Waiver Exam - ECON 897 Final Exam

Juan Hernandez Ju Hu Yunan Li

August 25, 2014

Instructions

- This is a closed-book test. No books or lecture notes are permitted.
- You have 180 minutes to complete the exam, the total score is 180.
- Read the questions carefully, and be sure to answer the questions asked.
- You can use all the results covered in all three parts.
- Please write legibly.
- Good luck!

- 1. This problem asks you to prove that the real line is connected. You CANNOT use the theorem that says: " \mathbb{R} is connected".
 - (a) [5 points] Let K be a non-empty closed subset of the real line. Show that, if it exists, $l.u.b.(K) \in K$. (l.u.b.(K) stands for least upper bound of K.)
 - (b) [5 points] Let U be a non-empty closed and open (*clopen*) subset of the real line. Use(a) to prove U cannot be bounded.
 - (c) [10 points] Let U be a non-empty closed and open (*clopen*) subset of the real line. Prove that U must contain every real number, that is $U = \mathbb{R}$. Hence the real line is connected. [Hint: By contradiction. The sets $(-\infty, y)$ and $(-\infty, y]$ may be useful.]
- 2. Let the sets $B_n \subset \mathbb{R}^m$ for $n \in \mathbb{N}$ be defined as:

$$B_n = [-n, n] \times [-n, n] \times \dots \times [-n, n].$$

- (a) [5 points] Prove that for every compact set $K \subset \mathbb{R}^m$, there exists some $n \in \mathbb{N}$ such that $K \subset B_n$.
- (b) [10 points] Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ be an open cover of \mathbb{R}^m . Show that for each B_n there exists an open cover $\mathcal{W} = \{W_{\alpha}\}_{\alpha \in A}$ of \mathbb{R}^m indexed by the same set A as \mathcal{V} such that the two following conditions hold simultaneously:
 - i. For each $\alpha \in A$ the open scrap W_{α} is contained in the corresponding open scrap V_{α} of \mathcal{V} , i.e. $W_{\alpha} \subset V_{\alpha}$.
 - ii. $B_n \cap W_\alpha \neq \emptyset$ only for a finite number of $\alpha_i \in A$.

Hint: The set $B_n^c = \mathbb{R}^m \setminus B_n$ may be useful.

- (c) [10 points] Let $\mathcal{V} = \{V_{\alpha}\}_{\alpha \in A}$ be an open cover of \mathbb{R}^m . By induction show that there exists an *open* cover $\mathcal{W} = \{W_{\alpha}\}_{\alpha \in A}$ of \mathbb{R}^m indexed by the same set A as \mathcal{V} such that the two following conditions hold simultaneously:
 - i. For each $\alpha \in A$ the scrap W_{α} is contained in the corresponding scrap V_{α} of \mathcal{V} .
 - ii. For each compact set $K \subset \mathbb{R}^m$, $K \cap W_{\alpha} \neq \emptyset$ only for a finite number of $\alpha_i \in A$.

Notice the same cover \mathcal{W} must satisfy the conditions above for all compact sets $K \subset \mathbb{R}^m$.

- 3. [20 points] Let A be an $m \times n$ matrix. Assume $g : \mathbb{R}^m \to \mathbb{R}$ is twice differentiable. Define $f : \mathbb{R}^n \to \mathbb{R}$ as f(x) = g(Ax). Calculate $D^2 f_x$.
- 4. [20 points] Let W be a nontrivial subspace of \mathbb{R}^n and W^{\perp} be its orthogonal complement. Suppose $P : \mathbb{R}^n \to W$ is the projection mapping from \mathbb{R}^n onto W. Assume x is an arbitrary vector in \mathbb{R}^n . Prove

$$\sup_{\substack{z \in W^{\perp} \\ |z|=1}} x^T z = |x - Px|.$$

5. [10 points] Let X be a discrete random variable whose probability mass function f_X is symmetric with respect to 0, i.e. $f_X(x) = f_X(-x)$ for all $x \in \mathbb{R}$. Let

$$J = \begin{cases} 1 & \text{if } X > 0, \\ 0 & \text{if } X = 0, \\ -1 & \text{if } X < 0. \end{cases}$$

Show that |X| and J are independent if $f_X(0) = 0$.

6. [10 points] Let X_1, X_2, \cdots be iid with cdf

$$G(x) = 1 - e^{-x}, \ x \ge 0.$$

Show that $Y_n = \max\{X_1, \dots, X_n\} - \ln(n)$ converges in distribution to a random variable with the following cdf:

$$F(x) = e^{-e^{-x}}.$$

7. Consider a consumer who lives for T > 0 periods. At the beginning of each period $1 \le t \le T$, this consumer must decide his consumption $c_t \ge 0$ for the current period and saving $s_t \ge 0$ for next period, given his saving s_{t-1} from previous period. Denote by $s_0 \ge 0$ the initial saving. The consumer maximizes his life time utility:

$$U(s_0) \equiv \max_{\{c_1, \cdots, c_T, s_1, \cdots, s_T\}} \sum_{t=1}^T u(c_t)$$

subject to
$$c_t + s_t \le f(s_{t-1}) \quad \forall 1 \le t \le T,$$

$$c_t \ge 0, \ s_t \ge 0 \quad \forall 1 \le t \le T,$$

$$s_0 \ge 0 \text{ is given},$$

where $u : \mathbb{R}_+ \to \mathbb{R}$ is the momentary utility function and $f : \mathbb{R}_+ \to \mathbb{R}_+$ is the production function. Assume both u and f are continuous.

(a) **[10 points]** Let

$$C(s_0) \equiv \left\{ (c_1, \cdots, c_T, s_1, \cdots, s_T) \in \mathbb{R}^T_+ \times \mathbb{R}^T_+ \middle| c_t + s_t \le f(s_{t-1}), \ 1 \le t \le T \right\}$$

be the constraint set given initial saving s_0 . Prove $C(s_0)$ is compact. Hence optimal solutions exist.

- (b) [10 points] Prove the correspondence $C : \mathbb{R}_+ \Rightarrow \mathbb{R}_+^T \times \mathbb{R}_+^T$ is continuous.
- (c) [10 points] Denote by $U : \mathbb{R}_+ \to \mathbb{R}$ the value function of the maximization problem. Prove U is continuous and increasing.
- (d) [15 points] Assume u is differentiable on $(0, +\infty)$, u'(c) > 0 and $\lim_{c\to 0+} u'(c) = +\infty$. Assume f is strictly increasing and f(0) = 0. Prove any optimal solution must satisfy $c_t > 0$ for all $1 \le t \le T$ and $s_t > 0$ for all $1 \le t \le T - 1$.

- (e) [10 points] In what follows, suppose both u and f are twice continuously differentiable on $(0, +\infty)$. Assume u' > 0, u'' < 0, f' > 0, f'' < 0, f(0) = 0 and $\lim_{c\to 0+} u'(c) = +\infty$. Prove the optimization problem has a unique solution.
- (f) [10 points] Given any $s_0 > 0$, prove the optimal solution must satisfy

$$\frac{u'(c_t)}{u'(c_{t+1})} = f'(s_t) \quad \forall 1 \le t \le T - 1.$$

(g) [10 points] Consider T = 2. Prove both $c_1(s_0)$ and $c_2(s_0)$ strictly increase with s_0 .