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Instructions

This exam has 4 questions and a total of 100 points.

Answer each question in a SEPARATE exam book.

If you need to make additional assumptions, state them clearly.

Be concise.

Write clearly if you want partial credit.

Good luck!



1. (25 pts) The inverse demand function for oil is given by a continuously di¤erentiable function
P : R++ ! R++ satisfying P 0 < 0 and P (x)!1 as x # 0: The price elasticity of the demand
for oil is de�ned at any x > 0 as

e(x) := � P (x)

P 0(x)x
:

The total stock of oil below the ground is 0 < �x < 1: It is all owned by one oil company,
which can extract it at zero cost. The �rm�s pro�t is zero if it sells no oil, and its pro�t is px
if it sells an amount x > 0 at price p:

(a) (6 pts) Compare the competitive equilibrium (xc; pc) to the monopoly outcome (xm; pm)
under (i) the assumption that e(x) > 1 for all x 2 (0; �x], and (ii) under the assumption
that e(�x) < 1:
Soln: (xc; pc) = (�x; P (�x)). Proof: Given a price p; the consumer demands the x satis-
fying P (x) = p; and the �rm supplies �x = arg max

0�x��x
px: So supply = demand requires

xc = �x and pc = P (�x):
A monopoly chooses x 2 [0; �x] to maximize its revenue, which is given by R(0) = 0 and
R(x) = xP (x) for x > 0: Marginal revenue is

R0(x) = P (x) + P 0(x)x

=

�
1 +

P 0(x)x

P (x)

�
P (x) =

�
1� 1

e(x)

�
P (x):

Case (i) : e(x) > 1 for x 2 (0; �x]: In this case R0(x) > 0 for all x 2 (0; �x]: It follows that
R(�x) > R(x) for x 2 [0; �x]: The monopoly outcome is thus (xm; pm) = (�x; P (�x)); the
same as the competitive outcome.
Case (ii) : e(�x) < 1: In this case R0(�x) < 0; and so any maximizer of R on [0; �x] is less
than �x: Relative to the competitive �rm, the monopoly produces less oil, xm < xc; at
a higher price, pm = P (xm) > pc: However, this statement is vacuous if the monopoly
problem has no solution, which is possible. For example, R has no maximizer if e(x) < 1
for all x 2 (0; �x], as then R is a decreasing positive function on (0; �x]; with a discontinuity
at 0 because R(0) = 0:

Now suppose there are two periods, t = 1; 2; and the �rm discounts the second period at rate
r > 0: The inverse demand function in period t is Pt(xt); which has the same properties as
does the function P above. The �rm�s discounted payo¤ if it sells xt in period t at price pt
is p1x1 + (1 + r)�1p2x2; where (x1; x2) must satisfy x1 + x2 � �x: Its pro�t in period t is 0 if
xt = 0.

(b) (6 pts) Suppose (pc1; x
c
1; p

c
2; x

c
2) is a competitive equilibrium satisfying x

c
1 > 0 and x

c
2 > 0:

Find a system of four equations this equilibrium must satisfy. Then compare xc1 to x
c
2

when P1(�) = P2(�):
Soln: xct must be what the consumers demand in period t at price p

c
t ; and so

pc1 = P1(x
c
1); pc2 = P2(x

c
2): (1)

As these prices are positive, the price-taking �rm must �nd it optimal to sell all its oil:

xc1 + x
c
2 = �x:
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Thus, x1 = xc1 maximizes p
c
1x1 + (1 + r)

�1pc2(�x � x1) on [0; �x]: Since 0 < xc1 < �x; the
FOC is pc1 � (1 + r)�1pc2 = 0; which rearranges to the Hotelling no-arbitrage condition
that the equilibrium price of oil increases over time at the rate of interest:

pc2 = (1 + r)p
c
1:

The equilibrium (pc1; x
c
1; p

c
2; x

c
2) satis�es these four displayed equations, and they can in

principle be solved to �nd the equilibrium.
If P1 and P2 are the same function, then because it is a decreasing function and pc2 > p

c
1;

(1) implies xc2 < x
c
1: Thus, more oil is consumed in the present than in the future, due

to discounting and the no-arbitrage condition.

(c) (6 pts) Again allowing P1 and P2 to be di¤erent functions, assume now that for some
e > 1; the elasticities satisfy et(xt) > e for all xt 2 (0; �x] and t = 1; 2: Suppose
(pm1 ; x

m
1 ; p

m
2 ; x

m
2 ) is a monopoly outcome satisfying x

m
1 > 0 and xm2 > 0. Find a sys-

tem of four equations this outcome must satisfy.
Soln: The �rm�s revenue function in period t is given by Rt(xt) = xtPt(xt) for xt 2 (0; �x];
and Rt(0) = 0: The monopoly outputs maximize

R1(x1) + (1 + r)
�1R2(x2)

subject to x1 + x2 � �x: Because both elasticities exceed 1; each Rt is an increasing
function (see the solution to (a)). The constraint thus binds, and so x1 = xm1 maximizes

R1(x1) + (1 + r)
�1R2(�x� x1)

subject to 0 � x1 � �x: Since xm1 2 (0; �x); the FOC is R01(xm1 )� (1+ r)�1R02(�x�xm1 ) = 0:
Substitute xm2 for �x� xm1 and rearrange to obtain the monopoly no-arbitrage condition:

R02(x
m
2 ) = (1 + r)R

0
1(x

m
1 ): (2)

The monopoly outcome (pm1 ; x
m
1 ; p

m
2 ; x

m
2 ) satis�es this equation and x

m
1 + x

m
2 = �x, to-

gether with pm1 ;= P1(x
m
1 ) and p

m
2 = P2(x

m
2 ):

(d) (7 pts) Under the additional assumption that both P1 and P2 have constant elasticities,
e1 and e2; satisfying e1 � e2 > 1; how does (pm1 ; xm1 ; pm2 ; xm2 ) compare to (pc1; xc1; pc2; xc2)?
Soln: Using the expression for R0 shown in the solution to (a), we can now write the
monopoly no-arbitrage condition (2) as�

1� 1

e2

�
P2(x

m
2 ) = (1 + r)

�
1� 1

e1

�
P1(x

m
1 );

and so
P2(�x� xm1 )
(1 + r)P1(xm1 )

=
1� 1

e1

1� 1
e2

� 1;

where the inequality follows from e1 � e2 > 1: The competitive no-arbitrage condition
is

P2(�x� xc1)
(1 + r)P1(xc1)

= 1:

Hence,
P2(�x� xm1 )
P1(xm1 )

� P2(�x� xc1)
P1(xc1)

;
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with equality i¤ e1 = e2: This and P 0t < 0 imply x
m
1 � xc1; and hence xm2 � xc2: Therefore,

if e1 > e2 then
pm1 < p

c
1; xm1 > x

c
1; pm2 > p

c
2; xm2 < x

c
2;

and these are all equalities if e1 = e2:

2. (25 pts) Consider a Bernoulli utility function u : R ! R that has derivatives u0 > 0 and
u00 < 0; and exhibits DARA (decreasing absolute risk aversion). Prove each of the following.

(a) (10 pts) (Lemma) For any k 2 R and any random gamble ~y;

Eu(~y) = u(k) ) Eu(~y + a) > u(k + a) 8a > 0:

Soln: Proof 1. Because Eu(~y) = u(k); �agent� u is indi¤erent between the random
gamble ~y and the deterministic gamble �k: Let ua be the utility function de�ned by
ua(z) = u(z+a): Then for a > 0; DARA implies that ua is strictly more risk averse than
u (essentially by Pratt�s theorem). Hence, by de�nition of �strictly more risk averse,�
the indi¤erence of u between ~y and �k implies that ua strictly prefers the former. Hence,

Eu(~y + a) = Eua(~y) > ua(k) = u(k + a):

Proof 2. Let ua be the utility function de�ned by ua(z) = u(z + a): Let c(a) be the
certainty equivalent C(~y; ua); so that Eua(~y) = ua(c(a)): Note that c(0) = k: Since ua
exhibits DARA because u does, Pratt�s Theorem implies c(a) is an increasing function.
Hence, for any a > 0 we have c(a) > k: Thus,

Eu(~y + a) = Eua(~y) = ua(c(a)) > ua(k) = u(k + a):

Even if you were unable to prove the �Lemma� in (a), feel free to use it to prove (b)-(d)
below.

(b) (5 pts) Let ~x be a random gamble, and let b(w) be the maximum price the agent is
willing to pay for ~x when her wealth is w: Then b(w) increases in w.
Soln: Let ŵ > w: The buy price b(w) is de�ned by

Eu(w + ~x� b(w)) = u(w):

By (a), adding ŵ � w to the arguments on both sides of this equality yields

Eu(ŵ + ~x� b(w)) > u(ŵ) = Eu(ŵ + ~x� b(ŵ));

where the equality comes from the de�nition of b(ŵ): Hence, b(w) < b(ŵ):

(c) (5 pts) Let ~x be a random gamble, and let s(w) be the minimum price at which the
agent is willing to sell ~x when her wealth is w: Then s(w) increases in w:
Soln: Let ŵ > w: The sell price s(w) is de�ned by

Eu(w + ~x) = u(w + s(w)):

By (a), adding ŵ � w to the arguments on both sides of this equality yields

Eu(ŵ + ~x) > u(ŵ + s(w)):
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Thus, since u(ŵ + s(ŵ)) = Eu(ŵ + ~x); we have

u(ŵ + s(ŵ)) > u(ŵ + s(w));

which implies s(ŵ) > s(w):

(d) (5 pts) Now let ~x be a random gamble that is valuable at wealth w; in the sense that
Eu(w + ~x) > u(w): Then s(w) > b(w); where b(w) and s(w) are de�ned in (b) and (c)
from this ~x and w:
Soln: Again, the buy price b(w) is de�ned by

Eu(w + ~x� b(w)) = u(w):

Because Eu(w + ~x) > u(w); we have b(w) > 0: Therefore, by (a), adding b(w) to the
arguments on both sides of this equality yields

Eu(w + ~x) > u(w + b(w)):

Thus, since u(w + s(w)) = Eu(w + ~x); we have

u(w + s(w)) > u(w + b(w));

which implies s(w) > b(w):

3. (25 pts) Consider an exchange economy with two consumers and two goods. Good x is a
perfectly divisible numeraire. Good y, in contrast, is indivisible, that is, consumers can only
consume it in nonnegative integer amounts. The utility of consumer i = 1; 2 from consuming
a bundle (xi; yi) of the two goods is given by ui(xi; yi) = xi+ vi(yi), where vi(�) is a function
on nonnegative integers. Assume that

vi(2) > vi(1) = vi(0) = 0; and vi(y) = vi(2) for y > 2:

(Think of good y as chopsticks where the value of only one is 0:) Assume also that

v2(2) � v1(2) � 10:

The initial endowment of consumer i = 1; 2 is (eix; e
i
y): Assume the total endowment of good

y is e1y + e
2
y = 2; and that e

1
x = e

2
x = 20.

(a) (4 pts) Describe the Pareto e¢ cient allocations in this economy.

Soln: If v1(2) = v2(2); an allocation is e¢ cient if and only if it is non-wasteful and one
agent gets both units of y: If instead v1(2) > v2(2); then an allocation is e¢ cient if and
only if it is non-wasteful, and either agent 1 gets both units of y; or agent 2 gets both
units and x1 < v2(2).

(b) (4 pts) Write conditions for a Walrasian equilibrium for this economy.

Soln: Let p � 0 be an equilibrium price. If p = 0; each agent would demand at least
2 units of y; and so market demand would exceed supply. So p > 0: This implies that
each agent�s demand for y is 0; 1; or 2: If 2p < v2(2); then each agent would optimally
demand y = 2 (which he could a¤ord because his income 20 + peiy exceeds the cost 2p
of purchasing y = 2 : 20 + peiy > 10 � vi(2) > 2p): Again, they cannot both demand
2 units of y in equilibrium, and so 2p � v2(2): If 2p > v1(2); then both agents would
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optimally demand 0 units of y; and so market demand would be less than the market
supply of 2: Hence, a necessary condition for p to be an equilibrum price is

v2(2) � 2p � v1(2):

It is also necessary for one agent to get both units of y: If v2(2) = v1(2); this can be
either agent. If instead v2(2) < v1(2); agent 1 must get both units of y; for if agent 2
were to demand a positive amount of y; then 2p = v2(2) < v1(2); and so agent 1 would
demand 2 units and demand would exceed supply.

(c) (4 pts) Does a Walrasian equilibrium always exist for such an economy? Either prove
that it does or give a counterexample.

Soln: An equilibrium always exists. Any p satisfying v2(2) � 2p � v1(2) is an equilib-
rium price. For any such p; a corresponding equilibrium allocation is

y1 = 2; x1 = 20 + peix � 2p; y2 = 0; x2 = 20 + pe2x:

(d) (4 pts) If a Walrasian equilibrium exists for such an economy, is it Pareto e¢ cient? Either
explain why it is or provide a counterexample.

Soln: Yes, any Walrasian equilibrium allocation is e¢ cient. From part (a) we saw that
an allocation is e¢ cient if it is non-wasteful and gives both units of y to an agent who
has the highest vi(2) From part (b) we see that any equilibrium allocation has these
properties.

(e) (9 pts) Suppose we replace the assumption vi(1) = 0 with vi(1) > 0, keeping all the
other assumptions. Will a Walrasian equilibrium now always exist? Either explain why
or give a counterexample.

Soln: Now an equilibrium need not exist. Consider the case in which

v1(0) = 0; v1(1) = 1; v1(2) = 12; and

v2(0) = 0; v2(1) = 8; v2(2) = 10:

Suppose an equilibrium exists with price p and an allocation (y1; y2) of good y: Then
y1 + y2 = 2; and y1 2 f0; 1; 2g: Consumer maximization gives us the following:

y1 = 2 ) 2p � v1(2) ) p � 6 ) y2 � 1
) y1 + y2 � 3; contradiction.

y1 = 0 ) 2p � v1(2) ) p � 6 ) y2 2 f0; 1g
) y1 + y2 � 1; contradiction.

y1 = 1 ) v1(1)� p � maxf0; v1(2)� 2pg
) p � v1(1) = 1 and p � v1(2)� v1(1) = 11; contradiction.

An equilibrium therefore does not exist.
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4. (25 pts) Consider a two-period period GEI model of an exchange economy with a single
commodity per state. There are 3 states and 2 assets. The assets pay

A =

0@ 1 2
0 1
3 1

1A :
(a) (7 pts) If the price of asset 1 is q1 = 1; what prices for asset 2 are consistent with no

arbitrage?

Soln: To preclude arbitrage there must be nonnegative state prices � for which asset
prices q satisfy q = �TA. Thus for nonnegative state prices � we must have

�1 + 3�3 = 1

2�1 + �2 + �3 = q2

No arbitrage implies q2 � 1=3: There is no upper bound since there is no upper bound
on �2.

(b) (8 pts) Suppose now that the price of each asset is 1. What state prices for state 3 are
consistent with these asset prices?

Soln: No arbitrage guarantees nonnegative state prices that satisfy

�1 + 3�3 = 1

2�1 + �2 + �3 = 1

or �1 = 1� 3�3
�2 = �1 + 5a3

From nonnegativity of state prices we then have �3 � 1=3 and �3 � 1=5.

(c) (10 pts) Suppose again that the asset prices are both 1. Suppose also that there is a call
option that allows an agent to purchase one unit of asset 1 for 2: What prices for this
call option are consistent with these asset prices?

Soln: At strike price 2 the agent will purchase the asset only in state 3, when it is worth
3. His net gain in that state is 1. The state price of state 3 was computed above to
be between 1=5 and 1=3, which is then the range of prices for the call option that are
consistent with no arbitrage.
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