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Council for the Arts).

† School of Economics and Finance, University of Tasmania, Private Bag 85, Hobart TAS 7001, Tel: +613 6226
7226, Fax:+61 3 6226 7587; e-mail: Firmin.dokotchatoka@utas.edu.au. Homepage: http://www.fdokotchatoka.com

‡ William Dow Professor of Economics, McGill University, Centre interuniversitaire de recherche en analyse des
organisations (CIRANO), and Centre interuniversitaire de rechercheen économie quantitative (CIREQ). Mailing ad-
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ABSTRACT

We investigate the finite-sample behaviour of the Durbin-Wu-Hausman (DWH)and Revankar-

Hartley (RH) specification tests with or without identification. We consider two setups based on

conditioning upon the fixed instruments and parametric assumptions on the distribution of the er-

rors. Both setups are quite general and account for non-Gaussian errors. Except for a couple of

Wu (1973) tests and the RH-test, finite-sample distributions are not available for the other statistics

[including the most standard Hausman (1978) statistic] even when the errors are Gaussian. In this

paper, we propose an analysis of the distributions of the statistics under both the null hypothesis

(level) and the alternative hypothesis (power). We provide a general characterization of the dis-

tributions of the test statistics, which exhibits useful invariance properties and allows one to build

exact tests even for non-Gaussian errors. Provided such finite-sample methods are used, the tests

remain valid (level is controlled) whether the instruments are strong or weak.The characterization

of the distributions of the statistics under the alternative hypothesis clearly exhibits the factors that

determine power. We show that all tests have low power when all instruments are irrelevant (strict

non-identification). But power does exist as soon as there is one stronginstrument (despite the fact

overall identification may fail). We present simulation evidence which confirmsour finite-sample

theory.

Key words: Exogeneity tests; finite-sample; weak instruments; strict exogeneity; Cholesky error

family; pivotal; identification-robust; exact Monte Carlo exogeneity tests.

JEL classification: C3; C12; C15; C52.
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1. Introduction

A basic problem in econometrics consists of estimating a linear relationship where the explanatory

variables and the errors may be correlated. In order to detect an endogeneity problem between ex-

planatory variables and disturbances, researchers often apply an exogeneity test, usually by resorting

to instrumental variable (IV) methods. Exogeneity tests of the type proposedby Durbin (1954), Wu

(1973), Hausman (1978), and Revankar and Hartley (1973)– henceforth DWH-and RH-tests– are

often used to decide whether one should apply ordinary least squares (OLS) or instrumental vari-

able methods. One key assumption of DWH and RH-tests however, is the available instruments are

strong. Not much is known, at least in finite-sample, about their behaviourwhen identification is

deficient or weak (weak instruments).

In the last two decades, literature has emerged that has raised concernswith the quality of in-

ferences based on conventional methods, such as instrumental variables and ordinary least squares

settings, when the instruments are only weakly correlated with the endogenous regressors. Many

studies have shown that even ex-post conventional large-sample approximations are misleading

when instruments are weak. The literature on the “weak instruments” problemis now consider-

able1. Several authors have proposed identification-robust proceduresthat are applicable even when

the instruments are weak. However, identification-robust procedures usually do not focus on regres-

sor exogeneity or instrument validity. Hence, there is still a reason to be concerned when testing the

exogeneity or orthogonality of a regressor.

In Doko Tchatoka and Dufour (2008), we study the impact of instrument endogeneity on An-

derson and Rubin (1949, AR-test) and Kleibergen (2002, K-test). We show that both procedures are

in general consistent against the presence of invalid instruments (henceinvalid for the hypothesis

of interest), whether the instruments are strong or weak. However, thereare cases where test con-

sistency may not hold and their use may lead to size distortions in large samples. In this paper, we

do not focus on the validity of the instruments. Instead, we question whetherthe standard specifi-

cation tests are valid in finite samples when: (i) errors have possibly non-Gaussian distribution, and

(ii) identification is weak. In the literature, except for Wu (1973,T1, T2 tests) and the Revankar

and Hartley (1973,RH -test), finite-sample distributions are not available for the other specifica-

tion test statistics [including the most standard Hausman (1978) statistic] even when model errors

are Gaussian and identification is strong. This paper fulfills this gap by simultaneously addressing

issues related to finite-sample theory and identification.

Staiger and Stock (1997) provided a characterization of the asymptotic distribution of Hausman

type-tests [namelyH1, H2, andH3] under the local-to-zero weak instruments asymptotic. They

showed that when the instruments are asymptotically irrelevant, all three tests are valid (level is

controlled) but inconsistent. Furthermore, their result indicates thatH1 andH2 are conservative.

Staiger and Stock (1997) then observed that the concentration parameterwhich characterizes instru-

1Seee.g. Nelson and Startz (1990a, 1990b); Dufour (1997); Bekker (1994); Phillips (1989); Staiger and Stock
(1997); Wang and Zivot (1998); Dufour (2003); Stock, Wright and Yogo (2002); Kleibergen (2002); Moreira (2003);
Hall, Rudebusch and Wilcox (1996); Hall and Peixe (2003); Donald andNewey (2001); Dufour (2005, 2007).
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ment quality depends on the sample size in a way that size adjustment is infeasible. In this paper,

we argue that this type of conclusion may go far. The local-to-zero weak instruments asymptotic

implies that all instruments are asymptotically irrelevant. When the model is partially identified, this

setup may lead to misleading conclusions. This raises the following question: how do the alternative

standard specification tests behave when at least one instrument is strong?

Recently, Hahn, Ham and Moon (2010) proposed a modified Hausman testwhich can be used

for testing the validity of a subset of instruments. Their statistic is pivotal evenwhen the instru-

ments are weak. The problem however, is that the null hypothesis in their study tests the orthogo-

nality of the instruments which are excluded from the structural equation. So,the test proposed by

Hahn et al. (2010) can be viewed as an alternative way of assessing theoveridentification restric-

tions hypothesis of the model [Hansen and Singleton (1982); Hansen (1982); Sargan (1983); Cragg

and Donald (1993); Hansen, Heaton and Yaron (1996); Stock and Wright (2000); and Kleibergen

(2005)]. Clearly, the problem considered by the authors is fundamentallydifferent and less complex

than testing the exogeneity of an included instrument in the structural equation, as done by Durbin

(1954), Wu (1973), Hausman (1978), and Revankar and Hartley (1973).

Guggenberger (2010) investigated the asymptotic size properties of a two-stage test in the linear

IV model, when in the first stage a Hausman (1978) specification test is undertaken as a pretest

of exogeneity of a regressor. He showed that the asymptotic size is one for empirically relevant

choices of the parameter space. This means that the Hausman pre-test does not have sufficient power

against correlations that are local to zero when identification is weak, whilethe OLS-basedt-statistic

takes on large values for such nonzero correlations. While we do not question the basic result of

Guggenberger (2010) in this paper, we observe that cases where thishappens include the Staiger and

Stock (1997) weak instruments asymptotic which assumes that all instruments are asymptotically

irrelevant. This however does not account for situations where at least one instrument is strong.

Hence, the conclusions by Guggenberger (2010) may not be applicablewhen identification is partial.

Doko Tchatoka and Dufour (2011) provide a general asymptotic framework which allows one to

examine the asymptotic behaviour of DWH-tests including cases where partialidentification holds.

In this paper, we only focus on finite samples. The behaviour of DWH and RH exogeneity

tests is studied under two alternative setups. In the first one, we assume that the structural errors

arestrictly exogenous, i.e. independent of the regressors and the available instruments. This setup

is quite general and does not require additional assumptions on the (supposedly) endogenous re-

gressors and the reduced-form errors. In particular, the endogenous regressors can be arbitrarily

generated by any nonlinear function of the instruments and reduced-form parameters. Furthermore,

the reduced-form errors may be heteroscedastic. The second one assumes aCholesky invariance

propertyfor both structural and reduced-form errors. A similar assumption in the context of mul-

tivariate linear regressions is also made in Dufour and Khalaf (2002); and Dufour, Khalaf and

Beaulieu (2010).

In both setups, we propose a finite-sample analysis of the distribution of the tests under the

null hypothesis (level) and the alternative hypothesis (power), with or without identification. Our

analysis provides several new insights and extensions of earlier procedures. The characterization
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of the finite-sample distributions of the statistics, shows that all tests are typicallyrobust to weak

instruments (level is controlled), whether the errors are Gaussian or not.This result is then used

to develop exact Monte Carlo exogeneity (MCE) tests which are valid even when conventional

asymptotic theory breaks down. In particular, MCE tests remain applicable even if the distribution of

the errors does not have moments (Cauchy-type distribution, for example). Hence, size adjustment

is feasible and the conclusion by Staiger and Stock (1997) may be misleading.Moreover, the

characterization of the power of the tests clearly exhibits the factors that determine power. We show

that all tests have no power in the extreme case where all instruments are weak [similar to Staiger

and Stock (1997) and Guggenberger (2010)], but do have power as soon as we have one strong

instrument. This suggests that DWH and RH exogeneity tests can detect an exogeneity problem

even if not all model parameters are identified, provided partial identification holds. We present

simulation evidence which confirms our theoretical results.

The paper is organized as follows. Section 2 formulates the model studied, and Section 4 de-

scribes the statistics. Sections 5 and 6 study the finite-sample properties of thetests with (possibly)

weak instruments. Section 7 presents the exact Monte Carlo exogeneity (MCE) test procedures

while Section 8 presents a simulation experiment. Conclusions are drawn in Section 9 and proofs

are presented in the Appendix.

2. Framework

We consider the following standard simultaneous equations model:

y = Yβ +Z1γ +u, (2.1)

Y = Z1Π1 +Z2Π2 +V , (2.2)

wherey∈ R
T is a vector of observations on a dependent variable,Y ∈ R

T×G is a matrix of obser-

vations on (possibly) endogenous explanatory variables(G≥ 1), Z1 ∈ R
T×k1 is a matrix of obser-

vations on exogenous variables included in the structural equation of interest (2.1),Z2 ∈ R
T×k2

is a matrix of observations on the exogenous variables excluded from the structural equation,

u = (u1, . . . , uT)′ ∈ R
T andV = [V1, . . . , VT ]′ ∈ R

T×G are disturbance matrices with mean zero,

β ∈ R
G andγ ∈ R

k1 are vectors of unknown coefficients,Π1 ∈ R
k1×G andΠ2 ∈ R

k2×G are matrices

of unknown coefficients. We suppose that the “instrument matrix”

Z = [Z1 : Z2] ∈ R
T×k has full-column rank (2.3)

wherek = k1 +k2, and

T −k1−k2 > G, k2 ≥ G. (2.4)

The usual necessary and sufficient condition for identification of this model is rank(Π2) = G.
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The reduced form for[y,Y] can be written as:

y = Z1π1 +Z2π2 +v, Y = Z1Π1 +Z2Π2 +V , (2.5)

whereπ1 = γ +Π1β , π2 = Π2β , andv= u+Vβ = [v1, . . . ,vT ]′. If any restriction is imposed onγ,

we see fromπ2 = Π2β thatβ is identified if and only rank(Π2) = G, which is the usual necessary

and sufficient condition for identification of this model. When rank(Π2) < G, β is not identified

and the instrumentsZ2 are weak.

In this paper, we study the finite-sample properties (size and power) of thestandard exogeneity

tests of the type proposed by Durbin (1954), Wu (1973), Hausman (1978), and Revankar and Hartley

(1973) of the null hypothesis H0 : E(Y′u) = 0, including when identification is deficient or weak

(weak instruments) and the errors[u, V] may not have a Gaussian distribution.

3. Notations and definitions

Let β̂ = (Y′M1Y)−1Y′M1y andβ̃ = [Y′(M1−M)Y]−1Y′(M1−M)y denote the ordinary least squares

(OLS) estimator and two-stage least squares (2SLS) estimator ofβ respectively, where

M = M(Z) = I −Z(Z′Z)−1Z′, M1 = M(Z1) = I −Z1(Z
′
1Z1)

−1Z′
1, (3.1)

M1−M = M1Z2(Z
′
2M1Z2)

−1Z′
2M1. (3.2)

Let V̂ = MY, X = [X1 : V̂], X1 = [Y : Z1], X̂ = [X̂1 : V̂], X̂1 = [Ŷ : Z1], X̄ = [X1 : Z2] = [Y : Z], and

consider the following regression ofu on the columns ofV :

u = Va+ ε , (3.3)

wherea is a G× 1 vector of unknown coefficients, andε is independent ofV with mean zero

and varianceσ2
ε . Define θ = (β ′, γ ′, a′)′, θ ∗ = (β ′, γ ′, b′)′, θ̄ = (b′, γ̄ ′, ā′)′, whereb = β + a,

γ̄ = γ −Π1a, ā = −Π2a. We then observe thatY = Ŷ+V̂, whereŶ = (I −M)Y = PZY, andβ = b

as soon asa = 0. From the above definitions and notations, the structural equation (2.1) canbe

written in the following three different ways:

y = Yβ +Z1γ +V̂a+e∗ = Xθ +e∗ , (3.4)

y = Ŷβ +Z1γ +V̂b+e∗ = X̂θ ∗ +e∗ , (3.5)

y = Yb+Z1γ̄ +Z2ā+ ε = X̄θ̄ + ε , (3.6)

where e∗ = PZVa+ ε. Equations (3.3)-(3.6) clearly illustrate that the endogeneity ofY may be

viewed as a problem of omitted variables [see Dufour (1987)].

Let us denote bŷθ : the OLS estimate ofθ in (3.4), θ̂ 0 : the restricted OLS estimate ofθ under

a = 0, in (3.4), θ̂ ∗ : the OLS estimate ofθ ∗ in (3.5), θ̂ ∗0 : the restricted OLS estimate ofθ ∗ under

β = b in (3.5), θ̂ 0
∗ : the restricted OLS estimate ofθ ∗ underb = 0 in (3.5) orβ = −a in (3.4),ˆ̄θ :

4



the OLS estimate of̄θ in (3.6), ˆ̄θ 0 : the restricted OLS estimate of̄θ under ā = 0, and define the

following sum squared errors:

S(ω) = (y−Xω)′(y−Xω), S∗(ω) = (y− X̂ω)′(y− X̂ω),

S̄(ω) = (y− X̄ω)′(y− X̄ω), ∀ω ∈ R
k1+2G. (3.7)

Let

Σ̃1 = σ̃2
1∆̂ , Σ̃2 = σ̃2

2∆̂ , Σ̃3 = σ̃2∆̂ , Σ̃4 = σ̂2∆̂ , (3.8)

Σ̂1 = σ̃2Ω̂−1
IV − σ̂2Ω̂−1

LS , Σ̂2 = σ̃2∆̂ , Σ̂3 = σ̂2∆̂ , (3.9)

Σ̂R =
1

σ̂2
R

D1Z2(Z
′
2D1Z2)

−1Z′
2D1, D1 =

1
T

M1MM1Y , (3.10)

Ω̂IV =
1
T

Y′(M1−M)Y , Ω̂LS =
1
T

Y′M1Y, ∆̂ = Ω̂−1
IV − Ω̂−1

LS , (3.11)

whereσ̂2 = (y−Yβ̂ )′M1(y−Yβ̂ )/T is the OLS-based estimator ofσ2
u, σ̃2 = (y−Yβ̃ )′M1(y−

Yβ̃ )/T is the usual 2SLS-based estimator ofσ2
u (both without correction for degrees of freedom),

while σ̃2
1 = (y−Yβ̃ )′(M1−M)(y−Yβ̃ )/T = σ̃2− σ̃2

e, σ̃2
2 = σ̂2− (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = σ̂2−

σ̃2(β̃ − β̂ )′Σ̂−1
2 (β̃ − β̂ ), σ̃2

e = (y−Yβ̃ )′M(y−Yβ̃ )/T, andσ̂2
R = yMX̄y′/T may be interpreted as

alternative IV-based scaling factors,κ1 = (k2−G)/G, κ2 = (T−k1−2G)/G, κ3 = κ4 = T−k1−

G, andκR = (T −k1−k2−G)/k2. From (3.7) and (3.8)-(3.11), we can see that

S(θ̂) = S∗(θ̂ ∗), S(θ̂ 0) = S∗(θ̂ ∗0), S(θ̂) = Tσ̃2
2, S(θ̂ 0) = Tσ̂2, S∗(θ̂

0
∗) = Tσ̃2. (3.12)

Throughout the paper, we also use the following notations:

C0 = (Ā1−A1)
′∆̂−1(Ā1−A1), Ā1 = [Y′(M1−M)Y]−1Y′(M1−M), (3.13)

A1 = (Y′M1Y)−1Y′M1, D̄1 =
1
T

M1M(M1−M)Y, D1 =
1
T

M1MM1Y, (3.14)

Σ1 = (Va+ ε)′D̄1(Va+ ε)Ω̂−1
IV − (Va+ ε)′D1(Va+ ε)Ω̂−1

LS , (3.15)

ΩIV ≡ ΩIV (µ2,V̄) = (µ2 +V̄)′(M1−M)(µ2 +V̄) , (3.16)

ΩLS ≡ ΩLS(µ2,V̄) = (µ2 +V̄)′M1(µ2 +V̄) , (3.17)

ω2
IV ≡ ω IV (µ1, µ2, V̄, v̄)2 = (µ1 + v̄)′D′

∗D∗(µ1 + v̄) , (3.18)

ω2
LS ≡ ωLS(µ1, µ2, V̄, v̄)2 = (µ1 + v̄)′C∗(µ1 + v̄) , (3.19)

C∗ = M1−M1(µ2 +V̄)ΩLS(µ2,V̄)−1(µ2 +V̄)′M1 (3.20)

D∗ = M1−M1(µ2 +V̄)ΩIV (µ2,V̄)−1(µ2 +V̄)′(M1−M) , (3.21)

ω2
1 ≡ ω1(µ1, µ2, V̄, v̄)2 = (µ1 + v̄)′E(µ1 + v̄) , (3.22)

ω2
2 ≡ ω2(µ1, µ2, V̄, v̄)2 = (µ1 + v̄)′[C∗−C′∆−1C](µ1 + v̄) , (3.23)

ω2
R ≡ ωR(µ1, µ2, V̄, v̄)2 = (µ1 + v̄)′[D1−PD1Z2](µ1 + v̄) , (3.24)

C = ΩIV (µ2,V̄)−1(µ2 +V̄)′(M1−M)−ΩLS(µ2,V̄)−1(µ2 +V̄)′M1, (3.25)
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E = (M1−M)
[
I − (µ2 +V̄)ΩIV (µ2,V̄)−1(µ2 +V̄)′

]
(M1−M) , (3.26)

ω2
3 ≡ ω3(µ1, µ2, V̄, v̄)2 = ω2

IV , ω2
4 ≡ ω4(µ1, µ2, V̄, v̄)2 = ω2

LS, (3.27)

Γ1(µ1, µ2, V̄, v̄) = C′[ω2
IV Ω−1

IV −ω2
LSΩ−1

LS ]−1C, Γ2(µ1, µ2, V̄, v̄) =
1

ω2
IV

C′∆−1C, (3.28)

Γ3(µ1, µ2, V̄, v̄) =
1

ω2
LS

C′∆−1C, Γ̄l (µ1, µ2, V̄, v̄) =
1

ω2
l

C′∆−1C , l = 1, 2, 3, 4, (3.29)

ΓR(µ1, µ2, V̄, v̄) =
1

ω2
R

PD1Z2 , (3.30)

where for any matrixB, PB = B(B′B)−1B′ is the projection matrix on the space spanned by the

columns ofB, andMB = I −PB.

Finally, letCπ = Π ′
2Z′

2M1Z2Π2 denotes the concentration factor2. We then haveM1Z2Π2a = 0

if and only ifCπa = 0, i.e. a= (IG−C−
π Cπ)a∗, whereC−

π is any generalized inverse ofCπ , anda∗

is an arbitraryG×1 vector [see Rao and Mitra (1971, Theorem 2.3.1)]. Let

N (Cπ) = {ϖ ∈ R
G : Cπϖ = 0} , (3.31)

denotes the null set of the linear map onR
G characterized by the matrixCπ . Observe that when

Z′
2M1Z2 has full column rankk2 (which is usually the case), we haveN (Cπ) = {ϖ ∈ R

G : Π2ϖ =

0}, so thatN (Cπ) = {0} when identification hold. However, when identification is weak or

Z′
2M1Z2 does not have full column rank, there existϖ0 6= 0 such thatϖ0 ∈ N (Cπ).

We now presents DWH and RH test statistics studied in this paper.

4. Exogeneity test statistics

We consider Durbin-Wu-Hausman test statistics, namely three versions of the Hausman-type statis-

tics [Hi , i = 1, 2, 3], the four statistics proposed by Wu (1973)[Tl , l = 1, 2, 3, 4] and the test statistic

proposed by Revankar and Hartley (1973, RH). First, we propose a unified presentation of these

statistics that shows the link between Hausman-and Wu-type tests. Second, we provide an alterna-

tive derivation of all test statistics (including RH test statistic) from the residuals of the regression

of the unconstrained and constrained models.

4.1. Unified presentation

This subsection proposes a unified presentation of the DWH and RH test statistics. The proof of

this unified representation is attached in Appendix A.1. The four statistics proposed by Wu (1973)

can all be written in the form

Tl = κ l (β̃ − β̂ )′Σ̃−1
l (β̃ − β̂ ) , l = 1, 2, 3, 4. (4.1)

2If the errorsV have a definite positive covariance matrixΣV , thenΣ− 1
2

V Cπ Σ− 1
2

V is often referred to as the concentra-
tion matrix. Hence, we referred here toCπ as the concentration factor.
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The three versions of Hausman-type statistics are defined as

Hi = T(β̃ − β̂ )′Σ̂−1
i (β̃ − β̂ ) , i = 1, 2, 3. (4.2)

And the Revankar and Hartley (1973, RH) statistic is given by:

RH = κRy′Σ̂Ry. (4.3)

The corresponding tests reject H0 when the test statistic is “large”. UnlikeRH , Hi , i = 1, 2, 3,

andTl , l = 1, 2, 3, 4, compare OLS to 2SLS estimators ofβ . They only differ through the use of

different “covariance matrices”.H1 uses two different estimators ofσ2
u, while the others resort

to a single scaling factor (or estimator ofσ2
u). The expressions of theTl , l = 1, 2, 3, 4, in (4.1)

are much more interpretable than those in Wu (1973). The link between Wu (1973) notations and

ours is established in Appendix A.1. We use the above notations to better see the relation between

Hausman-type tests and Wu-type tests. In particular, it is easy to see thatΣ̃3 = Σ̂2 andΣ̃4 = Σ̂3, so

T3 = (κ3/T)H2 andT4 = (κ4/T)H3.

Finite-sample distributions are available forT1, T2 andRH when the errors are Gaussian.

More precisely, ifu∼ N[0, σ2IT ] andZ is independent ofu, then:

T1∼F(G, k2−G) , T2∼F(G, T −k1−2G) , RH ∼F(k2, T −k1−k2−G) (4.4)

under the null hypothesis of exogeneity. If furthermore, rank(Π2) = G and the sample size is large,

under the exogeneity ofY, we have (with standard regularity conditions):

Hi
L
→ χ2(G), i = 1, 2, 3;Tl

L
→ χ2(G), l = 3, 4. (4.5)

However, even when identification is strong and the errors Gaussian, thefinite-sample distributions

of Hi , i = 1, 2, 3 andTl , l = 3, 4 are not established in the literature. This underscores the impor-

tance of this study.

4.2. Regression interpretation

We now give the regression interpretation of the above statistics. From Section 3, except forH1,

Hi , i = 2, 3, Tl , l = 1, 2, 3, 4 andRH can be expressed as [see Appendix A.2 for further details]:

H2 = T[S(θ̂ 0)−S(θ̂)]/S∗(θ̂
0
∗), H3 = T[S(θ̂0)−S(θ̂)]/S(θ̂0) , (4.6)

T1 = κ1[S(θ̂0)−S(θ̂)]/[S∗(θ̂
0
∗)−Se(θ̂)], T2 = κ2[S(θ̂ 0)−S(θ̂)]/S(θ̂) , (4.7)

T3 = κ3[S(θ̂0)−S(θ̂)]/S∗(θ̂
0
∗), T4 = κ4[S(θ̂ 0)−S(θ̂)]/S(θ̂0) , (4.8)

RH = κR[S̄( ˆ̄θ 0)− S̄( ˆ̄θ)]/S̄( ˆ̄θ 0) , (4.9)

whereSe(θ̂) = Tσ̃2
e. Equations (4.6) - (4.9) are the regression formulation of the DWH and RH

statistics. It interesting to observe that DWH statistics test the null hypothesis H0 : a = 0, while RH
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tests H∗0 : ā = −Π2a = 0. If rank(Π2) = G, a = 0 if and only if ā = 0. However, if rank(Π2) < G,

ā = 0 does not entaila = 0. So, H0 ⊆ H∗
0 but the inverse may not hold.

Our analysis of the distribution of the statistics under the null hypothesis (level) and the alter-

native hypothesis (power), considers two setups. The first setup isthe strict exogeneity, i.e. the

structural erroru is independent of all regressors. The second setup isthe Cholesky error family.

This setup assumes that the reduced-form errors belong to Cholesky families.

5. Strict exogeneity

In this section, we consider the problem of testing the strict exogeneity ofY, i.e. the problem:

H0 : u is independent of[Y,Z] (5.1)

vs

H1 : u = Va+ ε , (5.2)

wherea is aG×1 vector of unknown coefficients,ε is independent ofV with mean zero and variance

σ2
ε . It is important to observe that equation (5.2) does not impose restrictions on the structure of the

errorsu andV. This equation is interpreted as the projection ofu in the columns ofV and holds for

any homoscedastic disturbancesu andV with mean zero. Thus, the hypothesis H0 can be expressed

as

H0 : a = 0. (5.3)

Note that (5.1) - (5.2) do not require any assumption concerning the functional form ofY. So, we

could assume thatY obeys a general model of the form:

Y = g(Z1, Z2, V, Π) , (5.4)

whereg(.) is a possibly unspecified non-linear function,Π is an unknown parameter matrix and

V follows an arbitrary distribution. This setup is quite wide and does allow one to study several

situations where neitherV nor u follow a Gaussian distribution. This is particularly important in

financial models with fat-tailed error distributions, such as the Student-t. Furthermore, the errorsu

andV may not have moments (Cauchy distribution for example).

Section 5.1 studies the distributions of the statistics under the null hypothesis (level).

5.1. Pivotality under strict exogeneity

We first characterize the finite-sample distributions of the statistics under H0, including when iden-

tification is weak and the errors are possibly non-Gaussian. Theorem5.1 establishes the pivotality

of all statistics.
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Theorem 5.1 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Suppose the assump-

tions(2.1), (2.3) - (2.4) hold. Under H0, the conditional distributions given[Y : Z] of all statistics

defined by(4.1) - (4.3) depend only on the distribution of u/σu irrespective of whether the instru-

ments are strong or weak.

The results of Theorem5.1 indicate that if the conditional distribution of(u/σu)|Y,Z does not

involve any nuisance parameter, then all exogeneity tests are typically robust to weak instruments

(level is controlled) whether the instruments are strong or weak. More interestingly, this holds

even if (u/σu)|Y,Z do not follow a Gaussian distribution. As a result, exact identification-robust

procedures can be developed from the standard specification test statistics even when the errors

have a non-Gaussian distribution (see Section 7). This is particularly important in financial models

with fat-tailed error distributions, such as the Student-t or in models where the errors may not have

any moment (Cauchy-type errors, for example). Furthermore, the exact procedures proposed in

Section 7 do not require any assumption on the distribution ofV and the functional form ofY. More

generally, one could assume thatY obeys a general non-linear model as defined in (5.4) and that

V1, . . . , VT are heteroscedastic.

5.2. Power under strict exogeneity

We now characterize the distributions of the tests under the general hypothesis (5.2). As before, we

cover both weak and strong identification setups. Theorem5.2presents the results.

Theorem 5.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Let the assumptions

(2.1) - (2.4) hold. If furthermore H1 in (5.2) is satisfied, then we can write

H1 = T(Va+ ε)′(Ā1−A1)
′Σ−1

1 (Ā1−A1)(Va+ ε) , (5.5)

H2 = T(Va+ ε)′C0(Va+ ε)/(Va+ ε)′D̄1(Va+ ε) , (5.6)

H3 = T(Va+ ε)′C0(Va+ ε)/(Va+ ε)′D1(Va+ ε) , (5.7)

T1 = κ1(Va+ ε)′C0(Va+ ε)/(Va+ ε)′(D̄1−D1)(Va+ ε) , (5.8)

T2 = κ2(Va+ ε)′C0(Va+ ε)/(Va+ ε)′(D1−C0)(Va+ ε) , (5.9)

T3 = κ3(Va+ ε)′C0(Va+ ε)/(Va+ ε)′D̄1(Va+ ε) , (5.10)

T4 = κ4(Va+ ε)′C0(Va+ ε)/(Va+ ε)′D1(Va+ ε) , (5.11)

RH = κR(Va+ ε)′PD1Z2(Va+ ε)/(Va+ ε)′(D1−PD1Z2)(Va+ ε) , (5.12)

whereΣ1, C0, A1, D̄1, D1, Ω̂IV , Ω̂LS, ∆̂ κR, andκ l , l = 1, 2, 3, 4, are defined in Section3.

We note first that Theorem5.2follows from algebraic arguments only. So,[Y : Z] can be random

in any arbitrary way. Second, given[Y : Z], the distributions of the statistics only depend on the

endogeneitya. We Can then observe that the above characterization clearly exhibits(Ā1−A1)Va,

C0Va, D1Va, D̄1Va, PD1Z2Vaas the factors that determine power. As a result, Corollary5.3examine

the case where all exogeneity tests do not have power.
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Corollary 5.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Under the assump-

tions of Theorem5.2, all exogeneity tests do not have power if and on if a∈N (Cπ). More precisely,

the following equalities:

H1 = Tε ′(Ā1−A1)
′Σ−1

1∗ (Ā1−A1)ε , (5.13)

H2 = Tε ′C0ε/ε ′D̄1ε, H3 = Tε ′C0ε/ε ′D1ε , (5.14)

T1 = κ1ε ′C0ε/ε ′(D̄1−D1)ε, T2 = κ2ε ′C0ε/ε ′(D1−C0)ε , (5.15)

T3 = κ3ε ′C0ε/ε ′D̄1ε, T4 = κ4ε ′C0ε/ε ′D1ε , (5.16)

RH = κRε ′PD1Z2ε/ε ′(D1−PD1Z2)ε (5.17)

hold with probability 1 if and only if a∈ N (Cπ), whereΣ1∗ = ε ′D̄1εΩ̂−1
IV − ε ′D1εΩ̂−1

LS .

Whena∈N (Cπ), the conditional distributions of the statistics, given[Y : Z], are the same under

the null hypothesis and the alternative hypothesis. Therefore, their unconditional distributions are

also the same under the null and the alternative hypotheses. This entails thatthe power of the tests

cannot exceed the nominal level. This condition is satisfied whenΠ2 = 0 (irrelevant instruments),

and all exogeneity tests have no power against complete non identification ofmodel parameters.

We now analyze the properties of the tests when model errors belong to Cholesky families.

6. Cholesky error families

Let

U = [u, V] = [U1, . . . , UT ]′ , (6.18)

W = [v, V] = [u+Vβ , V] = [W1, W2, . . . , WT ]′ . (6.19)

We assume that the vectorsUt = [ut , V ′
t ]
′, t = 1, . . . , T, have the same nonsingular covariance matrix:

E[UtU
′

t ] = Σ =

[
σ2

u δ
′

δ ΣV

]
> 0, t = 1, . . . , T, (6.20)

whereΣV has dimensionG. Then the covariance matrix of the reduced-form disturbancesWt =

[vt ,V ′
t ]
′ also have the same covariance matrix, which takes the form:

Ω =

[
σ2

u +β ′ΣVβ +2β ′δ β ′ΣV +δ ′

ΣVβ +δ ΣV

]
(6.21)

whereΩ is positive definite. In this framework, the exogeneity hypothesis can be expressed as

H0 : δ = 0. (6.22)
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Under H1 in (5.2), we can see from (6.20) that

δ = ΣVa, σ2
u = σ2

ε +a′ΣVa = σ2
ε +δ ′Σ−1

V δ . (6.23)

So, the null hypothesis in (6.22) can be expressed as

Ha : a = 0. (6.24)

We will now assume that

Wt = JW̄t , t = 1, . . . , T , (6.25)

where the vectorW(T) = vec(W̄1, . . . ,W̄T) has a known distributionFW̄ andJ ∈ R
(G+1)×(G+1) is an

unknown upper triangular nonsingular matrix [for a similar assumption in the context of multivariate

linear regressions, see Dufour and Khalaf (2002) and Dufour et al.(2010)]. When the errorsWt obey

(6.25), we say thatWt belongs to the Cholesky error family.

If the covariance matrix of̄Wt is an identity matrixIG+1, the covariance matrix ofWt is

Ω = E[WtW
′
t ] = JJ′. (6.26)

In particular, these conditions are satisfied when

W̄t
i.i.d.
∼ N[0, IG+1] , t = 1, . . . , T . (6.27)

Since theJ matrix is upper triangular, its inverseJ−1 is also upper triangular. Let

P = (J−1)′. (6.28)

Clearly,P is a(G+1)× (G+1) lower triangular matrix and it allows one to orthogonalizeJJ′ :

P′JJ′P = IG+1 , (JJ′)−1 = PP
′
. (6.29)

P′ can be interpreted as the Cholesky factor ofΩ−1, soP is the unique lower triangular matrix that

satisfies equation (6.29); see Harville (1997, Section 14.5, Theorem 14.5.11). It will be useful to

consider the following partition ofP :

P =

[
P11 0

P21 P22

]
(6.30)

whereP11 6= 0 is a scalar andP22 is a nonsingularG×G matrix. In particular, if (6.26) holds, we

see [using (6.21)] that an appropriateP matrix is obtained by taking:

P11 = (σ2
u−δ ′Σ−1

V δ )−1/2 = σ ε , P′
22ΣVP22 = IG , (6.31)

P21 = −(β +Σ−1
V δ )(σ2

u−δ ′Σ−1
V δ )−1/2 = −(β +a)σ−1

ε . (6.32)
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Further this choice is unique.P22 only depends onΣV andP11β + P21 = −(Σ−1
V δ )σ−1

ε = −aσ−1
ε .

In particular, ifδ = 0, we haveP11 = 1/σu, P21 = −β/σu andP11β +P21 = 0.

If we postmultiply[y, Y] by P, we obtain from (2.5):

[ȳ, Ȳ] = [y, Y]P = [yP11+YP21, YP22] = [Z1, Z2]

[
γ +Π1β Π1

Π2β Π2

]
P+W̄ (6.33)

where

W̄ = UP = [v̄, V̄] = [W̄1, . . . , W̄T ]
′
, W̄t = [v̄t , V̄

′

t ]
′
, (6.34)

v̄ = vP11+VP21 = [v̄1, . . . , v̄T ]′ , V̄ = VP22 = [V̄1, . . . , V̄T ]
′
. (6.35)

Then, we can rewrite (6.33) as

ȳ = Z1(γP11+Π1ζ )+Z2Π2ζ + v̄, (6.36)

Ȳ = Z1Π1P22+Z2Π2P22+V̄ , (6.37)

where

ζ = βP11+P21 = −(Σ−1
V δ )/(σ2

u−δ ′Σ−1
V δ )1/2 = −aσ−1

ε . (6.38)

SinceMZ = 0, we have

Mȳ = Mv̄, MȲ = MV̄ , (6.39)

M1ȳ = M1(µ1 + v̄) , M1Ȳ = M1(µ2 +V̄) . (6.40)

where

µ1 = M1Z2Π2ζ = −σ−1
ε M1Z2Π2a,

µ2 = M1Z2Π2P22. (6.41)

Clearly,µ2 does not depend on the endogeneity parametera = Σ−1
V δ . Furthermore,ζ = 0⇔ δ =

a = 0 andµ1 = 0. In particular, this condition holds under H0 (δ = a = 0). If Π2 = 0 (complete

non-identification of the model parameters), we haveµ1 = 0 andµ2 = 0, irrespective of the value

of δ . In this case,

Mȳ = Mv̄, MȲ = MV̄ , M1ȳ = M1v̄, M1Ȳ = M1V̄ . (6.42)

We can now show the following Cholesky invariance property of all test statistics.

Lemma 6.1 CHOLESKY INVARIANCE OF EXOGENEITY TESTS. Let

R=

[
R11 0

R21 R22

]
(6.43)

be a lower triangular matrix such that R11 6= 0 is a scalar and R22 is a nonsingular G×G matrix.
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If we replace y and Y by y∗ = yR11+YR21 and Y∗ = YR22 in (4.1) - (3.11), then the statistics Hi
(i = 1, 2, 3), Tl (l = 1, 2, 3, 4) and RH do not change.

The above invariance holds irrespective of the choice of lower triangular matrixR. In particular,

one can chooseR= P as defined in (6.28). We can now prove the following general theorem onthe

distributions of the test statistics.

Theorem 6.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Under the assump-

tions (2.1) - (2.4) and assumption(6.25), the statistics defined in(4.1) - (3.11) have the following

representations:

Hi = T[µ1 + v̄]′Γi(µ1,µ2, v̄,V̄)[µ1 + v̄] , i = 1, 2, 3,

Tl = κ l [µ1 + v̄]′Γ̄l (µ1,µ2, v̄,V̄)[µ1 + v̄] , l = 1, 2, 3, 4,

RH = κR[µ1 + v̄]′ΓR(µ1,µ2, v̄,V̄)[µ1 + v̄] ,

where[v̄, V̄], µ1, µ2 are defined in(6.34) and(6.41), Γi , Γ̄l , andΓR are defined in Section3.

The above theorem entails that the distributions of the statistics do not dependon eitherβ or γ.

Observe that Theorem6.2follows from algebraic arguments only, so[Y, Z] and[v̄, V̄] can be random

in an arbitrary way. If the distributions ofZ and[v̄, V̄] do not depend on other model parameters,

the theorem entails that the distributions of the statistics depend on model parameters only through

µ1 andµ2. Sinceµ2 does not involveδ , µ1 is the only factor that determines power. Ifµ1 6= 0, the

tests have power. This may be the case when at least one instrument is strong (partial identification

of model parameters). However, we can observe that whenM1Z2Π2a = 0, µ1 = 0 and exogeneity

tests have no power. We now provide a formal characterization of the setof parameters in which

exogeneity tests have no power.

Corollary6.3characterizes the power of the tests whena∈ N (Cπ).

Corollary 6.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Under the assump-

tions of Theorem6.2, if a∈N (Cπ), we haveµ1 = 0 and the statistics defined in(4.1) - (3.11) have

the following representations:

Hi = Tv̄′Γi(µ2, v̄,V̄)v̄, i = 1, 2, 3; Tl = κ l v̄
′Γ̄l (µ2, v̄,V̄)v̄, l = 1, 2, 3, 4,

RH = κRv̄′ΓR(µ2, v̄,V̄)v̄

irrespective of whether the instruments are weak or strong, whereΓi(µ2, v̄,V̄) ≡ Γi(0,µ2, v̄,V̄),

Γ̄l (µ2, v̄,V̄) ≡ Γl (0,µ2, v̄,V̄), ΓR(µ2, v̄,V̄) = ΓR(0,µ2, v̄,V̄), ζ = −(Σ−1
V δ )/(σ2

u− δ ′Σ−1
V δ )1/2, Γi ,

Γ̄l , andΓR are defined in Section3.

First, note that whena∈ N (Cπ), i.e. whenM1Z2Π2a = 0, the conditional distributions, given

Z andV̄ of the exogeneity tests, only depend onµ2 irrespective of the quality of the instruments.
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In particular, this condition is satisfied whenΠ2 = 0 (complete non-identification of the model

parameters) orδ = a = 0 (under the null hypothesis). Sinceµ2 does not depend onδ or a, all

exogeneity test statistics have the same distribution under both the null hypothesis(δ = a = 0) and

the alternative(δ 6= 0) whena∈N (Cπ) : the power of these tests cannot exceed the nominal levels.

So, the practice of pretesting based on exogeneity tests is unreliable in this case.

Theorem6.4characterizes the distributions of the statistics in the special case of Gaussian errors.

Theorem 6.4 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Let the assumptions of

Theorem6.2 hold. If furthermore the normality assumption(6.27) holds and Z= [Z1, Z2] is fixed,

then

H1 = T[µ1 + v̄]′Γ1(µ1,µ2, v̄,V̄)[µ1 + v̄] ,

H2 = T[µ1 + v̄]′Γ2(µ1,µ2, v̄,V̄)[µ1 + v̄] ∼ Tφ1(v̄, ν1)/φ2(v̄, ν3) ,

H3|V̄ ∼ T/[1+κ−1
2 F(T −k1−2G, G;υ2, ν1)] ≤ κ̄∗

1F(G, T −k1−2G;ν1, υ2) ,

T1|V̄ ∼ F(G, k2−G;ν1, υ1), T2|V̄ ∼ F(G, T −k1−2G;ν1, υ2),

T3 = κ2[µ1 + v̄]′Γ2(µ1,µ2, v̄,V̄)[µ1 + v̄] ∼ κ2φ1(v̄, ν1)/φ2(v̄, ν3) ,

T4|V̄ ∼ κ4/[1+κ−1
2 F(T −k1−2G, G;υ2, ν1)] ≤ κ̄∗

2F(G, T −k1−2G;ν1, υ2) ,

RH |V̄ ∼ F(k2, T −k−G;νR, υR) ,

whereφ1(v̄, ν1)|V̄ = [µ1+ v̄]′C′∆−1C[µ1+ v̄]|V̄ ∼ χ2(G;ν1), φ2(v̄, ν3)|V̄ = ω2
IV |V̄ ∼ χ2(T−k1−

G;ν3), ν1 = µ ′
1C

′∆−1Cµ1, ν3 = µ ′
1(D

′
∗D

∗)µ1, υ1 = µ ′
1Eµ1, υ2 = µ ′

1(C∗ −C′∆−1C)µ1, νR =

µ ′
1PD1Z2µ1, υR = µ ′

1(D1−PD1Z2)µ1, κ̄∗
1 = TG/(T−k1−2G), κ̄∗

2 = (T−k1−G)G/(T−k1−2G).

The above theorem entails that givenV̄, the statisticsT1, T2 andRH follow double noncentral

F-distributions, whileT4 andH3 are bounded by a double noncentralF-type distribution. How-

ever, the distributions ofT3, H2 andH1 cannot be characterized by standard distributions. As in

Theorem6.2, µ1 is the factor that determines power. Ifµ1 6= 0, the exogeneity tests have power.

However, whenµ1 = 0, all tests have no power as shown in Corollary6.5.

Corollary 6.5 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS. Under the assump-

tions of Theorem6.4, if a ∈ N (Cπ), we haveν1 = ν3 = υ1 = υ2 = νR = υR = 0 so that

H1 = Tv̄′Γ1(µ2, v̄,V̄)v̄, H2 = Tv̄′Γ2(µ2, v̄,V̄)v̄∼ Tφ1(v̄)/φ2(v̄) ,

H3 ∼ T/(1+κ−1
2 F(T −k1−2G, G)) ≤ κ̄∗

1F(G, T −k1−2G) ,

T1 ∼ F(G, k2−G) , T2 ∼ F(G, T −k1−2G),

T3 = κ2v̄′Γ2(µ2, v̄,V̄)v̄∼ κ2φ1(v̄)/φ2(v̄) ,

T4 ∼ κ4/[1+κ−1
2 F(T −k1−2G, G)] ≤ κ̄∗

2F(G, T −k1−2G) ,

RH ∼ F(k2, T −k−G) ,

whereφ1(v̄)≡ φ1(v̄, 0), φ2(v̄)≡ φ2(v̄, 0), φ1(v̄, ν1), φ1(v̄, ν3), Γi(µ1,µ2, v̄,V̄), i = 1,2 are defined
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in Theorem6.4.

Observe that whena∈ N (Cπ), the non-centrality parameters in theF-distributions vanish. In

particular, under the null hypothesis H0, we havea = 0∈ N (Cπ) and all exogeneity test statistics

are pivotal. Furthermore, all exogeneity test statistics have the same distribution under the null

hypothesis (δ = a= 0) and the alternative (δ 6= 0): the power of the tests cannot exceed the nominal

levels.

We now describe the exact procedure for testing exogeneity even with non-Gaussian errors: the

Monte Carlo exogeneity tests.

7. Exact Monte Carlo exogeneity (MCE) tests

The finite-sample characterization of the distribution of exogeneity test statistics in the previous

section shows that the tests are typically robust to weak instruments (level is controlled). However,

the distributions of the statistics (under the null hypothesis) are not standard if the errors are non

Gaussian. Furthermore, even for Gaussian errors,H1, H2, and T3 cannot be characterized by

standard distributions. This section develops exact Monte Carlo tests whichare identification-robust

even if the errors are non-Gaussian.

Consider again (2.1) and assume that we test the strict exogeneity ofY, i.e. the hypothesis:

H0 : u is independent of[Y,Z] . (7.1)

If the distribution under H0 of u/σu is given, the conditional distributions of the exogeneity test

statistics given[Y, Z] do not involve nuisance parameters and so can be simulated [see Theorem

5.1]. Let

W ∈ {Hi , Hl , RH , i = 1, 2, 3;l = 1, 2, 3, 4} . (7.2)

We shall consider two cases. The first one where the support ofW is continuous, and the second

one where it is a discrete set.

Let us first focus on the case where the statistics have continuous distributions. LetW1, . . . , WN

be a sample ofN replications of identically distributed exchangeable random variables with the

same distribution asW [for more details on exchangeability, see Dufour (2006)]. DefineW (N) =

(W1, . . . , WN)′ and letW0 be the value ofW based on observed data. Define

p̂N(x) =
NĜN(x)+1

N+1
(7.3)

whereĜN(x) is the survival function given by

ĜN(x) ≡ ĜN[x;W (N)] =
1
N

N

∑
i=1

1(Wi ≥ x), (7.4)
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1(C) = 1 if condition C holds,

= 0 otherwise. (7.5)

Then, we can show that

P[p̂N(W0) ≤ α ] =
I [α(N+1)]

N+1
for 0≤ α ≤ 1 (7.6)

[see Dufour (2006, Proposition 2.2)], whereI [x] is the largest integer less than or equal tox. So,

p̂N(W0) ≤ α is the critical region of the Monte Carlo test with level 1−α and p̂N(W0) is the Monte

Carlo test p-value.

We will now extend this procedure to the general case where the distributionof the statistic

W may be discrete. Assume thatW (N) = (W1, . . . , WN)′ is a sequence of exchangeable random

variables which may exhibit ties with positive probability. More precisely

P(W j = W j ′) > 0 for j 6= j ′, j, j ′ = 1, . . . , N . (7.7)

Let us associate each variableW j , j = 1, . . . , N, with a random variableU j , j = 1, . . . , N such that

U j , . . . , UN
i.i.d
∼ U (0,1) , (7.8)

U (N) = (U1, . . . , UN)′ is independent ofW (N) = (W1, . . . , WN)′ whereU (0,1) is the uniform

distribution on the interval(0, 1). Then, we consider the pairs

Z j = (W j ,U j ), j = 1, . . . , N , (7.9)

which are ordered according to the lexicographic order:

(W j ,U j ) ≤ (W j ′ ,U j ′ ) ⇐⇒{W j < W j ′ or (W j = W j ′ andU j ≤ U j ′)} . (7.10)

Let us define the randomized p-value function as

p̃N(x) =
NG̃N(x)+1

N+1
, (7.11)

where the tail-area functioñGN is given by

G̃N(x) ≡ G̃N[x;U0,W (N),U (N)] =
1
N

N

∑
j=1

1[Z j ≥ (x,U0)], (7.12)

U0 is aU (0,1) random variable independent ofW (N) andU (N). Then, following Dufour (2006,

Proposition 2.4), we have

P[p̃N(W0) ≤ α ] =
I [α(N+1)]

N+1
for 0≤ α ≤ 1 (7.13)
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So, p̃N(W0) ≤ α is the critical region of the Monte Carlo test with level 1−α and p̃N(W0) is the

MC-test p-value.

We now describe the algorithm to compute the Monte Carlo tests p-value when thedistributions

of the statistics is continuous3. Before proceeding, it will be useful to recall that under the assump-

tions of Theorem5.1, all DWH and RH statistics can be expressed as [see the proof in (B.1)-(B.8)]:

H2 = T(u/σu)
′C0(u/σu)/(u/σu)

′D̄1(u/σu) , (7.14)

H3 = T(u/σu)
′C0(u/σu)/(u/σu)

′D1(u/σu) , (7.15)

T1 = κ1(u/σu)
′C0(u/σu)/(u/σu)

′(D̄1−D1)(u/σu), (7.16)

T2 = κ2(u/σu)
′C0(u/σu)/(u/σu)

′(D1−C0)(u/σu) , (7.17)

T3 = κ3(u/σu)
′C0(u/σu)/(u/σu)

′D̄1(u/σu), (7.18)

T4 = κ4(u/σu)
′C0(u/σu)/(u/σu)

′D1(u/σu) (7.19)

where the matricesC0, D1, D̄1 are defined in (3.13)-(3.30). Suppose that

σ−1
u u | Y, Z ∼ F , whereF independent of(Y, Z) under H0 and is completely specified. (7.20)

The MC p-values are computed through the following steps:

1. compute the test statisticW0 based on observed data;

2. generateN i.i.d. variablesσ−1
u u( j) = u( j)

∗ = [u( j)
∗1 , . . . , u( j)

∗T ]′, j = 1, . . . , N , according to

the specified distributionF , and compute the corresponding test statisticsW j using (7.14)-

(7.19) ;

3. compute theMC p-value as

p̂MC(W0) =
∑N

i=11(Wi ≥ W0)+1
N+1

; (7.21)

4. reject the null hypothesis H0 at levelα if p̂MC(W0) ≤ α.

We now study the performance of the standard exogeneity tests and the proposed Monte Carlo

tests through a Monte Carlo experiment.

8. Simulation experiment

In each of the following experiments, the model is described by the following data generating pro-

cess:

y = Y1β 1 +Y2β 2 +u, (Y1,Y2) = (Z2Π21,Z2Π22)+(V1,V2), (8.1)

3Note that the algorithm can easily be generalized to discrete distributions.

17



whereZ2 is aT ×k2 matrix of instruments such thatZ2t
i.i.d.
∼ N(0, Ik2) for all t = 1, . . . , T, Π21 and

Π22 arek2-dimensional vectors such that

Π21 = η1C0, Π22 = η2C1, (8.2)

whereη1 and η2 take the value 0 (design of complete non identification),.01 (design of weak

identification) or.5 (design of strong identification),[C0,C1] is ak2×2 matrix obtained by taking

the first two columns of the identity matrix of orderk2. Observe that (8.2) allows us to consider

the partial identification ofβ = (β 1,β 2)
′. In particular, ifΠ21 = 0 butΠ22 6= 0, β 1 is not identified

but β 2 is. The true value ofβ is set atβ 0 = (2,5)′ and the number of instrumentsk2 varies in

{5,10,20}. We assume that

u = Va+ ε = V1a1 +V2a2 + ε, (8.3)

wherea1 and a2 are 2× 1 vectors andε is independent withV = (V1,V2), V1 andV2 are T × 1

vectors. We consider two type framework for model error distributions:

(1) (V1t , V2t , ε t)
′ i.i.d
∼ N


0,




1 0 0

0 1 0

0 0 1





 for all t = 1, . . . , T (8.4)

Vt andε t are independent such that

and(2) (V1t , V2t , ε t)
′ i.i.d
∼ standard Cauchy distribution for all, t = 1, . . . , T . (8.5)

The sample size is fixed atT = 50 but our results remain valid for alternative choice of the sample

size (even less than 50). The endogeneity parametera is chosen such that

a = (a1,a2)
′ ∈ {(−20,0)′,(−5,5)′,(0,0)′,(.5, .2)′,(100,100)′} . (8.6)

From the above notations, the usual exogeneity hypothesis ofY is expressed as

H0 : a = (a1,a2)
′ = (0,0)′. (8.7)

The nominal level of the tests in each experiment is set at 5%.

8.1. Standard exogeneity tests

Table 1 presents the empirical size and power when errors are Gaussian, while Table 2 is for Cauchy-

type errors. The number of replications isN = 10000 in both cases. The first column of each

table reports the statistics, while the second column contains the values ofk2 (number of excluded

instruments). In the other columns, for each value of endogeneity parameter a and the quality of the

instrumentsη1 andη2, the rejection frequencies are reported. Our main findings can be summarized

as follows:
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1. all DWH and RH tests are valid (level is controlled) whether identification is strong or weak,

and the errors are Gaussian or not. This confirms our theoretical results. More precisely,

when the errors are Gaussian [framework (8.4)],T1, T2, T4, H3, andRH have a correct

level, whileT3, H1 andH2 are conservative when identification is weak. For Cauchy-type

errors [framework (8.5)], in addition toT3, H1 andH2, T1 is now conservative with weak

instruments. However,T2, T4, H3, andRH still have correct level whether identification is

strong or weak;

2. all exogeneity tests exhibit power even if not all parameters are identified, provided partial

identification holds. This shows how Staiger and Stock (1997) weak instruments asymptotic

may be misleading when identification is partially weak. However, when the instruments are

completely irrelevant,i.e. η1 = η2 = 0, all DWH and RH tests have no power whether the

errors are Gaussian or not [similar to Staiger and Stock (1997) and Guggenberger (2010)];

3. our results also indicate that in terms of power,H3 dominatesH2 andH2 dominatesH1

irrespective of whether identification is deficient or not. In the same way,T2 dominatesT4,

T4 dominatesT1 andT1 dominatesT3.

We now analyze the performance of the proposed Monte Carlo exogeneitytests.
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Table 1. Power of exogeneity tests at nominal level 5%;G = 2, T = 50

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1 5 4.98 4.6 65.81 5.26 4.92 70.9 4.87 5.06 5.24 5.09 4.84 19.85 4.94 4.18 70.09
T2 5 4.98 24.92 100 5.04 6.77 100 4.96 5.38 5.26 4.87 4.61 53.19 4.91 76.71 100
T3 5 0 0.19 97.93 0.02 0.05 97.85 0.02 0.03 0.59 0.03 0 29.02 0.01 5.83 97.93
T4 5 4.64 24.07 100 4.67 6.29 100 4.63 4.91 4.93 4.51 4.42 52 4.62 76.25 100
H1 5 0 0.09 92.53 0.01 0.02 91.83 0.01 0.02 0.26 0 0 17.97 0 3.59 92.48
H2 5 0.01 0.25 98.09 0.03 0.05 98.02 0.02 0.04 0.74 0.04 0 31.42 0.02 6.89 98.14
H3 5 5.34 25.73 100 5.33 7.19 100 5.27 5.72 5.56 5.18 4.92 54.41 5.31 77.11 100

RH 5 4.84 45.25 100 5.36 7.83 100 5.04 5.2 4.9 4.88 4.73 41.31 5.02 100 100

T1 10 4.9 3.95 98.38 4.92 5.34 98.93 4.82 4.81 5.25 4.88 5.22 34.18 4.91 3.28 99.23
T2 10 5.01 17.5 100 5.19 6.2 100 5.16 4.88 5.07 4.77 5.45 54.24 4.8 50.74 100
T3 10 0.35 1.88 100 0.38 0.29 100 0.3 0.33 1.47 0.36 0.3 43.01 0.22 14.7 100
T4 10 4.65 16.77 100 4.75 5.73 100 4.78 4.55 4.72 4.45 5.02 52.81 4.46 50.05 100
H1 10 0.16 1.05 99.31 0.18 0.14 99.22 0.2 0.14 0.49 0.14 0.14 28.92 0.1 9.88 99.25
H2 10 0.46 2.3 100 0.48 0.42 100 0.38 0.43 1.76 0.46 0.39 45.54 0.33 16.85 100
H3 10 5.32 18.11 100 5.43 6.56 100 5.46 5.18 5.41 5.06 5.75 55.31 5.12 51.25 100

RH 10 5.17 57.58 100 4.83 7.62 100 4.83 5.34 4.97 4.93 5.41 34.5 4.57 100 100

T1 20 4.93 2.26 99.8 4.94 4.64 99.78 4.9 5.02 5.07 5.02 4.93 39.4 5.02 1.5 99.96
T2 20 4.75 8.97 100 4.9 5.54 100 5.09 5.32 4.99 4.95 4.94 49.34 4.92 17.32 100
T3 20 1.95 3.73 100 1.82 2.01 100 2.1 2.02 2.79 2.01 1.95 44.9 1.94 9.2 100
T4 20 4.43 8.42 100 4.51 5.21 100 4.74 5.04 4.61 4.63 4.57 47.89 4.52 16.45 100
H1 20 1.08 2.43 99.89 1.13 1.08 99.82 1.13 1.2 1.03 1.08 1.21 29.88 1.15 6.44 99.7
H2 20 2.32 4.37 100 2.26 2.6 100 2.67 2.57 3.28 2.46 2.48 47.46 2.33 10.39 100
H3 20 5.15 9.36 100 5.25 5.73 100 5.4 5.68 5.41 5.23 5.18 50.31 5.23 17.76 100

RH 20 4.88 79.08 100 5.03 8.36 100 5.38 5 5.21 5.07 5.04 24.88 5.3 100 100
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Table 1 (continued). Power of exogeneity tests at nominal level 5%;G = 2, T = 50

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 4.73 15.16 81.58 69.69 68.76 78.22 4.91 5.26 5 8.01 7.48 24.2 63.6 65.14 78.04
T2 5 5.1 37.9 100 100 100 100 5.51 5.29 5.2 12.95 12.42 64.31 100 100 100
T3 5 0.63 18.25 98.68 98.15 98.26 98.50 0.75 0.85 0.83 3.82 3.47 42.79 97.43 97.09 98.52
T4 5 4.77 36.89 100 100 100 100 5.06 4.98 4.78 12.24 11.72 63.06 100 100 100
H1 5 0.27 10.48 90.44 92 92.3 92.20 0.39 0.29 0.32 1.93 1.69 24.39 92.4 91.95 92.12
H2 5 0.77 20.16 98.82 98.33 98.43 98.52 0.87 0.96 0.99 4.44 4.08 45.64 97.59 97.31 98.64
H3 5 5.48 38.88 100 100 100 100 5.83 5.64 5.41 13.39 12.95 65.44 100 100 100

RH 5 5.13 28.27 100 100 100 100 4.77 5.13 5.17 9.81 10.28 50.59 100 100 100

T1 10 5.18 26.81 99.76 98.81 99.17 99.56 5.26 5.3 4.86 11.05 11.61 43.71 99.12 99.28 99.74
T2 10 5.29 41.58 100 100 100 100 4.92 5.19 5.07 13.49 14.75 66.24 100 100 100
T3 10 1.7 31.1 99.98 99.97 99.99 100 1.58 1.6 1.88 7.75 8.29 57.52 100 100 100
T4 10 4.96 40.35 100 100 100 100 4.57 4.87 4.67 12.81 14 65.15 100 100 100
H1 10 0.73 18.21 98.22 99.08 98.98 98.9 0.55 0.5 0.48 3.34 3.88 32.85 99.28 99.26 98.29
H2 10 2 33.67 99.98 99.98 100 100 1.88 2.03 2.31 8.65 9.3 60.4 100 100 100
H3 10 5.61 42.64 100 100 100 100 5.3 5.53 5.38 14.05 15.32 67.3 100 100 100

RH 10 5.24 24.16 100 100 100 100 4.92 5.07 5.11 8.55 8.94 43.87 100 100 100

T1 20 5.12 27.67 99.96 99.45 99.48 99.62 4.86 4.91 4.29 10.45 10.95 41.15 99.91 99.9 99.94
T2 20 5.06 34.7 100 100 100 100 4.93 4.77 4.3 11.85 12.03 51.76 100 100 100
T3 20 2.97 30.26 100 100 100 100 3.2 2.88 2.74 9.14 9.14 47.52 100 100 100
T4 20 4.7 33.32 100 100 100 100 4.57 4.45 3.97 11.13 11.34 50.35 100 100 100
H1 20 1.2 17.73 99.24 99.93 99.91 99.93 1.1 1.03 0.72 4.51 4.53 27.81 99.77 99.81 98.75
H2 20 3.59 32.57 100 100 100 100 3.65 3.39 3.27 10.24 10.25 50.07 100 100 100
H3 20 5.32 35.69 100 100 100 100 5.25 5.06 4.55 12.42 12.55 52.91 100 100 100

RH 20 5.46 16.17 100 100 100 100 5.2 4.64 4.82 7.45 7.45 26.62 100 100 100
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Table 2. Power of exogeneity tests at nominal level 5% with Cauchy errors; G = 2, T = 50

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0

T1 5 4.96 4.94 4.9 4.98 4.95 5.14 5.19 5.23 4.97 5.1 5.34 5.23 5.01 4.83 6.66
T2 5 5.08 8.58 59.38 5.48 6.02 24.51 5.46 5.38 5.29 5.15 4.97 5.54 5.32 44.68 81.16
T3 5 0.05 0.08 4.91 0.02 0.03 0.65 0 0.03 0.05 0.02 0.01 0.02 0.01 1.62 8.71
T4 5 4.82 8.08 58.8 5.19 5.62 23.87 5.14 5 4.9 4.75 4.63 5.14 5.01 44 80.76
H1 5 0.04 0.02 3.26 0.01 0 0.33 0 0.01 0.02 0.01 0 0.01 0 0.91 6.2
H2 5 0.07 0.11 5.86 0.05 0.04 0.81 0 0.05 0.05 0.02 0.03 0.03 0.02 2.02 9.95
H3 5 5.41 9.01 59.84 5.81 6.38 25.21 5.67 5.7 5.64 5.49 5.23 5.77 5.57 45.34 81.48

RH 5 5.13 12.29 82.91 5.61 6.79 40.66 6.04 5.98 5.93 4.88 4.43 5.06 6.12 68.34 96.73

T1 10 5.61 4.79 5.07 4.97 5.2 4.63 4.83 5.48 4.7 5.04 5.08 5.22 5.09 2.95 3.24
T2 10 5.42 6.48 38.72 5.53 5.41 9.28 4.79 5.17 4.81 4.92 4.94 5.14 5.01 22.57 54.36
T3 10 0.39 0.44 10.96 0.3 0.3 0.8 0.31 0.28 0.32 0.34 0.28 0.19 0.38 3.53 18.51
T4 10 5.08 6.09 38.06 5.24 5 8.86 4.45 4.87 4.46 4.61 4.63 4.83 4.69 21.74 53.51
H1 10 0.17 0.17 7.6 0.11 0.13 0.42 0.16 0.08 0.09 0.14 0.17 0.09 0.14 2.06 13.04
H2 10 0.49 0.65 12.56 0.46 0.42 1.11 0.4 0.38 0.45 0.44 0.39 0.33 0.51 4.19 20.96
H3 10 5.61 6.8 39.32 5.8 5.64 9.66 5.01 5.42 5.05 5.19 5.2 5.43 5.33 23.16 55.1

RH 10 6.09 11.71 81.63 6.41 5.77 22.73 5.06 4.67 4.98 4.22 4.63 4.77 3.86 62.53 96.32

T1 20 5.27 5.02 3.63 4.64 4.63 4.35 4.96 5.27 5.09 4.77 5.16 4.85 5.1 3 2.55
T2 20 5.34 5.4 13.09 4.94 4.9 6.76 4.85 5.06 4.98 4.76 5.26 4.98 4.84 8.73 18.56
T3 20 2.03 2.16 6.97 1.8 1.77 2.45 1.95 2.09 1.87 1.91 2.19 1.88 2.06 3.74 11.08
T4 20 5.03 5.13 12.58 4.6 4.57 6.42 4.47 4.68 4.67 4.48 5.01 4.7 4.57 8.2 18.04
H1 20 1.21 1.25 4.78 1.05 1.01 1.61 1.14 1.19 1.06 0.94 1.35 1.09 1.26 2.42 8.21
H2 20 2.54 2.62 8.03 2.27 2.25 3.25 2.3 2.62 2.33 2.35 2.56 2.4 2.43 4.38 12.28
H3 20 5.72 5.69 13.49 5.14 5.12 7.07 5.21 5.4 5.29 5.04 5.5 5.27 5.08 9.06 19.12

RH 20 6.3 9.15 75.83 4.05 4.15 23.42 6.55 6.42 6.83 5.49 5.03 5.27 5.01 54.94 94.83
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Table 2 (continued). Power of exogeneity tests at nominal level 5% with Cauchy errors;G = 2, T = 50

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 5.21 4.86 4.43 4.53 5.03 4.65 4.88 4.42 4.88 5.31 5.16 5.05 4.64 4.66 5.31
T2 5 4.51 7.01 52.88 22.05 22.32 33.84 4.83 4.77 5.01 5.02 4.91 5.52 77.26 77.11 78.14
T3 5 0.01 0.01 3.51 0.72 0.6 1.47 0.01 0.01 0.04 0.01 0.06 0.02 8.81 9.01 10.27
T4 5 4.24 6.6 52.29 21.41 21.56 33.16 4.42 4.5 4.7 4.64 4.63 5.07 76.83 76.71 77.77
H1 5 0 0 2.22 0.42 0.21 0.95 0 0 0.01 0 0.02 0.01 6.38 6.37 7.38
H2 5 0.04 0.01 4.22 0.89 0.75 1.74 0.02 0.03 0.05 0.02 0.06 0.03 10.02 10.14 11.51
H3 5 4.84 7.31 53.53 22.61 22.8 34.49 5.19 5.08 5.42 5.41 5.24 5.77 77.6 77.53 78.63

RH 5 4.36 8.62 77.57 37.03 36.83 53.81 5.32 5.34 5.36 5.03 5.29 5.46 96.24 96.42 97.63

T1 10 4.72 4.97 4.34 4.87 5.41 5.3 5.2 5.3 5.16 4.89 4.93 4.7 5.07 4.59 4.81
T2 10 4.53 6.71 36.17 13.87 13.91 17.44 4.94 5.01 5.11 5.11 5.14 5.15 49.25 49.57 52.89
T3 10 0.23 0.49 10.23 1.6 1.95 3.09 0.34 0.34 0.27 0.27 0.34 0.31 16.39 15.82 18.7
T4 10 4.16 6.3 35.3 13.24 13.31 16.82 4.65 4.68 4.7 4.77 4.73 4.85 48.54 48.81 52.05
H1 10 0.08 0.25 7.01 0.9 1.04 1.86 0.12 0.19 0.15 0.08 0.09 0.11 12.12 11.64 13.86
H2 10 0.34 0.75 11.8 2.03 2.38 3.62 0.44 0.43 0.35 0.42 0.49 0.41 18.12 17.91 20.72
H3 10 4.91 7.18 36.81 14.51 14.37 18.09 5.17 5.45 5.45 5.37 5.44 5.46 49.86 50.25 53.49

RH 10 4.94 9.41 78.79 34.19 33.03 45.3 5.36 4.98 5.44 5.11 5.01 5.46 95.77 95.26 97.22

T1 20 4.83 4.39 2.6 4.31 4.21 3.47 4.85 5.12 4.67 4.66 4.85 5.05 2.26 2.19 1.79
T2 20 4.61 4.6 13.11 6.41 6.08 6.78 4.65 4.85 4.95 4.56 4.7 5.13 18.38 17.85 18.44
T3 20 2.04 1.85 6.7 2.6 2.54 3 1.69 1.99 1.9 1.88 2 2.23 11.17 10.59 10.62
T4 20 4.21 4.34 12.41 6.09 5.79 6.48 4.27 4.57 4.73 4.23 4.4 4.8 17.78 17.22 17.83
H1 20 1.12 1.16 4.61 1.59 1.55 1.66 1.01 1.07 1.12 1.08 1.15 1.35 8.44 7.93 7.45
H2 20 2.44 2.2 7.67 3.04 3.12 3.52 2.16 2.48 2.39 2.26 2.41 2.76 12.37 11.67 12.04
H3 20 4.86 4.93 13.56 6.75 6.36 7.23 4.93 5.17 5.26 4.85 4.97 5.5 19.04 18.46 18.95

RH 20 6.64 9.64 75.85 18.22 18.08 33.69 5.31 5.11 5.31 4.38 4.64 4.93 94.4 94.26 96.09
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8.2. Exact Monte Carlo exogeneity (MCE) tests

We now evaluate the empirical performance of the Monte Carlo tests described in the previous

section. To do that, we use the same DGP introduces in Section 8 in addition with a Student type-

distribution for model errors. We generateJ = 10000 samples of sizeT = 50 following this DGP.

For each sampler = 1, . . . , J, a replicationWr of the statisticW ∈ {Hi , Hl , RH , i = 1, 2, 3;l =

1, 2, 3, 4} is computed from the simulated sample. In addition, for each sampler, we drawN = 99

realization of the statistic, namely,W ∗
j , j = 1, . . . , 99, following the same DGP as above. We then

compute the Monte Carlo test p-value as

p̂r(Wr) =
∑99

j=11(W ∗
j ≥ Wr)+1

100
(8.8)

and estimate the rejection probability (RP) of the test as the proportion of the ˆpr(Wr) that are less

thanα , the nominal level. This yields the following estimate of the RP of the Monte Carlo test:

R̂PMC =
1

10000

10000

∑
r=1

1[p̂r(Wr) < α]. (8.9)

Tables 3- 5 present the results. We note that all Monte Carlo tests now haveapproximately correct

size, even when identification is weak. So, size adjustment of all standard DWH tests is feasible,

unlike the conclusion of Staiger and Stock (1997). Furthermore, compared to the standard tests,

all tests power has improved slightly even when instruments are weak in both Cauchy and Student

distributions setups [see Tables 4-5]. But the Monte Carlo tests still exhibit low power when all

instruments are weak. In addition, the Monte Carlo tests seem to have more power when errors

have Gaussian and Student distributions than when their distributions are Cauchy-type.

Overall, our results clearly suggest that finite-sample improvement of standard exogeneity tests

is feasible, whether model errors are Gaussian or not, and identification isstrong or weak. Hence,

the view that size adjustment is infeasible for some versions of DWH tests [seefor example, Staiger

and Stock (1997)] is questionable.
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Table 3 . Power of MCE tests with Gaussian errors

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 5 7 30 4 4 41 4 5 5 12 9 13 77 78 81
T2 5 5 8 100 5 6 99 5 4 5 13 7 23 100 100 100
T3 5 3 9 93 3 4 95 4 3 4 12 8 22 91 94 89
T4 5 5 8 100 5 5 99 5 5 5 13 7 23 100 100 100
H1 5 4 9 91 3 4 94 4 4 4 12 9 22 91 93 89
H2 5 4 9 93 3 4 95 4 5 5 12 8 22 91 94 89
H3 5 5 8 100 5 6 99 5 5 5 13 7 23 100 100 100

RH 5 5 18 100 5 6 100 5 5 5 13 9 23 100 100 100

T1 10 4 7 55 4 3 50 4 5 5 6 5 17 97 95 95
T2 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
T3 10 4 5 99 4 3 99 3 4 3 5 7 20 99 98 97
T4 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
H1 10 3 5 99 3 3 98 3 4 3 6 7 21 99 98 96
H2 10 4 5 99 4 3 99 4 3 4 5 7 22 99 98 97
H3 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98

RH 10 5 16 100 5 6 100 4 5 4 6 13 24 100 100 100

T1 20 5 6 33 4 5 68 4 5 4 6 7 10 88 83 90
T2 20 5 7 80 5 7 99 5 4 5 6 8 12 92 84 93
T3 20 4 7 82 3 4 99 3 3 3 5 8 10 94 88 93
T4 20 5 7 80 5 6 99 4 5 4 6 8 12 92 84 93
H1 20 3 6 81 4 4 99 3 3 3 6 7 10 94 89 93
H2 20 3 7 82 3 4 99 3 3 3 5 8 11 94 88 93
H3 20 4 7 80 5 6 99 5 5 5 6 8 12 92 84 93

RH 20 5 6 100 4 7 100 3 5 4 12 13 12 100 100 100
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Table 4 . Power of MCE tests with Cauchy errors

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 4 7 27 4 9 17 2 4 3 6 5 5 38 41 40
T2 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
T3 5 4 5 38 5 5 20 5 3 3 7 4 4 50 50 50
T4 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
H1 5 4 5 38 4 5 20 5 5 3 7 3 4 47 51 49
H2 5 4 5 38 4 5 20 5 3 3 7 4 4 50 50 50
H3 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78

RH 5 5 7 82 5 5 47 5 5 5 8 6 6 95 96 98

T1 10 3 2 24 5 8 10 3 5 4 4 6 5 34 36 37
T2 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51
T3 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
T4 10 5 3 37 5 6 15 4 3 5 6 9 4 55 54 51
H1 10 4 4 34 4 3 14 4 2 4 4 7 4 43 52 41
H2 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
H3 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51

RH 10 5 7 82 4 5 37 4 4 5 7 10 7 96 96 93

T1 20 5 6 11 4 7 6 4 4 4 6 6 4 9 12 10
T2 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
T3 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
T4 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
H1 20 5 8 15 4 8 8 3 5 4 4 5 5 14 17 12
H2 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
H3 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12

RH 20 4 6 73 5 10 31 5 4 5 5 7 8 98 94 98
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Table 5 . Power of MCE tests with Student errors

(a1,a2)
′ = (−20,0)′ (a1,a2)

′ = (−5,5)′ (a1,a2)
′ = (0,0)′ (a1,a2)

′ = (.5, .2)′ (a1,a2)
′ = (100,100)′

k2 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5 η1 = 0 η1 = .01 η1 = .5
η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = 0 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5 η2 = .5

T1 5 3 6 24 6 7 33 5 4 4 7 7 9 75 68 63
T2 5 5 7 97 4 5 92 5 4 5 10 10 10 98 100 99
T3 5 4 4 86 6 6 72 4 3 3 10 8 6 89 82 90
T4 5 5 7 97 4 5 92 5 5 5 10 10 10 98 100 99
H1 5 3 4 86 6 6 71 3 3 4 10 8 6 87 82 90
H2 5 4 5 86 6 6 72 4 3 3 10 8 6 89 82 90
H3 5 5 5 97 4 5 92 5 4 4 10 10 10 98 100 99

RH 5 5 7 100 4 8 100 5 5 4 12 12 10 100 100 100

T1 10 2 6 18 3 5 29 4 5 4 5 2 4 52 62 59
T2 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93
T3 10 4 5 83 5 2 77 5 4 3 6 3 8 84 86 88
T4 10 4 7 90 5 5 82 5 3 5 6 4 8 90 90 93
H1 10 3 6 82 5 2 78 4 3 3 6 3 8 82 86 88
H2 10 4 6 83 5 2 77 3 3 4 6 3 8 84 86 88
H3 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93

RH 10 3 7 100 5 8 99 5 4 4 6 7 10 100 100 100

T1 20 4 6 15 4 10 15 5 4 5 5 4 4 50 51 55
T2 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73
T3 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
T4 20 5 8 65 5 10 44 5 5 4 5 6 6 64 60 73
H1 20 4 5 65 4 11 48 3 3 2 5 7 4 64 61 74
H2 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
H3 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73

RH 20 5 7 100 5 14 98 4 4 5 5 9 5 100 100 100
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9. Conclusion

This paper develops a finite-sample analysis of the distribution of the standard Durbin-Wu-Hausman

and Revankar-Hartley specification tests under both the null hypothesis of exogeneity (level) and the

alternative hypothesis of endogeneity (power), with or without identification. Our analysis provides

several new insights and extensions of earlier procedures. The characterization of the finite-sample

distributions of the statistics under the null hypothesis shows that all tests aretypically robust to

weak instruments (level is controlled). We provide a characterization of thepower of the tests that

clearly exhibits the factors that determine power. We show that exogeneity tests have no power in

the extreme case where all IVs are weak [similar to Staiger and Stock (1997), and Guggenberger

(2010)], but do have power as soon as we have one strong instrument.As a result, exogeneity

tests can detect an exogeneity problem even if not all model parameters are identified, provided

partial identification holds. Moreover, the finite-sample characterization ofthe distributions of the

tests allows the construction of exact identification-robust exogeneity testseven in cases where

conventional asymptotic theory breaks down. In particular, DWH and RH tests are valid even

if the distribution of the errors does not have moments (Cauchy-type distribution, for example).

We present a Monte Carlo experiment which confirms our finite-sample theory. The large-sample

properties of the tests and estimation issues related to pretesting are examined inDoko Tchatoka

and Dufour (2011).
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APPENDIX

A. Notes

A.1. Unified formulation of DWH test statistics

We establish the unified formulation of Durbin-Wu statistics in (4.1) - (3.11), aswell as the three

versions of Hausman (1978) statistic. From Wu (1973, Eqs. (2.1), (2.18), (3.16), (3.20)),Tl ,

l = 1, 2, 3, 4 are defined as

T1 = κ1Q∗/Q1, T2 = κ2Q∗/Q2, T1 = κ3Q∗/Q3, T2 = κ4Q∗/Q4, (A.1)

Q∗ = (b1−b2)
′
[
(Y′A2Y)−1− (Y′A1Y)−1]−1

(b1−b2), (A.2)

Q1 = (y−Yb2)
′A2(y−Yb2), Q2 = Q4−Q∗, (A.3)

Q4 = (y−Yb1)
′A1(y−Yb1), Q3 = (y−Yb2)

′A1(y−Yb2), (A.4)

bi = (Y′AiY)−1Y′Aiy, i = 1, 2, A1 = M1, A2 = M−M1 , (A.5)

whereb1 is the ordinary least squares estimator ofβ , andb2 is the instrumental variables method

estimator ofβ . So, from our notations,b1 ≡ β̂ andb2 ≡ β̃ .

So, from (3.9) - (3.11), we have

Q∗ = T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = Tσ̃2(β̃ − β̂ )′Σ̂−1
2 (β̃ − β̂ ), (A.6)

Q1 = T σ̃2
1 , Q3 = T σ̃2 , Q4 = Tσ̂2 , (A.7)

Q2 = Q4−Q∗ = Tσ̂2−T (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = T σ̃2
2 (A.8)

so thatTl , can be expressed as:

Tl = κ l (β̃ − β̂ )′Σ̃−1
l (β̃ − β̂ ) , l = 1, 2, 3, 4, (A.9)

whereκ l , and Σ̃l are defined in (4.1) - (3.11). The formulation in (A.9) shows clearly the link

between Wu (1973) tests and Hausman (1978) test.

A.2. Regression interpretation of DWH test statistics

Consider equations (3.3) - (3.6). First, we note that H0 andHb can be written as

H0 : Rθ = 0 ⇔ Rb= a,

Hb : R∗θ ∗ = 0 ⇔ R∗θ ∗ = β −a,

whereR=
[

0 0 IG
]

andR∗ =
[

IG 0 −IG
]
. By definition, we havêθ ∗ = [β̃ ′

, γ̃ ′, b̃′]′ and

θ̂ ∗0 = [β̂
′
, γ̂ ′, β̂

′
]′, whereβ̃ and γ̃ are the 2SLS estimators ofβ andγ and β̂ and γ̂ are the OLS
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estimators ofβ andγ based on the following model:

y = Yβ +Z1γ +u, Ŷ = ZΠ̂ ,

with Π̂ = (Z′Z)−1Z′Y. So, we can observe that

θ̂ ∗0 = θ̂ ∗ +(X̂′X̂)−1R′
∗

[
R∗(X̂

′X̂)−1R′
∗

]−1
(−R∗θ̂ ∗)

S(θ̂ ∗0)−S(θ̂ ∗) = (θ̂ ∗0− θ̂ ∗)
′X̂′X̂(θ̂ ∗0− θ̂ ∗) = (R∗θ̂ ∗)

′
[
R∗(X̂

′X̂)−1R′
∗

]−1
(R∗θ̂ ∗).

Furthermore, we have

R∗θ̂ =
[

IG 0 −IG
]



β̃
γ̃
b̃


 = β̃ − b̃,

X̂′X̂ =

[
(X̂′

1X̂1) 0

0 (V̂ ′V̂)

]
, (X̂′X̂)−1 =

[
(X̂′

1X̂1)
−1 0

0 (V̂ ′V̂)−1

]
,

(X̂′
1X̂1)

−1 =

[
Ŷ′Ŷ Ŷ′Z1

Z′
1Ŷ Z′1Z1

]−1

=

[
M11 M12

M21 M22

]
,

whereM11 =
[
(Ŷ′Ŷ)−Ŷ′Z1(Z′

1Z1)
−1Z′

1Ŷ
]−1

=
[
Ŷ′M1Ŷ

]−1
= [Y′(M1−M)Y]−1. So,

(X̂′X̂)−1R′
∗ =




M11 M12 0

M21 M22 0

0 0 (V̂ ′V̂)−1







IG
0

−IG


 =




M11

M21

−(V̂ ′V̂)−1




R∗(X̂
′X̂)−1R′

∗ = M11+(V̂ ′V̂)−1

θ̂ ∗0− θ̂ ∗ =




β̂ − β̃
γ̂ − γ̃
β̂ − b̃


 =




M11

M21

−(V̂ ′V̂)−1




[
M11+(V̂ ′V̂)−1]−1

(b̃− β̃ ).

Hence, we get

β̂ − β̃ = M11
[
M11+(V̂ ′V̂)−1]−1

(b̃− β̃ ) = M11
[
M11+(V̂ ′V̂)−1]−1

ã,

whereã = b̃− β̃ is the OLS estimate ofa from (3.4). We see from (??) that

ã = b̃− β̃ =
[
M11+(V̂ ′V̂)−1]M−1

11 (β̂ − β̃ )

=
{
[Y′(M1−M)Y]−1 +(V̂ ′V̂)−1} [Y′(M1−M)Y](β̂ − β̃ ) . (A.10)

So, we have

S(θ̂ ∗0)−S(θ̂ ∗) = (R∗θ̂ ∗)
′
[
R∗(X̂

′X̂)−1R′
∗

]−1
(R∗θ̂ ∗)
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= (b̃− β̃ )′
{
[Y′(M1−M)Y]−1 +(V̂ ′V̂)−1}−1

(b̃− β̃ )

= (β̂ − β̃ )′[Y′(M1−M)Y]
{
[Y′(M1−M)Y]−1 +(V̂ ′V̂)−1}×

[Y′(M1−M)Y](β̂ − β̃ ) = (β̂ − β̃ )′M−1
11

[
M11+(Y′MY)−1]M−1

11 (β̂ − β̃ )

= (β̂ − β̃ )′M−1
11

[
M11+(Y′M1Y−M−1

11 )−1]M−1
11 (β̂ − β̃ ) . (A.11)

Now, we can apply the following lemma which proof is straightforward and then, is omitted.

Lemma A.1 Let A and B be two nonsingular r× r matrices. Then

A−1−B−1 = B−1(B−A)A−1

= A−1(B−A)B−1

= A−1(A−AB−1A)A−1

= B−1(BA−1B−B)B−1.

Furthermore, if B−A is nonsingular, then A−1−B−1 is nonsingular with

(A−1−B−1)−1 = A(B−A)−1B = A+A(B−A)−1A = A[A−1 +(B−A)−1]A

= B(B−A)−1A = B(B−A)−1B−B = B[(B−A)−1−B−1]B

= A(A−AB−1A)−1A

= B(BA−1B−B)−1B.

By settingA = M−1
11 andB = Y′M1Y in (A.11), and applying LemmaA.1, we get

S(θ̂ ∗0)−S(θ̂ ∗) = (β̂ − β̃ )′M−1
11

[
M11+(Y′M1Y−M−1

11 )−1]M−1
11 (β̂ − β̃ )

= (β̂ − β̃ )′A
[
A−1 +(B−A)−1]A(β̂ − β̃ ) = (β̂ − β̃ )′(B−1−A−1)−1(β̂ − β̃ )

= (β̂ − β̃ )′{[Y′(M1−M)Y]−1− (Y′M1Y)−1}−1(β̂ − β̃ )

=
1
T

(β̃ − β̂ )′[Ω̂−1
IV − Ω̂−1

LS ]−1(β̃ − β̂ ) =
1
T

(β̃ − β̂ )′∆̂−1(β̃ − β̂ ) , (A.12)

whereΩ̂IV = 1
TY′(M1−M)Y andΩ̂LS = 1

TY′M1Y. Note also that

S(θ̂ ∗0)−S(θ̂ ∗) = S(θ̂ 0)−S(θ̂) = ã′[V̂ ′MXV̂]ã, (A.13)

whereMX = I −PX = I −X(X′X)−1X′, X = [Y, Z1, V̂]. Moreover, from (3.12), we have

S(θ̂) = Tσ̃2
2, S(θ̂ 0) = Tσ̂2, S∗(θ̂

0
∗) = Tσ̃2 . (A.14)

Hence, except forH1, the other statistics can be expressed as:

H2 = T[S(θ̂ 0)−S(θ̂)]/S∗(θ̂
0
∗), H3 = T[S(θ̂0)−S(θ̂)]/S(θ̂0) , (A.15)

T1 = κ1[S(θ̂0)−S(θ̂)]/[S∗(θ̂
0
∗)−Se(θ̂)], T2 = κ2[S(θ̂ 0)−S(θ̂)]/S(θ̂) , (A.16)
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T3 = κ3[S(θ̂0)−S(θ̂)]/S∗(θ̂
0
∗), T4 = κ4[S(θ̂ 0)−S(θ̂)]/S(θ̂0) , (A.17)

RH = κR[S̄( ˆ̄θ 0)− S̄( ˆ̄θ)]/S̄( ˆ̄θ 0) , (A.18)

Equations (A.15) - (A.18) are the regression interpretation of DWH and RHstatistics.

B. Proofs

PROOF OFLEMMA 6.1 Note first that

β̃ = β +[Y′(M1−M)Y]−1Y′(M1−M)u = β + Ā1u,

Ā1 = [Y′(M1−M)Y]−1Y′(M1−M) , (B.1)

β̂ = β +(Y′M1Y)−1Y′M1u = β +A1u, A1 = (Y′M1Y)−1Y′M1 (B.2)

β̃ − β̂ = (Ā1−A1)u, (β̃ − β̂ )′∆̂−1(β̃ − β̂ ) = u′C0u, (B.3)

with C0 = (Ā1−A1)
′∆̂−1(Ā1−A1). We also have

M1(y−Yβ̃ ) = B̄1u, (B.4)

M(y−Yβ̃ ) = Mu−MYĀ1u = Mu−MM1YĀ1u = MM(M1−M)Yu, (B.5)

whereB̄1 = M1−P(M1−M)Y = M1(I −P(M1−M)Y) = M1M(M1−M)Y, and

σ̃2 =
1
T

u′M1M(M1−M)Yu = u′D̄1u, σ̂2 =
1
T

u′M1MM1Yu = u′D1u, (B.6)

σ̃2
1 = σ̃2− σ̂2 = u′(D̄1−D1)u =

1
T

u′(M1−M)M(M1−M)Yu, (B.7)

σ̃2
2 =

1
T

u′M1MM1Yu−u′C0u = u′(D1−C0)u. (B.8)

Now, from (B.1) - (B.8) and the definitions of the statistics, we get:

H2 = Tu′C0u/u′D̄1u = T(u/σu)
′C0(u/σu)/(u/σu)

′D̄1(u/σu) , (B.9)

H3 = Tu′C0u/u′D1u = T(u/σu)
′C0(u/σu)/(u/σu)

′D1(u/σu) , (B.10)

T1 = κ1(u/σu)
′C0(u/σu)/(u/σu)

′(D̄1−D1)(u/σu), (B.11)

T2 = κ2(u/σu)
′C0(u/σu)/(u/σu)

′(D1−C0)(u/σu) , (B.12)

T3 = κ3(u/σu)
′C0(u/σu)/(u/σu)

′D̄1(u/σu), (B.13)

T4 = κ4(u/σu)
′C0(u/σu)/(u/σu)

′D1(u/σu) . (B.14)

Under H0, Y is independent ofu, and if further the instrumentsZ are exogenous, the conditional

distribution, givenX̄ of all statistics in (B.9) - (B.14) depend only on the distribution ofu/σu, irre-

spective of whether identification is strong or weak. The same result holdsfor H1. By observing
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that 1
T (MX1 −MX̄) = PD1Z2, RH can also be expressed as:

RH = κR(u/σu)
′PD1Z2(u/σu)/k2/(u/σu)

′(D1−PD1Z2)(u/σu) . (B.15)

Thus, under H0, the distribution ofRH , givenX̄, only depends onu/σu, whether Rank(Π2) = G

or not.

PROOF OFLEMMA 6.1 Consider the identities expressingHi , i = 1, 2, 3, Tl , l = 1, 2, 3, 4, and

RH in (B.9) - (B.15). Under H1, we haveu = Va+ ε and the results of Theorem5.2 follow.

PROOF OFLEMMA 6.1 Suppose thata∈ N (Cπ). Then, we can show that

(Ā1−A1)Va = 0, C0Va= 0, D̄1Va= 0, D1Va= 0, (B.16)

MX1Va = D1Va= 0, MX̄Va= D1Va−PD1Z2Va= 0, (B.17)

whereĀ1, A1, C0, D̄1, andD1 are defined in (B.1) - (B.8) and (B.15).

To simplify, let us prove that(Ā1−A1)Va= 0. First, note thatV = Y−Z1Π1−Z2Π2 so that

(Ā1−A1)Va= [Ā1Y−A1Y− (Ā1−A1)(Z1Π1 +Z2Π2)]a. SinceĀ1Y = IG = A1Y, hence we have

(Ā1−A1)Va= −[(Ā1−A1)(Z1Π1 +Z2Π2)]a = −(Ā1−A1)Z2Π2a, (B.18)

becausēA1Z1 = A1Z1 = 0. Now, we observe that(M1−M)Z2 = M1Z2, hence(Ā1−A1)Z2Π2a =

(Ω̂−1
IV − Ω̂−1

LS )M1Z2Π2a, which equals zero if and onlyM1Z2Π2a = 0, i.e. Π ′
2Z′

2M1Z2Π2a or equiv-

alently,a∈ N (Cπ). So, we havea∈ N (Cπ) if and only if (Ā1−A1)Va= 0. The proof is similar

for the other identities in (B.16)-(B.17). Thus by substituting these identities in Theorem5.2, we

get the results of Corollary5.3.

Suppose now that (5.13)-(5.17) hold. It is easy to see from Theorem5.2 that this equivalent to

(Ā1−A1)Va= 0, C0Va= 0, D̄1Va= 0, D1Va= 0, PD1Z2Va= 0 (B.19)

with probability 1. However, we know that (B.19) holds if and only ifa∈N (Cπ). Hence the result

follows.

PROOF OFLEMMA 6.1 To simplify the proof, let us focus onH3. We recall that

H3 = T(β̃ − β̂ )′Σ̂−1
3 (β̃ − β̂ ) , (B.20)

whereβ̂ = (Y′M1Y)−1Y′M1y, β̃ = [Y′(M1−M)Y]−1Y′(M1−M)y, Σ̂3 = σ̂2[(Y′(M1−M)Y/T)−1−

(Y′M1Y/T)−1], and σ̂2 = (y−Yβ̂ )′M1(y−Yβ̂ )/T . Let us replacey andY by y∗ = yR11+YR21

andY∗ = YR22 in (B.20). Then, we get:

H3∗ = T(β̃ ∗− β̂ ∗)
′Σ̂−1

∗3 (β̃ ∗− β̂ ∗) (B.21)
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whereβ̂ ∗, β̃ ∗, Σ̂3∗, andσ̂2
∗ are also obtained by replacingy by y∗ = yR11+YR21 andY by Y∗ =

YR22. Now, we have:

Y′
∗M1Y∗ = R′

22Y
′M1YR22 = R′

22Y
′M1YR22, Y′

∗M1y∗ = R′
22(Y

′M1yR11+Y′M1YR21) (B.22)

so that we get:

β̂ ∗ = R−1
22 (Y′M1Y)−1(R−1

22 )
′
R′

22(Y
′M1yR11+Y′M1YR21) = R−1

22 (β̂R11+R21) ,

β̃ ∗ = (Y′
∗(M1−M)Y∗)

−1Y′
∗(M1−M)y∗ = R−1

22 (β̃R11+R21), β̃ ∗− β̂ ∗ = R−1
22 (β̃ − β̂ )R11.

Furthermore, we also have

(Y′
∗(M1−M)Y∗/T)−1− (Y′

∗M1Y∗/T)−1 = R−1
22

[
(Y′(M1−M)Y/T)−1− (Y′M1Y/T)−1](R−1

22 )
′
,

and, sinceR11 > 0, we get

(β̃ ∗− β̂ ∗)
′
[
(Y′

∗(M1−M)Y∗/T)−1− (Y′
∗M1Y∗/T)−1]−1

(β̃ ∗− β̂ ∗)

= R2
11(β̃ − β̂ )′

[
(Y′(M1−M)Y/T)−1− (Y′M1Y/T)−1]−1

(β̃ − β̂ ) .

By the same way, we find

y∗−Ȳβ̂ ∗ = yR11+YR22−YR22
[
R22Y

′(M1−M)YR22
]−1

YR′22M1(yR11+YR22)

= yR11+YR22−Yβ̂R11−YR22 = (y−Yβ̂ )R11.

σ̂2
∗ = (y∗−Ȳβ̂ ∗)

′M1(y∗−Ȳβ̂ ∗)/T = R2
11(y−Yβ̂ )′M1(y−Ȳβ̂ )/T = R2

11σ̂2.

Hence, from (B.21), we can see that

H3∗ = TR2
11(β̃ − β̂ )′

[
(Y′

∗(M1−M)Y∗/T)−1− (Y′
∗M1Y∗/T)−1]−1

(β̃ − β̂ )/R2
11σ̂2

= T(β̃ − β̂ )′
[
σ̂2(Y′

∗(M1−M)Y∗/T)−1− σ̂2(Y′
∗M1Y∗/T)−1

]−1
(β̃ − β̂ )

= H3 (B.23)

and the same invariance holds for the author statistics so that Lemma6.1 follows.

PROOF OFTHEOREM6.2 Let us replacey by ȳ andY by Ȳ in the expressions of the statistics. By

Lemma6.1, we can write:

Hi = T(β̃ ∗− β̂ ∗)
′Σ̂−1

i∗ (β̃ ∗− β̂ ∗) , i = 1, 2, 3, (B.24)

Tl = κ l (β̃ ∗− β̂ ∗)
′Σ̃−1

l∗ (β̃ ∗− β̂ ∗) , l = 1, 2, 3, 4, (B.25)

RH = κRȳ′Σ̂∗Rȳ, (B.26)

whereβ̂ ∗, β̃ ∗, Σ̂∗i , Σ̃∗l andΣ̂∗R are the correspondents ofβ̂ , β̃ , Σ̂i andΣ̃l defined in (4.2)-(3.11).
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From (6.40) and by observing that andMZ2 = 0, we have

Mȳ = Mv̄, MȲ = MV̄, M1ȳ = M1(µ1 + v̄) , M1Ȳ = M1(µ2 +V̄) ,

whereµ1 = M1Z2Π2ζ = µ2P−1
22 ζ andµ2 = M1Z2Π2P22, whereζ = βP11+P21. From (??), we get:

Ȳ′(M1−M)ȳ = (µ2 +V̄)′(M1−M)(µ1 + v̄), Ȳ′M1ȳ = (µ2 +V̄)′M1(µ1 + v̄), (B.27)

Ȳ′M1Ȳ = (µ2 +V̄)′M1(µ2 +V̄) = ΩLS(µ2,V̄) , (B.28)

Ȳ′(M1−M)Ȳ = (µ2 +V̄)′(M1−M)(µ2 +V̄) = ΩIV (µ2,V̄) , (B.29)

so thatβ̂ ∗ = ΩLS(µ2,V̄)−1(µ2 +V̄)′M1(µ1 + v̄), β̃ ∗ = ΩIV (µ2,V̄)−1(µ2 +V̄)′(M1−M)(µ1 + v̄),

and β̃ ∗ − β̂ ∗ = C(µ1 + v̄), whereC = ΩIV (µ2,V̄)−1(µ2 + V̄)′(M1 − M) − ΩLS(µ2,V̄)−1(µ2 +

V̄)′M1 . Moreover, we have σ̂2
∗ = 1

T (ȳ − Ȳβ̂ ∗)
′M1(ȳ − Ȳβ̂ ∗) = 1

T (µ1 + v̄)′C∗(µ1 + v̄) =
1
T ω2

LS(µ1,µ2,V̄, v̄), σ̃2
∗ = 1

T (ȳ − Ȳβ̃ ∗)
′M1(ȳ − Ȳβ̃ ∗) = 1

T (µ1 + v̄)′D′
∗D∗(µ1 + v̄) =

1
T ω2

IV (µ1,µ2,V̄, v̄), with C∗ =
[
I − M1(µ2 + V̄)ΩLS(µ2,V̄)−1(µ2 + V̄)′

]
M1 and D∗ =[

I −M1(µ2 +V̄)ΩIV (µ2,V̄)−1(µ2 +V̄)′(M1−M)
]
M1. Hence, we get

Σ̂1∗ = ω2
IV (µ1,µ2,V̄, v̄)ΩIV (µ2,V̄)−1−ω2

LS(µ1,µ2,V̄, v̄)ΩLS(µ2,V̄)−1,

Σ̂2∗ =
1
T

ω2
IV (µ1,µ2,V̄, v̄)∆ , Σ̂3∗ =

1
T

ω2
LS(µ1,µ2,V̄, v̄)∆ , (B.30)

where∆ = C′C = ΩIV (µ2,V̄)−1−ΩLS(µ2,V̄)−1. If T −k1−k2 > G, then∆ > 0, thus

Hi = T[µ1 + v̄]′Γi(µ1,µ2, v̄,V̄)[µ1 + v̄] , i = 1, 2, 3.

whereΓi(µ1,µ2, v̄,V̄), i = 1, 2, 3 are defined in Theorem6.2. SinceT4 = (κ4/T)H3, we find

T4 = κ4[µ1 + v̄]′Γ3(µ1,µ2, v̄,V̄)[µ1 + v̄] . (B.31)

In addition, σ̃2
∗2 = σ̂2

∗ − σ̃2
∗(β̄ ∗ − β̃ ∗)

′(Γ̄2)
−1(β̄ ∗ − β̃ ∗) and σ̃2

∗2 = ω2
LS(µ1,µ2,V̄, v̄) − (µ1 +

v̄)′C′∆−1C(µ1 + v̄) = (µ1 + v̄)′(C∗−C′∆−1C)(µ1 + v̄) = ω2
2(µ1,µ2,V̄, v̄) ≡ ω2

2, hence, we find

T2 =
κ2

ω2
2

[µ1 + v̄]′C′∆−1C[µ1 + v̄] . (B.32)

In the same way, we also get:

Tl =
κ l

ω2
l

[µ1 + v̄]′C′∆−1C[µ1 + v̄] , l = 1, 3, RH =
κR

ω2
R

[µ1 + v̄]′PD1Z̄2
[µ1 + v̄] ,

whereω2
l , l = 1, 3 andω2

R are defined in Section 3.

PROOF OFLEMMA 6.1 SetΠ2a= 0 in the above proof of Theorem6.2and Corollary6.3follows.
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PROOF OFTHEOREM 6.4 From Theorem6.2, we have

Tl = κ l [µ1 + v̄]′Γ̄l (µ1,µ2, v̄,V̄)[µ1 + v̄], Hi = T[µ1 + v̄]′Γi(µ1,µ2, v̄,V̄)[µ1 + v̄],

RH = κR[µ1 + v̄]′ΓR(µ1,µ2, v̄,V̄)[µ1 + v̄] ,

for all l = 1, 2, 3, 4 and all i = 1, 2, 3, whereΓ̄l (µ1, µ2, V̄, v̄), Γ̄i(µ1, µ2, V̄, v̄), ΓR(µ1, µ2, V̄, v̄),

µ1, µ2, κ l andκR are defined in Section 3.

Assume thatZ is fixed. Under the normality assumption (6.27),µ1 + v̄ is independent of̄V

andµ1 + v̄|Z ∼ N(µ1, 1). SinceC′∆−1C, is symmetric idempotent of rankG, C and∆ are defined

in Theorem6.2, we have(µ1 + v̄)′C′∆−1C(µ1 + v̄)|V̄ ∼ χ2(G, ν1), whereν1 = µ ′
1C

′∆−1Cµ1.

By the same way, the denominator ofT1 (without the scaling factor) is(µ1 + v̄)′E(µ1 + v̄)|V̄ ∼

χ2(k2−G, υ1), whereE defined in Section 3 is symmetric idempotent of rankk2−G, and with

υ1 = µ ′
1Eµ1. Furthermore, we have(C′∆−1C)E = 0, hence

T1|V̄ ∼ F(G, k2−G;ν1, υ1). (B.33)

By the same way, we get:

T2|V̄ ∼ F(G, T −k1−2G;ν1, υ2), (B.34)

whereυ2 = µ ′
1(C∗−C′∆−1C)µ1. Now, from the notations in Theorem6.2, we can write:

T4 = κ4/(1+
1

κ2T2
) , (B.35)

and sinceT2|V̄ ∼ F(G, T −k1−2G;ν1, υ2), we have 1
T2
|V̄ ∼ F(T −k1−2G, G;υ2, ν1) so that

T4|V̄ ∼ κ4/[1+
1

κ2
F(T −k1−2G, G;υ2, ν1)]. (B.36)

Note also thatω2
LS≥ ω2

2 entails that

T4|V̄ ≤
κ4

ω2
2

(µ1 + v̄)′C′∆−1C(µ1 + v̄)|V̄ = κ̄∗
2T2|V̄ ∼ κ̄∗

2F(G, T −k1−2G;ν1, υ2), (B.37)

whereκ2, κ4, κ̄∗
2 are given in Theorem6.4. For T3, we note that its numerator and denominator

are such that

(µ1 + v̄)′C′∆−1C(µ1 + v̄)|V̄ ∼ χ2(G;ν1), ω2
IV = (µ1 + v̄)′D′

∗D∗(µ1 + v̄)

∼ χ2(T −k1−G;ν3) , (B.38)

whereν3 = µ ′
1D′

∗D∗µ1. SinceD′
∗D∗(C′∆−1C) 6= 0, T3 does not follow necessary aF-distribution.

By the same way, we get the results forH2, H3 andRH .
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