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This paper suggests that skill accumulation through past work experience,

or “learning-by-doing”, can provide an important propagation mechanism for

initial shocks, as the current labor supply affects future productivity. Our

econometric analysis uses a Bayesian approach to combine micro-level panel

data with aggregate time series. Formal model evaluation shows that the intro-

duction of the LBD mechanism improves the model’s ability to fit the dynamics

of aggregate output and hours.
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1 Introduction

A well-known shortcoming of the standard dynamic general-equilibrium model, the

so-called RBC model, is its weak internal-propagation mechanism. Aggregate output

essentially traces out the movements of the exogenous technology process. This defi-

ciency has been pointed out by Cogley and Nason (1995), among others. While GDP

has an important trend-reverting component that is characterized by a hump-shaped

response to a transitory shock (e.g., Blanchard and Quah (1989) and Cochrane

(1994)), the standard RBC model invariably generates a monotonic response of

output to transitory shocks. Furthermore, while output growth is positively au-

tocorrelated in the data, the standard model cannot generate any persistence in

output growth from a random-walk productivity process.

In this paper we suggest that allowing for a simple skill accumulation through

past work experience, or “learning-by-doing,” can help overcome some of these de-

ficiencies. We will refer to the proposed model as the LBD model. Our point of

departure from the standard model is motivated by a strong tradition in labor eco-

nomics. Studies by Altug and Miller (1998) and Cossa, Heckman, and Lochner

(2000) find a significant effect of past work experience on current wage earnings.

It is also well documented that displaced workers suffer important wage losses (Ja-

cobson, LaLonde, and Sullivan (1993)) and that wage profiles are affected by job

tenure (Topel (1991)). These findings from the microeconomic data suggest that the

aggregate economy experiences systematic changes in labor productivity, as busi-

ness cycles are associated with strongly procyclical hiring of new workers and a

countercyclical pattern of layoffs.

An important aspect of this paper is our methodology to estimate and evaluate

the LBD model. To estimate the parameters of the skill accumulation process we

derive a micro-level wage equation, whose structure closely resembles the aggregate

wage equation. Rather than just using a simple ”plug-in” technique, the micro

estimates serve as a prior distribution for a Bayesian time series analysis of the

aggregate LBD model. By scaling the prior covariance matrix, we can then control
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the relative weight of the microeconometric information. This procedure thus avoids

the important criticism by Hansen and Heckman (1996) of the usage of incompatible

micro estimates in highly aggregated macro models.

The evaluation of the aggregate LBD model is based on the framework proposed

by Schorfheide (2000). It enables a formal comparison of population-moment and

impulse-response-function predictions from dynamic stochastic general-equilibrium

(DSGE) models to posterior estimates from vector autoregressions (VAR).1 While

both the log-linearized model and the VAR provide linear moving-average repre-

sentations for aggregate data, the VAR representation is far less restrictive and is

therefore suitable for a benchmark. Unlike in many previous studies, the benchmark

for our impulse response function (IRF) comparisons is high. We are not simply

comparing IRF shapes qualitatively. Instead, we examine whether the responses

match quantitatively.

The main findings can be summarized as follows. First, introducing the LBD

propagation mechanism improves the overall likelihood-based fit of the model rel-

ative to the standard RBC model. Second, the LBD model is able to generate a

positive correlation in output growth, albeit a smaller one than in the data, even

when the exogenous technology follows a random walk. Finally, the impulse-response

function of output to a serially correlated transitory shock exhibits a pronounced

hump shape, as the current increase in hours leads to a subsequent increase in labor

productivity. While the LBD model is able to reproduce some important dynamics

captured by the VAR reasonably well, it does retain some weaknesses. According to

the model the response of hours is immediate, whereas it is delayed by 2–3 quarters

in the data. Moreover, the model requires serially correlated external shocks to be

able to generate pronounced hump-shaped responses.

A number of other studies have investigated the role of learning in generating

richer macroeconomic dynamics. The study closest to this paper is Cooper and
1A survey of DSGE model evaluation procedures can be found in Kim and Pagan (1997). Alter-

native Bayesian approaches include DeJong, Ingram, and Whiteman (1996) and Geweke (1999a).

A detailed comparison is provided in Schorfheide (2000).
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Johri (1998). They included organizational capital in the production function and

assumed that the current stock of organizational capital depends on past production

rates. While this has obvious similarities with our learning mechanism, we believe

that there are at least two advantages to our approach. First, by introducing learning

through the direct effects of past work experience on current labor productivity

we can measure its effects directly from panel data on wages and hours. Second,

our modeling strategy avoids the thorny issue of distinguishing between internal

and external learning-by-doing, and thus determining the components of national

income to match up with the contribution of LBD. In our approach the benefits to

learning are incorporated in workers’ wages and thus are included in the labor share

of national income.

Perli and Sakellaris (1998) and DeJong and Ingram (1998) emphasize schooling

as a source of learning. Unlike our learning-by-doing, skill accumulation through

schooling is costly due to fees and forgone market wages. While the level of school-

ing has a profound impact on long-run economic performance, most education takes

place in the first 20 to 25 years of life. We believe that the wage-tenure link has

been overlooked in previous studies and generates an at least equally compelling

propagation mechanism for fluctuations at business cycle frequencies. Horvath

(1999) proposes a role for learning in generating persistent effects from short-lived

shocks. However, he relies on plant-level learning about productivities, which is

less tractable and much more difficult to incorporate into DSGE models than our

aggregate learning-by-doing mechanism.

Alternative propagation mechanisms have also been explored in various forms of

adjustment costs in the allocation of labor, as in Cogley and Nason (1995), Burnside

and Eichenbaum (1996), Andolfatto (1996), den Haan, Ramey and Watson (2000),

Pries (1999), and Hall (1999).

The paper is organized as follows. Section 2 describes the proposed LBD model.

Section 3 provides an overview of the econometric methodology employed in the

paper. Section 4 is devoted to the estimation of the learning-by-doing effect using

micro data obtained from the Panel Study of Income Dynamics (PSID). Section
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5 contains the time-series analysis of the LBD model and our main findings. We

conclude with a summary of our results and a discussion of some avenues for future

research.

2 A Stochastic Growth Model with Learning-by-Doing

The proposed model economy is a variation of the standard stochastic-growth model.

Our main departure is the introduction of a learning-by-doing mechanism associated

with labor effort. The skill level of workers fluctuates over time according to their

recent labor-supply history, which leads, in turn, to additional changes in output.

2.1 Households

The household sector is subsumed by a representative agent that maximizes expected

discounted lifetime utility defined over consumption C and hours of work H:

U = IE0

[ ∞∑
t=0

βt[lnCt −Bt
H

1+1/ν
t

1 + 1/ν
]

]
. (1)

Here IE0[.] denotes the expectation conditional on the information at time 0, while β

is the subjective discount factor and Bt represents a stochastic shift of preferences.

The assumption about the form of the momentary utility function is popular both

in business-cycle analysis and the empirical labor-supply literature. The parameter

ν denotes the compensated elasticity of labor supply. Log utility in consumption

supports a balanced growth path.

LetXt denote the experience of the representative agent from past labor supplies,

which we identify with the skill level. We assume that the skill raises the effective

unit of labor supplied by the household. According to our production technology,

which will be specified below, labor input enters simply as an effective unit. Thus,

a worker with skill Xt will earn a competitive wage rate of

Wt(Xt) = W ∗t Xt, (2)
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where W ∗t denotes the market wage rate for the efficiency unit of labor. The skill

accumulates over time according to hours worked in the past. This dependence is

summarized by the following representation:

ln(Xt/X) = φ ln(Xt−1/X) + µ ln(Ht−1/H), 0 ≤ φ < 1, µ ≥ 0, (3)

where variables without time subscript denote steady states.

The household owns the capital stock Kt, and rents it to the firms at the com-

petitive rental rate Rt. The budget constraint faced by the household is

Ct + It = Wt(Xt)Ht +RtKt, (4)

where It denotes investment. Finally, the accumulation of capital is described by

the law of motion:

Kt+1 = It + (1− δ)Kt, (5)

where δ is the depreciation rate of the capital stock.

2.2 Firms

Firms produce final goods according to a constant-returns Cobb-Douglas technology

in capital, Kt, and labor, Nt:

Yt = K1−α
t (NtAt)α. (6)

At denotes the exogenous stochastic technological progress. Reflecting the role of

learning-by-doing, the labor input in production, Nt, consists of hours worked Ht,

and the skill level Xt:

Nt = XtHt. (7)

Profit maximization of the firm implies:

W ∗t = αAαt Nt
α−1K1−α

t , (8)

Rt = (1− α)(NtAt)αK−αt . (9)
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2.3 Shocks

The model economy is pertubated by two exogenous processes: the level of technol-

ogy At, and the preference process Bt. We assume that the production technology

evolves according to a random walk with drift:

lnAt = γ + lnAt−1 + εat , εat ∼ N (0, σ2
a). (10)

Thus, the shock εat has a permanent effect on the level of productivity.

The preference shock Bt shifts the marginal rate of substitution between goods

and leisure, which has been emphasized by Parkin (1988), Baxter and King (1991),

and Hall (1997) as an important factor in explaining aggregate labor-market fluctu-

ations. We assume that Bt follows a stationary AR(1) process:

lnBt = (1− ρ) lnB + ρ lnBt−1 + εbt , εbt ∼ N (0, σ2
b ), (11)

where 0 ≤ ρ < 1. The preference shock εbt has only a transitory effect. While

preference shocks are obviously quite convenient and parsimonious, they are not

crucial for our findings. The results are robust to allow for alternative types of

transitory shocks such as government spending shocks and temporary movements

in productivity.2

The two shocks εat and εbt are assumed to be uncorrelated. Suppose a bivariate

VAR with sufficiently many lags is fitted to data on output growth and hours gen-

erated from the LBD model. The presence of one permanent and one transitory

shock allows us to use the Blanchard and Quah (1989) scheme to identify the two

structural shocks.

2.4 Discussion

Several studies in labor economics have documented the role of past labor supply in

determining current wages. Altug and Miller (1998) in particular find a significant
2With essentially the same parameter values, we are also able to generate a pronounced hump-

shaped response in output in response to transitory shifts in government spending or productivity.
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learning-by-doing effect of past labor supplies on current wages. There is also ample

evidence of a strong job-tenure effect in wage profiles (Topel (1991)) and significant

wage losses suffered by displaced workers (e.g., Jacobson, LaLonde, and Sullivan

(1993)).

Although we will continue to refer to these results, and others, as evidence of

learning-by-doing, perhaps more appropriately we should regard them merely as

evidence for past labor supply in determining current wages. Whether this suggests

an important role for learning-by-doing or simply reflects, for example, a loss of

employment rents by displaced workers as emphasized in the matching literature, is

not crucial to our purposes. The key implication of our model is only that there is

a strong link between past labor supply and current wages.

Our parsimonious representation of skill accumulation in Equation (3) provides

a simple interpretation of the learning-by-doing mechanism. First, it implies that

an increase in the number of hours worked in the current period contributes to an

improvement in labor skills in the next period with an elasticity of µ. Second, skill

accumulation is persistent but not permanent. The effects on skills decay over time

at rate φ.

Finally, note that the LBD model is identical to the standard stochastic-growth

model if µ = 0 and Xt = X. Hence, it is quite easy to understand the different

implications of the two models, in particular with respect to their dynamic responses

to exogenous shocks. While the RBC model fails to generate much internal prop-

agation, our LBD model has the potential to generate richer dynamics. Workers’

increased effort in expansions leads to a rise in future productivity through the

accumulation of skills, and to corresponding increases in output.

3 Quantitative Analysis: Methodology

The properties of the LBD model crucially depend on the parameterization of the

skill-accumulation process. Data from the PSID are used to estimate the effect of

learning-by-doing on the micro level. Taking these micro estimates into account, the
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representative-agent model is fitted to quarterly time-series data on GDP growth

and aggregate hours – two important aggregate quantities. Moreover, the use of

output and hours makes our work comparable to earlier studies such as Blanchard

and Quah (1989) and Cogley and Nason (1995). In addition to the time-series fit of

the model, we examine how well the LBD specification captures the business-cycle

dynamics of output growth and hours based on impulse-response and autocorrelation

functions.

3.1 Combining Micro and Macro Data

A Bayesian approach, placing probability both on data and on models, is adopted

for our econometric analysis. The use of prior distributions enables us to incorporate

external information into the parameter estimation. Two data sets are used in the

empirical analysis: micro-level PSID data on wages and hours (denoted by Y m) and

macro-level time-series YM on output growth and aggregate hours.

The LBD model provides a joint-probability distribution p(YM |θLBD, θM ) for

aggregate time-series conditional on the learning-by-doing parameters θLBD = [µ, φ]′

and additional parameters θM that appear in the representative-agent model. A log-

wage equation for individual i,

wi,τ = w̃∗τ + xi,τ + qi,τ , (12)

is used to obtain a probabilistic representation for the micro data p(Y m|θLBD, θm).

The terms w∗τ and xi,τ are micro counterparts of lnW ∗t and lnXt, respectively.

Individual-specific components of the wage are captured by qi,τ . Unlike the aggre-

gate time-series data, which are available at quarterly frequency, the panel data are

observed only at annual frequency. We use τ instead of t as an annual time index.

As in the representative-agent model, the skill stock xi,τ of individual i is a moving

average of hours worked in the past:

xi,τ = µ̃
∞∑
j=0

φ̃jhi,τ−1−j , (13)
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where h is log annual hours. Since xi,τ is an annual process, we denote the pa-

rameters of its law of motion by µ̃ and φ̃. The Appendix describes how the annual

parameters can be converted into quarterly µ and φ. Details including the stochastic

process qi,τ will be discussed in Section 4.

In principle, the micro data Y m contain some information on the aggregate price

W ∗t for an efficiency unit of labor. However, in our subsequent analysis we neglect

this link and assume

p(YM |Y m, θLBD, θM ) ≈ p(YM |θLBD, θM ). (14)

Since the micro data are annual, they convey much less information on the business-

cycle variation of the aggregate skill price than do the quarterly time-series observa-

tions. We believe that potential gains from using the exact conditional distribution

are too small to justify the additional computational burden.

Under the above assumption the joint posterior distribution for θLBD and θM

simplifies to

p(θLBD, θM |YM , Y m) =
p(YM |θLBD, θM )p(θM |θLBD)p(θLBD|Y m)∫
p(YM |θLBD, θM )p(θM |θLBD)p(θLBD|Y m)dY A

, (15)

where p(θM |θLBD) is the prior distribution for the additional parameters of the LBD

model conditional on µ and φ. Equation (15) implies that the empirical analysis can

proceed in two steps: (i) estimate the LBD parameters based on the panel data Y m

to obtain the posterior p(θLBD|Y m); and (ii) use the micro estimate p(θLBD|Y m)

as a prior distribution for the LBD parameters in the time-series estimation of the

aggregate model.

3.2 Evaluation of Aggregate Models

Three structural aggregate models are considered. First, we report evaluation statis-

tics for the RBC model (µ = 0, φ = 0) as a basis for comparisons. Second, the

aggregate LBD model is combined with the prior distribution for µ and φ from the

panel-data analysis. Third, another version of the LBD specification is obtained by

scaling the prior variance for µ and φ to assign less weight to the micro estimates.
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This provides an interesting opportunity to examine a possible tension between the

micro and macro estimates of θLBD because under the diffuse prior the learning-

by-doing parameters can adjust to match the dynamics of the LBD model with the

aggregate time-series data. (Details are discussed in Section 5.) We will refer to

the three structural specifications as DSGE models. The models are log-linearized

and solved by standard methods, such that of King, Plosser, and Rebelo (1988).

Since the models are driven by two exogenous processes, At, and Bt, the marginal

distribution of output growth and hours is non-degenerate.

The parsimonious and stylized nature of the model economies is a potential

source for misspecification. To account for this problem a vector autoregression

serves as a reference model. VARs are widely used in empirical macroeconomics to

study the dynamic properties of multivariate time series. While both the DSGE

models and the VAR imply a linear moving-average representation for aggregate

output growth and hours, the VAR is far less restrictive.

The posterior odds of the DSGE models versus the VAR provide a measure of

the overall statistical fit of the DSGE models within the class of bivariate linear

time-series models. If the statistical fit of the DSGE models is poor, then the VAR

can be used as a benchmark to obtain posterior estimates of population moments

and impulse response functions. The model evaluation can proceed by comparing

the predictions of the DSGE models and the posterior VAR estimates with respect

to population characteristics of interest, denoted by an m × 1 vector ϕ. A formal

interpretation of this procedure and a detailed comparison with other evaluation

approaches such as calibration and likelihood-based model comparisons can be found

in Schorfheide (2000). To make the paper self-contained, a brief description of the

evaluation steps is provided.

Denote the reference model byM0 and the structural models byMi, i = 1, . . . , k

with parameters θ(i). Let πi,0 be the prior probability of model Mi (conditional on

the micro data Y m) and πi,T its posterior probability. The population characteristics

ϕ are functions fi(θ(i)) of the model parameters θ(i). Their posterior conditional on

a modelMi is denoted by the density p(ϕ|Y,Mi), where Y denotes the combination
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of the micro data Y m and aggregate data YM .

Step 1: Compute posterior distributions for the model parameters θ(i) and cal-

culate posterior model probabilities:

πi,T =
πi,0p(YM |Y m,Mi)∑k
i=0 πi,0p(YM |Y m,Mi)

, (16)

where p(YM |Y m,Mi) =
∫
p(YM |θ(i),Mi)p(θ(i)|Y m)dθ(i) is the marginal data den-

sity of Mi. The posterior probabilities provide a measure of time-series fit for the

models Mi.

Step 2: The overall posterior distribution of the population characteristics ϕ is

given by

p(ϕ|Y ) =
k∑
i=0

πi,T p(ϕ|Y,Mi). (17)

If the posterior probability of the reference model is substantially larger than the

posterior probabilities of the structural models, that is, π0,T � πi,T , i = 1, . . . , k,

then

p(ϕ|Y ) ≈ p(ϕ|Y,M0). (18)

Step 3: Loss functions L(ϕ, ϕ̂i,b) are introduced to penalize the deviation of

actual model predictions ϕ̂i,b (based on structural Bayes estimates) from population

characteristics ϕ. For each structural model Mi, we examine the expected loss

associated with ϕ̂i,b under the posterior distribution of ϕ conditional on the VAR:

R(ϕ̂i,b|Y,M0) =
∫
L(ϕ, ϕ̂i,b)p(ϕ|Y,M0)dϕ. (19)

The loss function can be used in several ways to analyze the model. First, the

expected loss R(ϕ̂i,b|Y,M0) itself provides an absolute measure of fit. Second, the

differential across structural models provides a relative measure of fit that allows

model comparisons.

Two loss functions are used in the empirical analysis. The quadratic loss function

is of the form

Lq(ϕ, ϕ̂) = (ϕ− ϕ̂)′W (ϕ− ϕ̂), (20)
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where W is a positive definite m ×m weight matrix. It can be shown that under

the quadratic loss function the ranking of model predictions ϕ̂ depends only on the

weighted distance

R̃q(ϕ̂|Y ) = (ϕ̂− IE[ϕ|Y ])′W (ϕ̂− IE[ϕ|Y ]) (21)

between predictor ϕ̂ and the overall posterior mean IE[ϕ|Y ].

The second loss function penalizes predictions that lie far in the tails of the

overall posterior distribution p(ϕ|Y ). Define

Cχ2(ϕ|Y ) = (ϕ− IE[ϕ|Y ])′V ar−1[ϕ|Y ](ϕ− IE[ϕ|Y ]) (22)

and let

Lχ2(ϕ, ϕ̂) = I
{
Cχ2(ϕ) < Cχ2(ϕ̂)

}
, (23)

where I{x < x′} is equal to one if x < x′, and is equal to zero otherwise. The

expected Lχ2 loss is similar to a p-value if the posterior density is well approximated

by a unimodal Gaussian density. A value close to one indicates that the DSGE model

predictions lie far in the tails of the overall posterior distribution.

A comparison of the DSGE models based on posterior odds ratios obtained in

Step 1 can be rationalized through a loss function that assigns the loss 1 if the

“false” model is chosen, and 0 if the “correct” model is chosen. However, unlike

the previous two loss functions, the 0–1 loss function does not capture the economic

implications of selecting one of the structural models, if the reference model M0 is

“correct.”

4 Micro Evidence on Skill Accumulation

Panel data from the PSID for the period 1971-1992 are used to estimate the wage

equation

wi,τ = w̃∗τ + µ̃
∞∑
j=0

φ̃jhi,τ−1−j + qi,τ . (24)
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The ideosyncratic productivity qi,τ is decomposed as follows

qi,τ = ζi + v′i,τλv + ui,τ , (25)

where vi,τ is a 4× 1 vector of covariates that helps explain wage differentials across

individuals. It consists of age and squared age to capture the age-earnings profile

(AEP), years of schooling, and a female dummy. ζi represents an individual-specific

effect, and ui,τ generates stochastic shifts of the idiosyncratic productivity. We allow

for autocorrelation in ui,τ

ui,τ = ξui,τ−1 + εui,τ , εui,τ ∼ iidN (0, σ2
u). (26)

For the actual estimation we truncate the infinite-order moving average of past

wages after 5 lags and replace the market wage rate for efficiency unit of labor w̃∗τ

by a (Υ + 1)× 1 vector of time dummies d0
τ . This leads to

wi,τ = ζi + d0′
τ γd + v′i,τγv + µ̃

4∑
j=0

φ̃jhi,τ−1−j + ui,τ , τ = 0, 1, . . . ,Υ. (27)

To construct a Gaussian likelihood function for wages conditional on hours3 and

covariates vi,τ , Equation (27) is quasi-differenced4:

wi,τ = ξwi,τ−1 + ζ̃i + d′τ λ̃d + v′i,τ λ̃v (28)

+µ̃ht−1 +
4∑
j=1

µ̃(φ̃j − ξφ̃j+1)ht−1−j − µ̃ξφ̃5ht−6 + εui,τ , τ = 1, . . . ,Υ.

Subsequently, we will briefly report our prior distribution for the coefficients that

appear in the wage equation, discuss the parameter estimates, and compare our

estimates to the existing literature.
3Even if the hours innovations and wage innovations are correlated, the conditional-likelihood

function generates the same estimates for the parameters of the wage equation as the joint estimation

of a VAR for hours and wages if: (i) the conditional mean of log hours is modeled as a linear function

of the regressors that appear in the wage equation; and (ii) the coefficients in the hours equation

are integrated out with respect to a prior that is uniform on the real line.
4Unlike d0

τ , the vector dτ does not include a dummy variable for τ = 0. The transformed

parameters satisfy the relationship ζ̃i + v′i,τ λ̃t = ζi(1− ξ) + (v′i,τ − ξv′i,τ−1)λv.
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4.1 Priors for Micro-Level Estimation

An uninformative prior is used for the LBD parameters p(µ̃, φ̃) ∝ 1. This implies

that we simply explore the shape of the marginal likelihood function in the direction

of µ and φ. The prior for the autoregressive coefficient ξ and the standard deviation

σu of the random effect is of the form p(ξ, σu) ∝ σ−1
u .

Our prior distributions for the parameters ζi, λd, and λv are provided in Ta-

ble 1. The priors are centered around estimates that have been reported in the

empirical micro literature based on data sets other than the PSID. A priori the

average “return-to-schooling” is 10% (e.g., Willis (1986)) the gender bias is −40%

(e.g., Cain (1986)). The age-earnings profile peaks around at the age of 55 and the

individual at his peak earns 40% more than he did at the age of 30 (e.g., Ghez and

Becker (1975)). We use fairly large standard deviations so that our priors assign

substantial probabilities to ranges that most economists would regard as plausible,

and permit some unreasonable values as well.

The prior for the individual-specific effect is N (0, 0.252). This implies that

among individuals with the same age, education, and employment history the wage

ratio of the bottom 2.5% and the top 97.5% quantile of the distribution is about

1/3. Finally, consider a baseline individual, who is a 30-year-old male in 1976 with

12 years of schooling. A priori his log real wage in 1983 dollars is N (ln 10, 0.22). To

generate a prior for the coefficients on the time-dummy variables, we assume that

it subsequently evolves in steady state according to lnwτ = γ+ lnwτ−1 + εwτ , where

γ ∼ N (0.02, 0.0042) and εwτ ∼ iidN (0, 0.012). The prior on wage growth corresponds

to the prior on productivity growth that is used for the time-series estimation.

4.2 Posterior Estimates from the PSID

Posterior means and standard errors for the LBD parameters and some of the ad-

ditional parameters are reported in Table 1. Computational details are provided in

the Appendix. According to our estimates the age-earnings profile peaks at age 59,

the “return-to-schooling” is 8.7%, and women earn about 30% less than men. These
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estimates indicate that the inclusion of lagged hours in the wage equation does not

lead to unreasonable estimates of other widely studied determinants of wages at the

micro level cited above.

Of primary interest are the estimates of the learning-by-doing parameters, µ̃ and

φ̃. Based on the annual panel data, the posterior means for the two LBD parameters

are µ̃ = 0.33 and φ̃ = 0.41. Suppose individual i works on average 2000 hours per

year and attained her steady-state skill level in 1980. Due to the recession in 1981

she becomes unemployed for three months and the annual hours drop to 1500 hours.

In the subsequent years she will again be employed for 2000 hours. Our estimates

imply that individual i’s wage will drop by 9.5% in 1982 due to the loss of work

experience. However, in 1983 her wages will be only 3.9% below the steady-state

level, and by 1985 she has almost completely recovered from the temporary loss of

experience as her wage is below the steady state by just 1.6%.

In order to use the LBD parameter estimates in the quarterly time-series anal-

ysis, µ̃ and φ̃ are converted into µ and φ according to the formula derived in the

Appendix. The values at quarterly frequency are µ = 0.111 and φ = 0.798, with

standard errors of 0.004 and 0.012.5

We compare our estimates to those of several other studies. Using PSID data

for women Altug and Miller (1998) estimate that the wage elasticity of lagged hours

is 0.2 and the wage elasticity of hours lagged twice is 0.05. In our notation their

estimates correspond to µ̃ = 0.2 and φ̃ = 0.25, implying somewhat weaker initial

impact and less persistence of its subsequent effects than our estimates. Based on

the PSID as well, Topel (1991) finds evidence of a clear tenure effect that leads to a

wage growth of about 7% after one year of tenure, leveling off to around 2.5% after

10 years of work.
5The estimates are fairly robust to reasonable changes in the prior distribution. Changes in

the mean of the baseline wages to ln 8 or ln 12 had virtually no effect. Scaling the prior standard

deviation of the individual-specific effect by 0.1 increased the estimate of µ to 0.13. An increase of

the prior variance by a factor of 10 reduced the estimate of µ to 0.09. The estimates of φ remained

between 0.80 and 0.83.
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The effects of job separations on wages are also well documented although quan-

titative estimates are quite sensitive to the exact definition of separation. Very strict

definitions of job separations usually lead to estimates of subsequent wage losses that

are both high and persistent, while broader definitions usually yield much smaller

numbers. For example, Jacobson, LaLonde, and Sullivan (1993) find wage losses

between 10% and 25% in the first year following a separation. In our model, this

implies an annual value of µ of between 0.1 and 0.25. The time for full recovery

varies across sample. For the mass-layoff sample, wage loss is smaller and the re-

covery is fast, suggesting small values for both µ and φ. For non-mass layoffs, wage

losses are much larger and the recovery is slow, suggesting higher values for both µ

and φ.

We adopted a broad notion of learning-by-doing in our panel-data estimation

because it is compatible with the representative-agent model. However, we generate

a second prior for the time-series estimation of the LBD model by scaling the covari-

ance matrix of the micro estimates. Confidence sets constructed from this diffuse

prior will cover the alternative estimates that have been reported in the literature.

5 Time-Series Estimation and Aggregate

Model Evaluation

A common approach in the calibration literature is to evaluate models based on pa-

rameter values that are regarded as economically plausible. Such values are obtained

from long-run averages of aggregate time series, from microeconometric evidence,

or from pure introspection. In our analysis the micro-level information is formally

incorporated through a prior distribution. Moreover, we will specify priors for the

remaining structural parameters, which can be justified based on a short sample of

observations preceding our estimation period. The priors are combined with like-

lihood functions for the DSGE models to obtain posterior distributions. Loosely

speaking, the Bayes estimation can be interpreted as searching for parameter values
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such that the DSGE models fit the data in a likelihood sense, without deviating too

much from economically sensible values.

All models are fitted to quarterly U.S. data from 1954:III to 1997:IV. Priors

are specified conditional on the first 22 observations. The estimation period is then

1960:I to 1997:IV. A fourth-order VAR with “Minnesota Prior” (Doan, Litterman,

and Sims (1984)) serves as the reference model. Data definitions and some compu-

tational details are provided in the Appendix.

5.1 Prior Distributions for the DSGE Model Parameters

The joint posterior distribution for LBD parameters µ and φ obtained from the

panel-data analysis in Section 4 is approximated by a bivariate normal distribution,

which serves as Prior 1 for the LBD model. A second prior, denoted as Prior 2, is

obtained by scaling6 the covariance matrix of Prior 1 by 252. Under Prior 2, the

mean of µ is 0.145 and the standard error increases to 0.078. The mean of φ is

0.664 and its standard error is 0.213. The second prior implicitly assigns less weight

to the micro-level evidence on learning-by-doing. Effectively, this provides us an

opportunity to investigate a possible tension between the learning mechanism at

the micro level and the propagation mechanism needed to fit the time-series data

at the aggregate level. For the RBC model, we set µ = φ = 0.

The prior distributions for the remaining parameters are summarized in Table 2.

The shapes of the densities are chosen to match the natural domain of the structural

parameters. It is assumed that the parameters are a priori independent of µ, φ, and

each other. Based on pre-sample information on the labor share of national income,

the prior for α is centered at 0.66. The prior for β implies that the steady-state real

interest rate is about 4% per year. The economy is expected to grow an average

2% annually. Capital is assumed to depreciate at the rate of 2.5% quarterly. As

these parameters are standard in the literature, we use fairly small standard errors

to make our model a priori comparable to those in the literature.
6We also truncate the distribution to guarantee that µ ≥ 0 and 0 ≤ φ < 1.
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The prior for the aggregate short-run labor supply elasticity υ is centered at

2 as in Prescott (1986), with a standard error of 0.5. We use diffuse priors for

the parameters of the exogenous processes.7 The 95% confidence interval for the

autocorrelation ρ of the preference process Bt extends from 0.6 to 0.99. For the

standard deviations σa and σb of the structural shocks, we use uninformative inverse-

Gamma priors.

5.2 Posterior Estimates

Draws from the posterior distribution of the DSGE model parameters are generated

with a random walk Metropolis algorithm. The posterior means and standard errors

are reported in Table 3. As can be seen in the first column, parameter estimates for

the RBC model are similar to those in the literature. The model requires a fairly

persistent preference shock because its estimated autoregressive coefficient is 0.944.

This reflects the high autocorrelation present in the aggregate-hours series.8

Of primary interest to our analysis are the learning-by-doing parameters. Con-

fidence sets for µ and φ are plotted in Figure 1. The top graph shows the results

for Prior 1. Prior and posterior confidence sets are almost identical as our priors

are informative. The posterior means of µ and φ are 0.111 and 0.797, respectively.

Prior 2 is much more diffuse than Prior 1 and the likelihood function pulls the pos-

terior toward a higher value of µ and a lower value of φ. The posterior estimates

µ̂ = 0.145 and φ̂ = 0.664 imply a somewhat stronger initial impact and faster re-

covery toward the steady state. The estimation results suggest some discrepancy

between the information in the panel data and the parameter values that are needed

to achieve the best time-series fit of the LBD model. We will further examine this

discrepancy in the context of the impulse-response function analysis. The other
7To fit the models to the data, we parameterize them in terms of log steady-state hours h, rather

than in terms of the mean preference level B. Since h does not affect the dynamics of the models,

we do not report it in Tables 2 and 3.
8It is well known that aggregate hours series exhibit large persistence. For example, Shapiro

and Watson (1988) emphasize permanent shifts in labor supply as an important source of economic

fluctuations.
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parameters are similar across all three models. The only exception is that the LBD

models require slightly less persistent preference shock to fit the time series since

the learning-by-doing provides an internal propagation mechanism.

Formal statistics of overall time-series fit – namely marginal data densities and

posterior model probabilities for the three DSGE model specifications and the VAR

– are summarized in Table 4. The marginal data densities ln p(YM |Y m,Mi) can be

interpreted as maximum log-likelihood values, penalized for model dimensionality,

and adjusted for the effect of the prior distribution. The posterior odds ratios of

the LBD specifications versus the RBC model indicate that the learning-by-doing

propagation mechanism clearly improves the time-series fit of the stochastic growth

model. The LBD models are favored at rates of 4 to 1 and 20 to 1, respectively. How-

ever, the results also indicate that the reference model outperforms the structural

models by a wide margin. Suppose the prior probabilities are 0.25 for each of the

four specifications. In this case the reference model has essentially posterior proba-

bility one. This result is robust across a wide range of prior probabilities. To shed

more light on how well the DSGE models capture the dynamics of output growth

and hours, we examine the implied impulse-response functions and autocorrelations

in the next section.

5.3 Impulse-Response Dynamics

The dynamic behavior of DSGE models is often summarized by their impulse-

response functions. One of the well-known time-series properties of output in a VAR

analysis is its hump-shaped, trend-reverting response to a transitory shock. This

has been documented by, among others, Blanchard and Quah (1989) and Cochrane

(1994), and it has been one of the main criticisms of the simple RBC model. Cogley

and Nason (1995) comment that “while GNP first rises and then falls in response

to a transitory shock, the RBC model generates monotonic decay. Thus, the model

does not generate an important trend-reverting component in output.”

In our analysis, the model economies are driven by a random-walk technology

and a stationary preference shift. The innovations in the technology process have
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a permanent effect on output, whereas the innovations in the preference process

have a transitory effect. Blanchard and Quah’s (1989) method is used to identify

transitory and permanent shocks in the vector autoregression. We then assess the

discrepancy between the different DSGE model impulse responses and the VAR

response functions.

Figure 2 depicts posterior mean responses for the three DSGE model specifica-

tions and the VAR, as well as a pointwise 75% Bayesian highest posterior density

(HPD) confidence band from the VAR. All responses are based on one-standard-

deviation shocks. The first two rows are the responses of output and hours to a

transitory shock, and the last two rows are the responses to a permanent shock.

The VAR responses of output to the transitory shock exhibit a clear hump shape.

In the context of the DSGE models, the transitory shock causes an increase in the

marginal rate of substitution between goods and leisure, that is, a decrease in Bt.

The upper-left panel shows that after the impact of the shock both output and

hours are monotonically decreasing in the RBC model. Columns 2 and 3 of Figure 2

depict the responses of the LBD economies with Prior 1 and Prior 2, respectively.

Unlike in the standard model, output rises for the first four (Prior 2) to eight (Prior

1) quarters and decays subsequently. The decay in output is somewhat slower than

the decay predicted by the VAR impulse-response function. Under Prior 2 the

posterior estimate of φ is smaller, so the decay is slightly faster. This problem

of slow decay is also apparent in the IRF plots generated by Perli and Sakellaris

(1998), but is less severe for our IRFs. We will show subsequently that there exists

a parameterization of the LBD model that overcomes this deficiency, although one

has to deviate from the time-series estimates to achieve it.

While a hump-shaped output response is obtained for both LBD specifications,

only the LBD model with Prior 2 is capable of generating a very small one-period

hump in the response of hours. However, according to the VAR the hump in the

hours dynamics is as pronounced as the one in the output IRF. In response to a

permanent shock, the RBC model and the LBD model with Prior 1 deliver monotone

IRFs, whereas the VAR indicates that both hours and output respond with a delay.
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Again, only the LBD model with Prior 2 generates a very slight hump in the response

of hours to a permanent technology shock.

5.4 The Effect of ρ, µ, and φ on the Propagation of Shocks

To illustrate the sensitivity of the impulse responses to changes in the values of

the learning-by-doing parameters µ and φ and the autocorrelation of the transitory

shock ρ, we explore alternative parameterizations of the LBD model.

Consider the effects of a transitory preference shock. Upon impact the labor

supply rises. In Period 2 and thereafter two competing effects occur simultaneously.

On the one hand, the preference process reverts to its long-run mean, which de-

creases the labor supply. On the other hand, the productivity of hours worked has

increased due to the learning effect, which increases the demand for labor. The rel-

ative magnitude of the two effects determines whether the hours response is hump

shaped.

Aggregate output, however, may show a hump-shaped response even if hours

does not, since it is a function of the effective labor input Nt = XtHt. Given an

initial increase in Ht the endogenous skill Xt is above its steady-state level in the

second period. As long as the decay of hours Ht is slower than the increase of skills,

output keeps rising and the model produces a hump-shaped response.

Figure 3 confirms the intuition. In Experiment 1 in the left column of the

figure, we contrast the benchmark LBD model (Prior 1) with alternative values for

the persistence of the transitory shock. We choose ρ = 0, 0.5, and 0.85. We use the

posterior means from Table 3 for the other parameters. The graphs show that, while

the model is capable of generating some persistence, even in the presence of i.i.d.

shocks to Bt, it is very small and short lived. The LBD response function exhibits

a hump only after ρ reaches 0.85. Note, however, that a quarterly autocorrelation

of 0.85 is not an unreasonable value, as it implies a half life of about one year for

the transitory shock. This value of ρ also delivers a much shorter-lived response

of output that actually shows a marked improvement over the benchmark LBD
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model along this dimension. We now obtain a response that peaks after only two

quarters. However, the overall time-series fit decreases as we change ρ. Compared

to the posterior mode, the log-likelihood decreases by 6.0 for ρ = 0.85 and 131.7 for

ρ = 0.5.

The second column, Experiment 2, shows the combined effect of changing µ,

φ, and ρ. For comparison we also include the VAR posterior obtained from the

data. With only small adjustments to the learning parameters and the persistence

parameter (µ = 0.2, φ = 0.7, ρ = 0.8), the implied response of output to a transitory

shock virtually coincides with its VAR counterpart. The log-likelihood differential

is now 16.1.

5.5 Persistence: Evidence from Autocorrelations

Many univariate studies of output dynamics (e.g. Cochrane (1988)) find that output

growth is positively autocorrelated over short horizons and only weakly autocorre-

lated over longer horizons. This finding is confirmed in our bivariate analysis. The

first four rows of Table 5 summarize posterior mean predictions of the DSGE mod-

els and the VAR along with 95% confidence intervals. According to the VAR, both

corr(∆yt,∆yt−1), and corr(∆yt,∆yt−2) are clearly positive. As pointed out by

Cogley and Nason (1995), the standard RBC model predicts the autocorrelations

of output growth to be essentially zero. The learning-by-doing mechanism, on the

other hand, is able to generate positive autocorrelations. The first-order autocor-

relation is 0.06 with Prior 1 and 0.10 with Prior 2. Higher-order autocorrelations

decay toward zero. However, the autocorrelations calculated from the VAR seem to

decay faster than the ones obtained from the LBD models.

The next three rows contain the formal evaluation statistics discussed in Sec-

tion 3. The statistics are based on the first four lags of the output growth au-

tocorrelations. Under both Prior 1 and Prior 2 the learning mechanism leads to

improvements. The posterior expected Lq-loss for autocorrelations decreases from

0.116 (RBC) to 0.078 (LBD, Prior 1) and 0.058 (LBD, Prior 2). In addition to the
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quadratic losses we report the expected Lχ2 losses. A value close to one indicates

that the model prediction lies far in the tails of the posterior density obtained from

the VAR. Again, the LBD mechanism helps to reduce the statistic from 0.99 (RBC)

to 0.97 (LBD, Prior 2) and 0.907 (LBD, Prior 2).

The bottom half of the table contains the results for the hours. Based on a

lag-by-lag comparison and the joint Lq statistic the DSGE models correctly capture

the high autocorrelation in the hours series. The fairly high values of the Lχ2

statistic indicate that the orientation of the VAR posterior contours makes the joint

prediction of the four autocorrelations appear to lie far in the tails. Nevertheless,

the relative ranking of the models is not affected.

5.6 Endogenous versus Exogenous Productivity

Finally, we investigate how the learning-by-doing mechanism affects the measured

productivity. While the real-business-cycle theory builds on a pronounced cyclical

productivity, either in measured total factor productivity (TFP) or labor produc-

tivity, many researchers suspect that the measured productivity may not reflect the

true exogenous shifts in production technology. For unusually high productivity

during expansions, they often point to cyclical utilization, (e.g., Burnside, Eichen-

baum, and Rebelo (1995), or Bils and Cho (1994)), short-run increasing returns

(e.g., Hall (1990)) or cyclical composition of industrial production (e.g., Basu and

Fernald (1995)). Our model also predicts that TFP is likely to be higher during

expansions due to the accumulated labor market experience. According to the LBD

model measured TFP consists of two components: true exogenous productivity and

the induced productivity due to learning-by-doing.

Figure 4 compares the posterior means of measured TFP and exogenous produc-

tivity from the LBD model based on Prior 1. Both series are graphed as percentage

deviations from the trend. As expected, measured TFP does overstate the true

productivity in expansions and understates in recessions. For example, TFP over-

states the true productivity by about one percentage point in the late 1960’s as
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the economy had accumulated a significant amount of human capital stock through

learning-by-doing during an extended period of expansion. On the other hand, the

decline of TFP is deeper than that of true productivity in the mid-1980’s after the

economy had experienced a series of recessions in the mid-1970’s and early 1980’s,

both of which were associated with short hours of work.9

Nevertheless, the differences between measured TFP and the true exogenous

productivity are fairly small. The estimated standard-error ratio of the endogenous

versus the exogenous TFP component ranges from 8.8% to 12.2%. Thus, the dis-

crepancy is not so dramatic as in Burnside, Eichenbaum, and Rebelo (1995). The

reason is that in our model the endogenous productivity stems from the accumulated

stock of human capital, which tends to move far less over time than the utilization

rate of capital in Burnside et al. (1995). While we do not take a stand on the magni-

tude of other endogenous components of TFP, the contribution of learning-by-doing

is modest.

6 Conclusion

Despite their popularity and wide application, standard real business-cycle models

lack a satisfying internal-propagation mechanism. To generate such a mechanism,

we augment the RBC model with learning-by-doing, where the current labor supply

affects workers’ future labor productivity.

Based on the individual-level panel data on wages and hours obtained from the

PSID, we construct micro estimates for the learning-by-doing mechanism. These

estimates are combined with time-series data on GDP growth and hours to perform

a Bayesian analysis of the representative-agent model. We find that the LBD model

fits the aggregate data much better than does the standard RBC model. Overall, the

model, by and large, reproduces the impulse response in the VAR reasonably well.

Yet the response of hours is delayed for about 2-3 quarters in the data, suggesting

important frictions in the labor market. Nevertheless, we view learning-by-doing
9The results based on Prior 2 are very similar.
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as an important propagation mechanism that can easily be built into more com-

plicated DSGE models to improve their empirical performance. For instance, the

mechanism could be easily incorporated in monetary models to amplify the real

effect of monetary policy.
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A Micro-Level Estimation

A.1 Data Set

The PSID sample period is 1971-1992. The sample consists of heads of households

and wives. Wage data for wives are available only since 1979. Wages are annual

hourly earnings (annual labor incomes divided by annual hours). Nominal wages

are deflated by the Consumer Price Index. The base year is 1983. Workers who

worked less than 100 hours per year or whose hourly wage rate was below $1 (in

1983 dollars) are viewed as non-employed even though their employment status is

reported as employed in the survey. We use workers who were employed in non-

agricultural sectors and not self-employed. Descriptive statistics for the sample used

in the estimation are reported in Table 6.

A.2 Estimation and Computation

Rewrite the quasi-differenced wage equation as

w̃i,τ = wi,τ − ξwi,τ−1 − µ̃ht−1 +
4∑
j=1

µ̃(φ̃j − ξφ̃j+1)ht−1−j + µ̃ξφ̃5ht−6

= ζ̃i + d′τ λ̃d + v′i,τ λ̃v + εui,τ

or in matrix form for individual i

W̃i = ιiζ̃i + Ziλ̃+ Eui ,

were ιi is a column vector of ones, Zi has rows [d′τ , v
′
i,τ ], and λ̃ = [λ̃′d, λ̃

′
v]
′. Moreover,

define θ̃ = [µ̃, φ̃, ξ, σu]′. Thus, the conditional-likelihood function is

p(W |H, θ̃, λ̃, ζ̃i) ∝
n∏
i=1

σ−1/2
u exp

{
− 1

2σu
(W̃i − ιiζ̃i − Ziλ̃)′(W̃i − ιiζ̃i − Ziλ̃)

}
.

This likelihood is combined with the Gaussian priors for λ̃ and ζ̃i described in the

text, which are specified conditional on θ̃. Since both the log-likelihood and the log-

prior density for λ̃ and ζ̃i are quadratic in λ̃ and ζ̃i, it is straightforward to obtain
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a closed-form solution for the marginalized likelihood function:

p(W |H, θ̃) =
∫
p(W |H, θ̃, λ̃, ζ̃)p(λ̃, ζ̃|θ̃)dλ̃dζ̃.

A Metropolis algorithm (see Section B.2.2) is used to generate posterior 100,000

draws from p(θ̃|W,H). The first 10,000 draws are discarded. The draws of µ̃ and φ̃

are converted into µ and φ. (See Equation (30.) Conditional on θ̃, it is possible to

compute posterior means and variances for λ̃. The unconditional means and vari-

ances reported in Table 1 were obtained by Monte Carlo averaging across posterior

draws of θ̃.

A.3 Conversion of Estimates from Annual to Quarterly

Unfortunately, an analytical solution for the conversion from annual to quarterly

values for µ and φ is not available. Instead we approximate the quarterly values

from annual estimates in the following way: After controlling for individual effects

and the aggregate price of an effective unit of labor, the wage of an individual evolves

according to his skill x accumulated from learning-by-doing. Because in the PSID

wages are annual averages and hours are reported as cumulative annual hours, it is

convenient to denote the time series of {xt} as {xτ,q}, where τ and q denote the year

and the quarter of the observation. The log average wage in year τ, is a function of

x̃τ = 1
4
∑

q=1,..,4 xτ,q.
10 Assume hj = h for j = t−s, ..., t, where h is the steady-state

level of log-hours. From our skill accumulation equation, xt = φxt−1 + µht−1, the

learning-by-doing effect survives at rate φ as

xt −
µh

1− φ
= φs[xt−s −

µh

1− φ
].

Let t = 1 correspond to τ = 1 and q = 1. The average hourly earning for year τ = 2

can be written as

x̃2 =
(x2,1 + x2,2 + x2,3 + x2,4)

4
10Note that 1

4

∑4
q=1 xτ,q can be interpreted as a log-linear approximation of the arithmetic

average ln[ 1
4

∑4
q=1 e

xτ,q ].
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=
(x5 + x6 + x7 + x8)

4

=
µh

1− φ
+

1
4
φ4(φ+ φ2 + φ3 + φ4)(x0 −

µh

1− φ
)

=
µh

1− φ
+

1
4
φ4(x1 + x2 + x3 + x4 − 4

µh

1− φ
)

= φ4x̃1 +
1− φ4

1− φ
µh

= φ4x̃1 +
1− φ4

1− φ
µh̃+ constant. (29)

The last equation holds in the steady state because log annual hours are h̃ =

h + ln 4. Equation (29) is equivalent to our regression of annual average wage on

annual hours. This implies the following approximate relationships between the

annual values of µ̃ and φ̃ and the quarterly underlying parameters µ and φ:

φ̃ = φ4 and µ̃ =
1− φ4

1− φ
µ. (30)

While the conversion formula is an approximation if ht fluctuates around the steady

state, we find that it is very accurate for our purpose. The approximation error is

less than 3% when we simulate the xt using a stochastic process that mimics the

actual aggregate-hours and learning-by-doing processes in Equation (3).

B Aggregate Time-Series Analysis

B.1 Data Set

The following time series were extracted from DRI: gross domestic product (GDPQ),

employed civilian labor force (LHEM), and civilian non-institutional population 20

years and older (PM20 and PF20). We defined population as POP = PF20+PM20.

From the BLS we obtained this series: average weekly hours, private non-agricultural

establishments (EEU00500005). Prior to 1963 the BLS series is annual. We used

these annual averages as monthly observations without further modification. Our

monthly measure of hours worked is Ht = ln(EEU00500005 ∗LHEM / POP ). We

convert to quarterly frequency by simple averaging.
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B.2 Vector Autoregression: Estimation and Computation

A fourth-order vector autoregression serves as a reference model:

yt = C0 +
4∑

h=1

Chyt−h + ut ut ∼ N (0,Σ), (31)

where yt denotes a vector of GDP growth and hours worked. Define the 1×k vector

xt = [1, y′t−1, . . . , y
′
t−4] and the matrix of regression coefficients C = [C0|C1| . . . |C4]′.

Let X denote the T × k matrix with rows xt and Y a T × 2 matrix with rows

y′t. Moreover, let c = vec(C), where vec denotes the operator that vectorizes the

columns of a matrix.

B.2.1 Prior

The Minnesota prior expresses the belief that the vector time series is well described

as a collection of independent random walks. Consider equation i of the VAR model:

yi,t = Ci,0 + Ci,trt+ Ci,1yt−1 + · · ·+ Ci,4yt−4 + ut, i = 1, 2. (32)

Since y1,t is differenced output and the theory implies that hours are stationary, we

choose the prior mean to be zero for all coefficients. The variance for Ci,0 is 100,

which makes the prior diffuse. The variance of Cij,l, l = 1, . . . , p is given by

var(Cij,l) =

 (ζ/l)2 if i = j

(ζσ̂i/lσ̂j)2 if i 6= j,
(33)

where ζ is a hyperparameter. σ̂i and σ̂j are the OLS estimates of the error variance

in equations i, j based on a short training sample. All prior covariances among

different parameters are zero. The general structure of the prior for C is

vec(C) ∼ N
(
vec(C̄), Vc(ζ)

)
. (34)

To complete the specification we use an uninformative prior p(Σ) ∝ |Σ|−3/2 for the

covariance matrix Σ. The prior for the hyperparameter ζ is uniform on the grid

ζ ∈ Z = {ζ(1), ζ(2), . . . , ζ(J)}. We choose ζ1 = 0.001, ζJ = 10, J = 20, and ln ζj ,

equally spaced in the interval [ln ζ1, ln ζJ ].
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B.2.2 Posterior

The Gibbs sampler is used to obtain 100,000 draws (C(s),Σ(s), ζ(s)), s = 1, . . . , nsim

from the posterior distribution p(C,Σ, ζ|Y,M∗) of the VAR parameters. The first

10,000 draws are discarded. The Gibbs sampler iterates over the following con-

ditional distributions: ζ|Y,C,Σ (discrete), C|Y,Σ, ζ (multivariate normal), and

Σ|Y,C, ζ (inverse Wishart). For each draw (C(s),Σ(s)) we calculate the desired

population moments and impulse response functions. This leads to draws from the

posterior distribution of population characteristics p(ϕ|data). Expected values are

computed by Monte Carlo averaging.

We compute marginal data densities conditional on a training sample of 22 obser-

vations. The first 4 of the 22 observations are used to initialize lags. The conditional

data density is proper and can be used to obtain posterior model probabilities. The

marginal data density can be expressed as

p(YT |Y0,M∗) =
T∏
t=1

∫
p(yt|Yt−1, Y0, C,Σ, ζ,M∗)p(C,Σ, ζ|Yt−1,M∗)d(C,Σ, ζ),

(35)

where Y0 denotes the training sample. For each t we approximate the integral

by Monte Carlo integration. The Gibbs sampler is used to generate draws from

p(C,Σ, ζ|Yt−1,M∗). At each step, we use 2000 burn-in draws that are discarded

and 20,000 draws to approximate the integral.

B.3 DSGE Models: Estimation and Computation

Conditional on parameter values θ(i), the likelihood function of the linearized DSGE

models can be evaluated with the Kalman filter. A numerical-optimization routine

is used to find the posterior mode. The inverse Hessian is calculated at the posterior

mode. 100,000 draws from the posterior distributions of the DSGE model parame-

ters are generated with a random-walk Metropolis algorithm. The first 10,000 draws

are discarded. The inverse Hessian serves as a covariance matrix when we draw the
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proposed steps for the Metropolis algorithm. Geweke’s (1999b) modified harmonic-

mean estimator is used to approximate the marginal data densities of the DSGE

models. Details of these computations are discussed in Schorfheide (2000).
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Table 1: Panel Data Estimation Results

Prior Posterior

Mean (S.E.) Mean (S.E.)

Learning-by-Doing Parameters (Annual)

µ 0.3259 (0.0095)

φ 0.4070 (0.0244)

Learning-by-Doing Parameters (Quarterly)

µ 0.1106 (0.0039)

φ 0.7973 (0.0122)

Additional Parameters

ξ 0.5128 (0.0071)

σu 0.1982 (0.0011)

Ratio (AEP) 0.4000 (0.2000) 0.2621 (0.0245)

Peak (AEP) 55.000 (5.0000) 59.328 (2.9415)

Schooling (Years) 0.1000 (0.1000) 0.0867 (0.0040)

Female -0.4000 (0.2000) -0.2977 (0.0004)

Notes: Peak (AEP) refers to the peak of the age-earnings profile; Ratio (AEP)

refers to the difference in log wages at the peak and at age 30. We are using an

improper prior for annual µ, annual φ, ξ, and σu, which is proportional to σ−1
u .

The moments of µ, φ, ξ and σu are calculated from the output of the Metropolis

algorithm. Conditional on µ, φ, ξ, and σu, we can calculate posterior moments

for the remaining parameters analytically. The numbers reported in the table are

obtained by Monte Carlo averaging of the exact conditional moments. The estimated

simulation standard errors for the posterior moments are less than 1%.
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Table 2: Prior Distributions for DSGE Model Parameters

Name Range Density Mean S.E.

Learning-by-Doing Parameters: Prior 1

µ IR+ Trunc. Bivar. Normal 0.111 (0.004)

φ [0,1] 0.798 (0.012)

Learning-by-Doing Parameters: Prior 2

µ IR+ Trunc. Bivar. Normal 0.145 (0.078)

φ [0,1] 0.664 (0.213)

Additional Parameters

α [0,1] Beta 0.660 (0.020)

β [0,1] Beta 0.993 (0.002)

γ IR Normal 0.005 (0.005)

δ [0,1] Beta 0.025 (0.005)

ν [0,1] Gamma 2.000 (0.500)

ρ [0,1] Beta 0.800 (0.100)

σa IR+ Inverse Gamma N/A N/A

σb IR+ Inverse Gamma N/A N/A

Notes: The parameters µ and φ appear only in the LBD model. The inverse Gamma

priors are of the form p(σ|ν, s) ∝ σ−ν−1e−νs
2/2σ2

, where ν = 1 and s = 0.015. The

first and second moments of this distribution do not exist. Its mode is equal to

0.010.
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Table 3: Time-Series Estimation Results

RBC LBD (Prior 1) LBD (Prior 2)

Mean (S.E.) Mean (S.E.) Mean (S.E.)

Learning-by-Doing Parameters

µ 0.1106 (0.0039) 0.2013 (0.0746)

φ 0.7973 (0.0122) 0.4009 (0.1891)

Additional Parameters

α 0.6563 (0.0200) 0.6530 (0.0200) 0.6526 (0.0197)

β 0.9934 (0.0019) 0.9936 (0.0019) 0.9937 (0.0017)

γ 0.0040 (0.0009) 0.0040 (0.0009) 0.0040 (0.0009)

δ 0.0226 (0.0052) 0.0218 (0.0049) 0.0222 (0.0049)

ν 1.3088 (0.3196) 1.4853 (0.4512) 1.4189 (0.4052)

ρ 0.9442 (0.0255) 0.9371 (0.0255) 0.9387 (0.0248)

σa 0.0116 (0.0007) 0.0118 (0.0008) 0.0117 (0.0008)

σb 0.0089 (0.0013) 0.0088 (0.0017) 0.0086 (0.0018)

Notes: The posterior moments are calculated from the output of the Metropolis

algorithm. The estimated simulation standard errors for the posterior moments are

less than 1%.
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Table 4: Prior and Posterior Model Probabilities

RBC LBD (Prior 1) LBD (Prior 2) VAR(4)

Prior Probabilities πi,0 0.25 0.25 0.25 0.25

Data Density ln p(YT |Mi) 1054.60 1055.92 1057.63 1082.72

Posterior Odds πi,T /πRBC,T 1.00 3.86 20.70 1.63E12

Posterior Probabilities πi,T 0.6E-12 2.3E-12 12E-12 1.00

Notes: Marginal data densities for the DSGE models are computed by Geweke’s

(1999b) modified harmonic-mean estimator. The marginal data density of the VAR

is computed via Monte-Carlo approximation of one-step-ahead predictive densi-

ties: p(yt|Yt−1,M0) ≈ 1
nsim

∑nsim
s=1 p(yt|Yt−1, θ

(s),M0), where θ(s) is a draw from

p(θ|Yt−1,M0). The posterior simulator for p(θ|Yt−1,M0) is described in the Ap-

pendix.
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Table 5: Autocorrelation Statistics

Lag RBC LBD (Prior 1) LBD (Prior 2) VAR

Output Growth: Corr(∆ lnGDP,∆ lnGDP (−j))

Post. Mean 1 0.008 0.060 0.101 0.310
[0.151, 0.462]

2 0.007 0.049 0.046 0.158
[0.016, 0.462]

3 0.007 0.040 0.023 0.029
[−0.109, 0.170]

4 0.007 0.032 0.012 −0.027
[−0.158, 0.102]

Lq-risk 1-4 0.116 0.078 0.058

Cχ2(ϕ̂|Y ) 1-4 16.01 11.96 8.177

Lχ2-risk 1-4 0.990 0.970 0.907

Hours: Corr(lnH, lnH(−j))

Post. Mean 1 0.939 0.948 0.946 0.957
[0.931, 0.983]

2 0.882 0.896 0.887 0.886
[0.817, 0.952]

3 0.828 0.844 0.828 0.800
[0.685, 0.921]

4 0.779 0.794 0.772 0.710
[0.545, 0.884]

Lq-risk 1-4 0.006 0.009 0.005

Cχ2(ϕ̂q,i|YT ) 1-4 42.73 25.19 20.46

Lχ2-risk 1-4 0.999 0.995 0.989

Notes: As Lq-risk we only report R̃q(ϕ̂|Y ), defined in Equation (21). Cχ2(ϕ̂|Y )

is defined in Equation (22). For the VAR we report 95% HPD confidence sets in

brackets.
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Table 6: Descriptive Statistics for PSID Subsample

Variable Mean Std.D. No. of Obs.

Real Wage (in 1983 Dollars) 12.8 7.84 20145

Annual Hours of Work 2104.06 438.28 20145

Age 41.97 9.95 20145

Years of Schooling 13.22 2.43 20145

Gender (Female = 1) 0.31 0.46 20145
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Figure 1: Confidence Sets (10% and 90%) for LBD Parameters

Notes: Prior 1 corresponds to the posterior distribution from the panel data analysis.

Prior 2 is obtained by scaling the covariance matrix of Prior 1 and truncating the

resulting distribution. The posteriors are based on the time-series estimation of the

LBD model. Dashed lines intersect at modes of Prior 1 and 2.
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Figure 2: Impulse-Response Functions

Note: Solid lines are posterior means of DSGE models, dashed lines are posterior

means of VAR, and dotted lines denote pointwise 75% HPD con�dence intervals

based on the VAR.
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Figure 3: Exploring the Mechanism: Impulse Responses and Autocorre-

lation Functions
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Figure 4: Exogenous Technology and Measured TFP

Notes: The technology processes are plotted in logs, detrended by the deterministic

trend component t. The graph depicts posterior means based on time-series estima-

tion of the LBD model (Prior 1). Solid vertical lines correspond to business-cycle

peaks, dashed vertical lines denote business cycle troughs (NBER business-cycle

dating).




