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Abstract

Motivated by analyses of DNA methylation data, we propose a semiparametric mixture

model, namely the generalized exponential tilt mixture model, to account for heterogeneity be-

tween differentially methylated and non-differentially methylated subjects in the cancer group,

and capture the differences in higher order moments (e.g. mean and variance) between sub-

jects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the

unknown nuisance function. To circumvent boundary and non-identifiability problems as in

parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In

addition, the test with simple asymptotic distribution has computational advantages compared

with permutation-based test for high-dimensional genetic or epigenetic data. We propose a

pseudolikelihood based expectation–maximization test, and show the proposed test follows a

simple chi-squared limiting distribution. Simulation studies show that the proposed test con-

trols Type I errors well and has better power compared to several current tests. In particular,

the proposed test outperforms the commonly used tests under all simulation settings consid-

ered, especially when there are variance differences between two groups. The proposed test

is applied to a real data set to identify differentially methylated sites between ovarian cancer

subjects and normal subjects.

Key words: Asymptotics; Conditional likelihood; Non-regular problem; Penalized likelihood;

Semiparametric mixture model
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1. INTRODUCTION

DNA methylation plays an important role in the development of many types of cancer. To iden-

tify differentially methylated Cytosine-Phosphate-Guanine (CpG) sites between cancer and normal

subjects is one of the central tasks to understand contributions of the DNA methylation process on

cancer development. Usually, cancer subjects are more heterogeneous in terms of DNA methy-

lation distribution as cancer subjects may have different subtypes of cancer, different stages of

cancer, and different history of treatment (Mikeska et al., 2010). Thus, DNA methylation levels

of some cancer subjects may follow one distribution and are differentially methylated compared to

normal subjects, while the rest of cancer subjects may follow a similar distribution as that of normal

subjects and are not differentially methylated. The epigenetic heterogeneity in cancer has gained

tremendous interest lately (Brocks et al., 2014; Oakes et al., 2014; Easwaran et al., 2014). CpG

sites with high variability among cancer samples can potentially be used as epigenetic biomarkers

for determining the stage of cancer progression and designing personalized treatment. Most of

the existing methods for DNA methylation data focus on testing for differences in means between

the cancer and normal groups, which does not fully capture the differences in variances in DNA

methylation data. There is evidence that there are not only differences in DNA methylation means

but also differences in DNA methylation variations between the cancer and normal groups (Hansen

et al., 2011; Gervin et al., 2011). A recently proposed method DiffVar (Phipson and Oshlack, 2014)

tests the equality of variances in two groups by performing at-test on the absolute or squared de-

viations of the methylation levels from the group mean. It is, however, restricted in comparing

the variances and cannot detect mean differences in two groups. More importantly, most of the

existing methods for DNA methylation data are distribution based methods, including the logit-

normal mixture model (Siegmund et al., 2004), the beta mixture model (Houseman et al., 2008),

the uniform–truncated–normal–uniform mixture model (Wang, 2011), and a GLM based method

(Ahn and Wang, 2013). However, due to the heterogeneity in distributions of DNA methylation

across loci (Huang et al., 2013), it is insufficient to assume a parametric distribution for all loci.

Fitting site-specific parametric models may not be feasible for a large number of loci, and also

leads to difficulties in model interpretations.
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To relax parametric model assumptions, exponential tilt mixture models (ETMM) have been

considered (Qin, 1999; Zou et al., 2002; Tan, 2009). Specifically, subjects under one condition are

sampled from a population with the baseline density functionf (x), and subjects under the other

condition are sampled from a mixture population with the density functionh(x). The densityh(∙)

and the relationship between the densitiesf (∙) andg(∙) can be formulated as follows,

h(x) = (1− λ) f (x) + λg(x);

log{g(x)/ f (x)} = α + βx, (1)

whereg(∙) is defined as the density function of the methylation levels for the subpopulation in

the case group that are differentially methylated,λ is an unknown mixture proportion parameter,

β is an unknown parameter andα = − log{
∫ ∞
−∞

exp(βx) f (x)dx} is a normalizing constant for the

density functiong(x). Note thatβ = 0 impliesα = 0. Model (1) contains many parametric

models as special cases, such as the mixture of normal distributions with different means but equal

variances, and the mixture of gamma distributions with different shape parameters but equal scale

parameters. Under the ETMM assumption, testing for homogeneity between cancer and normal

groups i.e.,f (∙) = h(∙), is equivalent to testingλ = 0 orβ = 0.

It has been long recognized that testing for homogeneity in mixture models is a non-regular

problem because the mixture proportion parameterλ lies on the boundary of its parameter space

[0,1] and the parametersα andβ are not identifiable whenλ = 0. Thus, the asymptotic distri-

butions of tests for homogeneity are usually rather complicated and possibly dependent on the

parametric distributions assumed (Davies, 1977, 1987). Recently,Qin and Liang(2011) derived a

original score test under model (1) with a simple limiting chi-squared distribution. More recently,

Liu et al. (2012) proposed a novel modified empirical likelihood ratio test under model (1) and

developed an efficient and intuitive expectation–maximization (EM) algorithm for computing the

test statistic. Despite the current success on the test of homogeneity in ETMM, the aforementioned

methods only allow a scalar parameterβ, which excludes important parametric distributions such

as normal distributions with unequal means and unequal variances, gamma distributions with dif-

ferent shape and scale parameters, and beta distributions. As recent studies have observed that
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cancer tissues and some complex disease cases can also be characterized by an increased variabil-

ity in DNA methylation patterns (Hansen et al., 2011; Issa, 2011; Teschendorff et al., 2012; Xu

et al., 2013), tests that ignore this feature may lead to a substantial loss of power. We therefore

extended both the score test byQin and Liang(2011) and the modified empirical likelihood ratio

test byLiu et al.(2012) by generalizingx tokkk(x) = (x, x2) in equation (1) to account for differences

in both means and variances. However, as the simulation results summarized in Section 2 of online

supplementary materials suggested, both the extended score test and the extended modified em-

pirical likelihood ratio test have inflated Type I errors. This suggests that an alternative approach

should be considered.

In this paper, we generalize the one-parameter ETMM to a multi-parameter ETMM, namely

the generalized exponential tilt mixture model (GETMM), which aims to capture the differences

in higher order moments between two distributions. Specifically, the right handside of equation

(1) is extended to a general form ofα + βββTkkk(x), so that the multi-parameter ETMM includes many

parametric models, such as the normal mixture model with unequal variances, the gamma mixture

model, and the beta mixture model. Rather than estimating the baseline density functionf (∙) with

the empirical likelihood procedure as inQin and Liang(2011) andLiu et al.(2012), we construct a

novel pseudolikelihood based on a conditioning procedure, which eliminates the baseline density

function f (∙) and avoids its estimation. To handle the non-regularity problems (i.e. boundary and

non-identifiability problems), we construct a penalized pseudolikelihood where the impacts of the

tuning parameter are studied. Finally, we propose an EM algorithm based test for computational

efficiency and stability, which can be shown to follow a simple chi-squared limiting distribution.

The contributions of this work are three-fold. First, we develop a semiparametric model that

captures the differences in higher moments between distributions. Second, we construct a novel

penalized pseudolikelihood, where the unknown baseline density functionf (∙) is eliminated and

the non-regularity problems are circumvented. Third, we propose an EM algorithm based test

with a simple chi-squared limiting distribution, which is computationally efficient and stable. The

pseudolikelihood EM algorithm has been proposed for handling spatial data (Varin et al., 2005),

hidden Markov model (Gao and Song, 2011), and family data with multistage sampling (Choi and
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Briollais, 2011). The convergence property of the EM algorithm is established byGao and Song

(2011). Unlike these existing results, the estimated parameters at each iteration of EM algorithm

rather than the estimated stationary point are used to construct the proposed test.

This paper is organized as follows. Section 2 describes the penalized pseudolikelihood based

EM test (hereafter referred to as the PLEMT test) . The asymptotic null distribution and the local

asymptotic power for the PLEMT test are provided in Section 3. Simulation studies comparing

Type I errors and power of the PLEMT test with existing tests are summarized in Section 4. A

real data application to DNA methylation data for ovarian cancer is given in Section 5 followed

by a brief discussion in Section 6. Proofs are relegated to Appendices in online supplementary

materials.

2. STATISTICAL METHODOLOGY

We propose the following two-group generalized exponential tilt mixture model (GETMM). We

present our model in the setting of modeling DNA methylation data for the concreteness of inter-

pretation, while noting that it can be generally applied to any two-group testing problem for ho-

mogeneity. At thè th CpG site, letu`1, . . . , u`n0 be independent, identically distributed (i.i.d.) DNA

methylation levels in the normal group with distributionf`(u), wheren0 is the number of normal

subjects. It is believed that in the cancer group, only a proportion of subjects are methylated dif-

ferentially compared to those in the normal group, known as non-homogeneity or heterogeneity in

methylation among cancer subjects (Kalari, 2010). Moreover, the effect of differential methylation

may appear as changes in variation, in addition to potential a shift in means (Hansen et al., 2011;

Gervin et al., 2011; Teschendorff et al., 2012; Xu et al., 2013). To account for such features of

DNA methylation data, we assume that the i.i.d subjectsv`1, ..., v`n1 in the cancer group follow a

mixture distribution with the densityh`(v) as follows

h`(v) = (1− λ`) f`(v) + λ`g`(v),

wheren1 is the number of cancer subjects,λ` is an unknown mixture proportion parameter (0≤

λ` ≤ 1), and the density functionsf`(v) andg`(v) are related through a multi-parameter exponential
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tilt

log{g`(v)/ f`(v)} = α` + βββ`
Tkkk(v). (2)

Hereβββ` = (β`1, ..., β`d)T is ad-dimensional vector of unknown parameters,kkk(v) = {k1(v), ..., kd(v)}T

is a vector of pre-specified functions ofv, and

α` = − log
[∫

exp{βββ`
Tkkk(v)} f`(v)dv

]
is a normalizing constant. It is easy to see thatβββ` = 0 implies

α` = 0. For simplicity of notation, we hereafter suppress the site index`. We acknowledge that

the baseline density functionf`(∙) can be site-specific and is left completely unspecified. The

parameterλ` can also be site-specific. Note that the GETMM includes many parametric mixture

models. Whenkkk(v) = v, the GETMM reduces to the one-parameter ETMM described in equation

(1); whenkkk(v) = (v, v2), the GETMM includes the normal mixture model with unequal variances;

whenkkk(v) = {log(v), log(1− v)}, the GETMM includes the beta mixture model. Both parametric

models have been used to model DNA methylation data (Siegmund et al., 2004; Houseman et al.,

2008).

Since the majority of differences between the cancer and normal groups may be contained in

means and variances of methylation levels, we consider the GETMM with two parameters for

model parsimony. While the GETMM with more than two parameters may better capture the

differences in higher moments such as skewness and kurtosis, the corresponding tests may be

underpowered due to the larger degree of freedom. In addition, the theoretical development of

GETMM with more than two parameters is similar. Specifically, we letkkk(v) = (v, v2) andβββ =

(β1, β2). Under this model, testing for homogeneity between two groups is equivalent to testing

H0 : λ = 0 orβ1 = β2 = 0.

Maximizing the likelihood function generally involves estimating the baseline density function

f (∙), typically by an empirical likelihood procedure (Owen, 1988). Here, we construct a pairwise

pseudolikelihood, which eliminatesf (∙) by conditioning on order statistics. Specifically, the ad-

vantage of the conditioning procedure is to avoid the estimation off (∙). We consider a pair of

observations from the two groups, i.e.,ui from the normal group andvj from the cancer group.

The conditional density of (ui , vj) given their order statisticst(1) = min(ui , vj) andt(2) = max(ui , vj)
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can be calculated as,

pr(ui , vj |t
(1), t(2)) =

{
1+ R(ui , vj; λ, α, β1, β2)

}−1
, (3)

where

R(ui , vj; λ, α, β1, β2) =
(1− λ) + λ exp(α + β1ui + β2u2

i )

(1− λ) + λ exp(α + β1vj + β2v2
j )
.

The derivation of equation (3) is provided in Appendix A of online supplementary materials. The

baseline density functionf (∙) is eliminated through this conditioning procedure. This idea of

conditioning was originally proposed byKalbfleisch(1978) for rank tests and permutation tests in

regression problems, and later revitalized byLiang and Qin(2000) in regression analyses under

biased sampling.

For each pair of observations (ui , vj), we can calculate the pairwise conditional density. We

then multiply all these densities together and obtain the following log pseudolikelihood function

for all observations,

Lp(λ, α, β1, β2) =
2
n

n0∑

i=1

n1∑

j=1

− log
{
1+ R(ui , vj; λ, α, β1, β2)

}
,

wheren = n0 + n1. We note that the sum of log conditional densities is standardized by the total

number of individuals rather than the number of summands. This is owing to the projection theory

in U-statistics (Lehmann and D’Abrera, 1975). As we will show later, such modification of the

loglikelihood is necessary so that the proposed test has a simpleχ2 limiting distribution with 2

degrees of freedom.

Under the null hypothesis,λ = 0 lies at the boundary of its parameter space, which leads to a

boundary problem (Self and Liang, 1987; Chen and Liang, 2010). Furthermore, the null hypothesis

holds forλ = 0 regardless of the values ofα, β1 andβ2, and holds forβ1 = β2 = 0 regardless of the

value ofλ. This implies that the parameter (λ, α, β1, β2) is not identifiable underH0, which results

in complicated asymptotic properties of the pseudolikelihood ratio function (Chen and Chen, 2001;

Zhu and Zhang, 2004). To deal with the non-identifiability problem,Qin and Liang(2011) fixed

the value ofλ at 1, so that the other parameters (α andβ) are identifiable and can be estimated by

maximizing the empirical likelihood. The score test statistic was then constructed. However, the

choice of the value for the fixedλ is arbitrary, and the performance of the score test depends on the
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choice ofλ. Alternatively,Liu et al. (2012) proposed an empirical likelihood function by adding

penalty onλ. Rather than using the empirical likelihood, we propose the following penalized

pseudolikelihood function to avoid the boundary and identifiability problems

Lpp(λ, α, β1, β2) = Lp(λ, α, β1, β2) + C log(λ),

whereC is a positive number. The penalty is heavy whenλ is close to 0 and less so whenλ

approaches 1. The parameterC is a multiplicative factor of such penalty and is often termed

as the tuning parameter. By using the penalized pseudolikelihood, the parameterλ is bounded

away from 0, and the null hypothesis is then reduced toβ1 = β2 = 0. That is,β1 andβ2 in the

penalized pseudolikelihood function is asymptotically identifiable. Whenkkk(x) = x, it has been

recommended in the literature thatC can be taken as 1, and the existing tests based on penalizing

λ are not sensitive to the choice ofC (Chen and Chen, 2001; Fu et al., 2006a). The GETMM we

considered involves both mean and variance, e.g.,kkk(x) = (x, x2), and the recommendation on the

choice ofC may be different. In our simulation studies, we investigate the impact ofC on the

performance of the proposed test.Di and Liang(2011) have investigated the impacts of tuning

parameterC on type I errors and power. They suggested to use the smallestC that still provides

the correct type I error rate. However, the admixture model considered inDi and Liang(2011) is

different from the model considered in this paper. Sensitivity analyses on the choice ofC have been

conducted and summarized in the Supplementary Materials. In general,C = 20 is recommended

based on various scenarios considered in our sensitivity analyses.

In general, the parameterλ and the parameters (α, β1, β2) are highly intertwined with each other

as in many mixture models (Bandeen-Roche et al., 1997). This can lead to numerical problems

such as multiple local maxima when maximizing the pseudolikelihood. Our simulation results

summarized in Table 7 of the Supplementary Materials show that the pseudolikelihood method that

simultaneously maximizes over all parameters faces the problems of unstable results and inflated

Type I errors. In our proposed PLEMT test, we use a set of different initial values ofλ to avoid

being trapped at a local maximum.

The key idea of the PLEMT procedure is that maximizing the penalized pseudolikelihood with
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respect to (α, β1, β2) for a fixedλ is more stable than maximizing over all parameters simultane-

ously. In DNA methylation data, consider DNA methylation levelsv1, . . . , vn1 in the cancer group

are sampled from a mixture off (∙) andg(∙). That is,v1, . . . , vn1 are i.i.d. with a density function

h(v) = (1− λ) f (v) + λg(v). The information on whether the DNA methylation level of a particular

subject in the cancer group is from the subpopulationf (∙) or g(∙) is considered as missing data.

Here we describe the algorithm to calculate the PLEMT test statistic. We first choose a finite

set ofΛ = {λ1, ..., λZ}, whereZ is the number of points in the grid (e.g.,Λ = {0.1, ...1}). We then

choose the number of iterationsS of the EM algorithm. Although the PLEMT test is motivated by

the EM algorithm, the calculation of the test statistic does not require the convergence of the EM

algorithm, which has been shown in Appendix D of online supplementary materials. Generally,

only a few steps of iterations is needed. This feature offers great computational advantages in

analyses of high dimensional data. Sensitivity analyses in the Supplementary Materials suggest

that the performance of the proposed PLEMT test is not sensitive to the choices ofS andZ. Here

we chooseZ = 10, andS = 3. At the zth grid valueλz, we set the initial valueλ(1)
z = λz, and

calculate the initial values of (α(1)
z , β

(1)
z1 , β

(1)
z2 ) by maximizingLpp(λ

(1)
z , α, β1, β2). We carry out the

following EM algorithm forS − 1 times.

At the E step of the EM algorithm, we calculate the posterior probability of thej th cancer

subject being differentially methylated givenvj and (λ(s)
z , α

(s)
z , β

(s)
z1 , β

(s)
z2 ) as,

ω(s)
jz =

λ(s)
z g(vj)

(1− λ(s)
z ) f (vj) + λ

(s)
z g(vj)

=
λ(s)

z exp
(
α(s)

z + β(s)
z1 vj + β

(s)
z2 v2

j

)

1− λ(s)
z + λ(s)

z exp
(
α(s)

z + β(s)
z1 vj + β

(s)
z2 v2

j

) .

We then calculate the expected complete likelihood given the data and the current parameter

estimates, which only involves the parameterλ

n1∑

j=1

(1− ω(s)
jz ) log(1− λ) +

n1∑

j=1

ω(s)
jz log(λ) + C log(λ).
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At the M step, we updateλ and other parameters (α, β1, andβ2). Specifically,

λ(s+1)
z = argmax

λ

n1∑

j=1

(1− ω(s)
jz ) log(1− λ) +

n1∑

j=1

ω(s)
jz log(λ) + C log(λ)

=

∑n1
j=1ω

(s)
jz + C

n1 + C
, (4)

(α(s+1)
z , β(s+1)

z1 , β
(s+1)
z2 ) = argmax

α,β1,β2

Lpp(λ
(s+1)
z , α, β1, β2).

Equation (4) suggests an intuitive explanation of the penalty termC log(λ) in Lpp(λ, α, β1, β2).

Specifically, the proportion of the subgroup with differential methylation among cases,λ(s+1)
z , is

calculated as the average of posterior probabilities of being in this subgroup,ω(s)
jz , plusC pseudo

observations (known to be in this subgroup). This idea of pseudo-observation adjustment was orig-

inally proposed by Jiahua Chen and his colleagues. The pseudolikelihood method that maximizing

over all parameters simultaneously faces the non-convergence and computational problems. Our

simulation result summarized in the Supplementary Materials shows that the parameter estimates

are sensitive to the choice of initial values when maximizing over all parameters simultaneously,

leading to unstable results. By fixingλ at this step, we can get more stable results than maximiz-

ing over all parameters simultaneously. We use the general-purpose optimization procedure in R

(R Development Core Team, 2009) to obtain (α(s+1)
z , β(s+1)

z1 , β
(s+1)
z2 ). At the zth grid value, we define

Mn(λ
(S)
z ) = 2

{
Lpp(λ

(S)
z , α

(S)
z , β

(S)
z1 , β

(S)
z2 ) − Lpp(1,0,0,0)

}
. We then define our PLEMT test statistic

as follows,

PLEMT = max
{
Mn(λ

(S)
z ), z= 1, ...,Z

}
.

Details of the derivation of the PLEMT test statistic are provided in Appendix D of online supple-

mentary materials.

3. ASYMPTOTIC RESULTS

This section provides asymptotic results for the PLEMT test statistic under the nullH0 and under

the local alternatives.

We assume the following regularity conditions.
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(C1). The parameter setsΩα andΩβ for α andβ are compact.

(C2). The distributions ofui andvj have common support and are not degenerate to a point

measure.

(C3). The ration1/n→ ρ, asn→ ∞, where 0< ρ < 1. The varianceσ2 = var(ui) < ∞ and for

somet > M,
∫

u2 exp(t|u|) f (u)du< ∞, whereM is a small positive constant.

The compactness of the parameter spaces in assumption (C1) is commonly adopted in the statistical

literature. Such an assumption may be relaxed by imposing the uniform boundedness assumption

on the baseline density; for example, seeLi et al. (2009). The assumption (C2) is to guarantee the

GETMM is identifiable. The assumption (C3) is a reasonable technical condition for applying the

uniform law of large numbers.

Theorem 1 Under the regularity conditions C1−C3, and the null hypothesis H0, the PLEMT test

statistic converges weakly toχ2
2 as n→ ∞.

The proof of Theorem 1 is given in Appendix D of online supplementary materials.

Evaluation of test statistics under alternative hypotheses is crucial for sample size calculation

and experimental design. In practice, the most interesting situations for alternatives are those close

to the null hypothesis. For mathematical convenience, statisticians typically focus on the local

asymptotic power of test statistics. Here we provide a useful result about the asymptotic power of

the PLEMT test under a sequence of local alternatives. Specifically, for any 0< λ0 < 1, density

function f0(∙) and a fixedτττ0, consider a sequence of alternatives:

Ha : λ = λ0, f (∙) = f0(∙), βββ = n−1/2τττ0,

whereτττ0 is a vector. UnderHa, we do not explicitly specify the local alternative forα, becauseα

is a function ofβββ and f0(∙). With LeCam’s third lemma (Van der Vaart, 2000), we can establish the

following results.

Theorem 2 Under the alternatives Ha, the limiting distribution of the PLEMT test statistic is

χ2
2

{
λ2

0(1− ρ)ρτττ
T
0Στττ0

}
, whereχ2

2(c) denotes the noncentral chi-squared distribution with 2 degrees

of freedom and non-centrality parameter c.
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The proof is given in Appendix E of online supplementary materials. An important observation is,

given a total number of subjectsn, the asymptotic power is maximized when the design is balanced

(i.e.,ρ = 0.5 orn0 = n1).

4. SIMULATION STUDIES

We conduct simulation studies to evaluate the finite sample performance of the proposed PLEMT

test comparing with seven existing tests, namely the score test based on the one-parameter ETMM,

the modified empirical likelihood ratio test, the Wald test based on logistic regression, thet-test,

the Wilcoxon test, the F test of equality of variances and the Kolmogorov-Smirnov test.

We consider a variety of parametric models. Specifically, for each simulation setting, the data

are generated from the mixture model (2) with one of the following choices of density functions

f (∙) andg(∙).

Model A (Normal model). Let f (∙) andg(∙) be the density functions of Normal (μ1, σ
2
1) and

Normal (μ2, σ
2
2), respectively. Then

log{g(x)/ f (x)} =
1
2

(logσ2
1 − logσ2

2) +
σ2

2μ
2
1 − σ

2
1μ

2
2

2σ2
1σ

2
2

+
σ2

1μ2 − σ2
2μ1

σ2
1σ

2
2

x+
σ2

2 − σ
2
1

σ2
1σ

2
2

x2.

Model B (Beta model). Let f (∙) andg(∙) be the density functions of two beta distributions with

shape parameters (a1,b1) and (a2,b2), respectively. Then

log{g(x)/ f (x)} = log

{
B(a1,b1)
B(a2,b2)

}

+ (a2 − a1) log x+ (b2 − b1) log(1− x),

whereB(∙, ∙) is the beta function.

Model C (Gamma model). Let f (∙) andg(∙) be the density functions of Gamma (m1, θ1) and

Gamma (m2, θ2) with shape parametersm1, m2 and scale parametersθ1, θ2 > 0. Then

log
g(x)
f (x)

= log

{
Γ(m1)
Γ(m2)

}

+ m1 log(θ1) −m2 log(θ2) + (m2 −m1) log x+

(
1
θ1
−

1
θ2

)

x.

Note that Models A−C belong to the GETMM. In equation (2), Models A−C havekkk(x) =

(x, x2), {log(x), log(1− x)}, and{log(x), x}, respectively. To evaluate the robustness of the proposed

test to model misspecifications, we consider two additional models (Models D−E) when the expo-
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nential tilt model assumption is not satisfied. It is expected that misspecified models may lead to

incorrect Type I errors for tests based on the GETMM assumption.

Model D (Negative binomial model). Let f (∙) andg(∙) be the density functions of the Negative

Binomial (NB) distribution (r1, p1) and NB (r2, p2), wherer1 andr2 are the numbers of failures until

the experiment is stopped, andp1 andp2 are success probabilities in each experiment. Then

log
g(x)
f (x)

= r2 log(
p2

1− p2
) − r1 log(

p1

1− p1
) + x log(

1− p2

1− p1
) + log

(
x− 1
r2 − 1

)

− log

(
x− 1
r1 − 1

)

.

Model E (t distribution) . Let f (∙) and g(∙) be the density functions of the t distributions

(ncp1,d f1) and (ncp2,d f2), wherencp1 andncp2 are the noncentrality parameters, andd f1 andd f2

are degrees of freedom.

We compare Type I errors and power of the tests. For power comparisons, we conduct simula-

tion studies under Scenario I wheref (∙) andg(∙) are different in means only, Scenario II wheref (∙)

andg(∙) are different in variances only, and Scenario III where both means and variances off (∙)

andg(∙) are different. For each of the power scenarios, we consider settings whereλ takes different

values from 0 to 1. The rejection rates based on 5000 simulations are used to estimate Type I errors

and the rejection rates based on 1000 simulations are used to estimate the power. We consider a

sample size setting with 100 subjects in each group.

Table 1 summarizes the Type I errors of the eight tests under comparison for five models (A−E).

Under both non-misspecification scenario (Models A−C) and misspecification scenario (Models

D−E), the Type I errors of the PLEMT test, the EST test, the MELRT test, thet-test, the Wilcoxon

test and the Logistic regression test are relatively close to the corresponding nominal levels given

the moderate sample size (n = 200). The proposed test has slightly inflated type I errors under

model misspecifications compared to t-test, Wilcoxon test and logistic regression test. It is not

surprising to see that the Type I errors of the F test are inflated under the Gamma, Negative binomial

and the t models, because the F test is known to be sensitive to non-normality. The Kolmogorov-

Smirnov test yields conservative Type I errors under all settings, especially in the negative binomial

model.

Since the Type I errors of theF test are inflated, we only compare the power of the remaining
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seven tests. Figure 1 plots the power curves of the seven tests under GETMMs (Models A−C). As

λ increases, the power of all tests increases. For power Scenario I with mean differences only, the

PLEMT test is slightly more powerful than the Kolmogorov-Smirnov test, and has slightly lower

but comparable power than the rest five tests. This is because the PLEMT test has two degrees

of freedom, while the other five tests have only one degree of freedom. The slight loss of power

for the PLEMT test is due to the extra one degree freedom when there are only mean differences.

For the power Scenario II with variance differences only, the PLEMT test is much more powerful

than all the other tests as expected since they do not fully account for variance differences and

the mixture structure of the data. More specifically, the MELRT test has about 17%− 46% less

power than that of the PLEMT test, the Kolmogorov-Smirnov test has about 40%−90% less power

than that of the PLEMT test, whereas the other four tests have essentially no power beyond Type

I errors. This is consistent with the simulation results inLiu et al. (2012) that the MELRT test is

more powerful than the EST test. When both mean and variance are different, the PLEMT test

remains to be the most powerful one. The degree of the power loss of the other six tests depends

on the proportion of the variance difference in the overall mean and variance differences. Under

the setting we considered, the MELRT test is the second most powerful test with a power about

5%− 25% lower than that of the PLEMT test. The other four tests are grossly underpowered.

Similar patterns are observed in Figure 2 for misspecified models (Models D and E). The

PLEMT test has a slightly lower power than the other tests under power Scenario I, while it is

the most powerful test under power Scenarios II and III. One interesting phenomena is that there

is a power gain for the Wilcoxon test under Scenario II and III for the misspecified models com-

paring with that under GETMMs, while the Wilcoxon test has essentially no power beyond Type

I errors under GETMMs. This is because the Wilcoxon test may capture some of the variance

differences when the distributions are heavily skewed, but cannot capture these differences when

the distributions are symmetric.

In summary, our simulation studies suggest performance from the proposed PLEMT test com-

pared to the existing ones. The proposed PLEMT test has well controlled Type I errors and sub-

stantial power gain when the variance differences need to be taken into account. The proposed
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PLEMT test also shows some degree of robustness under model misspecifications. The PLEMT

test is implemented as an R software packagerobustETM, which is attached as the Supplementary

Materials.

5. APPLICATION TO DNA METHYLATION DATA OF OVARIAN CANCER

We apply the PLEMT test to the data from the United Kingdom Ovarian Cancer Population Study

to select differentially methylated sites between ovarian cancer cases and age-matched healthy con-

trols using the Illumina Infinium Human Methylation27 Beadchip (Teschendorff et al., 2010). The

original data have 266 ovarian cancer cases with 131 pre-treatment cases and 135 post-treatment

cases, and 274 age-matched healthy controls. Since age and having received treatment or not when

blood samples are taken are factors known to affect DNA methylation levels, we choose to use the

131 ovarian cancer cases who gave their blood at the time of their diagnosis prior to treatment and

with age-matched controls. We refer readers toWang(2011) for the detailed quality control steps.

We end up with 96 cancer subjects and 136 normal subjects with DNA methylation levels at 22951

sites. Because our simulation results suggest that the MELRT test is the second most powerful test

accounting for the variance differences, we focus on the comparisons among the PLEMT test, the

commonly usedt-test, and the MELRT test in this real data application. We also only focus on

the original DNA methylation levels instead of the logit transformed ones. Due to the presence

of multiple hypothesis testing, the number of false positives may rapidly increase such that the

scientific discoveries may become unreliable. To address this problem, we adapt the procedure in

Storey(2002) to control the false discovery rate (FDR), which is defined as the number of false

positives divided by the number of total discoveries. In particular, for each hypothesis test, we

calculate a number called q-value, which is the minimum FDR that can be attained when the test

is significant. It can be regarded as a hypothesis testing error measure for each test with respect

to FDR (Storey, 2002). Here, we use the “qvalue” package in R to calculate the q-value for each

hypothesis test.

The proposed PLEMT test, thet-test and the MELRT test are then applied to the methylation

data at these 22951 sites. Of the sites tested, 3112 sites haveq-values< 0.05 using the PLEMT
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test, 2699 sites haveq-values< 0.05 using thet-test, and 2881 sites haveq-values< 0.05 using the

MELRT test. These numbers are cross-tabulated in Table 2. There are 2418 overlapping sites that

haveq-values< 0.05 using both the PLEMT test and thet-test, and 694 sites that are identified by

the PLEMT test but not by thet-test. There are 2543 overlapping sites that haveq-values< 0.05

using both the PLEMT test and the MELRT test, and 569 sites that were identified by the PLEMT

test but not by the MERLT test.

We denoteΔ = (m1 −m2)/sd1 as the standardized mean difference between cancer and normal

subjects, andr21 = sd2/sd1 as the ratio of standard deviations between cancer and normal subjects,

wherem1 andm2 are the means of the normal subjects and cancer subjects, respectively, andsd1

andsd2 are the standard deviations of the normal subjects and cancer subjects, respectively. We

further examine the distribution ofΔ andr21 for the sites tested. The upper three panels of Figure 3

displays the distribution ofΔ andr21 for the 694 sites that are identified by the PLEMT test but not

thet-test, for the 281 sites that are identified by thet-test but not the PLEMT test, and for the 2418

overlapping sites that are identified by both the PLEMT test and thet-test, respectively. The lower

three panels of Figure 3 displays the distributions ofΔ andr21 for the 569 sites that are identified

by the PLEMT test but not the MELRT test, for the 338 sites that are identified by the MELRT test

but not the PLEMT test, and for the 2542 sites that are identified by both the PLEMT test and the

MELRT test, respectively.

It is clear that the sites identified by the PLEMT test only but not thet-test have more significant

variance differences than mean differences between the cancer and normal groups, which is the

scenario the proposed test is designed for. In contrast, those sites that are identified by thet-test

only have more significant mean differences than variance differences between the cancer and

normal groups in general. For the overlapping 2418 sites that are identified by both the PLEMT

test and thet-test, the majority have much larger differences in means than the sites identified by

only one method. Thus these sites are relatively easier to be identified as all methods look for

mean differences. Moreover, for those sites that have relatively small mean differences (but still

have larger mean differences than sites that are identified by the PLEMT test only), they have

large differences in variance in general. Thus the PLEMT test is able to identify them, although
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simulation studies suggested a slightly lower power for the PLEMT test in such scenarios than

the t-test. Similar patterns can be found when comparing the PLEMT test and the MELRT test.

An interesting phenomenon is that for the 338 sites identified by the MELRT test only but not the

PLEMT test (lower middle panel of Figure 3), there are 9 points between the clouds (highlighted

in red), where the differences in both means and variances are very small. As shown later, our

further examination suggests that those sites identified by the MELRT test may be false positive.

We examine the top 50 sites with most significant results from the PLEMT test among the

694 sites that are identified by the PLEMT test but not thet-test. By estimating the proportion of

differentially methylated subjects in the cancer group compared to those in the normal group, we

find the mixture feature at 16 out of the 50 sites (i.e., close to one-third) based on the estimatedλ.

For example, at sitecg26457013, the proportion of differentially methylated subjects in the cancer

group compared to those in the normal group is 22%, with estimated (β1, β2) = (−86.79,−5.52). At

sitecg11905589, the proportion of differentially methylated subjects in the cancer group compared

to those in the normal group is 78%, with estimated (β1, β2) = (−10.87,−71.68). At both sites,

there are sizable differences in means and variances. Specifically, we have (Δ, r21) = (0.28,0.76)

at sitecg26457013, and (Δ, r21) = (0.11,0.70) at sitecg11905589. We further examine the 9 CpG

sites between the clouds in the lower middle panel of Figure 3 with small differences in both means

and variances that are identified by the MELRT test but not the PLEMT test, where we apply all

eight tests investigated in the simulation studies on these 9 sites. The results suggest that some of

the identified sites might have been false positive since all other six existing tests generate large

p-values (results are included in Section 3 of online supplementary materials).

We compare the predictive power of significant CpG sites detected by PLEMT, MELRT and

t-test. The top ranked CpG sites (by statistical significance) detected by the three methods are

largely overlapped, because most of them show differences in average methylation levels. To

emphasize the distinctions of different methods, we ignore the common ones and pick top 30 CpG

sites uniquely identified by these three tests, and then use them as predictors to classify cancer

and normal samples. We use Random Forest (Breiman, 2001) as the classification method, and

compare the receiver operating characteristics (ROC) curves generated from 100 runs of 3-fold
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cross validation. As shown in Figure 4, the area under the ROC curve of PLEMT is greater than

that of MELRT and t-test, (AUC: 0.76, 0.66 and 0.64 for PLEMT, MELRT and t-test, respectively).

This result indicates that compared with the other two methods, PLEMT identifies CpG sites that

can better distinguish cancer patients from normal people.

We further investigate the 15 genes that the top 15 CpG sites reside among those CpG sites

that were uniquely identified by the proposed PLEMT method only but not by the t-test or by

the MELRT method. Out of the 15 genes, 9 of them have been reported to be associated with

cancer. These include genes which are reported to be related with breast cancer: PMP22 (Winslow

et al., 2013), AIM2 (Liu et al., 2015), colorectal cancer: CNGA3 (Shaikh et al., 2015), ovarian

cancer HOXB8 (Stavnes et al., 2013), liver cancer HNF4A (Ning et al., 2010), pancreatic cancer

PCDHB2 (Carter et al., 2010), and cancer progression STRN4 (Wong et al., 2014), CHCHD4

(Yang et al., 2012), and VHL (Kim and Kaelin, 2004), where the number in the parenthesis is the

rank of p-value among the 15 genes.

In summary, the proposed PLEMT test has identified novel sites of potential interest that are

missed by the commonly usedt-test and the MELRT test, and has better predictive powers. There-

fore, it can serve as a useful complement to the standard tests.

6. DISCUSSION

In this paper, we proposed a novel pseudolikelihood based EM test to identify differentially methy-

lated loci. Specifically, we developed a semiparametric model to account for heterogeneity be-

tween differentially methylated subjects and non-differentially methylated subjects in the cancer

group, and capture the differences in higher order moments (e.g. mean and variance) between

subjects in the cancer and normal groups. We constructed a novel penalized pseudolikelihood to

eliminate the unknown baseline density function and circumvent the non-regularity problems. We

also proposed an EM algorithm based test for computational efficiency and stability, which fol-

lows a simple chi-squared limiting distribution. Through simulation studies we demonstrated the

feasibility and power of the proposed test. The proposed test outperformed the existing tests espe-

cially when there is variance difference between two groups. We have also conducted sensitivity
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analyses to empirically show that the results are not sensitive to the tuning parametersC, S and

Z. Cross-validation procedures can be used here to obtain an optimal choice of tuning parameters.

However, these procedures are usually computational expensive. Instead,C can be simply set at

20 for reasonable type I errors and power, as suggested from our sensitivity analyses.

The proposed PLEMT test with pairwise conditioning procedure has the advantage of elim-

inating the nuisance baseline density functionf (∙). However, the baseline density function may

be assumed known in other scenarios. For example, an accurate estimate of the baseline density

function could be obtained when the data of large size of normal subjects are available. In this

case, there is no need to use the proposed conditioning procedure to eliminate the nuisance base-

line function. Instead, a penalized likelihood ratio test for admixture model can be used to test for

homogeneity (Fu et al., 2006b; Di and Liang, 2011). As suggested by a referee, we have conducted

simulation studies to compare the performance of the proposed PLEMT test (f (∙) unknown) with

the penalized likelihood ratio test for admixture model (f (∙) known); see the additional simula-

tion results in the Supplementary Materials. We found that the penalized likelihood ratio test for

admixture model has more power compared with the proposed PLEMT test, especially when the

proportion parameter is relatively small.

In this paper, the sample sizes in normal and cancer groups are set to be equal. In some cancer

data sets, there may be more cancer samples than normal samples, or more normal samples than

cancer samples for relatively rare/under-studied cancer. We have conducted additional simulation

studies when the two groups are unbalanced. The results for type I errors and power comparisons

are summarized in Table 7 in the Supplementary Materials. The balance of two groups has some

impacts on type I errors and permutation methods may be needed to better control type I errors if

two groups are highly unbalanced.

We compare the type I errors of the proposed PLEMT test usingχ2 distribution with the type

I errors of the permutation-based PLEMT test. The type I errors of the proposed PLEMT test and

the permutation-based PLEMT test are similar. Due to the time cost of the permutation-based test,

we suggest the use of the proposed PLEMT test with a simpleχ2 asymptotic distribution when the

sample size is sufficiently large.
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In this paper, the pre-specified kernel functionk(v) = (v, v2) is considered for illustration. The

misspecification of the kernel function does not lead to inflated type I errors. However, better

choice of the kernel function may yield higher power. We are currently working on incorporating

the Box-Cox transformation into the generalized exponential tilt model for more model flexibili-

ties.

The proposed method aims to detect methylation loci that are marginally different between the

case and control groups, which plays the same role as the sure independent screening method for

high dimensional feature selection (Fan and Lv, 2008). However, this marginal approach may ne-

glect the methylation loci which are jointly associated with cancer development but are marginally

uncorrelated. To address this problem in the framework of linear models and generalized linear

models,Fan and Lv(2008) andFan et al.(2009) proposed an iterative sure independent screening

method, which iteratively adds a new feature into the current variables and then perform the sure

screening step. Different from these existing approaches, our case group may contain misclassi-

fication, such that the cancer status cannot be directly modeled by a logistic regression. It is of

interest to develop an iterative screening method to handle our methylation data.

For analysis of DNA methylation data in cancer research, age has been considered as a strong

demographic risk factor (Christensen et al., 2009). Chen et al.(2013) proposed an age-adjusted

nonparametric method to detect differentially methylated loci. Specifically, the rank-based Kruskal-

Wallis test was conducted separately in different age groups, then a combined p-value was reported.

This method focuses on the differences in medians, and is expected to be underpowered when there

are differences in variances. Alternatively,Huang et al.(2013) proposed an age-adjusted nonpara-

metric method to capture the differences in both means and variances, where the Neuhaeuser’s

one-sided test (Neuḧauser, 2003) was conducted within each age group and a combined p-value

was reported. Permutation was used to obtain the age-specific p-values. However, both methods

are not easy to extend to more than one confounders and do not account for the heterogeneity in

DNA methylation among cases. The proposed PLEMT test can be extended to regression mod-

els where multivariate covariates are simultaneously adjusted and heterogeneity in cases can be

accounted for. Such an extension is currently under investigation and will be reported in the future.
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Table 1: Type I error (%) comparisons of the PLEMT test, the score test based on empirical
likelihood (EST), the modified empirical likelihood ratio test (MELRT), thet-test, the Wilcoxon
test, the Logistic regression test, the F test of equality of variances and the Kolmogorov-Smirnov
(KS) test, at 0.05 and 0.1 significant levels for Normal, Beta, Gamma, Negative binomial and t
models (ModelsA-E).

Model level (%) PLEMT EST MELRT t-test Wilcoxon Logistic F KS
Non-misspecified models
A: Normal 5.0 5.2 5.7 5.8 4.9 4.8 4.8 4.8 3.3

10.0 10.1 10.9 11.3 10.2 9.9 10.0 9.6 7.7
B: Beta 5.0 5.0 5.1 5.1 4.7 4.7 4.3 5.3 3.7

10.0 10.3 9.6 9.5 9.1 8.9 8.9 10.3 7.5
C: Gamma 5.0 5.3 6.2 6.3 5.5 5.4 5.2 10.7 3.8

10.0 10.5 11.5 11.7 10.6 10.1 10.2 17.5 8.0
Misspecified models
D: Negative binomial 5.0 5.5 5.7 5.7 5.0 4.8 4.8 7.9 1.5

10.0 11.8 11.1 11.3 10.4 10.6 10.0 14.6 3.3
E: t 5.0 5.6 6.5 6.3 5.4 4.8 4.8 27.9 3.8

10.0 11.0 11.2 12.1 9.8 10.1 9.3 36.07.9
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Table 2: 2× 2 tables for the number of sites identified by the PLEMT test vs.t-test, and the
PLEMT test vs. the MELRTtest.

PLEMT PLEMT
q-value< 0.05 ≥ 0.05 q-value< 0.05 ≥ 0.05

q-value< 0.05 2418 281 < 0.05 2543 338
t-test MELRT

q-value≥ 0.05 694 19558 ≥ 0.05 569 19501
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Figure 1: Power of the PLEMT test, the score test based on empirical likelihood (EST), the modi-
fied empirical likelihood ratio test (MELRT), thet-test, the Wilcoxon test, the Logistic regression
test, and the Kolmogorov-Smirnov (KS) test for Normal, Beta, and Gamma models as a function
of mixture proportionλ when the numbers of observations in two groups aren0 = n1 = 100.
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Figure 2: Power of the PLEMT test, the score test based on empirical likelihood (EST), the modi-
fied empirical likelihood ratio test (MELRT), thet-test, the Wilcoxon test, the Logistic regression
test, and the Kolmogorov-Smirnov (KS) test for Negative binomial and T models as a function of
mixture proportionλ when the numbers of observations in two groups aren0 = n1 = 100.
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Figure 3: Upper panels: distributions of the standardized mean differenceΔ and the ratio of stan-
dard deviationsr21 for the 694, 281, 2418 sites that are identified by the PLEMT test but not the
t-test, by thet-test but not the PLEMT test, by both the PLEMT test and thet-test, respectively;
Lower panels: distributions ofΔ and r21 for the 569, 338, 2543 sites that are identified by the
PLEMT test but not the MELRT test, by the MELRT test but not the PLEMT test, by both the
PLEMT test and the MELRT test. The 9 CpG sites between the clouds in the lower middle panel
are highlighted in red.
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Figure 4: Receiver operating characteristics (ROC) curves for the PLEMT test, the MELRT test
andt-test using Random Forest as the classification method.
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