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Abstract

We propose a new identification and estimation strategy for the Regression Discontinuity Design

(RDD). Our approach explores the heterogeneity in the “first stage” discontinuities for di↵erent val-

ues of a covariate to generate over-identifying restrictions. This allows us to identify quantities which

cannot be identified with the standard RDD method, including the e↵ects of multiple endogenous

variables, multiple marginal e↵ects of a multivalued endogenous variable, and heterogeneous e↵ects

conditional on covariates. Additionally, when this method is applied in the standard RDD setting

(linear model with a single endogenous variable), identification relies on a weaker relevance condition

and has robustness advantages to variations in the bandwidth and heterogeneous treatment e↵ects.

We propose a simple estimator, which can be readily applied using packaged software, and show its

asymptotic properties. Then we implement our approach to the problem of identifying the e↵ects

of di↵erent types of insurance coverage on health care utilization, as in Card, Dobkin and Maestas

(2008). Our results show that Medicare eligibility a↵ects health care utilization both through the

extensive margin (i.e., one insurance vs. no insurance) and the intensive margin (i.e., more generous

insurance vs. less generous insurance). While the extensive margin a↵ects the utilization of recur-

rent, lower cost, care (e.g., doctor visits), the intensive margin a↵ects the utilization of sporadic,

higher cost, care (e.g., hospital visits).
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1 Introduction

Regression Discontinuity Design (RDD) has emerged as one of the most credible identification strategies

in the social sciences; see Imbens and Lemieux (2008) and Lee and Lemieux (2010) for early surveys

of the literature and Cattaneo and Escanciano (2017) for a more recent overview. We propose a new

method of identification and estimation in the RDD setting which uses the variations on the first stage

discontinuities of the endogenous variable(s) at the threshold for di↵erent values of a covariate. Since

the covariate can be multivalued, this generates over-identifying restrictions, which can be leveraged

in several directions unexplored in the standard RDD setting.

Our paper relates to a number of papers discussing the inclusion of covariates in the standard RDD

setting; see, e.g., Imbens and Lemieux (2008), Frolich (2007) and Calonico, Cattaneo, Farrell and

Titiunik (2016). The specific way in which we include the covariates is new. We show that covariates

can be used to improve identification in the standard RDD setting as well as to achieve identification

in settings in which the standard RDD cannot be used at all, as we discuss next.

Although the RDD literature has been mainly focused on the case of a binary treatment variable,

there are many applications of the RDD methodology where the treatment variable of interest can

take multiple values; see, for example, empirical applications in Angrist and Lavy (1999), Chay and

Greenstone (2005), Ludwig and Miller (2007), Card, Dobkin and Maestas (2008), Carpenter and Dobkin

(2009) and Brollo, Nannicini, Perotti and Tabellini (2013), among others. In such cases the standard

RDD identifies the compound e↵ect of all the changes, but not the specific e↵ects. Thus, for example, if

there are two treatment levels, the RDD identifies a weighted average of the e↵ects of the changes in both

treatment levels, but not the e↵ect of each treatment level separately. To the best of our knowledge,

this article proposes the first identification and estimation strategy for RDD with multiple treatment

variables.

1
This includes cases in which there are multiple endogenous variables, one multivalued

endogenous variable with varying marginal e↵ects, and models with varying coe�cients (heterogeneous

e↵ects) conditional on covariates.

In the standard RDD setting (linear model with a single endogenous variable), our approach can

achieve identification when the expected value of treatment conditional on a covariate varies with the

covariate, even if on average the expected value of treatment is the same across the threshold and thus a

standard RDD approach would not be able to identify the treatment e↵ect. When both approaches can

be applied, our estimation strategy has e�ciency advantages due to its over-identifying restrictions,

leading to smaller mean squared errors in our simulations that are less sensitive to the bandwidth

choice.

We apply our approach to the problem of estimating the e↵ects of insurance coverage on health

care utilization with a regression discontinuity design, as in Card, Dobkin and Maestas (2008). They

exploit the fact that Medicare eligibility varies discontinuously at age 65. Medicare eligibility may

a↵ect health care utilization via two channels: (1) the extensive margin, because Medicare eligibility

provides coverage to people who were previously uninsured, and (2) the intensive margin, because

1Not to be confused with having multiple running variables or multiple thresholds, for which several proposals are

available; see the review in Cattaneo and Escanciano (2017).
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it provides more generous coverage to people who were previously insured by other, less generous,

insurance policies. We find that minorities and people with less education are more likely to be

a↵ected by Medicare eligibility in the extensive margin (i.e., one insurance vs. no insurance), while

Whites and people with higher education are more likely to be a↵ected by Medicare eligibility in the

intensive margin, (i.e., more generous vs. less generous insurance). Using our approach to exploit this

heterogeneity in the first stage allows us to identify the partial e↵ects at both these margins. While

the extensive margin seems to matter for recurrent, lower cost, care utilization (e.g., doctor visits), the

intensive margin seems to matter for sporadic, higher cost, care utilization (e.g., hospital visits).

The paper is organized as follows. Section 2 develops our approach as well as the identification

conditions. Section 3 presents the estimator and its asymptotic behavior, as well as a simple imple-

mentation strategy. Section 4 reports the results of Monte Carlo experiments, including comparisons

to the standard RDD in cases where both approaches could be applied. Section 5 presents the appli-

cation of our method to the problem of identifying the e↵ects of di↵erent types of insurance coverage

on health care utilization. Finally, we conclude in Section 6. An Appendix contains general results on

identification and proofs of the identification and asymptotic results.

2 Identification

We begin with a simple model with homogeneous (in covariates) marginal e↵ects for exposition pur-

poses. See the Appendix Section A for a more general model, and Section 2.3 for a very applicable

model with variable marginal e↵ects. Consider the following model for the outcome variable Yi,

Yi = g(Ti,Wi) + h(Zi,Wi, "i), (1)

where Ti is a treatment variable, whose e↵ects summarized in g are of interest, Zi is a vector of

covariates, Wi is the so-called running variable, and "i is an unobservable error term. We assume that

Ti is multivalued, with discrete support T = {t0, ..., td}, d < 1, and where t0 < t1 < · · · < td. Define

the d-dimensional vector Xi = (1(Ti � t1), ..., 1(Ti � td))0, where 1(A) denotes the indicator function

of the event A and B0

denotes the transpose of B. Define ↵(w) = g(t0, w), and define the vector of

marginal e↵ects �(w) = (g(t1, w)� g(t0, w), ..., g(td, w)� g(td�1, w))0, where w is in the support of Wi.

So, the j�th component of �(w) represents the marginal e↵ect of moving from treatment level tj�1 to

tj at Wi = w (e.g., in our application �1 represents the marginal e↵ect of going from t1 = 1 (one or

more health insurance policies) to t2 = 2 (two or more health insurance policies) at the age of 65, i.e.

w = 65. Then, noting that

g(Ti,Wi) = g(t0,Wi) + [g(t1,Wi)� g(t0,Wi)] 1(Ti � t1) + · · ·+ [g(td,Wi)� g(td�1,Wi)] 1(Ti � td),

and defining Hi = ↵(Wi) + h(Zi,Wi, "i), the model can be succinctly written as

Yi = �(Wi)Xi +Hi, (2)

where �(·) is the parameter of interest, and the distribution of Hi given Xi and Wi are nuisance

parameters. We further assume that the running variableWi is univariate and continuously distributed.
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Note that the results that follow are all based on equation (2), and thus they are also valid for an

arbitrary vector X (not necessarily a vector of binary indicators), provided that equation (2) holds.

Thus, for example, if one is interested in estimating the e↵ects of having an additional alcoholic drink

on mortality rates in a linear model, as in Carpenter and Dobkin (2009), all our results apply directly

and, importantly, allow for heavy drinking to have a di↵erent marginal e↵ect on mortality rates than

mild drinking.

2

A key assumption in the RDD literature is the continuity of both �(Wi) and the distribution of

Hi given Wi at a certain threshold point w0 in the support of Wi. This continuity is implied by the

following condition, which is convenient for our purposes.

Assumption 1 E[Hi|Wi = w,Zi] and �(w) are continuous in w at w0 almost surely (a.s.).3

Denote the parameter of interest by �0 = �(w0). Assumption 1, equation (2), and the existence of the

limits involved imply the equation

�Y (Z) = �0

0�X(Z), (3)

where, for a generic random vector V ,

�V (Z) = lim

w#w0

E[V |W = w,Z]� lim

w"w0

E[V |W = w,Z].

Equation (3) is key in our analysis as it relates reduced form e↵ects �X(Z) and �Y (Z) with the structural

parameters of interest. To simplify the notation, we drop the dependence on Z of �V (Z).

The following condition guarantees a unique solution of equation (3).

Assumption 2 E[�X�0X ] is positive definite.

Assumption 2 requires that the Xs change across the threshold in a linearly independent manner

for di↵erent values of Z. Indirectly, it requires that Z assumes at least d values, as we show below.

The following result establishes the conditions for identification of �0.

Theorem 2.1 Let equation (2) and Assumption 1 hold. Then, �0 is identified i↵ Assumption 2 holds.

Note that Assumption 2 is the minimal condition for identification in this model. Other identifica-

tion conditions, such as for example the local version of Assumption 2 given by

E[�X�0X |W = w0] is positive definite,

are su�cient but not necessary for identification, and as such are stronger than Assumption 2. Theorem

2.1 is a special case of a more general identification result derived in Section A of the Appendix. There,

we establish a necessary and su�cient condition for identification in a general version of the model in

(1) that allows for marginal e↵ects that depend on Z. The conclusion of the Theorem remains true

if X and Z are continuous, discrete or mixed, as long as (2) holds. In the following three subsections

we develop special cases which clarify the identification requirements as well as why the identification

works. All these cases are particularly relevant in practice.

2Carpenter and Dobkin (2009) follow a standard RDD approach, imposing a unique marginal e↵ect of drinking on

alcohol-related deaths, mostly through vehicle accidents, for young adults around the age of 21.
3See Assumption (A1) in Hahn, Todd and van der Klaauw (1990).
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2.1 Single Binary Treatment Variable (Standard RDD)

Consider the case of a single binary treatment variable (i.e. d = 1), with support T = {0, 1}. This is the
standard RDD setting, and thus both the standard RDD and our approach can achieve identification

of �0, but the relevance condition is di↵erent. In our approach, Assumption 2 requires E[�2X ] 6= 0,

which means that

�X = lim

w#w0

P (T = 1|, Z,W = w)� lim

w"w0

P (T = 1|Z,W = w) 6= 0 with positive probability.

The standard RDD relevance requires limw#w0 P (T = 1|W = w)� limw"w0 P (T = 1|W = w) 6= 0 which

is equivalent to limw#w0 E[P (T = 1|Z,W = w)] � limw"w0 E[P (T = 1|Z,W = w)] = E[�X ] 6= 0 (by

the law of iterated expectations and the Dominated Convergence Theorem). Thus, the standard RDD

relevance is stronger than our Assumption 2.

In other words, our approach uses the variation of the di↵erential in the probability of treatment

across the threshold for di↵erent values of the covariate Z, whereas the standard RDD relies exclusively

on the variation of the average di↵erential in the probability of treatment across the threshold for the

di↵erent values of Z. To better understand the implications of our relevance condition, consider the

following simplified example. Suppose �X is a linear function of Z, �X = ↵1 + ↵2Z, with Z a random

variable with zero mean. A standard RDD approach requires ↵1 6= 0 for identification, while our design

requires ↵1 6= 0 or ↵2 6= 0. Our approach allows cases in which for a subset of values of Z the probability

of treatment increases across the threshold, while for other values it decreases, even if these cancel out

so that on average there is no change at all.

Moreover, let q be the cardinality of the support of Z. Then the standard RDD equation E[�Y ] =
�0E[�X ] provides just-identification, while the equation �Y = �0�X provides in general q � 1 over-

identification restrictions. Practically, this translates into smaller mean squared errors for estimators

based on our identification strategy and mean squared errors that are less sensitive to bandwidths

than standard RDD estimators. Our Monte Carlo Section 4 illustrates this point. Additionally, having

over-identification restrictions enables researchers to test the constancy of the marginal e↵ects in Z, for

example, by estimating and comparing covariate specific marginal e↵ects when sample sizes are large,

or using more practical tests that we discuss in Section 2.3 when sample sizes are moderate or small.

2.2 RDD with Two Binary Treatment Variables

Consider the case of two binary treatment variables (i.e. d = 2), i.e. X = (X1, X2)
0

. It is straight-

forward to extend the intuition of this case to more complex cases in which there are more binary

treatment variables, as well as to the case of multiple arbitrary variables in a linear model described

by equation (2). In this setting the standard RDD cannot identify the separate e↵ect of each of the

variables, and thus there is no comparison to be made between the two methods.

The main identifying equation reads �Y = �1�X1+�2�X2 , where �0 = (�1,�2)0.Assume for exposition

ease that the support of Z is finite, given by {z1, ..., zq}. If �X2(zj) = 0 for all j = 1, ..., q, then

Assumption 2 fails and �2 is unidentified. In a double treatment level model, Assumption 2 implies

that there must be a change in the probability of the second treatment level limw#w0 P (X2 = 1|, Z =
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zj ,W = w) � limw"w0 P (X2 = 1|Z = zj ,W = w) for at least one value of j. In the more interesting

case where there is a discontinuity in X2, i.e. �X2(zj) 6= 0 for some j = 1, ..., q, Assumption 2 holds

provided that for at least two values of j there is no � such that �X1(zj) = ��X2(zj). In a double

treatment level model, this translates into the requirement that the changes in the probabilities of the

first and second treatment levels cannot always be proportional. This is the precise di↵erential e↵ect

to which we referred above.

In our application example (see Section 5) the relevance condition translates into the requirement

that when crossing the Medicare eligibility age requirement at 65, the increase in insurance coverage

from zero to one or more insurance policies and from one to two or more insurance policies cannot be

proportional for all the values of education and ethnicity. This condition holds, since indeed minorities

and people with less education tend to shift from zero to one insurance policy proportionally more than

Whites and people with more education, while the opposite happens from one insurance policy to two

or more insurance policies. The idea is thus to explore these linearly independent shifts to disentangle

the e↵ect of having one insurance versus none, from the e↵ect of having two or more insurances versus

one insurance.

Assumption 2 is thus testable, as its empirical counterpart can be calculated directly. We also

recommend visual checks for a sample version of the rank condition �X1(zj) 6= ��X2(zj), see for example

Figure 7 in Section 5. It is evident from the figure that �X1(z1)/�X2(z1) 6= �X1(z2)/�X2(z2), where z1

denotes Whites with some college or more and z2 denotes Minorities without a high school degree.

This implies the lack of proportionality mentioned above, and hence the validity of Assumption 2 in

this application.

More generally, if X is d-dimensional and Z is discrete with q points of support, our Assumption

2 translates into a simple rank condition as follows. Let �X denote the q ⇥ d matrix with j-th row

equals to �X(zj), j = 1, ..., q, so that �Y = �X�0. Then, by the Rank Nullity Theorem, a necessary

and su�cient condition for identification of �0 is that

rank (�X) = d. (4)

The necessary order condition is q � d, and the number of over-identifying restrictions is q � d.

To see this, note that

E[�X�0X ] = �0

XL�X , (5)

where L is a diagonal q ⇥ q matrix with j-th diagonal element Pr (Z = zj) /q. It is then clear that

Assumption 2 is equivalent to (4), since L has full rank and by (5), rank (E[�X�0X ]) = rank (�X).

Our empirical example below considers the case of d = 2 and q = 6. The number of over-identifying

restrictions is q � d = 4 in this example. As we will see in the next section, having over-identifying

restrictions enables researchers to test the hypothesis of constant marginal e↵ects with respect to

covariates.
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2.3 Variable Marginal E↵ects

Assume now that marginal e↵ects are a linear function of Z1, where Z = (Z1, Z2). Specifically, assume

that the j-th component of �0 is given by

�j = �0j + �1jZ1,

where we assume, for simplicity, that the dimension of Z1 is one. Other cases can be treated analogously.

It is straightforward to show that this variable marginal e↵ect model can be rewritten as the model

in (2) by simply redefining the endogenous variable as

˜X = (X 0, X 0Z1)
0, which has dimension

˜d = 2d.

Thus, the previous identification results can be readily applied to this case. The relevance condition

becomes

E[�X̃�0
X̃
] is non-singular.

So, for example, if Z is discrete with q points of support, the rank condition is

rank
�
�X̃

�
= 2d,

with an order condition q � 2d. More generally, if �j = �0j + �1jZ1 + �2jZ2, with both Z1 and Z2

univariate, the rank condition becomes

rank
�
�X̃

�
= 3d,

where now

˜X = (X 0, X 0Z1, X 0Z2)
0, and the order condition becomes q � 3d. So, for example, in

our application where we have q = 6 and d = 2 the order condition is satisfied, even when both

marginal e↵ects depend on Z1 and Z2 as in the model above.

4
This means that if the rank condition

is satisfied, the �0s are identified and we can test hypotheses such as, for example, H0 : �11 = 0 or

H0 : �12 = �22 = 0. Next section provides an asymptotically normal estimator for the parameters

˜� = (�01, �11, �21, �02, �12, �22)0 in this example, or more generally, for �0 in model (2), which allows

researchers to draw inferences on multiple marginal e↵ects in RDD.

3 Estimation

Our identification strategy builds on the equation

E[Yi|Zi,Wi = w] = �0

(w)E[Xi|Zi,Wi = w] + E[Hi|Zi,Wi = w], (6)

by exploiting the discontinuity in E[Xi|Zi,Wi = w] and the continuity of �(w) and E[Hi|Zi,Wi = w]

at the threshold w0, which henceforth is taken as w0 = 0 without loss of generality. Implementing this

identification strategy requires to fit a model for E[Yi|Zi,Wi = w] and E[Xi|Zi,Wi = w] locally around

w = 0.
4In our application (Section 5), we opt for not assuming that the variable representing the education level, which

takes three di↵erent values (no high school degree, high school degree and at least some college), enters linearly as in the

example above. This allows us to test for the presence of a less restrictive heterogeneity in �j , but only one dimension

(race or education) at a time.
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Applied researchers of the RDD methodology often fit locally a reduced form model of the form

Yi = ↵y + ⇡yDi + gy(Wi) + �0yZi + vyi ,

where Di = 1(Wi � 0), gy(w) is a smooth function of w, and vyi is an error term. Then, they proceed

by specifying a similar first stage for the univariate treatment variable Xi,

Xi = ↵x + ⇡xDi + gx(Wi) + �0xZi + vxi , (7)

and estimating these two equations by Ordinary Least Squares (OLS). Equivalently, they estimate the

parameter �y = ⇡y/⇡x by Two Stage Least Squares (TSLS) using Di as an instrument for Xi, and

treating the smooth function of Wi and Zi as the non-excluded exogenous variables. This method does

not exploit variability of the first stages in covariates, provides just-identification only when ⇡x is not

zero, and does not allow for multivariate treatment variables. We follow our identification strategy

above to propose an estimator that overcomes these limitations by exploiting heterogeneity in the first

stages in covariates, while allowing for multiple treatments.

We will exploit the variability of the first stages in covariates, but a fully nonparametric estimator

of (6) would be a↵ected by the so-called “curse of dimensionality” when Zi is high dimensional and/or

sample sizes are moderate or small. To address the “curse of dimensionality” problem of fully nonpara-

metric methods, while allowing for heterogeneity in covariates, this article proposes a semiparametric

varying coe�cient specification of the first stage

Xi = ↵0X(Wi) + ↵1X(Wi)Zi + "xi , (8)

where ↵0X (·) and ↵1X (·) are unknown functions of W and "xi is a prediction error term. This semi-

parametric specification avoids smoothing in the possibly high dimensional Z, so only smoothing in the

one dimensional running variable W is involved.

We could estimate ↵0X(w) and ↵1X(w) locally at w = 0 by a constant kernel method. However, it

is well known that the local constant kernel estimator has generally worse bias properties than the local

linear kernel estimator at discontinuity points; see Fan and Gijbels (1996). For this reason, we suggest

implementing our identification strategy for the RDD with a local linear estimator. This corresponds

to the use of linear (as opposed to just constant) approximations for ↵0X(·) and ↵1X(·) around each

side of the threshold w0 = 0. Intuitively, this means we approximate the first stage by

Xi ⇡ ↵+
0XDi + ↵+

1XZiDi + ↵̇+
0XWiDi + ↵̇+

1XZiWiDi (9)

+ ↵�

0X(1�Di) + ↵�

1XZi(1�Di) + ↵̇�

0XWi(1�Di) + ↵̇�

1XZiWi(1�Di) + "xi

= ↵�

0X + ⇡0XDi + ⇡1XZiDi + gx(Wi, Zi) + ↵�

1XZi + "xi , (10)

where ⇡0X = ↵+
0X � ↵�

0X , ⇡1X = ↵+
1X � ↵�

1X and gx(Wi, Zi) = ↵̇+
0XWiDi + ↵̇+

1XZiWiDi + ↵̇�

0XWi(1 �
Di)+ ↵̇�

1XZiWi(1�Di). Comparing (7) and (10) we see that exploiting heterogeneity in the first stages

permits the use of additional instruments, namely ZiDi, for estimating the marginal e↵ects.
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Define S+i = Di · (1,Wi, Zi, ZiWi)
0

, S
�i = (1 � Di) · (1,Wi, Zi, ZiWi)

0

, and Si = (S0

+i, S
0

�i)
0

. We

formalize our approach as a TSLS which solves the first stage problem in (10)

b↵X = argmin

a

nX

i=1

��Xi � S0

ia
��2 khn(Wi),

where khn(W ) = k(W/hn), k is a kernel function and hn is a bandwidth parameter satisfying some

standard conditions in Section B in the Appendix. Then, in the second stage, we run a local linear

regression Yi on ˆXi = S0

ib↵X and Ci = (1, Zi,Wi, Di ·Wi, Zi ·Wi, Zi ·Di ·Wi)
0

, i.e.

"
ˆ�

⌘̂

#
= argmin

�,⌘

nX

i=1

⇣
Yi � �0

ˆXi � ⌘0Ci

⌘2
khn(Wi).

Note that Ci contains the set of non-excluded “exogenous” variables in our approach, cf. (10).

The following result establishes the asymptotic normality of the proposed TSLS. Its proof and its

regularity conditions are given in the Appendix Section B.

Theorem 3.1 Let Assumption 1 and Assumption 2 hold. Let also Assumption 4 in Section B in the

Appendix hold. Then p
nhn( ˆ� � �0) !d N (0,⌃) ,

where ⌃ is given in Section B in the Appendix.

3.1 Implementation

For implementing our estimator we recommend using the uniform kernel

khni = 1(�hn  Wi  hn). (11)

This means the estimator can be easily implemented by restricting the sample {(Yi, Xi, Zi,Wi)}ni=1 to

only those observations such that �hn  Wi  hn, and running a TSLS regression of Yi onto Xi and

Ci, treating Ci as exogenous, and using (Di, Zi ·Di)
0

as a vector of “instruments” for Xi. When X is

d-dimensional and Z is p-dimensional, the necessary order condition is p � d. We recommend running

the first stage and checking for heterogeneity in covariates by means of visual checks and formal tests

of significance. Similarly, we also recommend checking for variable marginal e↵ects as a robustness

check.

The asymptotic variance of

ˆ� can be consistently estimated by the standard TSLS asymptotic

variance. Implementation of

ˆ� requires the choice of a bandwidth parameter hn. We can choose hn

along the lines suggested in Calonico, Cattaneo and Titiunik (2014), which can be adapted to the

presence of additional covariates (included in the model as in the standard RDD setting) as shown

in Calonico, Cattaneo, Farrell and Titiunik (2016). Nevertheless, we have found in all our numerical

examples as well as the application that our estimator is not sensitive to the bandwidth parameter, an

in particular, it is far less sensitive than standard RDD estimators. See Figure 1 for empirical evidence

supporting this claim. In our numerical examples we have found that the simple rule hn = 2n�1/4
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performs well. Nevertheless, we recommend sensitivity analysis by varying the bandwidth, see our

application for illustration.

Note that the way in which we introduce covariates in our RDD approach is di↵erent from how is

traditionally done in RDD; see, e.g., Imbens and Lemieux (2008). The traditional RDD with covariates

is a TSLS with exogenous variables CRDD
i = (1, Zi,Wi, Di ·Wi)

0

and a single excluded instrument Di

for Xi. Our semiparametric varying coe�cient specification accounts for the additional exogenous

variables Zi ·Wi and Zi ·Di ·Wi, while the interaction term Zi ·Di is used as an additional instrument

to help identify multiple e↵ects in our setting.

4 Monte Carlo Simulations

This section studies the finite sample performance of the proposed estimator, in comparison with

standard RDD estimators when possible. The first Data Generating Process (DGP) is used to illustrate

the finite sample performance of the proposed RDD estimator in the context of the single treatment

variable. The data is generated according to:

Y = ↵+ �X + �Z + u,

D = 1(W � 0),

X = ↵0 + ↵1D + ↵2Z + ↵3D · Z + "X ,

where (u, "X ,W,Z) are independent and identically distributed as standard normals. Note that with

this design

lim

w#0
E[X|W = w,Z] = ↵0 + ↵1 + (↵2 + ↵3)Z

and

lim

w"0
E[X|W = w,Z] = ↵0 + ↵2Z.

Therefore, �X = ↵1 + ↵3Z. On the other hand, since E[Z|W ] = 0,

lim

w#0
E[X|W = w] = ↵0 + ↵1

and

lim

w"0
E[X|W = w] = ↵0.

If we define, for a generic V,

�RDD
V = lim

w#w̄
E[V |W = w]� lim

w"w̄
E[V |W = w],

then �RDD
X = ↵1 controls the level of identification of the standard RDD, whereas ↵1 and ↵3 simultane-

ously control the level of identification for the over-identified RDD estimator. We compare the standard

RDD estimator (

b�RDD), the standard RDD estimator with covariates (

b�RDDcov), and the over-identified

RDD estimator (

ˆ�). We consider the parameter values (↵,�, �) = (0, 1, 0), (↵0,↵2,↵3) = (0, 1, 1) and

10



Table 1: Average Bias and MSE: RDD

↵1 n Bias MSE

b�RDD
b�RDDcov

b� b�RDD
b�RDDcov

b�

0

100 0.233 2.173 -0.014 1,546.280 24,082.300 3.167

300 -1.554 -0.149 0.002 113,467.000 4,665.060 0.387

500 7.726 -1.378 0.002 550,357.000 2,730.810 0.158

1000 -1.020 0.332 -0.002 6,083.13 1,179.240 0.073

1

100 0.030 -0.110 0.005 159.572 291.977 0.699

300 0.560 0.026 -0.003 590.620 29.011 0.103

500 -0.027 0.058 0.000 43.261 14.823 0.061

1000 -0.166 0.007 0.002 170.686 0.095 0.032

2

100 -0.005 -0.135 0.006 190.910 189.136 0.295

300 -0.059 -0.001 -0.002 19.171 0.046 0.034

500 -0.001 -0.001 -0.000 0.184 0.030 0.022

1000 0.003 0.003 0.002 0.017 0.015 0.012

Note: 10,000 Monte Carlo Simulations. Numbers are rounded to the nearest milesimal. When there is a “-” sign in front

of a 0.000 it means that the number is between -0.0005 and 0.

several values of ↵1. We implement all estimators as in Section 3 with a uniform kernel (11) and a

bandwidth hn = 2n�1/4
.

Table 1 reports the average bias and MSE based on 10,000 Monte Carlo simulations. For ↵1 = 0,

the standard RDD is not able to identify the parameter �, and, as expected, has a MSE that remains

large for large n. Adding covariates in the standard RDD improves slightly the bias and the MSE for

moderate and large samples, but yet does not identify the parameter and leads to large MSE when

↵1 = 0. In contrast, our estimator

ˆ� presents a satisfactory performance, with small MSEs that decrease

with the sample size. For ↵1 = 1 the MSEs for standard RDD, with or without covariates, remain

relative large even for large sample sizes as n = 1000. This seems to be a case of weak identification

by standard RDD, see Feir, Lemieux and Marmer (2016). Indeed, it requires a value of ↵1 = 2 and a

sample size of n � 500 for the standard RDD to achieve comparable results to those of our estimator.

Next, we study the sensitivity of the proposed estimator to the bandwidth parameter. Figure 1

reports the MSE for this DGP in the “weakly” and “strongly” identified cases (i.e., when ↵1 = 1 and

↵1 = 2) for sample sizes 300 and 1,000, and where the bandwidth is chosen as hn = cn�1/4
for a

constant c = 1, 1.25, 1.5, ..., 5. Note that the vertical scale of the plots is di↵erent, since the disparities

11



Figure 1: Sensitivity to the Choice of Bandwidth
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(d) 1000 obs., ↵1 = 2

Note: Horizontal axis shows the values of c = 1, 1.25, 1.5, 1.75, . . . , reflecting di↵erent bandwidths: hn = cn�1/4. Vertical

axis shows the MSE, with di↵erent scales depending on the figure. When a curve is only shown for high values of c it is

because the values are o↵ the scale for the lower values of c. For example, in Figure 1a the MSE of the standard RDD

for c < 3.25 is over 80.
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between the standard RDD and our method can sometimes be extreme.

The results show that RDD without covariates is particularly sensitive to the choice of the band-

width. Including covariates helps significantly, but still leads to variable results, particularly for low

values of the bandwidth. Our estimator has the smallest MSEs, uniformly over all values of the band-

width (never above 0.02), and a MSE that is flatter as a function of the bandwidth. These conclusions

hold even in the strongly identified case where ↵1 = 2. This DGP illustrates the potential benefits of

our approach even in situations where the standard RDD is applicable.

The second DGP explores all manners of heterogeneity, both in the first stage as well as in the

structural equation. The model is

D = 1(W � w̄),

X = ↵C + ↵DD + ↵ZZ + ↵WW + ↵ZDZD + ↵WDWD + ↵WZWZ + ↵WZDWZD + ↵V DV D + UX ,

Y = �C + �XX + �ZZ + �WW + �ZXZX + �WXWX + �WZWZ + �WZXWZX + �V XV X + UY

In this model, heterogeneity on the observables W and Z in the first stage is determined by ↵ZD,

↵WD and ↵WZD, while heterogeneity on unobservables is given by ↵V D. Analogously heterogeneity

on the observables W and Z in the structural equation is determined by �ZX , �WX and �WZX , while

heterogeneity on unobservables is given by �V X . We assume that UX and UY are unobservables which

are independent of each other and of W and Z.

The parameter values we use are: w̄ = 0, ↵C = �1, ↵D = 3, ↵Z = 0, ↵W = 2, ↵WD = 1, ↵WZ = 0,

↵WZD = 0, ↵V D = 0.1, �C = 1, �X = 5, �Z = 0, �W = 0.5, �WX = 1, �WZ = 0, �WZX = 0, �V X = 0.1.

Additionally (Z,W, V ) are jointly normal with mean (0, 0, 0), variances equal to 1 and covariances equal

to 0.5. (UX , UY ) are independent of other variables and each other, normally distributed with zero

mean and variance equal to 1. We vary ↵ZD and �ZX in our simulations.

The parameters were chosen so as to yield the kinds of plots we normally encounter in applied

research. In this model, the strength of identification in the RDD is given by ↵D + ↵ZDE[Z|W =

w̄] + ↵WD + ↵WD = 4.1 + ↵ZDE[Z|W = w̄]. Because we want to understand the relative e↵ects of

the identification of the RDD and the heterogeneity in Z, we assume that E[Z|W = w̄] 6= 0. Then the

strength of identification in the standard RDD is 4.1, and thus in theory the RDD is identified. The

heterogeneity on Z is entirely determined by ↵ZD.

Figure 2 shows the MSE of the over-identified RDD, the standard RDD and the RDD with covariates

in the estimation of �X when �ZX = 0 and when �ZX = 0.5. Note that even when �ZX = 0 this model

has heterogeneous treatment e↵ects that are due to �WX and �V X . The plots show the MSE of the

standard RDD and the RDD with covariates coming o↵ the scale for higher levels of heterogeneity in

the first stage, ↵ZD.

Table 2 shows the numerical results. The over-identified RDD seems to converge to a small number

as ↵ZD increases. This is due to the fact that the bandwidth is kept fixed. In contrast, the standard

RDD and the RDD with covariates have MSEs of enormous variability.
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Figure 2: MSE in the estimation of the LATE, 1000 obs
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Note: The first plot shows the relative MSEs when �ZX = 0. The second plot shows the relative MSE when �ZX = 0.5.

Table 2: MSE in the estimation of the LATE, 1000 observations

�ZX = 0 �ZX = 0.5

↵ZD RDD RDD w.Cov Over-Id RDD RDD RDD w.Cov Over-Id RDD

0 0.0151 0.0152 0.0154 0.0412 0.0230 0.0256

1 0.0152 0.0151 0.0141 0.0603 0.0447 0.0820

2 0.0159 0.0147 0.0123 0.1171 0.1047 0.1805

3 0.0213 0.0189 0.0108 0.2096 0.2311 0.2273

4 0.6134 0.0215 0.0087 0.4307 3750 0.2513

5 0.1885 0.0222 0.0070 82.2939 0.6460 0.2435

10 23.9257 27.6922 0.0036 134.5545 4491.3940 0.1721

15 3.0399 138.0055 0.0026 2976.9940 2237.2070 0.1499

20 206.3206 6.3821 0.0021 1989.4200 5768.6810 0.1301

25 2.5779 27.9945 0.0019 203675.7000 3071.0570 0.1427

30 10.9548 1384.8070 0.0017 5248.5900 8053.9880 0.1237

35 4.4075 227.5336 0.0017 1075.6240 702.2343 0.1297

40 5339.5830 9.4090 0.0016 51329.7200 21621.6200 0.1234

45 5.6744 163.7262 0.0017 984.0347 5492.0400 0.1249

50 4.7163 622.1618 0.0018 23167.4400 8036.0820 0.1209

We believe that the bad performance of the standard RDD and the RDD with covariates when the

heterogeneity in covariates is high is due to weak instruments. These estimators perceive heterogeneity

in covariates as noise. To show this, we plotted the data in one of the simulations, which have 1000

observations in Figure 3. The first plot shows the simulation data when ↵ZD = 0, and thus there is

no heterogeneity of the first stage on covariates. There is a clear discontinuity in this case, and thus

14



all three methods work well. The second plot shows the data when ↵ZD = 5, and the third when

↵ZD = 10. As the heterogeneity increases, the right side of the discontinuity seems noisier. Although

the discontinuity is of the exact same size, it is hard for a method that relies exclusively on the average

size of the jump to distinguish noise from signal.

Figure 3: First-stages for di↵erent levels of heterogeneity on Z
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Note: The first plot shows the simulation data when ↵ZD = 0, and thus there is no heterogeneity of the first stage on

covariates. The second plot shows the data when ↵ZD = 5, and the third when ↵ZD = 10.

Figure 4 takes the data when ↵ZD = 10 and divides it according to the values of Z. The first plot

shows only observations such that �0.5 < Z < �0.25, the second plot shows only observations such

that 0.25 < Z < 0.5 and the third plot shows only observations such that 0.75 < Z < 1. Although

there is almost no distinguishable discontinuity for low values of Z, shown in the first plot, the higher

values of Z show clear discontinuities. Any subset of the data such as in the second and third plots

would be su�cient to identify �X , but the over-identified RDD uses all the available discontinuities at

the same time, thus achieving not only identification, but lower variability as well.

Figure 4: First-stages conditional on Z
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Note: All three plots shows the simulation data when ↵ZD = 10. The first plot shows only observations such that

�0.5 < Z < �0.25, the second plot shows only observations such that 0.25 < Z < 0.5 and the third plot shows only

observations such that 0.75 < Z < 1.
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We also consider a third DGP with two treatments:

Y = ↵+ �1X1 + �2X2 + �Z + u,

D = 1(W � 0),

X1 = ↵01 + ↵11D + ↵21Z + ↵31D ⇥ Z + "1,

X2 = ↵02 + ↵12D + ↵22Z + ↵32D ⇥ Z + "2,

where (u,W, "1, "2) are independent normal random variables with variances 0.25, 0.25, 1 and 1,

respectively. In this model �Y = �1�X1 + �2�X2 with

�X1 = ↵11 + ↵31Z and �X2 = ↵12 + ↵32Z.

Thus, our relevance condition is satisfied as long as

det

�����
↵11 ↵31

↵12 ↵32

����� 6= 0. (12)

The parameters in the structural equation are set at ↵ = 0, �1 = 1, �2 = 2 and � = 0. We also set

↵01 = ↵02 = ↵21 = ↵22 = 0. The results reported below are not sensitive to these parameter values.

More critical are the values for (↵11,↵31,↵12,↵32), which determine the rank condition. We consider

three di↵erent cases: (i) Case 1: ↵11 = 2,↵31 = 1,↵12 = 0,↵32 = 1; (ii) Case 2: ↵11 = 0,↵31 =

�2,↵12 = 2,↵32 = 1; and (iii) Case 3: ↵11 = �2,↵31 = 2,↵12 = 1,↵32 = 1. All the three cases satisfy

the relevance condition (12). In contrast, the identifying condition for standard RDD varies according

to the case considered, since

�RDD
Y = �1�

RDD
X1

+ �2�
RDD
X2

= �1↵11 + �2↵12.

Thus, in Case 1, ↵12 = 0 and RDD identifies �1, although it fails to identify �2; in Case 2, ↵11 = 0 and

RDD identifies �2, although it fails to identify �1; and in the mixed case of Case 3 neither �1 nor �2 are

identified by standard RDD methods. We implement the standard RDD estimator and the standard

RDD estimator with covariates for each treatment separately, and compare these estimates with the

over-identified RDD estimator. Table 3 provides the average bias and MSE for �1 and �2 based on

10,000 Monte Carlo simulations, and sample sizes n = 300, 500, 1, 000 and 5, 000. We implement all

estimators as in Section 3 with a uniform kernel (equation (11)) and bandwidth hn = 2n�1/4
.
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Table 3: Average Bias and MSE

Bias �1 MSE �1 Bias �2 MSE �2

Case n b�RDD
b�RDDcov

b� b�RDD
b�RDDcov

b� b�RDD
b�RDDcov

b� b�RDD
b�RDDcov

b�

1

300 0.0079 0.0027 0.0018 0.0364 0.0305 0.0268 10.9470 -8.2400 -0.0035 1 1 0.4019

500 0.0043 0.0007 -0.0004 0.0236 0.0197 0.0043 -5.3491 -17.8270 0.0002 1 1 0.0263

1000 0.0034 0.0016 0.0001 0.0136 0.0116 0.0020 -35.3190 -40.2920 0.0006 1 1 0.0108

5000 0.0016 0.0009 -0.0001 0.0038 0.0032 0.0006 6.9921 14.7470 -0.0001 1 1 0.0028

2

300 54.463 6.4319 0.0004 1 1 0.0071 0.0178 0.0076 0.0006 0.0708 0.0485 0.0054

500 71.3800 -9.4857 -0.0002 1 1 0.0045 0.0096 0.0027 -0.0004 0.0441 0.0302 0.0035

1000 -1.6590 19.1130 -0.0004 1 1 0.0025 0.0078 0.0042 -0.0001 0.0247 0.0170 0.0019

5000 -74.3120 7.4588 0.0000 1 1 0.0007 0.0029 0.0015 -0.0000 0.0072 0.0050 0.0006

3

300 0.5730 0.5366 -0.0003 1.6836 0.3550 0.0027 -2.4689 -2.1373 0.0009 20.5520 180.2900 0.0118

500 0.5393 0.5232 0.0003 0.3507 0.3095 0.0017 -2.2625 -2.1766 -0.0003 7.0904 5.6605 0.0073

1000 0.5201 0.5126 0.0003 0.3001 0.2834 0.0010 -2.1365 -2.1005 0.0005 5.1558 4.7913 0.0040

5000 0.5046 0.5028 -0.0000 0.2622 0.2582 0.0003 -2.0379 -2.0277 -0.0001 4.2752 4.1951 0.0011

Note: 10,000 Monte Carlo Simulations. Columns 3-5 show the bias of the estimation of �1 using the standard RDD, the standard RDD with covariates, and our

method respectively. The remaining columns are analogous.
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Table 3 shows that the standard RDD has a satisfactory performance in estimating �1 in Case 1,

where it identifies, but also illustrates its inconsistency in estimating �1 in Case 2 in and Case 3. The

behavior of the standard RDD in identifying �2 is analogous, only it performs satisfactorily in Case 2,

where it identifies, but it is inconsistent in both Case 1 and Case 3. The standard RDD is particularly

unreliable for the extreme Cases 1 and 2 when it does not identify (�2 in Case 1 and �1 in Case 2). For

the mixed case, standard RDD is more stable in estimating both coe�cients, but its bias and MSE do

not converge to zero as the sample size increases. All of this is true even when covariates are included.

In contrast, our approach (

ˆ�1 and

ˆ�2) performs uniformly well across the three cases considered, and

outperforms the standard RDD even in the case where RDD identifies the parameter.

Overall, these Monte Carlo results provide supporting evidence of the robustness of our identification

strategy in the case of a single treatment and its ability to identify multiple treatment e↵ects in

situations where the standard RDD fails.

5 An Application to the Estimation of the E↵ect of Insurance Cov-

erage on Health Care Utilization

We apply our approach to the problem of estimating the e↵ects of insurance coverage on health care

utilization with a regression discontinuity design, as in Card, Dobkin and Maestas (2008). They exploit

the fact that Medicare eligibility varies discontinuously at age 65. Medicare eligibility may a↵ect health

care utilization via two channels. First, it provides coverage to people who were previously uninsured.

Second, it provides more generous coverage to people who were previously insured by other, less

generous insurance policies. Let Y be a measure of health care use (e.g., whether the person did

not get care for cost reasons last year). The two main explanatory variables of interest are whether

the person has any insurance coverage (i.e., one or more policies) (X1), and whether the person has

insurance coverage by two or more policies (X2). The running variable W is defined to be the age

(measured in quarters of a year) relative to the threshold of 65 years of age, and the treatment status

D is whether the person is eligible to Medicare. We want to identify �1 and �2 in the following model:

Y = ↵+ �1X1 + �2X2 + �0Z + " (13)

were Z represents the variables which we will explore to generate variation in the first stage (e.g., race,

education level).

Table 4 presents the summary statistics for the key variables of our sample, obtained from the

National Health Interview Survey (NHIS) from 1999 to 2003.

5
We consider three di↵erent outcome

variables (Y ): whether the person delayed care last year for cost reasons, whether the person did not

get care last year for cost reasons, and whether the person went to the hospital last year.

6

5Card, Dobkin and Maestas (2008) focus their main analysis on years 1992-2003, however the dual insurance coverage

variable is observed only from 1999 onwards. For this reason, our analysis is restricted to years 1999 to 2003.
6There is another variable used by Card, Dobkin and Maestas (2008): whether the person saw a Doctor last year.

This variable has many missing data throughout the sample period, so we opted to drop it from our analysis. However,

our conclusions do not change when this variable is included in our study.
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Table 4: Summary Statistics

Variable All Non-Hispanic White Minority

HS HS >HS HS HS >HS

Dropout Graduate Graduate Dropout Graduate Graduate

Delayed Care (Y ) 0.07 0.09 0.06 0.05 0.10 0.07 0.07

(0.25) (0.29) (0.24) (0.23) (0.30) (0.25) (0.25)

Did Not Get Care (Y ) 0.05 0.07 0.04 0.03 0.09 0.06 0.05

(0.22) (0.25) (0.20) (0.18) (0.29) (0.23) (0.22)

Hospital Stay (Y ) 0.13 0.17 0.12 0.12 0.14 0.12 0.12

(0.34) (0.38) (0.33) (0.32) (0.35) (0.33) (0.32)

1+ Coverage (X1) 0.92 0.91 0.95 0.96 0.78 0.87 0.91

(0.27) (0.28) (0.22) (0.19) (0.41) (0.33) (0.29)

2+ Coverage (X2) 0.33 0.44 0.38 0.32 0.24 0.23 0.24

(0.47) (0.50) (0.49) (0.47) (0.43) (0.42) (0.42)

Medicare Eligible (D) 0.42 0.55 0.45 0.37 0.46 0.36 0.34

(0.49) (0.50) (0.50) (0.48) (0.50) (0.48) (0.47)

Observations 63,165 8,337 16,037 21,352 8,293 4,302 4,844

Note: Source: NHIS 1999-2003. Standard deviations in parentheses. “HS Dropout” represents people who have less than

a high school degree. “HS Graduate” represents those who have a high school degree. “> HS Graduate” represents those

who have some college or more.

The table shows that non-Hispanic Whites are less likely to delay or ration care because of cost

relative to minorities. The results are analogous when comparing people with higher vs. lower education

levels. However, people with lower education levels go more often to Hospitals than people with higher

education levels, and non-Hispanic Whites go as often as minorities, except for less educated ones.

The table also shows that non-Hispanic Whites tend to be insured with a higher likelihood than

minorities, and at the same time are more likely to carry a second insurance policy. Additionally,

people with more education are more likely to have some insurance than people with less education,

irrespective of the race. However, less educated Whites are more likely to carry two or more insurance

policies than their more educated counterparts. This counter-intuitive correlation is better understood

in the context of age as an important confounder. As seen in the second to last row of the table, people

with more education are less likely to be eligible to Medicare. Indeed, Figure 5 shows that people with

less education tend to be older than people with more education, so they are more likely to be eligible

to Medicare. Following Card, Dobkin and Maestas (2008), we use a regression discontinuity design to

circumvent this and other endogeneity concerns.

7

7Of course, age is simply one potential confounder. There are many unobserved determinants of X1 and X2 that

should also a↵ect Y directly, as for example the person’s income, work status and health status (see Section II.A in Card,
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Figure 5: Age Distribution by Level of Education
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Note: For each education level, this Figure shows the Kernel density plot of the age distribution (measured in quarters of

a year). Kernel: Epanechnikov. Bandwidth: 1.

To see how an RDD is reasonable in this context, Figure 6 shows plots suggestive that people just

younger and just older than 65 years of age are comparable in terms of race and education. Similarly

to Card, Dobkin and Maestas (2008), we find no evidence of discontinuity at 65 years of age for a wide

range of covariates, suggesting that variables included in Z are likely exogenous conditional on being

close enough to the threshold of 65 years of age.

Figure 6: Validity Plots

0
.2

.4
.6

.8
1

M
in

or
ity

 S
ha

re

55 60 65 70 75
Age

0
.2

.4
.6

.8
1

H
S 

G
ra

du
at

e 
or

 H
ig

he
r

55 60 65 70 75
Age

Note: The scatter plot shows the average of the variable described in the vertical axis for each age level (measured in

quarters of a year).

Figure 7 shows the first stage discontinuity plots for di↵erent subgroups of people based on race

Dobkin and Maestas (2008) for a more detailed discussion of potential confounders in this context.) An RDD approach

aims at avoiding all such confounders.

20



and education. While the discontinuity in X1 (Panel (a)) is larger for Minorities with low levels of

education, the discontinuity in X2 (Panel (b)) is larger for Whites with high levels of education. These

results imply that eligibility to Medicare a↵ects X1 and X2 for Whites with more education and for

minorities with less education in a linearly independent way, which allows us to identify both �1 and

�2 in equation (13). In reality, there is further linearly independent heterogeneity in the first stage for

other combinations of race-education levels, which allows us to augment the number of over-identifying

restrictions.

Figure 7: First Stage By Race and Education
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Note: The scatter plot shows the average of the variable described in the vertical axis for each age level (measured in

quarters of a year) and for each subsample represented in the legend.

Table 5 shows the intention to treat or “reduced-form” estimates obtained from a local linear

regression using a standard RDD.

8
As expected, results di↵er by race and education level. While

minorities with lower levels of education tend to benefit from eligibility by discontinuously not delaying

and not rationing care for cost reasons, Whites with higher levels of education tend to benefit from

eligibility by discontinuously going more to hospitals. As discussed in Card, Dobkin and Maestas (2008),

the heterogeneous results found in both the first stage and the intention to treat estimates suggest that

perhaps Medicare eligibility might be a↵ecting di↵erent outcome variables through di↵erent channels.

Intuitively, insurance coverage (X1) might influence health decisions that are more recurrent and less

expensive (such as delaying or rationing care) more than insurance generosity (X2), while the opposite

might happen for more expensive and sporadic decisions such as the decision to get hospitalized. Next,

we use our approach to make this analysis more formal.

In Table 6, we report the Two Stage Least Square estimates of �1 and �2 in equation (13) using

di↵erent approaches. Column I shows the standard RDD estimate of �1 under the restriction �2 = 0,

and column II shows the analogous estimate of �2 under the restriction �1 = 0. Columns III and IV

8We use a uniform kernel and add no controls to the regression besides W , W.D and D. Results are robust to the

choice of kernel.
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Table 5: Intention to Treat Results - Standard RD

All Whites Minorities

Y h Dropout HS Grad >HS Grad Dropout HS Grad >HS Grad

Delayed Care

1

0.002 0.017 0.025 -0.017 -0.046 0.013 0.051*

(0.005) (0.014) (0.018) (0.016) (0.027) (0.012) (0.026)

3

-0.002 0.006 0.008 -0.003 -0.048* 0.003 0.019

(0.005) (0.018) (0.012) (0.012) (0.020) (0.014) (0.023)

5

-0.009* 0.001 0.002 -0.006 -0.042* -0.027 -0.006

(0.004) (0.016) (0.010) (0.008) (0.015) (0.015) (0.021)

7

-0.009* 0.005 -0.010* -0.002 -0.040* -0.015 -0.002

(0.004) (0.014) (0.008) (0.007) (0.012) (0.013) (0.016)

10

-0.018* -0.008 -0.014* -0.012 -0.053* -0.027* -0.001

(0.004) (0.012) (0.007) (0.006) (0.010) (0.012) (0.014)

Rationed Care

1

0.005 0.032 -0.000 0.003 -0.047* 0.037 0.044*

(0.005) (0.018) (0.016) (0.005) (0.016) (0.022) (0.013)

3

0.000 0.017 0.003 -0.003 -0.023* -0.008 0.006

(0.004) (0.020) (0.009) (0.006) (0.017) (0.019) (0.016)

5

-0.008 0.010 -0.012 -0.007 -0.026* -0.029 0.016

(0.004) (0.016) (0.008) (0.005) (0.013) (0.017) (0.015)

7

-0.008* 0.010 -0.019* -0.005 -0.030* -0.015 0.020

(0.003) (0.013) (0.007) (0.004) (0.011) (0.014) (0.013)

10

-0.016* -0.004 -0.019* -0.012* -0.038* -0.022* 0.004

(0.003) (0.012) (0.006) (0.004) (0.010) (0.012) (0.011)

Went To Hospital

1

0.007 -0.030 0.017 0.030* -0.034 0.032* -0.020

(0.006) (0.058) (0.010) (0.012) (0.036) (0.014) (0.021)

3

0.008 -0.008 0.017 0.013 -0.018 0.008 0.026

(0.007) (0.029) (0.012) (0.013) (0.027) (0.021) (0.027)

5

0.012 0.008 0.019 0.018 -0.019* 0.019 0.022

(0.007) (0.023) (0.012) (0.011) (0.022) (0.018) (0.021)

7

0.015* 0.005 0.027* 0.017* -0.014 0.019 0.021

(0.006) (0.018) (0.011) (0.009) (0.018) (0.016) (0.019)

10

0.010* 0.006 0.020* 0.015* -0.016 -0.000 0.019

(0.005) (0.016) (0.010) (0.008) (0.016) (0.016) (0.018)

Note: This table shows standard “reduced form” or intention to treat estimates of the e↵ect of Medicare eligibility on Y

for the whole sample and for subsamples based on race/ethnicity and education. These were obtained from a local linear

regression with uniform kernel and bandwidth h as described in the second column of the table. Standard errors clustered

by values of the running variable W are shown in parentheses.
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show analogous results to columns I and II using our over-identified RDD approach and each of the six

combinations of race and education as elements of Z. Finally, columns V and VI show joint estimates of

�1 and �2 using our over-identified RDD approach under no restriction in equation (13). The standard

RDD univariate estimates suggest no pattern similar to the intuition discussed above. Based on these

results, one would conclude thatX1 orX2 a↵ecting Y are similarly plausible interpretations irrespective

of Y . The reason for this is that the standard RDD is not exploiting the over-identifying restrictions

which are generated by the heterogeneity in the first stage by values of Z, as we exploit in our approach.

Our approach in the univariate version, which exploits the heterogeneity in the first stage but does

not add both X1 and X2 in the same regression, makes this pattern sharper: while we find that �1 is

significant mostly for “Delayed Care” and “Rationed Care”, we find that �2 is significant mostly for

“Hospital Stay”.

One important concern with the univariate approaches is that their exclusion restriction might

be invalid. In columns I and III, it is assumed that X2 does not a↵ect Y , so the e↵ect of Medicare

eligibility on Y is allowed to operate only through X1. In contrast, in columns II and IV it is assumed

that X1 does not a↵ect Y , so the e↵ect of Medicare eligibility on Y is allowed to operate only through

X2. If these restrictions are not valid, then these estimates will be biased. In columns V and VI, we

present our approach in a multivariate setting in order to avoid making these exclusion restrictions. As

expected, the multivariate estimates suggest an even sharper pattern than the results of our approach

in the univariate setting: (a) insurance coverage (X1) reduces the probability of delaying care for cost

reasons, or rationing care for cost reasons, in about 15 to 20 percentage points, depending on the

bandwidth, but seem to have little or no e↵ect on hospital stays; (b) having a second, more generous

insurance (X2) increases the probability of hospital stays in about 5 percentage points, but seems to

have little or no e↵ect on delaying or rationing care for cost reasons.

It is interesting to note that the univariate approaches perform better when the underlying restric-

tions are more plausible. To see this, consider the results from our multivariate approach (columns

(V) and (VI)). They suggest that it is more plausible to assume that �2 = 0 for the first two outcome

variables in the table (Delayed and Rationed Care) than to assume that �1 = 0. Indeed, the univariate

estimates are more similar to the multivariate estimates when it is assumed �2 = 0 (columns I and

III) than when it is assumed �1 = 0 (columns II and IV). Analogously, multivariate estimates suggest

that it is more plausible to assume that �1 = 0 for the third outcome variable in the table (Went to

Hospital) than to assume that �2 = 0. Indeed, the univariate estimates are closer to the multivariate

estimates when it is assumed �1 = 0 (columns II and IV) than when it is assumed �2 = 0 (columns I

and III). Moreover, irrespective of the plausibility of the restriction, the estimates of our over-identified

univariate approach are more similar to our preferred estimates in columns V and VI than the standard

RDD estimates. Intuitively, this happens because our univariate approach exploits the heterogeneity

in the first stage while the standard RDD does not.
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Table 6: Two Stage Least Square Results

Univariate Multivariate

Standard RDD Our Approach Our Approach

(I) (II) (III) (IV) (V) (VI)

Y h �2 = 0, ˆ�1 �1 = 0, ˆ�2 �2 = 0, ˆ�1 �1 = 0, ˆ�2 ˆ�1 ˆ�2

1

0.030 0.006 -0.053 0.016 -0.235 0.059*

(0.053) (0.011) (0.060) (0.009) (0.144) (0.026)

3

-0.022 -0.004 -0.109 0.001 -0.200* 0.032*

(0.057) (0.011) (0.059) (0.009) (0.078) (0.013)

Delayed

5

-0.092* -0.019* -0.118* -0.011 -0.160* 0.015

Care (0.043) (0.009) (0.041) (0.008) (0.059) (0.012)

7

-0.091* -0.019* -0.116* -0.012 -0.158* 0.014

(0.036) (0.008) (0.035) (0.007) (0.053) (0.011)

10

-0.190* -0.037* -0.198* -0.029* -0.211* -0.004

(0.036) (0.007) (0.033) (0.007) (0.049) (0.010)

1

0.067 0.014 -0.037 0.020* -0.227* 0.061

(0.062) (0.013) (0.051) (0.010) (0.098) (0.015)

3

0.003 0.001 -0.043 0.002 -0.086 0.015

(0.052) (0.010) (0.048) (0.008) (0.065) (0.011)

Rationed

5

-0.082 -0.017 -0.079* -0.013* -0.076 -0.001

Care (0.042) (0.009) (0.036) (0.007) (0.049) (0.010)

7

-0.087* -0.018* -0.096* -0.016* -0.099* 0.001

(0.033) (0.007) (0.033) (0.006) (0.047) (0.008)

10

-0.169* -0.033* -0.156* -0.027* -0.133* -0.007

(0.032) (0.006) (0.032) (0.005) (0.044) (0.007)

1

0.089 0.187 -0.082 0.022 -0.344 0.084*

(0.072) (0.015) (0.081) (0.017) (0.185) (0.040)

3

0.103 0.020 -0.007 0.021 -0.119 0.040

(0.084) (0.016) (0.069) (0.018) (0.138) (0.033)

Went to

5

0.130 0.027 0.025 0.030* -0.106 0.047

Hospital (0.070) (0.015) (0.060) (0.015) (0.101) (0.024)

7

0.155* 0.032* 0.056 0.034* -0.099 0.050*

(0.058) (0.012) (0.051) (0.012) (0.090) (0.021)

10

0.112* 0.022* 0.026 0.024* -0.112 0.042*

(0.056) (0.011) (0.050) (0.011) (0.082) (0.017)

Note: This table shows 2SLS estimates of the e↵ect of (a) X1 (columns I and III) or (b) X2 (columns II and IV), or

(c) both X1 and X2 (columns V and VI) on Y using di↵erent approaches. In the univariate case, each column refers to

estimates obtained from a di↵erent regression, while in the multivariate case both columns refer to estimates obtained

from the same regression. These estimates were obtained from a local linear regression with uniform kernel and bandwidth

h. Standard errors clustered by values of the running variable W are shown in parentheses.
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Table 7: Testing for Heterogeneity

Z1 h Delayed Rationed Went to Hospital First Stage

X1 X2 X1 X2 X1 X2 X1 X2

1

1.51 2.33 5.23 8.06 1.61 2.76 114.67 2,504.62

(0.22) (0.13) (0.02) (0.00) (0.20) (0.10) (0.00) (0.00)

3

1.16 1.55 1.36 0.72 0.02 0.30 26.91 46.48

(0.28) (0.21) (0.24) (0.40) (0.88) (0.58) (0.00) (0.00)

Race 5

1.08 0.03 2.37 1.68 0.16 0.69 34.33 50.22

(0.30) (0.87) (0.12) (0.19) (0.68) (0.41) (0.00) (0.00)

7

1.59 0.54 3.64 5.90 0.07 0.51 23.17 35.26

(0.21) (0.46) (0.06) (0.02) (0.79) (0.47) (0.00) (0.00)

10

3.68 1.85 3.12 3.21 0.19 0.35 27.75 48.64

(0.06) (0.17) (0.08) (0.07) (0.67) (0.55) (0.00) (0.00)

1

0.25 2.82 0.98 1.03 0.46 0.60 114.67 2,504.62

(0.88) (0.24) (0.61) (0.60) (0.80) (0.74) (0.00) (0.00)

3

1.27 1.05 0.61 1.32 0.83 0.16 26.91 46.48

(0.53) (0.59) (0.74) (0.52) (0.66) (0.92) (0.00) (0.00)

Education 5

0.79 1.39 3.35 3.93 1.07 0.33 34.33 50.22

(0.67) (0.50) (0.19) (0.14) (0.59) (0.85) (0.00) (0.00)

7

0.32 1.95 2.03 3.18 0.76 0.24 23.17 35.26

(0.85) (0.38) (0.36) (0.20) (0.69) (0.89) (0.00) (0.00)

10

1.49 3.46 2.22 2.94 0.73 0.75 27.75 48.64

(0.47) (0.18) (0.33) (0.23) (0.70) (0.69) (0.00) (0.00)

Note: This table shows for each bandwidth h the F-test along with corresponding pvalue of the test for whether all elements

of the �1 (odd columns) or �2 (even columns) are equal to each other. Each panel allows for unrestricted heterogeneity

of �1 and �2 for each di↵erent value of the variable Z1, referenced in the first column of the table. For comparison, the

last two columns show an analogous test about the 6 coe�cients of the first stage (defined by all combinations of race

and education).

Finally, we provide some evidence in favor of our key assumption that the parameters of interest

(�1 and �2 in equation (13)) do not vary with race or education. As discussed in Section 2.3, we can

relax this assumption by allowing for heterogeneity in covariates. In Table 7, we allow for heterogeneity

along one of these two dimensions (race, education) at a time, and we perform F-tests for whether the

parameters of either X1 (odd columns) or X2 (even columns) are the same for all levels of race (first

panel) or education (second panel). For comparison, in the last two columns we show results of an

analogous test for whether the parameters of the first stage regression of X1 or X2 are the same for

all six combinations of race and education. Perhaps with the exception of heterogeneity by race for
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the outcome variable rationed care, all results point to homogeneity of �1 and �2. In all cases, the

evidence of heterogeneity in the first stage is overwhelming relative to any evidence of heterogeneity

in �1 and �2. Taken together, the results suggest that the main idea of exploiting heterogeneity in the

first stage e↵ects along these two dimensions while maintaining the assumption of homogeneity in the

main e↵ects of interest along these same dimensions fits this application well.

Overall, our results corroborate in a sharper way the intuition suggested by Card, Dobkin and

Maestas (2008) that Medicare eligibility has generated di↵erent e↵ects on health behavior depending

on whether the person would otherwise have no insurance, or would otherwise have some insurance,

albeit a less generous one.

6 Conclusions

This article has proposed a new identification and estimation strategy for RDD. It explores the hetero-

geneity in the “first stage” discontinuities for di↵erent values of a covariate to generate over-identifying

restrictions. This allows us to identify quantities which cannot be identified with the standard RDD

method, including the e↵ects of multiple endogenous variables, multiple marginal e↵ects of a multival-

ued endogenous variable, and heterogeneous e↵ects conditional on covariates. For a linear model with

a single endogenous variable, when both standard RDD and our approach are applicable, our method

yields smaller MSE that are less sensitive to bandwidths than standard RDD procedures.

For multivalued treatments none of the existing RDD procedures identify the marginal e↵ects. We

have provided a method that achieves identification in a variety of situations, including situations with

variable marginal e↵ects. We have proposed a simple TSLS estimator implementing our identification

strategy. Monte Carlo simulations confirm its excellent finite sample performance relative to standard

RDD estimators, and the empirical application to health utilization shows its ability to identify multiple

marginal e↵ects in a situation of practical interest.

Section A in the Appendix generalizes the identification result to nonparametric variable marginal

e↵ects. It should be possible to extend our TSLS procedure to nonparametric cases by using, for

example, sieve methods or local polynomial methods. Similarly, nonparametric tests of homogeneous

e↵ects could be developed based on these nonparametric estimators. These methods would certainly

require larger sample sizes to achieve a similar level of precision to those developed in the paper.

Furthermore, these would involve the choice of additional bandwidth parameters. Similarly, it is

possible to extend our identification result to the nonparametric continuous treatment case. This would

entail a new completeness condition between the continuous treatment and the vector of covariates,

similar to the covariance completeness condition studied in Caetano and Escanciano (2017).

The proposed methods enable researchers to estimate multiple marginal e↵ects in situations that

inherently have limited exogenous variation. We have shown how covariates bring new possibilities

that were currently unexploited. We hope this research will foster a deeper understanding of the e↵ects

of policies on economic outcomes and a more e�cient use of the data, in particular, covariates.
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A Appendix A: A General Identification Result

This section establishes an identification result that includes the identification result in the main text

as a special case. This section also contains proofs for these identification results. Set Z = (Z1, Z2),

where Z1 and Z2 have dimensions q1 and q2, respectively (we allow for the possibility of q1 = 0, meaning

Z1 is empty). We consider the following generalization of model (1)

Yi = g(Ti, Z1i,Wi) + h(Zi,Wi, "i), (14)

where now the unknown function g depends on Z1i in addition to the dependence on the multivalued

treatment variable Ti and Wi. Arguing as in the main text, we can write (14) as the varying coe�cients

model

Yi = �(Z1i,Wi)
0Xi +Hi, (15)

where Hi = g(t0, Z1i,Wi) + h(Zi,Wi, "i), and now the marginal e↵ects depend on Z1i and Wi,

�(Z1i,Wi) = (g(t1, Z1i,Wi)� g(t0, Z1i,Wi), ..., g(td, Z1i,Wi)� g(td�1, Z1i,Wi))
0.

The following condition generalizes the relevance condition (2).

Assumption 3 E[�X�0X |Z1] is positive definite a.s.

Theorem A.1 Let (14) and Assumption 1 hold. Then, �0(z1) ⌘�(z1, w0) is identified if and only if

Assumption 3 holds.

Proof. We first prove the “if” part. Taking limits as in the main text we obtain the equation

�Y (Z) = �0X(Z)�0(Z1).

Multiplying by �X(Z) both sides, and taking conditional means on Z1, we arrive at

E[�X(Z)�Y (Z)|Z1] = E[�X(Z)�0X(Z)|Z1]�0(Z1).

This and the generalized relevance condition yield identification, i.e.

�0(Z) =

�
E[�X(Z)�0X(Z)|Z1]

�
�1

E[�X(Z)�Y (Z)|Z1].

For the necessity part, we suppose the generalized relevance condition does not hold. This means there

exists a non-trivial measurable function �(Z1) such that, a.s.,

�(Z1)
0E[�X(Z)�0X(Z)|Z1]�(Z1) = 0.

Hence,

E[

�
�(Z1)

0�X(Z)

�2
] = 0,

and thus

�(Z1)
0�X(Z) = 0 a.s. (16)
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Let �0(Z1) denote the true value that generated the data, and define ˜�(Z1) = �0(Z1) + �(Z1) and
˜Hi = Hi � �0

(Z1i)Xi. Note that if Hi satisfies Assumption 1, ˜Hi also does it because by (16),

lim

w#w0

E[

˜H|W = w,Z]� lim

w"w0

E[

˜H|W = w,Z] = lim

w#w0

E[H|W = w,Z]� lim

w"w0

E[H|W = w,Z]��0

(Z1)�X(Z) = 0.

Hence, the triple (↵(Z), ˜�(Z1), ˜H) satisfies the same conditions as the triple (↵(Z),�0(Z), H), and �0(·)
is not identified.

Theorem 2.1 is a special case of Theorem A.1 (the case q1 = 0). In this case Z1 is empty, �0(Z1) is

a constant and

E[�X(Z)�0X(Z)|Z1] = E[�X(Z)�0X(Z)].

Another special case is q2 = 0. In this case Z = Z1 and

E[�X(Z)�0X(Z)|Z1] = �X(Z)�0X(Z).

Within this case, there are two separate subcases: (i) d = 1 and (ii) d > 1. In (i) the relevance

condition holds i↵ �X(Z) 6= 0 with positive probability. In (ii), since the rank of �X(Z)�0X(Z) is at

most one, the relevance condition fails, and hence by Theorem A.1, identification fails. We summarize

this impossibility result in the following corollary.

Corollary A.1 Let (14) and Assumption 1 hold. Then, if q2 = 0 and d > 1, nonparametric identifi-

cation is not possible.

This impossibility result shows that in order to identify variable marginal e↵ects, some semiparametric

restriction is needed. One such restriction is q2 > 0. To better explain the meaning of the relevance

condition in the q2 > 0 case, suppose Zj is discrete with support {zj1, ..., zjmj}, for j = 1, 2. For each b

fixed, 1  b  m1, define the m2 ⇥ d matrix �b with l�th row �X(z1b, z2l), for 1  l  m2. Then, the

relevance condition holds, i↵ for all b, 1  b  m1,

rank (�b) = d.

This requires the order condition m2 � d.

B Appendix: Proof of Asymptotic Results

In this section we establish the asymptotic normality of the proposed estimator

ˆ�. For simplicity, we

consider the case where X and Z are univariate, although the extension to the multivariate case only

involves further notation. Without loss of generality assume hereinafter that w0 = 0. We introduce

some further notation and assumptions. Let "Vi = Vi � E[Vi|Wi, Zi] denote the regression errors for

V = Y and V = X. Define "Ui = "Yi � �0"Xi . Assume, for V = Y and V = X,

E[Vi|Wi, Zi] = ↵0V (Wi) + ↵1V (Wi)Zi, (17)

We investigate the asymptotic properties of

ˆ� under the following assumptions, which parallel those

of Hahn, Todd and van der Klaauw (1990):
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Assumption 4 Suppose that

1. The sample {�i}ni=1 is an iid sample, where �i = (Yi, Xi, Zi,Wi).

2. The density of W, f(w), is continuous and bounded near w = 0. It is also bounded away from

zero near w = 0. � defined below is positive definite. �X is full column rank.

3. The kernel k is continuous, symmetric and nonnegative-valued with compact support.

4. The functions µj(w) = E[Zj |W = w], µXj(w) = E[ZjX|W = w], µY j(w) = E[ZjY |W = w],

�2
j (w) = E[Z2j

i |W = w], �2
Xj(w) = E[Z2j

i X2
i |W = w], �2

Y j(w) = E[Z2j
i Y 2

i |W = w], qj(w) =

E[Z2j"2Ui
|W = w], and sj(w) = E[Z3j"3Ui

|W = w] are uniformly bounded near w = 0, with

well-defined and finite left and right limits to w = 0, for j = 0, 1 and 2.

5. The bandwidth satisfies nh5n ! 0.

6. For V = Y and V = X: (i) let 17 hold; (ii) for w > 0 or w < 0, ↵0V (w) and ↵1V (w) are twice

continuously di↵erentiable; (iii) there exists some M > 0 such that ↵̇+
jV (w) = limu#w @↵jV (u)/@u

and ↵̈+
jV (w) = limu#w @2↵jV (u)/@u2 are uniformly bounded on (0,M ], for j = 0, 1. Similarly,

↵̇�

jV (w) = limu"w @↵jV (u)/@u and ↵̈�

jV (w) = limu"w @2↵jV (u)/@u2 are uniformly bounded on

[�M, 0), for j = 0, 1.

For a measurable function of the data g(�i), define the local linear sample mean

ˆE[g(�i)] =
1

nhn

nX

i=1

g(�i)kihn .

Let Sin and Cin be defined the same as Si and Ci but with Wi replaced by Wi/hn. Define

˜Xi = (Xi, C 0

i)
0,

˜Xin = (Xi, C 0

in)
0, and ✓ = (�0, ⌘0)0, where ⌘ = (⌘1, ..., ⌘6)0 has the same dimension as Cin. Define

✓n = (�0, ⌘1, ⌘2, hn⌘3, hn⌘4, hn⌘5, hn⌘6)0. With this notation in place, the TSLS is the first component

of

ˆ✓n =

✓
ˆE
h
˜XinS

0

in

i ⇣
ˆE
⇥
SinS

0

in

⇤⌘�1
ˆE
h
Sin

˜X 0

in

i◆�1
ˆE
h
˜XinS

0

in

i ⇣
ˆE
⇥
SinS

0

in

⇤⌘�1
ˆE [SinYi]

= ✓n +

✓
ˆE
h
˜XinS

0

in

i ⇣
ˆE
⇥
SinS

0

in

⇤⌘�1
ˆE
h
Sin

˜Xin

i◆�1
ˆE
h
˜XinS

0

in

i ⇣
ˆE
⇥
SinS

0

in

⇤⌘�1
ˆE [SinUi] ,

where Ui = Yi � ˜X 0

in✓n = Yi � ˜X 0

i✓.

We show in Lemma B.11 that

p
nhn

⇣
ˆ✓n � ✓n

⌘
!d N(0,⌦), (18)

and provide an expression for ⌦. The asymptotic normality for

p
nhn

⇣
ˆ�n � �0

⌘
then follows as

p
nhn

⇣
ˆ�n � �0

⌘
!d N(0,⌃),
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where ⌃ = e00⌦e0, and e0 has a one in the first entry, corresponding to X, and zero everywhere else.

We introduce some notation that will be used throughout,

�l =

Z
1

0
ulk(u)du,

µ+
j = lim

w#0
E[Zj |W = w] µ�

j = lim

w"0
E[Zj |W = w],

k+ihn
= k(W/hn)1(W � 0) k�ihn

= k(W/hn)1(W < 0),

b+lj = �lµ
+
j , b�lj = �lµ

�

j , b+xlj = �lµ
+
Xj , b�xlj = �lµ

�

Xj .

Lemma B.1 Under Assumption 4 1-5,

ˆE
h
˜XinS

0

in

i
!p �X ,

where

�X = f(0)

2

666666666664

b+x00 b+x01 b+x10 b+x11 b�x00 b�x01 b�x10 b�x11
b+00 b+01 b+10 b+11 b�00 b�01 b�10 b�11
b+01 b+02 b+11 b+12 b�01 b�02 b�11 b�12
b+10 b+11 b+20 b+21 0 0 0 0

b+11 b+12 b+21 b+22 0 0 0 0

0 0 0 0 b�10 b�11 b�20 b�21
0 0 0 0 b�11 b�12 b�21 b�22

3

777777777775

.

Proof. Let

✓+lj =
1

nhn

nX

i=1

✓
Wi

hn

◆l

Zj
i k

+
ihn

, l, j = 0, 1, 2.

Then, by the change of variables u = w/hn,

E[✓+lj ] = h�1
n E

"✓
Wi

hn

◆l

Zj
i k

+
ihn

#

=

Z
1

0
ulk(u)µj(uhn)f(uhn)du

= f(0)�lµ
+
j + o(1),

where µj(w) = E[Zj |W = w] and the convergence follows by the Dominated Convergence theorem. As

for the variance

V ar(✓+lj ) 
�
nh2n

�
�1

E

"✓
Wi

hn

◆2l

Z2j
i k+2

ihn

#

= (nhn)
�1
Z

1

0
u2lk2(u)�2

j (uhn)f(uhn)du

= o(1),

again by the Dominated Convergence theorem.
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Similarly, define

✓+xlj =
1

nhn

nX

i=1

✓
Wi

hn

◆l

Zj
iXik

+
ihn

, l, j = 0, 1, 2.

Then, by the change of variables u = w/hn,

E[✓+xlj ] = h�1
n E

"✓
Wi

hn

◆l

Zj
iXik

+
ihn

#

=

Z
1

0
ulk(u)µXj(uhn)f(uhn)du

= f(0)�lµ
+
Xj + o(1),

by the Dominated Convergence theorem. As for the variance

V ar(✓+xlj) 
�
nh2n

�
�1

E

"✓
Wi

hn

◆2l

Z2j
i X2

i k
+2
ihn

#

= (nhn)
�1
Z

1

0
u2lk2(u)�2

Xj(uhn)f(uhn)du

= o(1),

again by the Dominated Convergence theorem. The proof for ✓�lj and ✓�xlj , which replace k+ihn
by k�ihn

,

is analogous, and hence omitted.

Lemma B.2 Under Assumption 4 1-5,

ˆE
⇥
SinS

0

in

⇤
!p �

where

� = f(0)

2

666666666666664

b+00 b+01 b+10 b+11 0 0 0 0

b+01 b+02 b+11 b+12 0 0 0 0

b+10 b+11 b+20 b+21 0 0 0 0

b+11 b+12 b+21 b+22 0 0 0 0

0 0 0 0 b�00 b�01 b�10 b�11
0 0 0 0 b�01 b�02 b�11 b�12
0 0 0 0 b�10 b�11 b�20 b�21
0 0 0 0 b�11 b�12 b�21 b�22

3

777777777777775

.

Proof. The proof is analogous to that of Lemma B.1 and hence is omitted.

Lemma B.3 Under Assumption 4 1-5,

ˆE [SinYi] !p �Y ,

where �Y = f(0)(b+y00, b
+
y10, b

+
y01, b

+
y11, b

�

y00, b
�

y10, b
�

y01, b
�

y11)
0, b+ylj = �lµ

+
Y j , b

�

ylj = �lµ
�

Y j .

Proof. The proof is analogous to that of Lemma B.1 and hence is omitted.
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Lemma B.4 Assume 1, 2 and 4. Then,

�Y = �0

X✓0,

where ✓0 = (�0, ⌘1, ⌘2, 0, 0, 0, 0)0.

Proof. By Assumption 4 6, we can write

E[Hi|Zi,W = w] := ↵0H(w) + ↵1H(w)Zi.

Hence, this last display and Assumption 1 yield

µY j(w) = �(w)µXj(w) + ↵0H(w)µj(w) + ↵1H(w)µj+1(w).

Taking right and left limits at w = 0 imples the desired equality �Y = �0

X✓0, where ⌘1 = ↵0H(0) and

⌘2 = ↵1H(0).

The previous Lemmas show the consistency of

ˆ�, since

ˆ✓n !p

�
�X��1�0

X

�
�1

�X��1�Y = ✓0

We prove several Lemmas that will yield the asymptotic normality of

p
nhn

⇣
ˆ✓n � ✓n

⌘
, and hence of

p
nhn

⇣
ˆ�n � �0

⌘
.

Define the function

⇣H(w, z) = ↵0H(w) + ↵1H(w)z � ↵+
0H + ↵+

1Hz

�
�
↵̇+
0H + ↵̇+

1Hz
�
w � 1

2

�
↵̈+
0H + ↵̈+

1Hz
�
w2,

where ↵̇+
0H = limw#0 @↵0H(w)/@w and ↵̈+

0H = limw#0 @2↵0H(w)/@w2, and similarly for ↵1H . We use

later that

sup

0<w<Mhn

|⇣H(w, z)| = o(h2n)(1 + |Z|).

The function ⇣H(w, z) is the Taylor’s remainder of order two of E[Hi|Zi,W = w] := ↵0H(w) +

↵1H(w)Zi around w = 0. We can also relate the coe�cients in this expansion with the coe�cients

in ⌘. Following the arguments above, it can be shown that

⌘̃ = argmin

�,⌘

nX

i=1

�
Hi � ⌘0Ci

�2
khn(Wi).

estimates consistently ⌘. Thus,

⌘1 = ↵0H(0), ⌘2 = ↵1H(0), ⌘3 = ↵̇0H(0),

⌘4 = 0, ⌘5 = ↵̇1H(0), ⌘6 = 0.

Recall Ui = Yi � ˜X 0

i✓. Then, from the definitions above

E[Ui|Zi,W ] = E[Hi|Zi,W ]� ↵+
0H + ↵+

1HZ � ↵̇+
0HW + ↵̇+

1HZW

=

1

2

�
↵̈+
0H + ↵̈+

1HZi

�
W 2

i + ⇣H(Wi, Zi).

The following Lemmas make use of Assumptions 1, 2 and 4.
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Lemma B.5 (Numerator: Expectation)

E

"
1

nhn

nX

i=1

SinUikihn

#
!p

1

2

f(0)h2n(bU + o(1)),

where

bU =

2

666666666666664

�2(↵̈
+
0H + ↵̈+

0Hµ+
1 )

�2(↵̈
+
0Hµ+

1 + ↵̈+
0Hµ+

2 )

�3(↵̈
+
0H + ↵̈+

0Hµ+
1 )

�3(↵̈
+
0Hµ+

1 + ↵̈+
0Hµ+

2 )

�2(↵̈
�

0H + ↵̈+
0Hµ�

1 )

�2(↵̈
�

0Hµ�

1 + ↵̈�

0Hµ+
2 )

�3(↵̈
�

0H + ↵̈�

0Hµ+
1 )

�3(↵̈
�

0Hµ+
1 + ↵̈�

0Hµ+
2 )

3

777777777777775

.

Proof. Let

u+lj =
1

nhn

nX

i=1

✓
Wi

hn

◆l

Zj
i Uik

+
ihn

, l, j = 0, 1.

Then, write

E[u+lj ] = h�1
n E

"✓
Wi

hn

◆l

Zj
i Uik

+
ihn

#

= h�1
n E

"✓
Wi

hn

◆l

Zj
i

✓
1

2

�
↵̈+
0H + ↵̈+

1HZi

�
W 2

i + ⇣H(Wi, Zi)

◆
k+ihn

#

= h�1
n

1

2

↵̈+
0HE

"✓
Wi

hn

◆l

Zj
iW

2
i k

+
ihn

#
+ h�1

n

1

2

↵̈+
1HE

"✓
Wi

hn

◆l

Zj+1
i W 2

i k
+
ihn

#

+ h�1
n E

"✓
Wi

hn

◆l

Zj
i ⇣H(Wi, Zi)k

+
ihn

#
.

By the change of variables u = w/hn,

h�1
n E

"✓
Wi

hn

◆l

Zj
iW

2
i k

+
ihn

#
= h2n

Z
1

0
ul+2k(u)µj(uhn)f(uhn)du

= h2nµ
+
j f(0

+
)�l+2 + o(1),

and similarly

h�1
n E

"✓
Wi

hn

◆l

Zj+1
i W 2

i k
+
ihn

#
= h2nµ

+
j+1f(0

+
)�l+2 + o(1).

On the other hand, assume without loss of generality that [�M,M ] contains the support of k, so that

h�1
n E

"✓
Wi

hn

◆l

Zj
i ⇣H(Wi, Zi)k

+
ihn

#
= o(h2n).

The proof for the left limit version is analogous, and hence omitted.
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Lemma B.6 (Numerator: Conditional Expectation)

1

nhn

nX

i=1

E[SinUikihn |Wi, Zi] =
1

nhn

nX

i=1

E[SinUikihn ] + op(h
2
n).

Proof. We have

1

nhn

nX

i=1

E[SinUikihn |Wi, Zi] =
1

nhn

nX

i=1

Sinkihn

✓
1

2

�
↵̈+
0H + ↵̈+

1HZi

�
W 2

i + ⇣H(Wi, Zi)

◆

=

1

2

↵̈+
0H

1

nhn

nX

i=1

SinkihnW
2
i +

1

2

↵̈+
1H

1

nhn

nX

i=1

SinkihnZiW
2
i

+

1

nhn

nX

i=1

Sinkihn⇣H(Wi, Zi).

Observe that

V ar

 
1

nhn

nX

i=1

SinkihnW
2
i

!
=

�
nh2n

�
�1

V ar
�
SinkihnW

2
i

�

 C (nhn)
�1 h�1

n E
⇥
SinS

0

ink
2
ihn

W 4
i

⇤

= O
⇣
(nhn)

�1 h4n

⌘

= o(1),

since for l, j = 0, 1, 2

h�1
n E

"✓
Wi

hn

◆l

Zj
i k

+2
ihn

W 4
i

#
= h4n

Z
1

0
ulk2(u)µj(uhn)f(uhn)du

= h4nµ
+
j f(0

+
)vl + o(1),

where

vl =

Z
1

0
ulk2(u)du,

and similarly

h�1
n E

"✓
Wi

hn

◆l

Zj
i k

�2
ihn

W 4
i

#
= h4nµ

�

j f(0
�

)vl + o(1).

Likewise,

V ar

 
1

nhn

nX

i=1

SinkihnZiW
2
i

!
= o(1).

and

V ar

 
1

nhn

nX

i=1

Sinkihn⇣H(Wi, Zi)

!
= o(1).

Note that
1

nhn

nX

i=1

Sink
+
ihn

(Ui � E[Ui|Wi, Zi]) =
1

nhn

nX

i=1

Sink
+
ihn

"Ui ,

where "Ui = Ui � E[Ui|Wi, Zi] denotes the regression error. Then, we have the following result.

34



Lemma B.7 (Numerator: Conditional Variance)

V ar

 
1

nhn

nX

i=1

S+inkihn"Ui

!
=

1

nhn
⌃U+ + o(1),

where

⌃U+ = f(0+)

2
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v0 v0q
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+
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+
2

3

77775
,

vl =

Z
1

0
ulk2(u)du and q+j = lim

w#0
E[Z2j"2Ui

|W = w].

Proof. Consider the generic term, for l, j = 0, 1

1

nhn

nX

i=1

✓
Wi

hn

◆l

Zj
i k

+
ihn

"Ui ,

and its variance, which equals

(nhn)
�1 h�1

n E

"✓
Wi

hn

◆2l

Z2j
i k+2

ihn
"2Ui

#
= (nhn)

�1
Z

1

0
u2lk2(u)qj(uhn)f(uhn)du

= (nhn)
�1 f(0+)q+j v2l + o(1)

where qj(w) = E[Z2j"2Ui
|W = w].

Similarly, we have the following result, which proof is the same as in the previous lemma.

Lemma B.8

V ar
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nhn

nX

i=1

S
�inkihn"Ui

!
=

1

nhn
⌃U� + o(1),

where

⌃U� = f(0�)

2
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�

2
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77775
,

q�j = lim

w"0
E[Z2j"2Ui

|W = w].

Define

⌃U =

"
⌃U+ 0

0 ⌃U�

#
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Lemma B.9 (Numerator: Conditional CLT)

(nhn)
�1/2

nX

i=1

Sinkihn"Ui !d N (0,⌃U ) .

Proof. Consider a generic term for l, j = 0, 1

1p
nhn

nX

i=1

✓
Wi

hn

◆l

Zj
i k

+
ihn

"Ui .

We apply Lyapounov with third absolute moment. By the lemma on the asymptotic variance, we need

to establish

(nhn)
�1/2 h�1

n E

"✓
Wi

hn

◆3l

Z3j
i k+3

ihn
"3Ui

#
= o(1).

But note that, defining sj(w) = E[Z3j"3Ui
|W = w],

h�1
n E

"✓
Wi

hn

◆3l

Z3j
i k+3

ihn
"3Ui

#
=

Z
1

0
u3lk3(u)sj(uhn)f(uhn)du

= O(1).

The same holds for the left limit part.

Lemma B.10 (Numerator: Unconditional CLT)

(nhn)
�1/2

nX

i=1

SinUikihn � (nhn)1/2h2n
2

f(0)bU !d N (0,⌃U ) .

Proof. It follows from previous Lemmas.

Lemma B.11 (Main CLT) p
nhn(ˆ✓n � ✓n) !d N (0,⌦) ,

where

⌦ =

�
���1�0

�
�1

���1⌃U�
�1�0

�
���1�0

�
�1

.

Proof. It follows from previous Lemmas.
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