Microeconomic Theory I
Preliminary Examination
Suggested Solutions

University of Pennsylvania

June 5, 2017

Instructions
This exam has four questions and is worth 100 points.
Answer each question in a SEPARATE exam book.
If you need to make additional assumptions, state them clearly.
Be concise.
Write clearly.
Use WORDS to explain your reasoning.

Good luck!



1. (25 pts) Classical production and demand theory

(a)

(15 pts) A competitive firm produces one output, ¢, using two inputs, z; and x3, which
have prices w = (w1, ws). The firm has a continuous increasing production function f
on R%. Find f, given that the firm’s cost function is
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Soln: The production function is f(x) = z1(z2 + 1).
Derivation. At (¢, w) for which w;/ws > 1/q, the conditional factor demands are
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Now, fix an arbitrary (z1,22) € R2,, and consider the two equation system
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in the two unknowns we/w; and ¢. Rearrange it to
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From this we obtain ¢ = 1 (x2 + 1). As this is the case for any = > 0, and we know the
production function is continuous on R%r, it must be

f(z) =z1(22 + 1)

on Ri. (This production function is easily verified to be correct by solving the cost
minimization problem for it to show that the resulting cost function is indeed the one
given in the problem.) ]

(10 pts) In a three-good world, suppose a consumer’s demands for goods 1 and 2 are

given by
b2 p1
z1(p,y) = — and z3(p,y) = —
b3 ps3

on some open subset of Ri o. Can these demands arise from the maximization of a
continuous utility function representing locally nonsatiated strictly convex preferences
on ]Ri? Prove your answer.

Soln: The answer to the question is “No.”



Proof 1. For, suppose they do. Then the Slutsky matrix S = [s;;] is symmetric and
negative semidefinite at any (p,y) in the given neighborhood. Hence, the determinants
of the leading principal submatrices alternate in sign (weakly), and in particular,
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= 511822 — S12521 > 0.

However, recalling that

Sij = @_ij@iy’

we obtain a contradiction using the given demands for goods 1 and 2:
S$11892 — S12591 = 0-0 — 2p3_1 < 0.

Proof 2. For, suppose they do. Then Walras’ Law holds, and so the demand for good
3 in the given open set must be
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Thus, the bottom right element of the Slutsky matrix at such (p,y) is
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As this term is positive, the Slutsky matrix is not negative semidefinite. This is the
desired contradiction, as we know the Slutsky matrix must be negative semidefinite
if these demand functions arise from a continuous utility function representing locally
nonsatiated strictly convex preferences. ]

2. (25 pts) Risk aversion and comparative statics

There are two states of the world, ¢ and n, which will occur with probabilities 7 € (0, 1) and
1 — 7, respectively. In state ¢, Alex loses I > 0 dollars. In state n, he loses 0 dollars. His
initial wealth (income) is w > 0. Before the state is realized, Alex can purchase insurance: he
pays px to obtain a policy that pays = dollars if state £ occurs. His state-contingent incomes
given z are thus yp = w — L + x — pr and y, = w — pr. Alex chooses x to maximize his
expected utility of income subject to the constraint z > 0. His Bernoulli utility function w is
C? and satisfies u' > 0 and u” < 0.

Lastly, assume the price of insurance exceeds the actuarily fair rate: p > 7.

(a) (5 pts) Show that Alex’s optimal coverage, z,, is less than L.
Soln: z, solves the program

I;lgécwu(w —L+z(1-p)+ (1 —mu(w—pz),



If z, = 0, then x, < L is immediate. If z, > 0, it satisfies with equality the FOC for
this program, which yields
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where yf :=w — L + 24(1 — p) and y := w — px,. It follows from this and «” < 0 that
Yp > yg¢. This in turn implies z, < L. |
(10 pts) Assuming u exhibits decreasing absolute risk aversion (DARA), determine
whether insurance coverage is a normal or inferior good for Alex.
Soln: It is an inferior good for Alex. Let k denote the RHS of (1), and rearrange the
equation to

u' (w—pze) — ku'(w — L+ 24,(1 —p)) =0.
This equation determines x, as a function of the parameters, in particular w. Differen-
tiating it totally with respect to w and rearranging yields

2, (w) = [—u"(yn) + ku" (y)] /D,
where
D := —pu(yn) — k(1 = p)u”(y}) > 0.
Letting A = —u” /u/, we have
2o (w)D = —u" (yg) + ku" (yf)
= A(yp)u'(y) — EA(yi v (y7)
= [A(yn) — Ay ' (yy)
<0,

where the third equality follows from (1), and the inequality comes from DARA and
y% > yi. We conclude that z,(w) < 0. [
(10 pts) Barb is in the same insurance market, and her Bernoulli utility function, v,
satisfies the same assumptions as does u. However, Barb is strictly more risk averse
than Alex. Determine whether Barb purchases more or less insurance than does Alex.
(Assume they both purchase positive amounts.)

Soln: Barb purchases more.

Let xp be Barb’s optimal z, and let the consumers’ corresponding optimal state-contingent
consumptions be y; and 7% for i = a,b. By the argument in (a), we have y! > y@ for

both i = a, b, Alex’s FOC is (1), and Barb’s FOC is
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Since Barb is strictly more risk averse than Alex, there exists a strictly concave increasing
function h such that v = how. Hence, v'(z) = h/(u(z))u/(2) for any z. From this and (1)
we obtain
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since y& > y§ implies uq(y2) > uq(yf) implies 7' (uq(yg)) < B (uqa(y})). Hence, from (2)
we now have

or rather,
v'(w — pz?) - v (w — pa?)
v'(w—L+x%(1—-p) v'(w—L+a>1-p))
This implies, since v < 0, that x, > z,. (]
3. (25 pts)

(a)
(b)

(5 pts) Define the core of a pure exchange economy with [ goods and n agents.

(5 pts) State the core convergence theorem.

Soln: Assuming strict convexity of preferences, we know that the "equal treatment"
property holds for core allocations. Using this fact, the core convergence theorem states
that if an allocation is in the core for all replicas it must be a Walrasian allocation. Note
particularly that it is NOT true that for a sufficiently large number of replications all
allocations in the core are Walrasian. ]

(5 pts) Give a graphic example of a two-person, two-good economy in which there does
not exist a competitive equilibrium, but there exists an allocation in the core.

Soln: The simplest example would have the initial endowment Pareto efficient with a
unique supporting hyperplane that was not a Walrasian price. There are two things that
must be clear. First, the proposed core allocation must be individually rational. Second,
it must be clear that not only is the proposed allocation not competitive, but there is
no other competitive equilibrium. [

(10 pts) Consider a two person, two good exchange economy for which agents have utility
functions that are continuous and increasing, but not necessarily concave. Prove the core
is nonempty. State clearly any additional assumptions you make.

Soln: Proof: Let (Z;, ;) be i’s initial endowment, i = 1,2, and let x1,y1;22,y2 €
arg max uz (w2, y2) s.t. u(@1,y1) = w(@1, 1) and (z1,91) + (¥2,92) < (T1,91) + (T2, %2)-
Solution exists and is in the core by a simple argument. ]

4. (25 pts) Consider a standard two-period economy, dated ¢ = 0 and ¢ = 1. Agents consume
in both periods. There are three states of nature in the second period. There is a single
consumption good, and it is used as a numeraire; hence, the spot price of a unit of consumption
at either date is 1. At date 0 agents can trade in two primary securities. Security 1 has the
second-period payoff vector 71 = (1,0,0), and security 2 has the second-period payoff vector

ro =

(a)

(1,2,3). The prices of these securities at date 0 are ¢; = 0.1 and g2 = 1.1.

(10 pts) Suppose there is a derivative security denoted security 3. Security 3 is a call
option on security 2 with strike price of 1. What are the minimum and maximum possible
prices for this security that are consistent with no arbitrage?

Soln: Let (v1,v2,v3) be the state prices. Since g1 = 0.1, v1 = .1. g2 = 1v1 + 2v3 + 3 - vs;
since go = 1.1 we have 2vs + 3vg = 1. Hence vy = % vy > 0 so v3 < 1/3. The
call option with strike price 1 will be exercised in states 2 and 3 and gives return vector
(0,1,2). The price of this return is then vy + 2v3 = % + 2ug = H# Since v9 > 0
v3 < 1/3 The is lowest when v3 = 0: 1/2; the highest price is when v3 =1/3:2/3. =



(b)

(5 pts) Suppose that the price of security 3 in part (a) is 1. Show that the system is
arbitrage free.

Soln: There was a typo in the question — the price of the security was supposed to
have been .6 not 1. As a result of the typo the system is not arbitrage free. The
simplest answer is to note that in part (a) it was shown that the highest price of the
asset consistent with no arbitrage is 2/3. ]

(10 pts) Assume these security prices, ¢ = (.1,1.1,.6), arise in an incomplete markets
equilibrium with the specified three securities.

i. What would be the market price of a put option on asset 2 with a strike price of 37

Soln: The easiest way to show this is to compute the state price vector, which is the
solution to the three price equations: q; = v1; g2 = v1 + 2v9 + 3vs; g3 = 2vy + 3; the
solution is v = (.1,.2,.2). A put option with strike price 3 will be exercised whenever
the value is less than 3, that is in states 1 and 2; the return is then (2,1,0); using the
state price vector, we see that g3 = 2v1 + v = .4. [ |

i. What would be the risk-free interest rate on a loan taken at date ¢ = 07

Soln: The cost of getting 1 for sure next period is the price of the security with return
(1,1,1). This price is v; + va + v3 = .5. Hence an investment of .5 will give a risk free
return of 1. Hence the interest rate on a risk free loan would be 100%. [



