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SUMMARY

This paper considers the asymptotic distribution of the likelihood ratio statistic T for testing
a subset of parameter of interest θ , θ = (γ, η), H0 : γ = γ0, based on the pseudolikelihood
L(θ, φ̂), where φ̂ is a consistent estimator of φ, the nuisance parameter. We show that the
asymptotic distribution of T under H0 is a weighted sum of independent chi-squared variables.
Some sufficient conditions are provided for the limiting distribution to be a chi-squared variable.
When the true value of the parameter of interest, θ0, or the true value of the nuisance parameter,
φ0, lies on the boundary of parameter space, the problem is shown to be asymptotically equivalent
to the problem of testing the restricted mean of a multivariate normal distribution based on one
observation from a multivariate normal distribution with misspecified covariance matrix, or from
a mixture of multivariate normal distributions. A variety of examples are provided for which the
limiting distributions of T may be mixtures of chi-squared variables. We conducted simulation
studies to examine the performance of the likelihood ratio test statistics in variance component
models and teratological experiments.

Some key words: Asymptotic distribution; Boundary problem; Frailty survival model; Likelihood ratio test; Nuisance
parameter; Pseudolikelihood; Teratological experiment; Variance component model.

1. INTRODUCTION

1·1. Motivation

Very often a probability model for data is indexed by two sets of parameters: the parameter
of interest, θ , of dimension p, and the nuisance parameter, φ, of dimension q. Sometimes the
likelihood function L(θ, φ), when considered jointly as a function of θ and φ, is ill-behaved,
yet when considered as a function of θ alone with φ held fixed, is well-behaved. When the
nuisance parameter cannot be eliminated through conditioning, marginalizing or factorization,
one approach is to use the pseudolikelihood proposed by Gong & Samaniego (1981). The key
idea of this approach is that inference for θ can be based on L∗(θ) = L(θ, φ̂), known as the
pseudolikelihood for θ , where φ̂ is a consistent estimator of φ, assuming such an estimator
exists. Gong & Samaniego derived the asymptotic distribution of the maximum pseudolikelihood
estimator θ̂ for θ under regularity conditions. Thus, Wald-based inference for θ can be made
based on this asymptotic distribution. However, it has been well documented in the literature that
such inference could be ill-behaved, and that this concern can be alleviated by using likelihood-
ratio-based inference (Hauck & Donner, 1977). To this end, Liang & Self (1996) studied the
asymptotic behaviour of the likelihood ratio test statistic for testing H0 : θ = θ0 based on L∗(θ).
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The primary purpose of this paper is to extend the work by Liang & Self (1996) to deal with
situations where only a subset of θ is tested, and the parameter value of interest or the nuisance
parameter may lie on the boundary of its parameter space.

1·2. Example 1: Variance component models

Consider the model

y = Xφ + ε, ε ∼ N {0, �(θ)},
where y is an n × 1 vector of the response variables, X is the design matrix of n × q dimension and
�(θ) is the n × n covariance matrix indexed by θ , a p × 1 vector. In pedigree analyses, it has been
a standard procedure to estimate φ by the conventional least-squares estimator φ̂ = (X T X )−1 X T y
and to base inference for θ on L(θ, φ̂), where L(θ, φ) is proportional to the conditional distribution
of Y = y given X . Often we are interested in testing the significance of the multiple variance
components one at a time and leave others unspecified (Beaty et al., 1985).

1·3. Example 2: Behrens–Fisher problem

Consider yi j ∼ N (θi , φi ) ( j = 1, . . . , ni ; i = 1, 2), when the yi j s are independent of each other.
The Behrens–Fisher problem corresponds to the problem of testing the difference between the
two means, i.e. H0 : θ1 = θ2. With φi replaced by φ̂i =∑ni

i=1(yi j − ȳi )2/ni , the sample variance
of the i th group (i = 1, 2), the pseudolikelihood for (θ1, θ2) has the form

L(θ1, θ2, φ̂1, φ̂2) ∝
2∏

i=1

ni∏
j=1

(2πφ̂i )
1/2

exp

{
− (yi j − θi )2

2φ̂i

}
.

The null hypothesis of interest is H0 : γ = θ1 − θ2 = 0, leaving η = θ2 unspecified.

1·4. Example 3: Frailty survival models

Bandeen-Roche & Liang (1996) described a class of models for failure-time data that accounts
for multiple levels of clustering. This class of models permits specification of simple distributional
forms for all bivariate margins. In addition, the distribution reduces to the univariate frailty model
(Vaupel et al., 1979; Oakes, 1989) when there is only a single level. Consider a cluster with two
levels; for example, households and villages. Suppose there are four individual members and the
households are clustered as {1, 2} and {3, 4}. When the Clayton copula (Clayton, 1978) is used,
the multivariate survival function has the form

S(t1, . . . , t4) =
⎡
⎣
⎧⎨
⎩

2∑
j=1

Sj (t j )
1−θ1 − 1

⎫⎬
⎭

α

+
⎧⎨
⎩

4∑
j=3

Sj (t j )
1−θ1 − 1

⎫⎬
⎭

α

− 1

⎤
⎦

1/(1−θ2)

, (1)

where α = (θ2 − 1)/(θ1 − 1), Sj is the marginal survival distribution of the j th member ( j =
1, . . . , 4), and θ1 � 1 and θ2 � 1 characterize the association within and between households,
respectively. To ensure that the above survival function is legitimate, one needs θ2 � θ1, i.e. the
between-household association not exceeding the within-house association. Let φ denote the
parameters which specify the Sj s, the pseudolikelihood approach for inference about θ has been
proposed (Bandeen-Roche & Liang, 1996; Shih & Louis, 1995) as convenient estimators of φ

are typically available by, for example, maximizing the likelihood function with respect to φ

assuming independence, i.e. fixing θ1 and θ2 at 1. One hypothesis of interest is H0 : θ2 = 1, i.e.
no between-household association. Here θ2 = 1 is on the boundary of the parameter space for θ2.
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1·5. Example 4: Teratological experiments

In teratological experiments, the response variables are often dichotomous and their sums
are commonly modelled by beta-binomial distributions (Weil, 1970; Haseman & Kupper, 1979).
The distributions are indexed by π , the probability of experiencing an adverse event, and φ, the
nuisance parameter characterizing the so-called litter effect, also known as overdispersion, the
tendency that the subjects from the same litter to respond more alike than subjects from different
litters. Often investigators would like to establish the dose-response relationship between π and
x , the dosage level or the treatment status. One may consider the model,

g(π) = β0 + β1x, var(Y ) = mπ(1 − π){1 + (m − 1)φ},
where g is known as the prespecified link function. For beta-binomial models, it has been well
documented that the nuisance parameter has a profound impact on the parameter of interest
(Williams, 1988). One way to alleviate such concern is to base the inference of β on the pseudo-
likelihood L(β, φ̂) where φ̂ is a consistent estimator of φ. Such an estimator could be obtained,
for example, by using method of moments. One hypothesis of interest is H0 : β1 = 0, i.e. no
dose-response relationship. Since the intralitter correlation could be dose-dependent, heteroge-
neous correlations are often assumed. When the dosage level is zero or the placebo is used, the
intralitter correlation is usually close to zero, lying near or on the boundary of its parameter space.

1·6. Example 5: A general setting

Consider the case where the likelihood can be decomposed into two parts,

L(θ, φ) = L1(θ, φ)L2(φ),

where both L1 and L2 are legitimate likelihood functions. In this case, one could use the maximizer
of L2(φ), φ̂, to form the pseudolikelihood function L∗(θ) for θ . Many examples fit into this case.
It is easy to see that Example 2 above is a special case with L2(φ) proportional to the product of
probability density functions of sample variances from both samples. Another example is genetic
linkage study where the data consist of genetic marker data, M , and genotyping data, T , from
pedigrees. In this situation, the likelihood function is proportional to

f (M | T ; θ, φ) f (T ; φ) = L1(θ, φ)L2(φ),

where θ j , ( j = 1, . . . , p), is the location of the j th disease gene, and φ are parameters character-
izing an underlying genetic mechanism for the disease. In the context of measurement errors, the
true covariate, X , is observed indirectly through surrogate, W , which is measured with errors.
With Y as the dependent variable, the likelihood function is proportional to

f (Y = y | W = w; θ, φ) f (W = w; φ) =
∫

x
f (y | x ; θ) f (x | w; φ) dx

∫
x

f (w | x ; φ) f (x ; φ) dx

= L1(θ, φ)L2(φ),

where θ is the regression coefficient relating X to Y and φ is the parameter characterizing the
measurement errors for the covariates.

2. MAIN RESULTS

2·1. The parameter of interest and the nuisance parameter are interior points

In this subsection, we consider the cases where only a subset of the parameter of interest
is tested while the true values of the parameter of interest and nuisance parameter are interior
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points of their parameter spaces. Consider the partition of θ into two parts: the parameters to
be tested, γ , of dimension p1 and the remaining parameters, η, of dimension p2 = p − p1.
The null hypothesis of interest is specified as H0 : γ = γ0. Let T be the pseudolikelihood ratio
test statistic, i.e. T = −2 log [L∗{γ0, η̂(γ0)}/L∗(γ̂ , η̂)], where η̂(γ0) = arg maxηL∗(γ0, η) and
(γ̂ , η̂) = arg maxγ,ηL∗(γ, η). Theorem 1 states the large sample distribution of T under H0.

THEOREM 1. Suppose that under a distribution indexed by (θ0, φ0), the consistent estimator of
φ, φ̂, has the asymptotic distribution n1/2(φ̂ − φ0) → N (0, �22) as n → ∞.

Then, under the regularity conditions (A1)–(A6) in Gong & Samaniego (1981),

(i) the p × p matrix {
I −1
11 −

(
0 0
0 I −1

ηη

)}
I ∗
11

has p1 positive eigenvalues, λ1 � · · · � λp1 > 0, and p − p1 zero eigenvalues;
(ii) the asymptotic distribution of the pseudolikelihood ratio statistic T is U =∑p1

j=1 λ jU j ,

where the U j s are independent χ2
1 variables.

Here

I11 = lim
n→∞

[
E

{
−1

n

∂2 log L(θ0, φ0)

∂θ2
; θ0, φ0

}]
,

Iηη = lim
n→∞

[
E

{
−1

n

∂2 log L(γ0, η0, φ0)

∂η2
; γ0, η0, φ0

}]
,

and I ∗
11 is the asymptotic variance of n−1/2∂ log L(θ0, φ̂)/∂θ and can be calculated as I ∗

11 =
I11 + I12�22 I T

12 with

I12 = lim
n→∞

[
E

{
−1

n

∂2 log L(θ0, φ0)

∂θ∂φ
; θ0, φ0

}]
.

The proof is straightforward using Taylor expansions and Theorem 4.4.4 of Graybill (1976) and
hence is omitted. Implicitly, we used the fact that n1/2{θ̂ (φ0) − θ0} and n1/2(φ̂ − φ0) are asymp-
totically independent because θ̂ (φ0) is asymptotically efficient and n1/2(φ̂ − φ0) has asymptotic
constant mean zero (Pierce, 1982; Parke, 1986). When p1 = p, Theorem 1 reduces to the main
result of Liang & Self (1996).

It is easy to show that when I ∗
11 = I11, the distribution of U is χ2

p1
, which is the same as the

asymptotic distribution of the conventional likelihood ratio statistic. As noted by Liang & Self
(1996), this condition is satisfied when I12(θ0, φ) = 0 for all φ, which means that the score
function for θ and φ are orthogonal to each other when evaluated at (θ0, φ). Another situation
where we have I ∗

11 = I11 is �22 = 0. This could occur when φ is estimated through external
data whose sample size n∗ increases at a faster rate than n, i.e. n∗/n → ∞ as n → ∞. A less
obvious situation, which results in the distribution of U being χ2

p1
, occurs when Iγ η = Iγφ = 0.

This means that the score function for γ is orthogonal both to the score function for η and to the
score function for φ.

2·2. The parameter of interest lies on the boundary

In this subsection, we consider cases where the true value of θ lies on the boundary of its
parameter space while the true value of the nuisance parameter φ is an interior point of its
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parameter space. These situations were informally mentioned in Liang & Self (1996) but were
not formally treated therein. Denote the parameter space of θ by � and rewrite the hypothesis
H0 : γ = γ0 as H0 : θ ∈ �0, where �0 = {θ : θ = (γ0, η) ∈ �}. The complement of �0 in �

is denoted by �1. In § 2·1 where θ0 is not on the boundary, �, �0 and �1 are simply R p, R p2

and R p1 , respectively. For any subset of R p, ϕ, we define Pϕ = supθ∈ϕ L∗(θ). We also define

the maximum pseudolikelihood estimator in the parameter space ϕ, θ̂ϕ , as that value of θ in the
closure of ϕ which maximizes L∗(θ).

The pseudolikelihood ratio test statistic can be written as T = −2 log (P�0/P�).
Gong & Samaniego (1981) established the n1/2-consistency of the maximum pseudolikelihood
estimator for θ when the true value of θ is an interior point of its parameter space. Here we give
the consistency result when the true value of θ lies on the boundary.

LEMMA 1. If the regularity conditions in Chernoff (1954) hold, the intersection of ϕ and the
closure of neighbourhoods centred about the true value of the parameter of interest, θ0, constitute
closed subsets of R p, and θ0 is a limit point of ϕ, then with probability tending to 1 as n → ∞,
there exists a sequence of points in ϕ, θ̂ϕ , at which local maxima of log L∗(θ) occur, and that
converges to θ0 in probability. Moreover, n1/2(θ̂ϕ − θ0) = Op(1).

We now establish the equivalence between the asymptotic distribution of the pseudolikelihood
ratio and the distribution of the likelihood ratio of testing the restricted mean of a multivari-
ate normal distribution based on one observation from a multivariate normal distribution with
misspecified covariance matrix.

THEOREM 2. If the regularity conditions in Chernoff (1954) are satisfied, θ0 is a limiting point
of both �0 and �1, and the sets �0 and �1 are approximated by nonnull and disjoint cones C�0

and C�1 , respectively, then, when γ = γ0, the asymptotic distribution of the pseudolikelihood
ratio statistic, T , is the same as the distribution of the likelihood ratio test of θ ∈ C�0 against
θ ∈ C�1 based on one observation from a population with multivariate normal distribution with
mean θ and unknown covariance matrix I −1

11 I ∗
11 I −1

11 while the covariance matrix is misspecified
as I −1

11 in the likelihood ratio test.

A sketch of the proof is given in Appendix A. When there is no nuisance parameter φ or
I ∗
11 = I11, Theorem 2 reduces to Theorem 3 of Self & Liang (1987) in which the likelihood ratio

instead of pseudolikelihood ratio is considered.
The result given by Theorem 2 reduces the general problem of computing the limit distribution

of a pseudolikelihood ratio to a problem of computing the distribution of

T1(Z ) = QC�0
(Z ) − QC�

(Z ), (2)

where Qϕ(Z ) = inf θ∈ϕ(Z − θ)T I11(Z − θ), Z ∼ N (0, I −1
11 I ∗

11 I −1
11 ) and C� = C�0 ∪ C�1 .

The distribution of T1(Z ) in any given case could be rather complicated. We now offer several
special cases in which Theorem 2 may be used to compute the asymptotic distribution of the
pseudolikelihood ratio statistic.

From here on we assume � = �1 × · · · × �p, where the � j s are either closed, half-open or
open intervals in R. To compute the distribution of T1(Z ), we need the following lemma.

LEMMA 2. Suppose Z ∼ N (0, I −1
11 I ∗

11 I −1
11 ) and ϕ = {0}p1 × R p−p1 . Let Qϕ(Z ) = inf θ∈ϕ(Z −

θ)T I11(Z − θ). Then

(i) Qϕ(Z ) = Z T
(p1)e

−1
(p1) Z(p1), where Z(p1) = (Z1, . . . , Z p1 )T and e(p1) is the p1 × p1 upper

left submatrix of I −1
11 ;
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(ii) the distribution of Qϕ(Z ) is U =∑p1
j=1 λ jU j , where U j s are independent χ2

1 variables and

λ1 � · · · � λp1 > 0 are the eigenvalues of matrix e−1
(p1)e

∗
(p1), with e∗

(p1) being the p1 × p1

upper left submatrix of I −1
11 I ∗

11 I −1
11 ; and

(iii) when I ∗
11 = I11, U is simply χ2

p1
.

Part (i) can be shown by completing the quadratic form, and the rest of the results follow by
Theorem 4.4.4 of Graybill (1976).

Now we consider some special cases, adopting the notation in Self & Liang (1987). Partition
the parameter vector, θ = (γ, η), into four coordinates: (p11, p12, p21, p − p11 − p12 − p21)
where the first p11 coordinates of θ represent the parameter to be tested with true values on the
boundary; the next p12 coordinates of θ represent the parameter to be tested with true values
not on the boundary; the next p21 coordinates of θ represent the first p21 component of η with
true values on the boundary; and finally the remaining p − p11 − p12 − p21 coordinates of θ

represent the last p − p11 − p12 − p21 coordinates of η with the true value not on the boundary.
Here p1 = p11 + p12.

Case 1. Suppose that the parameter configuration is (0, p1, 0, p − p1), i.e. θ0 is an in-
terior point of �. Then C�0 = {0}p1 × R p−p1 and C� = R p. By Theorem 2, the asymptotic
distribution of the pseudolikelihood ratio reduces to the distribution of T1(Z ) = QC�0

(Z ). By

Lemma 2, the distribution of T1(Z ) is U =∑p1
j=1 λ jU j , where U j s are independent χ2

1 variables
and λ1 � · · · � λp1 > 0 are the eigenvalues of e−1

(p1)e
∗
(p1). This can be shown to agree with results in

Theorem 1. When I ∗
11 = I11, the asymptotic distribution of pseudolikelihood ratio statistic is χ2

p1
.

Case 2. Suppose the parameter configuration is (1, 0, 0, p − 1). Then C�0 = {0} × R p−1

and C� = [0,∞) × R p−1. By Lemma 2, equation (2) can be reduced to

T1(Z ) = Z2
1/e(1) − Z2

1 I (Z1 < 0)/e(1) = Z2
1 I (Z1 > 0)/e(1),

where the first step is due to the fact that QC�
(Z ) = QC�0

(Z ) when Z1 � 0. This is true because
the quadratic function (Z − θ)T I11(Z − θ) is a continuous function of θ and the infimum in the
function QC�

(Z ) is achieved at the boundary of C�, i.e. C�0 . Consequently, the asymptotic
distribution of T is a 50:50 mixture of χ2

0 and e∗
(1)χ

2
1 /e(1). When I ∗

11 = I11, this distribution is a

50:50 mixture of χ2
0 and χ2

1 , which agrees with the result in Case 5 of Self & Liang (1987).

Case 3. Suppose the parameter configuration is (1, p1 − 1, 0, p − p1). Then C�0 = {0} ×
{0}p1−1 × R p−p1 and C� = [0,∞) × R p−1. By Lemma 2 and a similar argument to that in Case
2, equation (2) can be expressed as T1(Z ) = Z T

(p1)e
−1
(p1) Z(p1) − Z2

1 I (Z1 < 0)/e(1).

Its distribution is a 50:50 mixture of random variables Ua and Ub, where Ua =∑p1
i=1 λiUi with

the λi s being the p1 positive eigenvalues of the matrix e−1
(p1)e

∗
(p1) and Ub =∑p1−1

j=1 λ jU j with the
λ j s being the p1 − 1 positive eigenvalues of the matrix{

e−1
(p1) −

(
1/e(1) 01×(p1−1)

0(p1−1)×1 0(p1−1)×(p1−1)

)}
e∗

(p1),

and the Ui s and U j s being independent χ2
1 variables. In variance component models, for example,

we are testing a variance component and p1 − 1 regression coefficients simultaneously while
leaving the other parameters unspecified. When I ∗

11 = I11, the distribution is a 50:50 mixture of
χ2

p1−1 and χ2
p1

. This agrees with the result in Case 3 of Stram & Lee (1994), where one variance
component and p1 − 1 covariances are tested simultaneously. When I ∗

11 = I11 and p1 = 2, the
result reduces to the results in Case 2 of Stram & Lee (1994) and Case 6 of Self & Liang (1987).
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1 2

~

3

P2

Tπ/2P2 T−π/2P1

P1
CΩ

Fig. 1. Diagram of the parameter space for Case 4. The
shaded region, C̃�, represents admissible parameter values
under the alternative hypothesis. Under the null hypothesis,
the parameter is located at the origin. The asymptotic dis-
tribution of T is a mixture of U , d∗χ 2

1 /d , a∗χ 2
1 /a and χ 2

0
distributions with mixing probabilities depending on the

angles in C̃�.

In Cases 2 and 3, we take the advantage of the fact that only one component of γ0 lies on the
boundary. In these cases, the parameter spaces C�0 and C�, and their boundaries, are straight
lines or planes which are preserved under linear transformations. In Cases 4 and 5, we consider
the situation where there are two boundary parameters. In Case 4, both boundary parameters are
tested while in Case 5, only one boundary parameter is tested. The calculation of the asymptotic
distribution of the pseudolikelihood ratio statistic is more complicated than that in Cases 1–3.

Case 4. Suppose the parameter configuration is (2, 0, 0, 0). Then C�0 = {0} × {0} and C� =
[0,∞) × [0,∞). Let I11 = PT P , where P is a nonsingular matrix and denote C̃� = {θ̃ : θ̃ = Pθ

for any θ ∈ C�} and Z̃ = P Z . Then T1(Z ) can be rewritten as

T1(Z ) = ‖Z̃‖2 − inf
θ̃∈C̃�

‖Z̃ − θ̃‖2, (3)

where ‖ · ‖ is the usual Euclidean metric. Calculation of the second term in equation (3) depends
on the location of Z̃ relative to the boundary of C̃�. There are four regions that must be considered.
The shaded region in Fig. 1 represents C̃�, and C̃�0 is the origin. The angle in the shaded area is
less than 180◦. This is due to the fact that the convexity of C� is preserved under linear mapping
P . Denote the rotation matrix in R2 and the information matrices I11 and I ∗

11 by

Tθ =
(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
, I11 =

(
a b
b d

)
, I ∗

11 =
(

a∗ b∗
b∗ d∗

)
,

respectively. Further denote the columns of P by P1 and P2, and the inner product of vectors a
and b by 〈a, b〉 = aTb. Then the distribution of T1(Z ) can be calculated as

T1(Z ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Z̃‖2 ∼ U = λ1U1 + λ2U2 if Z̃ is in the shaded region,{
〈Z̃ , P2〉
‖P2‖

}2

∼ d∗χ2
1 /d if Z̃ is in region 1,

{
〈Z̃ , P1〉
‖P1‖

}2

∼ a∗χ2
1 /a if Z̃ is in region 2,

0 if Z̃ is in region 3,

where λ1 and λ2 are eigenvalues of I ∗
11 and I −1

11 , and U1 and U2 are independent χ2
1 variables.
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3

3

5 5

~

4 4

(a) (b)

1 12 2
P2

P2

Tπ/2P2

Tπ/2P2

T−π/2P1 T−π/2P1

T−π/2P2

T−π/2P2

P1
P1

CΩ ~
CΩ

Fig. 2. Diagrams of the parameter space for Case 5 when the angle spanned by
P1 and P2 is (a) greater than π/2, or (b) is less than π/2. The shaded region, C̃�,
represents admissible parameter values under the alternative hypothesis. The half-
line in the same direction as the vector P2 with the endpoint at the origin represents
admissible parameter values under the null hypothesis. The asymptotic distribution

of T is a mixture of distributions.

The mixing probabilities for the shaded region, region 1 and region 2, are

ps = cos−1

[
(0, 1)I11{I ∗

11}−1 I11
( 1

0

)
{

(0, 1)I11(I ∗
11)−1 I11

( 0
1

)}1/2{(1, 0)I11(I ∗
11)−1 I11

( 1
0

)}1/2

]/
2π,

p1 = cos−1

[
(0, 1)I11(I ∗

11)−1 PTTπ/2 P2{
(0, 1)I11(I ∗

11)−1 I11
( 0

1

)}1/2{PT
2 T−π/2 P(I ∗

11)−1 PTTπ/2 P2
}1/2

]/
2π,

p2 = cos−1

[
(1, 0)I11(I ∗

11)−1 PTT−π/2 P1{
(1, 0)I11(I ∗

11)−1 I11
( 1

0

)}1/2{PT
1 Tπ/2 P(I ∗

11)−1 PTT−π/2 P1
}1/2

]/
2π .

Thus the asymptotic distribution of T is a mixture of U , d∗χ2
1 /d, a∗χ2

1 /a and χ2
0 with mixing

probabilities ps , p1, p2 and 1 − ps − p1 − p2, respectively. When I11 = I ∗
11, the asymptotic

distribution reduces to a ps , 0·5 and 0·5 − ps mixture of χ2
2 , χ2

1 and χ2
0 , respectively, which

agrees with the results in Case 7 of Self & Liang (1987) and Example 3 in Chernoff (1954).

Case 5. Suppose the parameter configuration is (1, 0, 1, 0). Then C�0 = {0} × [0,+∞) and
C� = [0,∞) × [0,∞). By a similar argument to that in Case 4, we may write

T1(Z ) = inf
θ̃∈C̃�0

‖Z̃ − θ̃‖2 − inf
θ̃∈C̃�

‖Z̃ − θ̃‖2. (4)

Calculation of the terms in equation (4) depends on the location of Z̃ relative to the boundary of
both C̃�0 and C̃�. In fact, there are two possible partitions of regions that must be considered,
depending on whether the angle ψ spanned by P1 and P2 is greater than π/2. It is easy to show
ψ > π/2 if and only if b < 0.

If ψ > π/2, i.e. b < 0, there are five different regions to be considered. The shaded region
in Fig. 2 represents C̃�, and C̃�0 is the half-line in the same direction as the vector P2 with the
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endpoint at the origin. The distribution of T1(Z ) can be calculated as

T1(Z ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Z̃‖2 ∼ λ1U1 + λ2U2 if Z̃ is in region 1,

‖Z̃‖2 −
{

〈Z̃ , P2〉
‖P2‖

}2

∼ λ3χ
2
1 if Z̃ is in region 2,

0 if Z̃ is in region 3 or 4,{
〈Z̃ , P1〉
‖P1‖

}2

∼ a∗χ2
1 /a if Z̃ is in region 5,

where λ1 and λ2 are eigenvalues of I ∗
11 I −1

11 , U1 and U2 are independent χ2
1 variables, and

λ3 = (a∗d2 − 2b∗bd + d∗b2)/{d(ad − b2)}.
By a similar argument, the distribution of T1(Z ) when ψ � π/2, i.e. b � 0, is calculated as

T1(Z ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖Z̃‖2 −
{

〈Z̃ , P2〉
‖P2‖

}2

∼ λ1χ
2
1 if Z̃ is in region 1,

0 if Z̃ is in region 2 or 3,{
〈Z̃ , P1〉
‖P1‖

}2

∼ a∗χ2
1 /a if Z̃ is in region 4,

{
〈Z̃ , P1〉
‖P1‖

}2

−
{

〈Z̃ , P2〉
‖P2‖

}2

∼ λ2U1 + λ3U2 if Z̃ is in region 5,

where λ1 = (a∗d2 − 2b∗bd + d∗b2)/{d(ad − b2)}, U1 and U2 are independent χ2
1 variables, and

λ2 and λ3 are eigenvalues of

I11

(
1/a 0

0 −1/d

)
I ∗
11 I −1

11 .

2·3. The nuisance parameter lies on the boundary

In this subsection, we consider cases where the true value of nuisance parameter, φ, lies
on the boundary of its parameter space. In this situation, the asymptotic distribution of the
pseudolikelihood ratio statistic is more complicated since the consistent estimator φ̂ may not
be asymptotically normally distributed. Specifically, by a similar argument as in the proof of
Theorem 2, the pseudolikelihood ratio statistic can be written as

T = inf
θ∈C�0

(Zn − θ)T I11(Zn − θ) − inf
θ∈C�

(Zn − θ)T I11(Zn − θ) + op(1),

where

Zn = n−1/2 I −1
11

∂ log L(θ0, φ0)

∂θ
+ I −1

11 I12n1/2(φ̂ − φ0) + op(1).

The second term in Zn may not be asymptotically normally distributed and the results by Pierce
(1982) and Parke (1986) cannot be applied here to show the asymptotic independence between
the two terms in Zn since the second term in Zn does not have asymptotic constant mean.

In fact, the asymptotic distribution of Zn is a mixture of normals with identical mean zero and
possibly unequal variances. To show this, denote by φ̂∗ the estimator of φ without restriction of
parameter space and assume the parameter space for φ is [0,+∞) × Rq−1. By applying similar
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arguments as in Self & Liang (1987), φ̂ can be represented as

φ̂∗ I (φ̂∗
1 > 0) +

⎛
⎜⎜⎜⎜⎜⎜⎝

0

φ̂∗
2 − (�21

22

/
�11

22

)
φ̂∗

1
...

φ̂∗
q − (�q1

22

/
�11

22

)
φ̂∗

1

⎞
⎟⎟⎟⎟⎟⎟⎠

I (φ̂∗
1 � 0),

where �
i j
22 are elements of the matrix �22, the asymptotic variance of φ̂∗. Therefore, Zn can be

rewritten as {
n−1/2 I −1

11
∂ log L(θ0, φ0)

∂θ
+ I −1

11 I12n1/2(φ̂∗ − φ0)
}

I (φ̂∗
1 > 0)

+
{

n−1/2 I −1
11

∂ log L(θ0, φ0)

∂θ
+ I −1

11 I12 An1/2(φ̂∗ − φ0)
}

I (φ̂∗
1 � 0),

where

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0

−�21
22

/
�11

22 1 . . . 0
...

...
. . .

...

−�
q1
22

/
�11

q2 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Suppose that as n → ∞,

n1/2

⎛
⎜⎝

1

n

∂ log L(θ0, φ0)

∂θ

φ̂∗ − φ0

⎞
⎟⎠→

(
X

Y

)
∼ N

{(
0

0

)
,

(
I11 �12

�T
12 �22

)}
, (5)

where �12 is the asymptotic covariance between n−1/2∂ log L(θ0, φ0)/∂θ and n1/2(φ̂∗ − φ0),
which is in fact zero by Pierce (1982) and Parke (1986). The asymptotic distribution of Zn is(

I −1
11 X + I −1

11 I12Y
)
I (Y1 > 0) + (I −1

11 X + I −1
11 I12 AY

)
I (Y1 � 0). (6)

Thus the asymptotic distribution of Zn is a 50:50 mixture of normals with mean zero. For
more general cases where the parameter space for φ is [0,+∞)q0 × Rq−q0 with q0 � 1, similar
arguments can be applied to show that the asymptotic distribution of Zn is a 2q0 mixture of
normals.

The asymptotic distribution of the pseudolikelihood ratio statistic T is

inf
θ∈C�0

(Z − θ)T I11(Z − θ) − inf
θ∈C�

(Z − θ)T I11(Z − θ),

where Z is the asymptotic distribution of Zn . Therefore, the asymptotic distribution of T is that
of the likelihood ratio for testing the restricted mean of a multivariate normal distribution with
covariance matrix I −1

11 based on one observation from a population with a mixture of normals
specified by equations (5) and (6). When the true value of the nuisance parameter is an interior
point, the likelihood ratio reduces to equation (2) since the mixture of normals is in fact a normal
distribution.
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3. EXAMPLES REVISITED

3·1. Example 1: Variance component models

It can be shown that

∂ log L(θ, φ)

∂φ
= X T�−1(θ)(y − Xφ).

Therefore,

I12(θ, φ) = E
[
− ∂

∂θ
{X T�−1(θ)(y − Xφ)}

]
=
{

− ∂

∂θ
X T�−1(θ)

}
E(y − Xφ) = 0,

for all θ and φ, thus I ∗
11 = I11. By result in Case 2, the pseudolikelihood ratio testing the j th

variance component being zero, i.e. H0 : θ j = 0, has an asymptotically 50:50 mixture of χ2
0

and χ2
1 .

3·2. Example 2: Behrens–Fisher problem

It can be shown that

E

{
∂2 log L(θ, φ)

∂θi ′∂φi

}
= −δi ′i E

⎛
⎝ ni∑

j=1

yi j − θi

φ2
i

⎞
⎠ = 0 (i ′, i = 1, 2),

where δi ′i = 1 if i ′ = i and 0 otherwise. Therefore, I12(θ, φ) = 0. As indicated in § 2·1, the
pseudolikelihood ratio has, asymptotically, a χ2

1 distribution.

3·3. Example 3: Frailty survival models

Let yi = (yi1, . . . , yi4) be the observations from the i th cluster (i = 1, . . . , n), with the joint
survival distribution of the form equation (1) where the marginal survival distribution for the
j th individual, Sj = Sj (y j ; φ), is indexed by φ. For simplicity, we assume no censoring, so the
likelihood function for (θ1, θ2, φ) is

L(θ1, θ2, φ) ∝ ∂4S(t1, t2, t3, t4)

∂t1∂t2∂t3∂t4
= ∂h1

∂t1

∂h1

∂t2

∂h2

∂t3

∂h2

∂t4

∂4S

∂h2
1∂h2

2

,

where

h1 =
2∑

j=1

Sj (t j )
1−θ1 − 1, h2 =

4∑
j=3

Sj (t j )
1−θ1 − 1,

S = h1/(1−θ2) = (hα
1 + hα

2 − 1
)1/(1−θ2)

, ∂h1/∂t j = (1 − θ1)Sj (t j )
1−θ1λ j (t j ) ( j = 1, 2),

∂h2/∂t j = (1 − θ1)Sj (t j )
1−θ1λ j (t j ) ( j = 3, 4),

λ j (t j ) is the marginal hazard function for the j th individual, and

∂4S

∂h2
1∂h2

2

= α2(α − 1)2hα−2
1 hα−2

2
∂2S

∂h2
+ α3(α − 1)

{
h2(α−1)

1 hα−2
2 + hα−2

1 h2(α−1)
2

}∂3S

∂h3

+α4(h1h2)2(α−1) ∂
4S

∂h4

with ∂ l S/∂hl = [∏l
j=1{1/(1 − θ2) + 1 − j}]h1/(1−θ2)−l (l = 2, 3, 4). A hypothesis of interest is

H0 : θ2 = 1 which implies the independence of yi j s for two individuals from different households.
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The parameters θ1 and θ2 must satisfy the inequality θ1 � θ2 � 1. The cones which approximate
�0 and �1 are [0,∞) × {0} and {(t1, t2) : t1 � t2 � 0}. Since the parameter space cannot be written
as the product of intervals, results in Cases 1–5 may not be applied. A simple reparameterization
from θ = (θ1, θ2) to τ = (θ2, δ), δ = θ1 − θ2, yields the cones approximating the parameter space
of (θ2, δ) being {0} × R and [0,∞) × R. By result in Case 2, the asymptotic distribution of the
pseudolikelihood ratio is

1

2
χ2

0 + 1

2

e∗
(1)

e(1)
χ2

1 ,

where e(1) and e∗
(1) are the (1, 1) elements of matrix I −1

11 and I −1
11 I ∗

11 I −1
11 , respectively,

I11 = lim
n→∞

[
E

{
−1

n

∂2 log L(τ0, φ0)

∂τ 2
; τ0, φ0

}]
, I12 = lim

n→∞

[
E

{
−1

n

∂2 log L(τ0, φ0)

∂τ∂φ
; τ0, φ0

}]
,

L(τ, φ) = L(θ2 + δ, θ2, φ), I ∗
11 = I11 + I12�22 I T

12, and �22 is the asymptotic variance of the
consistent estimator of φ.

3·4. Example 4: Teratological experiments

For simplicity, we consider the special case of a single treatment group and a control group and
assume a logistic dose–response model. Denote xi = 0 if the litter i is in the control group and
1 if in the treatment group, and φc and φt for correlations within control and treatment groups,
respectively. The moment estimates for φc and φt can be found by solving the following equations
for nonnegative roots,{∑

xi =0{(pi − πc)2/[πc(1 − πc){1 + (mi − 1)φc}/mi ] − (n0 − 1)/n0} = 0,∑
xi =1{(pi − πt )2/[πt (1 − πt ){1 + (mi − 1)φt }/mi ] − (n1 − 1)/n1} = 0,

where pi = yi/mi , πc = exp(β0)/{1 + exp(β0)} and πt = exp(β0 + β1)/{1 + exp(β0 + β1)},
and n0 and n1 are numbers of litters in control and treatment groups, respectively. The pa-
rameters πc and πt are unknown. One may estimate (φc, φt ) by substituting (πc, πt ) by a
consistent estimator, such as the maximum likelihood estimator ignoring the correlations, i.e.
π̂c =∑xi =0 yi/

∑
xi =0 mi and π̂t =∑xi =1 yi/

∑
xi =1 mi .

To alleviate the impact of the nuisance parameter on the parameter of interest, one could
base the inference for β on the pseudolikelihood L∗(β0, β1) = L(β0, β1, φ̂c, φ̂t ). Here we derive
the asymptotic distribution of the pseudolikelihood ratio test statistic for H0 : β1 = 0, i.e. no
treatment effect, when the intralitter correlation in the control group, φc, is 0, but the intralitter
correlation in the treatment group φt > 0. Denote θ = (β1, β0) and φ = (φc, φt ). The true value
of nuisance parameter, φc, lies on the boundary of its parameter space. According to the results
in § 2·3, the asymptotic distribution of the pseudolikelihood ratio test statistic is Z2

1/e(1), where
e(1) is the (1, 1) element of the matrix I −1

11 , I11 = E[∂ log L(θ0, φ0)/∂θ{∂ log L(θ0, φ0)/∂θ}T] and
Z = (Z1, Z2) is a 50:50 mixture of bivariate normal distributions described by equations (5)
and (6). The Fisher information matrix I11 and the asymptotic variance of φ̂∗, �22, are calculated
in Appendix B.

4. SIMULATION STUDY

To explore the theoretical findings empirically, we conducted two simulation studies. In the
first, we applied the pseudolikelihood ratio test to test for the statistical significance of a vari-
ance component in the model described in Example 1 and compared its performance with the
likelihood ratio test based on its asymptotic distribution and the exact finite sample distribution
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(Crainiceanu & Ruppert, 2004). The model described in Example 1 belongs to the linear mixed
model with one variance component, specifically,

y = Xφ + Zb + ε, E

(
b

ε

)
=
(

0K

0n

)
, cov

(
b

ε

)
=
(

σ 2
b IK 0

0 σ 2
ε In

)
, (7)

where b is random effects due to specific genetic or nongenetic factors shared among relatives, and
ε represents random deviations unique to each individual. With nuisance parameter φ replaced by
the conventional least-squares estimator φ̂ = (X T X )−1 X T y, the pseudolikelihood is L∗(σ 2

b , σ 2
ε ) =

L(φ̂, σ 2
b , σ 2

ε ) and the pseudolikelihood ratio test statistic for testing H0 : σ 2
b = 0 is

T = 2

⎧⎨
⎩ sup{

σ 2
b � 0, σ 2

ε � 0
} L∗(σ 2

b , σ 2
ε

)− sup
{σ 2

b =0, σ 2
ε � 0}

L∗ (σ 2
b , σ 2

ε

)⎫⎬
⎭ .

Maximizing L∗(σ 2
b , σ 2

ε ) over σ 2
b and σ 2

ε simultaneously by Newton–Raphson or Fisher’s scoring
method could lead to negative estimates of variances, so we reparameterized σ 2

b by λσ 2
ε , and

maximized the pseudolikelihood first for fixed λ and then over λ. Testing the null hypothesis
H0 : σ 2

b = 0 is equivalent to testing H0 : λ = 0 (Crainiceanu & Ruppert, 2004). Twice the log-
pseudolikelihood function is

2 log
{

L
(
φ̂, λ, σ 2

ε

)} = −n log
(
σ 2

ε

)− log |Vλ| − (y − X φ̂)TV −1
λ (y − X φ̂)

σ 2
ε

,

where Vλ = In + λZ Z T. Under H0, σ̃ 2
ε = arg maxσ 2

ε
[log{L(φ̂, 0, σ 2

ε )}] = yT P0 y/n, where

P0 = In − X (X T X )−1 X T. For fixed λ, σ̂ 2
ε (λ) = arg maxσ 2

ε
[log{L(φ̂, λ, σ 2

ε )}] = yT PT
0 V −1

λ P0 y/n.
Therefore, the pseudolikelihood ratio test statistic is

T = sup
λ � 0

[− log |Vλ| + n log
(
σ̃ 2

ε

)− n log
{
σ̂ 2

ε (λ)
}]

. (8)

The above supremum can be found by a grid search over possible values of λ. The likelihood ratio
test statistic has a form similar to equation (8), except that σ̂ 2

ε (λ) is replaced by yT PT
λ V −1

λ Pλy/n,
where Pλ = In − X (X TV −1

λ X )−1 X TV −1
λ .

To obtain the size of the tests, we drew y from (7) with σ 2
b = 0. The family size was set to

3 and the number of families varied from 20 to 40. The true value of φ was set to be (1, 2, 3)T

and the matrix X was fixed at randomly drawn numbers from standard normal distribution.
The distribution of the pseudolikelihood ratio test statistic does not depend on the magnitude
of σ 2

ε because testing the random effect is equivalent to testing the within group correlation
σ 2

b /(σ 2
b + σ 2

ε ), which only depends on σ 2
b /σ 2

ε . For simplicity, we fixed σ 2
ε = 1. For each generated

dataset, we computed the pseudolikelihood ratio test statistic and the likelihood ratio test statistic,
and rejected the null if the test statistic is larger than the (1 − α)th quantile of 50:50 mixture of
χ2

0 and χ2
1 , i.e. the (1 − 2α)th quantile of χ2

1 . We also computed the exact distribution of the
likelihood ratio test based on results in Crainiceanu & Ruppert (2004) and obtained the (1 − α)th
quantile of its distribution. To obtain the power of the test, a similar procedure was implemented,
except that y was drawn from model (7) with σ 2

b /σ 2
ε = 0·1, 0·2 and 0·4, respectively.

Table 1 shows results from 5000 simulations. The nominal level for Type I error, α, was set
to 0·05 and 0·01. When the null hypothesis is true, both the pseudolikelihood ratio test and the
likelihood ratio test based on its exact distribution have proportions of rejections within 95%
confidence intervals for the nominal error rates, i.e. 0·007–0·013 for α = 0·01, and 0·044–0·056
for α = 0·05, suggesting that the asymptotic approximation for the pseudolikelihood ratio test
statistic is adequate for moderate sample sizes. The pseudolikelihood test is slightly less powerful
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Table 1. Empirical rejection rates (%) in 5000 simulations for the pseudolikelihood ratio test
and the likelihood ratio test for testing for a variance component, based on samples of size n,

for different variance ratios

PLRT asymptotic LRT asymptotic LRT exact
α = 0·05 α = 0·01 α = 0·05 α = 0·01 α = 0·05 α = 0·01
Rejection Rejection Rejection Rejection Rejection Rejection

n σ 2
b /σ 2

ε (%) (%) (%) (%) (%) (%)

20 0 4·4 0·8 5·2 1·2 4·8 0·9
0·1 15·4 4·3 17·3 5·5 15·8 4·6
0·2 30·8 12·2 34·4 14·6 32·0 12·4
0·4 60·8 36·4 63·7 40·6 61·5 36·9

30 0 5·1 0·9 5·9 1·1 5·5 1·1
0·1 20·0 6·3 21·6 7·5 21·1 6·6
0·2 41·6 19·5 43·3 21·8 42·8 20·3
0·4 77·3 54·3 79·0 57·5 77·6 54·9

40 0 4·7 1·1 5·2 1·2 5·0 1·2
0·1 23·2 8·9 24·8 9·6 24·1 9·0
0·2 50·8 26·2 52·4 28·3 51·4 26·4
0·4 86·9 68·5 87·9 70·0 87·4 68·2

n, number of families; PLRT asymptotic, pseudolikelihood ratio test based on its asymptotic distribution; LRT
asymptotic, likelihood ratio test based on its asymptotic distribution; LRT exact, likelihood ratio test based on its
exact distribution.

than the likelihood ratio test based on its exact distribution. On the other hand, the likelihood
ratio test based on its asymptotic distribution is liberal but more powerful compared to the other
two tests. In general, the pseudolikelihood ratio test is more conservative and less powerful than
the likelihood ratio test when the nuisance parameter is estimated by the maximum likelihood
estimator under the null.

In the second simulation study, we applied the pseudolikelihood ratio test to test for the
treatment effect in a two-group teratological experiment. We simulated data that mimic the litter
size structure of Weil (1970) with β0 = 1·05, φt = 0·05 and φc = 0; see Example 4 of § 1 for
detailed descriptions of the statistical models considered. The true value of treatment effect, β1,
was set to vary from 0 to −1 in order to obtain the size and the power of the test, at nominal levels
of 0·05 and 0·01, respectively. The number of litters varied from 16 to 64 per group. In addition to
the pseudolikelihood ratio test, we also applied two other methods for comparison; the Wald test,
comparing the Wald test statistic to the standard normal distribution; and the naive likelihood
ratio test ignoring the intralitter correlations. Table 2 shows results from 5000 simulations. Under
all settings considered, the pseudolikelihood ratio test has proportions of rejections within 95%
confidence intervals for the nominal error rates. The Wald test was liberal and its performance was
not improved as the sample size became larger. This is because the true asymptotic distribution
of the Wald test statistic is a mixture of two normals (Self & Liang, 1987). The naive likelihood
ratio test has proportions of rejections higher than the nominal level compared to the Wald test.
This simulation suggests that neither the Wald test nor the naive likelihood ratio test can be
recommended in practice.

5. DISCUSSION

One interesting area of future research is to extend the current results to situations where the
nuisance parameters are infinite-dimensional. For instance, in Example 4 of the multilevel frailty
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Table 2. Empirical rejection rates (%) in 5000 simulations for the pseudolikelihood ratio test,
Wald test and the naive likelihood ratio test for testing the treatment effect in a two-group
teratological experiment, based on samples of size n0/n1, for different treatment effects. The true

intralitter correlation is 0 for the control group and 0·05 for the treatment group

PLRT asymptotic Wald test LRT naive
α = 0·05 α = 0·01 α = 0·05 α = 0·01 α = 0·05 α = 0·01
Rejection Rejection Rejection Rejection Rejection Rejection

n0/n1 β1 (%) (%) (%) (%) (%) (%)

16/16 0 5·2 1·0 5·7 1·3 8·3 2·0
−0·5 42·0 21·0 41·6 20·4 52·3 30·8
−1·0 95·7 86·2 95·1 84·9 97·5 92·9

32/32 0 4·7 1·1 5·9 1·3 7·7 2·0
−0·5 70·9 47·4 69·2 47·2 77·5 58·4
−1·0 99·9 99·6 99·9 99·5 100·0 99·9

64/64 0 4·7 1·0 6·3 1·6 7·2 2·0
−0·5 95·0 85·0 93·5 82·9 96·9 90·3
−1·0 100·0 100·0 100·0 100·0 100·0 100·0

n0/n1, number of litters in control/treatment group; β1, log odds ratio between the treatment and the control groups;
PLRT asymptotic, pseudolikelihood ratio test based on its asymptotic distribution; LRT naive, likelihood ratio test
ignoring the intralitter correlations.

survival models, the marginal survival distribution may be left unspecified. It will be of interest
to examine the asymptotic behaviour of the pseudolikelihood ratio test statistic in this situation.
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APPENDIX A

Proof of Theorem 2

Proof . For simplicity of notation, let θ0 = 0. Under the same regularity conditions as Chernoff (1954),
for any θ in a neighbourhood N of θ = 0, we have

2{log L∗(θ ) − log L∗(0)} = 2{log L(θ, φ̂) − log L(0, φ̂)}

= 2

{
∂ log L(0, φ̂)

∂θ

}T

θ + θ T

{
∂2 log L(0, φ̂)

∂θ2

}
θ + Op(n)‖θ‖3

= 2
(
n1/2 A∗

1

)T(
n1/2θ

)+ (n1/2θ
)T

B∗
11

(
n1/2θ

)+ Op(n)‖θ‖3,

where A∗
1 = n−1

∑n
i=1 ∂ log L(0, φ̂)/∂θ and B∗

11 = n−1
∑n

i=1 ∂2 log L(0, φ̂)/∂θ2.
The asymptotic distribution of n1/2 A∗ is normal with mean zero and variance matrix I ∗

11, where
I ∗
11 = I11 + I12�22 I T

12, i.e. n1/2 A∗
1 → N (0, I ∗

11) and B∗
11 → −I11 as n → ∞.

Let θ = I −1
11 A∗

1 + η with η = Op(n−1/2). Then,

2{log L∗(θ ) − log L∗(0)} = 2
(
n1/2 A∗

1

)T(
n1/2θ

)+ (n1/2θ
)T

I ∗
11

(
n1/2θ

)+ Op(1)

= 2
(
n1/2η

)T
I11

(
n1/2η

)+ (n1/2 A∗
1

)T
I −1
11

(
n1/2 A∗

1

)+ Op(1).

Let −2 log λ∗ = −2 log{P�0/P�1}.
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Applying Lemma 1 and the above approximations to �0 and �1, we get

−2 log λ∗ = inf
θ∈�0

(
n1/2η

)T
I11

(
n1/2η

)− inf
θ∈�1

(
n1/2η

)T
I11

(
n1/2η

)+ Op(1).

But for any set ϕ that can be approximated by Cϕ ,

inf
θ∈ϕ

(y − θ )T I11(y − θ ) = inf
θ∈Cϕ

(y − θ )T I11(y − θ ) + o(‖y‖2),

and therefore,

−2 log λ∗ = inf
θ∈C�0

(
n1/2 I −1

11 A∗
1 − n1/2θ

)T
I11

(
n1/2 I −1

11 A∗
1 − n1/2θ

)
− inf

θ∈C�1

(
n1/2 I −1

11 A∗
1 − n1/2θ

)T
I11

(
n1/2 I −1

11 A∗
1 − n1/2θ

)+ Op(1).

Since C� and C�0 are positively homogeneous,

−2 log λ∗ = inf
θ∈C�0

(Zn − θ )T I11(Zn − θ ) − inf
θ∈C�1

(Zn − θ )T I11(Zn − θ ) + Op(1),

where Zn = n1/2 I −1
11 A∗

1 and Zn → Z ∼ N (0, I −1
11 I ∗

11 I −1
11 ) as n → ∞. The function inf θ∈ϕ(Z − θ )T I11(Z −

θ ) is a continuous function of Z . Therefore, the asymptotic distribution of −2 log λ∗ is the distribu-
tion of

inf
θ∈C�0

(Z − θ )T I11(Z − θ ) − inf
θ∈C�1

(Z − θ )T I11(Z − θ )

under the assumption that Z ∼ N (0, I −1
11 I ∗

11 I −1
11 ). By the equation T = max{−2 log λ∗(x), 0}, we have that

the asymptotic distribution of T is the distribution of

inf
θ∈C�0

(Z − θ )T I11(Z − θ ) − inf
θ∈C�

(Z − θ )T I11(Z − θ ),

where C� = C�0 ∪ C�1 . �

APPENDIX B

Calculation of Fisher information matrices and asymptotic variances of moment
estimators in Example 4

The loglikelihood function contributed by the i th litter is

log Li (θ, φ) ∝ log Pr (yi | mi , xi ; θ, φ)

= I (xi = 0)

{
yi −1∑
k=0

log(πc + kψc) +
mi −yi −1∑

k=0

log(1 − πc + kψc) −
mi −1∑
k=0

log(1 + kψc)

}

+ I (xi = 1)

{
yi −1∑
k=0

log
(
πt + kψt ) +

mi −yi −1∑
k=0

log(1 − πt + kψt ) −
mi −1∑
k=0

log(1 + kψt )

}
,

(B1)

where ψc = φc/(1 − φc), ψt = φt/(1 − φt ), πc = exp(β0)/{1 + exp(β0)} and πt = exp(β0 + β1)/{1 +
exp(β0 + β1)}. Denote the score vector for θ by Si

θ = (Si
β1

, Si
β0

)T, where Si
β j

= ∂ log Li (θ, φ)/∂β j ( j =
0, 1); and the score vector for φ by Si

φ = (Si
φc

, Si
φt

)T, where Si
φ j

= ∂ log Li (θ, φ)/∂φ j ( j = c, t). Therefore,

the Fisher information matrices I11 and I12 can be estimated by their empirical versions, n−1
∑n

i=1{Si
θ (Si

θ )T}
and n−1

∑n
i=1{Si

θ (Si
φ)T}, respectively. The simple representation in equation (B1) avoids having different

forms of density functions, binomial if φ = 0 and beta-binomial if φ > 0, and does not require the digamma
function when calculating the scores.
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To calculate the asymptotic variances of φ̂∗
c and φ̂∗

t , we first notice that they are asymptotically inde-
pendent and we only need to calculate the asymptotic variance of φ̂∗

c since calculation for φ̂∗
t is similar.

Denote g(φc, mi , yi , πc) = (pi − πc)2/[πc(1 − πc){1 + (mi − 1)φc}/mi ] − (n0 − 1)/n0. The moment
estimator φ̂∗

c is the solution of
∑

xi =0 g(φ̂∗
c , mi , yi , π̂c) = 0, where π̂c =∑xi =0 yi/

∑
xi =0 mi . Apply the

Taylor expansion of g(φ̂∗
c , mi , yi , π̂c) around φc:∑

xi =0

[
g(φc, mi , yi , π̂c) + {∂g(φc, mi , yi , π̂c)/∂φc}(φ̂∗

c − φc)
] ≈ 0.

Therefore,

n0
1/2(φ̂∗

c − φc) ≈
{

−n−1
0

∑
xi =0

∂g(φc, mi , yi , π̂c)/∂φc

}−1

n0
−1/2

∑
xi =0

g(φc, mi , yi , π̂c).

Apply again the Taylor expansion of g(φc, mi , yi , π̂c), this time around πc:

n0
1/2(φ̂∗

c − φc) ≈
{

−n−1
0

∑
xi =0

∂g(φc, mi , yi , πc)

∂φc

}−1

×
[{

n0
−1/2

∑
xi =0

g(φc, mi , yi , πc)

}
+
{

n−1
0

∑
xi =0

∂g(φc, mi , yi , πc)

∂πc

}
n0

1/2(π̂c − πc)

]

≈
{

−n−1
0

∑
xi =0

∂g(φc, mi , yi , πc)

∂φc

}−1 [{
n0

−1/2
∑
xi =0

g(φc, mi , yi , πc)

}

−
{

n−1
0

∑
xi =0

∂g(φc, mi , yi , πc)

∂πc

}{
n−1

0

∑
xi =0

mi

}−1

n0
−1/2

∑
xi =0

(miπc − yi )

⎤
⎦

=
{

−n−1
0

∑
xi =0

∂g(φc, mi , yi , πc)

∂φc

}−1

× n0
−1/2

∑
xi =0

×
⎡
⎣g(φc, mi , yi , πc)−

{
n−1

0

∑
xi =0

∂g(φc, mi , yi , πc)

∂πc

}{
n−1

0

∑
xi =0

mi

}−1

(miπc − yi )

⎤
⎦ ,

where the second to last step is by the fact that π̂c is the solution of the estimating equation
∑

xi =0(miπc −
yi ) = 0.

Finally, the asymptotic variance of φ̂∗
c is{

− 1

n0

∑
xi =0

∂g(φc, mi , yi , πc)

∂φc

}−2

× 1

n0

∑
xi =0

⎡
⎣g(φc, mi , yi , πc) −

{
1

n0

∑
xi =0

∂g(φc, mi , yi , πc)

∂πc

}{
1

n0

∑
xi =0

mi

}−1

(miπc − yi )

⎤
⎦

2

.
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