only if λ1 = 0 and β2 = 0 if and only if λ2 = 0. This

translates the rank condition on the factor loadings into the new parameters.
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The objective function for this model is the likelihood implied by assuming joint normality

on the errors and the factors. It is given by:

Qn(θ) = log(|Ω(θ)|) + tr(SΩ(θ)−1),

where |Ω| denotes the determinant of Ω, tr(X) denotes the trace of a matrix, X, and S is

the empirical covariance matrix,

S =
1

n

n∑
i=1

(Xi − X̄)(Xi − X̄)′.

It is clear that Qn(θ) depends on θ only through the reduced form parameters, δ = (ψ, h),

because Ω(θ) depends on θ only through the reduced form parameters. This shows that

Example 1 satisfies the setup of Definition Parameter Spaces and Definition Objective Func-

tions. �

In unidentified models, the shape of the parameter space becomes important. The fol-

lowing definitions are the relevant characteristics of the shape of the parameter space. In

these definitions, the identified set and other objects may depend on the true value of the

parameter, θ0 = (ψ0, π0).

Definition 3.1.

(a) For any Ψ ⊂ Rdψ , let Π(Ψ) = {π ∈ Rdπ : (ψ, π) ∈ Θ for some ψ ∈ Ψ}.

(b) Let Π̄ = Π(Rdψ).

(c) Let Π0(ψ0) = Π({ψ0}).

(d) For each π ∈ Π̄, let Ψ(π) = {ψ ∈ Rdψ : (ψ, π) ∈ Θ}.

(e) For every η > 0, let Π−η(ψ0) = {π ∈ Π0(ψ0) : inf
θ∈∂Θ
||(ψ0, π) − θ|| ≥ η}, where ∂Θ =

cl(Θ) ∩ cl(Θc).

Remarks:

1. Θ need not be defined as a product space between the ψ and π parameters. This

means that cross sections of the parameter space, either in the ψ or the π direction

may depend on the value of the other parameter. Part (a) gives notation for a π cross

section that depends on a set of values of ψ.

2. Part (b) defines the largest cross section for π, which is all the values π can take.
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3. Part (c) defines the identified set for π. When the value of ψ0 is understood, this may

be denoted Π0. When π is not identified, its identified set stretches to the boundary

of the parameter space. This can incorporate bounds on the parameter by including

them in the definition of the parameter space.

4. Part (d) gives notation for the cross section in the ψ direction for a given value of π.

5. ∂Θ, in part (e), denotes the boundary of the parameter space. Part (e) shrinks the

identified set by a small amount, η, away from the boundary of the parameter space.

This definition is helpful for dealing with nondifferentiability of the boundary of the

identified set. When the true value of ψ0 is understood, Π−η(ψ0) is also denoted by

Π−η0 .

The following assumption provides regularity conditions on the shape of the parameter

space.

Assumption HC.

(a) Θ is compact.

(b) Θ̄ is relatively open in Rdψ × Π̄.

(c) ∆̄ is open.

(d) For any sequence of sets, Ψm, converging in Hausdorff metric to {ψ0}, Π(Ψm) converges

to Π0(ψ0) in Hausdorff metric.

(e) As η → 0, Π−η(ψ0) converges in Hausdorff metric to Π0(ψ0).

Remarks:

1. HC stands for Hausdorff continuity, referring to part (d), which requires Hausdorff

continuity of the boundary of the identified set for π.

2. Parts (a) and (b) together imply that there exist sets, Π+
0 ⊂ Rdπ and Ψ+

0 ⊂ Rdψ , such

that

{ψ0} × Π0 ⊂ int
(
Ψ+

0

)
× Π+

0 ⊂ Ψ+
0 × Π+

0 ⊂ Θ̄.19

Figure 2 illustrates the relationship between these sets. The figure plots the parameter

space, Θ. The dark arrows are the boundary of Θ. Notice that the boundary, as a

function of ψ, is allowed to depend on ψ and may not be differentiable. The dotted

lines denote the boundary of Θ̄, the open expansion of Θ. The identified set, Π0, are

19This statement is proved in Lemma 4.1(SM1) in Supplemental Materials 1.
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Π0

Π+
0

Ψ+
0

[ ] π

Θ
ψ

Figure 2: An illustration of the relationship between the identified set, Π0, neighborhoods
of the identified set, Π+

0 and Ψ+
0 , and the parameter spaces, Θ and Θ̄.

the values of π that stretch from one boundary to the other when ψ = ψ0, a point of

identification failure. In the figure, ψ0 = 0 is taken as an example. Finally, this figure

illustrates the existence of sets Ψ+
0 and Π+

0 that are neighborhoods of the identified set

and form a product space that is contained within Θ̄.

Defining Ψ+
0 and Π+

0 helps to deal with the boundary without assuming differentiability.

Π+
0 × Ψ+

0 is a neighborhood of the identified set that is extended globally for the

unidentified parameters (π) and extended only locally for the identified parameters

(ψ). This represents the fact that local properties of the objective function, that are

sufficient for asymptotic analysis under identification, are insufficient for asymptotic

analysis under weak or no identification. The global properties of the objective function

that extend throughout the identified set must be taken into account. The theorems in

this paper give the correct sense in which the global properties of the objective function

contribute to the asymptotic theory.

3. Parts (b) and (c) give the sense in which the objective functions are defined on an

enlargement of the parameter spaces.

4. Part (d) ensures continuity of the boundary of the parameter space in the π direction.

It is important to note that this does not require differentiability of the boundary. This

means that the boundary, and therefore the identified set for π, can be defined by the

intersection of multiple bounds without violating this assumption.

5. Part (e) ensures the identified set is well behaved, and in particular does not shrink

to a point. If the identified set were to shrink to a point, then the parameter would

be identified due to the boundary. Asymptotics based on identification due to the
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boundary are different from asymptotics based on identification due to the objective

function. In order to focus on the latter, this assumption eliminates the influence of

the boundary.

Example 1, Continued. When β1 = 0 or β2 = 0, π is still partially identified by bounds.

These bounds come from the nonnegativity of the variance parameters. For example, φ1 ≥ 0,

the variance of the first error, gets reparameterized into π ≤ ζ1. Since ζ1 is identified, this

defines an upper bound for π. Another example is φ2 ≥ 0, the variance of the second error,

gets reparameterized into π ≥ β2
1

ζ2

.20 The identified set for π is the interval defined by the

minimum of all the upper bounds and the maximum of all the lower bounds. In Example 1,

this is

Π0 =

[
max

(
β2

1

ζ2

,
β2

2

ζ3

, ε

)
, ζ1

]
.21

The presence of the maximum means that the boundary of the identified set is not differ-

entiable at some points. Example 1 illustrates the need to allow for the boundary of the

identified set to depend on other parameters in a possibly nondifferentiable way in Assump-

tion HC. �

Definition Parameter spaces, Definition Objective Functions, Definition 3.1, and Assump-

tion HC define a class of models that are doubly parameterized by structural and reduced

form parameters. A similar assumption, involving a double parameterization with structural

and reduced form parameters, was used by Rothenberg (1971) to analyze identification in

parametric models.

Showing that a given model fits into this structure typically requires two steps. The

first is finding reduced form parameters that are always identified. Models that satisfy this

first step include factor models, where the reduced form parameter is the covariance matrix

of observables, curved exponential families, where the reduced form parameters are the

coefficients in the exponent of the density, and minimum distance models, where the mapping

from the structural to the reduced form parameters is given. More generally, arguments for

identification in structural models tend to use this structure, stating that there are some

reduced form parameters that are identified and these can be mapped back to the structural

parameters, making this an intuitive and useful setup for dealing with identification failure

in structural models. The second step is reparameterizing the structural parameters so that

the ψ parameters determine the identification status of π. This can only be solved on a

model by model basis and often requires some creativity. However, Han and McCloskey

(2016) present a strategy for finding reparameterizations that may be helpful. Example 1

20The denominator, ζ2 may be 0, but only when β1 = 0, so the lower bound can always be well-defined.
21For technical reasons, π must be bounded away from 0 by some ε > 0. The lower bounded is stated to

reflect this. More details can be found in Supplemental Materials 2.

20



has already been reparameterized into this setup. Section 5 defines a second example and

gives a reparameterization that satisfies this setup.

3.2 Theorem 1

This section provides a theorem for characterizing the asymptotic distribution of an

extremum estimator within the class of models defined in Section 3.1. In particular, Theorem

1 holds for a sequence of parameters, θn = (ψn, πn) → θ0, converging to a point where

identification fails. For this section, fix one such sequence and all the probability statements

(convergence in probability, convergence in distribution) hold under this sequence of true

parameters.22

The extremum estimator is defined in two parts.

Definition EE1. For each π ∈ Π̄, let

(a) ψ̂n(π) ∈ Ψ(π) such that Qn(ψ̂n(π), π) ≤ inf
ψ∈Ψ(π)

Qn(ψ, π) + τn,

(b) Qc
n(π) = Qn(ψ̂n(π), π),

(c) π̂n ∈ Π̄ such that Qc
n(π̂n) ≤ inf

π∈Π̄
Qc
n(π) + τn, and

(d) θ̂n = (ψ̂n(π̂n), π̂n),

where τn does not depend on π and satisfies τn = op(n
−1).

Remarks:

1. τn may be further restricted in the following assumptions.

2. For notation, we can let ψ̂n = ψ̂n(π̂n).

3. We notice that with this definition, Qn(θ̂n) ≤ inf
θ∈Θ

Qn(θ) + 2τn so that θ̂n satisfies a

typical extremum estimator condition.

Next, we impose regularity conditions on Tn(δ) and h(ψ, π). These conditions are verified

in the two examples in Sections 4 and 5 and Supplemental Materials 2 and 3.

Assumption RF-ID.

(a) There exists a nonstochastic real-valued function T (δ), continuous on ∆̄, such that

sup
δ∈∆̄

|Tn(δ)− T (δ)| →p 0.

22Also fix a sequence of (possibly infinite dimensional) nuisance parameters that index Prn,δ.
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(b) For every neighborhood, ∆0, of δ0 = (ψ0, h(ψ0, π0)),

inf
δ∈∆/∆0

T (δ)− T (δ0) > 0.

Remarks:

1. RF-ID stands for “Reduced Form - Identified” because part (b) implies that the reduced

form parameters are identified.

2. Part (a) gives the deterministic limit of the objective function, unstandardized. Part

(b) ensures that the reduced form parameters, δ, are cleanly identified by Tn(δ) in

the limit. These assumptions are standard assumptions for proving consistency of an

extremum estimator in the literature.

Assumption RF-ID is sufficient for consistent estimation of the reduced form parameters,

δ. However, the structural parameters are still not consistently estimable. The following

lemma gives a type of consistency result while allowing for unidentified π.

Lemma CON. Under Assumptions HC and RF-ID, the following hold.

(a) There exists a sequence of sets Πn that converges in Hausdorff metric to Π0 such that

Pr(π̂n ∈ Πn)→ 1.

(b) sup
π∈Πn

||ψ̂n(π)− ψ0|| = op(1).

Remarks:

1. Part (a) is a type of concentration result because there exists a rate at which the

distribution of π̂ concentrates on Π0, the identified set, determined by the rate at

which Πn converges to Π0 in Hausdorff metric.

2. Πn helps to solve nondifferentiability of the boundary. It allows us to replace the true,

fixed boundary, which may depend on the value of ψ in a possibly nondifferentiable

way, by a well behaved, but drifting boundary. Πn is illustrated in Figure 3, which is

a variant of Figure 2. As the sample size increases, Πn converges to Π0.

3. Part (b) is a uniform consistency result for ψ̂n(π). This result is somewhat delicate

because for fixed π, ψ̂n(π) converges in probability to ψ0 if and only if π ∈ Π0. For

this reason, the uniformity is taken over Πn.

4. Parts (a) and (b) together show that (ψ̂n(π), π̂n) ∈ Ψ+
0 × Π+

0 for all π ∈ Πn with

probability approaching 1.
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Π0

Πn

[ ][ ] π

Θ
ψ

A

B

Figure 3: An illustration of the identified set, Π0, a drifting expansion of the identified set,
Πn, and the role of the boundary of Θ when optimizing over ψ for fixed π /∈ Π0.

The hat estimators can now be thought of as extremum estimators over Ψ+
0 × Π+

0 con-

strained by the (possibly nondifferentiable) boundary of Θ. We can also define the uncon-

strained estimators.

Definition EE2. For each π ∈ Π+
0 , let

(a) ψ̃n(π) ∈ Ψ+
0 such that Qn(ψ̃n(π), π) ≤ inf

ψ∈Ψ+
0

Qn(ψ, π) + τn,

(b) Q̃c
n(π) = Qn(ψ̃n(π), π), and

(c) π̃n ∈ Πn such that Q̃c
n(π̃n) ≤ inf

π∈Πn
Q̃c
n(π) + τn.

Remark:

1. Figure 3 illustrates why ψ̃n(π) can be considered an unconstrained estimator. ψ̃n(π) is

allowed to take any value within Ψ+
0 and is not restricted by the boundary of Θ when

π /∈ Π0. For example, consider the value of π on the right of Figure 3 that is common

to points A and B. ψ̃n(π) is allowed to optimize over the whole range of Ψ+
0 and may

find a minimum at point A. In contrast, ψ̂n(π) can only optimize over points in Θ,

and is forced to find a higher minimum, possibly at point B.

Lemma CON. Under Assumptions HC and RF-ID,

(c) sup
π∈Π+

0

||ψ̃n(π)− ψ0|| = op(1).

Remark:

1. Without the constraint imposed by the boundary, we can prove part (c), a stronger

uniform consistency result that holds over all of Π+
0 .
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Now that we have consistency, we impose assumptions on Tn(δ) and h(ψ, π) to charac-

terize the asymptotic distribution.

Assumption h1.

(a) h(ψ, π) is continuously differentiable in ψ, uniformly in π ∈ Π+
0 . Let h1(ψ, π) denote

the dh × dψ matrix of partial derivatives of h(ψ, π) with respect to ψ. Also let d1(π) =

h1(ψ0, π).

(b) There exists a Rdh-valued function, d0(π), on Π+
0 such that

√
n(h(ψn, π)−h(ψn, πn))→

d0(π) uniformly over π ∈ Π+
0 .

(c) d0(π) and d1(π) are continuous in π.

Remarks on Assumption h1:

1. Part (a) means that h1(ψ, π) is continuous uniformly over π. That is, for every ψ̄n →
ψ0, h1(ψ̄n, π)→ h1(ψ0, π) uniformly over π ∈ Π+

0 .

2. Part (b) give the defining characteristics of a weakly identified sequence of parameters—

that h(ψn, π) converges to zero at the n−1/2 rate.

Assumption QE. Let δn = δ(θn). For every δ = (ψ, h) ∈ ∆̄, the following holds.

(a) The reduced form objective function Tn(ψ, h) satisfies a quadratic expansion in δ =

(ψ, h) around δn:

Tn(δ) = Tn(δn) +D1Tn(δn)′(δ − δn) +
1

2
(δ − δn)′D2Tn(δn)(δ − δn) +RT

2 (δ),

where D1Tn(δ) denotes a generalized first derivative vector and D2Tn(δ) denotes a

generalized second derivative matrix that may be stochastic or nonstochastic.

(b) The remainder, RT
2 (δ), satisfies, for all constants ηn → 0,

sup
δ∈∆̄:||δ−δn||≤ηn

|nRT
2 (δ)|

(1 + ||
√
n(δ − δn)||)2

= op(1).

Assumption T1. There exists a random vector, Y1, and a dδ × dδ matrix, V̄ , such that

√
nD1Tn(δn)→d Y1 =

(
Y1ψ

Y1h

)
∼ N(0, V̄ ).

Assumption T2. There exists an H ∈ Rdδ×dδ , positive definite and symmetric, such that

D2Tn(δn)→p H.
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Remarks on Assumptions QE, T1, and T2:

1. QE stands for quadratic expansion. T1 stands for the limit of the first derivative of

Tn(δ). T2 stands for the limit of the second derivative of Tn(δ).

2. Assumption QE is a standard quadratic expansion around the true value. Sufficient

conditions for Assumption QE are thatQn(θ) is twice continuously differentiable almost

surely and the second derivative is stochastically equicontinuous.

3. Assumption T1 can be verified by a central limit theorem. We allow V̄ = V̄ (δ0) to

depend on the true limit of the sequence.

4. Assumption T2 ensures that D2Tn(δn) is eventually positive definite.

5. Assumption h1 and T1 imply that the first derivative of the structural objective func-

tion is equal to

D1Qn(θn) =

 Idψ 0dψ×dπ

h1(ψn, πn)
∂

∂π′
h(ψn, πn)

′D1Tn(δ(θn)).

When h(ψ, π) is not invertible for π,
∂

∂π′
h(ψ, π) is zero. This implies that for weak

sequences, the covariance matrix of D1Qn(θn) is singular in the limit. This is the first

order mechanism through which weak identification affects asymptotics.

Example 1, Continued. Assumptions QE, T1, and T2 are easy to verify in Example 1.

They rely on the smoothness of the objective function and the asymptotic normality of S,

the empirical covariance matrix.

Assumption h1 holds for some sequences, θn, in Example 1. For h(ψ, π) = β1β2π
−1, the

important property of a sequence is the rate at which β1n and β2n converge to zero. Any

sequence such that β1nβ2n converges to zero at an n−1/2 rate or faster satisfies Assumption

h1. If
√
nβ1nβ2n → b for some b ∈ R, then

d0(π) = b(π−1 − π−1
0 ), and

d1(π) =
(
β20π

−1 β10π
−1 0 0 0

)
,

where (β1n, β2n)→ (β10β20), at least one of which is zero. This shows that Assumptions h1,

QE, T1, and T2 are easy to verify in Example 1. �

Partition D1Tn(δn) into (DψTn(δn)′, DhTn(δn)′)′. Also partition

D2Tn(δn) =

[
DψψTn(δn) DψhTn(δn)

DhψTn(δn) DhhTn(δn)

]
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and

H =

[
Hψψ Hψh

Hhψ Hhh

]
.

We characterize the distribution of ψ̂n(π) and ψ̃n(π) as a function of π. Let

Z(π) = −

([
Idψ
d1(π)

]′
H

[
Idψ
d1(π)

])−1 [
Idψ
d1(π)

]′(
Y1 +

[
Hψh

Hhh

]
d0(π)

)

be a stochastic processes defined on Π+
0 .

Lemma ψ Limit. Under Assumptions HC, RF-ID, h1, QE, T1, T2, and for all η > 0,

(a)
√
n(ψ̃n(π)− ψn)⇒ Z(π) as a stochastic process over Π+

0 , and

(b)
√
n(ψ̂n(π)− ψn)⇒ Z(π) as a stochastic process over Π−η0 .

Remarks:

1. This is called Lemma ψ Limit because it characterizes the limiting distribution for the

estimators of ψ.

2. ψ̃n(π) has a Gaussian stochastic process limit for all values of π ∈ Π+
0 . In contrast,

ψ̂n(π) does not have a Gaussian limit for π /∈ int(Π0), so the Gaussian stochastic

process must be truncated short of the boundary. This is why the convergence in (b)

holds only over Π−η0 instead of the full set, Π+
0 .

The following definition gives the limit for the concentrated objective function. Let

ξ(π) = Y ′1hd0(π) +
1

2
d0(π)′Hhhd0(π)− 1

2
Z(π)′

([
Idψ
d1(π)

]′
H

[
Idψ
d1(π)

])
Z(π) (3.1)

be a stochastic process defined on Π+
0 .

Lemma Q Limit. Under Assumptions HC, RF-ID, h1, QE, T1, and T2,

(a) n(Q̃c
n(π)− Tn(δn))⇒ ξ(π) as a stochastic process on Π+

0 , and

(b) for every η > 0. n(Qc
n(π)− Tn(δn))⇒ ξ(π) at a stochastic process on Π−η0 .

Assumption MIN. Almost surely, each sample path of the stochastic process ξ(π) is con-

tinuous over Π0 and is uniquely minimized over Π0 at a unique point denoted πMIN.

Remarks:
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1. Assumption MIN is a high level condition, but equation (3.1) gives a formula for ξ(π) in

terms of primitives. In addition, Cox (2016b) provides sufficient conditions for verifying

Assumption MIN based on a type of transversality condition on ξ(π).

2. It is clear from the formula for ξ(π) in equation (3.1) that Assumption MIN is not

satisfied whenever both d0(π) and d1(π) do not depend on π. For these cases, Theorem

2, in Section 3.3, allows a much weaker version of Assumption MIN.

3. Lemma Q Limit(a) together with Assumption MIN are sufficient to characterize the

asymptotic distribution of π̃n using the argmax theorem.23 However, LemmaQ Limit(b)

is insufficient to characterize the asymptotic distribution of π̂n, because the convergence

holds only over the smaller set, Π−η0 .

Example 1, Continued. In Example 1, there exist weak sequences, θn, such that
√
nβ1nβ2n

→ 0 and β10 = β20 = 0. For these sequences, d0(π) = 0 and d1(π) = 01×5. This implies

that ξ(π) does not depend on π and, in particular, does not satisfy Assumption MIN. These

sequences are called “super-weak” and cannot be handled by Theorem 1. Instead, they are

handled by Theorem 2 in Section 4.3. However, for most weak sequences,
√
nβ1nβ2n → b 6= 0

or (β1n, β2n) → (β10, β20) 6= (0, 0), showing that ξ(π) is nondegenerate, and these sequences

can be handled by Theorem 1. �

The following lemma allows us to connect the constrained estimator, ψ̂n(π), to the un-

constrained estimator, ψ̃n(π), when evaluated at π̂n.

Lemma B. Under Assumptions HC, RF-ID, h1, QE, T1, and T2,

(a) ψ̂n(π̂n) = ψ̃n(π̂n) + op(n
−1/2).

(b) If, in addition, Assumption MIN holds, π̂n = π̃n + op(1).

Remarks:

1. B stands for boundary because this lemma shows that the constraint imposed by the

boundary in the definition of ψ̂n(π) is negligible for the limit theory.

2. This result is surprising. Lemma ψ Limit shows that ψ̂n(π) and ψ̃n(π) are close when

on the interior of Π0. However, this is not enough because there is a positive probability

in the limit that π̂n is not in the interior of Π0. When π /∈ int(Π0), ψ̂n(π) and ψ̃n(π)

have very different behavior (because ψ̂n(π) does not converge). Lemma B shows that

this different behavior is irrelevant when evaluated at π̂n.

23See van der Vaart and Wellner (1996), Section 3.2.1.
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Theorem 1. Under Assumptions HC, RF-ID, h1, QE, T1, T2, and MIN,(
n1/2(ψ̂n(π̂n)− ψn)

π̂n

)
→d

(
Z(πMIN)

πMIN

)
.

Remarks:

1. Theorem 1 provides the asymptotic limit theory for θ̂n. The asymptotic distribution

of ψ̂ can be characterized as a Gaussian stochastic process function of πMIN. The

asymptotic distribution of π̂ can be characterized as the argmin of a stochastic pro-

cess, πMIN. Notice that the rate for ψ̂n is n1/2 while π̂n is inconsistent and converges

unstandardized.

2. Theorem 1 relies on Assumption MIN, which assumes n is the correct rate to stan-

dardize Qc
n(π). For some sequences, Qc

n(π) may need to be standardized at a faster

rate. Theorem 2 in the next section handles those cases.

3.3 Theorem 2

Section 3.2 states a theorem for characterizing the asymptotic distribution of an ex-

tremum estimator that relies on Assumption MIN. This section provides a theorem that

relies on a weaker version of that assumption, Assumption MIN∗.

The key is to recognize that the objective function can be restandardized. At faster rates,

higher-order terms become relevant for the limit theory. The following assumptions make

these higher-order terms explicit.

The following assumption imposes conditions on higher-order derivatives of h(ψ, π) with

respect to ψ. The notation for this requires higher dimensional matrices or tensors. Let

hm(ψ, π) denote the dh× dψ × ...× dψ tensor of partial derivatives of h(ψ, π) with respect to

ψ.24

Assumption h2. There exists a K > 1 such that the following hold.

(a) h(ψ, π) is K-times continuously differentiable with respect to ψ, uniformly over π. Let

d∗K(π) = hK(ψ0, π).

(b) There exists a sequence of positive constants, a0
n, and an Rdh-valued function on Π+

0 ,

d∗0(π), such that a0
n(h(ψn, π)− h(ψn, πn))→ d∗0(π) uniformly in π and n−1/2a0

n →∞.

(c) For each m = 1, ..., K−1, there exists a sequence of positive constants, amn →∞, and a

dh×dψ×...×dψ-tensor valued function on Π+
0 , d∗m(π), such that amn h

m(ψn, π)→ d∗m(π),

uniformly in π.

24A description of the notation for dealing with tensors can be found in Appendix D.
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(d) d∗0(π) and d∗m(π) are continuous in π for each m = 1, ..., K.

Remarks on Assumption h2:

1. The uniform continuous differentiability in part (a) implies that for any ψ̄n → ψ0,

sup
π∈Π+

0

||hK(ψ̄n, π)− d∗K(π)|| → 0. We can let aKn = 1 for all n.

2. Parts (b) and (c) give the defining characteristic of a super-weak sequences of param-

eters—that h(ψn, π) converges to zero faster than n−1/2 and the first derivative of

h(ψn, π) also converges to zero.

The next assumption imposes a higher degree of smoothness on the reduced form objec-

tive function, allowing an expansion out to a higher order.

Assumption T3+.

(a) The reduced form objective function Tn(δ) is K + 1 times continuously differentiable

in δ almost surely. Denote the kth partial derivative matrix by DkTn(δ), which is

dδ × dδ × · · · × dδ with k dimensions, for k = 1, ..., K + 1.

(b) For each k = 3, ..., K + 1, there exists a sequence of positive constants, ãkn, such that

lim inf
n→∞

ãkn > 0 and

ãknD
kTn(δn)→d Yk.

(c) DK+1Tn(δ) is stochastically equicontinuous at δ0. That is, for every ε > 0 there exists

an ι > 0 such that

lim sup
n→∞

Pr

(
sup

δ:||δ−δ0||≤ι
||DK+1Tn(δ)−DK+1Tn(δ0)|| > ε

)
< ε.

Remarks:

1. Also note that we can define ã1
n =
√
n and ã2

n = 1 because of Assumptions T1 and T2.

2. Note that we only need to assume that DK+1Tn(δ) is stochastically equicontinuous and

not ãK+1
n DK+1Tn(δn), which would be stronger.

3. The norm in part (c) is the Euclidean norm for tensors (see Appendix D).

Example 1, Continued. In Example 1, there exist sequences, θn, such that
√
nβ1nβ2n → 0

and (β1n, β2n) → (0, 0). These are sequences that could not be handled by Theorem 1. For

these sequences, Assumption h2 is satisfied by taking K = 2. Then, part (a) is satisfied by
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a simple calculation that shows that h2(ψ, π) is a nonzero (1× 5× 5-tensor valued) multiple

of π−1. Part (b) holds because h(ψn, π) converges to zero at the β1nβ2n rate, which is faster

than
√
n. Part (c) holds because h1(ψn, π) converges to zero at the max(β1n, β2n) rate.

The advantage that Assumption h2 has over Assumption h1 in Example 1 is the fact

that some d∗m(π) is guaranteed to depend on π, no matter how quickly β1n and β2n converge

to zero. In particular, d∗2(π) is a nonzero multiple of π−1 which can be used to provide an

upper bound on the rate of convergence of Qc
n(π) to a nondegenerate limit.

Assumption T3+ is easily satisfied in Example 1. For k = 3, the third derivative of the

reduced form objective function converges for ã3
n = 1. An expression for the limit can be

found in Supplemental Materials 2. �

Assumption T3+ implies a polynomial expansion on the reduced form objective function.

Lemma PE. Under Assumptions T1, T2, and T3+, the following hold.

(a) The reduced form objective function Tn(ψ, h) has a K + 1 order polynomial expansion

in δ = (ψ, h) around δn:

Tn(δ) = Tn(δn) +
K+1∑
k=1

1

k!
〈DkTn(δn); (δ − δn)⊗k〉+RT

K+1(δ).

(b) The remainder RT
K+1(δ) satisfies, for all constants ηn → 0,

sup
δ∈∆̄:||δ−δn||≤ηn

|n(K+1)/2RT
K+1(δ)|

(1 + ||
√
n(δ − δn)||)K+1

= op(1).

Remarks:

1. PE stands for polynomial expansion. This lemma is a generalization of Assumption

QE from a quadratic expansion to a polynomial expansion of an arbitrary order.

2. The 〈·; ·〉 and ⊗ that appears in condition (a) are a tensor notation. The 〈·; ·〉 denotes

an inner product on tensors and the ⊗ denotes a tensor product. More details on this

notation can be found in Appendix D.

3. Lemma PE is similar to other higher-order expansions that have been used in the

literature when there is degeneracy in the first order limit.25

In addition to the expansion of the objective function, I consider an expansion of the first

order conditions (FOC). The next assumption ensures that the FOC hold at a fast enough

rate.
25For other examples, see Sargan (1983) and Cho and White (2007).
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Assumption FOC. For every η > 0,

sup
π∈Π+

0

|| ∂
∂ψ

Qn(ψ̃n(π), π)|| = op(n
−K/2), and

sup
π∈Π−η

0

|| ∂
∂ψ

Qn(ψ̂n(π), π)|| = op(n
−K/2).

Also assume that τn = op(n
−(K+1)/2).

Remark:

1. Assumption FOC can be satisfied either by setting τn = 0 and arguing that FOC holds

exactly, or by defining the extremum estimator to satisfy the FOC at the given rate, a

common criterion for numerical optimization.

The above assumptions allow an expansion of the concentrated objective function into

many terms, some of which depend on π and some do not. The next assumption provides a

sufficient condition that among all these terms, there exists one term or a collection of terms

that depends on π at the slowest rate.

Assumption Rates. For every collection of constants i0, i1, ..., iK−1 ∈ Z and for every

j1, ..., jK+1 ∈ Z, the sequence of positive constants defined by

ăn = (a0
n)i0(a1

n)i1 · · · (aK−1
n )iK−1(ã1

n)j1 · · · (ãK+1
n )jK+1

satisfies lim sup
n→∞

ăn = lim inf
n→∞

ăn.

Remarks:

1. This assumption is much stronger than necessary. There are only a couple of places in

the proof where this assumption is invoked, and each time there is only a finite number

of potential sequences. Thus, a subsequencing argument can ensure that the necessary

limits exist, so that this assumption is always satisfied.

2. Assumption Rates is satisfied whenever ain and ãjn are powers of n, which occurs in

many, but not all, cases.

The above assumptions are sufficient to characterize a limit for the the concentrated

objective function. The faster rate of convergence means that this limit depends on π even

when ξ(π) from Lemma Q Limit does not.

Lemma Q Limit∗. Under Assumptions HC, RF-ID, h2, T1, T2, T3+, FOC, and Rates,

there exists a sequence of random variables, Q0,n, a sequence of positive constants a∗n →∞,

and a stochastic process over Π+
0 , ξ∗(π), such that
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(a) a∗n(Q̃c
n(π)−Q0,n)⇒ ξ∗(π) as a sequence of stochastic processes on Π+

0 , and

(b) for every η > 0, a∗n(Qc
n(π) − Q0,n) ⇒ ξ∗(π) as a sequence of stochastic processes on

Π−η0 .

Assumption MIN∗. Almost surely, each sample path of the stochastic process ξ∗(π) is

continuous over Π0 and is uniquely minimized over Π0 at a unique point denoted π∗MIN.

Remarks on Lemma Q Limit∗ and Assumption MIN∗:

1. Lemma Q Limit∗ and Assumption MIN∗ must be satisfied together. The purpose of

this section is to bring higher-order terms into the limit in Lemma Q Limit∗ so that

they can help to satisfy Assumption MIN∗.

2. For a given sequence, the proof of Lemma Q Limit∗ can be followed to give a closed

form solution for ξ∗(π). Then, Assumption MIN∗ can be verified (1) directly, by finding

a solution for π∗MIN, or (2) indirectly, by proving the existence of a unique minimum

almost surely. Cox (2016b) provides sufficient conditions for verifying the unique min-

imum condition indirectly.

Theorem 2. Under Assumptions HC, RF-ID, h2, T1, T2, T3+, FOC, Rates, MIN∗, and

assuming that a∗nτn = op(1),(
n1/2(ψ̂n(π̂n)− ψn)

π̂n

)
→d

(
Z(π∗MIN)

π∗MIN

)
.

Remarks:

1. The condition a∗nτn = op(1) ensures that the original tolerance for minimization was

sufficiently small.

2. The result for Theorem 2 is the same as that for Theorem 1, except with πMIN replaced

by π∗MIN. This represents the fact that the standard limit for the objective function,

ξ(π) is degenerate and does not satisfy a unique min condition. Instead, the proof of

this theorem uses a nonstandard limit, ξ∗(π), that involves higher-order terms that are

nondegenerate and can be used to define a limiting distribution for π̂n.

4 Robust Inference in Example 1

This section provides a method for robust inference in Example 1. Consider testing the

null hypothesis H0 : r(θ) = ν using the Wald test statistic, Wn(ν).26 This section proposes

26Likelihood ratio and Lagrange multiplier test statistics can also be used for some hypotheses, see
Supplemental Materials 2 and 3 for examples.
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testing H0 robustly using a two step procedure. In the first step, the rank condition is tested

to determine whether or not it is close to failing. If the rank condition is close to failing,

Wn(ν) is compared to a robust critical value. If the rank condition is not close to failing,

Wn(ν) is compared to a standard chi-squared critical value. The robust critical value is

calculated based on the asymptotic distributions of Wn(ν) along a classes of sequences of

parameters.

4.1 Asymptotic Distributions

β1

β2

•

••

A

BC

Figure 4

β1

β2

Figure 5

This section divides sequences of parameters converging to

points of rank condition failure into classes and characterizes

the asymptotic distribution of the estimator and test statistic

along sequences in each class.

The classes are defined based on the rate at which

h(ψn, π) = β1nβ2nπ
−1 and h1(ψn, π) = (β2nπ

−1, β1nπ
−1, 0, 0, 0)

converge. This only depends on the rates at which β1n and

β2n converge to zero.

These classes are illustrated using a heuristic sketch, de-

picted in Figure 4. A point in the Northeast corner, for exam-

ple point A, depicts a sequence, θn, that converges to a limit,

θ0, such that both β10 > 0 and β20 > 0, and analogously

for the other corners. A point in the East area, for example

point B, depicts a sequence, θn, that converges to a limit, θ0,

for which β10 > 0 and β20 = 0. Points that are further from

the axis depict sequences for which β2n converges slower to

β20 = 0. A point in the central area, for example point C,

depicts a sequence, θn, that converges to a limit, θ0, for which

β10 = 0 and β20 = 0. The relative position within the square

determines the relative rates at which β1n and β2n converge

to their limits, β10 = 0 and β20 = 0.

First, we can define the class of strong sequences, θn, as

those sequences that converge to a limit, θ0, such that both β10 6= 0 and β20 6= 0. These

sequences are depicted in Figure 5 in yellow. Theorem 4, in Supplemental Materials 1,

applied to strong sequences, gives an asymptotic normal distribution for θ̂n.27 The continuous

mapping theorem implies that Wn(ν) converges to a limiting χ2
dr distribution.

27Supplemental Materials 2 verifies the assumptions of Theorem 4. More generally, Supplemental Mate-
rials 2 contains details and proofs for the assertions in this section (Section 4).
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β1

β2

Figure 6

β1

β2

Figure 7

The class of semi-strong sequences is characterized by

h(ψn, π) converging to zero at a rate slower than n−1/2. This

occurs when

1. β10 6= 0, β20 = 0, and
√
n|β2n| → ∞,

2. β10 = 0, β20 6= 0, and
√
n|β1n| → ∞, or

3. β10 = 0, β20 = 0, and
√
n|β1nβ2n| → ∞.

These sequences are depicted in Figure 6 in green. The first

category is depicted in the East and West areas, the second

category is depicted in the North and South areas, and the

third category is depicted by the curved part in the center.

Theorem 3, in Supplemental Materials 1, applied to semi-

strong sequences, gives( √
n(ψ̂n − ψn)√

na−1
n (π̂n − πn)

)
→d ZS,

where an →∞ and ZS is a normal random vector. an dimin-

ishes the rate of convergence of π̂n. The continuous mapping

theorem implies that Wn(ν) converges to a limiting χ2
dr dis-

tribution.

Weak sequences are characterized by h(ψn, π) converging to zero at an n−1/2 rate, or

faster. For Example 1, there are three classes of weak sequences, defined by:

NS: β10 = 0, β20 6= 0, and
√
nβ1n → b1,

EW: β10 6= 0, β20 = 0, and
√
nβ2n → b2, or

C: β10 = 0, β20 = 0, and
√
nβ1nβ2n → b,

where b1, b2, and b are local parameters indexing the rate of convergence. These sequences

are depicted in Figure 7 in light blue. The NS class is depicted in the North and South areas

of the picture, the EW class is depicted in the East and West areas of the picture, and the C

class is depicted in the center of the picture. If we assume that b 6= 0 (b1 and b2 are allowed

to take any real number, including 0), we can apply Theorem 1 to these sequences, which

gives ( √
n(ψ̂ − ψn)

π̂

)
→d

(
Zj(π

∗
j )

π∗j

)
,
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where Zj(·) is a Gaussian stochastic process over π, π∗j is a random variable whose distribution

is characterized as the argmin of ξ(π), and j ∈ {NS,EW,C}.28 This asymptotic distribution

is indexed by (1) the value of the local parameter, b, b1, or b2, and (2) the value of the true

parameter, θ0. We can group the local parameters and θ0 into a single index, called g ∈ Gj,

where Gj is a collection of indices. The continuous mapping theorem implies that Wn(ν)

converges to a nonstandard limit distribution, Fj(g), for g ∈ Gj.

When b = 0, neither d0(π) nor d1(π) depends on π. This implies that Assumption MIN

is not satisfied for these sequences because the limit of the concentrated objective function,

ξ(π), is degenerate in the sense that it does not depend on π. The solution is to use Theorem

2, restandardizing the objective function and keeping track of higher-order terms that do

depend on π.

β1

β2

Figure 8

Super-weak sequences are weak sequences such that both

1. h(ψn, π) converges to zero at a rate faster than n−1/2 and

2. h1(ψn, π) converges to zero. In Example 1, there are four

classes of super-weak sequences. In addition to satisfying part

C of the weak sequences definition for b = 0, they are defined

by:

E:
√
n|β1n| → ∞ and

√
n|β2n| → ∞,

U1:
√
n|β1n| → ∞ and

√
nβ2n → b∗2,

U2:
√
nβ1n → b∗1 and

√
n|β2n| → ∞, or

CC:
√
n(β1n, β2n)→ (b∗1, b

∗
2),

where b∗1 and b∗2 are any real number. The U1 and U2 sequences are depicted in Figure 8 in

dark blue, the E sequences are depicted in dark purple, and the CC sequences are depicted

in light purple. The E class tends to have both β1n and β2n converging at an equal or close

to equal rate. The U1 and U2 classes tend to have β1n and β2n converging at an unequal

rate. For U1, β1n converges slower, and for U2, β2n converges slower. The CC class is very

close to the center in the sense that both β1n and β2n converges to zero at the
√
n rate or

faster. We can index these sequences by g ∈ Gj, which includes a local parameter (for U1,

U2, or CC) and θ0 for j ∈ {E,U1, U2, CC}. Theorem 2, applied to all classes of super-weak

sequences, gives ( √
n(ψ̂n − ψn)

π̂n

)
→d

(
Z∗j (π∗j )

π∗j

)
,

28See Section 3.2 for a definition of ξ(π).
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for Z∗j (·), a Gaussian stochastic process over π, and π∗j , a random variable whose distri-

bution is characterized as the argmin of ξ∗(π).29 The continuous mapping theorem then

implies that Wn(ν) converges to a nonstandard limit distribution, Fj(g), for g ∈ Gj and

j ∈ {E,U1, U2, CC}.

4.2 Robust Critical Values

There are a variety of ways to combine the quantiles of these distributions to calculate

robust critical values. The simplest way is to let

ĉLFRobust = max

(
max

j∈{NS,EW,C,E,U1,U2,CC}
sup
g∈Gj

Fj,1−α(g), χ2
dr,1−α

)
,

where Fj,1−α(g) denotes the 1−α quantile of Fj(g) and χ2
dr,1−α denotes the 1−α quantile of

the χ2
dr distribution. This is the least favorable critical value in Andrews and Cheng (2012).

This definition for ĉRobust has two drawbacks. First, this supremum tends to be larger than

necessary, which is conservative. A less conservative critical value would take a supremum

over fewer distributions. Second, the distributions need to be simulated, and taking the

supremum over many distributions is computationally burdensome. For both reasons, it is

desirable to reduce the number of distributions. There are three ways this can be done.30

1. One can impose the null hypothesis on the values of θ0 in the definition of Gj. Values

of θ0 that do not satisfy the null are unnecessary for controlling size. In this case, Gj

depends on ν.

2. One can impose a consistent estimator for some parameters in θ0. Since the quantiles

are continuous with respect to these parameters, imposing a consistent estimator is

equivalent to imposing the true value in the limit. The parameters in θ0 that are

consistently estimable are the ζ0 parameters. In this case, Gj is random, denoted by

Ĝj.

3. One can define new test statistics, sn, to consistently distinguish between some of the

classes. To do this, one defines a sequence of partitions, Bm,n, for the range of sn for

m = 1, ...,M . Then, for each m = 1, ...,M , if sn ∈ Bm,n, the critical value is defined

by maximizing over j ∈ Jm, where Jm is a subset of {NS,EW,C,E, U1, U2, CC}.

29See Section 3.3 for a definition of ξ∗(π).
30The first two correspond to the null-imposed and plug-in critical values of Andrews and Cheng (2012).
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Using all these together, robust critical values can be defined by:

ĉRobust = max

(
M∑
m=1

(
1{sn ∈ Bm,n} sup

j∈Jm
sup

g∈Ĝn(ν)

Fj,1−α(g)

)
, χ2

dr,1−α

)
. (4.1)

There are other approaches in the literature for calculating robust critical values out of

classes of asymptotic distributions. Equation (4.1) corresponds to type 1 critical values in

Andrews and Cheng (2012). Andrews and Cheng (2012) also define type 2 critical values,

which use a softer transition from standard to robust critical values. Additionally, McCloskey

(2012) constructs a confidence set for the local parameters and takes the supremum over local

parameters in the confidence set, using the Bonferroni inequality to control size.

In Example 1, we can define

sn =

(
s1n

s2n

)
=

( √
nβ̂1nV̂ar(β̂1n)−1/2

√
nβ̂2nV̂ar(β̂2n)−1/2

)
,

where Var(β̂in) is the asymptotic variance of β̂in and V̂ar(β̂in) is an estimator of it.31 Let

κ̄n →∞ such that n−1/2κ̄n → 0. Then, we can define one partition to be B1,n = {|s1n| > κ̄n}
and B2,n = {|s1n| ≤ κ̄n}. For these definitions, we notice that |s1n| > κ̄n with probability

approaching 1 for weak sequences in the EW class, while |s1n| ≤ κ̄n with probability ap-

proaching 1 for classes NS, U2, and CC. Thus, s1n distinguishes between sequences and

allows taking the supremum over fewer quantiles.

One can define finer partitions by using s1n and s2n together, which allows for even more

refined critical values. For example, if we also assume that n−1/4κ̄n →∞, then we can define

B1,n = {|s1n| > κ̄n, |s2n| > κ̄n}
B2,n = {|s1n| > κ̄n, |s2n| ≤ κ̄n}
B3,n = {|s1n| ≤ κ̄n, |s2n| > κ̄n}
B4,n = {|s1n| ≤ κ̄n, |s2n| ≤ κ̄n}.

Then, B1,n only occurs with a positive probability in the limit for strong and semi-strong

sequences. B2,n occurs with a positive probability in the limit for C, U1, EW, strong, and

semi-strong sequences. B3,n occurs with a positive probability in the limit for C, U2, NS,

strong, and semi-strong sequences. B4,n occurs with a positive probability in the limit for C,

E, U1, U2, CC, and semi-strong sequences. This justifies defining J1 = ∅, J2 = {C,U1, EW},
J3 = {C,U2, NS}, and J4 = {C,E, U1, U2, CC}. Equation (4.1) then defines ĉRobust for

Example 1.

31Formulas for V̂ar(β̂1n) and V̂ar(β̂2n) are given in Supplemental Materials 2.
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Let

tn =
√
n|β̂1nβ̂2n|

(
β̂2

2nV̂ar(β̂1n) + 2β̂1nβ̂2nĈov(β̂1n, β̂2n) + β̂2
1nV̂ar(β̂2n)

)−1/2

,

and κn be a sequence of constants such that n−1/4κn → ∞ and n−1/2κn → 0.32 tn is the

absolute value of the t test statistic for testing the hypothesis β1β2 = 0.

The fact that κn must diverge at least as fast as n1/4 is strange. The reason for this is the

fact that there exist weak sequences such that tn diverges. This divergence comes from the

fact that the denominator converges to zero when both β1n and β2n converge to zero. The

divergence of tn is a manifestation of the degeneracy of the first derivative of the hypothesis

β1β2 = 0. For all weak and super-weak sequences, the fastest rate at which tn diverges is

n1/4. For this reason, any κn that satisfies the above conditions consistently distinguishs

strong sequences from weak and super-weak sequences.

The robust inference procedure is then defined to reject H0 if either tn > κn and Wn(ν) >

χ2
dr,1−α or if tn ≤ κn and Wn(ν) > ĉRobust. Theorem 5, in Supplemental Materials 2, states

that this robust inference procedure controls size for Example 1, whether or not the rank

condition holds.

5 Robust Inference with Two Factors

This section provides a method for robust inference in Example 2, a factor model with

two factors. Robust inference follows the same two step approach as Section 4. Consider

testing a null hypothesis, H0 : r(θ) = ν, using the Wald test statistic, Wn(ν). The first step

tests the rank condition. The second step uses standard chi-squared critical values or robust

critical values depending on the outcome of the first step.

This section defines Example 2, reparameterizes the model into the setup of Section 3,

divides sequences of parameters into classes, characterizes the asymptotic distribution of the

estimator and test statistic within each class, and describes how to calculate robust critical

values.

5.1 Example 2: Two Factors

Consider the case where there are only two factors and five observed variables. An

extension to more observed variables is handled in Appendix B. In this case, the matrix of

32Ĉov(β̂1n, β̂2n) is an estimator of the asymptotic covariance between β̂1n and β̂2n.
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factor loadings is given by:

Λ =


1 0

0 1

λ11 λ12

λ21 λ22

λ31 λ32

 ,

where the first two rows represent the normalization. The other parameters in the model are

σ2
1, the variance of the first factor, σ2

2, the variance of the second factor, σ12, the covariance

between the two factors, and φj for j = 1, 2, ..., 5, the variances of the error terms. For this

example, we assume that the first factor is strong, so that λ11 6= 0 and λ21 6= 0. All the other

lambdas are allowed to take any value.

In this case, there are three ways the rank condition can fail.

1. Weak Measurement: This occurs when both λ31 and λ32 are zero. In this case, the

fifth observed variable is uncorrelated with both factors. Essentially, there are only

four observed variables, which is insufficient to identify two factors.

2. Weak Factor: This occurs when two of λ12, λ22, or λ32 are zero. In this case, the second

factor does not have three nonzero factor loadings, and so it cannot be identified. An

extreme case of this is when all three lambdas are zero. Then, the second factor does

not explain any of the covariation in the data, so the model essentially has only one

factor. In this sense, Example 2 nests the one factor model and allows for an unknown

number of factors (either one or two).

3. Entangled Factors: This occurs when the lambdas for the second factor are a scalar

multiple of the lambdas for the first factor. That is, there exists an α ∈ R such that λ12

λ22

λ32

 = α

 λ11

λ21

λ31

 .

Intuitively, this occurs when observed variables numbered 3 through 5 depend only on

a particular linear combination of the two factors, so that the distribution of the two

factors cannot be separately identified. This source of identification failure is another

way to nest the one factor model because when α = 0, there is essentially only one

factor. This source for identification failure is important for the empirical application

in Section 6.
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5.2 Reparameterization

This section describes a reparameterization that translates Example 2 into the setup of

Definition Parameter Spaces and Definition Objective Functions.

The reduced form parameters in this model are the elements of the covariance matrix

of the observed variables, equal to Cov(Xi) = Ω(θ) = ΛΣΛ′ + Φ. The following equations

define the reparameterization.

β11 = λ11σ
2
1 + λ12σ12

β12 = λ11σ12 + λ12σ
2
2

β21 = λ21σ
2
1 + λ22σ12

β22 = λ21σ12 + λ22σ
2
2

β31 = λ31σ
2
1 + λ32σ12

β32 = λ31σ12 + λ32σ
2
2

ζ1 = σ2
1 + φ1

ζ2 = σ2
2 + φ2

ζ3 =

(
λ11

λ12

)′
Σ

(
λ11

λ12

)
+ φ3

ζ4 =

(
λ21

λ22

)′
Σ

(
λ21

λ22

)
+ φ4

ζ5 =

(
λ31

λ32

)′
Σ

(
λ31

λ32

)
+ φ5

ρ =

(
λ11

λ12

)′
Σ

(
λ21

λ22

)
π = σ2

2.
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This reparameterization allows us to write the covariance of the observed variables as33

Ω(θ) =


ζ1 σ12 β11 β21 β31

σ12 ζ2 β12 β22 β32

β11 β12 ζ3 ρ h1(ψ, π) + ρβ31β
−1
21

β21 β22 ρ ζ4 h2(ψ, π) + ρβ31β
−1
11

β31 β32 h1(ψ, π) + ρβ31β
−1
21 h2(ψ, π) + ρβ31β

−1
11 ζ5

 ,

where β = (β11, β12, β21, β22, β31, β32), ζ = (ζ1, ζ2, ζ3, ζ4, ζ5), ψ = (β, ζ, σ12, ρ), and

h1(ψ, π) =
β12(β32β21 − β31β22)

πβ21 − σ12β22

+ ρ
β31π − β32σ12

πβ21 − σ12β22

− ρβ31β
−1
21

h2(ψ, π) =
β22(β32β11 − β31β12)

πβ11 − σ12β12

+ ρ
β31π − β32σ12

πβ11 − σ12β12

− ρβ31β
−1
11 .

One can verify that the ψ and h parameters are identified, while the π parameter is identified

if and only if

β32β21 − β31β22 6= 0 or β32β11 − β31β12 6= 0.

This is a version of the rank condition for Example 2, translated into the new parameters.

Notice that both conditions represent determinants on a matrix of β’s. If both conditions

fail, then the rank condition fails, and the model has a weak fifth measurement, a weak

second factor, or the two factors are entangled.

When the rank condition fails, π is still partially identified by bounds. These bounds come

from nonnegativity of the variance parameters and the fact that the variance matrix of the

factors is positive definite. These bounds become intractable under the reparameterization.

Fortunately, we do not have to keep track of them explicitly, since any identified set with a

continuous boundary satisfies Assumption HC. Supplemental Materials 3 gives more details

on the definition of this model, including the specifications of the parameter space and

likelihood.

5.3 Asymptotic Distributions

Robust critical values depend on the asymptotic distribution of Wn(ν) along sequences of

parameters converging to points of rank condition failure. This section divides such sequences

into classes and characterizes the asymptotic distribution of the estimator and the Wald test

33Even though λ11 and λ21 are assumed to be nonzero, it is technically possible that β11 or β21 could
still be zero. In this example, I assume that β11 6= 0 and β21 6= 0, which says that the first and second
non-normalized observed variables, in addition to having nonzero factor loadings on the first factor, have
a nonzero covariance with the first factor. A slightly different formula for h(ψ, π) works when β11 = 0 or
β21 = 0.
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statistic along sequences in each class.

a1

a2

•

•
•

A

B
C

Figure 9

a1

a2

Figure 10

By Assumption h1, the classes are defined based on the

rate at which h(ψn, π) = (h1(ψn, π), h2(ψn, π)) converges to

(0, 0). This only depends on the rates at which a1n =

β32nβ21n − β31nβ22n and a2n = β32nβ11n − β31nβ12n converge

to zero.34

These classes are illustrated using a heuristic sketch, de-

picted in Figure 9. A point outside both circles, for example

point A, depicts a sequence, θn, that converges to a limit, θ0,

for which a10 6= 0 or a20 6= 0. A point between the circles,

for example point B, depicts a sequence that converges to a

limit, θ0, such that both a10 = 0 and a20 = 0, but the rate

of convergence for one or both of them is slower than n−1/2.

A point inside both circles, for example point C, depicts a

sequence for which (a1n, a2n) converges to (0, 0) at an n−1/2

rate or faster.

First, we can define the class of strong sequences, θn, as

those that converge to a limit, θ0, such that either a10 6= 0

or a20 6= 0. These sequences are depicted in Figure 10 in

yellow. Theorem 4, in Supplemental Materials 1, applied to

strong sequences, gives an asymptotic normal distribution for

θ̂n.35 The continuous mapping theorem implies that Wn(ν)

converges to a limiting χ2
dr distribution.

The class of semi-strong sequences is characterized by h(ψn, π) converging to zero at

a rate slower than n−1/2. This occurs when (a10, a20) = (0, 0) and
√
n||(a1n, a2n)|| → ∞.

These sequences are depicted in Figure 10 in green. Theorem 3, in Supplemental Materials

1, applied to semi-strong sequences, gives( √
n(ψ̂n − ψn)√

na−1
n (π̂n − πn)

)
→d ZS,

where an → ∞ and ZS is a normal random variable. an diminishes the rate of convergence

of π̂n. The continuous mapping theorem implies that Wn(ν) converges to a limiting χ2
dr

distribution.

34Notice that h1(ψn, π) =
β32nβ21n − β31nβ22n
πβ21n − σ12nβ22n

(
β12n −

ρnσ12n
β21n

)
, which goes to zero as a1n goes to zero.

A similar calculation holds for h2(ψn, π).
35Supplemental Materials 3 verifies the assumptions of Theorem 4. More generally, Supplemental Mate-

rials 3 contains details and proofs for the assertions in this section (Section 5).
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The class of weak sequences is characterized by h(ψn, π) converging to zero at an n−1/2

rate or faster. This occurs when (a10, a20) = (0, 0) and
√
n(a1n, a2n) → (b1, b2). These

sequences are depicted in Figure 10 in light blue. Theorem 1, applied to weak sequences,

gives ( √
n(ψ̂n − ψn)

π̂n

)
→d

(
ZW (π∗W )

π∗W

)
,

where ZW (·) is a Gaussian stochastic process over π, and π∗W is a random variable whose

distribution is characterized as the argmin of a stochastic process. This distribution is

indexed by (b1, b2) ∈ R2 and θ0. We can combine these into a single index g ∈ GW . The

continuous mapping theorem implies Wn(ν) converges to a nonstandard limit distribution,

FW (g) for g ∈ GW .

5.4 Robust Critical Values

Similar to Example 1, there are a variety of ways to combine the quantiles of these

distributions to calculate robust critical values. The simplest way is to let

ĉLFRobust = max

(
sup
g∈GW

FW,1−α(g), χ2
dr,1−α

)
,

where FW,1−α(g) denotes the 1− α quantile of FW (g). This definition suffers from the same

two drawbacks as Example 1. Thus, it is desirable to reduce the number of distributions.

Analogous to Example 1, one can impose the null hypothesis on the values of θ0 in the

definition of GW . Also, one can plug in consistent estimators for parameters in θ0.36 In

Example 2, the consistently estimable parameters are β0, ζ0, ρ0, and σ120. However, because

there is only one class of sequences, there is no way to consistently distinguish between

different classes of sequences. After imposing the null and plugging in consistent estimators,

the robust critical values are defined to be:

ĉRobust = max

(
sup

g∈ĜW (ν)

FW,1−α(g), χ2
dr,1−α

)
.37

Let

tn =

(
n

2
γ(β̂n)′

(
B(β̂n)V̂ar(θ̂n)B(β̂n)′

)−1

γ(β̂n)

)1/2

,

36These critical values correspond to the null-imposed and plug-in least favorable critical values in Andrews
and Cheng (2012), respectively.

37Similar to Example 1, there are other ways in the literature to define robust critical values, including
type 2 critical values in Andrews and Cheng (2012) and Bonferroni based critical values in McCloskey (2012).
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where

γ(β) =

(
β21β32 − β22β31

β11β32 − β12β31

)
,

B(β) =

[
0 0 β32 −β31 −β22 β21 01×8

β32 −β31 0 0 −β12 β11 01×8

]
,

and V̂ar(θ̂n) is an estimator of the asymptotic variance of θ̂n that is consistent under strong

and semi-strong sequences.38 tn is related to the Wald test statistic for testing the rank

condition, formulated as the hypothesis, γ(β) = 0. B(β) is the derivative of γ(β) with

respect to ψ = (β, ζ, ρ, σ12). Also let κn → ∞ such that n−1/2κn → 0. For Example 2, the

restriction that n−1/4κn → ∞ is not needed. This is because the hypothesis γ(β) = 0 has

no degeneracy. Thus, any κn diverging at a rate slower than n1/2 is sufficient to consistently

distinguish between strong and weak sequences.

The robust inference procedure is defined to reject H0 if either tn > κn and Wn(ν) >

χ2
dr,1−α or if tn ≤ κn and Wn(ν) > ĉRobust. Theorem 6, in Supplemental Materials 3, states

that this robust inference procedure controls size for Example 2, whether or not the factors

are identified.

6 Robust Inference for the Production of Cognitive

and Noncognitive Skills in Children

Cunha and Heckman (2008) and Cunha, Heckman, and Schennach (2010) estimate the

production of skills in children as a function of parental investments. They model parental

investments and child skills as unobserved factors common to a variety of measures of home

environment, parental activities, as well as cognitive and personality test scores. When they

formulate the model, they include two types of skills, cognitive and noncognitive skills, with

two types of parental investments. When taking the model to the data, they encounter the

problem that two types of parental investments are not identified.

“In practice, we cannot empirically distinguish investments in cognitive skills

from investments in noncognitive skills. Accordingly, we assume investment in

period t is the same for both skills, although it may have different effects on those

skills. Thus we assume IC,t = IN,t and define it as It.”
39

Assuming only a one dimensional investment factor eliminates important questions about

38A formula for V̂ar(θ̂n) is given in Supplemental Materials 3.
39Cunha, Heckman, and Schennach (2010), page 904.
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Category Name of Observed Variable

Cognitive Normalization: Number of books the child has

Noncognitive Normalization: How often the child sees family friends

Cognitive Investments: How often the child is taken to a museum
How often mom reads to the child

Additional Variables: How often the child eats with mom/dad
Whether the family receives a daily newspaper
Whether the child is taken to musical performances

Table 2: Observed variables for the model of parental investments in 6-9 year-old children.

the relationship between investment in cognitive skills and investment in noncognitive skills

and the effects these investments have on the development of cognitive and noncognitive skills

for different stages of development. Instead of assuming one parental investment factor, this

paper proposes using robust inference in the model for two factors. With this approach,

two investment factors do not need to be identified. Instead, a first stage test of the rank

condition determines whether one uses standard or robust critical values.

6.1 The Distribution of Parental Investments

A factor model for parental investments assumes that the covariation between a variety of

observed variables related to parental interactions with children and home environment can

be summarized in two dimensions of parental investment, investment in cognitive skills and

investment in noncognitive skills. The model is specified using data on parental interactions

and the home environment that are included in the CNLSY/79 Home Observation of the

Environment - Short Form (HOME-SF). These variables are a subset of the ones used by

Cunha, Heckman, and Schennach (2010).

For example, Table 2 lists the observed variables used for the 6-9 year-old specification.40

First notice that there are seven variables used, which is larger than the five variables for Ex-

ample 2. Appendix B describes how to extend Example 2 to more observed variables. Next,

notice that the variables need to be categorized. The number of books is chosen to be the

normalization for investment in cognitive skills. This assumes that this variable constitutes

an investment in cognitive skills and does not constitute an investment in noncognitive skills.

This is reasonable because a parent purchasing a child a book is an indicator that the parent

is investing in the child’s knowledge or reading skills, which are types of cognitive skills, and

does not indicate the the parent is investing in any noncognitive skills of the child, such as

40A list of the observed variables that are used in other age specifications can be found in Section A. Full
documentation can be found in Center for Human Resource Research (2006).
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social or behavioral skills. Analogously, family friends is chosen to be the normalization for

investment in noncognitive skills. This assumes that this variable constitutes an investment

in noncognitive skills and does not constitute an investment in cognitive skills. This is rea-

sonable because a parent inviting a family member or a family friend over to visit with the

child is an indicator that the parent is investing in the child’s social or conversational skills,

which are types of noncognitive skills, and does not indicate that the parent is investing in

any cognitive skills of the child.41 Also, the specification of Example 2 assumes that there

are two more variables which constitute investments in one of the factors. For this speci-

fication, those variables are taken to be museum and reads, which constitute investments

in cognitive skills. This is reasonable because taking a child to a museum and reading to a

child is an indicator that the parent is investing in the knowledge or reading/language skills

of the child, which are types of cognitive skills. The additional variables are allowed to be

arbitrarily related or unrelated to investments in cognitive or noncognitive skills.

These assumptions are very weak for this factor model, especially compared to the as-

sumptions required for identification. Identification would require assuming that at least two

of cognitive investment variables or additional variables constitute investments in noncogni-

tive skills (at least one of which is an additional variable). Identification would also require

that the linear combination of investment in cognitive and noncognitive skills is different for

at least two cognitive investment variables or additional variables. These assumptions are

unwarranted in this example because we want to allow for the fact that all of the cognitive

investments and additional variables may be completely unrelated to investment in noncog-

nitive skills. The robust inference procedure for Example 2 does not require identification,

so these assumptions are not needed.

Table 3 gives estimates for the parameters in the distribution of the investment factors, as

well as standard and robust confidence intervals. σ2
1 is the variance of investment in cognitive

skills, σ2
2 is the variance of investment in noncognitive skills, and σ12 is the covariance. tn is

the value of the first stage test statistic for the rank condition and κn is a drifting threshold.42

For tn > κn, the model is probably identified and standard critical values can be used to

construct confidence intervals. For tn ≤ κn, the model may or may not be identified and

robust critical values must be used.

Table 3 shows that three of the specifications are probably identified: 0-2 year-old, 3

-5 year-old, and 10-12 year-old. For 6-9 year-old, the first stage test statistic is not large

enough, so robust critical values must be used. Consequently, the robust confidence intervals

for the identified specifications agree with the standard confidence intervals, while the robust

41An exception to this could be if the visitor has special knowledge that the parents want to impart to
the child, such as a tutor or someone who speaks a different language. This normalization assumes that the
presence of this exception is negligible in the data.

42For the empirical specification, κn is chosen to be
√

log(n), analogous to BIC.
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Age Type σ2
1 σ12 σ2

2 tn κn

0-2 Years Estimate 0.62 0.32 0.38 3.2 2.7
Standard [0.41 , 0.83] [0.24 , 0.39] [0.17 , 0.58]
Robust [0.41 , 0.83] [0.24 , 0.39] [0.17 , 0.58]

3-5 Years Estimate 0.028 0.018 0.110 6.0 2.8
Standard [0 , 0.107] [-0.011 , 0.047] [0.032 , 0.189]
Robust [0 , 0.107] [-0.011 , 0.047] [0.032 , 0.189]

6-9 Years Estimate 0.007 0.014 0.026 1.6 2.8
Standard [0 , 0.042] [-0.005 , 0.033] [0 , 0.061]
Robust [0 , 0.574] [-0.005 , 0.033] [0 , 0.481]

10-12 Years Estimate 0.015 0.122 11.05 3.5 2.8
Standard [0 , 0.049] [0.089 , 0.149] [11.01 , 11.09]
Robust [0 , 0.049] [0.089 , 0.149] [11.01 , 11.09]

Table 3: Parameter estimates and standard and robust confidence intervals for the variance
and covariance of parental investment in cognitive and noncognitive skills.

confidence intervals for 6-9 year-old are larger. The robust confidence intervals for σ2
1 and σ2

2

are significantly larger than their standard confidence intervals, while the robust confidence

interval for σ12 is the same as the standard confidence interval. This is because σ12 is

identified, and the robust critical value for σ12 coincides with the chi-squared critical value,

while the robust critical values for σ2
1 and σ2

2 are larger than the chi-squared critical value.43

Finally, some of the confidence intervals for the identified specifications are quite wide,

despite being classified as identified. For example, the right end point of the confidence inter-

val for σ2
1 in the 3-5 year-old specification is more than three times the value of the estimate.

This shows that wide confidence intervals are not reliable indicators of identification status.

A confidence interval also could be wide because the data is noisy.

What is different about the 6-9 year old specification that causes it to be unidentified,

while the other specifications are identified? Each cognitive investment variable and addi-

tional variable constitutes an investment in a linear combination of cognitive and noncogni-

tive skills. The problem is that each of these variables constitutes an investment in the same

linear combination of cognitive and noncognitive skills. This is detected by estimating the

covariances between the observed variables and the parental investment factors, displayed

in Table 4. The right column is approximately a scalar multiple of the left column.44 This

43For identified parameters, robust critical values sometimes coincide with chi-squared critical values, but
not always.

44The ratio between the right and left column is always between 1.4 and 3.3, a relatively small range
considering statistical error.
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Cognitive Noncognitive

Museum 0.026 0.085
Music 0.029 0.068
Reads 0.044 0.078
Eats 0.025 0.034
Newspaper 0.012 0.022

Table 4: Estimated covariances between observed variables and investments in cognitive and
noncognitive skills of 6-9 year-old children.

means that, at the estimated value of the parameters, the factors are close to being entan-

gled. The first stage test of the rank condition cannot reject the null hypothesis that the

rank condition fails, and the model is close to unidentified.

6.2 Estimating the Production Function

This section describes how to perform robust inference for parameters in a production

function where the inputs to production are unobserved factors. Robust inference for these

parameters involves, first, specifying a robust inference procedure for parameters, θ, that

index the first stage factor model, and second, writing the parameters in the production

function as a function of the first stage parameters, r(θ). This section discusses both linear

and nonlinear production functions.

6.2.1 Linear Production Functions

Cunha and Heckman (2008) combine the factor model for parental investments with

factors for the distribution of skills, both cognitive and noncognitive, over time as well as

a factor for maternal abilities. They specify a linear production function for cognitive and

noncognitive skills. Allowing for two parental investments, the linear production function is

ln(SC,t+1) = γC1ln(SC,t) + γC2ln(SN,t) + γC3ln(IC,t) + γC4ln(MA) + γC5ln(ME) + εC,t+1

ln(SN,t+1) = γN1ln(SC,t) + γN2ln(SN,t) + γN3ln(IN,t) + γN4ln(MA) + γN5ln(ME) + εN,t+1,

where SC,t is child cognitive skills, SN,t is child noncognitive skills, IC,t is parental investment

in cognitive skills, IN,t is parental investment in noncognitive skills, MA is maternal abilities

(an unobserved factor), and ME is mother’s education (an observed variable).

In the Cunha and Heckman (2008) specification, expanded by a second investment factor,

the first step comes from applying the robust inference procedure of Section 3 to a model
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with more factors. In this case the rank condition and corresponding identification status

is more complicated than the rank condition for a model with two factors. Appendix C

discusses extending the robust inference of Examples 1 and 2 to more factors.

For the second step, let RHSC,t and RHSN,t collect the right hand side variables (as 5×1

vectors) for the cognitive and noncognitive equations, respectively. Then, let

Var

(
SC,t+1

RHSC,t

)
=

[
σ2
C,t+1 σ′C,t+1,t

σC,t+1,t ΣC,t

]
and Var

(
SN,t+1

RHSN,t

)
=

[
σ2
N,t+1 σ′N,t+1,t

σN,t+1,t ΣN,t

]

denote the covariance matrices of the variables in the two production functions, where σ2
C,t+1

is the variance of SC,t+1, σ2
N,t+1 is the variance of SN,t+1, ΣC,t is the 5× 5 variance matrix of

RHSC,t, ΣN,t is the 5×5 variance matrix of RHSN,t, σC,t+1,t is the 5×1 vector of covariances

of RHSC,t with SC,t+1, and σN,t+1,t is the 5× 1 vector of covariances of RHSN,t with SN,t+1.

These parameters constitute part of the vector of first stage parameters, θ. We can write

the coefficients in the production function as

γC = Σ−1
C,tσC,t+1,t

γN = Σ−1
N,tσN,t+1,t,

where γC = (γC1, γC2, γC3, γC4, γC5)′ and γN = (γN1, γN2, γN3, γN4, γN5)′. This defines r(θ).

Constructing the Wald test statistic for the hypothesis H0 : r(θ) = ν and using robust critical

values gives robust inference.

6.2.2 Nonlinear Production Function

Cunha, Heckman, and Schennach (2010) specify a nonlinear production function with one

parental investment factor. When expanded to allow for two parental investment factors,

the production function is

SC,t+1 = [γC,1S
φC
C,t + γC,2S

φC
N,t + γC,3I

φC
C,t + γC,4M

φC
C + γC,5M

φC
N ]1/φCeηC,t+1

SN,t+1 = [γN,1S
φN
C,t + γN,2S

φN
N,t + γN,3I

φN
N,t + γN,4M

φN
C + γN,5M

φN
N ]1/φN eηN,t+1 ,

where MC is maternal cognitive skills and MN is maternal noncognitive skills, which are

both unobserved factors.

The first step, specifying a robust inference procedure for parameters, θ, that index

the first stage factor model, is in principle the same as for the linear production function.

However, a potential difference comes from the fact that the parameters in the nonlinear

regression depend on properties of the joint distribution of the factors beyond second mo-

ments. For this reason, it is important to allow for more flexibility in the joint distribution
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of the factors. Cunha, Heckman, and Schennach (2010) include specifications where the

parametric form for the distribution of the factors is a mixture of normals. This complicates

the identification characterization both because mixture models may not be identified and

because the rank condition on the factor loadings has a different effect on the identification

of the parameters in the distribution of the factors.45 Robust inference for this specifica-

tion requires reparameterizing the model into the framework of Section 3.1 and applying

Theorems 1 and 2 to drifting sequences of parameters.

The second step is to write the parameters in the production function as a function of the

parameters in the distribution of the factors. In this case, there is no closed form solution,

but this can be calculated by simulation as in Attanasio, Meghir, and Nix (2015).

7 Conclusion

Identification in factor models can be characterized by a rank condition on the factor

loadings. The literature on identification in factor models has focused on providing sufficient

conditions for the rank condition to hold generically over the parameter space. However,

this leads to poor inference results when the rank condition fails or is close to failing. This

paper provides a method for robust inference based on calculating robust critical values that

control rejection probabilities along sequences of parameters converging to points of rank

condition failure. Within a class of models that are doubly parameterized by structural and

reduced form parameters, two new theorems provide limit theory for weak and super-weak

sequences of parameters. These theorems allow for nondifferentiability of the boundary of

the identified set and degeneracy in the limit of the objective function.

Explicit procedures for robust inference are provided for two examples. The first example

has one factor, that may be weak, and the second example has two factors, that may be

entangled. The entanglement of the second example occurs in an empirical application of

estimating the distribution of parental investments in the cognitive and noncognitive skills

of children. In one of the age categories, the parental investment factors are entangled,

and therefore not identified, while in the other three age categories, the parental investment

factors are identified. This illustrates that the robust inference procedure is capable of dis-

tinguishing between specifications that are identified and those that are unidentified because

of the rank condition.

45For a description of identification in mixture models, see Chen, Ponomareva, and Tamer (2014) and the
references therein.
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[60] Ximénez, C. (2015): “Recovery of Weak Factor Loadings When Adding the Mean Struc-

ture in Confirmatory Factor Analysis: A Simulation Study,” Frontiers in Psychology,

6, Article 1943.

A Data Description

The variables used are a subset of the ones used by Cunha, Heckman, and Schennach

(2010). The specification for children ages 0-2 years old uses: how often the child gets out of

the house, the number of books the child has, how often mom reads to the child, the number

of soft/role play toys, the number of push/pull toys, how often the child eats with mom/dad,

and how often mom talks to the child from work. The specification for children ages 3-5

years old uses: how often the child gets out of the house, the number of books the child

has, how often mom reads to the child, how often the child eats with mom/dad, number

of magazines, whether the child has a tape recorder/CD player, and how often the child

is taken to a museum. The specification for children ages 6-9 years old uses: the number

of books the child has, how often mom reads to the child, how often the child eats with

mom/dad, how often the child is taken to a museum, whether the family receives a daily

newspaper, whether the child is taken to musical performances, and how often the child sees

family friends. The specification for children ages 10-12 years old uses: the number of books

the child has, how often the child eats with mom/dad, how often the child is taken to a
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Category 0-2 Years 3-5 Years 10-12 Years

Cognitive Normalization: Books Books Books
Noncognitive Normalization: Outings Outings Complimented
Cognitive Investment 1: Push/Pull Toys Museum Museum
Cognitive Investment 2: Reads Reads Music

Table 5: Normalization variables and cognitive investment variables for ages 0-2, 3-5, and
10-12 years.

museum, whether the child is taken to musical performances, how often the child sees family

friends, the number of times the child was praised last week, and the number of times the

child was complimented last week.

Table 5 states which variables are used for the normalizations and cognitive investments

for age specifications 0-2, 3-5, and 10-12 years-old.46

The data includes observations from 2810 firstborn white children born to female respon-

dents in the NLSY dataset. These are the same observations used by Cunha, Heckman,

and Schennach (2010), updated for newly available observations. More information on the

dataset can be found in the description of the data given by Cunha, Heckman, and Schennach

(2010), or in Center for Human Resource Research (2006).

B Example 2 with More Measurements

Robust Inference in Example 2 was specific to a model with five measurements. This

appendix extends that analysis to more measurements. Let the model be:

Xi = ΛFi + εi,

46 Books denotes the number of books the child has. Complimented denotes the number of times the child
was complimented last week. Museum denotes how often the child is taken to a museum. Music denotes
whether the child is taken to musical performances. Outings denotes how often the child gets out of the
house. Push/Pull Toys denotes the number of push/pull toys. Reads denotes how often mom reads to the
child.
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where Xi is a p-vector with p ≥ 5. Fi is still a 2-vector with covariance Σ and εi is a p-vector

with covariance Φ, assumed to be diagonal. If we let

Λ =


1 0

0 1

λ11 λ12

...
...

λp−2,1 λp−2,2

 ,

and let λi = (λi1, λi2)′ for i = 1, ..., p− 2, then we can write the covariance of Xi as:

σ2
1 + φ1 σ12 λ′1Σe1 λ′2Σe1 · · · λ′p−2Σe1

′′ σ2
2 + φ2 λ′1Σe2 λ′2Σe2 · · · λ′p−2Σe2

′′ ′′ λ′1Σλ1 + φ3 λ′1Σλ2 · · · λ′1Σλp−2

′′ ′′ ′′ λ′2Σλ′2 + φ4 · · · λ′2Σλp−2

...
...

...
. . .

...
′′ ′′ ′′ ′′ · · · λ′p−2Σλp−2 + φp


.

We can reparameterize this as:

ζ1 σ12 β11 β21 β31 β41 · · · βp−2,1

′′ ζ2 β12 β22 β32 β42 · · · βp−2,2

′′ ′′ ζ3 ρ h13(ψ, π) + ρ
β32

β22

h14(ψ, π) + ρ
β42

β22

· · · h1,p−2(ψ, π) + ρ
βp−2,2

β22

′′ ′′ ′′ ζ4 h23(ψ, π) + ρ
β32

β12

h24(ψ, π) + ρ
β42

β12

· · · h2,p−2(ψ, π) + ρ
βp−2,2

β12

′′ ′′ ′′ ′′ ζ5 h34(ψ, π) + ρ
β32β42

β12β22

· · · h3,p−2(ψ, π) + ρ
β32βp−2,2

β12β22

′′ ′′ ′′ ′′ ′′ ζ6 · · · h4,p−2(ψ, π) + ρ
β42βp−2,2

β12β22
...

...
...

...
...

...
. . .

...
′′ ′′ ′′ ′′ ′′ ′′ · · · ζp



,

where

h1j(ψ, π) =
β11(βj1β22 − βj2β21)

πβ22 − σ12β21

+ ρ
βj2π − βj1σ12

πβ22 − σ12β21

− ρβj2
β22

h2j(ψ, π) =
β21(βj1β12 − βj2β11)

πβ12 − σ12β11

+ ρ
βj2π − βj1σ12

πβ12 − σ12β11

− ρβj2
β12

hij(ψ, π) =
β11(σ12βi1 − βi2π)(β21βj2 − β11βj1)

(πβ12 − σ12β11)(πβ22 − σ12β21)
+
β21(σ12βj1 − βj2π)(β11βi2 − β12βi1)

(πβ12 − σ12β11)(πβ22 − σ12β21)
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+ρ
(πβi2 − σ12βi1)(πβj2 − σ12βj1)

(πβ12 − σ12β11)(πβ22 − σ12β21)
− ρ βi2βj2

β12β22

,

for j = 3, ..., p− 2 and i = 3, ..., j − 1.

Then h(ψ, π) does not depend on π when

0 =



β11β22 − β12β21

β11β32 − β12β31

...

β11βj2 − β12βj1
...

β11βp−2,2 − β12βp−2,1


= γ(β).

Thus, we can define tn to be:

tn =

(
n

p− 3
γ(β̂n)′(B(β̂n)V̂arββ(θ̂n)B(β̂n)′)−1γ(β̂n)

)1/2

,

where B(β) =
∂

∂β
γ(β) and V̂arββ(θ̂) is an estimator of the upper left block of the asymptotic

variance of θ̂. Then tn is a test statistic for testing H0 : γ(β) = 0. We can calculate robust

critical values using straightforward extensions to the formulas for H, Y1, d(π), and d1(π)

plugged into the formulas for Z(π) and ξ(π).

This extends the analysis of Example 2 to allow for an arbitrary number of measurements.

C More Factors: Identification Reduction

This section gives suggestions for robust inference in factor models with more than two

factors.

As the number of factors increases, the rank condition becomes more complicated. In

fact, Assumption Rank Condition is sufficient but not necessary when the number of factors

is three or larger. This means that applying the robust inference method of Section 2 directly

requires: (1) specifying a rank condition that is both necessary and sufficient for identifi-

cation, (2) reparameterizing the model to fit Definition Parameter Spaces and Definition

Objective Functions, and (3) characterizing the asymptotic distribution of a test statistic

along sequences of parameters converging to points of rank condition failure.

I have two suggestions that may simplify this process. The first is to notice that a

complicated rank condition often has multiple ways that it can fail, and not all of them

may be relevant for a particular application. By imposing appropriate assumptions, the
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rank condition can be significantly simplified. Example 2 already takes advantage of this.

Example 2 assumes that at least two of the non-normalized measurements have nonzero

factor loadings for the first factor, which eliminates the possibility of two weak factors.47

This reduces the sources of rank condition failure to (a) a weak fifth measurement, (b) a weak

second factor, or (c) two entangled factors. This is appropriate in the parental investments

application because it is reasonable to assume that parental investment in cognitive skills is

a strong factor. For that application, the relevant way that the rank condition can fail is due

to entangled factors. Thus, additional assumptions that are appropriate for the application

can simplify a complicated rank condition.

The second suggestion is to notice that specification changes in the model can change the

rank condition. In particular, imposing block diagonality on the factor loadings may reduce

the rank condition of the full model to rank conditions on each block. Suppose the model is

given by:

Xi = ΛFi + εi.

Also suppose that Λ is block diagonal, so that

Λ =


Im1 0

Λ1 0

0 Im2

0 Λ2

 ,
where the number of factors in each block is mj and the number of measurements in each

block is pj for j = 1, 2. This specification has only two blocks, but can be easily extended

to more blocks. Furthermore, assume that the variance of the errors satisfies:

Φ =


diag(φ1, ..., φm1) 0 0 Φ14

0 diag(φm1+1, ..., φp1) Φ23 Φ24

0 Φ32 diag(φp1+1, ..., φp1+m2) 0

Φ41 Φ42 0 diag(φp1+m2+1, ..., φp)

 ,

where diag(a1, ..., am) denotes a m × m diagonal matrix with diagonal entries given by

a1, ..., am. Φ41 = Φ′14 denotes a p2 − m2 × m1 matrix of parameters, Φ32 = Φ′23 denotes

a m2 × p1 − m1 matrix of parameters, and Φ42 = Φ′24 denotes a p2 − m2 × p1 − m1 ma-

trix of parameters. Also let Φ11 = diag(φ1, ..., φm1), Φ22 = diag(φm1+1, ..., φp1), Φ33 =

diag(φp1+1, ..., φp1+m2), and Φ44 = diag(φp1+m2+1, ..., φp). Allowing for these off-diagonal

terms in the covariance matrix of the errors has two purposes. The first is to relax the

assumption of the diagonal error covariance matrix, and the second is to reduce the rank

47See the definition of the parameter space in Supplemental Materials 3.
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condition. Also let the variance of the factors be denoted by

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

In this model, the covariance matrix of the observables can be written as

Cov(Xi) = ΛΣΛ′ + Φ

=


Σ11 + Φ11 Σ11Λ′1 Σ12 Σ12Λ′2 + Φ14

Λ1Σ11 Λ1Σ11Λ′1 + Φ22 Λ1Σ12 + Φ23 Λ1Σ12Λ′2 + Φ24

Σ21 Σ21Λ′1 + Φ32 Σ22 + Φ33 Σ22Λ′2
Λ2Σ21 + Φ41 Λ2Σ21Λ′1 + Φ42 Λ2Σ22 Λ2Σ22Λ′2 + Φ44

 .
This equation can be solved for the parameters in Σ11,Σ12,Σ22,Λ1,Λ2,Φ11,Φ22,Φ33,Φ44,Φ14,

Φ23, and Φ24 if and only if we can solve for the parameters in the two smaller factor models,

given by

X1i = Λ1F1i + ε1i

X2i = Λ2F2i + ε2i,

where X1i denotes the first p1 variables in Xi, X2i denotes the last p2 variables in Xi, F1i

denotes the first m1 factors in Fi, F2i denotes the last m2 factors in Fi, ε1i denotes the first

p1 errors in εi, and ε2i denotes the last p2 errors in εi. That is, if and only if we can solve for

the parameters in

Cov(X1i) =

[
Σ11 + Φ11 Σ11Λ′1

Λ1Σ11 Λ′1Σ11Λ1 + Φ22

]

Cov(X2i) =

[
Σ22 + Φ33 Σ22Λ′2

Λ2Σ22 Λ2Σ22Λ′2 + Φ44

]
.

These two equations are the covariance matrices for the smaller factor models, and can be

solved if and only if rank conditions hold on Λ1 and Λ2. Thus, identification in the larger

factor model is determined by rank conditions on Λ1 and Λ2. Robust inference with respect

to the rank conditions on Λ1 and Λ2 can then be done using the sequential peeling argument

of Cheng (2015), which extends to an arbitrary number of blocks.

This shows that under block diagonality of the factor loadings and allowing for some

nonzero off-diagonal terms in the error covariance matrix, the identification status of a large

factor model can be reduced to the identification status of smaller factor models.
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D Notation for Tensors

The proof of Theorem 2 requires a higher-order expansion of the objective function. The

higher-order terms involve higher-order derivatives that are stored in higher-order matrices

called tensors. Tensors can be manipulated just like matrices, but with some additional

notation. For example, if A is a dψ × dψ × dψ tensor, and i1, i2, i3 ∈ {1, ..., dψ}, then Ai1,i2,i3
denotes the (i1, i2, i3)th element of A. For example, if f(x) is a three times continuously

differentiable function, then we can define a three tensor of third order partial derivatives

to be Ai1,i2,i3 =
∂3

∂xi1∂xi2∂xi3
f(x) for all i1, i2, i3 ∈ {1, ..., dx}. This example generalizes to

higher derivatives and higher dimensions of the tensor.

The space of tensors contains a natural inner product, corresponding to the Frobenius

norm for matrices. If A and B are dmψ tensors, then the inner product between A and B is

defined to be

〈A;B〉 =

dψ∑
i1=1

· · ·
dψ∑
im=1

Ai1,...,imBi1,...,im .

This inner product also defines a norm, ||A||, that satisfies the Cauchy-Schwarz inequality.

This norm also satisfies ||A⊗B|| = ||A||||B||. This bracket notation can also be defined for

A and B with different dimensions. For example, if A is a dmAψ tensor and B is a dmBψ tensor,

with mA > mB, then 〈A;B〉 is defined to be a dmA−mBψ tensor with (i1, ..., imA−mB)th element

equal to:
dψ∑

imA−mB+1=1

· · ·
dψ∑

imA=1

Ai1,...,imA−mB ,imA−mB+1,...,imA
BimA−mB+1,...,imA

.

The convention is that the product is taken over the last mB dimensions of A. This gen-

eralizes multiplication of a matrix by a vector. An important consequence of these defi-

nitions is the fact that the norm is compatible over this multiplication, meaning that for

any tensors A,B with the dimension of A greater than or equal to the dimension of B,

||〈A;B〉|| ≤ ||A||||B||.
Another important operation is tensor multiplication. If A is a dmAψ tensor and B is a

dmBψ tensor, then A⊗B is a dmA+mB
ψ tensor that is indexed by the dimensions of A first and

the dimensions of B second. This can be generalized to allow for more products, ⊗jAj, and

powers, A⊗2, in the natural way.

The final operation is a generalization of the transpose. If A is a dmψ tensor, let �(A)

denote the tensor with (i1, ..., im)th element given by Ai2,...,im,i1 . This operation moves the

last dimension of A to be first and all of the other dimensions are shifted back one. This

operation can be repeated to cycle through the dimensions of A.

Finally, these operations can be defined for tensors that have different lengths for different
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dimensions. In this case, one additional extension occurs with the bracket notation. We can

combine the bracket with the tensor product in the following way. If A is a dm1
ψ ×d

m2
h tensor

and B is a dm3
ψ × d

m4
h tensor and m2 ≥ m4, then let 〈A;B〉dh denote the dm1+m3

ψ × dm2−m4
h

tensor that takes the product over the final m4 dimensions that are length dh, while the

remaining dimensions are stacked, as in the tensor product.

62


	Introduction
	Identification in Factor Models
	Robust Inference for a General Class of Weakly Identified Models
	A Class of Models
	Theorem 1
	Theorem 2

	Robust Inference in Example 1
	Asymptotic Distributions
	Robust Critical Values

	Robust Inference with Two Factors
	Example 2: Two Factors
	Reparameterization
	Asymptotic Distributions
	Robust Critical Values

	Robust Inference for the Production of Cognitive and Noncognitive Skills in Children
	The Distribution of Parental Investments
	Estimating the Production Function
	Linear Production Functions
	Nonlinear Production Function


	Conclusion
	Data Description
	Example 2 with More Measurements
	More Factors: Identification Reduction
	Notation for Tensors

