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Abstract

Motivated by analyses of DNA methylation data, we propose a semiparametric mixture
model, namely the generalized exponential tilt mixture model, to account for heterogeneity be-
tween diferentially methylated and non{tkrentially methylated subjects in the cancer group,
and capture the flierences in higher order moments (e.g. mean and variance) between sub-
jects in cancer and normal groups. A pairwise pseudolikelihood is constructed to eliminate the
unknown nuisance function. To circumvent boundary and non-identifiability problems as in
parametric mixture models, we modify the pseudolikelihood by adding a penalty function. In
addition, the test with simple asymptotic distribution has computational advantages compared
with permutation-based test for high-dimensional genetic or epigenetic data. We propose a
pseudolikelihood based expectation—maximization test, and show the proposed test follows a
simple chi-squared limiting distribution. Simulation studies show that the proposed test con-
trols Type | errors well and has better power compared to several current tests. In particular,
the proposed test outperforms the commonly used tests under all simulation settings consid-
ered, especially when there are variand@edénces between two groups. The proposed test
is applied to a real data set to identifyffédrentially methylated sites between ovarian cancer

subjects and normal subjects.

Key words: Asymptotics; Conditional likelihood; Non-regular problem; Penalized likelihood;

Semiparametric mixture model
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1. INTRODUCTION

DNA methylation plays an important role in the development of many types of cancer. To iden-
tify differentially methylated Cytosine-Phosphate-Guanine (CpG) sites between cancer and normal
subjects is one of the central tasks to understand contributions of the DNA methylation process on
cancer development. Usually, cancer subjects are more heterogeneous in terms of DNA methy-
lation distribution as cancer subjects may hauvedent subtypes of cancer, fidirent stages of
cancer, and diierent history of treatmeniMikeska et al. 2010. Thus, DNA methylation levels

of some cancer subjects may follow one distribution and dferéntially methylated compared to
normal subjects, while the rest of cancer subjects may follow a similar distribution as that of normal
subjects and are notftigrentially methylated. The epigenetic heterogeneity in cancer has gained
tremendous interest latelBfocks et al. 2014 Oakes et a).2014 Easwaran et gl2014. CpG

sites with high variability among cancer samples can potentially be used as epigenetic biomarkers
for determining the stage of cancer progression and designing personalized treatment. Most of
the existing methods for DNA methylation data focus on testing ffieinces in means between

the cancer and normal groups, which does not fully capture ftiiereinces in variances in DNA
methylation data. There is evidence that there are not offigrdnces in DNA methylation means

but also diterences in DNA methylation variations between the cancer and normal gtdaps&n

etal, 2011 Gervinetal,2011). A recently proposed method fVar (Phipson and Oshla¢ck014)

tests the equality of variances in two groups by performimgest on the absolute or squared de-
viations of the methylation levels from the group mean. It is, however, restricted in comparing
the variances and cannot detect mediedences in two groups. More importantly, most of the
existing methods for DNA methylation data are distribution based methods, including the logit-
normal mixture model$iegmund et al.2004), the beta mixture modeHouseman et 312008,

the uniform—truncated—normal—uniform mixture modafafg 2011), and a GLM based method

(Ahn and Wang2013. However, due to the heterogeneity in distributions of DNA methylation
across loci Huang et al.2013, it is insuficient to assume a parametric distribution for all loci.
Fitting site-specific parametric models may not be feasible for a large number of loci, and also

leads to dificulties in model interpretations.
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To relax parametric model assumptions, exponential tilt mixture models (ETMM) have been
considered@in, 1999 Zou et al, 2002 Tan 2009. Specifically, subjects under one condition are
sampled from a population with the baseline density funcfiGx), and subjects under the other
condition are sampled from a mixture population with the density fundt{@h The densityh(-)

and the relationship between the densitié$ andg(-) can be formulated as follows,

h(X) = (1 - ) f(x) + 19(X);
log{g(x)/ f(X)} = a + BX, (1)

whereg(-) is defined as the density function of the methylation levels for the subpopulation in
the case group that areflidirentially methylated} is an unknown mixture proportion parameter,

B is an unknown parameter ad= — Iog{f_‘); expBx) f(x)dx} is a normalizing constant for the
density functiong(x). Note that3 = O impliesa = 0. Model (1) contains many parametric
models as special cases, such as the mixture of normal distributions figtredt means but equal
variances, and the mixture of gamma distributions witfedent shape parameters but equal scale
parameters. Under the ETMM assumption, testing for homogeneity between cancer and normal
groups i.e.f(:) = h(:), is equivalent to testing = 0 org3 = 0.

It has been long recognized that testing for homogeneity in mixture models is a non-regular
problem because the mixture proportion paramgties on the boundary of its parameter space
[0,1] and the parameters andg are not identifiable wheld = 0. Thus, the asymptotic distri-
butions of tests for homogeneity are usually rather complicated and possibly dependent on the
parametric distributions assumddgvies 1977 1987. RecentlyQin and Liang(2011) derived a
original score test under model (1) with a simple limiting chi-squared distribution. More recently,
Liu et al. (2012 proposed a novel modified empirical likelihood ratio test under model (1) and
developed anfécient and intuitive expectation—maximization (EM) algorithm for computing the
test statistic. Despite the current success on the test of homogeneity in ETMM, the aforementioned
methods only allow a scalar paramegemwhich excludes important parametric distributions such
as normal distributions with unequal means and unequal variances, gamma distributions with dif-

ferent shape and scale parameters, and beta distributions. As recent studies have observed that
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cancer tissues and some complex disease cases can also be characterized by an increased variabil-
ity in DNA methylation patternsHansen et al.2011; Issg 2011 Teschenddf et al, 2012 Xu

et al, 2013, tests that ignore this feature may lead to a substantial loss of power. We therefore
extended both the score test @yn and Liang(2011) and the modified empirical likelihood ratio

test byLiu et al. (2012 by generalizingctok(x) = (x, X?) in equation (1) to account for fierences

in both means and variances. However, as the simulation results summarized in Section 2 of online
supplementary materials suggested, both the extended score test and the extended modified em-
pirical likelihood ratio test have inflated Type | errors. This suggests that an alternative approach
should be considered.

In this paper, we generalize the one-parameter ETMM to a multi-parameter ETMM, namely
the generalized exponential tilt mixture model (GETMM), which aims to capture thereinces
in higher order moments between two distributions. Specifically, the right handside of equation
(1) is extended to a general form@f BTk(x), so that the multi-parameter ETMM includes many
parametric models, such as the normal mixture model with unequal variances, the gamma mixture
model, and the beta mixture model. Rather than estimating the baseline density fuijgtieith
the empirical likelihood procedure as@in and Liang(2011) andLiu et al. (2012, we construct a
novel pseudolikelihood based on a conditioning procedure, which eliminates the baseline density
function f(-) and avoids its estimation. To handle the non-regularity problems (i.e. boundary and
non-identifiability problems), we construct a penalized pseudolikelihood where the impacts of the
tuning parameter are studied. Finally, we propose an EM algorithm based test for computational
efficiency and stability, which can be shown to follow a simple chi-squared limiting distribution.

The contributions of this work are three-fold. First, we develop a semiparametric model that
captures the dlierences in higher moments between distributions. Second, we construct a novel
penalized pseudolikelihood, where the unknown baseline density funttipis eliminated and
the non-regularity problems are circumvented. Third, we propose an EM algorithm based test
with a simple chi-squared limiting distribution, which is computationaffyceent and stable. The
pseudolikelihood EM algorithm has been proposed for handling spatial \data €t al, 2005,
hidden Markov modelGao and Song2011), and family data with multistage samplinglfoi and
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Briollais, 2011). The convergence property of the EM algorithm is establishe@&y and Song
(2011. Unlike these existing results, the estimated parameters at each iteration of EM algorithm
rather than the estimated stationary point are used to construct the proposed test.

This paper is organized as follows. Section 2 describes the penalized pseudolikelihood based
EM test (hereafter referred to as the PLEMT test) . The asymptotic null distribution and the local
asymptotic power for the PLEMT test are provided in Section 3. Simulation studies comparing
Type | errors and power of the PLEMT test with existing tests are summarized in Section 4. A
real data application to DNA methylation data for ovarian cancer is given in Section 5 followed
by a brief discussion in Section 6. Proofs are relegated to Appendices in online supplementary

materials.
2. STATISTICAL METHODOLOGY

We propose the following two-group generalized exponential tilt mixture model (GETMM). We
present our model in the setting of modeling DNA methylation data for the concreteness of inter-
pretation, while noting that it can be generally applied to any two-group testing problem for ho-
mogeneity. At the™" CpG site, let, . . ., U, be independent, identically distributed (i.i.d.) DNA
methylation levels in the normal group with distributidsfu), whereng is the number of normal
subjects. It is believed that in the cancer group, only a proportion of subjects are methylated dif-
ferentially compared to those in the normal group, known as non-homogeneity or heterogeneity in
methylation among cancer subjedta(ari, 2010. Moreover, the ffect of diferential methylation

may appear as changes in variation, in addition to potential a shift in melans¢n et al.2011

Gervin et al, 2011, Teschenddf et al, 2012 Xu et al, 2013. To account for such features of
DNA methylation data, we assume that the i.i.d subjegts.., vy, in the cancer group follow a

mixture distribution with the densitly,(v) as follows
(V) = (1 — 2) fe(Vv) + 2,9c(V),

wheren; is the number of cancer subjects,is an unknown mixture proportion parameter<0

A¢ < 1), and the density functionfg(v) andg,(v) are related through a multi-parameter exponential
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tilt
log{ge(v)/ fr(v)} = @ + B k(). (2

HereB; = (Be1, ..., 8ea)" is ad-dimensional vector of unknown parametd(@) = {ki(V), ..., ka(v)}"

is a vector of pre-specified functionswgfand

ar = —log| [ explB,"k(v)} f(v)dv] is a normalizing constant. It is easy to see Mt 0 implies

a, = 0. For simplicity of notation, we hereafter suppress the site ifdéi/e acknowledge that
the baseline density functiofy(-) can be site-specific and is left completely unspecified. The
parametenl, can also be site-specific. Note that the GETMM includes many parametric mixture
models. Wherk(v) = v, the GETMM reduces to the one-parameter ETMM described in equation
(1); whenk(v) = (v,?), the GETMM includes the normal mixture model with unequal variances;
whenk(v) = {log(v), log(1 - v)}, the GETMM includes the beta mixture model. Both parametric
models have been used to model DNA methylation ddtegmund et al 2004 Houseman et al.
2008.

Since the majority of dierences between the cancer and normal groups may be contained in
means and variances of methylation levels, we consider the GETMM with two parameters for
model parsimony. While the GETMM with more than two parameters may better capture the
differences in higher moments such as skewness and kurtosis, the corresponding tests may be
underpowered due to the larger degree of freedom. In addition, the theoretical development of
GETMM with more than two parameters is similar. Specifically, wek{®) = (v,v?) andg =

(B1,82). Under this model, testing for homogeneity between two groups is equivalent to testing
HO:A:OOrﬂlz,BZ:O.

Maximizing the likelihood function generally involves estimating the baseline density function
f(-), typically by an empirical likelihood procedur®yen 1988. Here, we construct a pairwise
pseudolikelihood, which eliminatefy-) by conditioning on order statistics. Specifically, the ad-
vantage of the conditioning procedure is to avoid the estimatioh(-9f We consider a pair of
observations from the two groups, i.e;,from the normal group and; from the cancer group.

The conditional density of, v;) given their order statistid$? = min(u;, v;) andt® = max, v;)
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can be calculated as,
-1
pr(ul 5 Vj |t(l)9 t(Z)) = {1 + R(Ui, Vj’ /la a, ﬁla ﬁZ)} ) (3)
where
(1- 1) + 1expl + B1ui + Bou?d)
(1-2) + Aexp@ + Brv; + B2v°)
The derivation of equatiorB] is provided in Appendix A of online supplementary materials. The

R(Ui, vj; A, @, B1,82) =

baseline density functiori(-) is eliminated through this conditioning procedure. This idea of
conditioning was originally proposed I{albfleisch(1978 for rank tests and permutation tests in
regression problems, and later revitalizedlbgng and Qin(2000 in regression analyses under
biased sampling.

For each pair of observations;(v;), we can calculate the pairwise conditional density. We
then multiply all these densities together and obtain the following log pseudolikelihood function

for all observations,

Lo, a,B1,B,) = —log {1 + R(u, vj; 1, @. 1. B2)}.

i=1 j=1
wheren = ng + n;. We note that the sum of log conditional densities is standardized by the total
number of individuals rather than the number of summands. This is owing to the projection theory
in U-statistics Lehmann and D’Abreral975. As we will show later, such modification of the
loglikelihood is necessary so that the proposed test has a sjyiliting distribution with 2
degrees of freedom.

Under the null hypothesig, = 0 lies at the boundary of its parameter space, which leads to a
boundary problemSelf and Liang1987 Chen and Liang2010. Furthermore, the null hypothesis
holds fora = 0 regardless of the values @f 3, andg,, and holds foB; = 3, = 0 regardless of the
value ofA. This implies that the parametet, ¢, 81, B2) is not identifiable undeH,, which results
in complicated asymptotic properties of the pseudolikelihood ratio funcGbeit and Cher2001;

Zhu and Zhang2004. To deal with the non-identifiability problenQin and Liang(2011) fixed
the value of1 at 1, so that the other parametatsandg) are identifiable and can be estimated by
maximizing the empirical likelihood. The score test statistic was then constructed. However, the

choice of the value for the fixetlis arbitrary, and the performance of the score test depends on the
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choice ofA. Alternatively,Liu et al. (2012 proposed an empirical likelihood function by adding
penalty ond. Rather than using the empirical likelihood, we propose the following penalized

pseudolikelihood function to avoid the boundary and identifiability problems

Lpp(/l’ a,ﬁlaﬁZ) = Lp(/lv Cl’,,Bl,ﬁz) +C |Og(/l),

whereC is a positive number. The penalty is heavy whers close to 0 and less so when
approaches 1. The paramet@ris a multiplicative factor of such penalty and is often termed
as the tuning parameter. By using the penalized pseudolikelihood, the parameteounded
away from 0, and the null hypothesis is then reducef;te- 3, = 0. That is,8; andp; in the
penalized pseudolikelihood function is asymptotically identifiable. Wk{eh = X, it has been
recommended in the literature tiatcan be taken as 1, and the existing tests based on penalizing
A are not sensitive to the choice 6f(Chen and Cher2003, Fu et al, 20069. The GETMM we
considered involves both mean and variance, &(g),= (x, x?), and the recommendation on the
choice ofC may be diterent. In our simulation studies, we investigate the impadt a@in the
performance of the proposed te$di and Liang(2011) have investigated the impacts of tuning
parametelC on type | errors and power. They suggested to use the smallgnstt still provides
the correct type | error rate. However, the admixture model consider®dand Liang(201]) is
different from the model considered in this paper. Sensitivity analyses on the chGiteweé been
conducted and summarized in the Supplementary Materials. In ge@eral0 is recommended
based on various scenarios considered in our sensitivity analyses.

In general, the parametérand the parametera(8;, 8,) are highly intertwined with each other
as in many mixture model8@andeen-Roche et all997. This can lead to numerical problems
such as multiple local maxima when maximizing the pseudolikelihood. Our simulation results
summarized in Table 7 of the Supplementary Materials show that the pseudolikelihood method that
simultaneously maximizes over all parameters faces the problems of unstable results and inflated
Type | errors. In our proposed PLEMT test, we use a set@édint initial values ofl to avoid
being trapped at a local maximum.

The key idea of the PLEMT procedure is that maximizing the penalized pseudolikelihood with
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respect to ¢, 81, B3») for a fixed A is more stable than maximizing over all parameters simultane-
ously. In DNA methylation data, consider DNA methylation levals . ., v,, in the cancer group
are sampled from a mixture df(:) andg(:). Thatis,vi,..., Vv, are i.i..d. with a density function
h(v) = (1 - 2)f(v) + 2g(v). The information on whether the DNA methylation level of a particular
subject in the cancer group is from the subpopulafibhor g(-) is considered as missing data.

Here we describe the algorithm to calculate the PLEMT test statistic. We first choose a finite
set of A = {44, ..., Az}, whereZ is the number of points in the grid (e.g\,= {0.1,...1}). We then
choose the number of iteratio8sof the EM algorithm. Although the PLEMT test is motivated by
the EM algorithm, the calculation of the test statistic does not require the convergence of the EM
algorithm, which has been shown in Appendix D of online supplementary materials. Generally,
only a few steps of iterations is needed. This featufers great computational advantages in
analyses of high dimensional data. Sensitivity analyses in the Supplementary Materials suggest
that the performance of the proposed PLEMT test is not sensitive to the choiSesnaiZ. Here
we chooseZ = 10, andS = 3. At theZ" grid value,, we set the initial valual® = 1,, and
calculate the initial values obf?, %, 7)) by maximizing £,,(A%", @, 81, 82). We carry out the
following EM algorithm forS — 1 times.

At the E step of the EM algorithm, we calculate the posterior probability ofjtheancer

subject being dferentially methylated givew and @, 0%, 8, 89 as,

/éS)g(Vj) /lgs) exp(ags) + ﬁg)v,- + ,B(ZZ)VJ-Z)

© _ _ |
L= f(v) + 2 Pgv) 1-29 +9 exp(e? + gv; + BOV?)

jz

We then calculate the expected complete likelihood given the data and the current parameter

estimates, which only involves the parameter

> a-w)log(1- 1) + > o log(1) + Clog(d).
j=1 j=1
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At the M step, we update and other parameters,(3;:, andg,). Specifically,

ng ny
A5 = argﬂmaxZ(l - w)log(1- ) + > &P log(1) + Clog(d)
=1 =1
N ) +C (4)
n+C ’

(a§$1)’ﬁi+l)’ﬁ$+l)) = argmaXLpp(/lgstl), a?ﬁlaﬁZ)-

@B1B2
Equation &) suggests an intuitive explanation of the penalty t&tog(1) in Lyy(4, @, B1,B2).
Specifically, the proportion of the subgroup witHfdrential methylation among case¥s™”, is
calculated as the average of posterior probabilities of being in this subg@mlusc pseudo
observations (known to be in this subgroup). This idea of pseudo-observation adjustment was orig-
inally proposed by Jiahua Chen and his colleagues. The pseudolikelihood method that maximizing
over all parameters simultaneously faces the non-convergence and computational problems. Our
simulation result summarized in the Supplementary Materials shows that the parameter estimates
are sensitive to the choice of initial values when maximizing over all parameters simultaneously,
leading to unstable results. By fixingat this step, we can get more stable results than maximiz-
ing over all parameters simultaneously. We use the general-purpose optimization procedure in R
(R Development Core Team, 2009) to obtai¥(?, 5™, s5Y). At the 2" grid value, we define
Ma(4) = 2{ L4, e, BD. 53) - Lop(1,0,0,0)}. We then define our PLEMT test statistic
as follows,

PLEMT = max{My(1?). 2= 1,.... Z}.

Details of the derivation of the PLEMT test statistic are provided in Appendix D of online supple-

mentary materials.
3. ASYMPTOTIC RESULTS

This section provides asymptotic results for the PLEMT test statistic under thelpahd under
the local alternatives.

We assume the following regularity conditions.
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(C1). The parameter sefk, andQg for « andg are compact.

(C2). The distributions of; andv; have common support and are not degenerate to a point
measure.

(C3). The ration;/n — p, asn — oo, where 0< p < 1. The variance-? = var(y;) < oo and for
somet > M, fu2 exp(lul) f (u)du < o, whereM is a small positive constant.
The compactness of the parameter spaces in assumption (C1) is commonly adopted in the statistical
literature. Such an assumption may be relaxed by imposing the uniform boundedness assumption
on the baseline density; for example, &eet al. (2009. The assumption (C2) is to guarantee the
GETMM is identifiable. The assumption (C3) is a reasonable technical condition for applying the

uniform law of large numbers.

Theorem 1 Under the regularity conditions GAC3, and the null hypothesisgHthe PLEMT test

statistic converges weakly g as n— oo.

The proof of Theorem 1 is given in Appendix D of online supplementary materials.

Evaluation of test statistics under alternative hypotheses is crucial for sample size calculation
and experimental design. In practice, the most interesting situations for alternatives are those close
to the null hypothesis. For mathematical convenience, statisticians typically focus on the local
asymptotic power of test statistics. Here we provide a useful result about the asymptotic power of
the PLEMT test under a sequence of local alternatives. Specifically, for angfd< 1, density

function fy(-) and a fixedrg, consider a sequence of alternatives:
Ha:d= o, f() = fo(-), B=n""r,,

whererg is a vector. UndeH,, we do not explicitly specify the local alternative fey becauser
is a function of8 and fy(-). With LeCam’s third lemma\{an der Vaart2000, we can establish the

following results.

Theorem 2 Under the alternatives k the limiting distribution of the PLEMT test statistic is
X3 {/13(1 - p)p‘rngo}, wherey3(c) denotes the noncentral chi-squared distribution with 2 degrees

of freedom and non-centrality parameter c.
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The proof is given in Appendix E of online supplementary materials. An important observation is,
given a total number of subjeatsthe asymptotic power is maximized when the design is balanced

(i.e.,p =0.50rny = ny).
4. SIMULATION STUDIES

We conduct simulation studies to evaluate the finite sample performance of the proposed PLEMT
test comparing with seven existing tests, namely the score test based on the one-parameter ETMM,
the modified empirical likelihood ratio test, the Wald test based on logistic regressiantetste
the Wilcoxon test, the F test of equality of variances and the Kolmogorov-Smirnov test.

We consider a variety of parametric models. Specifically, for each simulation setting, the data
are generated from the mixture modg) (vith one of the following choices of density functions
f(-) andg(').

Model A (Normal model). Let f(-) andg(-) be the density functions of Normal4, c3) and

Normal (u,, o2), respectively. Then

. 42— 0% oY -odn  0i-o?
l0gig(¥)/ (X)) = 5(logor? - logod) + —1— g 2oz X
1V 2 1V 2 1¥ 2

Model B (Beta model) Let f(-) andg(-) be the density functions of two beta distributions with

shape parametera,(b;) and @,, b,), respectively. Then

B( 1, 1)

log{g(X)/ f(x)} = |09{ B2y, by)

} + (a2 — ) log x + (b, — by) log(1 - x),

whereB(., -) is the beta function.
Model C (Gamma model) Let f(-) andg(:) be the density functions of Gammian( 6,) and
Gamma (n,, 6,) with shape parametens;, m, and scale parametefig 6, > 0. Then
9(x) {F(ml)
=lo
) = 0\ T(my)
Note that Models AC belong to the GETMM. In equation (2), Models-& havek(x) =

} + my log(8,) — mp log(6,) + (M, — my) log x + (i - i) X.

|
9T 0 o,

(x, X2), {log(x), log(1- x)}, and{log(x), X}, respectively. To evaluate the robustness of the proposed

test to model misspecifications, we consider two additional models (Moddl§ @hen the expo-
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nential tilt model assumption is not satisfied. It is expected that misspecified models may lead to
incorrect Type | errors for tests based on the GETMM assumption.
Model D (Negative binomial model) Let f(-) andg(-) be the density functions of the Negative

Binomial (NB) distribution €1, p;) and NB 2, p2), wherer, andr, are the numbers of failures until

the experiment is stopped, apgandp, are success probabilities in each experiment. Then
Iog@ = r,log( P

1-p x—1 x—1
f(x) 1-p 1- pl) " Iog(rz - 1) - Iog(rl - 1)'

Model E (t distribution) . Let f(-) andg(-) be the density functions of the t distributions

P1
1-pg

) —rylog( ) + xlog(

(ncpy, dfy) and ficp, d f;), wherencp, andncp, are the noncentrality parameters, ahfglandd f,
are degrees of freedom.

We compare Type | errors and power of the tests. For power comparisons, we conduct simula-
tion studies under Scenario | wheirg) andg(:) are diferent in means only, Scenario Il whefrg)
andg(-) are diferent in variances only, and Scenario Ill where both means and variand¢é3 of
andg(-) are diferent. For each of the power scenarios, we consider settings whkegres diferent
values from 0 to 1. The rejection rates based on 5000 simulations are used to estimate Type | errors
and the rejection rates based on 1000 simulations are used to estimate the power. We consider a
sample size setting with 100 subjects in each group.

Table 1 summarizes the Type | errors of the eight tests under comparison for five mo€E)s (A
Under both non-misspecification scenario (Models@) and misspecification scenario (Models
D-E), the Type I errors of the PLEMT test, the EST test, the MELRT test-tast, the Wilcoxon
test and the Logistic regression test are relatively close to the corresponding nominal levels given
the moderate sample size € 200). The proposed test has slightly inflated type | errors under
model misspecifications compared to t-test, Wilcoxon test and logistic regression test. It is not
surprising to see that the Type | errors of the F test are inflated under the Gamma, Negative binomial
and the t models, because the F test is known to be sensitive to non-normality. The Kolmogorov-
Smirnov test yields conservative Type | errors under all settings, especially in the negative binomial
model.

Since the Type | errors of the test are inflated, we only compare the power of the remaining
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seven tests. Figure 1 plots the power curves of the seven tests under GETMMs (Me@gIsha
Aincreases, the power of all tests increases. For power Scenario | with nfiserdies only, the
PLEMT test is slightly more powerful than the Kolmogorov-Smirnov test, and has slightly lower
but comparable power than the rest five tests. This is because the PLEMT test has two degrees
of freedom, while the other five tests have only one degree of freedom. The slight loss of power
for the PLEMT test is due to the extra one degree freedom when there are only rfiesandes.
For the power Scenario Il with variancef@rences only, the PLEMT test is much more powerful
than all the other tests as expected since they do not fully account for varidferentes and
the mixture structure of the data. More specifically, the MELRT test has about-14886 less
power than that of the PLEMT test, the Kolmogorov-Smirnov test has about20% less power
than that of the PLEMT test, whereas the other four tests have essentially no power beyond Type
| errors. This is consistent with the simulation resultd.in et al. (2012 that the MELRT test is
more powerful than the EST test. When both mean and variance féeeedt, the PLEMT test
remains to be the most powerful one. The degree of the power loss of the other six tests depends
on the proportion of the varianceffirence in the overall mean and variancedences. Under
the setting we considered, the MELRT test is the second most powerful test with a power about
5% — 25% lower than that of the PLEMT test. The other four tests are grossly underpowered.
Similar patterns are observed in Figure 2 for misspecified models (Models D and E). The
PLEMT test has a slightly lower power than the other tests under power Scenario I, while it is
the most powerful test under power Scenarios Il and Ill. One interesting phenomena is that there
is a power gain for the Wilcoxon test under Scenario Il and Il for the misspecified models com-
paring with that under GETMMs, while the Wilcoxon test has essentially no power beyond Type
| errors under GETMMs. This is because the Wilcoxon test may capture some of the variance
differences when the distributions are heavily skewed, but cannot capture thiesendes when
the distributions are symmetric.
In summary, our simulation studies suggest performance from the proposed PLEMT test com-
pared to the existing ones. The proposed PLEMT test has well controlled Type | errors and sub-

stantial power gain when the variancdfdiences need to be taken into account. The proposed

ACCEPTED MANUSCRIPT
16



Downloaded by [University of Pennsylvania] at 07:12 08 September 2017

ACCEPTED MANUSCRIPT

PLEMT test also shows some degree of robustness under model misspecifications. The PLEMT
test is implemented as an R software packapeistETM which is attached as the Supplementary

Materials.
5. APPLICATION TO DNA METHYLATION DATA OF OVARIAN CANCER

We apply the PLEMT test to the data from the United Kingdom Ovarian Cancer Population Study
to select diferentially methylated sites between ovarian cancer cases and age-matched healthy con-
trols using the lllumina Infinium Human Methylation27 Beadchipgchenddf et al, 2010. The
original data have 266 ovarian cancer cases with 131 pre-treatment cases and 135 post-treatment
cases, and 274 age-matched healthy controls. Since age and having received treatment or not when
blood samples are taken are factors knownffect DNA methylation levels, we choose to use the
131 ovarian cancer cases who gave their blood at the time of their diagnosis prior to treatment and
with age-matched controls. We refer readergeng(2011) for the detailed quality control steps.
We end up with 96 cancer subjects and 136 normal subjects with DNA methylation levels at 22951
sites. Because our simulation results suggest that the MELRT test is the second most powerful test
accounting for the varianceftirences, we focus on the comparisons among the PLEMT test, the
commonly used-test, and the MELRT test in this real data application. We also only focus on
the original DNA methylation levels instead of the logit transformed ones. Due to the presence
of multiple hypothesis testing, the number of false positives may rapidly increase such that the
scientific discoveries may become unreliable. To address this problem, we adapt the procedure in
Storey (2002 to control the false discovery rate (FDR), which is defined as the number of false
positives divided by the number of total discoveries. In particular, for each hypothesis test, we
calculate a number called g-value, which is the minimum FDR that can be attained when the test
is significant. It can be regarded as a hypothesis testing error measure for each test with respect
to FDR (Storey 2002. Here, we use the “qvalue” package in R to calculate the g-value for each
hypothesis test.

The proposed PLEMT test, thdest and the MELRT test are then applied to the methylation
data at these 22951 sites. Of the sites tested, 3112 sitesjthahees< 0.05 using the PLEMT
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test, 2699 sites hawpvalues< 0.05 using thd-test, and 2881 sites hagevalues< 0.05 using the
MELRT test. These numbers are cross-tabulated in Table 2. There are 2418 overlapping sites that
haveg-values< 0.05 using both the PLEMT test and th¢est, and 694 sites that are identified by

the PLEMT test but not by thetest. There are 2543 overlapping sites that hpvalues< 0.05

using both the PLEMT test and the MELRT test, and 569 sites that were identified by the PLEMT
test but not by the MERLT test.

We denoteA = (my — np)/sd, as the standardized mearffdrence between cancer and normal
subjects, and,; = sdb/sd; as the ratio of standard deviations between cancer and normal subjects,
wherem; andm, are the means of the normal subjects and cancer subjects, respectivedg and
andsd, are the standard deviations of the normal subjects and cancer subjects, respectively. We
further examine the distribution @f andr,, for the sites tested. The upper three panels of Figure 3
displays the distribution of andr,; for the 694 sites that are identified by the PLEMT test but not
thet-test, for the 281 sites that are identified by thest but not the PLEMT test, and for the 2418
overlapping sites that are identified by both the PLEMT test ant-tést, respectively. The lower
three panels of Figure 3 displays the distributionaa@ndr,; for the 569 sites that are identified
by the PLEMT test but not the MELRT test, for the 338 sites that are identified by the MELRT test
but not the PLEMT test, and for the 2542 sites that are identified by both the PLEMT test and the
MELRT test, respectively.

Itis clear that the sites identified by the PLEMT test only but notttest have more significant
variance diferences than meanftirences between the cancer and normal groups, which is the
scenario the proposed test is designed for. In contrast, those sites that are identified-t®gthe
only have more significant meanfiirences than variancefldirences between the cancer and
normal groups in general. For the overlapping 2418 sites that are identified by both the PLEMT
test and the-test, the majority have much largerffégirences in means than the sites identified by
only one method. Thus these sites are relatively easier to be identified as all methods look for
mean diferences. Moreover, for those sites that have relatively small mé&mesices (but still
have larger mean flerences than sites that are identified by the PLEMT test only), they have

large diferences in variance in general. Thus the PLEMT test is able to identify them, although
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simulation studies suggested a slightly lower power for the PLEMT test in such scenarios than
the t-test. Similar patterns can be found when comparing the PLEMT test and the MELRT test.
An interesting phenomenon is that for the 338 sites identified by the MELRT test only but not the
PLEMT test (lower middle panel of Figure 3), there are 9 points between the clouds (highlighted
in red), where the dierences in both means and variances are very small. As shown later, our
further examination suggests that those sites identified by the MELRT test may be false positive.

We examine the top 50 sites with most significant results from the PLEMT test among the
694 sites that are identified by the PLEMT test but nottthest. By estimating the proportion of
differentially methylated subjects in the cancer group compared to those in the normal group, we
find the mixture feature at 16 out of the 50 sites (i.e., close to one-third) based on the estimated
For example, at siteg26457013, the proportion of llerentially methylated subjects in the cancer
group compared to those in the normal group is 22%, with estimagteéh,j = (-86.79, —-5.52). At
sitecgl11905589, the proportion offlierentially methylated subjects in the cancer group compared
to those in the normal group is 78%, with estimatgd 8,) = (-10.87,-71.68). At both sites,
there are sizable flerences in means and variances. Specifically, we havg§ = (0.28, 0.76)
at sitecg26457013, andA, r,;) = (0.11, 0.70) at sitecgl1905589. We further examine the 9 CpG
sites between the clouds in the lower middle panel of Figure 3 with sntédleinces in both means
and variances that are identified by the MELRT test but not the PLEMT test, where we apply all
eight tests investigated in the simulation studies on these 9 sites. The results suggest that some of
the identified sites might have been false positive since all other six existing tests generate large
p-values (results are included in Section 3 of online supplementary materials).

We compare the predictive power of significant CpG sites detected by PLEMT, MELRT and
t-test. The top ranked CpG sites (by statistical significance) detected by the three methods are
largely overlapped, because most of them shoffedinces in average methylation levels. To
emphasize the distinctions offtérent methods, we ignore the common ones and pick top 30 CpG
sites uniquely identified by these three tests, and then use them as predictors to classify cancer
and normal samples. We use Random ForBstinan 200]) as the classification method, and

compare the receiver operating characteristics (ROC) curves generated from 100 runs of 3-fold
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cross validation. As shown in Figure 4, the area under the ROC curve of PLEMT is greater than
that of MELRT and t-test, (AUC: 0.76, 0.66 and 0.64 for PLEMT, MELRT and t-test, respectively).
This result indicates that compared with the other two methods, PLEMT identifies CpG sites that
can better distinguish cancer patients from normal people.

We further investigate the 15 genes that the top 15 CpG sites reside among those CpG sites
that were uniquely identified by the proposed PLEMT method only but not by the t-test or by
the MELRT method. Out of the 15 genes, 9 of them have been reported to be associated with
cancer. These include genes which are reported to be related with breast cancer: MR\
et al, 2013, AIM2 (Liu et al,, 2015, colorectal cancer: CNGA3Shaikh et al. 2015, ovarian
cancer HOXBS8 $tavnes et al2013, liver cancer HNF4A Nling et al, 2010, pancreatic cancer
PCDHB2 (Carter et al.2010, and cancer progression STRNé@/dgng et al, 2014, CHCHD4
(Yang et al, 2012, and VHL Kim and Kaelin 2004, where the number in the parenthesis is the
rank of p-value among the 15 genes.

In summary, the proposed PLEMT test has identified novel sites of potential interest that are
missed by the commonly usédest and the MELRT test, and has better predictive powers. There-

fore, it can serve as a useful complement to the standard tests.
6. DISCUSSION

In this paper, we proposed a novel pseudolikelihood based EM test to ideffiggeditially methy-

lated loci. Specifically, we developed a semiparametric model to account for heterogeneity be-
tween diterentially methylated subjects and nofftglientially methylated subjects in the cancer
group, and capture theftierences in higher order moments (e.g. mean and variance) between
subjects in the cancer and normal groups. We constructed a novel penalized pseudolikelihood to
eliminate the unknown baseline density function and circumvent the non-regularity problems. We
also proposed an EM algorithm based test for computatidifiagiency and stability, which fol-

lows a simple chi-squared limiting distribution. Through simulation studies we demonstrated the
feasibility and power of the proposed test. The proposed test outperformed the existing tests espe-

cially when there is variance fiierence between two groups. We have also conducted sensitivity
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analyses to empirically show that the results are not sensitive to the tuning para@\efeasd

Z. Cross-validation procedures can be used here to obtain an optimal choice of tuning parameters.
However, these procedures are usually computational expensive. IrfStead,be simply set at

20 for reasonable type | errors and power, as suggested from our sensitivity analyses.

The proposed PLEMT test with pairwise conditioning procedure has the advantage of elim-
inating the nuisance baseline density functid. However, the baseline density function may
be assumed known in other scenarios. For example, an accurate estimate of the baseline density
function could be obtained when the data of large size of normal subjects are available. In this
case, there is no need to use the proposed conditioning procedure to eliminate the nuisance base-
line function. Instead, a penalized likelihood ratio test for admixture model can be used to test for
homogeneityFu et al, 2006h Di and Liang 2011). As suggested by a referee, we have conducted
simulation studies to compare the performance of the proposed PLEMT {gsirtknown) with
the penalized likelihood ratio test for admixture modg(-Y known); see the additional simula-
tion results in the Supplementary Materials. We found that the penalized likelihood ratio test for
admixture model has more power compared with the proposed PLEMT test, especially when the
proportion parameter is relatively small.

In this paper, the sample sizes in normal and cancer groups are set to be equal. In some cancer
data sets, there may be more cancer samples than normal samples, or more normal samples than
cancer samples for relatively ranader-studied cancer. We have conducted additional simulation
studies when the two groups are unbalanced. The results for type | errors and power comparisons
are summarized in Table 7 in the Supplementary Materials. The balance of two groups has some
impacts on type | errors and permutation methods may be needed to better control type | errors if
two groups are highly unbalanced.

We compare the type | errors of the proposed PLEMT test ygirdjstribution with the type
| errors of the permutation-based PLEMT test. The type | errors of the proposed PLEMT test and
the permutation-based PLEMT test are similar. Due to the time cost of the permutation-based test,
we suggest the use of the proposed PLEMT test with a sigfpdsymptotic distribution when the

sample size is gticiently large.
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In this paper, the pre-specified kernel functigua) = (v, v?) is considered for illustration. The
misspecification of the kernel function does not lead to inflated type | errors. However, better
choice of the kernel function may yield higher power. We are currently working on incorporating
the Box-Cox transformation into the generalized exponential tilt model for more model flexibili-
ties.

The proposed method aims to detect methylation loci that are marginfilyasht between the
case and control groups, which plays the same role as the sure independent screening method for
high dimensional feature selectioRan and Ly 2008. However, this marginal approach may ne-
glect the methylation loci which are jointly associated with cancer development but are marginally
uncorrelated. To address this problem in the framework of linear models and generalized linear
models,Fan and L2008 andFan et al(2009 proposed an iterative sure independent screening
method, which iteratively adds a new feature into the current variables and then perform the sure
screening step. [erent from these existing approaches, our case group may contain misclassi-
fication, such that the cancer status cannot be directly modeled by a logistic regression. It is of
interest to develop an iterative screening method to handle our methylation data.

For analysis of DNA methylation data in cancer research, age has been considered as a strong
demographic risk factorGhristensen et gl2009. Chen et al(2013 proposed an age-adjusted
nonparametric method to detecftdrentially methylated loci. Specifically, the rank-based Kruskal-
Wallis test was conducted separately iffelient age groups, then a combined p-value was reported.
This method focuses on theflirences in medians, and is expected to be underpowered when there
are diferences in variances. Alternativeluang et al(2013 proposed an age-adjusted nonpara-
metric method to capture theftrences in both means and variances, where the Neuhaeuser’s
one-sided testNeuhauser 2003 was conducted within each age group and a combined p-value
was reported. Permutation was used to obtain the age-specific p-values. However, both methods
are not easy to extend to more than one confounders and do not account for the heterogeneity in
DNA methylation among cases. The proposed PLEMT test can be extended to regression mod-
els where multivariate covariates are simultaneously adjusted and heterogeneity in cases can be

accounted for. Such an extension is currently under investigation and will be reported in the future.
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Table 1. Type | error (%) comparisons of the PLEMT test, the score test based on empirical
likelihood (EST), the modified empirical likelihood ratio test (MELRT), thtest, the Wilcoxon

test, the Logistic regression test, the F test of equality of variances and the Kolmogorov-Smirnov
(KS) test, at 0.05 and 0.1 significant levels for Normal, Beta, Gamma, Negative binomial and t
models (ModelA-E).

Model level (%) PLEMT EST MELRT t-test Wilcoxon Logistic F KS

Non-misspecified models

A: Normal 5.0 5.2 5.7 5.8 4.9 4.8 4.8 48 33
10.0 10.1 10.9 11.3 10.2 9.9 10.0 96 7.7

B: Beta 5.0 5.0 5.1 5.1 4.7 4.7 4.3 53 37
10.0 10.3 9.6 9.5 9.1 8.9 8.9 103 75

C: Gamma 5.0 5.3 6.2 6.3 55 5.4 5.2 10.7 3.8
10.0 10.5 11.5 11.7 10.6 10.1 10.2 175 8.0

Misspecified models

D: Negative binomial 5.0 55 5.7 5.7 5.0 4.8 4.8 79 15
10.0 11.8 11.1 11.3 10.4 10.6 10.0 146 3.3

E:t 5.0 5.6 6.5 6.3 5.4 4.8 4.8 279 38
10.0 11.0 11.2 12.1 9.8 10.1 9.3 36.07.9
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Table 2: 2x 2 tables for the number of sites identified by the PLEMT test t#test, and the
PLEMT test vs. the MELRTest.

PLEMT PLEMT
g-value< 0.05 > 0.05 g-value< 0.05 > 0.05
g-value< 0.05 2418 281 <0.05 2543 338
t-test MELRT
g-value> 0.05 694 19558 >0.05 569 19501
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Figure 1. Power of the PLEMT test, the score test based on empirical likelihood (EST), the modi-
fied empirical likelihood ratio test (MELRT), thietest, the Wilcoxon test, the Logistic regression
test, and the Kolmogorov-Smirnov (KS) test for Normal, Beta, and Gamma models as a function
of mixture proportio® when the numbers of observations in two groupsmgre n; = 100.
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Figure 2. Power of the PLEMT test, the score test based on empirical likelihood (EST), the modi-
fied empirical likelihood ratio test (MELRT), thietest, the Wilcoxon test, the Logistic regression
test, and the Kolmogorov-Smirnov (KS) test for Negative binomial and T models as a function of
mixture proportiod when the numbers of observations in two groupsmgre n; = 100.
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Figure 3: Upper panels: distributions of the standardized me&areinceA and the ratio of stan-

dard deviations,; for the 694, 281, 2418 sites that are identified by the PLEMT test but not the
t-test, by thet-test but not the PLEMT test, by both the PLEMT test andttkest, respectively;
Lower panels: distributions ok andr,; for the 569, 338, 2543 sites that are identified by the
PLEMT test but not the MELRT test, by the MELRT test but not the PLEMT test, by both the
PLEMT test and the MELRT test. The 9 CpG sites between the clouds in the lower middle panel
are highlighted in red.
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Figure 4: Receiver operating characteristics (ROC) curves for the PLEMT test, the MELRT test
andt-test using Random Forest as the classification method.

ACCEPTED MANUSCRIPT
35



