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Abstract. People often consume non-durable goods in a way that seems
inconsistent with preferences for smoothing consumption over time. We sug-
gest that such patterns of consumption can be better explained if one takes
into account the future utility flows generated by memorable consumption
goods—goods, such as a honeymoon or a vacation, whose utility flow out-
lives their physical consumption. We consider a model in which a consumer
enjoys current consumption as well as utility generated by earlier memorable
consumption. Lasting utility flows are generated only by some goods, and
only when their consumption exceeds customary levels by a sufficient mar-
gin. We offer axiomatic foundations for the structure of the utility function
and study optimal consumption in a dynamic model. We show that ratio-
nal consumers, taking into account future utility flows, would make optimal
choices that rationalize lumpy patterns of consumption.
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Memorable Consumption

1 Introduction

1.1 Consumption Patterns

The conceptual point of departure for modeling intertemporal consumption
is a utility function of the form

U(c0, c1, . . . , cT ) =

T∑
t=0

δtu(ct), (1)

where ct is consumption in period t, δ is the (stationary) discount factor,
u is the (stationary) utility function, typically assumed to be concave, and
T may be finite or infinity. The discounting built into this model creates
an incentive to move consumption toward the present, while the ability to
earn a return on unspent income creates a countervailing force. These are
typically balanced by perfectly smoothing consumption.

In contrast, when asked whether they would prefer an increasing in-
tertemporal consumption stream, such as (10, 12, 14), or the analogous de-
creasing consumption stream (14, 12, 10), people often prefer the first. In-
deed, Kahneman and Tversky [15] have emphasized that people often react
to changes in consumption more than to absolute levels. In line with previ-
ous contributions (Helson [12] and Markowitz [18]), they suggest that peo-
ple form reference points and evaluate current consumption relative to these
reference points. This idea is consistent with modifications of the standard
model according to which the consumer is viewed as maximizing

U(c0, c1, . . . , cT ) =
T∑
t=0

δtu(ct,Λt), (2)

where Λt designates a reference point that is determined (at least partially)
by past consumption levels (c0, c1, . . . , ct−1).1

Elaborations of the standard model along the lines of (2) encounter dif-
ficulties when confronted by an example of a young couple who (not atypi-
cally) spend a quarter of their combined annual income on a wedding, as well

1Many reference-point models of consumption assume in addition that people are loss
averse, in the sense that losses are felt more keenly than gains, i.e., the left derivative
of u in its first argument is larger than the right derivative, when both are evaluated at
ct = Λt. Loss aversion does not play a role in our analysis, and we assume the function u
is differentiable.
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as similar examples involving vacations, celebrations, and other seemingly
nondurable consumption goods. Such a large expenditure at the very begin-
ning of their life as a couple seems to violate the preference for consumption
smoothing generated by (1). It also runs contrary to the optimal manage-
ment of one’s reference point that arises out of (2): the more spectacular
the honeymoon, the bleaker will future consumption appear in comparison.
The literature is less forthcoming with a model in this case. Our view is that
(1) and (2) both fail to capture the effect of memorable consumption goods.
When a couple gets married, they can already envisage themselves leafing
through their wedding albums in the near future, telling their children about
their honeymoon in the more distant future, and generally deriving pleasure
from their consumption long after it has physically ended. Indeed, the un-
usually large wedding expenditure is an essential ingredient in generating the
utility that the couple will enjoy later—it is important that the festivities
lie sufficiently outside their ordinary experience—and a substantial part of
the cost is typically devoted to items (such as photography and keepsakes)
designed to reinforce such future utility flows.

We analyze a model of dynamic consumer choice centered around these
two key links between past consumption and subsequent utility, namely the
effect of past consumption in generating future utility flows and the effect
of past consumption in determining reference or “customary” consumption
levels that help set the bar for generating more such flows. We seek a
minimal extension of the standard dynamic choice model given by (1). This
makes it straightforward to identify and quantify the differences in consumer
behavior that arise because past consumption affects future utility, and to
link these differences to the features of the model. Our model also retains the
tractability of the standard model, positioning the model for use in applied
work, as in Hai, Krueger and Postlewaite [11].

We make specific assumptions about the particular way that past con-
sumption affects future utilities. These assumptions lie behind the tractabil-
ity of our model, and it is important to understand how restrictive they are.
We accordingly provide an axiomatization of the assumed form of prefer-
ences over ordinary and memorable goods that provides a foundation on
which we can impose functional form assumptions.

1.2 Modeling Consumption

As with any model of decision making, we face a standard interpretational
question: is this a revealed-preference exercise, designed only to provide a
characterization of behavior? Or is the model intended to capture also some
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of the mental processes underlying the choices it describes?
Our ultimate goal is to describe economic behavior. A mathematical

model that could provide perfect quantitative predictions of consumer choice
based on observable data would serve this purpose, whether it had a claim
also to describe mental processes or not. However, such models do not yet
exist. Whether one attempts to develop them, or whether one is willing
to make do with models that provide qualitative insights, we believe that
looking at mental processes could be a source of useful insights.

We accept it as a scientific fact that consumption generates chemical
flows in the brain that provide the motivation for peoples’ decisions. More-
over, we believe it to be obvious that there is a temporal dimension to these
flows.2 One enjoys a meal not simply during the instant it is consumed but
for some time afterward. One can end a day content in the glow of the utility
generated by activities undertaken during the day. This temporal dimension
is typically suppressed in models of consumption, while our point of depar-
ture is the belief that memorable goods can generate flows of utility that
are sufficiently long-lasting as to have a significant effect on consumption
patterns.

We emphasize, however, that our goal is to model and study the con-
sumption of memorable goods, not to examine the chemistry of the brain
or even produce a high-level model of memory. Why do certain, sometimes
seemingly trivial episodes from our childhood remain vivid memories? Why
is it so easy to remember some songs, while our memories of even important
events in our lives are often imprecise? These are fascinating questions, but
we do not address them. Rather, our aim is to examine the economic im-
plications of the assumption that the consumption of some goods generates
long-lasting utility flows.

1.3 Relation to the Literature

The first component of our model, in the form of a suggestion that one can
get pleasure in the future from consumption in the past, appears early in
economics, dating back (at least) to Adam Smith’s [21, p. 152] observation
that “We can entertain ourselves with memories of past pleasures....” Strotz
[24] was one of the first to incorporate the utility from past consumption in
a model of utility maximization, though as the title of his classic paper on
dynamic consistency suggests, his model gives rise to a time inconsistency

2See, for example, Speer, Bhanji and Delgado [23], who examine the brain activity
associated with remembered events. Zauberman, Ratner and Kim [28] explore some of
the implications of utility flows associated with past consumption.
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problem that renders the very notion of utility maximization ambiguous.
No such difficulties arise in our setting.

The second pillar of our model is the idea that a consumer develops a
notion of customary consumption that affects her current well-being and
that depends on past consumption. This idea is widespread, and is perhaps
most familiar from models of habit formation (see Attanasio [1] for a survey).
As we explain in Section 5.1 the most general form of our model contains
habit-formation and similar models as a special case. The primary difference
in implications is that habit-formation and related models typically reinforce
motives for consumption smoothing, whereas memorable goods give rise to
occasional spikes in consumption.

This paper is closely related to Hai, Krueger and Postlewaite [11], who
introduce the notion of memorable goods and examine the implications of
memorable goods for evaluating the (excess) volatility of consumption. Hai,
Krueger and Postlewaite set out a model in which past consumption affects
the future through the two channels in our model. Their empirical results
provide support for the importance of memorable goods. In particular,
they argue that the excess sensitivity to foreseen income shocks identified
by Souleles [22] is largely due to expenditures on memorable goods. As
we explain in Section 2.1 below, Hai, Krueger and Postlewaite impose a
stronger separability condition on the utility implications of the consumption
of ordinary and memorable goods than we do. Section 3 explains how our
more general model captures an interaction between the consumption of
ordinary and memorable goods that consequently does not appear in Hai,
Krueger and Postlewaite. At the same time, as we explain in Section 2.2,
Hai, Krueger and Postlewaite impose fewer assumptions on the relationship
between the utility implications of the current and past consumption of
memorable goods. Our stronger assumptions bring rewards in terms of
tractability, while the basic nature of our results continue to hold in the
model examined by Hai, Krueger and Postlewaite.

Hindy, Huang and Kreps [13] examine a continuous-time model with a
single good in which utility at time t is a function of the weighted average
of consumption up to time t, including as a special case the familiar separa-
ble formulation in which utility at time t depends only on consumption at
time t. Hindy, Huang and Kreps [13, Section 8.3] present an example that
admits a simple closed-form solution. Ingersoll [14] and Bank and Riedel [2]
characterize the optimal consumer behavior for such models in the absence
of uncertainty, while Bank and Riedel [3] extend the analysis to uncertainty.
These models contain no counterpart of our assumption that some (namely
memorable) consumption goods generate continuing flows if utility if and
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only if their consumption sufficiently exceeds some customary level.
As Bank and Riedel [3, p. 751] explain, as time periods grow short,

and especially in the continuous-time limit, it is natural to model current
utility as depending on past consumption. Suppose, for example, that one
is interested in studying the consumption of food, and that food can be
consumed in the form of meals that take one hour each. Suppose we work
with a separable model in which utility is given by

∑∞
t=0 δ

tu(ct), where the
length of a time period is an hour and ct is the quantity of food consumed in
period t, u is increasing, and δ is both the discount factor and the interest
factor in the consumer’s budget constraint. Then if u is strictly concave,
the consumer will prefer to smooth consumption, eating the same amount of
food each hour. If u is linear, the consumer will be indifferent over when she
consumes, and would just as well start at midnight on each Saturday and eat
twenty-one meals in the subsequent twenty-one hours as have three meals
a day throughout the week. If u is convex, the consumer will constantly
endeavor to put off meals. Each of these outcomes has its own problematic
features.

The obvious response is that we have chosen the time period incorrectly,
and in particular have chosen a period length too short for separability to be
reasonable. One’s utility from eating typically depends on whether one has
eaten in the previous hour. One then might hope to work with a separable
model of utility with discrete periods if the period length is appropriately
chosen. In the case of food, it is often (but not always, as this would not
be a good model of famine) a reasonable approximation that the utility of
consumption today is unaffected by consumption yesterday, and so one can
take the period to be a day. However, the utility of a day’s vacation typically
depends on what one has been doing in recent weeks or months rather than
simply the previous day, and a longer time period would be required to
make separability a reasonable assumption. In general, one can always make
separability a better approximation for more goods by working with longer
periods. Unfortunately, as the length of a period grows, questions about the
allocation of consumption within the period become more important, but lie
beyond the reach of the model. In the extreme, one could take the length of
a period to be a lifetime, ensuring that separability is trivial, but precluding
the analysis of many interesting intertemporal patterns. Our view is that it
is most useful to work with periods long enough that the utility for many
goods (such as food) is reasonably modeled as separable, but short enough
that nonseparabilities arise in other goods that we capture by modeling them
as memorable goods.

Gilovich, Kumar and Jampol [26] argue that people derive greater satis-
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faction from experiential purchases than from material purchases. Experien-
tial purchases are those that provide “lasting contributions to well being,”
and hence share some of the features of our memorable goods. However,
their arguments are quite different, resting on the fact that experiential
goods enhance social relations, contribute to one’s identity, and evoke fewer
social comparisons than material goods, rather than any appeal to future
utility flows.

2 The Model

The following four subsections develop our model. Section 2.1 introduces a
distinction between two types of goods that we will refer to as ordinary goods
and memorable goods. Section 2.2 introduces the structure that motivates
the characterization of the latter as memorable goods. Section 2.3 shows
that the resulting utility maximization problem has a solution. Section 2.4
rearranges the utility representation into a more useful form.

2.1 Ordinary Goods and Memorable Goods

The point of departure for our model is a distinction between two types of
goods, which we refer to as an ordinary good (good 1) and a memorable
good (good 2). We consider a consumer who consumes these two goods in
each of periods t = 0, 1, 2, . . ., and we refer to xit ∈ R+ (i = 1, 2) as the
quantity of good i consumed in period t. The utility in period t depends on
current consumption of good 1 but also on all past consumption of good 2.
That is, utility in period t is given by a function

ũt(x1t, x20, . . . , x2t). (3)

We will assume (and derive axiomatically in Section 4) a decomposition
of the function ũt as

ũt(x1t, x20, . . . , x2t) = u(x1t, x2t) + ṽt(x20, . . . , x2t), (4)

where u : R2
+ → R and ṽt : Rt+1

+ → R. We could generalize the analysis
to the case in which good 1 is a bundle of ordinary goods and good 2 is a
bundle of memorable goods, with the notation and arguments growing more
tedious in the process.

The intertemporal objective is the discounted sum of the functions ũ(x1t, x20, . . . , x2t)
given by (4). We focus on the case of an infinite horizon, while noting that
the adaptation to a finite horizon is straightforward (as illustrated in Section
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3.3). Let x = (x1,x2) denote a pair of infinite sequences (x10, x11, . . . , x20, x21, . . .)
of quantities of the two consumption goods. Then the intertemporal objec-
tive is given by U(x), where

U(x) =
∞∑
t=0

δt [u(x1t, x2t) + ṽt(x20, . . . , x2t)] . (5)

Hai, Krueger and Postlewaite [11] work with a special case of (5) in which
u depends only on x1t.

The most general formulation for allowing nonseparabilities in utility
would simply assume that the agent has preferences over infinite consump-
tion streams x. One could then apply standard assumptions to ensure that
these preferences can be represented by a utility function defined on the
space of such consumption streams.

We have built additional structure into (4)–(5). First, we assume that
preferences over intertemporal consumption streams are captured by a util-
ity function that is the discounted sum of functions ũt, each of which depends
upon only current and past consumption. Second, we split each function
ũt into two parts, one of which is a function only of current consumption
(namely u(x1t, x2t)) and one of which is a function of the current and all
past consumption of good 2 (namely ṽt(x20, . . . , x2t)). We can think of the
function u as the counterpart of the typical utility function in a discounted-
sum-of-utilities formulation such as (1), and the function ṽt as capturing
nonseparabilities in preferences. Notice that ṽt and hence ũt need the sub-
script t, because in different periods both will be functions of different ar-
guments.

The decomposition of utility of a consumption stream into a discounted
sum of instantaneous utility functions is familiar.3 The transition from a
period-t utility function of the form given in (3) to the form given on the
right side of (4) separates the goods into ordinary goods and memorable
goods. This is our basic distinction between goods. The foundations for
this separation are given in Section 4.

3Koopmans’s [16] axioms do not directly apply, because each x2t appears also in future
instantaneous utility values. Thus, the axioms need to be adjusted to apply to utility-
equivalent bundles, where a change in x2t is compensated by changes in future variables
so that only the instantaneous utility at period t is affected. The argument then follows
familiar lines but is tedious.
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2.2 Making Memorable Goods Memorable

The role of the ordinary goods in (4)–(5) is straightforward. Without some
additional structure, the intertemporal utility function given by (5) is capa-
ble of capturing a variety of nonseparabilities in intertemporal preferences.
As we explain in Section 5.1, for example, depending on the functions in-
volved, we might interpret this as a familiar model of habit formation or
addiction. This section introduces additional assumptions that allow us to
interpret the utility implications of memorable goods as indeed arising out
of considerations having to do with the creation of future utility flows.

We would like the model to focus attention on the two aspects of util-
ity highlighted in Section 1. First, the previous consumption of memorable
goods {x20, . . . , x2t−1} enters the period-t utility function ṽt(x20, . . . , x2t)
through flows of utility produced by the past consumption of such goods.
One may enjoy fond memories of a vacation, wedding, or special night out
long after they have occurred. Second, whether the new consumption of
memorable goods produces future flows of utility depends on how this con-
sumption compares to the consumer’s customary consumption, with future
utility flows emanating only from current consumption levels that are out of
the ordinary. A dinner in the type of restaurant one visits weekly is unlikely
to generate future utility, while a rare treat in a five-star restaurant may
contribute to utility long after the evening is finished.

We capture these two forces in a parsimonious form by introducing two
state variables, Υt and Λt. Intuitively, we interpret Υt ∈ R+ as identify-
ing the utility flows at t created by the past consumption of memorable
goods and Λt ∈ R+ as identifying the customary level of consumption of the
memorable good at time t. More precisely:

Assumption 1. There exists a function v̂ : R2
+ → R and a constant ν ∈

(0, 1) such that

u(x1t, x2t) + ṽt(x20, . . . , x2t) = u(x1t, x2t) + Υt + v̂(x2t,Λt)

= u(x1t, x2t) +
t−1∑
τ=0

νt−τ v̂(x2τ ,Λτ ) + v̂(x2t,Λt). (6)

The first equality assumes that the function ṽt(x20, . . . , x2t) can be rewrit-
ten as a function of the arguments (x2t,Υt,Λt), i.e. as a function of current
consumption of the memorable good and the two state variables, and more-
over is linear in the state variable Υt. The second equality gives meaning
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to the state variable Υt, assuming that Υt is a discounted sum of utilities
generated by the consumption of memorable goods in the past, or

Υt =
t−1∑
τ=0

νt−τ v̂(x2τ ,Λτ ).

Notice that the continuing effects of the past consumption of memorable
goods are separable from the effects of the current consumption of memo-
rable goods.4 When v̂(x2t,Λt) > 0, we say that the current consumption of
good 2 is memorable, and such memorable consumption yields utility in the
current and each subsequent period.

We next address the role of Λ in the function v̂, in the process describing
what (in our model) makes consumption memorable. The first two parts
of our next assumption ensures that goods 1 and 2 are indeed “goods,” in
the sense that increased consumption increases the current utility u. In
addition, we assume ([2.3]) that the consumption of x2 generates additional
utility in the current and future periods, in the form of a value v̂t(x2t,Λt) >
0, if but only if the consumption x2t is sufficiently large relative to the
customary level of consumption of good 2. Assumption [2.4] indicates that
the customary level of memorable-good consumption drifts in the direction
of current consumption.

Assumption 2.
[2.1] The function u is strictly increasing.
[2.2] The function v̂ is increasing in x2 and decreasing in Λ, and is

strictly increasing in x2 and strictly decreasing in Λ whenever v̂(x2,Λ) > 0.
[2.3] There exists γ > 1 such that x2 ≤ γΛ =⇒ v̂1(x2,Λ) = 0.
[2.4] The customary consumption level Λt evolves according to, for λ ∈

[0, 1],
Λt = λΛt−1 + (1− λ)x2t−1.

Assumptions [2.1] and [2.2] indicate that current utility is increasing in the
consumption of both goods 1 and 2, but is decreasing in the customary
consumption. The function U is monotonic in x1t but need not be monotonic
in x2t, as an increase in the consumption of good 2 can have detrimental
effects future customary levels of utility that outweigh the salutary effects
on current utility. Assumption [2.1] suffices to ensure that any optimal
consumption plan must exhaust the consumers budget.

4Hai, Krueger and Postlewaite [11] do not impose this assumption, though they do
work with an analogue of the discounted sum condition imposed by our next equality.
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2.3 Existence of Optimal Consumption Plans

This section introduces the budget constraint and establishes that an opti-
mal consumption plan exists.

We assume that the consumer has income I in each period, and that the
interest factor at which she can borrow and save is equal to her discount
factor, δ. Goods 1 and 2 are measured in units such that their prices are
each 1.

Let Yt denote the largest expenditure the consumer can make in period
t, given that she can borrow any future income and spend any saved income,
but has paid for her previous consumption. Hence, we have

Y0 =
I

1− δ

and

Yt = [Yt−1 − x1t−1 − x2t−1]
1

δ
.

The intertemporal budget constraint is that Yt ≥ 0, for all t. Any expendi-
ture larger than Yt−1 in period t − 1 is impossible, being sufficiently large
that the consumer’s savings and discounted future income would not suffice
to pay for it, which in turn ensures Yt ≥ 0.

There is an upper bound Y t which the consumer achieves by spending
nothing on consumption in periods {0, . . . , t− 1}, given by

Y t =
I

δt
+

I

δt−1 + . . .+
I

δ2 +
I

δ
+

I

1− δ
=

I

δt(1− δ)
.

We thus have Yt ∈ [0, Y t]. Notice that Y t grows arbitrarily large as does t.
The consumer’s objective is then to maximize

∞∑
t=0

δt [u(x1t, x2t) + Υt + v̂τ (x2t,Λt)] (7)

s.t. Yt+1 = [Yt − x1t − x2t]
1

δ
≥ 0 (8)

Υt = ν(Υt−1 + v̂(x2t−1,Λt−1)) (9)

Λt = λΛt−1 + (1− λ)x2t−1 (10)

(x1t, x2t) ∈ R2
+, (11)

given initial values (Y0,Υ0,Λ0).
Without further assumption, this problem need not have a solution.

We accordingly invoke the following. There is some scope for weakening
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these assumptions—for example, differentiability is not essential, but it is
convenient.

Assumption 3.
[3.1] The function u is continuously differentiable. The function v̂ is

continuously differentiable when it is positive.
[3.2] For all sequences {xτ}∞τ=0 with either limτ→∞ x1τ =∞ or limτ→∞ x2τ =

∞, either it is the case that limτ→∞
du(x1τ ,x2τ )

dx1τ
= 0 or it is the case that

limτ→∞
du(x1τ ,x2τ )

dx2τ
= 0.

[3.3] For all sequences {xτ}∞τ=0 with limτ→∞ x2τ =∞, we have limτ→∞
dv̂(x2τ ,Λ)
dx2τ

=
0 uniformly in Λ.

Assumption 3.1 imposes familiar smoothness conditions. Assumptions
3.2–3.3 impose versions of diminishing marginal utility assumptions. As-
sumption 3.2 indicates that arbitrarily large values of consumption ensure
that at least one of the marginal utilities of u is arbitrarily small, and the
final assumption imposes a similar requirement for the function v̂. The uni-
form convergence requirement in Assumption 3.3 may appear to be stringent.

However, we will typically think of d2v̂(x2τ ,Λτ )
dx2τdΛt

≤ 0. It will then suffice for
the condition in Assumption 3.3 to hold when Λ = 0.

The consumer’s intertemporal maximization problem has a solution:

Proposition 1. Let Assumptions 1–3 hold. Then there exists a consumption
plan x∗ : R3

+ → R2
+, identifying values of (x1t, x2t) in each period t as

a function of (Yt,Υt,Λt), that solves (7)–(11). Moreover, there exists a
continuous value function V : R3

+ → R such that the maximization problem
can be written as

V (Yt,Υt,Λt) = max
x1t,x2t

u(x1t, x2t) + Υt + v̂(x2t,Λt) + δV (Yt+1,Υt+1,Λt+1)

subject to the constraints given in (8)–(11), given initial values (Y0,Υ0,Λ0).

Given its additive form in (6), the variable Υ affects the value of V , but not
the optimal continuation strategy.

The remainder of this section comprises the proof of Proposition 1. Our
first step in establishing this result is to show that there is no loss of gener-
ality in replacing (11) with the constraint

(x1t, x2t) ∈ X, (12)

for some compact X ⊂ R2
+.
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Lemma 2. Let Assumption 3 hold. Then there exists a finite x such that
any consumption plan featuring a period t in which xit > x for either i = 1, 2
is dominated by a consumption plan in which xit ≤ x for i = 1, 2 and all t.

The proof, contained in Section 6.1, first notes that the consumer’s
marginal utilities in the first period are bounded below, even if the con-
sumer concentrates all of her consumption in the first period. We then
use Assumptions 3.2–3.3 to argue that any unbounded consumption plan
must eventually feature a marginal utility smaller than the bound from the
first period. The consumer can then increase utility by shifting consump-
tion to the first period, ensuring that the plan in question is not optimal.
The intertemporal links created by memorable goods introduce only slight
complications in this otherwise quite familiar line of argument.

We can thus take the set X in (12) to be the set [0, x]2, and our task
is to show that the problem given by (7)–(10) and (12) has a solution. We
then need only note that Assumption 3, along with the compactness of X,
ensure that the hypotheses of Theorem 12.19 of Sundaram [25] are satisfied,
which delivers the result.

2.4 Simplifications

This section introduces three simplifications. We are interested in cases
in which one would expect consumption to be smoothed. We accordingly
assume:

Assumption 4. The utility function u is strictly concave. The utility func-
tion v̂ is strictly concave in x2 on that part of its domain in which it is
positive.

The following assumption is used in Section 3.4, but not elsewhere in the
paper:

Assumption 5. The functions u and v̂ are homogeneous of degree α < 1.

The final simplification is purely a matter of notation. It is helpful to
rearrange the intertemporal objective as follows:
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∞∑
t=0

δt

[
u(x1t, x2t) +

t−1∑
τ=0

νt−τ v̂(x2τ ,Λτ ) + v̂τ (x2t,Λt)

]

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
t=0

δt
t∑

τ=0

νt−τ v̂(x2τ ,Λτ )

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
τ=0

∞∑
t=τ

δtνt−τ v̂(x2τ ,Λτ )

=

∞∑
t=0

δtu(x1t, x2t) +

∞∑
τ=0

δτ
1

1− δν
v̂(x2τ ,Λτ )

=
∞∑
t=0

δtu(x1t, x2t) +
∞∑
τ=0

δτv(x2τ ,Λτ )

=

∞∑
t=0

δt [u(x1t, x2t) + v(x2t,Λt)] .

The first expression is taken from (7) and the definition of Υt. The first
equality distributes the initial summation. The next equality interchanges
the order of summation in the double sum. The next equality then simpli-
fies the second sum in the double sum. The following equality introduces
the function v = 1

1−δν v̂. The final equality collects the terms in a single
summation.

This formulation has the advantage of focussing attention on the peri-
ods in which the consumption of memorable goods gives rise to lasting flows
of utility, while clearing from view (but not neglecting) the subsequent ac-
counting for these flows. The function v is proportional to v̂, and hence
inherits the properties of v̂ given in Assumptions 3–5.

3 Optimal Consumption Plans

We now turn to a characterization of optimal consumption plans in the pres-
ence of memorable goods. We examine an infinite-horizon model in which
consumption would be perfectly smoothed in the absence of memorable con-
sumption, with a particular emphasis on whether the presence of memorable
goods disrupts this smoothing.5

5We cannot expect perfect consumption smoothing in the presence of memorable con-
sumption and a finite, deterministic lifetime. Memorable consumption generated in the
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3.1 Benchmark: Memoryless Consumption

To provide a comparison, let us recall the familiar special case in which
there is no memorable consumption. We assume that the relevant parts of
Assumptions 3–4 hold, so that u is differentiable, increasing and concave.

The consumer’s problem is

max
{x1t,x2t}∞t=0

∞∑
t=0

δtu(x1t, x2t)

s.t.

∞∑
τ=0

δt(x1t + x2t) = Y0.

The first-order conditions for this maximization problem call for the marginal
utilities to be equalized across goods and across periods. The concavity of
u then ensures that we have perfect consumption smoothing. There exist
quantities x∗1 and x∗2 with x∗1 + x∗2 = I such that x1t = x∗1 and x2t = x∗2 for
all t.

3.2 No Acclimatization

We first consider a special case, namely that in which λ = 1, so that there
is no acclimatization. This case is particularly easy to characterize—either
the consumer will perfectly smooth consumption, or the consumer’s indirect
utility function will be effectively linear over the relevant range. In the
latter case, consumption may not be perfectly smoothed, but this lack of
smoothing is inconsequential. The path of consumption will be drawn from
a set of optimal consumption paths, with the linearity of the indirect utility
function ensuring that all such plans have equivalent utilities. These results
show that the tendency of the customary consumption level to drift toward
actual consumption plays an essential role in the link between memorable
consumption and lumpy consumption.

Suppose that the customary level of consumption is perfectly persistent,
so that Λt = Λ for all t, regardless of history. The utility function is constant
across periods in this case, and is given by

u(x1, x2)

first period of a two-period model is enjoyed in both periods, while memorable consump-
tion generated in the final period can necessarily be enjoyed only in that period. This
provides a natural tendency to front-load memorable consumption. It is then no surprise
that young people spend a relatively larger share of their income on weddings than do
senior citizens.
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Figure 1: Indirect utility functions for the case of a perfectly persistent
customary level Λ. Expenditure on consumption within a period is denoted
by c, and w(c) and w(c) denote the maximal utility in that period given
that memorable consumption does not (w) or does (w) occur.

when x2 ≤ γΛ and is given by

u(x2, x2) + v(x2,Λ)

when x2 ≥ γΛ. Let ct be the total amount spent on consumption in pe-
riod t. Then we can define single-period indirect utility functions w(c) for
the case in which memorable consumption does not occur in the period
in question and w(c) for the case in which memorable consumption oc-
curs. Given the stationarity of Λ, we can write these solely as a function
of c. In particular, no intertemporal considerations are involved in deriv-
ing these functions. We illustrate the indirect utility functions in Figure 1.
Let w(c) = max{w(c), w(c)}. We can use these indirect utility functions to
characterize the optimal consumption plan in this case.

Let ŵ be the smallest concave function larger than w(c). Then ŵ is given
by the upper envelope of the utility functions w, w and the dashed tangent
in Figure 1, and c and c are the points of intersection of the tangent and
the functions w and w.

Our strategy is now as follows. We derive the optimal consumption
plan for the function ŵ. This is relatively straightforward, since we have a
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utility function that is fixed across periods and concave. The details of this
plan will depend on the level of income. For each level of income, we have
an optimal consumption plan and an induced sequence of utilities, given
utility function ŵ. We then show that either the original induced sequence
of utilities, or in some cases a different but feasible sequence, gives the same
total (discounted) utility under utility function w. This ensures that the
resulting plan is optimal for w.

The first observation is that since ŵ is concave, it is always optimal to
equalize consumption across periods. Let

ĉ

1− δ
= Y0.

Then ĉ is the unique consumption level consistent with the consumer’s in-
come and consuming the same amount in each period. This now leads to
three cases.

If ĉ ≤ c, then consuming ĉ in each period under utility function w gives
w(ĉ) = ŵ(ĉ), and hence we have an optimal consumption plan for utility
w. In this case, the consumer’s income is too low to make it worth engag-
ing in memorable consumption. The fixed customary level Λ ensures that,
even though the consumer never undertakes memorable consumption, the
customary level never falls to a point that would make memorable consump-
tion worthwhile.

If ĉ ≥ c, then consuming ĉ in each period under utility function w gives
w(ĉ) = ŵ(ĉ), and hence we have an optimal consumption plan for utility w.
In this case, the consumer’s income is sufficiently large that the consumer
enjoys memorable consumption in every period, with the customary level Λ
never increasing as a result.

Suppose ĉ ∈ (c, c). Now we do not have w(ĉ) = ŵ(ĉ), since ŵ(ĉ) falls on
the line segment that “concavifies” w. However, this line segment is linear.
As a result, we can replace the sequence that consumes ĉ in every period
with a sequence that consumes c in some periods and c in others. The latter
is feasible, and we argue that when this sequence is evaluated with the utility
function w, it gives the same discounted utility sum as does the constant
sequence ĉ evaluated under the utility function ŵ. As we have argued, this
suffices for the result.

In particular, given two periods t and t′ > t, the hypothetical with
utility ŵ(ĉ) is indifferent over pairs (ct, ct′) that satisfy c ≤ ct, ct′ ≤ c and
ct+δ

t′−tct′ = ĉ(1+δt
′−t). This in turn means that the consumer is indifferent
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over variations in ct and c′t that satisfy

dct′

dct
= − 1

δt
′−t ,

which is precisely the rate at which these two can be traded off in order to
preserve feasibility. This in turn implies that any feasible consumption plan
that features only c and c is optimal—when this sequence is evaluated with
the utility function w, it gives the same discounted utility sum as does the
constant sequence ĉ evaluated under the utility function ŵ. At one extreme
in the collection of such sequences is a plan that first consumes only c, until
switching to the perpetual consumption of c. This is a consumer who first
binges on memorable consumption, and then forsakes it entirely. At the
other extreme is a plan that first consumes only c, until switching to the
perpetual consumption of c. This is a consumer who delays gratification.
We have thus established the following:

Proposition 3. Let Assumptions 1–4 hold, and let λ = 1, so that the level
of customary memorable-good consumption shows no acclimatization. Then
either

(i) the consumer never attains memorable consumption (if Y0 is suffi-
ciently small);

(ii) the consumer always enjoys memorable consumption (if Y0 is suffi-
ciently large); or

(iii) there will exist expenditure levels c < c such that any consumption plan
that satisfies the budget constraint and exhibits only the consumption
levels c and c is optimal.

The third case includes an infinite number of consumption plans that dis-
tribute c and c seemingly arbitrarily across periods, with the only constraint
being that the resulting consumption plan exhausts the consumer’s budget.

3.3 Concave-convex-concave Utility Functions

The utility functions shown in Figure 1 exhibit the concave-convex-concave
shape discussed by Friedman and Savage. If we assumed that the consumer
uses the same function w for utility maximization under risk, then we would
apparently have an explanation for the simultaneous purchases of insurance
and lotteries. Intuitively, the bonus provided by the ability to translate a
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large payoff into memorable consumption can make an actuarially fair lottery
attractive. However, in the presence of an infinite horizon, this consumer
would have no interest in buying a lottery. No fair (or worse than fair)
lottery can offer the consumer the possibility of memorable consumption on
terms better than the consumer can achieve by shifting consumption across
periods.

We can gain some insight into this by examining a two-period example.
The agent’s objective is

max
x10,x20,x11,x21

{u(x10, x20) + v̂(x20,Λ) + δ [u(x11, x21) + νv̂(x20,Λ) + v̂(x21,Λ)]} ,

subject to the budget constraint

x10 + x20 + δ(x11 + x21) = Y0.

We make the example more concrete by assuming

u(x1, x2) =
xα1
α

+
xα2
α

(13)

v(x2,Λ) = ξmax

{
0,
xα2
α
− γΛα

α

}
(14)

for ξ > 0 and γ > 1. We assume α ∈ (0, 1), with α < 1 ensuring that the
functions are concave, and α > 0 ensuring that utilities are nonnegative and
hence 0 is a relevant comparison for the maximum in the specification of v.

Because it contains two maximum operators, in the two functions v̂, the
objective given by (14) is neither concave nor differentiable. In response, we
examine three cases, corresponding to three ways the maximum operators
might be resolved (explaining below why the fourth possibility is irrelevant).
For each case we have a concave and differentiable function, allowing us to
use first-order conditions to find their (interior) solutions. We derive the
indirect utility function for each case, and then note that the solution to
the problem is given by the upper envelope of these three indirect utility
functions.

In the first case, the consumer engages in no memorable consumption.
The consumer’s utility is then given by

xα10

α
+
xα20

α
+ δ

[
xα11

α
+
xα21

α

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 =
xα−1

11 = xα−1
21 , and we can solve for

x10 = x20 = x11 = x21 =
Y0

2 + 2δ
.
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Let V (Y0) be the indirect utility function, given the constraint that the
consumer never generates memorable utility (and holding all other variables,
most notably Λ, fixed). The envelope theorem then gives6

dV

dY0
=

(
Y0

2 + 2δ

)α−1

.

Notice that V (Y0) is concave.
In the second consumption plan, the consumer engages in memorable

consumption in only a single period. It is immediate that the consumer
will do so in period 0. It is here that we see implications of the durability
of the utility flows generated by memorable consumption. Given that the
customary level of memorable-good consumption is fixed, and given that
memorable consumption occurs in only one period, then that period will be
the first, so as to take advantage of the additional utility generated in the
second period. The consumer’s utility is then

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 [1 + ξ+
ξνδ] = xα−1

11 = xα−1
21 , and we can solve for

x10 = x11 = x21 =
θY0

θ(1 + 2δ) + 1
x20 =

Y0

θ(1 + 2δ) + 1
,

where
θ = [1 + ξ + ξνδ]

1
α−1 ∈ (0, 1).

Compared to the previous case, the memorable consumption in period 0
prompts an increase in x20, because the memorable consumption increases
the marginal utility of x20, and prompts a corresponding decrease in all
other variables so as to preserve the budget constraint. Let V (Y0) be the
indirect utility function given the constraint that the consumer engages in
memorable consumption in period 0 (only). The envelope theorem then
gives7

dV

dY0
=

(
θY0

θ(1 + 2δ) + 1

)α−1

.

6The domain of this indirect utility function is restricted to income levels Y0 sufficiently
small that no memorable utility is generated when consumption is perfectly smooth.

7The domain of this indirect utility function is restricted to income levels Y0 sufficiently
large that memorable consumption is possible in the first period, but not so large that the
consumption bundle solving the resulting first-order conditions would also give memorable
consumption in the second period.
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Notice that V (Y0) is concave and is steeper than V .
Now suppose that the consumer engages in memorable consumption in

both periods. The consumer’s utility is then

xα10

α
+
xα20

α
+

(
xα20

α
− γΛα0

α

)
ξ(1 + δν) + δ

[
xα11

α
+
xα21

α
+

(
xα21

α
− γΛα0

α

)
ξ

]
.

The first-order conditions for utility maximization give xα−1
10 = xα−1

20 [1 + ξ+
ξνδ] = xα−1

11 = xα−1
21 (1 + ξ), and we can solve for

x10 = x11 =
θφY0

(1 + δ)θφ+ φ+ δθ
, x20 =

φY0

(1 + δ)θφ+ φ+ δθ
x21 =

θY0

(1 + δ)θφ+ φ+ δθ
,

where θ is as before and

φ = [1 + ξ]
1

α−1 ∈ (0, 1).

Compared to the previous case, the additional memorable consumption in
period 1 prompts an additional decrease in x10 = x11, since the presence of
memorable consumption in both periods increases yet further the marginal
utility gains from doing so. Let V (Y0) be the indirect utility function given
the constraint that the consumer generate memorable utility in both periods.
The envelope theorem then gives8

dV

dY0
=

(
θφY0

(1 + δ)θφ+ φ+ δθ

)α−1

.

Notice that V (Y0) is concave and is steeper than V .
Figure 2 illustrates the indirect utility functions for this example. In

this case we find a utility function that is concave in some regions but not
others. An agent described by this utility function could well be willing
to both purchase insurance and gamble. However, the willingness to do
so in general rests on some “friction” in the consumer’s ability to transfer
consumption across periods. One such friction is a finite lifetime, appearing
in Friedman and Savage [10] in the form of a single-period horizon. Were the
agent Friedman and Savage analyze infinitely-lived, the ability to transfer
consumption across periods would obviate the gains from gambling.

8The domain of this indirect utility function is restricted to income levels Y0 sufficiently
large that memorable consumption is possible in both periods.
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Figure 2: Indirect utility functions for the first specification of the example,
featuring no acclimatization. The three indirect utility functions correspond
to the case in which there is no memorable consumption (V ), there is memo-
rable consumption only in the first period (V ), and memorable consumption
in both periods (V ).

3.4 Acclimatization

We now turn to the case λ ∈ [0, 1), so that acclimatization occurs, includ-
ing the special case of λ = 0, or immediate acclimatization. We maintain
Assumptions 1–5 throughout.

We first argue that memorable consumption is not in general a transient
phenomenon—the consumer avails herself of memorable utility infinitely of-
ten. Let x∗1(Y0) and x∗2(Y0) be the consumption quantities that would be
optimal, in period 0 and every subsequent period, if we assumed that the
function v is identically equal to zero. The stock Λ is irrelevant in this case,
and these quantities can be written solely as a function of Y0. As we have
noted in Section 3.1, these quantities will be constant across time periods,
and so no time subscripts are needed. We are of course interested in the case
in which v is nonzero, and x∗1(Y0) and x∗2(Y0) will be useful for the analysis
of this case.

Definition 1. We say that memorable consumption is felicitous if, when
Λ0 = x∗2(Y0), the optimal consumption plan calls for memorable consump-
tion at least once, and yields a utility strictly higher than never engaging in
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memorable consumption.

The interpretation of the condition that Λ0 = x∗2(Y0) is that the consumer’s
initial customary level of consumption of the memorable good matches the
level of consumption that would be relevant if memorable consumption never
occurred. Memorable consumption is felicitous if, in this circumstance, the
consumer would find it optimal to at least sometimes engage in memorable
consumption.

Assumption 5 requires that the functions u and v̂ be homogeneous of de-
gree α < 1. Nothing to this point needed this assumption, but we use it in
what follows. An implication is that if {x∗1t, x∗2t}∞t=0 is an optimal consump-
tion plan given (Y0,Λ0), then {αx∗1t, αx∗2t}∞t=0 is an optimal consumption
plan given (αY0, αΛ0) for any α > 0. Hence, the question of whether mem-
orable consumption is felicitous does not depend on Y0, ensuring that the
property of felicity is well defined.

Felicity is defined in terms of endogenous objects. However, we can eas-
ily find (less insightful) conditions on primitives ensuring that memorable
consumption is felicitous. For example, let {vn} be a sequence of functions,
satisfying the properties placed on v by Assumptions 3–5, and suppose that
the sequence is pointwise increasing and pointwise unbounded for any argu-
ment (x2,Λ0) with x2 > Λ0.9 Then there exists a value N such that for all
n ≥ N , letting v = vn ensures that memorable utility is felicitous. Hence,
memorable consumption is felicitous if the technology for generating future
utility flows is sufficiently productive.

If memorable consumption is felicitous, then not only does an optimal
consumption plan exhibit memorable consumption, but it does so infinitely
often:

Proposition 4. Let λ ∈ [0, 1), let Assumptions 1–5 hold, and let memorable
consumption be felicitous. Then in an optimal consumption plan, memorable
consumption occurs infinitely often.

The proof, in Section 6.2, begins by supposing that memorable con-
sumption occurs at most finitely many times. After the last incidence of
memorable consumption, the problem of maximizing the continuation util-
ity is equivalent to the memoryless utility maximization problem considered
in Section 3.1. Then, we note that the continuation consumption plan must
exhibit the consumption of some bundle (x∗1, x

∗
2) in every period, and hence

9Notice that along the sequence {vn}, the factor γ determining the extent to which the
consumption of memorable goods must exceed the customary level in order to generate
memorable utility is shrinking.
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limt→∞ Λt = x∗2. But then the homogeneity imposed by Assumption 5 en-
sures that the optimal continuation consumption plan must be proportional
to the original plan, which combined with the assumption that memorable
consumption is felicitous ensures that memorable consumption once again
occurs.

In the setting of Section 3.2, with no acclimatization, the initial custom-
ary level Λ0 plays a key role in determining whether the optimal consumption
plan exhibits memorable consumption. The optimal consumption plan calls
for memorable consumption if Λ0 is sufficiently small and does not if Λ0 is
sufficiently large. In the current setting, the initial level Λ0 plays no role in
determining whether memorable consumption is felicitous, and hence plays
no role in determining whether optimal consumption plans exhibit memo-
rable consumption. Notice that if memorable utility is not felicitous, then
the optimal consumption plan will exhibit memorable consumption if Λ0 is
sufficiently small, but need not do so infinitely often.

On the other side, and once again in contrast to the case of no acclima-
tization, even if memorable consumption sometimes occurs, it cannot do so
in every period:

Proposition 5. Let λ ∈ [0, 1) and let Assumptions 1–5 hold. Then for
every T , there exists a period t > T in which memorable consumption does
not occur.

The proof is straightforward, and so we offer only a sketch of the argu-
ment. If memorable consumption occurs in period t, we have

Λt+1 = λΛt + (1− λ)x2t

≥ λΛt + (1− λ)γΛt

= [λ+ (1− λ)γ]Λt.

Hence, if there exists a time after which memorable consumption occurs in
every period, then the customary level Λt must grow without bound (since
λ + (1 − λ)γ > 1), as must the consumption level x2t. We have already
seen, as the essential Lemma used in proving Proposition 1, that optimal
consumption plans are bounded.

Paired with Proposition 4, this result indicates that an optimal con-
sumption plan must involve memorable consumption infinitely often, but
must intersperse such consumption with periods in which no memorable
consumption occurs. A key feature of the latter is that they allow the cus-
tomary level to decline to the point that memorable consumption is again
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optimal. Consumption thus switches back and forth between periods in-
volving memorable consumption and periods in which the customary level
of memorable good consumption is allowed to decline.

We can say something about the intervals in which memorable consump-
tion occurs. Section 6.3 proves:

Proposition 6. Let λ ∈ [0, 1) and let Assumptions 1–5 hold. Suppose that
the optimal consumption plan involves memorable consumption in period t′

and t′′ > t′, but not in the intervening periods. Then over the course of the
periods (t′ + 1, . . . t′′ − 1), the marginal utility u1(x1t, x2t) of good 1 remains
constant, while the direct marginal utility u2(x1t, x2t) of good 2 increases.

It is a standard result that as long as δ > 0, the marginal utility of
good 1 is optimally equalized across periods. If not, the discounted sum of
utilities could be increased by shifting the consumption of good 1 from low-
marginal-utility to high-marginal-utility periods. Much the same intuition
holds for good 2. In this case, however, the relevant marginal utility con-
siderations involve not only the immediate marginal utility in the period of
consumption, but also the marginal effect on the customary level of good-2
consumption in each future period in which memorable consumption occurs.
Indeed, the optimality conditions for good 2 trade off the immediate utility-
enhancing effects of increased consumption against the utility-decreasing
effects of higher future customary levels. The difference between periods t
and t + 1 (with t′ < t < t + 1 < t′′) is that in the case of the latter, these
future impacts on customary levels are stronger and closer. This makes it all
the more important to attenuate these future effects in period t+ 1, leading
to a higher marginal utility.

These forces are especially convenient to illustrate when the switching
back and forth between periods in which memorable consumption occurs and
intervals without memorable consumption induces a perfect cycle. Such a
cycle is characterized by a number n, with memorable consumption occur-
ring every n periods. Let a sequence of such periods be numbered 1, 2, . . . , n
with memorable consumption in period 1. We can let the consumption lev-
els in these n periods be denoted by ((x11, x12), . . . , (x1n, x2n)). Then there
exists a wealth level Y , intuitively giving the current discounted value of ex-
penditures over the n periods beginning with memorable utility generation,
and a level of customary consumption Λ, giving the customary consumption
at the beginning of each period in which memorable consumption occurs,
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such that the optimal consumption plan must satisfy:

max
((x11,x21),...,(x1n,x2n))

u(x11, x21) + v(x21,Λ1) + δu(x12, x22) + . . .+ δn−1u(x1n, x2n)

s.t. Y = x11 + x21 + δ(x12 + x22) + δ2(x13 + x23) + . . .+ δn−1(x1n + x2n)

Λ = λnΛ + λn−1(1− λ)x21 + λn−2(1− λ)x22 +

. . .+ λ(1− λ)x2n−1 + (1− λ)x2n.

This maximization problem says nothing about what determines n, Y and Λ,
but nonetheless the optimal stationary policy must solve this maximization
problem.

Letting ζ be the multiplier on the first constraint and ψ the multiplier
on the second, we can formulate the first-order conditions as

u1(x11, x21) + ζ = 0

u1(x12, x22) + ζ = 0

...

u1(x1n−1, x2n−1) + ζ = 0

u1(x1n, x2n) + ζ = 0

and

u2(x11, x21) + v2(x21,Λ1) + ζ + ψλn−1(1− λ) = 0

u2(x12, x22) + ζ + ψλn−2δ−1(1− λ) = 0

...

u2(x1n−1, x2n−1) + ζ + ψλδ−(n−2)(1− λ) = 0

u2(x1n, x2n) + ζ + ψδ−(n−1)(1− λ) = 0.

The marginal utility of good 1 is equalized across periods. This reflects a
standard consumption-smoothing argument. The marginal utility of good 2
increases as the next bout of memorable consumption draws near. Reducing
the consumption of good 2 reduces the customary level against which the
next instance of memorable consumption is measured. The closer is the next
instance of memorable consumption, the more valuable is this reduction, and
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hence the larger the marginal utility of good 2. This gives us a consumption
pattern for good 2 that peaks with the incidence of memorable consumption,
then takes a drop, and then declines until the next occurrence of memorable
consumption.

If the utility function exhibits a positive cross partial derivative, then
the consumption pattern for memorable goods will spill over into a similarly
cyclic behavior for the consumption of good 1. Hence, memorable con-
sumption can induce cycles in the consumption of goods that are inherently
nonmemorable.10

4 Foundations

A key feature of our model is that past consumption can affect utility
through acclimatization and through future utility flows. This calls for a
model in which the utility function at time t depends not only on current
values of consumption x1t and x2t, but also on their past values. However,
such a function allows for a wide variety of history-dependent utility func-
tions. In order to focus on the effects that are of interest to us, we suggested
the instantaneous utility function given in (4), which is the sum of two func-
tions. One function depends only on the goods consumed at present, x1t

and x2t, capturing the standard, non-memory-related utility, and the other
function depends only on past and current values of x2, capturing the effects
of acclimatization and memorable consumption.

It is not entirely clear what we assume by this functional form. According
to the classical notion of separability the utility function is the sum of two
(or more) functions, each of which has a disjoint set of variables. But what
is assumed by a summation of two functions whose sets of variables are not
disjoint? Clearly, not every function can be so written. Yet, such functions
do not satisfy the conditions of separability.

The purpose of this section is to axiomatize a functional form as in
(4). In general, axioms on presumably observed preferences (interpreted
as the instantaneous preferences at time t) that are equivalent to such a
decomposition of the utility function clarify what is assumed by the model.
In this case, we couple standard requirements of weak order, continuity and
nontriviality with an axiom called cross-consistency, directing attention to
the latter as capturing our departure from standard models. In addition,
the axiomatization may in turn facilitate further analysis and testing of the
model, as it may be easier to design and conduct empirical or experimental

10As noted in Section 1.3, this effect does not arise in Hai, Krueger and Postlewaite [11].
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exercises that focus on this axiom than taking on the entire memorable-
consumption package at once. Finally, we believe that, when interpreting
x2 as the memory-generating good, the axioms we impose are quite plausible,
supporting our belief that the functional form is neither too peculiar nor ad
hoc.

Our result applies to more general set-ups, and axiomatizes quasi-separable
utility functions, defined as utility functions that can be written as the sum
of two functions, each of which depends on a proper subset of the variables,
where these subsets are not disjoint.11

4.1 The Setting

Let X,Y, Z be convex subsets of Euclidean spaces. Denote their product by

A = X × Y × Z

and endow it with the product topology. We are interested in binary rela-
tions %⊂ A×A that can be represented by maximization of a function

f (x, y, z)

that can be written as

f (x, y, z) = u (x, y) + v (y, z)

where
u : X × Y → R

and
v : Y × Z → R

are continuous, non-constant functions.
In the memorable-good application, X is the bundle of ordinary goods;

Y is the bundle of memorable goods consumed at present; and Z consists
of bundles of memorable goods consumed in the past (or the corresponding
levels of Υt and Λt defined by them). Clearly, the same structure can be
used for other applications as well.

11See Fishburn [9, Theorem 11.3] for decompositions in a similar spirit.
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4.2 The Axioms

For a binary relation %⊂ A×A (with A = X×Y ×Z) we state the following
axioms:

A1. Weak order: % is complete and transitive.
A2. Continuity: For every a ∈ A, the sets {b ∈ A | b � a}, {b ∈ A | a � b}

are open.
A3. Cross-Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈

X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4)

(x1, y0, z2) - (x4, y1, z3)

then
(x2, y0, z2) - (x4, y1, z4)

A4. Essentiality: For every y ∈ Y , there exist x1, x2 ∈ X and z ∈ Z
such that (x1, y, z) � (x2, y, z) and there exist x ∈ X and z1, z2 ∈ Z such
that (x, y, z1) � (x, y, z2).

The first two axioms and the final axiom are obvious and intuitive. We
thus assume that % is a continuous weak order—which is necessarily the
case for any continuous representation—and that % satisfies a sensitivity
assumption, so that, given any value of y, neither of the other variables will
be immaterial. (We comment on the importance of this assumption in the
course of the proof.)

To understand the meaning of Cross-Consistency, consider first the pair
of preferences

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4) .

For the sake of the argument, imagine that preferences are monotonic in all
coordinates, that x2 is better than x1, and that z4 is better than z3. On
the left side, x1 was replaced by x2. On the right side, z3 was replaced by
z4. As a result, the right side, which used to be not as highly ranked as the
left side, became at least as good as the (modified) left side. This means,
intuitively, that the difference in utility between z4 and z3 (at the level y1)
is at least as high as the difference in utility between x2 and x1 (at the level
y0).
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Next consider the pair

(x1, y0, z1) % (x3, y1, z3)

(x1, y0, z2) - (x4, y1, z3) .

Again, to understand the intuition, assume that z2 is better than z1 and
the same holds for x4 and x3. By similar reasoning, the difference in utility
between x4 and x3 (at the level y1) is at least as high as the difference in
utility between z2 and z1 (at the level y0).

Finally, consider the first preference,

(x1, y0, z1) % (x3, y1, z3) ,

and the question of which way the fourth should go, or

(x2, y0, z2)??? (x4, y1, z4) .

Moving from the first to the second of these comparisons, we see two im-
provements on the left side: x1 was replaced by x2 and z1 was replaced by
z2. However, there are also two improvements on the right side: x3 was
replaced by x4 and z3 was replaced by z4. The left side improvements occur
at the level y = y0 and those on the right side occur at the level y = y1. But
these are precisely the levels of y for which we have some information from
the first two comparisons. And since we know that the z3-z4 improvement
(at y1) beats the x1-x2 improvement (at y0) and that the x3-x4 improvement
(at y1) beats the z1-z2 improvement (at y0), we expect that the addition of
the (respective) former will beat the addition of the (respective) latter, that
is, that (x2, y0, z2) - (x4, y1, z4).

We thus find Cross-Consistency a reasonably compelling property. Sec-
tion 6.4 exploits this line of argument to achieve a rather straightforward
demonstration that Cross-Consistency is necessary for our representation.
The main point of Proposition 7 is that together the additional mild as-
sumptions imposed by the other axioms presented above, Cross-Consistency
is also sufficient for the representation.

Remark. One may consider a weaker version of Cross-Consistency that
is restricted to a single y level, that is, a version that requires y0 = y1. As
will be clear from the proof, such a version implies Debreu’s [8] “Double
Cancellation” axiom and is the basic driving force behind additive separa-
bility at each level of y. It is not hard to see, however, that such a weaker
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version would not suffice for our purposes. For example, assume that x, y, z
are positive real variables, and that % is defined by maximization of

f (x, y, z) = y log (x+ z) .

Clearly, at each level of y preferences are defined by maximization of log (x+ z)
or, equivalently, of x+ z and are therefore separable. Yet, it is not hard to
see that such preferences cannot be represented by u (x, y) + v (y, z) over
the entire space, as they will not satisfy the necessary condition of Cross-
Consistency.

4.3 A Representation Result

Section 6.4 proves:

Proposition 7. The relation %⊂ A×A satisfies A1-A4 if and only if there
are continuous functions

u : X × Y → R
v : Y × Z → R

such that % is represented by

f(x, y, z) = u (x, y) + v (y, z)

and such that, for each y ∈ Y , neither u (·, y) nor v (y, ·) is a constant.
Furthermore, in this case u and v are unique in the following sense: u′ and
v′ also satisfy the representation above iff there are α > 0, a continuous
function β : Y → R, and γ ∈ R such that

u′ (x, y) = αu (x, y) + β (y)

v′ (y, z) = αv (y, z)− β (y) + γ.

When interpreting this representation result in the context of memo-
rable consumption, one may take the elements of Z to be vectors of past
consumption, so that preferences are represented by the function

u(x1t, x2t) + ṽt(x20, . . . , x2t).

The specific assumptions we impose on ṽt, namely, the way that it de-
pends on x20, . . . , x2(t−1) only through Υt,Λt, are then functional form as-
sumptions. We could seek axiomatic foundations for this functional form,
but do not expect such an axiomatization to add significantly to our under-
standing of the model.
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5 Discussion

5.1 Related Models

We discuss here the more prominent of the many other ways one can imagine
current utility depending on past consumption, or that lumpiness in con-
sumption might arise. Our basic model, given by (4), is general enough to
capture these as special cases. It is the more particular assumptions made
in Section 2.2 that make ours a model of memorable consumption, and that
distinguish it from more familiar models.

5.1.1 Memorable Goods vs. Durable Goods

Memorable consumption goods generate a subsequent flow of utility, just as
do durable goods. Have we simply expanded the list of durable goods? There
are some important differences. To compare, let us first construct a simple
model of consumption with a durable good that sticks as closely as possible
to our model of memorable goods. We interpret good 1 as a perishable
consumption good and good 2 as a durable good. Utility is derived in
each period from the consumption of good 1 in that period and from the
consumption of a stock of the durable good. The consumer’s objective is to
maximize

∞∑
t=0

δtu(x1t,K2t),

subject to the budget constraint

Yt+1 = [Yt − x1t − x2t]
1

δ
≥ 0,

where x2t is the expenditure on the durable good in period t and K2t is the
period t stock of the durable good, with

K2t = λK2t−1 + (1− λ)x2t−1.

In this case, the optimal consumption plan will converge to a steady state
in which x1t = x∗1 and x2t = x∗2 for some (x∗1, x

∗
2). Consumption is perfectly

smoothed, unlike the case of memorable goods.
The previous example may make the durable good too pliable, essen-

tially stripping the model of the lumpiness characteristically associated with
durable goods. To construct a simple alternative, suppose that in any pe-
riod the consumer can consume either one unit or no unit of the durable
good. Once purchased, the durable good remains intact for a randomly
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drawn number of periods before disintegrating completely. The consumer
then faces the choice of either buying a new (randomly lived) durable good
or going without the durable good.

To model this situation, we let u(x1) be the utility derived from consum-
ing x1 of the ordinary consumption good as well as the durable good. Let
u(x1) be the utility gained from consuming x1 of the ordinary consumption
good and none of the durable good. Let V (Y ) be the optimal value of the
future consumption stream, given that the consumer currently owns a unit
of the durable good and has a lifetime income whose present value is Y , and
let V (Y ) be the corresponding value when no good is owned. Let p be the
price of the durable good. Then we have

V (Yt) = max
x1t

u(x1t) + λV

(
Yt − x1t

δ

)
+ (1− λ)V

(
Yt − x1t

δ

)
V (Y ) = max

x1t,1t
1t

[
u(x1t) + λV

(
Yt − x1t − p

δ

)
+ (1− λ)V

(
Yt − x1t − p

δ

)]
+ (1− 1t)

[
u(x1t) + V

(
Yt − x1t

δ

)]
,

where 1t is an indicator for purchasing the durable good in period t. It
is then straightforward to find conditions under which the durable good is
initially purchased, and is purchased after each subsequent period in which
the previous durable disintegrates, until an unlucky stream of disintegrating
durables pushes income so low that the durable good is never subsequently
purchased.

Behind this result lies the fact that an expenditure on a durable good
generates a stream of benefits that is independent of past expenditures. The
flow of benefits from the purchase of a sixty-inch flat screen television is the
same whether this is the first television one ever owned or whether it is
a replacement of the previous sixty-inch flat screen television that failed
last week. In the absence of such a television, listening to the radio does
not increase the subsequent utility generated by the television. As a re-
sult, a consumer whose income is sufficiently large smooths consumption
by invariably replacing a defunct durable, while a consumer whose income
is sufficiently small also smooths consumption, but this time by never pur-
chasing the durable. In contrast, an expenditure on the memorable good
generates future utility flows only if the expenditure is sufficiently above the
customary level. A consumer who plans to spend a large amount on the
memorable good next period might be better off if her consumption this pe-
riod decreased, something not possible with durable goods. This gives rise
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to incentives to bunch consumption that do not arise with the durable good,
and expenditure patterns that do not arise in the case of the durable. A
consumer often delays her next consumption of a memorable good, but will
never forego such consumption forever, while both of these properties are
reversed in the case of a durable good. A spike in consumption with durable
goods stems from a technological constraint while a spike in consumption of
a memorable good is a choice which typically varies across consumers.

5.1.2 Indivisibilities

One might be concerned that the patterns we associate with memorable
consumption simply reflect indivisibilities in consumption goods. There may
be a minimum amount one has to spend on a wedding, or carnival costume,
or vacation.

The interpretation of this possibility depends importantly on the source
of the indivisibilities. One possibility is that these indivisibilities arise out
of technological factors. One cannot splurge on half of a bungee jump or
half of a skydive, and vacations may entail fixed costs such as plane tickets.
We would expect these costs to be reflected in consumption—people with
higher incomes would purchase more expensive indivisible goods. A person
near the median income may occasionally treat herself to dinner and a show,
while a person in the top tenth of a percent may be one of the first space
tourists. In either case, we would see some spikes in consumption. How-
ever, if only indivisibilities and not memorable consumption are at work, we
would expect the person to otherwise perfectly smooth consumption, and
(unlike the case of memorable consumption) would see no interaction be-
tween the expenditures on the indivisible good and other expenditures. In
addition, if the indivisible goods are memorable, we would expect the spikes
in consumption to be exacerbated. Consider an agent who has just returned
from a week-long trip to Greece. Even if there are no monetary or time
constraints, she might choose not to immediately take another week-long
trip, but instead defer the trip until the utility flows she has just generated
have faded. A fixed cost alone may thus give rise to a spike in expenditure
on a memorable good, but we expect these spikes to be more pronounced
when the goods are memorable.

Alternatively, suppose that the minimum expenditure required on an
indivisible good arises out of an interaction with the consumer’s income
rather than technological considerations. It may be that one can spend any
amount on a wedding, ranging from a virtually free ceremony at a Justice
of the Peace to inviting your closest 500 friends to the party of a lifetime.
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Similarly, one can spend any amount on a vacation, from taking an afternoon
off to walk on the beach to a round-the-world-cruise. However, it may also be
that the resulting consumption contributes to utility only if it is sufficiently
lavish compared to one’s usual consumption. We can capture this in a model
where the intertemporal objective of the consumer is given by:

∞∑
t=0

δt [u(x1t, x2t) + v(x2t,Λt)] .

This differs from our memorable consumption model only in that the func-
tion v(x2t,Λt) is now interpreted not as the discounted sum of future utility
flows, but simply as a burst of current utility. This is a difference of inter-
pretation only, with the models being otherwise identical.

The key to this interpretation is the link between customary consumption
and the level of indivisibility faced by the consumer; this link takes center
stage in our analysis. We regard the presence of such a link as taking
us outside the realm of what is typically meant by an indivisibility. We
also regard the memorable nature of the consumption goods involved as a
particularly plausible source of such a link.

5.1.3 Addiction

The presence of the stock Λt in our memorable utility specification prompts
a comparison to models of addiction, with Becker and Murphy [4] being the
obvious counterpart. In their model, the utility function in period t is given
by

u(yt, ct,Λt),

where yt is the consumption of a nonaddictive good, ct is the consumption
of an addictive good, and Λt is the stock of the addictive good. We can
assume this stock evolves according to Λ2t = λΛ2t−1 + (1− λ)ct−1.

A first departure from our model of memorable utility is that the stock Λt
is allowed to enter the utility function with either a positive or negative sign,
so that an increased stock of consumption may decrease utility (perhaps
with something like smoking) or increase utility (perhaps with something
like exercise). In addition, the cross derivative ucΛ may be either positive or
negative, so that an increased stock may either enhance or attenuate the urge
for current consumption. The primary difference is that the function u in the
addiction model as assumed to be concave. This allows a straightforward
optimization in each period, and contrasts with the nonconcavities that
appear in our case. Once again the distinction is that there is no counterpart

34



in the addiction model to the premium on lumpy consumption that appears
in the case of memorable goods.

5.1.4 Habit Formation

If we eliminate Υ from the model and write the second component of our
utility function as

ṽt(x20, . . . , x2t) = v̂(x2t,Λt),

then the effect of past consumption on the immediate utility from expen-
diture on the memorable good x2t depends only on Λt. There then exist
simple specifications for the evolution of Λ for which the model becomes a
model of habit formation. Once again, however, the distinction arises out of
the specification of the function v̂. In a typical habit formation model, this
function is strictly increasing in x2t and is concave. In the case of memorable
goods, this function increases in x2t only after x2t hits an extraordinary level,
precluding the concavity of v̂. Again, the behavioral distinction is between
that of a tendency to smooth consumption in the case of habit formation
(albeit at a different level than would appear without habit formation) and
to bunch consumption in the case of memorable consumption.

5.1.5 Anticipation

Once one has incorporated the idea that an agent can enjoy pleasant thoughts
of consumption long after the physical act of consumption, it is natural to
consider pleasant thoughts before consumption, that is “anticipation utility”.
Indeed, as Loewenstein [17] has emphasized, there are many consumption
experiences (among others, he offers the example of a chance to kiss a movie
star of your choice) that one might deliberately postpone in order to savor
the anticipation.

There is an important difference between anticipation utility and mem-
orable utility. Anticipation gives rise to a game between the various selves
that govern consumption at various times. If I enjoy the anticipation of a
meal at a three star restaurant for a full month prior to eating there, why not
postpone the meal for another month when the day comes, in order to enjoy
yet more anticipation? Carrying this possibility to its logical conclusion, one
might well never consume the meal. However, one would then presumably
anticipate that the meal will not occur, undermining the intervening flows
of anticipation utility.

Anticipation thus gives rise to problems of time inconsistency that do not
arise in our model of memorable consumption. How long can consumption
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be postponed and still generate utility from anticipation? Perhaps forever
in some cases, though such people are likely to be regarded as delusional. In
general, we expect that utility can be generated by anticipating consumption
only if there is a reasonable belief that the consumption will indeed occur.
But when the time comes, what induces the current decision maker to go
through with the consumption when many of its benefits have already been
received? Perhaps because reneging will have an overwhelmingly negative
impact on current utility? Perhaps because of the realization that if one
reneges, no future utility form anticipation can be generated? These are
interesting questions, as is the general question of anticipation, but the
resulting time-consistency considerations make this a game rather than a
decision problem, requiring a different analysis.

5.2 Applications of a Memorable Utility Model

5.2.1 Permanent Income Hypothesis

The standard intertemporal consumption model suggests that optimal con-
sumption should be smooth. In particular, expected but temporary jumps
in income have little effect on permanent income, and so should have little
effect on consumption. For example, expected tax refund receipts should
lead to little immediate increase in consumption. In contrast, Souleles [22]
documents that there is excess sensitivity of consumption to such refunds.

Hai, Krueger and Postlewaite [11] demonstrate that if the model in Soule-
les is extended along the lines of our model, there is essentially no excess
sensitivity. Much of what appears to be a puzzling current consumption
binge in response to temporary income shocks can be interpreted as mem-
orable utility, which in turn generates a relatively smooth intertemporal
pattern of increases in utility.

5.2.2 Memorable Consumption as a Substitute for Saving

It is a familiar lament in the popular press that Americans save too little
for retirement (see, for example, the opening quotation in Scholz, Seshadri
and Khitatrakun [20]).12 Our analysis of memorable goods brings a new
dimension to this discussion, and a new reason to suspect that reports of
undersaving may be overstated. The flow of utility in retirement years in-
cludes the flow of utility from earlier memorable consumption. Decreasing

12Whether this is actually the case is less clear. Scholz, Seshadri and Khitatrakun [20],
for example, argue that only about twenty percent of Americans are undersaving, and
even then not by vast amounts.
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consumption expenditures as one moves into and through retirement, often
taken as a sign of undersaving, may simply reflect the optimal management
of the consumption of memorable goods. This suggests a number of em-
pirical projects. For example, with sufficient data, one could look for a
correlation between early expenditure on memorable goods and decreases in
expenditure later in life that our model would suggest.

5.2.3 Estimating Discount Factors

Taking account of memorable goods in a consumer’s utility maximization
problem changes how we think about saving and investment in general.
Separate from the question of retirement savings, economists have puzzled
over why the savings rate in the U.S. has dropped substantially over the
past half century (e.g., Parker [19]). The decrease in the savings rate is
sometimes interpreted as an indication that consumers care less about the
future than they once did. However, over the period in which savings rates
decreased, expenditures on vacations increased, providing a hint of a link
between the generation of the consumption of memorable goods and savings.

A consumer who shifts expenditure from nonmemorable goods to memo-
rable goods is doing something akin to saving—making current choices that
increase her future utility. Any estimate of intertemporal preferences from
longitudinal consumption that ignores the memory component of nondurable
consumption will result in an upward bias of the consumer’s discount rate.
There is evidence that recreation is a luxury good (though perhaps becoming
less so; see Costa [6]). If memorable goods more generally are luxury goods,
then estimates of discount factors may become more problematic for higher
incomes. It would be interesting to revisit estimates of discount factors with
an empirical strategy incorporating memorable goods.

5.2.4 Memorable Goods and Risk Aversion

Ignoring the memory component of consumption will complicate estimates
of risk aversion as well as estimates of discount rates. We discussed above
the Friedman-Savage anomaly of agents who both gamble and insure. If one
accepts our model of memorable utility, a nonconvexity arises naturally, and
the insurance-and-gambling behavior is less surprising. Section 3.4 showed
that a consumer who understands the (possibly large) memorable utility
that accompanies a big increase in consumption may optimally reduce cur-
rent consumption for some time so as to be able to afford the memorable
event. For our infinitely lived consumer, this intertemporal substitution is a
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sufficiently powerful tool for managing memorable utility as to obviate the
need to take on risk. However, a real-world finitely-lived consumer might
realize that she will not live long enough to acquire the resources needed to
generate a large burst of memorable utility. A fair (or even mildly unfair)
lottery with a large upside possibility may be part of an optimal plan for
such a consumer even if the consumer is otherwise risk averse.

5.3 Extensions

We touch here on one of the many possible extensions of our model. We
have laid out the model in which higher-than-customary consumption leads
to future utility flows that are added to the direct contemporaneous utility
from consumption. This captures well the positive utilities that stem from
high expenditures, but the basic ideas can be extended to cover negative
utilities as well. Most of us have at some time stayed at hotels that are
memorable, but not in a positive way. If we were advising a friend on
choosing a hotel for his honeymoon we would suggest paying a premium to
be sure that the hotel didn’t fall below expectations, since if the experience
is negative its unpleasant effects will linger long afterward.

Accommodating negatively memorable consumption would be straight-
forward. The function v aggregates the flow of utility stemming from memo-
rable consumption that is then added on to the direct utility from consump-
tion. One can allow the function to take on negative values for unpleasant
consumption experiences, which then have an ongoing drag on future utility.
As with the positive effects of memorable consumption that we have mod-
eled, the natural way to proceed would be to say that if the expenditure
on the memorable good falls sufficiently below the customary level, negative
utility flows are generated. The consumer may then appear to be loss averse
over sufficiently large losses.

6 Appendix: Proofs

6.1 Proof of Lemma 2

We first note that in any equilibrium, we have (x10, x20) ∈ [0, Y0]2. This

implies that there is a lower bound ε on du(x10,x20)
dx10

, the marginal utility of
good 1 in the first period.

Next, we note that there is an x̂ ≥ 0 such that for any consumption
(x1, x2) with either x1 > x̂ or x2 > x̂, it must be that either du(x1,x2)

dx1
< ε/2
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or it is the case that du(x1,x2)
dx2

< ε/2. If this is not the case, then we can find
a sequence (x1τ , x2τ ) contradicting Assumption 3.2.

The next step is to note that there exists a value x̆ such that if x2 > x̆,
then dv̆(x2,Λ)

dx2
< ε

2(1− δ) for any Λ (where we see later in the proof why the
(1 − δ) is needed to cope with the durability of memorable consumption).
This follows from Assumption 3.3.

Let x = max{x̂, x̆}.
Now suppose we have a candidate equilibrium in which, for some t, we

have consumption bundle (x1t, x2t) with x1t > x or x2t > x. We argue that
there exists a superior consumption plan in which consumption is unchanged
in all periods except 0 and t, and in which consumption of each good in
periods 0 and t falls short of x. Iterating this argument yields the result.

In period t, the derivative of u with respect to either good 1 or good 2
must fall short of ε/2. If it is the derivative with respect to good 1 that has
this property, then we have

u1(x10, x20)− u1(x1t, x2t) > 0. (15)

We now consider a collection of alternative strategies, each of which dupli-
cates the candidate equilibrium strategy, with the possible exception of x10

and x1t. The latter two variables are allowed to vary (giving us the collection
of alternative strategies as they do so) as long as they satisfy the budget
constraint. The budget constraint in turn requires

x10 + δtx1t = k

for some constant k. This allows us to define an implicit function x1t =
f(x10) whose derivative is given by −δ−t. This allows us to interpret (15)
as the derivative of the discounted sum of utility with respect to xi0, under
the constraint that x1t = f(xi0), ensuring the budget constraint is satisfied.
The fact that this derivative is positive ensures that we can increase utility
by decreasing x1t and increasing x10.

Now suppose that it is good 2 for which the derivative is small in period
t. Then

u1(x10, x20)− δt
[
u2(x1t, x2t) +

∞∑
τ=t

δτ−tv̂1(x2t,Λt)

]
=

u1(x10, x20)− δt
[
u2(x1t, x2t) +

1

1 + δ
v̂1(x2t,Λt)

]
> 0.

Our choice of the period t ensures the inequality in the second line. More-
over, it is clear from the first line that this sum is an upper bound on the
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derivative of the discounted sum of utility with respect to x10, under the
constraint that x2t = f(x10). (In particular, it captures the effect of varying
x10 on first-period utility, and then the effect of varying x2t on utility in pe-
riod t and every subsequent period. It is only an upper bound, because the
derivative reduced by the effect of x2t on values of Λτ for values τ > t, which
we have not incorporated in our calculation.) The fact that this derivative
is positive again ensures that we can increase utility by decreasing x2t and
increasing x10.

This allows us to construct a sequence of improvements that continues
until x1t and x2t each are no larger than x for all t, yielding the result.

6.2 Proof of Proposition 4

Let {x̂1t, x̂2t}∞t=0 be the optimal consumption plan. By assumption this
plan involves memorable consumption in some period, though we cannot
be sure of which period. An alternative consumption plan is to never un-
dertake memorable consumption, in which case the optimal plan would be
{(x∗1, x∗2), (x∗1, x

∗
2), . . .}. We assume that it is strictly optimal to undertake

memorable consumption at least once, giving

{x̂1t, x̂2t}∞t=0 � ((x∗1, x
∗
2), (x∗1, x

∗
2), . . .). (16)

The optimal consumption plan induces a sequence of stocks {Λ̂t}∞t=0 and
wealths {Ŷt}∞t=0.

Suppose the optimal plan involved memorable consumption only finitely
many times. Then there is a period T such that the consumer enters period
T + 1 with wealth YT+1, and thereafter consumes(

x∗1
YT
Y0
, x∗2

YT
Y0

)
in each period. As a result, the stock Λt becomes arbitrarily close to x∗2

YT
Y0

.

It then suffices to show that if a period t′ arrives in which Λt′ = x∗2
YT
Y0

, then
the consumer will indulge in memorable consumption in some subsequent
period.13 To see that this is the case, notice that once such a t′ has arrived,
the continuation sequences{

x̂1t
YT
Y0

}∞
t=0

,

{
x̂2t

YT
Y0

}∞
t=0

,

{
Λ̂t
YT
Y0

}∞
t=0

,

{
Ŷt
YT
Y0

}∞
t=0

13We can only be assured that Λt′ can be made arbitrarily close to x∗2
YT
Y0

, not precisely
equal to it, but the fact that our original preference is strict allows us to look at the case
where they are equal.
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are feasible and, by definition, involves memorable consumption. We then
need only argue that({

x̂1t
YT
Y0

}∞
t=0

,

{
x̂2t

YT
Y0

}∞
t=0

)
�
((

x̂∗1
YT
Y0
, x̂∗2

YT
Y0

)
,

(
x̂∗1
YT
Y0
, x̂∗2

YT
Y0

)
, . . .

)
.

But this follows from (16) and the homogeneity invoked in Assumption 5.

6.3 Proof of Proposition 6

Fix an optimal consumption plan, and let there be no memorable consump-
tion in periods t and t+ 1. Let the periods after t+ 1 in which memorable
consumption occurs be {tτ}∞τ=0. Then the derivative of the period-t contin-
uation discounted sum of utility with respect to x2t is given by

u2(x1t, x2t) + δτ0−t
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)
dΛτk
dx2t

,

while the corresponding derivative with respect to x2t+1 is given by

u2(x1t+1, x2t+1) + δτ0−(t+1)
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)
dΛτk
dx2t+1

.

In each case the first term captures the immediate effect of consuming good
2 on current consumption, and the summation captures the effect on the
future customary levels of consumption, which come into play each time
memorable consumption occurs. We can rewrite these derivatives as

u2(x1t, x2t) + δτ0−t
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)(1− λ)λτk−t−1,

and

u2(x1t+1, x2t+1) + δτ0−(t+1)
∞∑
k=0

δτk−τ0v2(x2τk ,Λτk)(1− λ)λτk−(t+1)−1.

The necessary conditions for utility maximization are that these two deriva-
tives be equal. Noting that v2 < 0, this gives

u2(x1t, x2t) < u2(x1t+1, x2t+1).
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6.4 Proof of Proposition 7

6.4.1 Necessity

Assume that u (x, y) + v (y, z) represents %. A1 and A2 follow immediately.
As for A3, assume that

(x1, y0, z1) % (x3, y1, z3)

(x2, y0, z1) - (x3, y1, z4)

(x1, y0, z2) - (x4, y1, z3) .

The first preference statement implies

u (x1, y0) + v (y0, z1) ≥ u (x3, y1) + v (y1, z3) ,

or, equivalently,

−u (x1, y0)− v (y0, z1) ≤ −u (x3, y1)− v (y1, z3) ,

while the other two yield

u (x2, y0) + v (y0, z1) ≤ u (x3, y1) + v (y1, z4)

u (x1, y0) + v (y0, z2) ≤ u (x4, y1) + v (y1, z3) .

Summing up the last three inequalities we obtain

u (x2, y0) + v (y0, z2) ≤ u (x4, y1) + v (y1, z4)

which implies
(x2, y0, z2) - (x4, y1, z4) .

Finally, observe that A4 holds provided that u (·, y) and v (y, ·) are not
constant for any y.

6.4.2 Sufficiency – Part I: Construction

In this subsection we construct u, v such that u (x, y) + v (y, z) represents
preferences. We will fix x0 ∈ X and construct these functions so that

u (x0, y) = 0 ∀y ∈ Y.

This will prove useful in showing that the functions so constructed are con-
tinuous (in Part II), as well as in proving the uniqueness result.
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Step 0: Preliminaries: Cross Consistency has a natural counterpart,
with the direction of all preference signs reversed:

Reverse Cross Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈
X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) - (x3, y1, z3)

(x2, y0, z1) % (x3, y1, z4)

(x1, y0, z2) % (x4, y1, z3)

then
(x2, y0, z2) % (x4, y1, z4) .

Note that the two conditions are equivalent. (To see this, it suffices
to exchange the notation between y0 ↔ y1, x1 ↔ x3, x2 ↔ x4, z1 ↔ z3,
z2 ↔ z4.)

Similarly, one can have the indifference version of the axiom:

Indifference Cross Consistency: For every y0, y1 ∈ Y , every x1, x2, x3, x4 ∈
X, and every z1, z2, z3, z4 ∈ Z, if

(x1, y0, z1) ∼ (x3, y1, z3)

(x2, y0, z1) ∼ (x3, y1, z4)

(x1, y0, z2) ∼ (x4, y1, z3)

then
(x2, y0, z2) ∼ (x4, y1, z4) .

This version follows from the conjunction of Cross Consistency and Re-
verse Cross Consistency, and hence from each of these alone.

Step 1: Additive representation for any fixed y: For y ∈ Y , define

Ay = {(x, y, z) ∈ A |x ∈ X, z ∈ Z } .

Restricting attention to Ay, for each y ∈ Y , we note that % is a contin-
uous weak order (basically, on X × Z). For a relation % on X × Z we will
be interested in following condition:14

14See also Blaschke [5] and Thomsen [27] for the related “hexagon” condition.
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Double Cancellation: For every f, g, h ∈ X and every p, r, q ∈ Z, if

(f, p) % (g, q)

and
(h, p) - (g, r)

then
(h, q) - (f, r) .

In particular, the following lemma states that % on Ay satisfies Double
Cancellation.

Lemma 8. For each y ∈ Y , every f, g, h ∈ X and every p, r, q ∈ Z, if

(f, y, p) % (g, y, q)

and
(h, y, p) - (g, y, r)

then
(h, y, q) - (f, y, r) .

Proof : Given f, g, h ∈ X and p, r, q ∈ Z that satisfy (f, y, p) % (g, y, q),
and (h, y, p) - (g, y, r), define (i)

y0 = y1 = y

(ii)

x1 = x4 = f

x2 = h x3 = g

and (iii)

z1 = p

z2 = z3 = q

z4 = r.

Observe that

(x1, y0, z1) = (f, y, p) % (g, y, q) = (x3, y1, z3)

(x2, y0, z1) = (h, y, p) - (g, y, r) = (x3, y1, z4)
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and clearly also

(x1, y0, z2) = (f, y, q) ∼ (f, y, q) = (x4, y1, z3)

hence Cross Consistency can be invoked to conclude that

(x2, y0, z2) - (x4, y1, z4)

which means

(x2, y0, z2) = (h, y, q) - (f, y, r) = (x4, y1, z4) .

Thus, Double Cancellation on each Ay follows from Cross Consistency.
It follows from Debreu [8] that % has an additively separable continuous
representation: there are continuous uy : X → R and vy : Z → R such that,
for every x, x′ ∈ X and every z, z′ ∈ Z,

(x, y, z) %
(
x′, y, z′

)
iff

uy (x) + vy (z) ≥ uy
(
x′
)

+ vy
(
z′
)
.

Further, thanks to A4, these uy, vy are unique up to multiplication by
a positive constant and the addition of a constant.15 In other words, if
u′y : X → R and v′y : Z → R also represent % on Ay as above, there must
be αy > 0 and βyu, βyv ∈ R such that

u′y (x) = αyuy (x) + βyu

and
v′y (z) = αyvy (z) + βyv.

Finally, by setting βyu = −αyuy (x0) we may assume without loss of
generality that uy (x0) = 0.

15If one of the two variables x, z does not affect preferences on Ay, its function is
a constant—hence unique up to a cardinal transformation, but the representation of the
other variable becomes only ordinal. Similarly, if A4 doesn’t hold, one of the two functions
might be a non-continuous monotone transformation of a continuous function.
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Step 2: Additive representation on the entire space: For each y,
choose two continuous functions uy : X → R and vy : Z → R that represent
% on Ay as above, with uy (x0) = 0. Recall that these functions are unique
up to multiplication (of both) by (the same) αy > 0 and an addition of
a constant to vy. We now wish to show that we may take such an affine
transformation of uy, vy for each y ∈ Y so that the resulting functions rank
alternatives as does % also across different values of y, (that is, for any two
alternatives a ∈ Ay, b ∈ Ay′ even if y 6= y′) and that these functions are
continuous (over all of A).

For a generic a ∈ A, let aX ∈ X, aY ∈ Y , and aZ ∈ Z be its components,
so that (aX , aY , aZ) = a.

To visualize the construction, consider, for each y ∈ Y , the image of the
functions uy, vy. Define

I (y) = {(uy (x) , vy (z)) |x ∈ X, z ∈ Z } ⊂ R2.

Note that, because uy, vy are continuous functions on convex subsets of
Euclidean spaces, the images of these functions are convex. That is

Iu (y) ≡ {uy (x) |x ∈ X } ⊂ R
Iv (y) ≡ {vy (z) |z ∈ Z } ⊂ R

are (potentially infinite) intervals in R, and I (y) = Iu (y)× Iv (y).
We may imagine indifference curves in I (y), which are downward sloping

straight lines with slope −1.
We define y, y′ ∈ Y to be close if there exist x, x′ ∈ X and z, z′ ∈ Z such

that (x, y, z) ∼ (x′, y′, z′) while (uy (x) , vy (z)) is in the interior of I (y) and(
uy′ (x

′) , vy′ (z
′)
)

is in the interior of I (y′).
Because % is known to be a continuous weak order on all of A, it can

be represented by a continuous function W : A → R (see Debreu [7]).
Restricting attention to Ay for any y ∈ Y , W is an increasing monotone
transformation of uy + vy. The function W will allow us to simplify the
notation in some of the following arguments, though it doesn’t serve any
particular role and, clearly, anything stated in the language of W can also
be stated in the language of %.

Observe that, for any y ∈ Y , W (Ay) is a (potentially infinite) interval
in R with a nonempty interior (due to A4). Moreover, if y, y′ ∈ Y are close,
then W (Ay) ∩W

(
Ay′
)

is also a (potentially infinite) interval in R with a
nonempty interior.
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Lemma 9. Assume that y, y′ ∈ Y are close. Then there are unique αy′ > 0
and βy′ ∈ R such that, by defining

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x)

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βy′

we obtain u and v such that u (x, y) + v (y, z) represents % on Ay ∪Ay′.

Thus, the lemma states that we can fix the arbitrarily chosen uy, vy for
one value, y, and choose an affine positive transformation of the functions
for the other, y′, and thus obtain a function that represents preferences not
only within each subspace Ay, Ay′ but also across them.

Proof : Let y, y′ ∈ Y be close. Denote by I◦ the interior of W (Ay) ∩
W
(
Ay′
)

which is known to be a nonempty (potentially infinite) interval in
R. Clearly, for any αy′ > 0 and βuy′ , β

v
y′ ∈ R

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x) + βuy′

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βvy′

would result in a function u (x, y) + v (y, z) that represents % on Ay as well
as on Ay′ . We need to make sure that such a function correctly represents
% between a ∈ Ay and b ∈ Ay′ . To this end, we first focus on the W -inverse
images of I◦, that is on

Ây ≡ { a ∈ Ay |W (a) ∈ I◦ }
Ây′ ≡

{
b ∈ Ay′ |W (b) ∈ I◦

}
.

Consider a value ξ = uy′ (x
′) + vy′ (z

′) ∈ R for some (x′, y′, z′) ∈ Ây′ .

We claim that there exists a unique η ∈ R such that, for any (x, y, z) ∈ Ây,
(x, y, z) ∼ (x′, y′, z′) if and only if uy (x) + vy (z) = η. Indeed, this follows
from the fact that uy (x) + vy (z) represents % on Ay, uy′ (x

′) + vy′ (z
′) –

on Ay′ , and from transitivity. Hence there exists a function g : R→ R such
that (x, y, z) ∼ (x′, y′, z′) if and only if

uy (x) + vy (z) = g
(
uy′
(
x′
)

+ vy′
(
z′
))
.

Further, by transitivity, g is increasing (and strictly increasing in the relevant
domain) and

(x, y, z) %
(
x′, y′, z′

)
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iff
uy (x) + vy (z) ≥ g

(
uy′
(
x′
)

+ vy′
(
z′
))
.

We wish to show that g is affine on the relevant domain, that is on
uy′ (x

′) + vy′ (z
′) where W ((x′, y′, z′)) ∈ I◦. To this end, consider three

equally-spaced points in its domain,

ξ, ξ + δ, ξ + 2δ.

We wish to show that the values of g for these points are also equally spaced,
that is, that

g (ξ + 2δ)− g (ξ + δ) = g (ξ + δ)− g (δ) .

Choose x1, x2 ∈ X, z1, z2 ∈ Z such that

uy′ (x1) + vy′ (z1) = ξ

uy′ (x2) + vy′ (z1) = ξ + δ

uy′ (x1) + vy′ (z2) = ξ + δ.

Note that such a selection is possible since there are points in Ay′ with
uy′ (x) + vy′ (z) = ξ + 2δ. (Note that the selection of x1, x2, z1, z2 should be
done simultaneously: there may be points x1, z1 close to the boundary of
Ay′ for which such an x2 or such a z2 will not exist.)

Similarly, denote
η = g (ξ)

ε = g (ξ + δ)− g (δ) > 0

and choose x3, x4 ∈ X, z3, z4 ∈ Z such that

uy (x3) + vy (z3) = η

uy (x4) + vy (z3) = η + ε

uy (x3) + vy (z4) = η + ε.

Clearly, we have (
x1, y

′, z1

)
∼ (x3, y, z3)(

x2, y
′, z1

)
∼ (x3, y, z4)(

x1, y
′, z2

)
∼ (x4, y, z3) .

By Indifference Cross Consistency, we also have(
x2, y

′, z2

)
∼ (x4, y, z4)
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which implies
g (ξ + 2δ) = η + 2ε.

Thus g is affine on the relevant domain, and there are αy′ > 0 and
βy′ ∈ R such that

uy (x) + vy (z) = g
(
uy′
(
x′
)

+ vy′
(
z′
))

= αy′uy′
(
x′
)

+ αy′vy′
(
z′
)

+ βy′

whenever (x, y, z) ∼ (x′, y′, z′).
Observe that in defining u and v we have some freedom in deciding how to

split βy′ between them. In fact, for any βuy′ , β
v
y′ ∈ R such that βuy′+β

v
y′ = βy′

we can define

u (x, y) = uy (x) ; u
(
x, y′

)
= αy′uy′ (x) + βuy′

and
v (y, z) = vy (z) ; v

(
y′, z

)
= αy′vy′ (z) + βvy′

and observe that u (x, y) + v (y, z) represents % for any a ∈ Ây and b ∈ Ây′ .
However, to stick to the normalization by which u (x0, ·) = 0, we choose
βuy′ = 0 (recall that uy (x0) = uy′ (x0) = 0) and βvy′ = βy′ .

Next consider a ∈ Ay\Ây. If there exists b ∈ Ay′ such that a ∼ b
(which might be possible if a and or b are %-maximal or %-minimal in
their sub-spaces, Ay or Ay′ , respectively), the proof continues as above, via
transitivity. We are therefore left with the case that a � Ay′ or a ≺ Ay′

(using the obvious notation for a relation between an element and every
element of a set). But in this case one can choose c ∈ Ây and complete the
proof by transitivity. (For example, for b ∈ Ây′ one chooses c ∼ b and argues
that a � c ∼ b occurs when u (x, y) + v (y, z) obtains a higher value for a
than both c and b; otherwise we may have [a � Ay′ and b - Ay] or [a ≺ Ay′
and b % A] etc.)

For y ∈ Y , let

C (y) =
{
y′ ∈ Y

∣∣ y and y′ are close
}

Lemma 10. For every y ∈ Y there exist

u : X × C (y)→ R
v : C (y)× Z → R

such that u (x, y) + v (y, z) represents % on
⋃
y′∈C(y)Ay′.
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This lemma states that we can have the desired representation not only
for every pair of subspaces Ay, Ay′ where y′ is close to y, but also for all of
these simultaneously (holding y fixed).

Proof : Let there be given y ∈ Y . For every y′ ∈ C (y) define u (x, y′) +
v (y′, z) as in the Lemma 9.

Consider a, b ∈
⋃
y′∈C(y)Ay′ . If a, b ∈ Ay′ for some y′ the proof is

complete. This is also the case if one of them is in Ay. We are therefore left
with the case that

a ∈ Ay′\Ay b ∈ Ay′′\Ay.

In this case we know that both a and b are either “above” all of Ay or
“below” it. (That is, a � Ay or a ≺ Ay and the same is true of b.) In case
a � Ay � b or b � Ay � a, transitivity completes the proof. Hence, we
are interested in the case a, b � Ay or, symmetrically, a, b ≺ Ay. Without
loss of generality assume that a, b � Ay. Since y′ and y′′ are both close to
y and they both contain alternatives that are better than Ay, they have to
be close to each other. In fact, there has to be a nonempty interior of

W (Ay) ∩W
(
Ay′
)
∩W

(
Ay′′

)
.

Consider two real numbers in this interior, α < β, and six alternatives
c, c′, d, d′, e.e′ such that c, c′ ∈ Ay, d, d

′ ∈ Ay′ , e, e
′ ∈ Ay′′ and W (c) =

W (d) = W (e) = α and W (c′) = W (d′) = W (e′) = β. By Lemma 9,
u (·, y′) and v (y′, ·) are affine transformations of uy′ (·) and vy′ (·), respec-
tively, and u (·, y′′) and v (y′′, ·) are affine transformations of uy′′ (·) and
vy′′ (·). However, the equalities above imply that, if we start with u (·, y′)
and v (y′, ·) and use Lemma 9 for y′ and y′′, we will end up with u (·, y′′) and
v (y′′, ·). Hence, u (x, y)+v (y, z) represent preferences also on Ay′ ∪Ay′′ and
correctly rank a and b.

Lemma 11. Let there be given y1, y2, ..., yn ∈ Y such that yi is close to yi+1

for i = 1, ..., n− 1. Let

C =
⋃
i≤n

C (y) .

There exist

u : X × C → R
v : C × Z → R

such that u (x, y) + v (y, z) represents % on
⋃
y′∈C Ay′.
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Proof : The proof is by induction on n, with the case n = 1 established
by Lemma 10. Assume, then, that the claim is true for n and consider n+1.

Fix u and v as provided for y1, y2, ..., yn. Applying Lemma 10 to yn+1,
there are u′ and v′ defined on C (yn+1) that represent % (by their sum) over
all of C (yn+1). The latter includes a nonempty W -value intersection with
Ayn , because yn+1 and yn are close. This means that we can use an affine
transformation of u′ and v′ that would be identical to u and v, respectively,
over their intersection.

Clearly, the newly-extended u and v will represent preferences over C (yn+1).
To see that they do so for all of

⋃
y′∈C Ay′ we use transitivity as before.�

We are finally ready to complete the proof. We argue that there exists
a double-sequence

..., y−2, y−1, y0, y1, y2, ...

such that (i) yi and yi+1 are close for i ∈ Z; (ii) Y =
⋃
i∈ZC (y).

To see that this is the case, use the range of the function W as follows:
first, consider a bounded interval [−M,M ] in the range of W . The interior
of W (Ay) for all y ∈ Y is an open cover of [−M,M ], and thus has a
finite subcover. From such a subcover one can choose a finite sequence
y1, y2, ..., yn ∈ Y such that yi is close to yi+1 for i = 1, ..., n − 1 and that
[−M,M ] ⊂

⋃
i≤nW (Ay). Then, by induction on M one generated the

sequence ..., y−2, y−1, y0, y1, y2, ... such that (i) yi and yi+1 are close for i ∈ Z;
(ii) W (A) =

⋃
i∈ZW (Ay). Finally, one considers Lemma 11 and notes that

in its inductive proof the functions u and v are defined as extensions of the
same functions in previous steps. Repeating this argument for the doubly-
infinite sequence completes the proof of existence of u and v.

6.4.3 Sufficiency – Part II: Continuity

We now turn to prove that the functions constructed above are continuous.
Observe that for this to be true, one has to rely on the specific construction
by which u (x0, y) = 0, which guarantees that u (x0, ·) is continuous in y.
Indeed, it is easy to see that by defining

u′ (x, y) = αu (x, y) + β (y)

v′ (y, z) = αv (y, z)− β (y)

for a discontinuous β (·), one can represent % by u′ (x, y) + v′ (y, z) where
neither u′ nor v′ are continuous, though their sum is.

51



Step 1: Continuity of u+ v: It is convenient to rely on the continuous
function W that represents %. Since u (x, y)+v (y, z) and W both represent
%, there exists a monotonically increasing φ : R→ R such that

u (x, y) + v (y, z) = φ (W (x, y, z))

for all (x, y, z) ∈ X × Y × Z. We claim that φ is continuous. Assume that
it isn’t, and that there exists ξn → ξ and ε > 0 such that

φ (ξn) < φ (ξ)− ε (17)

or,
φ (ξn) > φ (ξ) + ε. (18)

Consider first case (17). As ξ is in the domain of φ, it is in the range of
W and thus ξ ∈ W (Ay) for some y’s. For each one of these, it has to be
the case that ξ = minW (Ay). Otherwise, we can find an, a ∈ Ay such that
an → a but φ (W (an)) fails to converge to φ (W (a)), which is impossible
because u (x, y) + v (y, z) is continuous on each Ay separately.

As the range of W is connected, and it is the union of open intervals
{W (Ay)}y, it follows that

ξ = min∪yW (Ay)

in which case (17) is impossible.
Similarly, in case (18) we conclude that ξ = max∪yW (Ay), and a con-

tradiction results again. We therefore conclude that u (x, y) + v (y, z) =
φ (W (x, y, z)) is a continuous function on A = X × Y × Z.

Step 2: Continuity of u, v: We now wish to show that u is continuous
on X × Y . Clearly, this will mean that u is continuous on X × Y × Z and
therefore that so is

v (y, z) = φ (W (x, y, z))− u (x, y) .

To this end we show that u (x, y) is a continuous function of y, and that it
is uniformly continuous with respect to x:

Lemma 12. Let there be given x̃ ∈ X and ỹ ∈ Y . For every ε > 0 there
exists δ > 0 such that for all x ∈ X and y ∈ Y , if

|x− x̃| , |y − ỹ| < δ

then
|u (x, y)− u (x, ỹ)| < ε.
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Proof : Assume not. Then there are x̃ ∈ X, ỹ ∈ Y and ε > 0 such
that ∀δ > 0 there are x, y that are δ-close to x̃, ỹ, respectively, but that the
converse inequality holds. We can therefore choose a sequence {(xn, yn)}
such that (xn, yn)→ (x̃, ỹ) as n→ 0 but, for every n,

|u (xn, yn)− u (xn, ỹ)| ≥ ε. (19)

Choose z̃ ∈ Z. As f (x, y, z) = u (x, y) + v (y, z) is continuous, there
exists N such that for all n ≥ N we have

|f (xn, yn, z̃)− f (x̃, ỹ, z̃)| < ε/10. (20)

Also, as u (·, y) is continuous for every y, u (xn, ỹ) → u (x̃, ỹ) as n → 0 and
we can assume that for all n ≥ N we also have

|u (xn, ỹ)→ u (x̃, ỹ)| < ε/10. (21)

Consider

|f (xn, yn, z̃)− f (x̃, ỹ, z̃)|
= |u (xn, yn) + v (yn, z̃)− u (x̃, ỹ)− v (ỹ, z̃)|
= |[u (xn, yn)− u (xn, ỹ)] + [u (xn, ỹ)− u (x̃, ỹ)] + [v (yn, z̃)− v (ỹ, z̃)]| .

By (21) we know that the middle square brackets denote a small expression,
as does the sum of the three square brackets (by (20)). However, the first
square brackets is at least ε by (19). This means that the last expression
should also be relatively large. Specifically, for every n it follows that

|v (yn, z̃)− v (ỹ, z̃)| ≥ ε/2. (22)

Consider now the sequence {(x0, yn, z̃)}n and observe that (x0, yn, z̃)→
(x0, ỹ, z̃) as n→ 0. By continuity of f we should have

u (x0, yn) + v (yn, z̃)→ u (x0, ỹ) + v (ỹ, z̃) .

However, u (x0, yn) = u (x0, ỹ) = 016 while (22) shows that v (yn, z̃) fails to
converge to v (ỹ, z̃), which is a contradiction.�

We finally show that u is continuous. Assume that (xn, yn) → (x, y) as
n→ 0 for some point (x, y) ∈ X × Y . Writing

u (x, y)− u (xn, yn)

= [u (x, y)− u (xn, y)] + [u (xn, y)− u (xn, yn)] ,

16Observe that the crucial fact is only that u (x0, ·) is continuous, while in our construc-
tion it was guaranteed to be constant.
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we observe that the first brackets converges to 0 because u (·, y) is continuous
(for each y separately) and the second one converges to 0 because of Lemma
12.

6.4.4 Uniqueness

Given a representation by u, v, it is straightforward that

u′ (x, y) = αu (x, y) + β (y) (23)

v′ (y, z) = αv (y, z)− β (y) + γ

also represent preferences for every α > 0, a continuous function β : Y → R
and γ ∈ R.

Conversely, the construction of the functions showed that, given the nor-
malization u (x0, ·) = 0, the only degrees of freedom left are multiplication
of both u and v by a positive constant ad shifting of v by an additive one.

However, relaxing the constraint u (x0, ·) = 0, one can replace it by
any continuous function β so that u (x0, ·) = β (y). Conversely, denoting
β (y) = u (x0, ·) one observes that the transformation (23) holds.
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