1. A Model of Secular Stagnation

Consider an overlapping generations economy in which one household is born at each period t, $t=0,1,2, \ldots$. The household lives for three periods: $t, t+1$, and $t+2$. Households consume in periods $t, t+1$, and $t+2$, but they only work in period $t+1$. Given a discount factor $\beta<1$, the utility function for a household born at time t is:

$$
\log c_{t}^{t}+\beta\left(\log c_{t+1}^{t}-\frac{\left(l_{t+1}^{t}\right)^{2}}{2}\right)+\beta^{2} \log c_{t+2}^{t}
$$

To finance c_{t}^{t}, the household born at time t can borrow a quantity b_{t}^{t} from a household born at time $t-1$ (and thus currently middle-aged and working) at an interest rate R_{t}. The household born at time t will pay back its loan at time $t+1$ (when it becomes middle-age) to the household born at time $t-1$. The current old household consumes out of the proceedings of the loan it made to the previous generation. Formally, the budget constraints for the household born at time t are given by:

$$
\begin{gathered}
c_{t}^{t}=b_{t}^{t} \\
c_{t+1}^{t}+R_{t} b_{t}^{t}+b_{t+1}^{t}=w_{t+1} l_{t+1}^{t} \\
c_{t+2}^{t}=R_{t+1} b_{t+1}^{t}
\end{gathered}
$$

where w_{t+1} is the wage paid a period $t+1$. The budget constraints for the initial household in their second period of life are given by:

$$
\begin{gathered}
c_{0}^{-1}+b_{0}^{-1}=w_{0} l_{0}^{-1} \\
c_{1}^{-1}=R_{0} b_{0}^{-1} .
\end{gathered}
$$

The initial old just consumes an exogenously given initial endowment $\alpha, c_{0}^{-2}=\alpha$.
In addition, there is a representative firm, that operates the production function $y_{t}=l_{t}$, under perfect competition, where l_{t} is the amount of labor hired at time t. There is no money in the economy.

1. Write the aggregate resource constraint of this economy.
2. Define a sequential markets equilibrium for this economy.
3. Characterize the sequential markets equilibrium. In particular, find an expression for consumption for every generation and every period, an expression for l_{t}, y_{t}, and w_{t}, a recursive expression for R_{t}. All these expression should only depend on parameters (α and β).
4. Assume now that there is an exogenously binding borrowing constraint, that is $c_{t}^{t}=\bar{b}$, where \bar{b} is less than the optimal $b_{t}^{t *}$ that you found in step 3 . Recompute consumption, l_{t}, y_{t}, and w_{t} as a function of parameters $(\alpha$ and $\beta)$ and R_{t}. You do not need to solve for R_{t}.
5. Compare the solutions to 3. and 4. Provide intuition (hints: make \bar{b} as small as you need and read the title of the question).
