Econ 706 Prelim August 2012

All questions are weighted equally. Good luck!

Consider Bayesian analysis of a simple Markovian dynamic model:

$$y_t = \phi y_{t-1} + \varepsilon_t$$
$$\varepsilon_t \sim iid \ N(0, \sigma^2)$$
$$|\phi| < 1.$$

(1) Derive the natural conjugate prior (NCP) for $\phi|\sigma$. What is the posterior mean of $\phi|\sigma$ and how is it related to the prior mean, the MLE, the prior precision, and the MLE precision?

From this point onward, use the NCP for $\phi | \sigma$ (and, when relevant, for $\sigma | \phi$) unless explicitly instructed otherwise.

- (2) What is the key benefit of using NCPs? What is the key cost? Maintaining use of NCPs, how might you attempt to represent prior ignorance regarding $\phi|\sigma$? What complication arises? If you could use non-NCPs, how might you attempt to represent prior ignorance regarding $\phi|\sigma$? What complication arises?
- (3) Why might you be interested in posterior inference not on $\phi | \sigma$, but rather on ϕ ? Design a Markov chain Monte Carlo algorithm (in this case, a Gibbs sampler) to sample from the joint posterior distribution of (ϕ, σ) . Be precise. How would you assess convergence to steady state of your Gibbs sampler? How would you use the Gibbs draws from the joint posterior to sample from the marginal posterior of ϕ ?
- (4) Is the Gibbs sequence for ϕ likely to be serially uncorrelated? If not, what is the likely form of the serial correlation? If you know the spectral density at frequency zero of the Gibbs sequence of ϕ , $f_{\phi}(0)$, how would you use it to assess the accuracy of your estimate of the posterior mean of ϕ based on the Gibbs sequence?
- (5) If instead $f_{\phi}(0)$ is unknown, how would you estimate it consistently using an autoregressive model-based estimator? What determines the bandwidth, what conditions must it satisfy, and how might you select it in practice?