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Abstract

This paper studies hypothesis testing and parameter estimation in the context of the

divide and conquer algorithm. In a unified likelihood based framework, we propose new

test statistics and point estimators obtained by aggregating various statistics from k

subsamples of size n/k, where n is the sample size. In both low dimensional and high

dimensional settings, we address the important question of how to choose k as n grows

large, providing a theoretical upper bound on k such that the information loss due to

the divide and conquer algorithm is negligible. In other words, the resulting estimators

have the same inferential efficiencies and estimation rates as a practically infeasible

oracle with access to the full sample. Thorough numerical results are provided to back

up the theory.

1 Introduction

In recent years, the field of statistics has developed apace in response to the opportunities and

challenges spawned from the ‘data revolution’, which marked the dawn of an era characterized

by the availability of enormous datasets. An extensive toolkit of methodology is now in place for

addressing a wide range of high dimensional problems, whereby the number of unknown parameters,

d, is much larger than the number of observations, n. However, many modern datasets are instead

characterized by n and d both large. The latter presents intimidating practical challenges resulting

from storage and computational limitations, as well as numerous statistical challenges (Fan et al.,

2014). It is important that statistical methodology targeting modern application areas does not

lose sight of the practical burdens associated with manipulating such large scale datasets. In this

vein, incisive new algorithms have been developed for exploiting modern computing architectures

and recent advances in distributed computing. These algorithms enjoy computational efficiency
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and facilitate data handling and storage, but come with a statistical overhead if inappropriately

tuned.

With increased mindfulness of the algorithmic difficulties associated with large datasets, the

statistical community has witnessed a surge in recent activity in the statistical analysis of various

divide and conquer (DC) algorithms, which randomly partition the n observations into k subsam-

ples of size nk = n/k, construct statistics based on each subsample, and aggregate them in a

suitable way. In splitting the dataset, a single, very large scale estimation or inference problem

with computational complexity O(γ(n)), for a given function γ(·) that depends on the underlying

problem, is transformed into k high dimensional (large d smaller nk) problems each with compu-

tational complexity O
(
γ(n/k)

)
on each machine. What gets lost in this process is the interactions

of split subsamples in each machine. They are not recoverable. However, the information got lost

is not much statistically, as the spilt subsamples are supposed to be independent. It is thus of

significant practical interest to derive a theoretical upper bound on the number of subsamples k

that delivers the same statistical performance as the computationally infeasible “oracle” procedure

based on the full sample. We develop communication efficient generalizations of the Wald and Rao

score tests for the high dimensional scheme, as well as communication efficient estimators for the

parameters of the high dimensional and low dimensional linear and generalized linear models. In

all cases we give the upper bound on k for preserving the statistical error of the analogous full

sample procedure.

While hypothesis testing in a low dimensional context is straightforward, in the high dimensional

setting, nuisance parameters introduce a non-negligable bias, causing classical low dimensional the-

ory to break down. In our high dimensional Wald construction, the phenomenon is remedied

through a debiasing of the estimator, which gives rise to a test statistic with tractable limiting

distribution, as documented in the k = 1 (no sample split) setting in Zhang and Zhang (2014) and

van de Geer et al. (2014). For the high dimensional analogue of Rao’s score statistic, the incorpora-

tion of a correction factor increases the convergence rate of higher order terms, thereby vanquishing

the effect of the nuisance parameters. The approach is introduced in the k = 1 setting in Ning

and Liu (2014), where the test statistic is shown to possess a tractable limit distribution. However,

the computation complexity for the debiased estimators increases by an order of magnitude, due

to solving d high-dimensional regularization problems. This motivates us to appeal to the divide

and conquer strategy.

We develop the theory and methodology for DC versions of these tests. In the case k = 1, each of

the above test statistics can be decomposed into a dominant term with tractable limit distribution

and a negligible remainder term. The DC extension requires delicate control of these remainder

terms to ensure the error accumulation remains sufficiently small so as not to materially contaminate

the leading term. In obtaining the upper bound on the number of permitted subsamples, k, we

provide an upper bound on k subject to a statistical guarantee. We find that the theoretical upper

bound on the number of subsamples guaranteeing the same inferential or estimation efficiency as

the procedure without DC is k = o((s log d)−1√n) in the linear model, where s is the sparsity of

the parameter vector. In the generalized linear model the scaling is k = o(((s ∨ s1) log d)−1√n),

where s1 is the sparsity of the inverse information matrix.
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For high dimensional estimation problems, we use the same debiasing trick introduced in the

high dimensional testing problems to obtain a thresholded divide and conquer estimator that

achieves the full sample minimax rate. The appropriate scaling is found to be k = O(
√
n/(s2 log d))

for the linear model and k = O(
√
n/((s ∨ s1)2 log d)) for the generalized linear model. Moreover,

we find that the loss incurred by the divide and conquer strategy, as quantified by the distance be-

tween the DC estimator and the full sample estimator, is negligible in comparison to the statistical

error of the full sample estimator provided that k is not too large. In the context of estimation, the

optimal scaling of k with n and d is also developed for the low dimensional linear and generalized

linear model. This theory is of independent interest. It also allows us to study a refitted estimation

procedure under a minimal signal strength assumption.

A partial list of references covering DC algorithms from a statistical perspective is Chen and

Xie (2012), Zhang et al. (2013), Kleiner et al. (2014), and Zhao et al. (2014a). For the high

dimensional estimation setting, the same debiasing approach of van de Geer et al. (2014) is proposed

independently by Lee et al. (2015) for divide-and-conquer estimation. Our paper differs from that

of Lee et al. (2015) in that we additionally cover high dimensional hypothesis testing and refitted

estimation in the DC setting. Our results on hypothesis testing reveals a different phenomenon to

that found in estimation, as we observe through the different requirements on the scaling of k. On

the estimation side, our results also differ from those of Lee et al. (2015) in that the additional

refitting step allows us to achieve the oracle rate under the same scaling of k.

The rest of the paper is organized as follows. Section 2 collects notation and details of a generic

likelihood based framework. Section 3 covers testing, providing high dimensional DC analogues

of the Wald test (Section 3.1) and Rao score test (Section 3.2), in each case deriving a tractable

limit distribution for the corresponding test statistic under standard assumptions. Section 4 covers

distributed estimation, proposing an aggregated estimator of β∗ for low dimensional and high

dimensional linear and generalized linear models, as well as a refitting procedure that improves

the estimation rate, with the same scaling, under a minimal signal strength assumption. Section 5

provides numerical experiments to back up the developed theory. In Section 6 we discuss our results

together with remaining future challenges. Proofs of our main results are collected in Section 7,

while the statement and proofs of a number of technical lemmas are deferred to the appendix.

2 Background and Notation

We first collect the general notation, before providing a formal statement of our statistical problems.

More specialized notation is introduced in context.

2.1 Generic Notation

We adopt the common convention of using boldface letters for vectors only, while regular font is used

for both matrices and scalars, with the context ensuring no ambiguity. | · | denotes both absolute

value and cardinality of a set, with the context ensuring no ambiguity. For v = (v1, . . . , vd)
T ∈ Rd,

and 1 ≤ q ≤ ∞, we define ‖v‖q =
(∑d

j=1 |vj |q
)1/q

, ‖v‖0 = | supp(v)|, where supp(v) = {j : vj 6= 0}
and |A| is the cardinality of the set A. Write ‖v‖∞ = max1≤j≤d |vj |, while for a matrix M = [Mjk],
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let ‖M‖max = maxj,k |Mjk|, ‖M‖1 =
∑

j,k |Mjk|. For any matrix M we use M` to index the

transposed `th row of M and [M ]` to index the `th column. The sub-Gaussian norm of a scalar

random variable X is defined as ‖X‖ψ2 = supq≥1 q
−1/2(E|X|q)1/q. For a random vector X ∈ Rd,

its sub-Gaussian norm is defined as ‖X‖ψ2 = supx∈Sd−1 ‖〈X,x〉‖ψ2 , where Sd−1 denotes the unit

sphere in Rd. Let Id denote the d×d identity matrix; when the dimension is clear from the context,

we omit the subscript. We also denote the Hadamard product of two matrices A,B as A ◦ B and

(A◦B)jk = AjkBjk for any j, k. {e1, . . . , ed} denotes the canonical basis for Rd. For a vector v ∈ Rd

and a set of indices S ⊆ {1, . . . , d}, vS is the vector of length |S| whose components are {vj : j ∈ S}.
Additionally, for a vector v with jth element vj , we use the notation v−j to denote the remaining

vector when the jth element is removed. With slight abuse of notation, we write v = (vj ,v−j) when

we wish to emphasize the dependence of v on vj and v−j individually. The gradient of a function

f(x) is denoted by ∇ f(x), while ∇x f
(
(x,y)

)
denotes the gradient of f

(
(x,y)

)
with respect to x,

and ∇2
xy f

(
(x,y)

)
denotes the matrix of cross partial derivatives with respect to the elements of

x and y. For a scalar η, we simply write f ′(η) := ∇η f(η) and f ′′(η) := ∇2
ηη f(η). For a random

variable X and a sequence of random variables, Xn, we write Xn  X when Xn converges weakly

to X. If X is a random variable with standard distribution, say FX , we simply write Xn  FX .

Given a, b ∈ R, let a ∨ b and a ∧ b denote the maximum and minimum of a and b. We also make

use of the notation an . bn (an & bn) if an is less than (greater than) bn up to a constant, and

an � bn if an is the same order as bn. Finally, for an arbitrary function f , we use argzeroθ f(θ) to

denote the solution to f(θ) = 0.

2.2 General Likelihood based Framework

Let (XT
1 , Y1)T , . . . , (XT

n , Yn)T be n i.i.d. copies of the random vector (XT , Y )T , whose realiza-

tions take values in Rd × Y. Write the collection of these n i.i.d. random couples as D =

{(XT
1 , Y1)T , . . . , (XT

n , Yn)T } with Y = (Y1, . . . , Yn)T and X = (X1, . . . ,Xn)T ∈ Rn×d. Condi-

tional on Xi, we assume Yi is distributed as Fβ∗ for all i ∈ {1, . . . , n}, where Fβ∗ has a density or

mass function fβ∗ . We thus define the negative log-likelihood function, `n(β), as

`n(β) =
1

n

n∑
i=1

`i(β) = − 1

n

n∑
i=1

log fβ(Yi|Xi). (2.1)

We use J∗ = J(β∗) to denote the information matrix and Θ∗ to denote (J∗)−1, where J(β) =

E
[
∇2
ββ `n(β)

]
.

For testing problems, our goal is to test H0 : β∗v = βHv for any v ∈ {1, . . . , d}. We partition

β∗ as β∗ = (β∗v ,β
∗T
−v)

T ∈ Rd, where β∗−v ∈ Rd−1 is a vector of nuisance parameters and β∗v is the

parameter of interest. To handle the curse of dimensionality, we exploit a penalized M-estimator

defined as,

β̂λ = argmin
β
{`n(β) + Pλ(β)} , (2.2)

with Pλ(β) a sparsity inducing penalty function with a regularization parameter λ. Examples of

Pλ(β) include the convex `1 penalty, Pλ(β) = λ‖β‖1 = λ
∑d

v=1 |βv| which, in the context of the
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linear model, gives rise to the LASSO estimator (Tibshirani, 1996),

β̂λLASSO = argmin
β

{
1

2n
‖Y −Xβ‖22 + λ‖β‖1

}
. (2.3)

Other penalties include folded concave penalties such as the smoothly clipped absolute deviation

(SCAD) penalty (Fan and Li, 2001) and minimax concave MCP penalty (Zhang, 2010), which

eliminate the estimation bias and attain the oracle rates of convergence (Loh and Wainwright,

2013; Wang et al., 2014a). The SCAD penalty is defined as

Pλ(β) =
d∑
v=1

pλ(βv), where pλ(t) =

∫ |t|
0

{
λ1(z ≤ λ) +

aλ− z
a− 1

1(z > λ)

}
dz, (2.4)

for a given parameter a > 0 and MCP penalty is given by

Pλ(β) =

d∑
v=1

pλ(βv), where pλ(t) = λ

∫ |t|
0

(
1− z

λb

)
+
dz (2.5)

where b > 0 is a fixed parameter. The only requirement we have on Pλ(β) is that it induces an

estimator satisfying the following condition.

Condition 2.1 . For any δ ∈ (0, 1), if λ �
√

log(d/δ)/n,

P
(
‖β̂λ − β∗‖1 > Csn−1/2

√
log(d/δ)

)
≤ δ, (2.6)

where s is the sparsity of β∗, i.e., s = ‖β∗‖0.

Condition 2.1 holds for the LASSO, SCAD and MCP. See Bühlmann and van de Geer (2011);

Fan and Li (2001); Zhang (2010) respectively and Zhang and Zhang (2012).

The DC algorithm randomly and evenly partitions D into k disjoint subsets D1, . . . ,Dk, so

that D = ∪kj=1Dj , Dj ∩ D` = ∅ for all j, ` ∈ {1, . . . , k}, and |D1| = |D2| = · · · = |Dk| = nk =

n/k, where it is implicitly assumed that n can be divided evenly. Let Ij ⊂ {1, . . . , n} be the

index set corresponding to the elements of Dj . Then for an arbitrary n × d matrix A, A(j) =

[Ai`]i∈Ij ,1≤`≤d. For an arbitrary estimator τ̂ , we write τ̂(Dj) when the estimator is constructed based

only on Dj . What information gets lost in this process is the interactions of data across subsamples

{Dj}n/kj=1. Taking the oridinary least-squares regression, for example, the cross-covariances of the

subsamples will not be able to get recovered. However, they do not contain much information

about the unknown parameters, as the subsamples are nearly independent. Finally, we write

`
(j)
nk (β) =

∑
i∈Ij `i(β) to denote the negative log-likelihood function of equation (2.1) based on Dj .

While the results of this paper hold in a general likelihood based framework, for simplicity we

state conditions at the population level for the generalized linear model (GLM) with canonical link.

A much more general set of statements appear in the auxiliary lemmas upon which our main results

are based. Under GLM with the canonical link, the response follows the distribution,

fn(Y ;X,β∗) =

n∏
i=1

f(Yi; η
∗
i ) =

n∏
i=1

{
c(Yi) exp

[
Yiη
∗
i − b(η∗i )
φ

]}
, (2.7)
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where η∗i = XT
i β
∗. The negative log-likelihood corresponding to (2.7) is given, up to an affine

transformation, by

`n(β) =
1

n

n∑
i=1

−YiXT
i β + b(XT

i β) =
1

n

n∑
i=1

−Yiηi + b(ηi) =
1

n

n∑
i=1

`i(β), (2.8)

and the gradient and Hessian of `n(β) are respectively

∇`n(β) = − 1

n
XT (Y − µ(Xβ)) and ∇2`n(β) =

1

n
XTD(Xβ)X,

where µ(β) = (b′(η1), . . . , b′(ηn))T and D(β) = diag{b′′(η1), . . . , b′′(ηn)}. In this setting, J(β) =

E[b′′(XT
1 β)X1X

T
1 ] and J∗ = E[b′′(XT

1 β
∗)X1X

T
1 ].

3 Divide and Conquer Hypothesis Tests

In the context of the two classical testing frameworks, the Wald and Rao score tests, our objective

is to construct a test statistic Sn with low communication cost and a tractable limiting distribution

F . Let β∗v be the vth component of β∗. From this statistic we define a test of size α of the null

hypothesis, H0 : β∗v = βHv , against the alternative, H1 : β∗v 6= βHv , as a partition of the sample space

described by

Tαn =

{
0 if |Sn| ≤ F−1(1− α/2)

1 if |Sn| > F−1(1− α/2)
(3.1)

for a two sided test.

3.1 Two Divide and Conquer Wald Type Constructions

For the high dimensional linear model, Zhang and Zhang (2014), van de Geer et al. (2014) and

Javanmard and Montanari (2014) propose methods for debiasing the LASSO estimator with a

view to constructing high dimensional analogues of Wald statistics and confidence intervals for

low-dimensional coordinates. As pointed out by Zhang and Zhang (2014), the debiased estimator

does not impose the minimum signal condition used in establishing oracle properties of regularized

estimators (Fan and Li, 2001; Fan and Lv, 2011; Loh and Wainwright, 2015; Wang et al., 2014b;

Zhang and Zhang, 2012) and hence has wider applicability than those inferences based on the oracle

properties. The method of van de Geer et al. (2014) is appealing in that it accommodates a general

penalized likelihood based framework, while the Javanmard and Montanari (2014) approach is

appealing in that it optimizes asymptotic variance and requires a weaker condition than van de Geer

et al. (2014) in the specific case of the linear model. We consider the DC analogues of Javanmard

and Montanari (2014) and van de Geer et al. (2014) in Sections 3.1.1 and 3.1.2 respectively.

3.1.1 LASSO based Wald Test for the Linear Model

The linear model assumes

Yi = XT
i β
∗ + εi, (3.2)

6



where {εi}ni=1 are i.i.d. with mean zero and variance σ2. For concreteness, we focus on a LASSO

based method, but our procedure is also valid when other pilot estimators are used. We describe

a modification of the bias correction method introduced in Javanmard and Montanari (2014) as a

means to testing hypotheses on low dimensional coordinates of β∗ via pivotal test statistics.

On each subset Dj , we compute the debiased estimator of β∗ as in Javanmard and Montanari

(2014) as

β̂d(Dj) = β̂λLASSO(Dj) +
1

nk
M (j)

(
X(j)

)T (
Y (j) −X(j)β̂λLASSO(Dj)

)
, (3.3)

where the superscript d is used to indicate the debiased version of the estimator, M (j) = (m
(j)
1 , . . . ,m

(j)
d )T

and mv is the solution of

m(j)
v = argmin

m
mT Σ̂(j)m s.t. ‖Σ̂(j)m− ev‖∞ ≤ ϑ1, (3.4)

‖X(j)m‖∞ ≤ ϑ2,

where the choice of tuning parameters ϑ1 and ϑ2 is discussed in Javanmard and Montanari (2014)

and Zhao et al. (2014a). Above, Σ̂(j) = nk
−1
∑

i∈Ij X
(j)
i X

(j)T
i is the sample covariance based

on Dj , whose population counterpart is Σ = E(X1X
T
1 ) and M (j) is its regurlized inverse. The

second term in (3.3) is a bias correction term, while σ2m
(j)T
v Σ̂(j)m

(j)
v /nk is shown in Javanmard

and Montanari (2014) to be the variance of the vth component of β̂d(Dj). The parameter ϑ1,

which tends to zero, controls the bias of the debiased estimator (3.3) and the optimization in (3.4)

minimizes the variance of the resulting estimator.

Solving d optimization problems in (3.4) increase an order of magnitude of computation com-

plexity even for k = 1. Thus, it is necessary to appeal to the divide and conquer strategy to reduce

the computation burden. This gives rise to the question how large k can be in order to maintain

the same statistical properties as the whole sample one (k = 1).

Because our DC procedure gives rise to smaller samples, we overcome the singularity in Σ̂

through a change of variables. More specifically, noting that M (j) is not required explicitly, but

rather the product M (j)(X(j))T , we propose

b(j)
v = argmin

b

b(j)Tb(j)

nk
s.t.

∥∥∥X(j)Tb(j)

nk
− ev

∥∥∥
∞
≤ ϑ1,

‖b(j)‖∞ ≤ ϑ2,

from which we construct M (j)(X(j))T = BT , where B = (b1, . . . , bd).

The following conditions on the data generating process and the tail behavior of the design

vectors are imposed in Javanmard and Montanari (2014). Both conditions are used to derive the

theoretical properties of the DC Wald test statistic based on the aggregated debiased estimator,

β
d

= k−1
∑k

j=1 β̂
d(Dj).

Condition 3.1 . {(Yi,Xi)}ni=1 are i.i.d. and Σ satisfies 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cmax.

Condition 3.2 . The rows of X are sub-Gaussian with ‖Xi‖ψ2 ≤ κ, i = 1, . . . , n.
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Note that under the two conditions above, there exists a constant κ1 > 0 such that ‖X1Σ−
1
2 ‖ψ2 ≤

κ1. Without loss of generality, we can set κ1 = κ. Our first main theorem provides the relative

scaling of the various tuning parameters involved in the construction of β
d
.

Theorem 3.3. Suppose Conditions 2.1, 3.1 and 3.2 are fulfilled. Suppose E[ε4
1] < ∞ and choose

ϑ1, ϑ2 and k such that ϑ1 �
√
k log d/n, ϑ2n

−1/2 = o(1) and k = o((s log d)−1√n). For any

v ∈ {1, . . . , d},
√
n

1

k

k∑
j=1

β̂dv (Dj)− β∗v
Q̂

(j)
v

 N(0, σ2), (3.5)

where Q̂
(j)
v =

(
m

(j)T
v Σ̂(j)m

(j)
v

)1/2
.

Theorem 3.3 entertains the prospect of a divide and conquer Wald statistic of the form

Sn =
√
n

1

k

k∑
j=1

β̂dv (Dj)− βHv
σ
(
m

(j)T
v Σ̂(j)m

(j)
v

)1/2 (3.6)

for β∗v , where σ is an estimator for σ based on the k subsamples. On the left hand side of equation

(3.6) we suppress the dependence on v to simplify notation. As an estimator for σ, a simple

suggestion with the same computational complexity is σ where

σ2 =
1

k

k∑
j=1

σ̂2(Dj) and σ̂2(Dj) =
1

nk

∑
i∈Ij

(Y
(j)
i −X(j)T

i β̂λLASSO(Dj))2. (3.7)

One can use the refitted cross-validation procedure of Fan et al. (2012) to reduce the bias of the

estimate. In Lemma 3.4 we show that with the scaling of k and λ required for the weak convergence

results of Theorem 3.3, consistency of σ2 is also achieved.

Lemma 3.4. Suppose E[εi|Xi] = 0 for all i ∈ {1, . . . , n}. Then with λ �
√
k log d/n and k =

o
(√
n(s log d)−1

)
, |σ2 − σ2| = oP(1).

With Lemma 3.4 and Theorem 3.3 at hand, we establish in Corollary 3.5 the asymptotic distri-

bution of Sn under the null hypothesis H0 : β∗v = βHv . This holds for each component v ∈ {1, . . . , d}.

Corollary 3.5. Suppose Conditions 3.1 and 3.2 are fulfilled, E[ε4
1] <∞, and λ, ϑ1 and ϑ2 are chosen

as λ �
√
k log d/n, ϑ1 �

√
k log d/n and ϑ2n

−1/2 = o(1). Then provided k = o((s log d)−1√n),

under H0 : β∗v = βHv , we have

lim
n→∞

sup
t∈R

∣∣P(Sn ≤ t)− Φ(t)
∣∣ = 0, (3.8)

where Φ(·) is the cdf of a standard normal distribution.

3.1.2 Wald Test in the Likelihood Based Framework

An alternative route to debiasing the LASSO estimator of β∗ is the one proposed in van de Geer

et al. (2014). Their so called desparsified estimator of β∗ is more general than the debiased estimator
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of Javanmard and Montanari (2014) in that it accommodates generic estimators of the form (2.2) as

pilot estimators, but the latter optimizes the variance of the resulting estimator. The desparsified

estimator for subsample Dj is

β̂d(Dj) = β̂λ(Dj)− Θ̂(j)∇ `(j)nk (β̂λ(Dj)), (3.9)

where Θ̂(j) is a regularized inverse of the Hessian matrix of second order derivatives of `
(j)
nk (β) at

β̂λ(Dj), denoted by Ĵ (j) = ∇2 `
(j)
nk

(
β̂λ(Dj)

)
. We will make this explicit in due course. The estimator

resembles the classical one-step estimator (Bickel, 1975), but now in the high-dimensional setting

via regularized inverse of the Hessian matrix Ĵ (j), which reduces to the empirical covariance of

the design matrix in the case of the linear model. From equation (3.9), the aggregated debiased

estimator over the k subsamples is defined as β
d

= k−1
∑k

j=1 β̂
d(Dj).

We now use the nodewise LASSO (Meinshausen and Bühlmann, 2006) to approximately invert

Ĵ (j) via L1-regularization. The basic idea is to find the regularized invert row by row via a penalized

L1-regression, which is the same as regressing the variable Xv on X−v but expressed in the sample

covariance form. For each row v ∈ 1, . . . , d, consider the optimization

κ̂v(Dj) = argmin
κ∈Rd−1

(
Ĵ (j)
vv − 2Ĵ

(j)
v,−vκ+ κT Ĵ

(j)
−v,−vκ+ 2λv‖κ‖1

)
, (3.10)

where Ĵ
(j)
v,−v denotes the vth row of Ĵ (j) without the (v, v)th diagonal element, and Ĵ

(j)
−v,−v is the

principal submatrix without the vth row and vth column. Introduce

Ĉ(j) :=


1 −κ̂1,2(Dj) . . . −κ̂1,d(Dj)

−κ̂2,1(Dj) 1 . . . −κ̂2,d(Dj)
...

...
. . .

...

−κ̂d,1(Dj) −κ̂d,2(Dj) . . . 1

 (3.11)

and Ξ̂(j) = diag
(
τ̂1(Dj), . . . , τ̂d(Dj)

)
, where τ̂v(Dj)2 = Ĵ

(j)
vv − Ĵ (j)

v,−vκ̂v(Dj). Θ̂(j) in equation (3.9) is

given by

Θ̂(j) = (Ξ̂(j))−2Ĉ(j), (3.12)

and we define Θ̂
(j)
v as the transposed vth row of Θ̂(j).

Theorem 3.8 establishes the limit distribution of the term,

Sn =
√
n

1

k

k∑
j=1

β̂dv (Dj)− βHv√
Θ∗vv

(3.13)

for any v ∈ {1, . . . , d} under the null hypothesis H0 : β∗v = βHv . This provides the basis for the

statistical inference based on divide-and-conquer. We need the following condition. Recall that

J∗ = E
[
∇ββ`n(β∗)

]
and consider the generalized linear model (2.7).

Condition 3.6 . (i) {(Yi,Xi)}ni=1 are i.i.d., 0 < Cmin ≤ λmin(Σ) ≤ λmax(Σ) ≤ Cmax, λmin(J∗) ≥
Lmin > 0, ‖J∗‖max < U1 < ∞. (ii) For some constant M < ∞, max1≤i≤n

∣∣XT
i β
∗∣∣ ≤ M and

max1≤i≤n ‖Xi‖∞ ≤ M . (iii) There exist finite constants U2, U3 > 0 such that b′′(η) < U2 and

b′′′(η) < U3 for all η ∈ R.

9



The same assumptions appear in van de Geer et al. (2014). In the case of the Gaussian GLM,

the condition on λmin(J∗) reduces to the requirement that the covariance of the design has minimal

eigenvalue bounded away from zero, which is a standard assumption. We require ‖J∗‖max <∞ to

control the estimation error of different functionals of J∗. The restriction in (ii) on the covariates

and the projection of the covariates are imposed for technical simplicity; it can be extended to the

case of exponential tails (see Fan and Song, 2010). Note that Var(Yi) = φb′′(XT
i β
∗) where φ is the

dispersion parameter in (2.7), so b′′(η) < U2 essentially implies an upper bound on the variance

of the response. In fact, Lemma A.2 shows that b′′(η) < U2 can guarantee that the response is

sub-gaussian. b′′′(η) < U3 is used to derive the Lipschitz property of b′′(XT
i β) with respect to β as

shown in Lemma A.5. We emphasize that no requirement in Condition 3.6 is specific to the divide

and conquer framework.

The assumption of bounded design in (ii) can be relaxed to the sub-gaussian design. However,

the price to pay is that the allowable number of subsets k is smaller than the bounded case, which

means we need a larger sub-sample size. To be more precise, the order of maximum k for the

sub-gaussian design has an extra factor, which is a polynomial of
√

log d, compared to the order for

the bounded design. This logrithmic factor comes from different Lipschitz properties of b′′(XT
i β) in

the two designs, which is fully explained in Lemma A.5 of the appendix. In the following theorems,

we only present results for the case of bounded design for technical simplicity.

In addition, recalling that Θ∗ = (J∗)−1, where J∗ := J(β∗) = E
[
∇2
ββ `n(β∗)

]
, we impose

Condition 3.7 on Θ∗ and its estimator Θ̂.

Condition 3.7 . (i) min1≤v≤d Θ∗vv > θmin > 0. (ii) max1≤i≤n ‖XT
i Θ∗‖∞ ≤ M . (iii) For v =

1, . . . , d, whenever λv �
√
k log d/n in (3.10), we have

P
(
‖Θ̂v −Θ∗v‖1 ≥ Cs1

√
log d/n

)
≤ d−1,

where C is a constant and s1 is such that ‖Θ∗v‖0 . s1 for all v ∈ {1, . . . , d}.

Part (i) of Corollary 3.7 ensures that the variances of each component of the debiased estimator

exist, guaranteeing the existence of the Wald statistic. Parts (ii) and (iii) are imposed directly for

technical simplicity. Results of this nature have been established under a similar set of assumptions

in van de Geer et al. (2014) and Negahban et al. (2009) for convex penalties and in Wang et al.

(2014a) and Loh and Wainwright (2015) for folded concave penalties.

As a step towards deriving the limit distribution of the proposed divide and conquer Wald

statistic in the GLM framework, we establish the asymptotic behavior of the aggregated debiased

estimator β
d
v for every given v ∈ [d].

Theorem 3.8. Under Conditions 2.1, 3.6 and 3.7, with λ �
√
k log d/n, we have

β
d
v − β∗v = −1

k

k∑
j=1

Θ̂
(j)T
v ∇ `(j)nk (β∗) + oP(n−1/2) (3.14)

for any k � d satisfying k = o
(
((s ∨ s1) log d)−1√n

)
, where Θ̂

(j)

v is the transposed vth row of Θ̂(j).

A corollary of Theorem 3.8 provides the asymptotic distribution of the Wald statistic in equation

(3.13) under the null hypothesis.
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Corollary 3.9. Let Sn be as in equation (3.13), with Θ∗vv replaced with an estimator Θ̃vv. Then

under the conditions of Theorem 3.8 and H0 : β∗v = βHv , provided |Θ̃vv − Θvv| = oP(1) under the

scaling k = o
(
((s ∨ s1) log d)−1√n

)
, we have

lim
n→∞

sup
t∈R

∣∣P(Sn ≤ t)− Φ(t)
∣∣ = 0.

Remark 3.10. Although Theorem 3.8 and Corollary 3.9 are stated only for the GLM, their proofs

are in fact an application of two more general results. Further details are available in Lemmas A.7

and A.8 of the appendix.

We return to the issue of estimating Θ∗vv in Section 4, where we introduce an consistent estimator

of Θ∗vv that preserves the scaling of Theorem 3.8 and Corollary 3.9.

3.2 Divide and Conquer Score Test

In this section, we use ∇v f(β) and ∇−v f(β) to denote, respectively, the partial derivative of f

with respect to βv and the partial derivative vector of f with respect to β−v. ∇2
vv f(β), ∇2

v,−v f(β),

∇2
−v,v f(β) and ∇2

−v,−v f(β) are analogously defined.

In the low dimensional setting (where d is fixed), Rao’s score test of H0 : β∗v = βHv against

H1 : β∗v 6= βHv is based on∇v `n(βHv , β̃−v), where β̃−v is a constrained maximum likelihood estimator

of β∗−v, constructed as β̃−v = argminβ−v `n(βHv ,β−v) = argmaxβ−v{−`n(βHv ,β−v)}. If H0 is false,

imposing the constraint postulated by H0 significantly violates the first order conditions from M-

estimation with high probability; this is the principle underpinning the classical score test. Under

regularity conditions, it can be shown (e.g. Cox and Hinkley, 1974) that

√
n
(
∇v `n(βHv , β̃−v)

)
J
∗−1/2
v|−v  N(0, 1),

where J∗v|−v is given by J∗v|−v = J∗v,v − J∗v,−vJ∗−1
−v,−vJ

∗
−v,v, with J∗v,v, J

∗
v,−v, J

∗
−v,−v and J∗−v,v the

partitions of the information matrix J∗ = J(β∗),

J(β) =

(
Jv,v Jv,−v
J−v,v J−v,−v

)
=

(
E∇2

v,v`n(β) E∇2
v,−v`n(β)

E∇2
−v,v`n(β) E∇2

−v,−v`n(β)

)
. (3.15)

The problems associated with the use of the classical score statistic in the presence of a high

dimensional nuisance parameter are brought to light by Ning and Liu (2014), who propose a remedy

via the decorrelated score. The problem stems from the inversion of the matrix J∗−v,−v in high

dimensions. The decorrelated score is defined as

S(β∗v ,β
∗
−v) = ∇v`n(β∗v ,β

∗
−v)−w∗T∇−v`n(β∗v ,β

∗
−v), where w∗T = J∗v,−vJ

∗−1
−v,−v. (3.16)

For a regularized estimator ŵ of w∗, to be defined below, a mean value expansion of

Ŝ(β∗v , β̂
λ
−v) := ∇v`n(β∗v , β̂

λ
−v)− ŵT∇−v`n(β∗v , β̂

λ
−v) (3.17)

around β∗−v gives

Ŝ(β∗v , β̂
λ
−v) = ∇v`n(β∗v ,β

∗
−v)− ŵT∇−v`n(β∗v ,β

∗
−v)

+
[
∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
]

(β̂λ−v − β∗−v), (3.18)
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where β−v,α = αβ̂λ−v + (1 − α)β∗−v for α ∈ [0, 1]. The key to understanding how the decorrelated

score remedies the problems faced by the classical score test is the observation that[
∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
]

(3.19)

≈ E
[
∇2
v,−v`n(β∗v ,β

∗
−v)−w∗T∇2

−v,−v`n(β∗v ,β
∗
−v)
]

= J∗v,−v − J∗v,−vJ∗−1
−v,−vJ

∗
−v,−v = 0,

where w∗T = J∗v,−vJ
∗−1
−v,−v. Hence, provided w∗ is sufficiently sparse to avoid excessive noise

accumulation, we are able to achieve rate acceleration in equation (3.18), ultimately giving rise to

a tractable limit distribution of a suitable rescaling of Ŝ(β∗v , β̂
λ
−v). Since β∗v is restricted under the

null hypothesis, H0 : β∗v = βHv , the statistic in equation (3.17) is accessible once H0 is imposed. As

Ning and Liu (2014) point out, w∗ is the solution to

w∗ = argmin
w

E
[
∇v`n(βHv ,β

∗
−v)−wT ∇−v `n(βHv ,β

∗
−v)
]2

under H0 : β∗v = βHv . We thus see that the population analogue of the decorrelation device is the

linear combination w∗T ∇−v `n(βHv ,β
∗
−v) that best approximates ∇v`n(βHv ,β

∗
−v) in a least squares

sense.

Our divide and conquer score statistic under H0 : β∗v = βHv is

S(βHv ) =
1

k

k∑
j=1

Ŝ(j)
(
βHv , β̂

λ
−v(Dj)

)
, (3.20)

where Ŝ(j)
(
βv, β̂

λ
−v(Dj)

)
= ∇v`(j)nk

(
βv, β̂

λ
−v(Dj)

)
− ŵ(Dj)T∇−v`(j)nk

(
βv, β̂

λ
−v(Dj)

)
and

ŵ(Dj) = argmin
w

‖w‖1, s.t.
∥∥∥∇2
−v,v`

(j)
nk

(
β̂λv (Dj), β̂λ−v(Dj)

)
−wT∇2

−v,−v`
(j)
nk

(
β̂λv (Dj), β̂λ−v(Dj)

)∥∥∥
∞
≤ µ.

(3.21)

Equation (3.21) is the Dantzig selector of Candes and Tao (2007).

Theorem 3.11. Let Ĵv|−v be a consistent estimator of J∗v|−v and

S(j)(βHv ,β
∗
−v) = ∇v`(j)nk (βHv ,β

∗
−v)−w∗T∇−v`(j)nk (βHv ,β

∗
−v).

Suppose ‖w∗‖1 . s1 and Conditions 2.1 and 3.6 are fulfilled. Then under H0 : β∗v = βHv with

λ � µ �
√
k log d/n,

√
n S(βHv ) =

√
n

1

k

k∑
j=1

S(j)(βHv ,β
∗
−v) + oP(1) and lim

n→∞
sup
t∈R

∣∣P(S(βHv )Ĵ
−1/2
v|−v ≤ t

)
− Φ(t)

∣∣ = 0,

for any k � d satisfying k = o
(
((s ∨ s1) log d)−1√n

)
, where S(βHv ) is defined in equation (3.20).

Remark 3.12. By the definition of w∗ and the block matrix inversion formula for Θ∗ = (J∗)−1,

sparsity of w∗ is implied by sparsity of Θ∗ as assumed in van de Geer et al. (2014) and Condition

3.7 of Section 3.1.2. In turn, ‖w∗‖0 . s1 implies ‖w∗‖1 . s1 provided that the elements of w∗ are

bounded.
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Remark 3.13. Although Theorem 3.11 is stated in the penalized GLM setting, the result holds

more generally; further details are available in Lemma A.13 of Appendix A in the Supplementary

Material.

To maintain the same computational complexity, an estimator of the conditional information

needs to be constructed using a DC procedure. For this, we propose to use

Jv|−v = k−1
k∑
j=1

(
∇2
v,v `

(j)
nk

(β
d
v,β−v)−wT ∇2

−v,v `
(j)
nk

(β
d
v,β−v)

)
,

where β
d
v = k−1

∑k
j=1 β̂

d
v (Dj), β−v = k−1

∑k
j=1 β̂

λ
−v(Dj) and w = k−1

∑k
j=1 ŵ(Dj). By Lemma

3.14, this estimator is asymptotically consistent.

Lemma 3.14. Suppose ‖w∗‖1 = O(s1) and Conditions 2.1 and 3.6 are fulfilled. Then for any

k � d satisfying k = o
(
((s ∨ s1) log d)−1√n

)
, |Jv|−v − J∗v|−v| = oP(1).

4 Accuracy of Distributed Estimation

As explained in Section 2.2, the information got lost in the divide-and-conquer process is not very

much. This motivates us to consider ‖βd−β̂d‖2, the loss incurred by the divide and conquer strategy

in comparison with the computationally infeasible full sample debiased estimator β̂d. Indeed, it

turns out that, for k not too large, β
d−β̂d appears only as a higher order term in the decomposition

of β
d−β∗ and thus ‖βd− β̂d‖2 is negligible compared to the statistical error, ‖β̂d−β∗‖2. In other

words, the divide-and-conquer errors are statistically negligible.

When the minimum signal strength is sufficiently strong, thresholding β
d

achieves exact support

recovery, motivating a refitting procedure based on the low dimensional selected variables. As a

means to understanding the theoretical properties of this refitting procedure, as well as for indepen-

dent interest, this section develops new theory and methodology for the low dimensional (d < n)

linear and generalized linear models in addition to their high dimensional (d � n) counterparts.

It turns out that simple averaging of low dimensional OLS or GLM estimators (denoted uniformly

as β̂(j), without superscript d as debias is not necessary) suffices to preserve the statistical error,

i.e., achieving the same statistical accuracy as the estimator based on the whole data set. This

is because, in contrast to the high dimensional setting, parameters are not penalized in the low

dimensional case. With β the average of β̂(j) over the k machines and β̂ the full sample counterpart

(k = 1), we derive the rate of convergence of ‖β− β̂‖2. Refitted estimation using only the selected

covariates allows us to eliminate a log d term in the statistical rate of convergence of the estimator.

We present the high dimensional and low dimensional results separately, with the analysis of the

refitting procedures appearing as corollaries to the low dimensional analysis.

4.1 The High-Dimensional Linear Model

Recall that the high dimensional DC estimator is β
d

= k−1
∑k

j=1 β̂
d(Dj), where β̂d(Dj) for 1 ≤

j ≤ k is the debiased estimator defined in (3.3). We also denote the debiased LASSO estimator
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using the entire dataset as β̂d = β̂d(∪kj=1Dj). The following lemma shows that not only is β
d

asymptotically normal, it approximates the full sample estimator β̂d so well that it has the same

statistical error as β̂d provided the number of subsamples k is not too large.

Lemma 4.1. Under the Conditions 3.1 and 3.2, if λ, ϑ1 and ϑ2 are chosen as λ �
√
k log d/n,

ϑ1 �
√
k log d/n and ϑ2n

−1/2 = o(1), we have with probability 1− c/d,

∥∥βd − β̂d∥∥∞ ≤ C sk log d

n
and

∥∥βd − β∗∥∥∞ ≤ C(
√

log d

n
+
sk log d

n

)
. (4.1)

Remark 4.2. The term
√

log d
n in (4.1) is the estimation error of

∥∥β̂d − β∗∥∥∞. Lemma 4.1 does

not rely on any specific choice of k, however, in order for the aggregated estimator β
d

to attain

the same ‖ · ‖∞ norm estimation error as the full sample LASSO estimator, β̂LASSO, the required

scaling is k = O(
√
n/(s2 log d)). This is a weaker scaling requirement than that of Theorem 3.3

because the latter entails a guarantee of asymptotic normality, which is a stronger result. It is for

the same reason that our estimation results only require O(·) scaling whilst those for testing require

o(·) scaling.

Although β
d

achieves the same rate as the LASSO estimator under the infinity norm, it cannot

achieve the minimax rate in `2 norm since it is not a sparse estimator. To obtain an estimator

with the `2 minimax rate, we sparsify β
d

by hard thresholding. For any β ∈ Rd, define the hard

thresholding operator Tν such that the j-th entry of Tν(β) is

[Tν(β)]j = βj 1{|βj | ≥ ν}, for 1 ≤ j ≤ d. (4.2)

According to (4.1), if β∗j = 0, we have |βdj | ≤ C(
√

log d/n+ sk log d/n) with high probability. The

following theorem characterizes the estimation rate of the thresholded estimator Tν(β
d
).

Theorem 4.3. Suppose Conditions 3.1 and 3.2 are fulfilled and choose λ �
√
k log d/n, ϑ1 �√

k log d/n and ϑ2n
−1/2 = o(1). Take the parameter of the hard threshold operator in (4.2) as

ν = C0

√
log d/n for some sufficiently large constant C0. If the number of subsamples satisfies

k = O(
√
n/(s2 log d)), for large enough d and n, we have with probability 1− c/d,

∥∥Tν(β
d
)−Tν(β̂d)

∥∥
2
≤ C s

3/2k log d

n
,
∥∥Tν(β

d
)−β∗

∥∥
∞ ≤ C

√
log d

n
and

∥∥Tν(β
d
)−β∗

∥∥
2
≤ C

√
s log d

n
.

(4.3)

Remark 4.4. In fact, in the proof of Theorem 4.3, we show that if the thresholding parameter ν

satisfies ν ≥ ‖βd − β∗‖∞, we have
∥∥Tν(β

d
)− β∗

∥∥
2
≤ 2
√

2s · ν; it is for this reason that we choose

ν �
√

log d/n. Unfortunately, the constant is difficult to choose in practice. In the following

paragraphs we propose a practical method to select the tuning parameter ν.

Let (M (j)X(j)T )` denote the transposed `th row of M (j)X(j)T . Inspection of the proof of The-

orem 3.3 reveals that the leading term of term of
√
n‖βd − β∗‖∞ satisfies

T0 = max
1≤`≤d

1√
k

k∑
j=1

1
√
nk

(M (j)X(j)T )T` ε
(j).
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Chernozhukov et al. (2013) propose the Gaussian multiplier bootstrap to estimate the quantile of

T0. Let {ξi}ni=1 be i.i.d. standard normal random variable independent of {(Yi,Xi)}ni=1. Consider

the statistic

W0 = max
1≤`≤d

1√
k

k∑
j=1

1
√
nk

(M (j)X(j)T )T` (ε̂(j) ◦ ξ(j)),

where ε̂(j) ∈ Rnk is an estimator of ε(j) such that for any i ∈ Ij , ε̂(j)
i = Y

(j)
i −X(j)

i β̂(Dj), and ξ(j)

is a subvector of {ξi}ni=1 with indices in Ij . Recall that “◦” denotes the Hadamard product. The

α-quantile of W0 conditioning on {Yi,Xi}ni=1 is defined as cW0(α) = inf{t |P
(
W0 ≤ t | Y , X

)
≥ α}.

We can estimate cW0(α) by Monte-Carlo and thus choose ν0 = cW0(α)/
√
n. This choice ensures∥∥Tν0(β

d
)− β∗

∥∥
2

= OP(
√
s log d/n),

which coincides with the `2 convergence rate of the LASSO.

Remark 4.5. Lemma 4.1 and Theorem 4.3 show that if the number of subsamples satisfies k =

o(
√
n/(s2 log d)), ‖βd− β̂d‖∞ = oP

(√
log d/n

)
and ‖Tν(β

d
)−Tν(β̂d)‖2 = oP(

√
s log d/n), and thus

the error incurred by the divide and conquer procedure is negligible compared to the statistical

minimax rate. The reason for this contraction phenomenon is that β
d

and β̂d share the same leading

term in their Taylor expansions around β∗. The difference between them is only the difference of two

remainder terms which is smaller order than the leading term. We uncover a similar phenomenon

in the low dimensional case covered in Section 4.3. However, in the low dimensional case `2 norm

consistency is automatic while the high dimensional case requires an additional thresholding step

to guarantee sparsity and, consequently, `2 norm consistency.

4.2 The High-Dimensional Generalized Linear Model

We can generalize the DC estimation of the linear model to GLM. Recall that β̂d(Dj) is the de-

biased estimator defined in (3.9) and the aggregated estimator is β
d

= k−1
∑k

j=1 β̂
d(Dj). We still

denote β̂d = β̂d(∪kj=1Dj). The next lemma bounds the error incurred by splitting the sample and

the statistical rate of convergence of β
d

in terms of the infinity norm.

Lemma 4.6. Under Conditions 2.1, 3.6 and 3.7, for β̂λ with λ �
√
k log d/n, we have with

probability 1− c/d,∥∥βd − β̂d∥∥∞ ≤ C (s ∨ s1)k log d

n
and

∥∥βd − β∗∥∥∞ ≤ C(
√

log d

n
+

(s ∨ s1)k log d

n

)
. (4.4)

Applying a similar thresholding step as in the linear model, we obtain the following estimation

rate in `2 norm.

Theorem 4.7. Under Conditions 2.1 - 3.7, choose λ �
√
k log d/n and λv �

√
k log d/n. Take the

parameter of the hard threshold operator in (4.2) as ν = C0

√
log d/n for some sufficiently large

constant C0. If the number of subsamples satisfies k = O(
√
n/((s ∨ s1)2 log d)), for large enough d

and n, we have with probability 1− c/d,∥∥Tν(β
d
)− Tν(β̂d)

∥∥
2
≤ C (s ∨ s1)s1/2k log d

n
,
∥∥Tν(β

d
)− β∗

∥∥
∞ ≤ C

√
log d

n
(4.5)
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and
∥∥Tν(β

d
)− β∗

∥∥
2
≤ C

√
s log d/n.

Remark 4.8. As in the case of the linear model, Theorem 4.7 reveals that the loss incurred by the

divide and conquer procedure is negligible compared to the statistical minimax estimation error

provided k = o
(√

n/(s1 ∨ s)2s log d
)
.

A similar proof strategy to that of Theorem 4.7 allows us to construct an estimator of Θ∗vv
that achieves the required consistency with the scaling of Corollary 3.9. Our estimator is Θ̃vv :=[
Tζ(Θ)

]
vv

, where Θ = k−1
∑k

j=1 Θ̂(j) and Tζ(·) is the thresholding operator defined in equation

(4.2) with ζ = C1

√
log d/n for some sufficiently large constant C1.

Corollary 4.9. Under the conditions and scaling of Theorem 3.8,
∣∣Θ̃vv −Θ∗vv

∣∣ = oP(1).

Substituting this estimator in Corollary 3.9 delivers a practically implementable test statistic

based on k = o
(
((s ∨ s1) log d)−1√n

)
subsamples.

4.3 The Low-Dimensional Linear Model

As mentioned earlier, the infinity norm bound derived in Lemma 4.1 can be used to do model

selection, after which the selected support can be shared across all the local agents, significantly

reducing the dimension of the problem as we only need to refit the data on the selected model. The

remaining challenge is to implement the divide and conquer strategy in the low dimensional setting,

which is also of independent interest. Here we focus on the linear model, while the generalized linear

model is covered in Section 4.4.

In this section d still stands for dimension, but in contrast with the rest of this paper in which

d� n, here we consider d < n. More specifically, we consider the linear model (3.2) with d < n and

i.i.d sub-gaussian noise {εi}ni=1. It is well known that the ordinary least square (OLS) estimator

of β∗ is defined as β̂ = (XTX)−1XTY . In the massive data setting, the communication cost of

estimating and inverting covariance matrices is very high (order O(kd2)). However, as pointed out

by Chen and Xie (2012), this estimator exactly coincides with the DC estimator,

β̂ =

 k∑
j=1

X(j)TX(j)

−1
k∑
j=1

X(j)TY (j).

In this section, we study the DC strategy to approximate β̂ with the communication cost only

O(kd), which implies that we can only communicate d dimensional vectors.

The OLS estimator based on the subsample Dj is defined as β̂(Dj) = (X(j)TX(j))−1X(j)TY (j).

In order to estimate β∗, a simple and natural idea is to take the average of {β̂(Dj)}kj=1, which

we denote by β. The question is whether this estimator preserves the statistical error as β̂. The

following theorem gives an upper bound of the gap between β and β̂, and shows that this gap is

negligible compared with the statistical error of β̂ as long as k is not large.

Theorem 4.10. Consider the linear model (3.2). Suppose Conditions 3.1 and 3.2 hold and {εi}ni=1

are i.i.d sub-Gaussian random variables with ‖εi‖ψ2 ≤ σ1. If the number of subsamples satisfies
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k = O(nd/(d ∨ log n)2), then for sufficiently large n and d it follows that

‖β − β̂‖2 = OP

(√k(d ∨ log n)

n

)
, ‖β − β∗‖2 = OP

(√
d/n

)
. (4.6)

Remark 4.11. By taking k = o
(
nd/(d ∨ log n)2

)
, the loss incurred by the divide and conquer

procedure, i.e., ‖β − β̂‖2, converges at a faster rate than the statistical error of the full sample

estimator β̂.

We now take a different viewpoint by returning to the high dimensional setting of Section 4.1

(d� n) and applying Theorem 4.10 in the context of a refitting estimator. In this refitting setting,

the sparsity s of Lemma 4.1 becomes the dimension of a low dimensional parameter estimation

problem on the selected support. Our refitting estimator is defined as

β
r

:=
1

k

k∑
j=1

(X
(j)T

Ŝ
X

(j)

Ŝ
)−1X

(j)T

Ŝ
Y (j), (4.7)

where Ŝ := {j : |βdj | > 2C
√

log d/n} and C is the same constant as in (4.1).

Corollary 4.12. Suppose β∗min > 2C
√

log d/n, where β∗min := min1≤j≤d |β∗j | and C is the same

constant as in (4.1). Define the full sample oracle estimator as β̂o = (XT
SXS)−1XT

S Y , where S is

the true support of β∗. If k = O(
√
n/(s2 log d)), then for sufficiently large n and d we have

‖βr − β̂o‖2 = OP

(√k(s ∨ log n)

n

)
, ‖βr − β∗‖2 = OP

(√
s/n
)
. (4.8)

We see from Corollary 4.12 that β
r

achieves the oracle rate when the minimum signal strength

is not too weak and the number of subsamples k is not too large.

4.4 The Low-Dimensional Generalized Linear Model

The next theorem quantifies the gap between β and β̂, where β is the average of subsambled GLM

estimators and β̂ is the full sample GLM estimator.

Theorem 4.13. Under Condition 3.6, if k = O(
√
n/(d∨ log n)), then we have for sufficiently large

d and n,

‖β − β̂‖2 = OP

(k√d(d ∨ log n)

n

)
, ‖β − β∗‖2 = OP

(√
d/n

)
. (4.9)

Remark 4.14. In analogy to Theorem 4.10, by constraining the growth rate of the number of

subsamples according to k = o
(√
n/(d ∨ log n)

)
, the error incurred by the divide and conquer

procedure, i.e., ‖β− β̂‖2 decays at a faster rate than that of the statistical error of the full sample

estimator β̂.

As in the linear model, Lemma 4.6 together with Theorem 4.13 allow us to study the theoretical

properties of a refitting estimator for the high dimensional GLM. Estimation on the estimated
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support set is again a low dimensional problem, thus the d of Theorem 4.13 corresponds to the s

of Lemma 4.6 in this refitting setting. The refitted GLM estimator is defined as

β
r

=
1

k

k∑
j=1

β̂r(Dj), (4.10)

where β̂r(Dj) = argminβ∈Rd,β
Ŝc

=0 `
(j)
nk (β) and Ŝ := {j : |βdj | > 2C

√
log d/n}. The following

corollary quantifies the statistical rate of β
r
.

Corollary 4.15. Suppose β∗min > 2C
√

log d/n, where β∗min := min1≤j≤d |β∗j | and C is the same

constant as in (4.4). Define the full sample oracle estimator as β̂o = argminβ∈Rd,βSc=0 `n(β), where

S is the true support of β∗. If k = O
(√

n/((s ∨ s1)2 log d)
)
, then for sufficiently large n and d we

have

‖βr − β̂o‖2 = OP

(k√s(s ∨ log n)

n

)
, ‖βr − β∗‖2 = OP

(√
s/n
)
. (4.11)

We thus see that β
r

achieves the oracle rate when the minimum signal strength is not too weak

and the number of subsamples k is not too large.

5 Numerical Analysis

In this section, we illustrate and validate our theoretical findings through simulations. For inference,

we use QQ plots to compare the distribution of p-values for divide and conquer test statistics to

their theoretical uniform distribution. We also investigate the estimated type I error and power of

the divide and conquer tests. For estimation, we validate our claim of Sections 4.3 and 4.4 that

the loss incurred by the divide and conquer strategy is negligible compared to the statistical error

of the corresponding full sample estimator in the low dimensional case. An analogous empirical

verification of the theory is performed for the high dimensional case, where we also compare the

performance of the divide and conquer thresholding estimator of Section 4.1 to the full sample

LASSO and the average LASSO over subsamples.

5.1 Results on Inference

We explore the probability of rejection of a null hypothesis of the form H0 : β∗1 = 0 when data

(Yi,Xi)
n
i=1 are generated according to the linear model,

Yi = XT
i β
∗ + εi, εi ∼ N

(
0, σ2

ε

)
,

for σ2
ε = 1 and β∗ an s sparse d dimensional vector with d = 850 and s = 3. In each Monte Carlo

replication, we split the initial sample of size n into k subsamples of size n/k. In particular we

choose n = 840 because it has a large number of factors k ∈ {1, 2, 5, 10, 15, 20, 24, 28, 30, 35, 40}.
The number of simulations is 250. Using β̂LASSO as a preliminary estimator of β∗, we construct

Wald and Rao score test statistics as described in Sections 3.1.2 and 3.2 respectively.

Panels (A) and (B) of Figure 1 are QQ plots of the p-values of the divide and conquer Wald

and score test statistics under the null hypothesis against the theoretical quantiles of of the uniform
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Figure 1: QQ plots of the p-values of the Wald (A) and score (B) divide and conquer test statistics

against the theoretical quantiles of the uniform [0,1] distribution under the null hypothesis.

[0,1] distribution for four different values of k. For both test constructions, the distributions of the

p-values are close to uniform and remain so as we split the data set. When k = 40, the distribution

of the corresponding p-values is visibly non-uniform, as expected from the theory developed in

Sections 3.1.2 and 3.2. Panel (A) of Figure 2 also supports our theoretical findings, showing that,

for both test constructions, the empirical level of the test is close to both the nominal α = 0.05

level and the level of the full sample oracle OLS estimator which knows the true support of β∗.

Moreover, it remains at this level as long as we do not split the data set too many times. Panel

(B) of Figure 2 displays the power of the test for two different signal strengths, β∗1 = 0.125 and

β∗1 = 0.15. We see that the power is also comparable with that of the full sample oracle OLS

estimator which knows the true support of β∗.

5.2 Results on Estimation

In this section, we turn our attention to experimental validation of our divide and conquer estima-

tion theory, focusing first on the low dimensional case and then on the high dimensional case.

5.2.1 The Low-Dimensional Linear Model

All n× d entries of the design matrix X are generated as i.i.d. standard normal random variables

and the errors {εi}ni=1 are i.i.d. standard normal as well. The true regression vector β∗ satisfies

β∗j = 10/
√
d for j = 1, . . . , d/2 and β∗j = −10/

√
d for j > d/2, which guarantees that ‖β∗‖2 = 10.

Then we generate the response variable {Yi}ni=1 according to the model (3.2). Denote the full sample

ordinary least-squares estimator and the divide and conquer estimator by β̂ and β respectively.

Figure 3(A) illustrates the change in the ratio ‖β − β̂‖2/‖β̂ − β∗‖2 as the sample size increases,

where k assumes three different growth rates and d =
√
n/2. Figure 3(B) focuses on the relationship

between the statistical error of β and log k under three different scalings of n and d. All the data

points are obtained based on average over 100 Monte Carlo replications.
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Figure 2: (A) Estimated probabilities of type I error for the Wald and score tests as a function

of k. (B) Estimated power with signal strength 0.125 and 0.15 for the Wald, and score tests as a

function of k.
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Figure 3: (A) The ratio between the loss of the divide and conquer procedure and the statistical

error of the estimator based on the whole sample with d =
√
n/2 and different growth rates of k.

(B) Statistical error of the DC estimator against log k.

As Figure 3(A) demonstrates, when k = O(n1/3), O(n1/4) or O(1), the ratio decreases with ever

faster rates, which is consistent with the argument of Remark 4.11 that the ratio goes to zero when

k = o(n/d) = o(
√
n). When k = O(

√
n), however, we observe that the ratio is essentially constant,

which suggests the rate we derived in Theorem 4.10 is sharp.

From Figure 3(B), we see that when k is not large, the statistical error of β is very small because

the loss incurred by the divide and conquer procedure is negligible compared to the statistical error

of β̂. However, when k is larger than a threshold, there is a surge in the statistical error, since the

loss of the divide and conquer begins to dominate the statistical error of β̂. We also notice that the
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Figure 4: (A) The ratio between the loss of the divide and conquer procedure and the statistical

error of the estimator based on the whole sample when d = 20. (B) Statistical error of the DC

estimator.

larger the ratio n/d, the larger the threshold of log k, which is again consistent with Remark 4.11.

5.2.2 The Low-Dimensional Logistic Regression

In logistic regression, given covariates X, the response Y |X ∼ Ber(η(X)), where Ber(η) denotes

the Bernoulli distribution with expectation η and

η(X) =
1

1 + exp(−XTβ∗)
.

We see that Ber(η(X)) is in exponential dispersion family canonical form (2.7) with b(θ) = log(1 +

eθ), φ = 1 and c(y) = 1. The use of the canonical link,

η(X) =
1

1 + e−θ(X)
,

leads to the simplification θ(X) = XTβ∗.

In our Monte Carlo experiments, all n × d entries of the design matrix X are generated as

i.i.d. standard normal random variables. The true regression vector β∗ satisfies β∗j = 1/
√
d for

j ≤ d/2 and β∗j = −1/
√
d for j > d/2, which guarantees that ‖β∗‖2 = 1. Finally, we generate the

response variables {Yi}ni=1 according to Ber(η(X)). Figure 4(A) illustrates the change of the ratio

‖β− β̂‖2/‖β̂−β∗‖2 as the sample size increases, where k assumes three different growths rates and

d = 20. Figure 4(B) focuses on the relationship between the statistical error of β and log k under

three different scalings of n and d. All the data points are obtained based on an average over 100

Monte Carlo replications.

Figure 4 reveals similar phenomena to those revealed in Figure 3 of the previous subsection.

More specifically, Figure 4(A) shows that when k = O(n1/3), O(n1/4) or O(1), the ratio decreases

with even faster rates, which is consistent with the argument of Remark 4.14 that the ratio converges
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to zero when k = o(
√
n/d) = o(

√
n). When k = O(

√
n), however, we observe that the ratio remains

essentially constant when log n is large, which suggests the rate we derived in Theorem 4.10 is sharp.

As for Figure 4(B), we again observe that the statistical error of β is very small when k is

sufficiently small, but grows fast when k becomes large. The reasoning is the same as in the linear

model, i.e. when k is large, the loss incurred by the divide and conquer procedure is non-negligible

as compared with the statistical error of ‖β̂‖2. In addition, as Figure 4(B) reveals, the larger is√
n/d, the larger the threshold of k, which is again consistent with the threshold rate pointed out

in Remark 4.14.

5.2.3 The High Dimensional Linear Model

We now consider the same setting of Section 5.1 with n = 1400, d = 1500 and β∗j = 10 for all

j in the support of β∗. In this context, we analyze the performance of the thresholded averaged

debiased estimator of Section 4.1. Figure 5(A) depicts the average over 100 Monte Carlo replications

of ‖b − β∗‖2 for three different estimators: debiased divide-and-conquer b = Tν(β
d
), the LASSO

estimator based on the whole sample b = β̂LASSO and the estimator obtained by näıvely averaging

the LASSO estimators from the k subsamples b = βLASSO. The parameter ν is taken as ν =√
log d/n in the specification of Tν(β

d
). As expected, the performance of βLASSO deteriorates

sharply as k increases. Tν(β
d
) outperforms β̂LASSO as long as k is not too large. This is expected

because, for sufficiently large signal strength, both β̂LASSO and Tν(β
d
) recover the correct support,

however Tν(β
d
) is unbiased for those β∗j in the support of β∗, whilst β̂LASSO is biased. Figure

5(B) shows the error incurred by the divide and conquer procedure ‖Tν(β
d
)− Tν(β̂d)‖2 relative to

the statistical error of the full sample estimator, ‖Tν(β
d
) − β∗‖2, for four different scalings of k.

We observe that, with k = O(
√
n/s2 log d) and n not too small, the relative error incurred by the

divide and conquer procedure is essentially constant across n, demonstrating the theory developed

in Theorem 4.3.

6 Discussion

With the advent of the data revolution comes the need to modernize the classical statistical toolkit.

For very large scale datasets, distribution of data across multiple machines is the only practical

way to overcome storage and computational limitations. It is thus essential to build aggregation

procedures for conducting inference based on the combined output of multiple machines. We

successfully achieve this objective, deriving divide and conquer analogues of the Wald and score

statistics and providing statistical guarantees on their performance as the number of sample splits

grows to infinity with the full sample size. Tractable limit distributions of each DC test statistic

are derived. These distributions are valid as long as the number of subsamples, k, does not grow

too quickly. In particular, k = o
(
((s ∨ s1) log d)−1√n

)
is required in a general likelihood based

framework. If k grows faster than ((s∨ s1) log d)−1√n, remainder terms become non-negligible and

contaminate the tractable limit distribution of the leading term. When attention is restricted to

the linear model, a faster growth rate of k = o
(
(s log d)−1√n

)
is allowed.
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(A) Estimation error (B) DC error
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Figure 5: (A): Statistical error of the DC estimator, split LASSO and the full sample LASSO for

k ∈ {1, 2, 5, 10, 20, 25, 35, 40, 50} when n = 1400, d = 1500. (B): Euclidean norm difference between

the DC thresholded debiased estimator and its full sample analogue.

The divide and conquer strategy is also successfully applied to estimation of regression param-

eters. We obtain the rate of the loss incurred by the divide and conquer strategy. Based on this

result, we derive an upper bound on the number of subsamples for preserving the statistical error.

For low-dimensional models, simple averaging is shown to be effective in preserving the statistical

error, so long as k = O(n/d) for the linear model and k = O(
√
n/d) for the generalized linear

model. For high-dimensional models, the debiased estimator used in the Wald construction is also

successfully employed, achieving the same statistical error as the LASSO based on the full sample,

so long as k = O(
√
n/s2 log d).

Our contribution advances the understanding of distributed inference and estimation in the

presence of large scale and distributed data, but there is still a great deal of work to be done in the

area. We focus here on the fundamentals of statistical inference and estimation in the divide and

conquer setting. Beyond this, there is a whole toolkit of statistical methodology designed for the

single sample setting, whose split sample asymptotic properties are yet to be understood.

7 Proofs

In this section, we present the proofs of the main theorems appearing in Sections 3.1-4. The

statements and proofs of several auxiliary lemmas appear in the Supplementary Material. To

simplify notation, we take βHv = 0 without loss of generality.

7.1 Proofs for Section 3.1

The proof of Theorem 3.3, relies on the following lemma, which bounds the probability that opti-

mization problems in (3.4) are feasible.

23



Lemma 7.1. Assume Σ = E
(
XiX

T
i

)
satisfies Cmin < λmin(Σ) ≤ λmax(Σ) ≤ Cmax as well as

‖Σ−1/2X1‖ψ2 = κ, then we have

P

(
max
j=1,...,k

‖M (j)Σ̂(j) − I‖max ≤ a
√

log d

n

)
≥ 1− 2kd−c2 , where c2 =

a2Cmin

24e2κ4Cmax
− 2.

Proof. The proof is an application of the union bound in Lemma 6.2 of Javanmard and Montanari

(2014).

Using Lemma 7.1 we now prove Theorem 7.2, from which Theorem 3.3 easily follows. The

term Z in the decomposition of
√
n(β

d − β∗) in Theorem 7.2 is responsible for the asymptotic

normality of the proposed DC Wald statistic in Theorem 3.3, while the upper bound on k ensures

∆ is asymptotically negligible.

Theorem 7.2. Suppose Conditions 3.1 and 3.2 are fulfilled. Let λ �
√
k log d/n and ϑ1 �√

k log d/n. With k = o((s log d)−1√n),
√
n(β

d−β∗) = Z+∆, whereZ = 1√
k

∑k
j=1

1√
nk
M (j)X(j)Tε(j)

and ‖∆‖∞ = oP(1).

Proof. For notational convenience, we write β̂λLASSO(Dj) simply as β̂λ(Dj). Decompose β
d−β∗ as

β
d − β∗ =

1

k

k∑
j=1

(
β̂λ(Dj)− β∗ +

1

nk
M (j)X(j)TX(j)

(
β∗ − β̂λ(Dj)

))
+

1

k

k∑
j=1

1

nk
M (j)X(j)T ε(j)

=
1

k

k∑
j=1

(
I −M (j)Σ̂(j)

)(
β̂λ(Dj)− β∗

)
+

1

k

k∑
j=1

1

nk
M (j)X(j)T ε(j),

hence
√
n(β

d − β∗) = Z + ∆, where

Z =
1√
k

k∑
j=1

1
√
nk
M (j)X(j)T ε(j) and ∆ =

√
n

1

k

k∑
j=1

(
I −M (j)Σ̂(j)

)(
β̂λ(Dj)− β∗

)
.

Defining ∆(j) =
(
I −M (j)Σ̂(j)

)(
β̂λ(Dj)− β∗

)
, we have

‖∆(j)‖∞ ≤ ‖∆(j)‖1 ≤ ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1

by Hölder’s inequality, where ‖I − M (j)Σ̂(j)‖max ≤ ϑ1 by the definition of M (j) and, for λ =

Cσ2
√

log d/nk,

P
(∥∥β̂λ(Dj)− β∗

∥∥2

1
> C

s2 log(2d)

nk
+ t

)
≤ exp

(
− cnkt
s2σ2

)
(7.1)

by Bühlmann and van de Geer (2011). We thus bound the expectation of the `1 loss by

E
[∥∥β̂λ(Dj)− β∗

∥∥2

1

]
≤ 2Cs2 log(2d)

nk
+

∫ ∞
0

exp

(
− cnkt
s2σ2

)
dt ≤ 2Cs2 log(2d)

nk
+
s2σ2

cnk
. (7.2)
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Define the event E(j) :=
{∥∥β̂λ(Dj) − β∗

∥∥
1
≤ s

√
C log(2d)/nk

}
for j = 1, . . . , k. ‖∆(j)‖∞ ≤

∆
(j)
1 + ∆

(j)
2 + ∆

(j)
3 where

∆
(j)
1 = ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)}

− E
[
‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)}

]
∆

(j)
2 = ‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}

− E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}] and

∆
(j)
3 = E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1].

Consider ∆
(j)
1 , ∆

(j)
2 and ∆

(j)
3 in turn. By Hoeffding’s inequality, we have for any t > 0,

P

1

k

k∑
j=1

∆
(j)
1 > t

 ≤ exp

(
− nkkt

2

Cs2ϑ2
1 log(2d)

)
≤ exp

(
− nknt

2

Cs2 log2(2d)

)
. (7.3)

By Markov’s inequality,

P

1

k

k∑
j=1

∆
(j)
2 > t

 ≤ ∑k
j=1 E[∆

(j)
2 ]

kt
≤ 2t−1E

[
‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1 1{E(j)c}

]
≤ 2t−1ϑ1

√
E
[
‖β̂λ(Dj)− β∗‖21

]
P(E(j)c)

≤ Ct−1

√
log d

nk
· s

2 log(2d)

nk
d−c ≤ Ct−1sn−1

k d−c/2 log d, (7.4)

where the penultimate inequality follows from Jensen’s inequality. Finally, by Jensen’s inequality

again,

1

k

k∑
j=1

∆
(j)
3 = E[‖M (j)Σ̂(j) − I‖max‖β̂λ(Dj)− β∗‖1]

≤ ϑ1

√
E
[∥∥β̂λ(Dj)− β∗

∥∥2

1

]
≤ C s log d

nk
. (7.5)

Combining (7.3), (7.4) and (7.5),

P
(
‖∆‖∞ > 3C

√
n · s log d

nk

)
≤

3∑
u=1

P

1

k

k∑
j=1

∆(j)
u > C

√
n · s log d

nk


≤ exp(−ckn) + d−c/2 → 0, (7.6)

and taking k = o
(
(s log d)−1√n

)
delivers ‖∆‖∞ = oP(1).

Proof of Theorem 3.3. We verify the requirements of the Lindeberg-Feller central limit theorem

(e.g. Kallenberg, 1997, Theorem 4.12). Write

V n :=
√
n

1

k

k∑
j=1

Z
(j)
v

Q̂(j)
=

k∑
j=1

∑
i∈Ij

ξ
(j)
iv , where ξ

(j)
iv :=

m
(j)T
v X

(j)
i ε

(j)
i(

nm
(j)T
v Σ̂(j)m

(j)
v

)1/2 .
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By the fact that εi is independent of X for all i and E[εi] = 0,

E(ξ
(j)
iv |X) = E

[
m(j)T
v X

(j)
i ε

(j)
i /
(
nm(j)T

v Σ̂(j)m(j)
v

)1/2|X]
=

(
nm(j)T

v Σ̂(j)m(j)
v

)−1/2
m(j)T
v X

(j)
i E

(
ε

(j)
i

)
= 0.

By independence of {εi}ni=1 and the definition of Σ̂(j), we also have

Var
(
V n

∣∣∣X) =
k∑
j=1

∑
i∈Ij

Var
(
ξ

(j)
iv |X

)
= k−1

k∑
j=1

n−1
k

(
m(j)T
v Σ̂(j)m(j)

v

)−1
∑
i∈Ij

m(j)T
v X

(j)
i X

(j)T
i m(j)

v Var
(
ε

(j)
i |X

)
= σ2.

It only remains to verify the Lindeberg condition, i.e.,

lim
k→∞

lim
nk→∞

1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{∣∣ξ(j)
iv

∣∣ > εσ
}∣∣X] = 0, ∀ ε > 0. (7.7)

By Lemma A.1,
∣∣ξ(j)
iv

∣∣ ≤ n−1/2c−1
nk
|m(j)T

v X
(j)
i ||ε

(j)
i | ≤ n−1/2c−1

nk
ϑ2|ε(j)

i |, where lim infnk cnk = c∞ >

0, hence the event
{
|ξ(j)
iv | > εσ

}
is contained in the event

{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}

and we have

1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{
|ξ(j)
iv | > εσ

}∣∣X] ≤ 1

σ2

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}∣∣X]

=
1

σ2

1

k

k∑
j=1

(
m(j)T
v Σ̂m(j)

v

)−1 1

nk

∑
i∈Ij

m(j)T
v X

(j)
i X

(j)T
i m(j)

v E
[
(ε

(j)
i )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
n
}]

=
1

σ2
E
[
(ε

(j)
i )2 1

{
|ε(j)
i | > εσcnkϑ

−1
2

√
nk
√
k
}]
.

Let δ = εσcnkϑ
−1
2

√
n. Then, for any η > 0,

E
[(
ε

(j)
i

)2
1
{∣∣ε(j)

i

∣∣ > δ
}]
≤ E

[(
ε

(j)
i

)2 ∣∣ε(j)
i

∣∣η
δη

1
{∣∣ε(j)

i

∣∣ > δ
}]
≤ δ−ηE

[∣∣ε(j)
i

∣∣2+η]
. (7.8)

Since ϑ2n
−1/2 = o(1) by the statement of the theorem, the choice η = 2 delivers

1

σ2
lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )2 1

{∣∣ξ(j)
iv

∣∣ > εσ
}∣∣X]

≤ lim
k→∞

lim
nk→∞

k−1n−1
k ϑ2c

−2
nk
ε−2σ−2E

((
ε

(j)
i

)4)
= 0 (7.9)

by the bounded forth moment assumption. By the law of iterated expectations, all conditional

results hold in unconditional form as well. Hence, V n  N(0, σ2) by the Lindeberg-Feller central

limit theorem.
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Proof of Corollary 3.5. Similar to (7.9), we also have

1

σ3
lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
iv )4 1

{∣∣ξ(j)
iv

∣∣ > εσ
}∣∣X] = 0.

The proof is complete through an application of the self-normalized Berry-Essen inequality (de la

Peña et al., 2009), noting that Sn = V n + oP (1), as demonstrated in the previous proof.

Proof of Lemma 3.4. We first show that, for any j ∈ {1, . . . , k}, |σ̂2(Dj) − σ2| = oP(k−1). To this

end, letting

ε̂i = Y
(j)
i −X(j)T

i β̂λ(Dj) = Y
(j)
i −X(j)T

i β∗ −X(j)T
i

(
β̂λ(Dj)− β∗

)
,

we write

|σ̂2(Dj)− σ2| =
∣∣∣ 1
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∑
i∈Ij

ε̂2
i − σ2

∣∣∣ ≤ ∆
(j)
1 + 2∆

(j)
2 + ∆

(j)
3 ,

∆
(j)
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∣∣ 1
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∑
i∈Ij

ε2
i − σ2

∣∣, ∆
(j)
2 :=

∣∣(β̂λ(Dj)− β∗
)( 1
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∑
i∈Ij

X
(j)
i ε

(j)
i

)∣∣, and

∆
(j)
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∣∣(β̂λ(Dj)− β∗
)T( 1
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∑
i∈Ij

X
(j)
i X

(j)T
i

)(
β̂λ(Dj)− β∗

)∣∣
=

∥∥X(j)
(
β̂λ(Dj)− β∗

)∥∥2

2
/nk = OP(λ2s)

by Theorem 6.1 of Bühlmann and van de Geer (2011). Hence, with λ = Cσ2
√
k log d/n, ∆

(j)
3 =

oP(1) for k = o
(
(s log d)−1n

)
, a fortiori for k = o

(
(s log d)−1√n

)
. Letting

∆
(j)
21 =

∥∥β̂λ(Dj)− β∗
∥∥

1

∥∥∥ 1
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∑
i∈Ij

X
(j)
i ε

(j)
i − E[X

(j)
i ε

(j)
i ]
∥∥∥
∞
,

∆
(j)
22 =

∥∥β̂λ(Dj)− β∗
∥∥

1

∥∥E[X
(j)
i ε

(j)
i ]
∥∥
∞.

We obtain the bound

∆
(j)
2 =

∣∣∣(β̂λ(Dj)− β∗
)( 1

nk

∑
i∈Ij

X
(j)
i ε

(j)
i − E[X

(j)
i ε

(j)
i ]
)

+
(
β̂λ(Dj)− β∗

)
E[X

(j)
i ε

(j)
i ]
∣∣∣ ≤ ∆

(j)
21 + ∆

(j)
22 .

By the statement of the Lemma, E
[
X

(j)
i ε

(j)
i

]
= E

[
X

(j)
i E[ε

(j)
i |X

(j)
i ]
]

= 0, hence ∆
(j)
22 = 0, while by

the central limit theorem and Theorem 6.1 of Bühlmann and van de Geer (2011),

∆
(j)
21 ≤ OP(λs)OP(n

−1/2
k ).

We conclude ∆
(j)
2 = OP

(
λsn

−1/2
k

)
, and with λ � σ2

√
k log d/n, ∆

(j)
2 = o(1) with k = o

(
n(s log d)−2/3

)
,

a fortiori for k = o
(√
n(s log d)−1

)
. Finally, noting that σ2 = E[ε

(j)
i ], ∆

(j)
1 = OP(n

−1/2
k ) = oP

(
1
)

by the central limit theorem. Combining the bounds, we obtain |σ̂2(Dj) − σ2| = oP(1) for any

j ∈ {1, . . . , k} and therefore |σ2 − σ2| ≤ k−1
∑k

j=1 |σ̂2(Dj)− σ2| = oP(1).
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The proofs of Theorem 3.8 and Corollary 3.9 are stated as an application of Lemmas A.7 and

A.8, which apply under a more general set of requirements.

Proof of Theorem 3.8. We verify (A1)-(A4) of Lemma A.7. For (A1), decompose the object of

interest as

1

nk
‖X(j)Θ̂(j)‖max =

1

nk
‖X(j)

(
Θ̂(j) −Θ∗

)
‖max +

1

nk
‖X(j)Θ∗‖max = ∆1 + ∆2,

where ∆1 can be further decomposed and bounded by

1

nk

∥∥X(j)
(
Θ̂(j) −Θ∗

)∥∥
max

=
1
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i
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‖Xi‖∞ max
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n

kM

q

2

)
< ψ

and by Condition 3.7, ψ = o(d−1) = o(k−1) for any q ≥ 2CMs1(k/n)3/2
√

log d, a fortiori for q a con-

stant. Since Xi is sub-Gaussian, a matching probability bound can easily be obtained for ∆2, thus

we obtain P
(
n−1
k

∥∥X(j)Θ̂(j)
∥∥

max

)
≤ 2ψ for ψ = o(k−1). (A2) and (A3) of Lemma A.7 are applications

of Lemmas A.3 and A.4 respectively. To establish (A4), observe that
(
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(j)T
v ∇2 `

(j)
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∇2 `

(j)
nk

(
β̂λ(Dj)

)
−∇2 `

(j)
nk (β∗)

)
and ∆3 = Θ∗Tv ∇2 `

(j)
nk (β∗)− ev. We thus consider
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)
< δ

for t �MU3n
−1sk log(d/δ). Invoking Hölder’s inequality, Hoeffding’s inequality and Condition 2.1,
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Therefore P
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< 2δ. Finally, with t � n−1(s ∨ s1)k log(d/δ),

P
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)
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hence P
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)
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by Lemma C.4 of Ning and Liu (2014).

Proof of Corollary 3.9. We verify (A5)-(A9) of Lemma A.8. (A5) is satisfied because Θ̃vv is con-

sistent under the required scaling by the statement of the corollary. (A6) is satisfied by Condition

3.7. To verify (A7), first note that ∇`i(β∗) = (b′(XT
i β
∗) − Yi)Xi. According to Lemma A.2, we

know that conditional on X, b′(XT
i β
∗)− Yi is a sub-gaussian random variable. Therefore Lemma

B.5 delivers

P

‖ 1

n

k∑
j=1

∑
i∈Ij

∇`i(β∗)‖∞ > t |X

 ≤ d exp

(
1− ct2

nM2

)
,

which implies that with probability 1− c/d,

‖
k∑
j=1

∑
i∈Ij

∇`i(β∗)‖∞ = C
√
n log d (7.10)

It only remains to verify (A8). Let ξ
(j)
iv = Θ∗Tv ∇ `

(j)
i (β∗)/

√
nΘ∗vv. By the definition of the log

likelihood,

E[ξ
(j)
iv ] =

Θ∗Tv E[∇ `(j)i (β∗)]
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and by independence of {(Yi,Xi)}ni=1,
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1
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By Condition 3.6, θmin > 0, the event {|ξ(j)
iv | > ε} coincides with the event

{∣∣Θ∗Tv ∇ `i(β∗)∣∣ >
ε
√
θminn

}
=
{∣∣Θ∗Tv Xi(Yi − b′(XT

i β
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√
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}
. Furthermore, since

∣∣Θ∗Tv Xi

∣∣ ≤M by Condi-

tion 3.7, this event is contained in the event
{∣∣Yi − b′(XT

i β
∗)
∣∣ > δ

}
, where δ = ε

√
θminn/M . By

an analogous calculation to that of equation (7.8), we have

E
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1{|Yi − b′(XT

i β
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]
≤ δ−ηE
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Yi − b′(XT

i β
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]
.

Hence, setting η = 2 and noting that E
[
(Yi − b′(XT

i β
∗))2+η|X

]
≤ C
√

2 + ηφU2 by Lemma A.2, it

follows that

lim
k→∞
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k∑
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∑
i∈Ij

E
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(j)
i,v )2 1{|ξ(j)
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1/(nε
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where the last inequality follows because ‖Σ‖max = ‖E[XiX
T
i ]‖max < M2 by Condition 3.6. Simi-

larly, we have for any ε > 0,

ε−3 lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Ij

E
[
(ξ

(j)
i,v )3 1{|ξ(j)

i,v | > ε}
]

= 0.

Applying the self-normalized Berry-Essen inequality, we complete the proof of this corollary.

7.2 Proofs for Section 3.2

The proof of Theorem 3.11 relies on several preliminary lemmas, collected in the Supplementary

Material. Without loss of generality we set H0 : β∗v = 0 to ease notation.

Proof of Theorem 3.11. Since S(0) = k−1
∑k

j=1 Ŝ
(j)(0, β̂λ−v(Dj)), and (B1)-(B4) of Condition A.9

are fulfilled under Conditions 3.6 and 2.1 by Lemma A.10 (see Appendix A). The proof is now

simply an application of Lemma A.13 with β∗v = 0 under the restriction of the null hypothesis.

Proof of Lemma 3.14. The proof is an application of Lemma A.16, noting that (B1)-(B5) of Con-

dition A.9 are fulfilled under Conditions 3.6 and 2.1 by Lemmas A.10 and A.11.

7.3 Proofs for Section 4

Recall from Section 2 that for an arbitrary matrix M , M` denotes the transposed `th row of M

and [M ]` denotes the `th column of M .

Proof of Lemma 4.1. According to Theorem 7.2, we have
√
n(β

d − β∗) = Z + ∆, where Z =
1√
k

∑k
j=1

1√
nk
M (j)X(j)Tε(j). In (7.6), we prove that ‖∆‖∞/

√
n ≤ Csk log d/n with probability

larger than 1 − exp(−ckn) − d−c/2 ≥ 1 − c1/d for some constant c1. Since β̂d is a special case of

β
d

when k = 1, we also have
√
n(β̂d − β∗) = Z + ∆1, where (7.6) gives ‖∆‖∞/

√
n ≤ Cs log d/n.

Therefore, we have ‖βd − β̂d‖∞ ≤ Csk log d/n with high probability.

It only remains to bound the rate of ‖Z‖∞/
√
n. By Condition 3.2, conditioning on {Xi}ni=1,

we have for any ` = 1, . . . , d,

P
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|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
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)
≤ 2 exp
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, (7.12)

where κ is the variance proxy of ε defined in Condition 3.2 and

Q` =
1

n

k∑
j=1

‖X(j)M
(j)T
` ‖22.

Let Qmax = max1≤`≤dQ`. Applying the union bound to (7.12), we have

P
(
‖Z‖∞/

√
n > t

∣∣∣ {Xi}ni=1

)
≤ P

(
max

1≤`≤d
|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
≤

d∑
`=1

P
(
|Z`|/

√
n > t

∣∣∣ {Xi}ni=1

)
≤ 2d exp

(
− cnt2

κ2Qmax

)
.
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Let t =
√

2κ2Qmax log d/(cn), then with conditional probability 1− 2/d,

‖Z‖∞/
√
n ≤

√
κ2Qmax log d/(cn). (7.13)

The last step is to bound Qmax. By the definition of Q`, we have

Q` =
1

k

k∑
j=1

M
(j)T
` Σ̂(j)M

(j)
` ≤ 1

k

k∑
j=1

[Ω]T` Σ̂(j)[Ω]` =
1

k

k∑
j=1

1

nk

∑
i∈Dj

(XT
i [Ω]`)

2 =
1

n

n∑
i=1

(XT
i [Ω]`)

2,

(7.14)

where Ω = Σ−1. The inequality is due to the fact that M
(j)
` is the minimizer in (3.4). By condi-

tion (3.2) and the connection between subgaussian and subexponential distributions, the random

variable (XT
i Ω`)

2 satisfies

sup
q≥1

q−1
(
E|(XT

i Ω`)
2|q
)1/q ≤ 4κ2Ω``.

Therefore, by Bernstein’s inequality for subexponential random variables, we have

P
(∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2 − E[XT
1 [Ω]`]

2
∣∣∣ > t

)
≤ 2 exp

(
− c
( nt2

16κ4Ω2
``

)∧( nt

4κ2Ω``

))
.

Applying the union bound again, we have

P
(

max
1≤`≤d

∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2 − E[XT
1 [Ω]`]

2
∣∣∣ > 8κ2Ω``

√
log d

cn

)
≤

d∑
j=1

P
(∣∣∣ 1
n

n∑
i=1

(XT
i [Ω]`)

2 − E[XT
1 [Ω]`]

2
∣∣∣ > 8κ2Ω``

√
log d

cn

)
≤ 2/d.

Therefore, with probability 1− 2/d, there exist a constant C1 such that

Qmax = max
1≤`≤d

Q` ≤ max
1≤`≤d

∣∣∣ 1
n

n∑
i=1

(XT
i Ω`)

2 − E[XT
1 Ω`]

2
∣∣∣+ E[XT

1 Ω`]
2 ≤ 8κ2Ωjj

√
log d

cn
+ Ωjj ≤ C1,

where the last inequality is due to Condition 3.1. By (7.13), we have with probability 1 − 4/d,

‖Z‖∞/
√
n ≤

√
κ2C1 log d/(cn). Combining this with the result on ‖∆‖∞ delivers the rate in the

lemma.

Proof of Theorem 4.3. By Lemma 4.1 and k = O(
√
n/(s2 log d)), there exists a sufficiently large

C0 such that for the event E := {
∥∥βd −β∗∥∥∞ ≤ C0

√
log d/n}, we have P(E) ≥ 1− c/d. We choose

ν = C0

√
log d/n, which implies that, under E , we have ν ≥

∥∥βd − β∗∥∥∞.

Let S be the support of β∗. The derivations in the remainder of the proof hold on the event E .

Observe Tν(β
d
Sc) = 0 as ‖βdSc‖∞ ≤ ν. For j ∈ S, if |β∗j | ≥ 2ν, we have |βdj | ≥ |β∗j |− ν ≥ ν and thus

|Tν(β
d
j )− β∗j | = |β

d
j − β∗j | ≤ ν. While if |β∗j | < 2ν, |Tν(β

d
j )− β∗j | ≤ |β∗j | ∨ |β

d
j − β∗j | ≤ 2ν. Therefore,

on the event E ,∥∥Tν(β
d
)− β∗

∥∥
2

=
∥∥Tν(β

d
S)− β∗S

∥∥
2
≤ 2
√
sν and

∥∥Tν(β
d
)− β∗

∥∥
∞ =

∥∥Tν(β
d
S)− β∗S

∥∥
∞ ≤ 2ν.
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The statement of the theorem follows because ν = C0

√
log d/n and P(E) ≥ 1− c/d. Following the

same reasoning, on the event E ′ := E∪{
∥∥β̂d−β∗∥∥∞ ≤ C0

√
log d/n}∪{

∥∥β̂d−βd∥∥∞ ≤ C0sklog d/n},
we have∥∥Tν(β

d
)− Tν(β

d
)
∥∥

2
=
∥∥Tν(β

d
S)− Tν(β̂dS)

∥∥
2
≤
∥∥βdS − β̂dS∥∥2

≤
√
s
∥∥βdS − β̂dS∥∥∞ ≤ Cs3/2k log d/n.

As Lemma 4.1 also gives P(E ′) ≥ 1− c/d, the proof is complete.

Proof of Lemma 4.6. The strategy of proving this lemma is similar to the proof of Lemma 4.1. In

the proof of Lemma A.7 and Theorem 3.8, we have shown that

(β
d − β∗) = −1

k

k∑
j=1

Θ̂
(j)T ∇ `(j)nk (β∗)︸ ︷︷ ︸
T

+
1

k

k∑
j=1

∆j ,

where the remainder term for each j is

∆j =

(
I − Θ̂(j)T 1

nk

∑
i∈Ij

b′′(η̃i)XiX
T
i

)
(β̂λ(Dj)− β∗)

and η̃i = tXT
i β
∗ + (1 − t)XT

i β̂
λ(Dj) for some t ∈ (0, 1). We bound ∆j by decomposing it into

three terms:

‖∆j‖∞ ≤
∥∥∥(I −Θ∗

1

nk

∑
i∈Ij

b′′(XT
i β
∗)XiX

T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I1

+
∥∥∥Θ∗

1

nk

∑
i∈Ij

(b′′(XT
i β̂

λ(Dj))− b′′(XT
i β
∗))XiX

T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I2

+
∥∥∥(Θ̂(j) −Θ∗)T

1

nk

∑
i∈Ij

b′′(XT
i β̂

λ(Dj))XiX
T
i

)
(β̂λ(Dj)− β∗)

∥∥∥
∞︸ ︷︷ ︸

I3

.

By Hoeffding’s inequality and Condition 3.3, the first term is bounded by

|I1| ≤
∥∥∥I −Θ∗

1

nk

∑
i∈Ij

b′′(XT
i β
∗)XiX

T
i

∥∥∥
max

∥∥∥β̂λ(Dj)− β∗
∥∥∥

1
≤ C sk log d

n
, (7.15)

with probability 1− c/d. By Condition 3.6 (iii), Condition 3.7 (iv) and Lemma A.4, we have with

probability 1− c/d,

|I2| ≤ max
i

∥∥Θ∗Xi

∥∥
∞

1

nk

∑
i∈Ij

U3[Xi(β̂
λ(Dj)− β∗)]2 ≤ C

sk log d

n
. (7.16)
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Finally, we bound I3 by with probability 1− c/d,

|I3| ≤
(
U2

1

nk

∑
i∈Ij

b′′(XT
i β̂

λ(Dj))[XT
i (Θ̂(j) −Θ∗)]2

)1/2( 1

nk

∑
i∈Ij

[Xi(β̂
λ(Dj)− β∗)]2

)1/2

≤ C
(s1 ∨ s)k log d

n
, (7.17)

where the last inequality is due to Lemma A.4 and Lemma C.4 of Ning and Liu (2014).

Combining (7.15) - (7.17) and applying the union bound, we have

∥∥∥1

k

k∑
j=1

∆j

∥∥∥
∞
≤ max

j
‖∆j‖∞ = OP

((s1 ∨ s)k log d

n

)
.

Therefore, we only need to bound the infinity norm of the leading term T. By Condition 3.7 and

equation (7.10), we have with probability 1− c/d,

max
1≤j≤k

max
1≤v≤d

‖Θ̂(j)
v −Θ∗v‖1 ≤ Cs1

√
log d/n and

∥∥∥1

k

k∑
j=1

∇ `(j)nk (β∗)
∥∥∥
∞
≤ C

√
log d/n. (7.18)

This, together with Condition 3.6 and Condition 3.7 give the bound,

‖T‖∞ ≤
(
M max

v,j
‖Θ̂(j)

v −Θ∗v‖1 + max
i
‖XT

i Θ∗‖∞
)∥∥∥1

k

k∑
j=1

∇ `(j)nk (β∗)
∥∥∥
∞
≤ C

(√ log d

n
+
s1 log d

n

)
,

with probability 1 − c/d. Since β̂d is a special case of β
d

when k = 1, the proof of the lemma is

complete.

Proof of Corollary 4.9. By an analogous proof strategy to that of Theorem 4.7,
∣∣[Tζ(Θ)]vv−Θ∗vv

∣∣ =

Op
(√

n−1 log d
)

= oP(1) under the conditions of the Corollary provided k = o
(
((s∨s1) log d)−1√n

)
.

Proof of Theorem 4.10.

β − β̂ =
1

k

k∑
j=1

((X(j))TX(j))−1(X(j))TY (j) − (XTX)−1XTY

=
1

k

k∑
j=1

((
X(j)TX(j)/nk

)−1
− (XTX/n)−1

)
X(j)Tε(j)/nk

=
1

k

k∑
j=1

((
X(j)TX(j)/nk

)−1
− Σ−1

)
X(j)Tε(j)/nk +

(
Σ−1 − (XTX/n)−1

)
XTε/n.

(7.19)

For simplicity, denote X(j)TX(j)/nk by S
(j)
X , XTX/n by SX , (S

(j)
X )−1− (Σ)−1 by D

(j)
1 and (Σ)−1−

SX
−1 by D2. For any τ ∈ R, define an event E(j) = {‖(S(j)

X )−1‖2 ≤ 2/Cmin} ∩ {‖S(j)
X − Σ‖2 ≤
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(δ1 ∨ δ2
1)} for all j = 1, . . . , k, where δ1 = C1

√
d/nk + τ/

√
nk, and an event E = {‖(SX)−1‖2 ≤

2/Cmin} ∩ {‖SX − Σ‖2 < (δ2 ∨ δ2
2)}, where δ2 = C1

√
d/n + τ/

√
n. Note that by Lemma B.1 and

B.4, the probability of both (E(j))c and Ec are very small. In particular

P(Ec) ≤ exp(−cn) + exp(−c1τ
2) and P((E(j))c) ≤ exp(−cn/k) + exp(−c1τ

2).

Then, letting E0 :=
k⋂
j=1
E(j), an application of the union bound and Lemma B.8 delivers

P
(
‖β − β̂‖2 > t

)
≤ P

∥∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk

∥∥∥
2
> t/2

 ∩ E0


+ P

({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)

+ P(Ec0) + P(Ec)

≤ 2 exp

(
d log(6)− t2C3

minn

32C3σ2
1δ

2
1

)
+ k exp(−cn/k) + (k + 1) exp(−c1τ

2).

When d → ∞ and log n = o(d), choose τ =
√
d/c1 and δ1 = O(

√
kd/n). Then there exists a

constant C such that

P

(
‖β − β̂‖2 > C

√
kd

n

)
≤ (k + 3) exp(−d) + k exp(−cn

k
).

Otherwise choose τ =
√

log n/c1 and δ1 = O(
√
k log n/n). Then there exists a constant C such

that

P

(
‖β − β̂‖2 > C

√
k log n

n

)
≤ k + 3

n
+ k exp(−cn

k
).

Overall, we have

P

(
‖β − β̂‖2 > C

√
k(d ∨ log n)

n

)
≤ ck exp(−(d ∨ log n)) + k exp(−cn/k),

which leads to the final conclusion.

Proof of Corollary 4.12. Define an event E = {‖βd−β∗‖∞ ≤ 2C
√

log d/n}, then by the condition

on the minimal signal strength and Lemma 4.1, for some constant C ′ we have

P

(
‖βr − β̂o‖2 > C ′

√
k(s ∨ log n)

n

)
≤ P

({
‖βr − β̂o‖2 > C ′

√
k(s ∨ log n)

n

}
∩ E

)
+ P(Ec)

≤ P

({
‖βo − β̂o‖2 > C ′

√
k(s ∨ log n)

n

}
∩ E

)
+ c/d

≤ ck exp(−(s ∨ log n)) + k exp(−cn/k) + c/d.

where β
o

= 1
k

k∑
j=1

(X
(j)T
S X

(j)
S )−1X

(j)T
S Y (j), which is the average of the oracle estimators on the

subsamples. Then the conclusion can be easily validated.

34



Proof of Theorem 4.13. The following notation is used throughout the proof.

S(β) := ∇2`n(β) =
1

n
XTD(Xβ)X, S(j)(β) := ∇2`(j)nk (β) =

1

nk
X(j)TD(X(j)β)X(j),

SX :=
1

n
XTX, S

(j)
X :=

1

nk
X(j)TX(j)

For any j = 1, . . . , k, β̂(j) satisfies

∇`(j)nk (β̂(j)) =
1

nk
X(j)T (Y (j) − µ(X(j)β̂(j))) = 0.

Through a Taylor expansion of the left hand side at the point β = β∗, we have

1

nk
X(j)T (Y (j) − µ(X(j)β∗))− S(j)(β̂(j) − β∗)− r(j) = 0,

where the remainder term r(j) is a d dimensional vector with gth component

r(j)
g =

1

6nk
(β̂(j) − β∗)T∇2

β[(X(j)
g )Tµ(X(j)β)](β̂(j) − β∗)

=
1

6nk
(β̂(j) − β∗)TX(j)Tdiag{X(j)

g ◦ µ′′((X(j)β̃(j)))}X(j)(β̂(j) − β∗),

where β̃(j) is in a line segment between β̂(j) and β∗. It therefore follows that

β̂(j) = β∗ + (S(j))−1[X(j)T (Y (j) − µ(X(j)β∗)) + nkr
(j)].

A similar equation holds for the global MLE β̂:

β̂ = β∗ + S−1[XT (Y − µ(Xβ∗)) + nr],

where for g = 1, . . . , d,

rg =
1

6n
(β̂ − β∗)TXTdiag{Xg ◦ µ′′((Xβ̃(j)))}X(β̂ − β∗).

Therefore we have

1

k

k∑
j=1

β̂(j) − β̂ =
1

k

k∑
j=1

{
(S(j))−1 − Σ−1

}
X(j)T (Y (j) − µ(X(j)β∗))

−
{
S−1 − Σ−1

}
XT (Y − µ(Xβ∗)) +R = B +R,

where R = (1/k)
k∑
j=1

(S(j))−1r(j) − S−1r. We next derive stochastic bounds for ‖B‖2 and ‖R‖2

respectively, but to study the appropriate threshold, we introduce the following events with prob-

ability that approaches one under appropriate scaling. For j = 1, . . . , k and κ, τ, t > 0,

E(j) := {‖(S(j))−1‖2 ≤ 2/Cmin} ∩
{
‖S(j) − Σ‖2 ≤ (δ1 ∨ δ2

1)
}
∩ {‖S(j)

X ‖2 ≤ 2Cmax},
E := {‖S−1‖2 ≤ 2/Lmin} ∩

{
‖S − Σ‖2 ≤ (δ2 ∨ δ2

2)
}
∩ {‖SX‖2 ≤ 2Cmax},

F (j) :=
{
‖β̂(j) − β∗‖2 > t

}
, F :=

{
‖β̂ − β∗‖2 > t

}
,
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where δ1 = C1

√
d/nk+τ/

√
nk and δ2 = C1

√
d/nk+τ/

√
n. Denote the intersection of all the above

events by A. Note that Condition 3.6 implies that
√
b′′(XT

i β)Xi are i.i.d. sub-gaussian vectors,

so by Lemmas B.1, B.4, B.3 and B.10, we have

P(Ac) ≤ (2k + 1) exp
(
−cn
k

)
+ (k + 1) exp(−c1τ

2) + 2k exp

(
d log 6− nC2

minL
2
mint

2

211CmaxU2φk

)
.

We first consider the bounded design, i.e., Condition 3.6 (ii). In order to bound ‖R‖2, we first

derive an upper bound for r
(j)
g . Under the event A, by Lemma A.5 we have

max
1≤g≤d,1≤j≤k

r(j)
g ≤

1

3
MU3Cmaxt

2 and max
1≤g≤d

rg ≤
1

3
MU3Cmaxt

2.

It follows that, under A,

‖R‖2 ≤
2

3
M
√
dU3Cmaxt

2. (7.20)

Note that B is very similar to the RHS of Equation (7.19). Now we use essentially the same

proof strategy as in the OLS part to bound ‖B‖2. Following similar notations as in OLS, we denote

(S(j))−1 − Σ−1 by D
(j)
1 , S−1 − Σ−1 by D2, Y (j) − µ(X(j)β∗) by ε(j) and Y − µ(Xβ∗) by ε. For

concision, we relegate the details of the proof to Lemma B.9, which delivers the following stochastic

bound on ‖B‖2.

P({‖B‖2 > t1} ∩ A) ≤ 2 exp

(
d log(6)− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
. (7.21)

Combining Equation (7.21) with (7.20) leads us to the following inequality.

P
(
‖β − β̂‖2 >

2

3
M
√
dU3Cmaxt

2 + t1

)
≤ (2k + 1) exp

(
−cn
k

)
+ (k + 1) exp(−c1τ

2)

+ (k + 1) exp

(
d log 6− C2

minL
2
minnt

2

211CmaxU2φk

)
+ 2 exp

(
d log 6− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Choose t = t1 =
√
d/nk and, when d� log n, choose τ =

√
d/c1 and δ1 = O(

√
kd/n). Then there

exists a constant C > 0 such that

P

(
‖β − β̂‖2 > C

kd3/2

n

)
≤ (2k + 1) exp(−cn

k
) + 2(k + 2) exp(−d).

When it is not true that d � log n, choose τ =
√

log n/c1 and δ = O(
√
k log n/n). Then there

exists a constant C > 0 such that

P

(
‖β − β̂‖2 > C

k
√
d log n

n

)
≤ (2k + 1) exp(−cn

k
) +

k + 3

n
.

Overall, we have

P

(
‖β − β̂‖2 > C

k
√
d(d ∨ log n)

n

)
≤ ck exp(−cn/k) + ck exp(−cmax(d, log n)),

which leads to the final conclusion.
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Proof of Corollary 4.15. Define an event E = {‖βd−β∗‖∞ ≤ 2C
√

log d/n}, then by the conditions

of Corollary 4.15 and results of Lemma 4.6 and Theorem 4.13,

P
(
‖βr − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

)
≤ P

({
‖βr − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

}
∩ E
)

+ P(Ec)

≤ P
({
‖βo − β̂o‖2 > C ′

k
√
s(s ∨ log n)

n

}
∩ E
)

+ c/d

≤ ck exp(−(s ∨ log n)) + k exp(−cn/k) + c/d.

where β
o

= 1
k

k∑
j=1
β̂o(Dj), β̂o(Dj) = argmaxβ∈Rd,βSc=0 `

(j)(β) and C ′ is a constant. Then it is not

hard to see that the final conclusion is true.
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Supplementary material to

Distributed Estimation and Inference with Statistical Guarantees

Heather Battey∗† Jianqing Fan∗ Han Liu∗ Junwei Lu∗ Ziwei Zhu∗

Abstract

This document contains the supplementary material to the paper “Distributed Estima-

tion and Inference with Statistical Guarantees”. In Appendix A, we provide the proofs

of technical results required for the analysis of divide and conquer inference. Appendix B

collects the proofs of lemmas for the estimation part.

A Auxiliary Lemmas for Inference

In this section, we provide the proofs of the technical lemmas for the divide and conquer inference.

Lemma A.1. Under Condition 3.2,
(
m

(j)T
v Σ̂m

(j)
v

)−1/2 ≥ cnk for any j ∈ {1, . . . , k} and for any

v ∈ {1, . . . , d}, where cnk satisfies lim infnk→∞ cnk = c∞ > 0.

Proof. The proof appears in the proof of Lemma B1 of Zhao et al. (2014b).

Lemma A.2. Under the GLM (2.7), we have

E exp(t(Y − µ(θ))) = exp(φ−1(b(θ + tφ)− b(θ)− φtb′(θ))),

and typically when there exists U > 0 such that b′′(θ) < U for all θ ∈ R, we will have

E exp(t(Y − µ(θ))) ≤ exp

(
φUt2

2

)
,

which implies that Y is a sub-Gaussian random variable with variance proxy φU .

Proof.

E exp (t(Y − µ(θ))) =

∫ +∞

−∞
c(y) exp

(
yθ − b(θ)

φ

)
exp(t(y − µ(θ)))dy

=

∫ +∞

−∞
c(y) exp

(
(θ + tφ)y − (b(θ) + φtb′(θ))

φ

)
dy

=

∫ +∞

−∞
c(y) exp

(
(θ + tφ)y − b(θ + tφ) + b(θ + tφ)− (b(θ) + φtb′(θ))

φ

)
dy

= exp
(
φ−1(b(θ + tφ)− b(θ)− φtb′(θ))

)
.
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When b′′(θ) < U . the mean value theorem gives

E exp (t(Y − µ(θ))) = exp

(
b′′(θ̃)φ2t2

2φ

)
≤ exp

(
φUt2

2

)
.

Lemma A.3. Under Condition 3.6, we have for any β,β′ ∈ Rd and any i = 1, . . . , n,
∣∣`′′i (XT

i β)−
`′′i (X

T
i β
′)
∣∣ ≤ Ki|XT

i (β − β′)|, where 0 < Ki <∞.

Proof. By the canonical form of the generalized linear model (equation (2.8)),∣∣`′′i (XT
i β)− `′′i (XT

i β
′)
∣∣ =

∣∣b′′(XT
i β)− b′′(XT

i β
′)
∣∣ ≤ |b′′′(η̃)||XT

i (β − β′)|

by the mean value theorem, where η̃ lies in a line segment between XT
i β and XT

i β
′. |b′′′(η)| <

U3 <∞ by Condition 3.6 for any η, hence the conclusion follows with Ki = U3 for all i.

Lemma A.4. Under Conditions 2.6 and 2.1 (i), we have for any δ ∈ (0, 1) such that δ−1 � d,

P
( 1

n

∥∥X(β̂λ − β∗)
∥∥2

2
& s

log(d/δ)

n

)
< δ

Proof. Decompose the object of interest as

1

n

∥∥X(β̂λ − β∗)
∥∥2

2
= (β̂λ − β∗)T (Σ̂− Σ)(β̂λ − β∗) + (β̂λ − β∗)TΣ(β̂λ − β∗)

≤ ‖Σ̂− Σ‖max‖β̂λ − β∗‖21 + λmax(Σ)‖β̂λ − β∗‖22.

This gives rise to the tail probability bound

P
( 1

n

∥∥X(β̂λ−β∗)
∥∥2

2
> t
)
≤ P

(
‖Σ̂−Σ‖max‖β̂λ−β∗‖21 >

t

2

)
+P
(
λmax(Σ)‖β̂λ−β∗‖22 >

t

2

)
. (A.1)

Let M :=
{
‖Σ̂ − Σ‖∞ ≤ M

}
. Since {Xi}ni=1 is bounded, it is sub-Gaussian as well. Suppose

‖Xi‖ψ2 < κ, then by Lemma B.2 we have,

P(Mc) ≤
d∑

p,q=1

P(|Σ̂(j)
pq − Σpq| > M)

≤ d2 exp

(
−Cn ·min

{M2

κ4
,
M

κ2

})
,

where C is a constant. Hence taking M = n−1 log(d/δ),

P(Mc) ≤ d2 exp

{
−Cnmin

{(log(d/δ))2

κ4n2
,
(log(d/δ))2

κ2n

}}
and the right hand side is less than δ for δ−1 � d. Thus by Condition 2.1, the first term on the

right hand side of equation (A.1) is

P
(∥∥Σ̂− Σ

∥∥
max

∥∥β̂λ − β∗∥∥2

1
&
s log(d/δ)

n

)
< 2δ.
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Furthermore, by Condition 3.6 (i), the second term on the right hand side of equation (A.1) is

P
(
λmax(Σ)

∥∥β̂λ − β∗∥∥2

2
& Cmax

s log(d/δ)

n

)
< δ.

Taking t as the dominant term, t � Cmaxn
−1s log(d/δ), yields the result.

Lemma A.5. Under Condition 3.6, we have for any i = 1, . . . , n,

|b′′(XT
i β1)− b′′(XT

i β2)| ≤MU3‖β1 − β2‖1,

and if we consider the sub-Gaussian design instead, we have

P
(
|b′′(XT

i β1)− b′′(XT
i β2)| ≥ hU3‖β1 − β2‖1

)
≤ nd exp

(
1− Ch2

s2
1

)
.

Proof. For the bounded design, by Condition 3.6 (iii), we have

|b′′(XT
i β1)− b′′(XT

i β2)| ≤ U3|XT
i (β1 − β2)| ≤ U3‖Xi‖max‖β1 − β2‖1 ≤MU3‖β1 − β2‖1.

For the sub-Gaussian design, denote the event {max1≤i≤n,1≤j≤d |Xij | ≤ h} by C, where κ is a

positive constant. Then it follows that,

P (Cc) ≤ nd exp

(
1− Ch2

s2
1

)
,

where C is a constant. Since on the event C, |b′′(XT
i β1)− b′′(XT

i β2)| ≤ hU3‖β1 − β2‖1, we reach

the conclusion.

Remark A.6. For the sub-Gaussian design, in order to let the tail probability go to zero, h �
log((n ∨ d)).

Lemma A.7. Suppose, for any k � d satisfying k = o
(
((s ∨ s1)logd)−1√n

)
, the following condi-

tions are satisfied. (A1) P
(
n−1
k

∥∥X(j)Θ̂(j)
∥∥

max
≥ H

)
≤ ξ, where H is a constant and ξ = o(k−1).

(A2) For any β,β′ ∈ Rd and for any i ∈ {1, . . . , n},
∣∣`′′i (XT

i β)− `′′i (XT
i β
′)
∣∣ ≤ Ki

∣∣XT
i (β−β′)

∣∣ with

P(Ki > h) ≤ ψ for ψ = o(k−1) and h = O(1). (A3) P
(
n−1
k

∥∥X(j)(β̂λ−β∗)
∥∥2

2
& n−1sk log(d/δ)

)
< δ.

(A4) P
(

max1≤v≤d

∣∣∣(Θ̂(j)T
v ∇2 `

(j)
nk

(
β̂λ(Dj)

)
− ev

)(
β̂λ(Dj)− β∗

)∣∣∣ & n−1sk log(d/δ)
)
< δ. Then

β
d
v − β∗v = −1

k

k∑
j=1

Θ̂(j)T
v ∇ `(j)nk (β∗) + oP(n−1/2).

for any 1 ≤ v ≤ d.

Proof of Lemma A.7. β
d
v − β∗v = k−1

∑k
j=1

(
β̂v(Dj)− β∗v)

)
. By the definition of β̂d(Dj),

β̂dv (Dj)− β∗v = β̂λv (Dj)− β∗v − Θ̂(j)T
v ∇ `(j)nk (β̂λ(Dj)).

3



Consider a mean value expansion of ∇ `(j)nk (β̂λ
(
Dj)
)

around β∗:

∇ `(j)nk
(
β̂λ(Dj)

)
= ∇ `(j)nk (β∗) +∇2 `(j)nk (βα)

(
β̂λ(Dj)− β∗

)
,

where βα = αβ̂λ(Dj) + (1− α)β∗, α ∈ [0, 1]. So

1

k

k∑
j=1

β̂dv (Dj)− β∗v = −1

k

k∑
j=1

Θ̂(j)T
v ∇ `(j)nk (β∗)− 1

k

k∑
j=1

(
Θ̂(j)T
v ∇2 `(j)nk (βα)− ev

)
(β̂λ(Dj)− β∗)︸ ︷︷ ︸

∆

and |∆| ≤ 1
k

∑k
j=1

(
|∆(j)

1 |+ |∆
(j)
2 |
)

where∣∣∆(j)
1

∣∣ =
∣∣∣(Θ̂(j)T

v ∇2 `(j)nk
(
β̂λ(Dj)

)
− ev

)(
β̂λ(Dj)− β∗

)∣∣∣.
By (A4) of the lemma, for t � n−1sk log(d/δ),

P
(
|
k∑
j=1

∆
(j)
1 | > kt

)
≤ P

(
∪kj=1|∆

(j)
1 | > t

)
≤

k∑
j=1

P(|∆(j)
1 | > t) < kδ.

Substituting δ = o(k−1) in the expression for t and noting that k � d, we obtain k−1
∑k

j=1 ∆
(j)
1 =

oP(n−1/2) for k = o
(
(s log d)−1√n

)
. By (A2),∣∣∆(j)

2

∣∣ =
∣∣∣Θ̂(j)T

v

(
∇2 `(j)nk (βα)−∇2 `(j)nk (β̂λ(Dj))

)(
β̂λ(Dj)− β∗

)∣∣∣
=

∣∣∣ 1

nk

∑
i∈Ij

Θ̂(j)T
v XiX

T
i

(
β̂λ(Dj)− β∗

)(
`′′i (X

T
i βα)− `′′i (XT

i β̂
λ(Dj))

)∣∣∣
≤

(
max

1≤i≤n
Ki

)( 1

nk
‖X(j)Θ̂(j)‖max

)∥∥∥ 1

nk
X(j)(β̂λ(Dj)− β∗)

∥∥∥2

2
,

therefore by (A1) and (A3) of the lemma, for t � n−1sk log(d/δ),

P
(
|
k∑
j=1

∆
(j)
2 | > kt

)
≤ P

(
∪kj=1|∆

(j)
2 | > t

)
≤

k∑
j=1

P(|∆(j)
2 | > t) < k(ψ + δ + ξ).

Substituting δ = o(k−1) in the expression for t and noting that k � d, we obtain k−1
∑k

j=1 ∆
(j)
2 =

oP(n−1/2) for sk log(d/δ) = o(
√
n), i.e. for k = o

(
(s log d)−1√n

)
. Combining these two results

delivers ∆ = oP(n−1/2) for k = o
(
(s log d)−1√n

)
.

Lemma A.8. Suppose, in addition to Conditions (A1)-(A5) of Lemma A.7, (A5)
∣∣Θ̃vv − Θ∗vv

∣∣ =

oP(1) for all v ∈ {1, . . . , d}; (A6) 1/Θ∗vv = O(1) for all v ∈ {1, . . . , d}; (A7) ‖
∑

1≤j≤k
∑

i∈Ij ∇`i(β
∗)‖∞ =

OP(
√
n log d); (A8) For each v ∈ {1, . . . , d}, letting ξ

(j)
iv = Θ∗Tv ∇ `

(j)
i (β∗)/

√
nΘ∗vv, E

[
ξ

(j)
iv

]
= 0,

Var
(∑k

j=1

∑
i∈Ij ξ

(j)
iv

)
= 1 and, for all ε > 0,

lim
k→∞

lim
nk→∞

k∑
j=1

∑
i∈Dj

E
[
(ξ

(j)
iv )2 1{|ξ(j)

iv | > ε}
]

= 0. (A.2)
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Then under H0 : β∗v = βHv , taking k = o(((s ∨ s1) log d)−1√n) delivers Sn  N(0, 1), where Sn is

defined in equation (3.13).

Proof. Rewrite equation (3.13) as

Sn =
√
n

1

k

k∑
j=1

[
β̂dv − βHv
(Θ∗vv)

1/2
+
β̂dv − βHv
(Θ∗vv)

1/2

(
(Θ∗vv)

1/2[
Θ̂(j)Ĥ(j)Θ̂(j)T

]1/2
vv

− 1

)]

=

k∑
j=1

∑
i∈Ij

(
∆

(j)
1,i + ∆

(j)
2,i

)
, where (A.3)

∆
(j)
1,i =

Θ̂
(j)T
v ∇ `(j)i (β∗)

(nΘ∗vv)
1/2

, ∆
(j)
2,i =

Θ̂
(j)T
v ∇ `(j)i (β∗)

(nΘ∗vv)
1/2

(
(Θ∗vv)

1/2

Θ
1/2
vv

− 1

)
.

Further decomposing the first term, we have

k∑
j=1

∑
i∈Ij

∆
(j)
1,i =

k∑
j=1

∑
i∈Ij

ξ
(j)
i,v + ∆, where ∆ =

k∑
j=1

∑
i∈Ij

(
Θ̂(j)
v −Θ∗v

)T ∇ `i(β∗)
(nΘ∗vv)

1/2

and
∑k

j=1

∑
i∈Ij ξ

(j)
i,v  N(0, 1) by the Lindeberg-Feller central limit theorem. Then by Hölder’s

inequality, Condition 3.7 and Assumption (A6) and (A7),

|∆| ≤ max
1≤j≤k

∥∥Θ̂(j)
v −Θ∗v

∥∥
1

‖
∑k

j=1

∑
i∈Ij ∇`i(β

∗)
∥∥
∞

(nΘ∗vv)
1/2

= OP

(
s1

√
k log d

n

)
OP(

√
log d) = oP(1),

where the last equation holds with the choice of k = o((s1 log d)−1√n). Letting ∆
(j)

= (Θ∗vv)
1/2 −

Θ
1/2
vv we have

k∑
j=1

∑
i∈Ij

∆
(j)
2,i =

k∑
j=1

∑
i∈Ij

Θ∗Tv ∇ `
(j)
i (β∗)

(Θ∗vv)
1/2

∆
(j)

+

k∑
j=1

∑
i∈Ij

(
Θ̂(j)
v −Θ∗v

)T ∇ `i(β∗)
(Θ∗vv)

1/2
∆

(j)

=
k∑
j=1

∑
i∈Ij

(
∆

(j)
21,i + ∆

(j)
22,i

)
, where

∣∣∣ k∑
j=1

∑
i∈Ij

∆
(i)
21,i

∣∣∣ ≤ ∣∣∣ k∑
j=1

∑
i∈Ij

ξ
(j)
i,v

∣∣∣∣∣Θ1/2
vv − (Θ∗vv)

1/2
∣∣.

Since Θ∗vv ≥ 0, Θ
1/2
vv = |Θvv|1/2 = |Θvv −Θ∗vv + Θ∗vv|1/2 ≤ |Θvv −Θ∗vv|1/2 + (Θ∗vv)

1/2. Similarly

(Θ∗vv)
1/2 = |Θ∗vv|1/2 = |Θ∗vv −Θvv + Θvv|1/2 ≤ |Θ∗vv −Θvv|1/2 + Θ

1/2
vv ,

5



yielding |Θ1/2
vv − (Θ∗vv)

1/2| ≤ |Θvv −Θ∗vv|1/2 and consequently, by assumption (A5),∣∣∆(j)∣∣ =
∣∣Θ1/2

vv − (Θ∗vv)
1/2
∣∣ = oP(1).

Invoking (A9) and the Lindeberg-Feller CLT,
∣∣∣ k∑
j=1

∑
i∈Ij

∆
(i)
21,i

∣∣∣ = OP(1)oP(1) = oP(1). Similarly

∣∣∣ k∑
j=1

∑
i∈Ij

∆
(j)
22,i

∣∣∣ ≤ max
1≤j≤k

‖Θ̂(j)
v −Θ∗v‖1

∣∣∆(j)∣∣∣∣∣(Θ∗Tv Θ∗v
)−1/2

k∑
j=1

∑
i∈Ij

ξ
(j)
iv

∣∣∣ = oP(1).

Combining all terms in the decomposition (A.3) delivers the result.

(B1)-(B5) of Condition A.9 are used in the proofs of subsequent lemmas.

Condition A.9 . (B1) ‖w∗‖1 . s1, ‖J∗‖max <∞ and for any δ ∈ (0, 1),

P
(
‖β̂λ−v − β∗−v‖1 & n−1/2s

√
log(d/δ)

)
< δ and P

(
‖ŵ −w∗‖1 & n−1/2s1

√
log(d/δ)

)
< δ.

(B2) For any δ ∈ (0, 1),

P
(
‖∇−v`n(β∗v ,β

∗
−v)‖∞ & n−1/2

√
log(d/δ)

)
< δ.

(B3) Suppose β̂λ−v satisfies (B1). Then for β−v,α = αβ∗−v + (1− α)β̂λ−v and for any δ ∈ (0, 1),

P

(
sup
α∈[0,1]

∣∣∣(∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
)
(β̂λ−v − β∗−v)

∣∣∣ & s1s
log(d/δ)

n

)
< δ.

(B4) There exists a constant C > 0 such that C < I∗θ|γ < ∞, and for v∗ = (1,−w∗T )T , it holds

that √
nv∗T∇`n(β∗v ,β

∗
−v)√

v∗TJ∗v∗
 N(0, 1).

(B5) For any δ, if there exists an estimator β̃ = (β̃Tv , β̃
T
−v)

T satisfying ‖β̃−β∗‖1 ≤ Cs
√
n−1 log(d/δ)

with probability > 1− δ, then

P
(∥∥∇2 `n(β̃)− J∗

∥∥
max
& n−1/2

√
log(d/δ)

)
< δ.

The proof of Theorem 3.11 is an application of Lemma A.13. To apply this Lemma, we must

first verify (B1) to (B4) of Condition A.9. We do this in Lemma A.10.

Lemma A.10. Under the requirements of Theorem 3.11, (B1) - (B4) of Condition A.9 are fulfilled.

Proof. Verification of (B1). As stated in Theorem 3.11, ‖w∗‖1 = O(s1) and ‖J∗‖max < ∞ by

part (i) of Condition 3.6. The rest of (B1) follows from the proof of Lemma C.3 of Ning and Liu

(2014).
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Verification of (B2). LetXi = (Qi,Z
T
i )T . Since ‖∇γ `n(β∗)‖∞ =

∥∥− 1
n

∑n
i=1

(
Yi−b′(XT

i β
∗)
)
Zi
∥∥
∞,

since the product of a subgaussian random variable and a bounded random variable is subgaussian,

and since E[∇γ `n(β∗)] = 0, we have by Condition 3.6, Bernstein’s inequality and the union bound

P
(
‖∇γ `n(β∗)‖∞ > t

)
< (d− 1) exp{−nt2/M2σ2

b}.

Setting 2(d− 1) exp{−nt2/M2σ2
b} = δ and solving for t delivers the result.

Verification of (B3) Let β∗α = (θ∗,γα) and decompose the object of interest as

∣∣(∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
)
(β̂λ−v − β∗−v)

∣∣ ≤ 5∑
t=1

∣∣∆t

∣∣, (A.4)

where the terms ∆1 - ∆5 are given by ∆1 = ∇2
v,−v`n(β∗α)−∇2

v,−v`n(β∗),

∆2 = ∇2
v,−v`n(β∗)−w∗TJ∗−v,−v, ∆3 = w∗T

(
J∗−v,−v −∇2

−v,−v`n(β∗)
)
,

∆4 = w∗T
(
∇2
−v,−v`n(β∗)−∇2

−v,−v`n(β∗α)
)
, ∆5 = (w∗T − ŵT )∇2

−v,−v`n(β∗α).

We have the following bounds

|∆1| =
∣∣∣ 1
n

n∑
i=1

ZiZ
T
i (β̂λ−v − β∗−v)

(
`′′i (X

T
i β
∗
α)− `′′i (XT

i β
∗)
)∣∣∣

≤ max
1≤i≤n

Ki max
1≤i≤n

‖Xi‖∞
∥∥ 1

n
Z(β̂−v − β∗−v)

∥∥2

2
,

|∆2| ≤
∥∥∇2

v,−v`n(β∗)−J∗v,−v
∥∥
∞‖β̂

λ
−v−β∗−v‖1, |∆3| ≤ ‖w‖1

∥∥J∗−v,−v−∇2
−v,−v`n(β∗)

∥∥
max
‖β̂λ−v−β∗v‖1,

|∆4| =
∣∣w∗T (∇2

−v,−v`n(β∗)−∇2
−v,−v`n(β∗v)

)
(γ̂λ − λ∗)

∣∣
≤ max

1≤i≤n
Ki‖w∗‖1

∥∥ 1

n
Z(β̂λ−v − β∗−v)

∥∥2

2
,

and |∆5| ≤ ‖w∗ − ŵ‖1
∥∥∇−v,−v`n(β∗v)

∥∥
max
‖β̂λ−v − β∗−v‖1. Let ε = δ/5. Then by Condition 3.6 and

Lemma A.4

P
(
|∆1| & s

log(d/ε)

n

)
< ε and P

(
|∆4| & ss1

log(d/ε)

n

)
< ε.

Noting the β∗ itself satisfies the requirements on β̃ in (B5), Lemma A.11 and Condition 2.1 together

give

P
(
|∆2| & s1

log(d/ε)

n

)
< ε and P

(
|∆3| & s1s

log(d/ε)

n

)
< ε.

By (B1) verified above and noting that∥∥∇−v,−v`n(β∗v)
∥∥

max
≤
∥∥∇−v,−v`n(β∗v)−∇−v,−v`n(β∗)

∥∥
max

+
∥∥∇−v,−v`n(β∗)

∥∥
max

,

the proof of Lemma A.11 delivers P
(
|∆5| & s1s log(d/ε)/n

)
< ε. Combining the bounds, we finally

have

P
(

sup
α∈[0,1]

∣∣∣(∇2
v,−v`n(β∗v ,β−v,α)− ŵT∇2

−v,−v`n(β∗v ,β−v,α)
)
(β̂λ−v − β∗−v)

∣∣∣ & s1s
log(d/δ)

n

)
< δ

Verification of (B4). See Ning and Liu (2014), proof of Lemma C.2.
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In the following lemma, we verify (B5) under the same conditions.

Lemma A.11. Under Conditions 3.6 and 2.1, (B5) of Condition A.9 is fulfilled.

Proof. We obtain a tail probability bound for ∆1 and ∆2 in the decomposition

‖∇2 `n(β̃)− J∗‖max ≤ ‖∇2 `n(β̃)−∇2 `n(β∗)‖max + ‖∇2 `n(β∗)− J∗‖max = ∆1 + ∆2.

For the control over ∆1, note that by Condition 3.6 (ii) and (iii),∣∣[∇2 `n(β∗)]jk
∣∣ ≤ ∣∣b′′(XT

i β
∗)
∣∣∣∣XijXik

∣∣ ≤ U2M
2.

Hence Hoeffding’s inequality and the union bound deliver

P(∆2 > t) = P
(
‖∇2 `n(β∗)− J∗‖max > t

)
≤ 2d2 exp

{
− nt2

8U2
2M

4

}
. (A.5)

For the control over ∆1, we have by Lemma A.5,∣∣[∇2 `n(β̃)−∇2 `n(β∗)]jk
∣∣ =

∣∣(b′′(XT
i β̃)− b′′(XT

i β
∗)
)
XijXik

∣∣
≤ M3U3‖β̃ − β∗‖1 ≤M3U3s

√
n−1 log(d/δ)

with probability > 1− δ. Hoeffding’s inequality and the union bound again deliver

P(∆1 > t) = P
(
‖∇2

ηη `n(β̃)−∇2
ηη `n(β∗)‖max > t

)
≤ 2d2 exp

{
− n2t2

8U2
3M

6s2 log(d/δ)

}
. (A.6)

Combining the bounds from equations (A.5) and (A.6) we have

P
(
‖∇2 `(β̃)− J∗‖max > t

)
≤ 2d2

(
exp
{
− nt2

8U2
3M

4

}
+ exp

{
− n2t2

8U2
3M

6s2 log(d/δ)

})
.

Setting each term equal to δ/2, solving for t and ignoring the relative magnitude of constants, we

have t = U3 max
{
n−1s log(d/δ), n−1/2

√
log(d/δ)

}
= U3n

−1/2 log(d/δ), thus verifying (B5).

Lemma A.12. For each j ∈ {1, . . . , k}, let β−v,αj = αjβ̂
λ
−v(Dj)+(1−αj)β∗−v, for some αj ∈ [0, 1],

where β̂λ−v(Dj) is defined in equation (2.2). Define

∆
(j)
1 = (ŵ(Dj)−w∗)T ∇−v `(j)nk (β∗v ,β

∗
−v)

∆
(j)
2 =

(
∇2
v,−v`

(j)
nk

(β∗v ,β−v,αj )− ŵT∇−v,−v`(j)nk (β∗v ,β−v,αj )
)
(β̂λ−v − β∗−v).

Under (B1) - (B3) of Condition A.9,
∣∣∣k−1

∑k
j=1 ∆

(j)
1

∣∣∣ = oP
(
n−1/2

)
and

∣∣∣k−1
∑k

j=1 ∆
(j)
2

∣∣∣ = oP
(
n−1/2

)
whenever k � d is chosen to satisfy k = o

(
(s1 log d)−1√n

)
.

Proof. By Hölder’s inequality,∣∣∆(j)
1

∣∣ =
∣∣(w∗ − ŵ(Dj)

)T∇−v`(j)nk (β∗v ,β
∗
−v)
∣∣ ≤ ‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞,
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hence, for any t, {∣∣∆(j)
1

∣∣ > t
}
⊆
{
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > t

}
.

Taking t = vq where v = Cn−1/2s1

√
k log(d/δ) and q = Cn−1/2

√
k log(d/δ), we have

P
({
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > vq

})
= P

({
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > vq

}
∩
{‖ŵ(Dj)−w∗‖1

v
≤ 1
})

+ P
({
‖ŵ(Dj)−w∗‖1‖∇−v`(j)nk (β∗v ,β

∗
−v)‖∞ > vq

}
∩
{‖ŵ(Dj)−w∗‖1

v
> 1
})
≤ 2δ

by (B1) and (B2) of Condition A.9. Hence the union bound delivers

P
(∣∣ k∑
j=1

∆
(j)
1

∣∣ > kvq
)
≤ P

(
∪kj=1

{∣∣∆(j)
1

∣∣ > vq
})
≤

k∑
j=1

P
(∣∣∆(j)

1

∣∣ > vq
)
≤ 2kδ = o(1)

for δ = o(k−1). Taking δ = k−1 for α > 0 arbitrarily small in the definition of v and q, the

requirement is ks1 log d = o
(√
n
)

and ks1 log k = o(
√
n) for α > 0 arbitrarily small. Since k � d,

k−1
∑k

j=1 ∆
(j)
1 = oP

(
n−1/2

)
with k = o

(
(s1 log d)−1√n

)
. Next, consider∣∣∆(j)

2

∣∣ ≤ sup
α∈[0,1]

∣∣∣(∇2
v,−v`

(j)
nk

(β∗v ,β−v,α)− ŵT∇2
−v,−v`

(j)
nk

(β∗v ,β−v,α)
)
(β̂λ−v(Dj)− β∗−v)

∣∣∣.
By (B3) of Condition A.9, P

(∣∣∆(j)
2

∣∣ ≥ t
)
< δ for t � s1sn

−1k log(d/δ), hence, proceeding in an

analogous fashion to in the control over k−1
∑k

j=1 ∆
(j)
1 , we obtain

P
(∣∣∣ k∑
j=1

∆
(j)
2

∣∣∣ > kt
)
≤ P

(
∪kj=1

∣∣∆(j)
2

∣∣ > t
)
≤

k∑
j=1

P
(∣∣∆(j)

2

∣∣ > t
)
≤ kδ = o(1)

for δ = o(k−1). Hence k−1
∑k

j=1 ∆
(j)
2 = oP

(
n−1/2

)
with k = o

(
(s1s log d)−1n3/2

)
. Since (s1 log d)−1√n =

o
(
(s1s log d)−1n3/2

)
, k−1

∑k
j=1

(
∆

(j)
1 + ∆

(j)
2

)
= oP

(
n−1/2

)
requires k = o

(
(s1 log d)−1√n

)
.

Lemma A.13. Under (B1) - (B4) of Condition A.9, with k � d chosen to satisfy the scaling

k = o
(
((s ∨ s1) log d)−1√n

)
,

1

k

k∑
j=1

Ŝ(j)(β∗v , γ̂
λ(Dj)) =

1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) + oP(n−1/2) and

lim
n→∞

sup
t
|P((J∗v|−v)

−1/2√n1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v) < t)− Φ(t)| → 0.

Proof. Recall

S(j)(β∗v ,β
∗
−v) = ∇v`(j)nk (β∗v ,β

∗
−v)−w∗T∇−v`(j)nk (β∗v ,β

∗
−v).
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Through a mean value expansion of Ŝ(j)(β∗v , β̂
λ
−v(Dj)) around β∗−v, we have for each j ∈ {1, . . . , k},

Ŝ(j)
(
β∗v , β̂

λ
−v(Dj)

)
= ∇v`(j)nk

(
β∗v , β̂

λ
−v(Dj)

)
− ŵ(Dj)T∇−v`(j)nk

(
β∗v , β̂

λ
−v(Dj)

)
= S(j)(β∗v ,β

∗
−v) + ∆

(j)
1 + ∆

(j)
2 ,

for some β−v,α = αβ̂−v(Dj) + (1− α)β∗−v, where

∆
(j)
1 =

(
w∗ − ŵ(Dj)

)T∇−v`(j)nk (β∗v ,β
∗
−v)

∆
(j)
2 =

[
∇2
v,−v`

(j)
nk

(β∗v ,β−v,α)− ŵ(Dj)T∇2
−v,−v`

(j)
nk

(β∗v ,β−v,α)
]
(β̂λ−v(Dj)− β∗−v).

It follows that

1

k

k∑
j=1

Ŝ(j)
(
β∗v , β̂

λ
−v(Dj)

)
=

1

k

k∑
j=1

S(j)(β∗v ,β
∗
−v)+

1

k

k∑
j=1

(
∆

(j)
1 +∆

(j)
2

)
=

1

k

k∑
j=1

S(j)(θ∗,γ∗)+oP(n−1/2)

(A.7)

by Lemma A.12 whenever k = o
(
(s1 log d)−1√n

)
. Observe

√
n
(
k−1

k∑
j=1

S(j)(β∗v ,β
∗
−v)
)

=
√
n(1,−w∗T )

(1

k

k∑
j=1

∇ `(j)nk (β∗v ,β
∗
−v)
)

and

J∗v|−v = (1,−w∗T )J∗(1,−w∗T )T .

So
√
n 1
k

∑k
j=1 S

(j)(β∗v ,β
∗
−v)  N(0, J∗v|−v) by Condition (B4). Similar to Corollary 3.9, we apply

the Berry-Essen inequality to show that supt |P(
√
n 1
k

∑k
j=1 S

(j)(β∗v ,β
∗
−v) < t)− Φ(t)| → 0.

Lemma A.14. Under Condition (B1), for any δ ∈ (0, 1),

P
(
‖w−w∗‖1 > Cn−1/2s1

√
k log(d/δ)

)
< kδ and P

(
‖β−v−β∗−v‖1 > Cn−1/2s

√
k log(d/δ)

)
< kδ.

Proof. Set t = Cs1

√
n−1(k log(d/δ)) and note

P
(
‖

k∑
j=1

(ŵ(Dj)−w∗)‖1 > kt
)
≤ P

(
∪kj=1‖ŵ(Dj)−w∗‖1 > t

)
≤

k∑
j=1

P
(
‖w −w∗‖1 > t

)
by the union bound. Then by Condition (B1), P

(
‖w −w∗‖1 > Cn−1/2s1

√
k log(d/δ)

)
< kδ. The

proof of the second bound is analogous, setting t = Cs
√
n−1(k log(d/δ)).

Lemma A.15. Suppose (B5) of Condition A.9 is satisfied. For any δ, if there exists an estimator

β̃ = (β̃Tv , β̃
T
−v)

T satisfying ‖β̃ − β∗‖1 ≤ Cs
√
n−1 log(d/δ) with probability 1− δ, then

P
(∥∥∥1

k

k∑
j=1

∇2 `(j)nk (β̃)− J∗
∥∥∥

max
> Cn−1/2

√
k log(d/δ)

)
< kδ.
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Proof. The proof follows from (B5) in Condition A.9 via an analogous argument to that of Lemma

A.14, taking t = C
√
n−1(k log(d/δ)).

Lemma A.16. Suppose (B1)-(B5) of Condition A.9 are fulfilled. Then for any k � d satisfying

k = o
(
((s ∨ s1) log d)−1√n

)
, |Jθ|γ − J∗v|−v| = oP(1).

Proof. Recall that J∗v|−v = J∗v,v − J∗v,−vJ∗−1
−v,−vJ

∗
−v,v and

Jv|−v =
1

k

k∑
j=1

(
∇v,v `(j)nk (β

d
v,β−v)− wT∇2

−v,v`
(j)
nk

(β
d
v,β−v), so

∣∣Jv|−v − J∗v|−v∣∣ =
∣∣1
k

k∑
j=1

∇v,v `(j)nk (β
d
v,β−v)− J∗v,v

∣∣
︸ ︷︷ ︸

∆1

+
∣∣wT

(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)−w∗TJ∗−v,v

)∣∣
︸ ︷︷ ︸

∆2

.

Let β̃ = (β
d
v,β−v) and note that ‖β̃−β∗‖1 satisfies the clause in (B5) of Condition A.9 by Lemma

A.14 when k = o
(
((s ∨ s1) log d)−1√n

)
. Hence ∆1 = oP(1) by Lemma A.15.

∆2 ≤
∣∣∣(w −w∗)T(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

)∣∣∣︸ ︷︷ ︸
∆21

+
∣∣(w −w∗)TJ∗−v,v∣∣︸ ︷︷ ︸

∆22

+
∣∣∣w∗T(1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

)∣∣∣︸ ︷︷ ︸
∆23

.

By the fact that ‖J∗‖max < ∞ and ‖w∗‖1 ≤ Cs1 by (B1) of Condition A.9, an application of

Lemmas A.14 and A.15 delivers

∆21 ≤ ‖w −w∗‖1
∥∥1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

∥∥
∞ = oP(1),

∆22 ≤ ‖w −w∗‖1‖J∗−v,v‖∞ = oP(1),

∆23 ≤
∥∥1

k

k∑
j=1

∇2
−v,v`

(j)
nk

(β
d
v,β−v)− J∗−v,v

∥∥
∞‖w

∗‖1 = oP(1)

for k = o
(
(s1 log d)−1n

)
, a fortiori for k = o

(
((s∨s1) log d)−1√n

)
. Hence

∣∣Jv|−v−J∗v|−v∣∣ = oP(1).

B Auxiliary Lemmas for Estimation

In this section, we provide the proofs of the technical lemmas for the divide and conquer estimation.
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Lemma B.1. Suppose X is a n × d matrix that has independent sub-gaussian rows {Xi}ni=1.

Denote E(XiX
T
i ) by Σ, then we have

P
(
‖ 1

n
XTX − ΣX‖2 ≥ (δ ∨ δ2)

)
≤ exp(−c1t

2),

where t ≥ 0, δ = C1

√
d/n+ t/

√
n and C1 and c1 are both constants depending only on ‖Xi‖ψ2 .

Proof. See Vershynin (2010).

Lemma B.2. (Bernstein-type inequality) Let X1, . . . , Xn be independent centered sub-exponential

random variables, and M = max
1≤i≤n

‖Xi‖ψ1 . Then for every a = (a1, . . . , an) ∈ Rn and every t ≥ 0,

we have

P

(
n∑
i=1

aiXi ≥ t

)
≤ exp

(
−C2 min

(
t2

M2‖a‖22
,

t

M‖a‖∞

))
.

Proof. See Vershynin (2010).

Lemma B.3. Suppose X is a n × d matrix that has independent sub-gaussian rows {xi}ni=1. If

λmax(Σ) ≤ Cmax and d� n, then for all M > Cmax, there exists a constant c > 0 such that when

n and d are sufficiently large,

P
(∥∥∥ 1

n
XTX

∥∥∥
2
≥M

)
≤ exp(−cn).

Proof. Apply Lemma B.1 with t =
√
cn/c1, where (

√
c/c1 ∨ c/c1) < M −Cmax, and it follows that

P
(∥∥∥ 1

n
XTX − Σ

∥∥∥
2
≥ (δ ∨ δ2)

)
≤ exp(−cn).

Since d� n, we obtain (δ ∨ δ2)→
√
c/c1, which completes the proof.

Lemma B.4. Suppose X is a n × d matrix that has independent sub-gaussian rows {Xi}ni=1.

EXi = 0, λmin(Σ) ≥ Cmin > 0 and d � n. For all m < Cmin, there exists a constant c > 0 such

that when n and d are sufficiently large,

P
(∥∥∥( 1

n
XTX

)−1∥∥∥
2
≥ 1

m

)
= P

(
λmin

( 1

n
XTX

)
≤ m

)
≤ exp(−cn).

Proof. It is easy to check the following inequality. For any two symmetric and semi-definite d× d
matrices A and B, we have

λmin(A) ≥ λmin(B)− ‖A−B‖2 ,

because for any vector x satisfying ‖x‖2 = 1, we have ‖Ax‖2 = ‖Bx+ (A−B)x‖2 ≥ ‖Bx‖2 −
‖(A−B)x‖2 ≥ λmin(B)− ‖A−B‖2. Then it follows that

P
(∥∥∥( 1

n
XTX

)−1∥∥∥
2
≥ 1

m

)
= P

(
λmin

( 1

n
XTX

)
≤ m

)
≤ P

(
λmin(Σ)−

∥∥∥ 1

n
XTX − Σ

∥∥∥
2
≥ m

)
≤ P

(∥∥∥ 1

n
XTX − ΣX

∥∥∥
2
≥ Cmin −m

)
≤ exp(−cn),
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where c satisfies (
√
c/c1 ∨ c/c1) < Cmin−m and the last inequality is an application of Lemma B.1

with t =
√
cn/c1.

Lemma B.5. (Hoeffding-type Inequality). Let X1,. . . ,Xn be independent centered sub-gaussian

random variables, and let K = max
i
‖Xi‖ψ2 . Then for every a = (a1, . . . , an) ∈ Rn and every t > 0,

we have

P

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣ ≥ t
)
≤ e · exp

(
− ct2

K2‖a‖22

)
.

Lemma B.6. (Sub-exponential is sub-gaussian squared). A random variable X is a sub-gaussian

if and only if X2 is sub-exponential. Moreover,

‖X‖2ψ2
≤ ‖X2‖ψ1 ≤ 2‖X‖2ψ2

.

Lemma B.7. Let X1,. . . ,Xn be independent centered sub-gaussian random variables. Let κ =

maxi ‖Xi‖ψ2 and σ2 = maxi EX2
i . Suppose σ2 > 1, then we have

P

(
1

n

n∑
i=1

X2
i > 2σ2

)
≤ exp

(
−C2

σ2n

κ2

)
.

Proof. Combining Lemma B.2 and Lemma B.6 yields the result.

Lemma B.8. Following the same notation as in the beginning of Proof of Theorem 4.10,

P

∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk

∥∥
2
> t/2

 ∩ E0

 ≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)

and

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ2 ∨ δ2

2)2

)
.

Proof.

E
(

exp
(
λ(D

(j)
1 v)T (X(j)Tε(j)/nk)

)
|X(j)

)
=

nk∏
i=1

E
(

exp
(

(λX
(j)
i /nk)

T (D(j)v)εi

)
|X(j)

)
≤ exp

(
C3λ

2s2
1

n∑
i=1

(A
(j)
i )2/n2

k

)
,

(B.1)

E
(
exp

(
λ(D2v)T (XTε/n)

)
|X
)

=
N∏
i=1

E
(
exp

(
(λXi/N)T (D2v)εi

)
| X
)

≤ exp

(
C3λ

2s2
1

N∑
i=1

A2
i /n

2

)
,

(B.2)
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where we write A
(j)
i and Ai in place of (X

(j)
i )TD

(j)
1 v and (Xi)

TD2v respectively C3 is an absolute

constant, and the last inequality holds because εi are sub-gaussian. Next we provide an upper

bound on
nk∑
i=1

(A
(j)
i )2 and

n∑
i=1

A2
i . Note that

n∑
i=1

(A
(j)
i )2 = vTD

(j)
1 XTXD

(j)
1 v = vT ((S

(j)
X )−1 − (Σ)−1)nkS

(j)
X ((S

(j)
X )−1 − (Σ)−1)v

= nkv
TΣ−1(Σ− S(j)

X )(S
(j)
X )−1(Σ− S(j)

X )Σ−1v,

and similarly,
n∑
i=1

A2
i = nvTΣ−1(Σ− SX)(SX)−1(Σ− SX)Σ−1v.

For any τ ∈ R, define the event E(j) = {‖(S(j)
X )−1‖2 ≤ 2/Cmin} ∩ {‖S(j)

X − Σ‖2 ≤ (δ1 ∨ δ2
1)} for all

j = 1, . . . , k, where δ1 = C1

√
d/nk + τ/

√
nk, and the event E = {‖(SX)−1‖2 ≤ 2/Cmin} ∩ {‖SX −

Σ‖2 < (δ2 ∨ δ2
2)}, where δ2 = C1

√
d/n+ τ/

√
n. On E(j) and E , we have respectively

nk∑
i=1

(A
(j)
i )2 ≤ 2nk

C3
min

(δ1 ∨ δ2
1)2 and

n∑
i=1

A2
i ≤

2n

C3
min

(δ2 ∨ δ2
2)2.

Therefore from Equation (B.1) and (B.2) we obtain

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk))1{E(j)}

)
≤ exp

(
2C3λ

2s2
1

C3
minnk

(δ1 ∨ δ2
1)2

)
and

E
(
exp(λ(D2v)T (XTε/n))1{E}

)
≤ exp

(
2C3λ

2s2
1

C3
minN

(δ2 ∨ δ2
2)2

)
.

In addition, according to Lemma B.1 and B.4, the probability of both (E(j))c and Ec are very

small. More specifically,

P(Ec) ≤ exp(−cn) + exp(−c1τ
2) and P((E(j))c) ≤ exp(−cn/k) + exp(−c1τ

2).

Let E0 :=
k⋂
j=1
E(j). An application of the Chernoff bound trick leads us to the following inequality.

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/2

 ∩ E0


≤ exp(−λt/2)

k∏
j=1

E
(

exp

(
λ

k
(D

(j)
1 v)T (X(j)Tε(j)/nk)

)
1{E(j)}

)

≤ exp

(
−λt/2 +

2C3λ
2s2

1

C3
minn

(δ1 ∨ δ2
1)2

)
.
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Minimize the right hand side by λ, then we have

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/2

 ∩ E0

 ≤ exp

(
− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)
.

Consider the 1/2−net of Rp, denoted by N (1/2). Again it is known that |N(1/2)| < 6p. Using the

maximal inequality, we have

P

∥∥1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk

∥∥
2
> t/2

 ∩ E0


= sup
‖v‖2=1

P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/2

 ∩ E0


≤ sup

v∈N(1/2)
P

1

k

k∑
j=1

(D
(j)
1 v)T (X(j)Tε(j))/nk > t/4

 ∩ E0


≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ1 ∨ δ2

1)2

)
.

Proceeding in an analogous fashion, we obtain

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− t2C3

minn

32C3s2
1(δ2 ∨ δ2

2)2

)
.

Lemma B.9. Following the same notation as in the proof of Theorem 4.13,

P({‖B‖2 > t1} ∩ A) ≤ 2 exp

(
d log(6)− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.

Proof. By Lemma A.2, for any λ ∈ R and v such that ‖v‖2 = 1, we have

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk)) | X(j)

)
=

nk∏
i=1

E
(

exp((λX
(j)
i /nk)

T (D(j)v)εi) | X(j)
)

≤ exp

(
φUλ2

nk∑
i=1

(A
(j)
i )2/n2

k

)

and

E
(
exp(λ(D2v)T (XTε/n)) | X

)
=

n∏
i=1

E
(
exp((λXi/n)T (D2v)εi) | X

)
≤ exp

(
φUλ2

n∑
i=1

A2
i /n

2

)
,
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where we write A
(j)
i and Ai in place of (X

(j)
i )TD

(j)
1 v and (Xi)

TD2v respectively. Next we give a

upper bound on
nk∑
i=1

(A
(j)
i )2 and

n∑
i=1

A2
i . Note that

nk∑
i=1

(A
(j)
i )2 = vTD

(j)
1 XTXD

(j)
1 v

= vT ((S(j))−1 − Σ−1)nSX((S(j))−1 − Σ−1)v

= nvTΣ−1(Σ− S(j))(S(j))−1S
(j)
X (S(j))−1(Σ− S(j))Σ−1v.

Similarly,
n∑
i=1

A2
i = nvTΣ−1(Σ− S)S−1SXS

−1(Σ− S)Σ−1v.

On E(j) and E , we have respectively

nk∑
i=1

(A
(j)
i )2 ≤ 8Cmaxnk

C4
minL

2
min

(δ1 ∨ δ2
1)2 and

n∑
i=1

A2
i ≤

8Cmaxn

C4
minL

2
min

(δ2 ∨ δ2
2)2.

Then it follows that

E
(

exp(λ(D
(j)
1 v)T (X(j)Tε(j)/nk))1{E(j)}

)
≤ exp

(
8φUCmaxλ

2

C4
minL

2
minnk

(δ1 ∨ δ2
1)2

)
and

E
(
exp(λ(D2v)T (XTε/n))1{E}

)
≤ exp

(
8φUCmaxλ

2

C4
minL

2
minn

(δ2 ∨ δ2
2)2

)
.

Now we follow exactly the same steps as in the OLS part. Denote ∩kj=1Ej by E0. An application of

the Chernoff bound technique and the maximal inequality leads us to the following inequality.

P

‖1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk‖2 > t/2

 ∩ E0

 ≤ exp

(
d log(6)− C4

minL
2
minnt

2

128φU2Cmax(δ1 ∨ δ2
1)2

)

and

P
({
‖(XD2)Tε/n‖2 > t/2

}
∩ E
)
≤ exp

(
d log(6)− C4

minL
2
minnt

2

128φU2Cmax(δ2 ∨ δ2
2)2

)
.

We have thus derived an upper bound for ‖B‖2 that holds with high probability. Specifically,

P({‖B‖2 > t1} ∩ A) ≤ P

‖1

k

k∑
j=1

(X(j)D
(j)
1 )Tε(j)/nk‖2 >

t1
2

 ∩ E0


+ P

({
‖(XD2)Tε/n‖2 >

t1
2

}
∩ E
)
≤ 2 exp

(
d log(6)− C4

minL
2
minnt

2
1

128φU2Cmax(δ1 ∨ δ2
1)2

)
.
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Lemma B.10. Under Condition 3.6, for τ ≤ Lmin/(8MCmaxU3

√
d) and sufficiently large n and d

we have

P(‖β̂ − β∗‖2 > τ) ≤ exp

(
d log 6− nC2

minL
2
minτ

2

211CmaxU2φ

)
+ 2 exp(−cn).

Proof. The notation is that introduced in the proof of Theorem 4.13. We further define Σ(β) :=

E(b′′(XTβ)XXT ) as well as the event H := {`n(β∗) > maxβ∈∂Bτ `n(β)}, where Bτ = {β : ‖β −
β∗‖2 ≤ τ}. Note that as long as the event H holds, the MLE falls in Bτ , therefore the proof strategy

involves showing that P(H) approaches 1 at certain rate. By the Taylor expansion,

`n(β)− `n(β∗) = (β − β∗)Tv − 1

2
(β − β∗)TS(β̃)(β − β∗)

= (β − β∗)Tv − 1

2
(β − β∗)TS(β∗)(β − β∗)− 1

2
(β − β∗)T (S(β̃)− S(β∗))(β − β∗)

= A1 +A2,

where S(β) = (1/n)XTD(Xβ)X, β̃ is some vector between β and β∗, v = (1/n)XT (Y −µ(Xβ∗)),

A1 = (β−β∗)Tv−(1/2)(β−β∗)TS(β∗)(β−β∗) and A2 = −(1/2)(β−β∗)T (S(β̃)−S(β∗))(β−β∗).
Define the event E := {λmin [S(β∗)] ≥ Lmin/2}, where Lmin is the same constant in Condition

3.6. Note that by Condition 3.6 (ii),
√
b′′(XT

i β)Xi is a sub-gaussian random vector. Then by

Condition 3.6 (iii) and Lemma B.4, for sufficiently large n and d we have P (Ec) ≤ exp(−cn).

Therefore on the event E ,

A1 ≤ τ(‖v‖2 −
Lmin

4
τ).

We next show that, under an appropriate choice of τ , |A2| < Lminτ
2/8 with high probability.

We first consider Condition 3.6 (ii). Define F := {‖XTX/n‖2 ≤ 2Cmax}. By Lemma B.3, we have

P(Fc) ≤ exp(−cn). By Lemma A.5, on the event F , we have

A2 ≤ max
1≤i≤n

|b′′(XT
i β̃)− b′′(XT

i β
∗)|Cmaxτ

2

≤MU3

√
d‖β̃ − β∗‖2 · Cmaxτ

2

≤MCmaxU3

√
dτ3 ≤ Lminτ

2

8
,

where the last inequality holds if we choose τ ≤ Lmin/(8MCmaxU3

√
d). Now we obtain the following

probabilistic upper bound on Hc, which we later prove to be negligible.

P(Hc) ≤ P(Hc ∩ E ∩ F) + P(Ec) + P(Fc)

≤ P
({
‖v‖2 ≥

Lminτ

8

}
∩ E ∩ F

)
+ P(Ec) + P(Fc).

(B.3)

Since each component of v is a weighted average of i.i.d. random variables, the effect of concentra-

tion tends to make ‖v‖2 very small with large probability, which inspires us to study the moment

generating function and apply the Chernoff bound technique. By Lemma A.2, for any constant
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u ∈ Rd, ‖u‖2 = 1 and let ai = uTXi, then we have for any t ∈ R,

E (exp(t〈u,v〉) |X) =
n∏
i=1

E
(

exp

(
tai
n

(Yi − µ(XT
i β))

)
|X
)

≤ exp

(
φU2t

2

2n2

n∑
i=1

a2
i

)

= exp

(
φU2t

2

2n
· u

TXTXu

n

)
.

It follows that

E exp(t〈u,v〉1{E ∩ F}) ≤ exp

(
φCmaxU2t

2

2n

)
.

By the Chernoff bound technique, we obtain

P({〈u,v〉 > ε} ∩ E ∩ F) ≤ exp

(
− nε2

8CmaxU2φ

)
.

Consider a 1/2−net of Rd, denoted by N(1/2). Since

‖v‖2 = max
‖u‖2=1

〈u,v〉 ≤ 2 max
u∈N(1/2)

〈u,v〉,

it follows that

P({‖v‖2 >
Lminτ

8
} ∩ E ∩ F) ≤ P

({
max

u∈N(1/2)
〈u,v〉 > Lminτ

16

}
∩ E ∩ F

)
≤ 6d exp

(
− nL2

minτ
2

210φCmaxU2

)
= exp

(
d log 6− nC2

minL
2
minτ

2

211CmaxU2φ

)
.

Finally combining the result above with Equation (B.3) delivers the conclusion.

Remark B.11. Simple calculation shows that when d = o(
√
n), ‖β̂ − β∗‖2 = OP(

√
d/n). When

d is a fixed constant, ‖β̂ − β∗‖2 = OP(
√

1/n).
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