Waiver Exam - ECON 897 Final Exam

Juan Hernandez Ju Hu Yunan Li

August 26, 2013

Instructions

- This is a closed-book test. No books or lecture notes are permitted.
- You have 180 minutes to complete the exam, the total score is 180 .
- Read the questions carefully, and be sure to answer the question asked.
- You can use all the results covered in all three parts, but make sure the conditions are satisfied.
- Please write legibly.
- Good luck!

1. Let A be a compact set on a metric space M. Let $\left(a_{n}\right)_{n \in \mathbb{N}}$ be a sequence contained in A such that every convergent subsequence of $\left(a_{n}\right)$ converges to the same point a^{*}. Prove that the sequence $\left(a_{n}\right)$ converges to a^{*}.
[10 points]
2. Let $m>0$ be a fixed real number. Define the Budget Set correspondence:

$$
\begin{aligned}
& \Phi: \mathbb{R}_{++}^{2} \rightarrow \mathcal{P}\left(\mathbb{R}^{2}\right) \\
&\left(p_{1}, p_{2}\right) \mapsto B\left(p_{1}, p_{2}\right) \\
& B\left(p_{1}, p_{2}\right)=\left\{(x, y) \in \mathbb{R}^{2}: x \geq 0, y \geq 0, p_{1} x+p_{2} y \leq m\right\}
\end{aligned}
$$

(a) Let $S \subset M$ be a subset of a metric space. Let V be an open set such that $V \cap \bar{S} \neq \emptyset$. Prove that $V \cap S \neq \emptyset$.
(b) Let V be an open set such that for some $\left(p_{1}, p_{2}\right) \in \mathbb{R}_{++}, V \cap B\left(p_{1}, p_{2}\right)$ is not empty. Prove there exists $\left(x^{*}, y^{*}\right) \in V$ such that $p_{1} x^{*}+p_{2} y^{*}<m$. (Hint: use the result of part (a))
(c) Using (b), prove that Φ is lower hemicontinuous. (Hint: use the continuity of $p_{1} x^{*}+p_{2} y^{*}$)
[10 points]
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. Suppose there exists $\epsilon>0$ such that $f^{\prime \prime}(x)>\epsilon$ for all $x \in \mathbb{R}$.
(a) Show $f^{\prime}(x)=0$ for some $x \in \mathbb{R}$. (Hint: intermediate and mean value theorems.)
(b) Prove that f has an unique global minimum.
[10 points]
4. Assume $U \subset \mathbb{R}^{n}$ is convex. Let $x^{*} \in U$ be a point. Prove the followings are equivalent:
(a) there is no $x \in U$ such that $x_{i}>x_{i}^{*}$ for all $i=1, \cdots, n$,
(b) there exists $\lambda \in \mathbb{R}_{+}^{n} \backslash\{0\}$ such that x^{*} solves

$$
\max _{x \in U} \lambda^{T} x .
$$

[20 points]
5 . Let A be an $m \times n$ matrix and B be an $n \times l$ matrix. Prove

$$
\operatorname{rank} A+\operatorname{rank} B-n \leq \operatorname{rank} A B
$$

6. Suppose that (X, Y) has a continuous distribution with continuous probability density function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$. Show that $U=X+Y$ has a continuous distribution with probability density function f_{U} given by

$$
f_{U}(u)=\int_{\mathbb{R}} f(v, u-v) \mathrm{d} v .
$$

[10 points]
7. Let X_{1}, X_{2}, \cdots be iid with cdf

$$
F(x)=\frac{1}{1+e^{-x}}
$$

Let $Y_{n}=\max \left\{X_{1}, \cdots, X_{n}\right\}-\log n$. Show that $\left\{Y_{n}\right\}_{n}$ converges in distribution. [15 points]
8. A firm produces a single output $y \in \mathbb{R}_{+}$using inputs $z \in \mathbb{R}_{+}^{n}$. Given the production function f, the targeted output $y \in \mathbb{R}_{+}^{n}$ and a vector of input prices $w \in \mathbb{R}_{++}^{n}$, the firm's cost minimization problem (CMP) can be stated as follows:

$$
\begin{aligned}
& \min _{z} w \cdot z \\
& \text { s.t. } f(z) \geq y \text { and } z \geq 0,
\end{aligned}
$$

Assume $f: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is continuous and the set $\left\{z \in \mathbb{R}_{+}^{n} \mid f(z) \geq y\right\}$ is nonempty.
(a) Prove that the firm's cost minimization problem has a solution. In what follows, denote the solution correspondence by $z(w)$ for each $w \in \mathbb{R}_{++}^{n}$.
(b) Suppose $z^{*} \in z(w)$ is such that $z^{*} \neq 0$. Prove $f\left(z^{*}\right)=y$.
(c) Let $c(w)=w \cdot z^{*}$ for any $z^{*} \in z(w)$, which is called the firm's cost function. Prove that $c(w)$ is concave.
[10 points]
(d) Assume $z(w)$ is single valued for all w. Prove $z_{i}(w)$ is nonincreasing in w_{i} for any i and $c(w)$ is nondecreasing in w_{i}.

Assume for part (e) and part (f) that f is twice continuously differentiable, $z(w)$ is single valued.
(e) Write down the Kuhn-Tucker first-order conditions for a minimum. Under what conditions on f are these first-order conditions necessary and sufficient for a solution? (Specify the most general conditions you can think of.)
[10 points]
(f) Under the conditions you give in part (e), calculate the derivative of $z(w)$ with respect to w. (It is enough to express the derivatives in terms of matrices.)
[10 points]

