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Abstract
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can be used to construct a nonparametric estimate of the volatility Laplace transform as well
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1 Introduction

Time-varying volatility is a salient empirical feature of many economic and financial time series,

and the importance of properly accounting for such dependencies in economic decision making is

now widely recognized, see Engle (2004). The widespread use of continuous-time processes with

stochastic volatility1 in macroeconomics and finance also directly underscores this.

Inference for stochastic volatility models is complicated because the underlying volatility process

is latent and not uniquely determined by observed variables.2 The presence of the hidden volatility

process presents statistical challenges far beyond those encountered in models with a fully observed

state vector, for which there are a variety of tractable methods. The literature on statistical

inference for stochastic volatility, either classical or Bayesian, is vast. As common throughout

econometrics and statistics, most techniques involve integrating out the latent process(es) in some

way or another.

The recent availability of high-frequency financial data provides an alternative. The leading

example is the widely-studied realized variance, see e.g., Andersen et al. (2001, 2003) and Barndorff-

Nielsen and Shephard (2002). The realized variance is the sum of squared returns over a given time

period, usually a day, and it is a nonparametric measure of the unobserved quadratic variation over

that period. Further, jump robust extensions of the measure (Barndorff-Nielsen and Shephard,

2004; Mancini, 2001) allow for nonparametric estimation of the integral of the spot variance over

the time interval.

Some important issues regarding time aggregation and efficiency arise when using the realized

variance and its jump robust extensions for making inference about the underlying volatility dy-

namics. Inferring distributional properties of the spot variance directly from those of integrated

variance is difficult due to the time aggregation. The mapping between the probability distribution

of the spot and integrated variances is not one-to-one in general. Also we typically have far more

analytical tractability for the spot variance process rather than the integrated. For example, in

the widely popular affine jump-diffusion class of Duffie et al. (2000), the conditional characteristic

functions, and thereby Laplace transforms, of spot variables are known in closed form and easily

computable.

1In what follows we adopt general financial econometrics usage of the term “volatility” generically, in reference to
either scale or variance with the meaning evident from the context. Whenever the distinction is relevant, however,
we use “spot volatility” to mean the local, or instantaneous scale, and “spot variance” for the local variance. Exact
definitions are in the theoretical analysis below. Note that spot volatility always pertains to the diffusive component,
apart from jumps, which are typically modeled separately. Finally, we refer to integrated over time spot volatility
(or variance) simply as integrated volatility (or variance).

2This includes the prices of derivative contracts as the presence of a rather non-trivial risk premia in the latter
makes the link with the unobserved volatility indirect.
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In this paper we propose another way of aggregating the high-frequency returns data into a

measure we call Realized Laplace Transform of volatility, hereafter abbreviated as RLT, which

overcomes the above difficulties. A key distinction is that the realized variance (or its jump-robust

extensions) is a mapping from the data to a random variable, while the RLT is a mapping from

the data to a random function. The function estimates the empirical Laplace transform of the

spot variance over an interval of time3, and it preserves information about the characteristics of

volatility (when the latter is a stationary process). The RLT is easy to compute, as it is simply an

average of cosine transforms of the appropriately rescaled high-frequency increments.

The RLT measure is built on the idea that over small intervals of time the leading component

of the price increment is (conditionally) a zero-mean Gaussian random variable with variance equal

to the spot variance at the beginning of the interval.4 Then, the characteristic function of a zero-

mean normal random variable is a Laplace transform of its volatility and aggregating over the

high-frequency increments, by Law of Large Numbers, our RLT measure estimates the empirical

Laplace transform of the volatility over the time interval. We prove feasible functional Central

Limit Theorems for the RLT measure when considered as a function of its dummy variable under

both fixed and long span sampling scheme.

Our asymptotic analysis forms the basis for applying the measure in many parametric and non-

parametric estimation contexts. Importantly, the measure has robustness with respect to jumps

slightly better than the existing jump-robust realized measures. This robustness is achieved au-

tomatically without any need for explicit truncation, and hence the nontrivial issue of choosing

tuning parameters is avoided.5

The empirical usefulness of the RLT becomes evident in a situation where a long span of data

is available and stationarity-type conditions are reasonable: standard assumptions for economic

applications, e.g., Hansen and Scheinkman (1995); Barndorff-Nielsen and Shephard (2002); Ander-

sen et al. (2003) among many others. Then we are able to estimate the unconditional Laplace

transform of the spot variance. As seen in our empirical illustration below, the approach provides

evidence on the statistical significance of the error in treating the daily integrated variance as the

spot variance, as is sometimes done. Also, we can discriminate across broad classes of volatility

models and assess the magnitude of the distortion to the distribution of volatility induced by the

3The empirical Laplace transform of a continuous-time process Xt over an interval [0, T ] is the Laplace transform

of Xt with respect to the empirical measure, i.e., it is 1
T

∫ T

0
e−uXsds for u ∈ R+.

4The local Gaussianity of high-frequency returns has been used, either implicitly or explicitly, in constructing
general volatility estimators in diffusion settings by Barndorff-Nielsen et al. (2006) and Mykland and Zhang (2009).

5The multipower variation measures of the integrated variance of Barndorff-Nielsen and Shephard (2004) similarly
do not need a choice of a tuning parameter.
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temporal aggregation associated with the integrated variance.

Much more generally, by considering products of the RLT measure over different time intervals,

we can estimate nonparametrically the integrated joint Laplace transform of volatility over the time

intervals. Matching moments of the latter with that implied by a model provides for efficient, robust,

and often analytically convenient way of model determination and estimation of the volatility

dynamics. This latter effort is far beyond the scope of this paper and is undertaken in a follow up

paper (Todorov et al., 2011) that applies the limit theory developed here.

Finally, the analysis in this paper is for the case when the observed process is a jump-diffusion,

which is the most typical in economic applications, but it can be easily extended for studying the

stochastic volatility in a pure-jump setting. This “adaptivity” is another important advantage of

the proposed measure.6

The paper is organized as follows. Section 2 introduces our setup and assumptions. In Section 3

we define formally the RLT measure and derive its asymptotic behavior. Section 4 presents a

Monte Carlo study of our statistic and Section 5 contains the results from an empirical application.

Section 6 concludes. Proofs are in Section 7 and a supplementary Appendix, which also contains

details regarding all computations within the paper as well as some extensions of the results in the

paper.

2 Setting and Assumptions

We start by introducing our setting and assumptions. Throughout the paper, the process of interest

is denoted with X and is defined on some filtered probability space (Ω,F , (Ft)t≥0,P). We assume

that X has the following dynamics:

dXt = αtdt+ σtdWt +

∫
R
δ(t−, x)µ(dt, dx), (1)

where αt and σt are càdlàg processes; Wt is a Brownian motion; µ is a homogenous Poisson measure

with compensator (Lévy measure) dt⊗ ν(dx); δ(t, x) : R+ × R → R is càdlàg in t.7

Our goal in the paper will be to uncover the stochastic volatility σt, and its distribution and

dynamics in particular, from observing only X while assuming as little as possible about the rest

of the components of X and the volatility itself.

6On the other hand, in pure-jump setting the realized variance will measure the sum of the squared jumps which
deviates from integrated variance (formally the integrated jump compensator) by a (local) martingale.

7In financial applications, the observed price differs from the model in (1) by the so-called market microstructure
noise which can have nontrivial impact for very high frequencies. We will adopt a conservative approach of using
coarser frequencies at which the impact of the noise is negligible, leaving an extension of the results to the case when
noise is present for future research.
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The first two components in (1) have continuous paths while the third one captures the discon-

tinuous moves in X, i.e., jumps. Our first assumption restricts the behavior of the latter.

Assumption A. The Lévy measure of µ satisfies: E
(∫ t

0

∫
R(|δ(s, x)|

p ∨ |δ(s, x)|)dsν(dx)
)
< ∞, for

every t > 0 and every p ∈ (β, 1), where 0 ≤ β < 1 is some constant.

Apart from the minor integrability condition, i.e., the first moment of the jump process exists,

assumption A restricts the “activity” of the jump component of X. The “activity” of the jumps

determines the “vibrancy” of their trajectory. We restrict β < 1, i.e., the jump component is of

finite variation meaning that its trajectory is of finite length (and this is why we do not need a

martingale measure to define it).8 In most parametric continuous-time models used to date, e.g.,

the affine jump-diffusion models, the jump process is a compound Poisson process and assumption

A is trivially satisfied in this case with β = 0.

Our next assumption imposes minimal integrability conditions on αt and σt and further limits

their variation over short periods of time. Intuitively, we will need the latter to guarantee that by

sampling frequently enough we can treat “locally” σt (and αt) as constant.

Assumption B. Assume that σt is an Itô semimartingale given by

σt = σ0 +

∫ t

0
α̃sds+

∫ t

0
vsdWs +

∫ t

0
v′sdW

′
s +

∫ t

0

∫
R
δ′(s−, x)µ̃′(ds, dx), (2)

where W ′ is a Brownian motion independent from W ; µ is a homogenous Poisson measure, with

Lévy measure dt⊗ ν ′(dx), having arbitrary dependence with µ and δ′(t, x) : R+ × R → R is càdlàg

in t. We have for every t and s: E
(
|αt|2 + |α̃t|2 + |σt|2 + |vt|2 + |v′t|2 +

∫
R |δ′(t, x)|2ν(dx)

)
< C,

E
(
|αt − αs|2 + |vt − vs|2 + |v′t − v′s|2 +

∫
R(δ

′(t, x)− δ′(s, x))2ν(dx)
)
< C|t− s|,

(3)

where C > 0 is some constant that does not depend on t and s.

Assumption B is a very general assumption, which is satisfied by the multifactor stochastic

volatility models that are widely used in financial econometrics, e.g., the popular affine jump-

diffusion models. It allows for a completely arbitrary dependence between the increments in σt and

X, i.e., so-called “leverage” effect (by linking either jumps or Brownian motions) is allowed.9

Finally, for some of our results we will make use of long-span asymptotics, for the process σ2t

and the latter contains temporal dependence. Therefore, we need a condition on this dependence

that guarantees that a Central Limit Theorem for the associated empirical process exists.

8This restriction is not necessary if one is interested only in convergence in probability results (only β < 2 is needed
for this and the highest value of β is 2). However, if one needs also the asymptotic distribution of the statistics that
we introduce in the paper, then this assumption is probably unavoidable.

9We can further relax this assumption but with the cost of weakening slightly some of our asymptotic results.
Given the wide class of stochastic volatility models that is covered by assumption B we do not do this here.
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Assumption C. The volatility σt is a stationary and α-mixing process with αmix
t = O(t−3−ι) for

arbitrary small ι > 0 when t→ ∞, where

αmix
t = sup

A∈F0, B∈F t

|P(A∩B)−P(A)P(B)|, F0 = σ(σs,Ws, s ≤ 0) and F t = σ(σs,Ws−Wt, s ≥ t).

(4)

3 Limit theory for the Realized Laplace Transform

We next define the Realized Laplace Transform and derive its asymptotic properties. We will

assume that we observe the process X at the equidistant times 0,∆n, ..., i∆n, ..., [T/∆n] where ∆n

is the length of the high-frequency interval and T is the span of the data. The Realized Laplace

Transform measure is formally defined as

VT (X,∆n, u) =

[T/∆n]∑
i=1

∆n cos(
√
2u∆−1/2

n ∆n
i X), ∆n

i X = Xi∆n −X(i−1)∆n
. (5)

VT (X,∆n, u) is simply the real part of the empirical characteristic function of the (appropriately

scaled) increments of the process. When ∆n → 0, we will show that VT (X,∆n, u)/T is an estimate

of the empirical Laplace transform function of the latent volatility
∫ T
0 e−uσ

2
t ds/T (regardless of

whether T is fixed or not). This result in turn can be used to construct a feasible nonparametric

estimator for the Laplace transform of volatility and the integrated joint Laplace transform over

different points in time as we show in this section.

3.1 Infill asymptotics

We start our asymptotic analysis with the case of T fixed and ∆n ↓ 0. Before presenting the formal

results, we explain the intuition behind our RLT measure. Under assumptions A and B, the error

due to replacing ∆n
i X with σ(i−1)∆n

∆n
iW in VT (X,∆n, u) is asymptotically negligible. Then, note

that Wi∆n −W(i−1)∆n

d
=

√
∆n×N(0, 1), and since the characteristic function of a standard normal

variable is e−u
2/2, we have E

(
cos(

√
2u∆

−1/2
n σ(i−1)∆n

∆n
iW )

∣∣∣∣F(i−1)∆n

)
= e

−uσ2
(i−1)∆n . Therefore,

by a Law of Large Numbers for the sample average of a heteroscedastic data series, we have that

VT (X,∆n, u) will converge in probability to ∆n
∑[T/∆n]

i=1 e
−uσ2

(i−1)∆n and the latter in turn converges

to
∫ T
0 e−uσ

2
sds. 10 The following theorem makes this result formal and it further gives an associated

(feasible) CLT result. In it we denote with L − s convergence stable in law, which means that the

10The discussion here reveals the intrinsic link between the small-scale behavior of the price process and our RLT
measure. Thus for example if the diffusion component of X is absent, i.e., in a pure-jump setting, the scaling of the
high-frequency increments in the construction of the RLT measure in (5) should be corrected to reflect the small-scale
behavior of the leading jump component of X.

6



convergence in law holds jointly with any random variable defined on the original probability space.

We also use the standard notation x ∧ y = min{x, y} and x ∨ y = max{x, y} for x, y ∈ R.

Theorem 1 For the process X, assume that assumptions A and B hold and let ∆n → 0 and T be

fixed. Then, we have

1√
∆n

(
VT (X,∆n, u)−

∫ T

0
e−uσ

2
sds

)
L−s−→ ΨT (u), (6)

where the convergence is on the space C(R+) of continuous functions indexed by u equipped with

the local uniform topology (i.e. uniformly over compact sets of u ∈ R+). The process ΨT (u) is

defined on an extension of the original probability space and is F-conditionally Gaussian process

with zero mean function and covariance function of
∫ T
0 F (

√
uσs,

√
vσs)ds for every u, v ∈ R+ with

F (x, y) = e−(x+y)2−2e−x2−y2+e−(x−y)2

2 for x, y ∈ R+.

A consistent estimator for the covariance function of ΨT (u) is given by

∆n

[T/∆n]∑
i=1

(
cos(

√
2u∆−1/2

n ∆n
i X)− VT (X,∆n, u)

)(
cos(

√
2v∆−1/2

n ∆n
i X)− VT (X,∆n, v)

)
, u, v > 0.

The result of the theorem for the case of fixed u and X a diffusion follows from the general theory

of Barndorff-Nielsen et al. (2006). The robustness to jumps of the CLT in (6) requires only that

jumps are of finite variation (assumption A) and further does not require any explicit truncation

of the increments and the associated choice of a tuning parameter. The robustness to jumps is

easiest to see in the case when the jumps are of finite activity. In this case there is a finite number

of increments ∆n
i X that are affected by the jumps. Due to the boundedness of the cosine function,

their impact on the RLT measure is limited by K∆n (where K is the number of jumps on the

interval which of course depends on the realization) and hence they do not affect the result in (6).

By contrast, in the case of the realized variance (which is the sum of the squared high-frequency

data), jumps affect not only the limiting distribution but also the limit itself.

An important consequence of the proof of the above theorem is the following result about the

bias of the Realized Laplace Transform as a measure of the Laplace transform of volatility (assuming

in addition to assumptions A and B that σt is stationary)

E (VT (X,∆n, u)) = E
(∫ T

0
e−uσ

2
sds

)
+O

(
∆1−β/2−ι
n

)
, ∀ι > 0. (7)

To compare, we note that for the realized variance, as a measure of the integrated variance, the

bias is of order O (∆n) when there are no price jumps (and is due to the drift term).
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3.2 Joint Infill and Long Span Asymptotics

We continue next with the asymptotic results for the case when both the time span increases

and the length between observations decreases. The preceding analysis shows that for any t,

Ẑt(u) = Vt(X,∆n, u) − Vt−1(X,∆n, u), constructed from the high-frequency data in the interval

[t, t+1], is an estimate for Zt(u) =
∫ t
t−1 e

−uσ2
sds. Taking sample averages of products of Zt(u) over

different time intervals, i.e.,

µ̂k(u, v) =
1

T

T∑
t=k+1

Ẑt(u)Ẑt−k(v), (8)

for k integer and u, v ≥ 0, and applying a standard Law of Large Numbers we can estimate

consistently µk(u, v) = E (Zt(u)Zt−k(v)) for T ↑ ∞ and ∆n ↓ 0. The latter (by stationarity) is equal

to E
(∫ k+1

k

∫ 1
0 e

−vσ2
s1

−uσ2
s2ds1ds2

)
which is just integrated joint Laplace transform of volatility over

different points in time. For u = 0 or v = 0, it reduces to the Laplace transform of the marginal

distribution of the volatility process.

To make use of the above result, however, we need to know the precision with which we can

recover the function µk(u, v) from the data. The estimation involves discretization error (from

estimating Zt(u) by Ẑt(u)) in addition to the empirical process 1
T

∑T
t=k+1 Zt(u)Zt−k(v)− µk(u, v).

Can we gauge the precision of µ̂k(u, v) by a feasible estimate of the magnitude of the latter error?

The answer to this depends on how big is the discretization error relative to the empirical process.

In the next theorem we quantify the magnitudes of the two errors and provide a feasible CLT for

the latter. We need some more notation for the asymptotic variance of µ̂k(u, v) and its feasible

estimate before we can present the theorem. In particular, we set

Vk([u1, v1], [u2, v2]) =
∞∑

l=−∞

E [(Zt(u1)Zt−k(v1)− µk(u1, v1)) (Zt−l(u2)Zt−l−k(v2)− µk(u2, v2))] , (9)

Ĉl([u1, v1], [u2, v2]) =
1

T

T∑
t=k+l+1

(
Ẑt(u1)Ẑt−k(v1)− µ̂(u1, v1)

)(
Ẑt−l(u2)Ẑt−l−k(v2)− µ̂(u2, v2)

)
, (10)

V̂k([u1, v1], [u2, v2]) = Ĉ0([u1, v1], [u2, v2]) +

LT∑
i=1

ω(i, LT )(Ĉi([u1, v1], [u2, v2]) + Ĉi([u2, v2], [u1, v1])), (11)

for ui, vi ≥ 0 for i = 1, 2 and some nonnegative function ω. We note that Vk([u1, v1], [u2, v2]) is

well defined when assumption C holds, see Jacod and Shiryaev (2003), Theorem VIII.3.79.

Theorem 2 (a) Suppose T → ∞ and ∆n → 0. For the process X under assumptions A, B and

C, for arbitrary integer k ≥ 0 we have µ̂k(u, v)
P−→ µk(u, v), and further

√
T (µ̂k(u, v)− µk(u, v)) = Y

(1)
T (u, v) + Y

(2)
T (u, v), Y

(1)
T (u, v)

L−→ Ψ′(u, v), (12)
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Y
(2)
T (u, v) =

T − k√
T

[(t−k)/∆n]∑
i=[(t−k−1)/∆n]+1

E
[
Zt(u)∆n

(
cos
(√

2v∆−1/2
n σ(i−1)∆n

∆n
i W

)
− e−vσ2

(i−1)∆n

)]

+ 1{k=0}
√
T

[t/∆n]∑
i=[(t−1)/∆n]+1

E
[
Zt(v)∆n

(
cos
(√

2u∆−1/2
n σ(i−1)∆n

∆n
i W

)
− e−uσ2

(i−1)∆n

)]
+Op

(√
T∆1−β/2−ι

n

)
, ∀ι > 0,

(13)

where the above limit results are for the space C(R+ × R+) of continuous functions indexed by u

and v and equipped with the local uniform topology. Ψ′(u, v) is a Gaussian process with zero mean

function and covariance function of Vk([u1, v1], [u2, v2]) which is defined in (9).

(b) If further LT is a deterministic sequence of integers satisfying LT√
T

→ 0 as T → ∞ and

LT∆
1−β/2−ι
n → 0, we have

V̂k([u1, v1], [u2, v2])
P−→ Vk([u1, v1], [u2, v2]), (14)

where ω(i, LT ) is either a Bartlett or a Parzen kernel.11

The two components of the estimation error, Y
(1)
T (u, v) and Y

(2)
T (u, v), are respectively the em-

pirical process,
√
T
(

1
T

∑T
t=k+1 Zt(u)Zt−k(v)− µk(u, v)

)
, and the discretization error. Naturally,

Y
(1)
T (u, v) is sole function of the time span T and does not depend on ∆n unlike Y

(2)
T (u, v). The

first two terms in Y
(2)
T (u, v) are due to the dependence between σ2t and Wt. In general, they are

O(
√
T∆n). They are exactly 0 when v = 0 or when σ2t and Wt are independent. Even more gen-

erally, however, when σ2t is a multifactor model with factors following Lévy-driven SDE-s (typical

modeling assumption), and if in addition the conditional Laplace transform of σ2t is twice differen-

tiable with bounded second derivative (which is the case for example for the affine jump-diffusions),

then these terms in Y
(2)
T (u, v) are of order only O(

√
T∆n). When this is the case, the relative speed

condition needed for Y
(2)
T (u, v) to be negligible is

√
T∆

1−β/2−ι
n → 0 and is determined by the

error due to the presence of jumps. This condition becomes more stringent for higher levels of

β (recall assumption A) as for them the jumps are “closer” to the Brownian increments, for our

estimation purposes, and this induces a more significant error in their disentangling. In the typical

case of finite activity jumps, e.g., compound Poisson process, the relative speed condition reduces

to
√
T∆n → 0 which allows the span of the data to increase much faster than the mesh of the

observation grid. Compared with the standard requirement T∆n → 0 found in the related problem

11We refer to Andrews (1991) and the many references therein for the alternative kernels used in the construction
of so-called heteroskedastic autocorrelation (HAC) estimators.
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of maximum-likelihood estimation of diffusion processes with discrete data, see e.g., Prakasa Rao

(1988), our relative speed condition is much weaker.

We note that the importance of the different components of the discretization error changes

from fixed to long span asymptotics. The martingale part is the leading component in the fixed-

span asymptotics and it determines the limiting distribution of the RLT measure in (6).12 On

the other hand, for the long-span asymptotics, the bias term due to the presence of jumps in the

price increments dominates the martingale component of the discretization error and determines

the order of magnitude of Y
(2)
T (u, v).

While in (13) we give the order of magnitude of the discretization error, for an empirical

application where we use fixed T and ∆n, it is important to have an idea of the actual size of the

bias it creates, in particular the one due to jumps. For simplicity we do this for the case when

v = 0 and when the process has i.i.d. increments with compound Poisson jumps with symmetric

distribution of the jump size. The bias due to the discretization error in this case is given by∣∣∣∣E (VT (X,∆n, u))

Te−uσ2 − 1

∣∣∣∣ ≤[ ∣∣∣cos(α√2u
√

∆n)− 1
∣∣∣

+ λ∆n

∣∣∣∣cos(α√2u
√

∆n)e
ψ
(√

2u/∆n

)
− 1

∣∣∣∣+ λ2∆2
n

2

]
,

where λ is the intensity of the jumps, i.e., λ =
∫
R ν(dx) with δ(t, x) = x in (1) and ψ is the

characteristic function of the jump size distribution ν(dx)/λ. The bias derived above is very small.

For example, for intensity of 1 jump per day with ∆n = 1/400, the bias is less than 0.25% of the

estimated value. In the Monte Carlo section we will further investigate the finite sample bias and

variance of our estimator µ̂k(u, v) for the time span and frequencies of the typical financial data

sets that are available and will confirm our asymptotic analysis here.

The function µ̂k(u, v) can be further generalized to products of more RLT measures over different

time intervals. These functions essentially “summarize” the information for the latent volatility

dynamics in the data. Indeed, if we assume that volatility stays constant over the intervals [t, t+1]

and is further Markov of finite order, it is well known (see e.g., Proposition 4.2 in Carrasco et al.

(2007) and the references therein) that we can achieve the efficiency of the maximum likelihood

estimator by minimizing the distance between these functions and their model implied analogues.

Of course, the volatility can change over the time interval [t, t+1] so that µk(u, v) is not exactly

the joint Laplace transform of volatility over arbitrary points of time, but rather an integrated

version of it. Intuitively, this is the price to pay for the fact that we need to “recover” the latent

12The leading martingale component of the dicretization error, Ẑt(u) − Zt(u), is given by

∆n

∑[t/∆n]

i=[(t−1)/∆n]+1

(
cos

(√
2u∆

−1/2
n σ(i−1)∆n∆

n
i W

)
− e

−uσ2
(i−1)∆n

)
.
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volatility from the high-frequency data.13 The loss of information compared with the infeasible case

where the joint Laplace transform of volatility (and not an integrated version of it) is observed, is

for the very short term moves in volatility which are hardest to pin down from discrete price data.

We can compare the use of µ̂k(u, v) with that of the realized variance (or its jump-robust

extensions) for the purposes of estimating continuous-time volatility models. In the latter case

the inference has been based on matching the first few moments of the realized variance as those

are known analytically for a wide range models (another alternative is Gaussian QMLE). This,

however, typically leads to a significant loss of information about the volatility dynamics. For

example, the volatility persistence, in such estimation, is inferred from the autocorrelation of the

realized variance. The latter however is an “aggregated” measure of how volatility shocks on

“average” propagate in the future. By contrast, using our measure µ̂k(u, v) over different regions

of (u, v), one can identify the “impulse response” to volatility shocks in different volatility regimes.

This is often achieved in an analytically convenient way, since for wide classes of models, e.g.,

the affine jump-diffusions, the conditional Laplace transform is known in closed-form. Moreover,

nonlinear transformations of the realized variance, needed to capture better the information in it,

typically lead to a more prominent role of the discretization error, which is reflected in the stronger

relative speed condition T∆n → 0 needed for this error to be negligible.

Finally, given the above-developed limit theory for the Laplace transform, it is natural to inquire

about inverting the transform to generate a nonparametric estimator of the probability density. The

inversion problem is well known to be ill posed, so some form of numerical regularization will be

required (Kryzhniy, 2010). Furthermore, there is no imperative reason to invert, since almost all

models, e.g. affine jump-diffusion models for the term structure and derivatives pricing, imply

convenient forms for the Laplace transform, not the density.

4 Monte Carlo Assessment

We now examine the precision of estimating µk(u, v) via the RLT. We use the following two-factor
stochastic volatility model

dXt =
√
V1t + V2tdWt + dL1t, dV1t = 0.02(0.5− V1t)dt+ 0.07

√
V1tdBt, Wt ⊥⊥ Bt,

dV2t = −0.5V2tdt+ dL2t, L1t ⊥⊥ L2t,
(15)

L1t is pure-jump with Lévy density ν(x) = e−x2/0.4
√
0.4π

and L2t is pure-jump with Lévy density ν(x) =

13Alternatively we could have defined our RLT measures Ẑt(u) over intervals that shrink asymptotically. However,
in this case the relative importance of the discretization error will increase. Since, we quantify the precision of µ̂k(u, v)
only by the associated empirical process, ignoring the discretization error, we do not consider such an extension.
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4e−4x1{x>0}. The model is fairly general and captures most stylized features of asset returns data

documented in empirical asset pricing.

Table 1: Monte Carlo Results

k = 0 v = 0.00

u 0.50 1.25 2.50 3.75

µk(u, v) 0.6207 0.3256 0.1282 0.0563

median 0.6182 0.3234 0.1266 0.0561

MAD 0.0080 0.0100 0.0070 0.0042

k = 1 v = 0.50 v = 1.25 v = 2.50

u 0.50 1.25 2.50 0.50 1.25 2.50 0.50 1.25 2.50

µk(u, v) 0.3967 0.2161 0.0895 0.2158 0.1232 0.0543 0.0889 0.0539 0.0258

median 0.3935 0.2136 0.0879 0.2132 0.1214 0.0533 0.0874 0.0529 0.0253

MAD 0.0099 0.0087 0.0056 0.0087 0.0067 0.0041 0.0056 0.0041 0.0024

k = 10 v = 0.50 v = 1.25 v = 2.50

u 0.50 1.25 2.50 0.50 1.25 2.50 0.50 1.25 2.50

µk(u, v) 0.3895 0.2074 0.0833 0.2074 0.1125 0.0464 0.0832 0.0464 0.0198

median 0.3865 0.2050 0.0819 0.2050 0.1109 0.0455 0.0819 0.0455 0.0194

MAD 0.0098 0.0086 0.0054 0.0086 0.0064 0.0036 0.0053 0.0036 0.0019

Note: The median and the median absolute deviation (MAD) correspond to the estimator µ̂k(u, v). The true

values of the volatility Laplace transform are computed using a sample average from a very long simulated

series of the latent volatility process σt. The Monte Carlo replica is 1000.

We simulate from the above model a data set of 4, 000 “days” worth of 400 within-day price

increments which is similar to the data set we are going to use in the empirical application. Table 1

summarizes the results from the Monte Carlo experiment. As seen from the table, the estimator is

very accurate and the finite sample biases of µ̂k(u, v) are several times smaller than their sampling

variation which further confirms the rather small effect of the discretization error implied by our

theoretical analysis in the previous section.

5 Empirical Application

The two questions addressed here are i) is there significant statistical error in treating the integrated

variance as a spot variance, and ii) do we gain additional information from using our RLT measure?

12



The data are 1-minute observations on the S&P 500 futures index, January 1, 1990, to December

31, 2008. The strategy 14 is to juxtapose the estimate of the Laplace transform of the spot variance

process, σ2t , as newly developed in this paper, to the transform of the widely studied daily integrated

variance
∫ t+1
t σ2sds. For ease of interpretation, we also juxtapose the implied probability densities.

The left panel of Figure 1 shows the estimate of the log-Laplace transform of the spot variance

along with two-sigma confidence bands, obtained by using Theorem 2 with the function µ̂0(u, 0).

It also shows the empirical Laplace transform of the integrated variance, as estimated by the

jump-robust truncated version of Mancini (2001), with the bipower variation (Barndorff-Nielsen

and Shephard, 2004) used for the estimate of truncation — all details are in the supplementary

appendix. There is a clear, statistically significant wedge between the two log-Laplace transforms.

As a guide to interpreting the wedge, the right panel shows model-implied densities for logs of

Figure 1: Observed Log-Laplace Transforms and Implied Densities of the Log Variance
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Left: Estimated log-Laplace transform and two-sigma pointwise confidence bands for spot volatility of the stock index along

with the empirical Laplace transform of the daily integrated variance, 1-minute S&P 500 index data, 1990–2008. Right: model-

implied densities of the log of the log spot variance (solid) and the log of the realized variance (dashed), fitted to the Laplace

transforms under the generalized inverse Gaussian specification.

the spot and the integrated variance under the Generalized-Inverse-Gaussian distribution. This

three-parameter distribution nests many well-known positively supported distributions, and it is

the marginal density for many important stochastic volatility models (Barndorff-Nielsen and Shep-

hard, 2001). The parameter estimates were obtained by matching Laplace transforms at three

widely dispersed points. The fitted Laplace transforms match observed with R2 ≈ 1.00 over the

14Extensive investigations indicated that microstructure noise is not a concern and the results below are robust
across sampling frequencies. Further, the results are only marginally affected by the well-known deterministic within-
day diurnal pattern in volatility. For a theoretical analysis when the latter is present, see the supplementary Appendix
to the paper.
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entire domain, and thereby the plotted densities are just alternative representations of the same

information embedded in the Laplace transforms. On the other hand, as discussed in the sup-

plementary appendix, the important special case of a gamma distribution is statistically rejected

using criteria based on our limit theory, indicating that the theory is useful for discriminating across

models. The Generalized-Inverse-Gaussian thereby appears to be the appropriate distribution of

stochastic variance for these data. As to be expected, the density of the spot variance is more

dispersed around the mode than is the density of the integrated variance. The integration used

to accumulate the daily integrated variance smooths over sharp short-term movements, as would

be induced by, say, volatility jumps. Our approach thereby provides empirical evidence on the

magnitude to which the smoothing alters the distribution of the integrated relative to the spot

variance, a difference to be kept in mind when modeling stochastic volatility.

6 Conclusions

In this paper we propose a new measure, we call Realized Laplace Transform of volatility, which

estimates from high-frequency data over a given interval the empirical Laplace transform of the

latent volatility process over that interval. We derive the asymptotic distribution of the statistic

under settings of fixed and long span of data. Our asymptotic analysis and Monte Carlo work show

the measure can be used to reliably estimate integrated joint Laplace transform of the volatility over

different points in time. This provides an easy and efficient way to estimate and test performance

of models with rich dynamics that are needed to capture the volatility risks evident in the data.

7 Proofs

In all the proofs C denotes a constant that does not depend on T and ∆n, and further can change

from line to line. We also use the short hand Eni−1 for E
(
·|F(i−1)∆n

)
. We start with some prelimi-

nary results that we use in the proofs of the theorems.

7.1 Preliminary Estimates

For every t and u we have Ẑt(u)− Zt(u) =
∑[t/∆n]

i=[(t−1)/∆n]+1

∑3
j=1 ξ

(j)
i,u , with

ξ
(1)
i,u = ∆n

[
cos
(√

2uσ(i−1)∆n−∆
−1/2
n ∆n

i W
)
− e−uσ2

(i−1)∆n−

]
, ξ

(2)
i,u =

∫ i∆n

(i−1)∆n

(
e−uσ2

(i−1)∆n− − e−uσ2
s

)
ds,

ξ
(3)
i,u = ∆n

(
cos
(√

2u∆−1/2
n ∆n

i X
)
− cos

(√
2uσ(i−1)∆n−∆

−1/2
n ∆n

i W
))

.
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First, using E(eiuZ) = e−u
2/2 for u ∈ R and z ∼ N(0, 1), we have

Eni−1

(
ξ
(1)
i,u

)
= 0, Eni−1

(
ξ
(1)
i,u ξ

(1)
i,v

)
= ∆2

nF (
√
uσ(i−1)∆n−,

√
vσ(i−1)∆n−), Eni−1

(
ξ
(1)
i,u

)4
≤ C∆4

n. (16)

We move next to ξ
(2)
i,u . We decompose it using a first-order Taylor expansion as ξ

(2)
i,u =

∑3
j=1 ξ

(2)
i,u (j),

ξ
(2)
i,u (1) = K1(σ(i−1)∆n−, u)

∫ i∆n

(i−1)∆n

(
σ(i−1)∆n− − σ̂s

)
ds, ξ

(2)
i,u (2) =

∫ i∆n

(i−1)∆n

(
e−uσ̂

2
s − e−uσ

2
s

)
ds,

ξ
(2)
i,u (3) =

∫ i∆n

(i−1)∆n

(
K1(σ

∗
s , u)−K1(σ(i−1)∆n−, u)

) (
σ(i−1)∆n− − σ̂s

)
ds,

where K1(x, u) = −2uxe−ux
2
, σ∗s is a number between σ(i−1)∆n− and σ̂s, and

σ̂s = σ(i−1)∆n− +

∫ s

(i−1)∆n

vudWu +

∫ s

(i−1)∆n

v′udW
′
u +

∫ s

(i−1)∆n

∫
R
δ′(u−, x)µ̃′(du, dx), s ∈ [(i− 1)∆n, i∆n].

Then, using our integrability conditions in assumption B, successive conditioning and Itô isometry,

as well as the the boundedness of the function K1(x, u), we have

Eni−1

(
ξ
(2)
i,u (1)

)
= 0, E

∣∣∣ξ(2)i,u (1)
∣∣∣2 ≤ C∆3

n. (17)

For ξ
(2)
i,u (2), first-order Taylor expansion and the integrability conditions in assumption B imply

Eni−1|ξ
(2)
i,u (2)| ≤ CuEni−1

(∫ i∆n

(i−1)∆n

∣∣σ̂2s − σ2s
∣∣ ds) =⇒ E|ξ(2)i,u (2)| ≤ C∆2

n. (18)

Finally for ξ
(2)
i,u (3), by using Cauchy-Schwarz inequality and Itô isometry, we can write

E|ξ(2)i,u (3)| ≤ C∆3/2
n

√√√√E

(
sup

s∈[(i−1)∆n,i∆n]
(K1(σ∗s , u)−K1(σ(i−1)∆n−, u))

2

)
.

To continue further we make use of the bound |K1(x, u) −K1(y, u)| ≤ C|x − y| for x, y ∈ R and

u ≥ 0, where the constant C depends only on u. Plugging in the above inequality x = σ∗s and

y = σ(i−1)∆n− and using successive conditioning (first on the filtration F(i−1)∆n
) together with the

Burkholder-Davis-Gundy inequality and the integrability conditions of assumption B, we get

E|ξ(2)i,u (3)| ≤ C∆2
n. (19)

Turning to ξ
(3)
i,u , we can decompose it as ξ

(3)
i,u =

∑5
j=1 ξ

(3)
i,u (j), where

ξ
(3)
i,u (1) = −2∆n sin

(
0.5

√
2u∆−1/2

n

(
∆n
i X +

∫ i∆n

(i−1)∆n

asds+

∫ i∆n

(i−1)∆n

σsdWs

))

× sin

(
0.5

√
2u∆−1/2

n

∫ i∆n

(i−1)∆n

∫
R
δ(s−, x)µ(ds, dx)

)
,
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ξ
(3)
i,u (2) = −

√
2u∆3/2

n sin
(√

2uσ(i−1)∆n−∆
−1/2
n ∆n

iW
)
a(i−1)∆n

,

ξ
(3)
i,u (3) = −u cos (x̃2)

(
∆na(i−1)∆n

+

∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n
)dWs

)2

,

ξ
(3)
i,u (4) = −

√
2u∆1/2

n sin(x̃1)

∫ i∆n

(i−1)∆n

(as − a(i−1)∆n
)ds,

ξ
(3)
i,u (5) = −

√
2u∆1/2

n sin
(√

2uσ(i−1)∆n−∆
−1/2
n ∆n

iW
)∫ i∆n

(i−1)∆n

(σs − σ(i−1)∆n
)dWs,

where x̃1 is between
√
2u∆

−1/2
n

∫ i∆n

(i−1)∆n
asds +

√
2u∆

−1/2
n

∫ i∆n

(i−1)∆n
σsdWs and

√
2u∆

1/2
n a(i−1)∆n

+
√
2u∆

−1/2
n

∫ i∆n

(i−1)∆n
σsdWs and x̃2 is between the latter and

√
2u∆

−1/2
n σ(i−1)∆n−∆

n
iW .

Using the basic inequalities | sin(x)| ≤ |x| and |
∑

i |ai||p ≤
∑

i |a|
p
i for some 0 < p ≤ 1, we have

E|ξ(3)i,u (1)| ≤ C∆1−β/2−ι/2
n E

∣∣∣∣ ∫ i∆n

(i−1)∆n

∫
R
δ(s−, x)µ(ds, dx)

∣∣∣∣β+ι
≤ C∆1−β/2−ι/2

n E
∫ i∆n

(i−1)∆n

∫
R
|δ(s−, x)|β+ιdsν(dx) ≤ C∆2−β/2−ι/2

n , ∀ι ∈ (0, 1− β].

For ξ
(3)
i,u (2), ξ

(3)
i,u (3) and ξ

(3)
i,u (4), using the boundedness of the functions sin(x) and cos(x), the

symmetry of sin(x), the square integrability of as and σs (from assumption B), the second part of

(3) in assumption B and applying Itô isometry, we trivially have

Eni−1

(
ξ
(3)
i,u (2)

)
= 0, E

∣∣∣ξ(3)i,u (2)
∣∣∣2 ≤ C∆3

n, E|ξ(3)i,u (3)| ≤ C∆2
n and E|ξ(3)i,u (4)| ≤ C∆2

n. (20)

We are left with ξ
(3)
i,u (5). We denote ξ(3,q)i,u (5) = −

√
2u∆n sin

(√
2uσ(i−1)∆n−∆

−1/2
n ∆n

i W
) ∫ i∆n

(i−1)∆n
ζ
(q)
s dWs

for q = a, b and where

ζ(a)s =

∫ s

(i−1)∆n

v(i−1)∆n
dWu +

∫ s

(i−1)∆n

v′(i−1)∆n
dW ′

u +

∫ s

(i−1)∆n

∫
R
δ′((i− 1)∆n−, x)µ̃′(du, dx),

ζ(b)s =

∫ s

(i−1)∆n

α̃udu+

∫ s

(i−1)∆n

(vu − v(i−1)∆n
)dWu +

∫ s

(i−1)∆n

(v′u − v′(i−1)∆n
)dW ′

u

+

∫ s

(i−1)∆n

∫
R
(δ′(u−, x)− δ′((i− 1)∆n−, x))µ̃′(du, dx).

(21)

First, using Itô lemma and the fact that ∆n
iW has symmetric distribution, we have

En
i−1

[
sin
(√

2u∆−1/2
n σ(i−1)∆n−∆

n
i W

)∫ i∆n

(i−1)∆n

(
ζ(a)s −

∫ s

(i−1)∆n

v(i−1)∆n−dWu

)
dWs

]
= 0,

En
i−1

[
sin
(√

2uσ(i−1)∆n
∆−1/2

n ∆n
i W

)∫ i∆n

(i−1)∆n

(Ws −W(i−1)∆n
)dWs

]
= 0.5En

i−1

[
sin
(√

2uσ(i−1)∆n
∆−1/2

n ∆n
i W

) (
(∆n

i W )2 −∆n

)]
= 0.

This result and application of Burkholder-Davis-Gundy inequality gives

Eni−1

(
ξ
(3,a)
i,u (5)

)
= 0, E

∣∣∣ξ(3,a)i,u (5)
∣∣∣2 ≤ C∆3

n, E|ξ(3,b)i,u (5)| ≤ C∆2
n. (22)
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Finally in the proofs of the theorems we will use the following shorthand notation

Ẑt,1(u) =

[t/∆n]∑
[(t−1)/∆n]+1

ξ
(1)
i,u , Ẑt,2(u) =

[t/∆n]∑
[(t−1)/∆n]+1

(ξ
(2)
i,u (1) + ξ

(3)
i,u (2) + ξ

(3,a)
i,u (5)), (23)

and Ẑt,3(u) = Ẑt(u)− Zt(u)− Ẑt,1(u)− Ẑt,2(u).

7.2 Proof of Theorem 1

The stable convergence result in (6) amounts to showing E (Y f(Ψn
T (u))) → E (Y f(ΨT (u))) for all

f continuous bounded on C(R+) and Y bounded F-measurable, where Ψn
T (u) =

1√
∆n

∑T
t=1(Ẑt(u)−

Zt(u)). For this we use similar argument as in the proof of Theorem VIII.5.8 of Jacod and Shiryaev

(2003). By linearity, we can restrict attention to Y ≥ 0 with E(Y ) = 1. We have E (Y f(Ψn
T (u))) =

Ẽ (f(Ψn
T (u))) where P̃ is a new probability measure that has density Y with respect to the original

one. Then, however, using the boundedness of Y , we have P̃(Ψn
T (u) /∈ K) ≤ aP(Ψn

T (u) /∈ K) for

some constant a > 0 and K a compact subset of C(R+). Hence to show the convergence in (6) we

need to show the result finite-dimensionally in u as well as tightness of the sequence Ψn
T (u) (under

the original probability measure).
We start with finite-dimensional convergence. Since |F ′

i (x, y)| ≤ C, for F ′
i (x, y), i = 1, 2 denot-

ing first derivatives, applying Cauchy-Schwarz inequality and using (2)-(3), we have

E

[T/∆n]∑
i=1

∫ i∆n

(i−1)∆n

|F (
√
uσs,

√
vσs)− F (

√
uσ(i−1)∆n−,

√
vσ(i−1)∆n−)|ds


≤ CT

∆n

∫ i∆n

(i−1)∆n

√
E(F ′

1(
√
uσ∗

s ,
√
vσ∗∗

s ))2 + F ′
2(
√
uσ∗

s ,
√
vσ∗∗

s ))2
√
E(σs − σ(i−1)∆n−)

2ds ≤ C
√
∆n,

(24)

where σ∗s and σ
∗∗
s are values between σs and σ(i−1)∆n−. Then, using the result in (16) and applying

Theorem VIII.2.27 of Jacod and Shiryaev (2003), we get finite-dimensionally (in u)

1√
∆n

[T/∆n]∑
i=1

ξ
(1)
i,u

L−→ ΨT (u). (25)

Then, (25) and the bounds on the moments of the rest of the ξ
(j)
i,u terms in Section 7.1 imply the

convergence in (6) of Theorem 1 finite-dimensionally (in u). Further, Theorem 3 of Barndorff-

Nielsen et al. (2006) imply that this (finite-dimensional) convergence holds stably.

Turning next to tightness, using the bounds in (16), (17), (20) and (22), we have for u1, u2 ∈ R+

E

(
1√
∆n

T∑
t=1

[Ẑt,1(u1) + Ẑt,2(u1)− Ẑt,1(u2)− Ẑt,2(u2)]

)2

≤ C|
√
u1 −

√
u2|2 ∨ |u1 − u2|2. (26)
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Using Theorem 20 of Ibragimov and Has’minskii (1981) we have 1√
∆n

∑T
t=1(Ẑt,1(u)+Ẑt,2(u)) is tight.

The tightness of Ψn
T (u) then follows since for any u > 0 we have that

(
∆

β/2+ι−1
n

)
sup0≤u≤u

∣∣∣∑[T/∆n]
i=1 Ẑt,3(u)

∣∣∣
is bounded in probability by using the bounds in Section 7.1.

The proof of the consistency of the estimator for the covariance function int the theorem follows

trivially from the bounds in (16)-(22) and a Law of Large Numbers for 1
T

∑T
t=1 Zt(u). �

7.3 Proof of Theorem 2

Part (a). The proof consists of showing finite dimensional convergence (in (u, v)) and tightness of

the sequence. We first make the decomposition

√
T

(
1

T

T∑
t=k+1

Ẑt(u)Ẑt−k(v)− µk(u, v)

)
=

√
T

(
1

T

T∑
t=k+1

Zt(u)Zt−k(v)− µk(u, v)

)
+

3∑
j=1

R
(j)
T (u, v), (27)

R
(1)
T (u, v) =

1√
T

T∑
t=k+1

E
[
Zt(u)Ẑt−k,1(v) + Ẑt,1(u)Zt−k(v)

]
,

R
(2)
T (u, v) =

1√
T

T∑
t=k+1

{
Zt(u)Ẑt−k,1(v) + Ẑt,1(u)Zt−k(v) + Ẑt,1(u)Ẑt−k,1(v)

− E
[
Zt(u)Ẑt−k,1(v) + Ẑt,1(u)Zt−k(v) + Ẑt,1(u)Ẑt−k,1(v)

]}
,

R
(3)
T (u, v) =

1√
T

T∑
t=k+1

{
[Zt(u) + Ẑt,1(u)][Ẑt−k,2(v) + Ẑt−k,3(v)]

+ [Ẑt,2(u) + Ẑt,3(u)]Ẑt−k(v) + E(Ẑt,1(u)Ẑt−k,1(v))
}
.

Note that E(Ẑt,1(u)Zt−k(v)) = 0 for k ≥ 1 by an application of (16). Therefore, using stationarity,

R
(1)
T (u, v) equals the first two components of Y

(2)
T (u, v) in (13).

Finite Dimensional Convergence. For the first term on the right-hand side of (27), given assumption

C and using a CLT for stationary processes, see Jacod and Shiryaev (2003), Theorem VIII.3.79, we

have finite-dimensionally (i.e., over a discrete grid of (u, v))

√
T

(
1

T

T∑
t=k+1

Zt(u)Zt−k(v)− µk(u, v)

)
L−→ Ψ

′
(u, v). (28)

For R
(2)
T (u, v), applying successive conditioning and Lemma VIII.3.102 in Jacod and Shiryaev (2003)

(which holds due to assumption C), and the bounds of (conditional) moments in Section 7.1, gives

E
(
R

(2)
T (u, v)

)2
≤ C∆n

∫ ∞

0
αmix
t dt. (29)
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Finally, for R
(3)
T (u, v), we apply the bounds of (conditional) moments in Section 7.1, and the

boundedness of Zt(u) and Ẑt(u), to get R
(3)
T (u, v) = Op(

√
T∆

1−β/2−ι
n ).

Tightness. We start with the first term on the right-hand side of (27). For any [u1, v1] and [u2, v2]

Zt(u1)Zt−k(v1)− Zt(u2)Zt−k(v2) = (Zt(u1)− Zt(u2))Zt−k(v1) + Zt(u2) (Zt−k(v1)− Zt−k(v2)) ,

and we can do the same for their means. Then, using successive conditioning and Lemma VIII.3.102

in Jacod and Shiryaev (2003), together with the boundedness of Zt(u) and assumption C, we get

T 2E

∣∣∣∣∣ 1T
T∑

t=k+1

[Zt(u1)Zt−k(v1)− Zt(u2)Zt−k(v2)]− (µk(u1, v1)− µk(u2, v2))

∣∣∣∣∣
4

≤ C||x1 − x2||2+ι,

where x1 = (u1, v1), x2 = (u2, v2) and some ι > 0. Then, using Theorem 20 of Ibragimov and
Has’minskii (1981), we can conclude the tightness of the sequence for the local uniform topology
on C(R+ × R+). Similarly, with the same notation as above

E
∣∣∣R(2)

T (u1, v1)−R
(2)
T (u2, v2)

∣∣∣4 ≤ C∆n(||
√
x1 −

√
x2||2+ι ∨ ||x1 − x2||2+ι).

Finally, using the bounds in Section 7.1, it is easy to show that for any u, v > 0, we have that(√
T∆

1−β/2−ι
n

)−1
sup0≤u≤u, 0≤v≤v

∣∣∣R(3)
T (u, v)

∣∣∣ is bounded in probability. This then implies the

asymptotic negligibility of R
(3)
T (u, v) on C(R+ × R+) equipped with the local uniform topology.

Part b. We denote for l ≥ 0,

Cl([u1, v1], [u2, v2]) =
1

T

T∑
t=k+l+1

(Zt(u1)Zt−k(v1)− µk(u1, v1)) (Zt−l(u2)Zt−l−k(v2)− µk(u2, v2)) .

Then under our assumptions, by standard arguments, see e.g., Proposition 1 in Andrews (1991),

C0([u1, v1], [u2, v2])+

LT∑
i=1

ω(i, LT ) (Ci([u1, v1], [u2, v2]) + Ci([u2, v2], [u1, v1]))
P−→ V ([u1, v1], [u2, v2]). (30)

Using the boundedness of Ẑt(u) and Zt(u), we next have∣∣∣Ĉi([u1, v1], [u2, v2])− Ci([u1, v1], [u2, v2])
∣∣∣ ≤C ∑

j=1,2

(
1

T

T∑
t=1

(|Ẑt(uj)− Zt(uj)|+ |Ẑt(vj)− Zt(vj)|)

+

∣∣∣∣ 1T
T∑

t=k+1

Zt(uj)Zt−k(vj)− µk(uj , vj)

∣∣∣∣).
Using assumption C and Lemma VIII.3.102 in Jacod and Shiryaev (2003), as well as the bounds

in Section 7.1, we get for arbitrary small ι > 0 and j = 1, 2

E

∣∣∣∣∣ 1T
T∑

t=k+1

Zt(uj)Zt−k(vj)− µk(uj , vj)

∣∣∣∣∣ ≤ C√
T
, E

∣∣∣Ẑt(u)− Zt(u)
∣∣∣ ≤ C∆(1−β/2−ι)∧1/2

n .

The result in (14) then follows from the relative speed condition between LT , T and ∆n. �
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