Waiver Exam - ECON 897 Final Exam

Juan Hernandez Ju Hu Yunan Li

August 25, 2014

Instructions

- This is a closed-book test. No books or lecture notes are permitted.
- You have 180 minutes to complete the exam, the total score is 180 .
- Read the questions carefully, and be sure to answer the questions asked.
- You can use all the results covered in all three parts.
- Please write legibly.
- Good luck!

1. This problem asks you to prove that the real line is connected. You CANNOT use the theorem that says: " \mathbb{R} is connected".
(a) [$\mathbf{5}$ points] Let K be a non-empty closed subset of the real line. Show that, if it exists, l.u.b. $(K) \in K$. (l.u.b. (K) stands for least upper bound of K.)
(b) [5 points] Let U be a non-empty closed and open (clopen) subset of the real line. Use (a) to prove U cannot be bounded.
(c) [10 points] Let U be a non-empty closed and open (clopen) subset of the real line. Prove that U must contain every real number, that is $U=\mathbb{R}$. Hence the real line is connected. [Hint: By contradiction. The sets $(-\infty, y)$ and $(-\infty, y$] may be useful.]
2. Let the sets $B_{n} \subset \mathbb{R}^{m}$ for $n \in \mathbb{N}$ be defined as:

$$
B_{n}=[-n, n] \times[-n, n] \times \cdots \times[-n, n] .
$$

(a) [5 points] Prove that for every compact set $K \subset \mathbb{R}^{m}$, there exists some $n \in \mathbb{N}$ such that $K \subset B_{n}$.
(b) [10 points] Let $\mathcal{V}=\left\{V_{\alpha}\right\}_{\alpha \in A}$ be an open cover of \mathbb{R}^{m}. Show that for each B_{n} there exists an open cover $\mathcal{W}=\left\{W_{\alpha}\right\}_{\alpha \in A}$ of \mathbb{R}^{m} indexed by the same set A as \mathcal{V} such that the two following conditions hold simultaneously:
i. For each $\alpha \in A$ the open scrap W_{α} is contained in the corresponding open scrap V_{α} of \mathcal{V}, i.e. $W_{\alpha} \subset V_{\alpha}$.
ii. $B_{n} \cap W_{\alpha} \neq \emptyset$ only for a finite number of $\alpha_{i} \in A$.

Hint: The set $B_{n}^{c}=\mathbb{R}^{m} \backslash B_{n}$ may be useful.
(c) [10 points] Let $\mathcal{V}=\left\{V_{\alpha}\right\}_{\alpha \in A}$ be an open cover of \mathbb{R}^{m}. By induction show that there exists an open cover $\mathcal{W}=\left\{W_{\alpha}\right\}_{\alpha \in A}$ of \mathbb{R}^{m} indexed by the same set A as \mathcal{V} such that the two following conditions hold simultaneously:
i. For each $\alpha \in A$ the scrap W_{α} is contained in the corresponding scrap V_{α} of \mathcal{V}.
ii. For each compact set $K \subset \mathbb{R}^{m}, K \cap W_{\alpha} \neq \emptyset$ only for a finite number of $\alpha_{i} \in A$.

Notice the same cover \mathcal{W} must satisfy the conditions above for all compact sets $K \subset \mathbb{R}^{m}$.
3. [20 points] Let A be an $m \times n$ matrix. Assume $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is twice differentiable. Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ as $f(x)=g(A x)$. Calculate $D^{2} f_{x}$.
4. [20 points] Let W be a nontrivial subspace of \mathbb{R}^{n} and W^{\perp} be its orthogonal complement. Suppose $P: \mathbb{R}^{n} \rightarrow W$ is the projection mapping from \mathbb{R}^{n} onto W. Assume x is an arbitrary vector in \mathbb{R}^{n}. Prove

$$
\sup _{\substack{z \in W^{\perp} \\|z|=1}} x^{T} z=|x-P x|
$$

5. [10 points] Let X be a discrete random variable whose probability mass function f_{X} is symmetric with respect to 0 , i.e. $f_{X}(x)=f_{X}(-x)$ for all $x \in \mathbb{R}$. Let

$$
J= \begin{cases}1 & \text { if } X>0 \\ 0 & \text { if } X=0 \\ -1 & \text { if } X<0\end{cases}
$$

Show that $|X|$ and J are independent if $f_{X}(0)=0$.
6. [10 points] Let X_{1}, X_{2}, \cdots be iid with cdf

$$
G(x)=1-e^{-x}, x \geq 0
$$

Show that $Y_{n}=\max \left\{X_{1}, \cdots, X_{n}\right\}-\ln (n)$ converges in distribution to a random variable with the following cdf:

$$
F(x)=e^{-e^{-x}}
$$

7. Consider a consumer who lives for $T>0$ periods. At the beginning of each period $1 \leq t \leq T$, this consumer must decide his consumption $c_{t} \geq 0$ for the current period and saving $s_{t} \geq 0$ for next period, given his saving s_{t-1} from previous period. Denote by $s_{0} \geq 0$ the initial saving. The consumer maximizes his life time utility:

$$
\begin{aligned}
U\left(s_{0}\right) \equiv \max _{\left\{c_{1}, \cdots, c_{T}, s_{1}, \cdots, s_{T}\right\}} & \sum_{t=1}^{T} u\left(c_{t}\right) \\
\text { subject to } & c_{t}+s_{t} \leq f\left(s_{t-1}\right) \quad \forall 1 \leq t \leq T, \\
& c_{t} \geq 0, s_{t} \geq 0 \quad \forall 1 \leq t \leq T, \\
& s_{0} \geq 0 \text { is given, }
\end{aligned}
$$

where $u: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is the momentary utility function and $f: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is the production function. Assume both u and f are continuous.
(a) [10 points] Let

$$
C\left(s_{0}\right) \equiv\left\{\left(c_{1}, \cdots, c_{T}, s_{1}, \cdots, s_{T}\right) \in \mathbb{R}_{+}^{T} \times \mathbb{R}_{+}^{T} \mid c_{t}+s_{t} \leq f\left(s_{t-1}\right), 1 \leq t \leq T\right\}
$$

be the constraint set given initial saving s_{0}. Prove $C\left(s_{0}\right)$ is compact. Hence optimal solutions exist.
(b) [10 points] Prove the correspondence $C: \mathbb{R}_{+} \rightrightarrows \mathbb{R}_{+}^{T} \times \mathbb{R}_{+}^{T}$ is continuous.
(c) [10 points] Denote by $U: \mathbb{R}_{+} \rightarrow \mathbb{R}$ the value function of the maximization problem. Prove U is continuous and increasing.
(d) [15 points] Assume u is differentiable on $(0,+\infty), u^{\prime}(c)>0$ and $\lim _{c \rightarrow 0+} u^{\prime}(c)=+\infty$. Assume f is strictly increasing and $f(0)=0$. Prove any optimal solution must satisfy $c_{t}>0$ for all $1 \leq t \leq T$ and $s_{t}>0$ for all $1 \leq t \leq T-1$.
(e) [10 points] In what follows, suppose both u and f are twice continuously differentiable on $(0,+\infty)$. Assume $u^{\prime}>0, u^{\prime \prime}<0, f^{\prime}>0, f^{\prime \prime}<0, f(0)=0$ and $\lim _{c \rightarrow 0+} u^{\prime}(c)=+\infty$. Prove the optimization problem has a unique solution.
(f) [10 points] Given any $s_{0}>0$, prove the optimal solution must satisfy

$$
\frac{u^{\prime}\left(c_{t}\right)}{u^{\prime}\left(c_{t+1}\right)}=f^{\prime}\left(s_{t}\right) \quad \forall 1 \leq t \leq T-1
$$

(g) [10 points] Consider $T=2$. Prove both $c_{1}\left(s_{0}\right)$ and $c_{2}\left(s_{0}\right)$ strictly increase with s_{0}.

