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ABSTRACT

We investigate the finite-sample behaviour of the Durbin-Wu-Hausman (D#¥id) Revankar-
Hartley (RH) specification tests with or without identification. We consider tetapss based on
conditioning upon the fixed instruments and parametric assumptions on theutlistribf the er-
rors. Both setups are quite general and account for non-Gaussas. eExcept for a couple of
Wu (1973) tests and the RH-test, finite-sample distributions are not avaitatitesfother statistics
[including the most standard Hausman (1978) statistic] even when the an@fGaussian. In this
paper, we propose an analysis of the distributions of the statistics undreth@onull hypothesis
(level) and the alternative hypothesis (power). We provide a genbaasbcterization of the dis-
tributions of the test statistics, which exhibits useful invariance propeniésatkhows one to build
exact tests even for non-Gaussian errors. Provided such finitdesamethods are used, the tests
remain valid (level is controlled) whether the instruments are strong or Wieekcharacterization
of the distributions of the statistics under the alternative hypothesis cledryiexthe factors that
determine power. We show that all tests have low power when all instrumeniisedevant (strict
non-identification). But power does exist as soon as there is one stratingment (despite the fact
overall identification may fail). We present simulation evidence which confoundinite-sample
theory.

Key words: Exogeneity tests; finite-sample; weak instruments; strict exogeneity; skyodgror
family; pivotal; identification-robust; exact Monte Carlo exogeneity tests.

JEL classification: C3; C12; C15; C52.
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1. Introduction

A basic problem in econometrics consists of estimating a linear relationshig wieexplanatory
variables and the errors may be correlated. In order to detect anamelgproblem between ex-
planatory variables and disturbances, researchers often applggereity test, usually by resorting
to instrumental variable (IV) methods. Exogeneity tests of the type profmsBdrbin (1954), Wu
(1973), Hausman (1978), and Revankar and Hartley (1973)- fetit®WH-and RH-tests— are
often used to decide whether one should apply ordinary least squit& 6r instrumental vari-
able methods. One key assumption of DWH and RH-tests however, is thebévailstruments are
strong. Not much is known, at least in finite-sample, about their behaviban identification is
deficient or weak (weak instruments).

In the last two decades, literature has emerged that has raised cowdérttse quality of in-
ferences based on conventional methods, such as instrumental \&&ablerdinary least squares
settings, when the instruments are only weakly correlated with the endagesgnessors. Many
studies have shown that even ex-post conventional large-samplexapations are misleading
when instruments are weak. The literature on the “weak instruments” prableww consider-
able'. Several authors have proposed identification-robust procethaesre applicable even when
the instruments are weak. However, identification-robust procedatedlydo not focus on regres-
sor exogeneity or instrument validity. Hence, there is still a reason to leoued when testing the
exogeneity or orthogonality of a regressor.

In Doko Tchatoka and Dufour (2008), we study the impact of instrumedbgeneity on An-
derson and Rubin (1949, AR-test) and Kleibergen (2002, K-test).Hd that both procedures are
in general consistent against the presence of invalid instruments (hmadid for the hypothesis
of interest), whether the instruments are strong or weak. However, dnei@ases where test con-
sistency may not hold and their use may lead to size distortions in large samptkis paper, we
do not focus on the validity of the instruments. Instead, we question whigsthatandard specifi-
cation tests are valid in finite samples when: (i) errors have possibly nass@a distribution, and
(ii) identification is weak. In the literature, except for Wu (1973, 7> tests) and the Revankar
and Hartley (1973% .77 -test), finite-sample distributions are not available for the other specifica-
tion test statistics [including the most standard Hausman (1978) statistic] exeammodel errors
are Gaussian and identification is strong. This paper fulfills this gap by sireolisty addressing
issues related to finite-sample theory and identification.

Staiger and Stock (1997) provided a characterization of the asymptotitdiktn of Hausman
type-tests [namely#, %, and.74] under the local-to-zero weak instruments asymptotic. They
showed that when the instruments are asymptotically irrelevant, all three testalia (level is
controlled) but inconsistent. Furthermore, their result indicates#fatind.7#3 are conservative.
Staiger and Stock (1997) then observed that the concentration paravhatieicharacterizes instru-

1seee.g. Nelson and Startz (1990a, 1990b); Dufour (1997); Bekker (19P#jllips (1989); Staiger and Stock
(1997); Wang and Zivot (1998); Dufour (2003); Stock, Wrightlavogo (2002); Kleibergen (2002); Moreira (2003);
Hall, Rudebusch and Wilcox (1996); Hall and Peixe (2003); DonaldNewey (2001); Dufour (2005, 2007).



ment quality depends on the sample size in a way that size adjustment is infe&sithiis paper,
we argue that this type of conclusion may go far. The local-to-zero westkuments asymptotic
implies that all instruments are asymptotically irrelevant. When the model is partiaiiyified, this
setup may lead to misleading conclusions. This raises the following questierddihe alternative
standard specification tests behave when at least one instrument istrong

Recently, Hahn, Ham and Moon (2010) proposed a modified Hausmanhiest can be used
for testing the validity of a subset of instruments. Their statistic is pivotal ewen the instru-
ments are weak. The problem however, is that the null hypothesis in theéir tsts the orthogo-
nality of the instruments which are excluded from the structural equatiorth&dest proposed by
Hahn et al. (2010) can be viewed as an alternative way of assessiogédtidentification restric-
tions hypothesis of the model [Hansen and Singleton (1982); Hans88)(1®argan (1983); Cragg
and Donald (1993); Hansen, Heaton and Yaron (1996); Stock amght\(2000); and Kleibergen
(2005)]. Clearly, the problem considered by the authors is fundameditilyent and less complex
than testing the exogeneity of an included instrument in the structural equasiclone by Durbin
(1954), Wu (1973), Hausman (1978), and Revankar and Hartl&33)19

Guggenberger (2010) investigated the asymptotic size properties ofstdgetest in the linear
IV model, when in the first stage a Hausman (1978) specification test istakde as a pretest
of exogeneity of a regressor. He showed that the asymptotic size is oeenfarically relevant
choices of the parameter space. This means that the Hausman pre-$estidu®/e sufficient power
against correlations that are local to zero when identification is weak, thieil®@LS-basettstatistic
takes on large values for such nonzero correlations. While we do rstiqn the basic result of
Guggenberger (2010) in this paper, we observe that cases whemapipiens include the Staiger and
Stock (1997) weak instruments asymptotic which assumes that all instrumerasyanptotically
irrelevant. This however does not account for situations where at da@sinstrument is strong.
Hence, the conclusions by Guggenberger (2010) may not be appheabieidentification is partial.
Doko Tchatoka and Dufour (2011) provide a general asymptotic framewhich allows one to
examine the asymptotic behaviour of DWH-tests including cases where paetidification holds.

In this paper, we only focus on finite samples. The behaviour of DWH addeRogeneity
tests is studied under two alternative setups. In the first one, we assuntieetiséructural errors
arestrictly exogenous.e. independent of the regressors and the available instruments. This setup
is quite general and does not require additional assumptions on theoaaity) endogenous re-
gressors and the reduced-form errors. In particular, the endogargressors can be arbitrarily
generated by any nonlinear function of the instruments and reducedpgfmameters. Furthermore,
the reduced-form errors may be heteroscedastic. The second samaessaCholesky invariance
propertyfor both structural and reduced-form errors. A similar assumption in ¢héegt of mul-
tivariate linear regressions is also made in Dufour and Khalaf (2002);Darfour, Khalaf and
Beaulieu (2010).

In both setups, we propose a finite-sample analysis of the distribution of gteeurder the
null hypothesis (level) and the alternative hypothesis (power), with orowitidentification. Our
analysis provides several new insights and extensions of earlierdun@se The characterization



of the finite-sample distributions of the statistics, shows that all tests are typioaligt to weak
instruments (level is controlled), whether the errors are Gaussian ofTheg.result is then used
to develop exact Monte Carlo exogeneity (MCE) tests which are valid evemwonventional
asymptotic theory breaks down. In particular, MCE tests remain applicadhafahe distribution of
the errors does not have moments (Cauchy-type distribution, for exarhjf#atre, size adjustment
is feasible and the conclusion by Staiger and Stock (1997) may be misleaMiatgover, the
characterization of the power of the tests clearly exhibits the factors tteatiae power. We show
that all tests have no power in the extreme case where all instruments ddsingidar to Staiger
and Stock (1997) and Guggenberger (2010)], but do have posveo@n as we have one strong
instrument. This suggests that DWH and RH exogeneity tests can detecbgeneiy problem
even if not all model parameters are identified, provided partial identifitddtdds. We present
simulation evidence which confirms our theoretical results.

The paper is organized as follows. Section 2 formulates the model studig&esction 4 de-
scribes the statistics. Sections 5 and 6 study the finite-sample propertiesedtteith (possibly)
weak instruments. Section 7 presents the exact Monte Carlo exogeneity)(Md& procedures
while Section 8 presents a simulation experiment. Conclusions are drawntiarSeéand proofs
are presented in the Appendix.

2. Framework

We consider the following standard simultaneous equations model:
y=YB+2Z1y+u, (2.2)

Y =211+ 2ZlM2+V, (22)

wherey € R is a vector of observations on a dependent variable, R is a matrix of obser-
vations on (possibly) endogenous explanatory variates 1), Z; € R"*k is a matrix of obser-
vations on exogenous variables included in the structural equation oéshtg.1),Z, € RT*k

is a matrix of observations on the exogenous variables excluded fromtrtiusal equation,
u=(up,...,ur) € RT andV = V4, ..., Vr]' € RT*C are disturbance matrices with mean zero,
B € R® andy € Rk are vectors of unknown coefficiend; € RX*C andfl1, ¢ R%*C are matrices
of unknown coefficients. We suppose that the “instrument matrix”

Z = [Zy : Z5] € R"** has full-column rank (2.3)

wherek = k; +kp, and
T-ki—k>G, k>G. (2.4)

The usual necessary and sufficient condition for identification of this medenk(/1,) = G.



The reduced form fojy, Y] can be written as:
Y = ZiMm+2T0+V,Y =211+ 221+ V (25)

whererry, = y+ M3, =16, andv=u+Vp =|vi,...,vr]". If any restriction is imposed op
we see fromm, = M3 thatf is identified if and only ranl(12) = G, which is the usual necessary
and sufficient condition for identification of this model. When rénk) < G, 3 is not identified
and the instrument®, are weak.

In this paper, we study the finite-sample properties (size and power) stahdard exogeneity
tests of the type proposed by Durbin (1954), Wu (1973), Hausma8}1&7d Revankar and Hartley
(1973) of the null hypothesis ¢ E(Y’u) = 0, including when identification is deficient or weak
(weak instruments) and the errduis V] may not have a Gaussian distribution.

3. Notations and definitions

Let B = (Y'M1Y)~1Y’Myy andB = [Y/(M; — M)Y]~1Y/(M; — M)y denote the ordinary least squares
(OLS) estimator and two-stage least squares (2SLS) estimafredpectively, where

M=M2Z)=1-2(Z2)"12, Mi=M(Z)=I-2(2121) 7, (3.1)
M1 —M = M1Z5(Z,M1Z5) ~1Z5M. (3.2)

LetV =MY, X =[Xy:V], Xo = [Y:2Zy], X = [X¢:V], X = [V : Z4], X = [X1: Zo] = [Y : Z], and
consider the following regression ofon the columns oY :

u=Va+eg, (3.3)

wherea is a G x 1 vector of unknown coefficients, argis independent o¥ with mean zero
and variances?. Define 8 = (B, y,d), 6, = (B, y,0), 6 = (b, y,a), whereb= B +a,
y=y—Mia, a= —la. We then observe that=Y +V, whereY = (I —M)Y =Y, andB =b

as soon ag = 0. From the above definitions and notations, the structural equation (2.1)ecan
written in the following three different ways:

y = YB+Ziy+Va+e =X60+e,, (3.4)
— YB+Ziy+Vb+e =X0, +e., (3.5)
= Yb+Ziy+2Za+e=X0+¢, (3.6)

where e, = P'Va+ €. Equations (3.3)-(3.6) clearly illustrate that the endogeneity ohay be
viewed as a problem of omitted variables [see Dufour (1987)].

Let us denote by : the OLS estimate off in (3.4), By : the restricted OLS estimate 6funder
a=0, in (3.4), 6, : the OLS estimate of,. in (3.5), 6,0 : the restricted OLS estimate 6f under
B=Dbin(3.5), @S . the restricted OLS estimate 6f underb=0in (3.5) or = —ain (3.4),5:



the OLS estimate of in (3.6), 50 : the restricted OLS estimate 6fundera = 0, and define the
following sum squared errors:

Sw = (y—Xw)(y—Xw),S(w) = (y—Xw) (y—Xw),

Sw) = (y-Xw)(y—Xw), YweRM2C (3.7)
Let

51 = 62A, 5,=03A, 53=0%A, 5,=06%A, (3.8)

51 = 820 -06%07E, 5,=5%A, 33=06%, (3.9)

Sk o= aléolzz(z’zolzz)lzgol, Dlz%MlliY, (3.10)

Qv = %Y’(Ml—M)Y, QLSZ%Y’Mlv,A:fz,gl—Qgsl, (3.11)

whered? = (y— YB)'M1(y—YB)/T is the OLS-based estimator o, 52 = (y—YB)'My(y —
Y[B)/T is the usual 2SLS-based estimatoragf (both without correction for degrees of freedom),
while 5% = (y - YB)' (M1 —~M)(y YB)/T = 8%~ 63, 65=06"—(B-BYAB-B)=5"-
F2(B — B) 55 LB - B) = (y=YB)M(y—YRB)/T, andd3 = yMgy' /T may be interpreted as
alternative IV-based scalmg factors; = (ko —G) /G, kK2=(T—-k1—2G)/G, K3=K4=T —ky —

G, andkr = (T —k; — ko — G) /ko. From (3.7) and (3.8)-(3.11), we can see that

SB) = S.(8.), S(Bo) =S.(8.0), S(B) = T52, S(Bo) = To2, S.(B)) =T&2.  (3.12)
Throughout the paper, we also use the following notations:

Co = (AL—A)A A=A, AL=[Y(Mi—M)Y] "Y' (M;—M),  (3.13)

Al = (YMY)LY'My, 51:%M1M<M1_M)Y, Dlz%MlMMly, (3.14)
51 = (Vate€)Di(Va+e)Qut— (Va+e)Di(Vate)Qrd, (3.15)
Qv = QuHpV) = (H+V) (Mi—M)(H+V), (3.16)
Qs = Qus(HV) = (Up+V) Ml +V), (3.17)
Wy = v (U, PV, V)2 = (g +V)' DDy + V), (3.18)
Ws = Wis(fy, Mo, V, V)2 = (Uy +V)'Cu(py V), (3.19)
C. = Mi—Mi(Hp+V)Qus(p,V) H(Hp+V)' My (3.20)
D. = Mi—Mi(+V)Qu (U V) H(Hp+V) (M1 —M), (3.21)
Wi = wi(Hy, KoV, V)2 = (Uy +VE(Hy +V), (3.22)
W3 = WaHy, Mo, V, V) = (g +V)'[C. —C'ATICI (g + V), (3.23)
Wi = Wr(Uy, Ha, V, V)2 = (g +V)'[D1—Po,z,) (1 + V), (3.24)

C = Qu(kV) M (Ha+V) (M1—M) = Qus(Hp, V) H(Hp+V) M1, (3.25)



E = (Mi—M)[l = (U +V) Qv (V) "o +V) ] (M1~ M), (3.26)

W5 = ws(liy, Uy, V, V)2 = f,, W = waliy, Uy, V, V)2 = s, (3.27)
— B o — 1 _
Mg, Ha Vo V) = Claf, Qv — fs@g]'C, (g, Hp, V, V) = w—IZVC’A 'C, (3.28)
— 1 _ - — 1 _
I_3(u17 Ho, Va \7) = KESC/A 1Ca ﬁ(ula Ilz,V’ \7) = JIZC,A lc ) | = 1a 27 37 4, (329)
— 1
,_R(I'lla u27va\7) = EPD1227 (330)
R

where for any matrix8, Ps = B(B'B) 1B’ is the projection matrix on the space spanned by the
columns ofB, andMg = | — Rs.

Finally, letC;; = IM1,Z,M1Z51, denotes the concentration factowe then havév;Z,/M,a = 0
ifand only ifCra=0, i.e. a= (Ig —C,,Cy)a*, whereC;; is any generalized inverse 6f;, anda*
is an arbitraryG x 1 vector [see Rao and Mitra (1971, Theorem 2.3.1)]. Let

N (Cp) = {WeR®: Cpw=0}, (3.31)

denotes the null set of the linear map BA characterized by the matri®,;. Observe that when
Z,M1Z5 has full column ranlk, (which is usually the case), we havé (C;) = {w € RC: My =
0}, so that.4(Cy) = {0} when identification hold. However, when identification is weak or
Z,M1Z, does not have full column rank, there exigg # 0 such thatop € .4 (Cy).

We now presents DWH and RH test statistics studied in this paper.

4. Exogeneity test statistics

We consider Durbin-Wu-Hausman test statistics, hamely three versions datiisman-type statis-
tics .77, 1 = 1, 2, 3], the four statistics proposed by Wu (1973],1 = 1, 2, 3, 4] and the test statistic
proposed by Revankar and Hartley (1973, RH). First, we propogefizdi presentation of these
statistics that shows the link between Hausman-and Wu-type tests. Se@phwide an alterna-
tive derivation of all test statistics (including RH test statistic) from the red#of the regression
of the unconstrained and constrained models.

4.1. Unified presentation

This subsection proposes a unified presentation of the DWH and RH tisticta The proof of
this unified representation is attached in Appendix A.1. The four statistigoped by Wu (1973)
can all be written in the form

A = K|(B_[§)/ilil([§_[§)a | =1,234 (41)

11
2If the errorsV have a definite positive covariance matiy, then, >CrZ,, ? is often referred to as the concentra-

tion matrix. Hence, we referred here@g as the concentration factor.



The three versions of Hausman-type statistics are defined as

A = TR-BEB-B), =123 (4.2)
And the Revankar and Hartley (1973, RH) statistic is given by:
R = KRylﬁRy. (43)

The corresponding tests rejecg hen the test statistic is “large”. Unlik&#gs7, 74, i=1,2, 3,
and 7,1 =1, 2,3, 4, compare OLS to 2SLS estimators @f They only differ through the use of
different “covariance matrices”. 77 uses two different estimators @flzJ while the others resort
to a single scaling factor (or estimator of). The expressions of théj,| = 1,2, 3,4, in (4.1)
are much more interpretable than those in Wu (1973). The link between WQ@)h®tations and
ours is established in Appendix A.1. We use the above notations to betteleseddiion between
Hausman-type tests and Wu-type tests. In particular, it is easy to seB;that, and 5, = 53, so
T3 = (K3/T)#2and Ty = (K4/T) 3.

Finite-sample distributions are available 6%, .7, and Z.7# when the errors are Gaussian.
More precisely, ifu ~ N[0, o?l7] andZ is independent af, then:

Fi~F (G, ko—G), F~F(G,T—k —2G), BH~Fks,T—k —k»—GC) (4.4)

under the null hypothesis of exogeneity. If furthermore, (&K = G and the sample size is large,
under the exogeneity &f, we have (with standard regularity conditions):

5 x46),i=1,2,3,F 5 x3(G),1 =3, 4. (4.5)

However, even when identification is strong and the errors Gaussidfiniteesample distributions
of 74, 1=1,2, 3 and, | = 3,4 are not established in the literature. This underscores the impor-
tance of this study.

4.2. Regression interpretation

We now give the regression interpretation of the above statistics. Frotioi®&¢ except for77,
IR,1=2,3, A,1=1,2, 3,4 andZ 7 can be expressed as [see Appendix A.2 for further details]:

Ay = T[S(Bo)—S(8))/S.(8)), 75 =T[S(Bo) — (8)]/S(Bo), (4.6)
7 = Kki[S(Bo) ~ (B)]/[S.(8)) — S(B)], T2 = ka[S(Bo) —S(B)]/S(B),  (4.7)
7 = KkalS(Bo) — (0)]/S.(80). Za = Kka[S(Bo) — S(B)]/S(B0). (4.8)
AA = Kr[S(60)—S(0)]/S(60), (4.9)

wheresg(é) = Tég. Equations (4.6) -(4.9) are the regression formulation of the DWH and RH
statistics. It interesting to observe that DWH statistics test the null hypothgsia+H 0, while RH



tests H : a= —la=0. If rank(1;) = G, a= 0 if and only ifa= 0. However, if rankIT2) < G,
a= 0 does not entath= 0. So, Hy C H{ but the inverse may not hold.

Our analysis of the distribution of the statistics under the null hypothesid)(lewe the alter-
native hypothesis (power), considers two setups. The first setilne istrict exogeneityi.e. the
structural errow is independent of all regressors. The second settipeisCholesky error family.
This setup assumes that the reduced-form errors belong to Choleskig$a

5. Strict exogeneity

In this section, we consider the problem of testing the strict exogeneityidd. the problem:

Ho : uisindependent ofY,Z] (5.2)
VS
Hy : u=Va+eg, (5.2)

whereais aG x 1 vector of unknown coefficients,is independent of with mean zero and variance
o2. Itis important to observe that equation (5.2) does not impose restrictivthestructure of the
errorsu andV. This equation is interpreted as the projectiomaf the columns o¥ and holds for
any homoscedastic disturbaneesndV with mean zero. Thus, the hypothesig ¢an be expressed
as

Ho : a=0. (5.3)

Note that (5.1) - (5.2) do not require any assumption concerning théidaat form of Y. So, we
could assume that obeys a general model of the form:

Y = 0(Z1,2,,V, 1), (5.4)

whereg(.) is a possibly unspecified non-linear functidi,is an unknown parameter matrix and
V follows an arbitrary distribution. This setup is quite wide and does allow onéutty several
situations where neith&f nor u follow a Gaussian distribution. This is particularly important in
financial models with fat-tailed error distributions, such as the Studdrtrthermore, the errors
andV may not have moments (Cauchy distribution for example).

Section 5.1 studies the distributions of the statistics under the null hypothesB.(le

5.1. Pivotality under strict exogeneity

We first characterize the finite-sample distributions of the statistics unglenéluding when iden-
tification is weak and the errors are possibly non-Gaussian. Theorkeastablishes the pivotality
of all statistics.



Theorem 5.1 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Suppose the assump-
tions(2.1), (2.3) - (2.4) hold. Under H, the conditional distributions givefy : Z] of all statistics
defined by(4.1) - (4.3) depend only on the distribution of/a, irrespective of whether the instru-
ments are strong or weak.

The results of Theorers.1indicate that if the conditional distribution ¢éi/0,)|Y,Z does not
involve any nuisance parameter, then all exogeneity tests are typicallgtriabweak instruments
(level is controlled) whether the instruments are strong or weak. Moreesttegly, this holds
even if (u/oy)|Y,Z do not follow a Gaussian distribution. As a result, exact identificationsbbu
procedures can be developed from the standard specification tedicstati®n when the errors
have a non-Gaussian distribution (see Section 7). This is particularly inmparthnancial models
with fat-tailed error distributions, such as the Studeot-in models where the errors may not have
any moment (Cauchy-type errors, for example). Furthermore, thd pxacedures proposed in
Section 7 do not require any assumption on the distributidhafd the functional form of. More
generally, one could assume thbbeys a general non-linear model as defined in (5.4) and that
Vi,..., Vr are heteroscedastic.

5.2. Power under strict exogeneity

We now characterize the distributions of the tests under the general kgmo(B.2). As before, we
cover both weak and strong identification setups. Thed&presents the results.

Theorem 5.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Let the assumptions
(2.1) - (2.4) hold. If furthermore H in (5.2) is satisfied, then we can write

s = T(Vate)(A—A)Z (AL —A)(Vate), (5.5)
A = T(Va+e)Co(Va+e)/(Va+e)'Dy(Va+e), (5.6)
s = T(Va+e)Co(Va+e)/(Vate)Di(Va+e), (5.7)
J1 = Ki(Va+¢)Co(Va+¢)/(Va+e) (Dy1—Di)(Va+e), (5.8)
J» = kKy(Va+e)Cy(Va+¢€)/(Va+e) (D1 —Co)(Va+e), (5.9)
T3 = k3(Va+¢€)Co(Va+e)/(Va+e)Di(Va+e), (5.10)
I = Ka(Va+¢€)Co(Va+e€)/(Va+e€)Di(Va+e), (5.11)
A = kr(Va+e)Po,z,(Va+e€)/(Vate)' (D1—Po,z,)(Vate), (5.12)

whereZ,, Co, Ay, 51, D1, QN , QLS, A Kr, andk;, | =1, 2, 3, 4, are defined in Sectio

We note first that Theorem2follows from algebraic arguments only. S¥,: Z] can be random
in any arbitrary way. Second, give¥ : Z|, the distributions of the statistics only depend on the
endogeneitya. We Can then observe that the above characterization clearly emﬁl@itsAl)Va,
CoVa, D1Va, D1Va, Pb,z,Vaas the factors that determine power. As a result, Coro8aBgxamine
the case where all exogeneity tests do not have power.



Corollary 5.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theorerd.2, all exogeneity tests do not have power if and ondf.a”(C;;). More precisely,
the following equalities:

A = Te(A—A) S AL—Ae, (5.13)
Ao = TeCoe/e'Die, #5=TeCoe/e D1, (5.14)
Ti = Ki£'Coe/€'(D1—Da)e, T = K£'Coe /€' (D1 — Co)e, (5.15)
Tz = K3e'Coe/e'D1€, Tn = K4€'Coe/€'D1g, (5.16)
RH = Kr€'Po,z,€/€(D1—Po,z,)€ (5.17)

hold with probability 1 if and only if & .4 (Cy;), where 5y, = ¢'D1e Q! — £/D1eQ .

Whena e .4 (Cy), the conditional distributions of the statistics, gij&n Z], are the same under
the null hypothesis and the alternative hypothesis. Therefore, thadnditmnal distributions are
also the same under the null and the alternative hypotheses. This entalletpatver of the tests
cannot exceed the nominal level. This condition is satisfied Wites O (irrelevant instruments),
and all exogeneity tests have no power against complete non identificatioodef parameters.

We now analyze the properties of the tests when model errors belong leskhdamilies.

6. Cholesky error families

Let
U=[uV]=[U,... ,UT}’, (6.18)

W=[,V]=[u+VB,V] =MW, W, ..., W] (6.19)

We assume that the vectdds= [u;, V/]',t =1, ..., T, have the same nonsingular covariance matrix:

/

o2 o

ElUU, = =
Uil ] 5,

]>o, t=1,...,T, (6.20)

where 2y has dimensiorG. Then the covariance matrix of the reduced-form disturbailg¢es
W, V/]" also have the same covariance matrix, which takes the form:

o2+ B'5yB+2B'5 B +6

(6.21)
SyB+o Sy

whereQ is positive definite. In this framework, the exogeneity hypothesis canfiressed as

Ho: & =0. (6.22)
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Under H; in (5.2), we can see from (6.20) that
d=2>va, oi=02+adxa=02+85,%. (6.23)
So, the null hypothesis in (6.22) can be expressed as
Hy:a=0. (6.24)

We will now assume that
W=JW,t=1...,T, (6.25)

where the vectowr) = veqW, ... ,Wr) has a known distributiofiy andJ € R(C+9*(G+1) is an
unknown upper triangular nonsingular matrix [for a similar assumption in theegbof multivariate
linear regressions, see Dufour and Khalaf (2002) and Dufour @@l0)]. When the erroif obey
(6.25), we say thaty belongs to the Cholesky error family.

If the covariance matrix dﬂ is an identity matriXg. 1, the covariance matrix o is

Q =EWW]=1JJ. (6.26)
In particular, these conditions are satisfied when
W N[O, Igye] t=1, ..., T. (6.27)
Since the) matrix is upper triangular, its inverse'® is also upper triangular. Let
P=(J7Y. (6.28)
Clearly,Pis a(G+1) x (G+ 1) lower triangular matrix and it allows one to orthogonaliizk:

PIIP=lg:1, (3I)t=PP. (6.29)

P’ can be interpreted as the Cholesky factofof!, soP is the unique lower triangular matrix that
satisfies equation (6.29); see Harville (1997, Section 14.5, Theoreni1}.3t will be useful to
consider the following partition d? :

(6.30)

P1 P

whereP;1 #£ 0 is a scalar ané; is a nonsingulaG x G matrix. In particular, if (6.26) holds, we
see [using (6.21)] that an approprid@enatrix is obtained by taking:

Py = (02-08'5,%0)Y2=0:, PpiyPo=lg, (6.31)
P1 = —(B+2,9)(05—-8'%,'0) ?=—(B+a)o, " (6.32)
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Further this choice is uniqué; only depends oixy andPyiB + Py = —(5,16)0; 1 = —ao; .

In particular, ifd = 0, we havePi; = 1/0y, P.1 = — /0y andPi13 + P»1 = 0.
If we postmultiplyy, Y] by P, we obtain from (2.5):

- +Mmp n _
T = . YIP=yR1 YR YR = 20,22 | VP e W (633)
Mg I,
where
W=UP=[,V]=W,..., W], W=\,V], (6.34)
V=VR1+VPi =V, ..., ], V=VPRp=M, ..., V]. (6.35)
Then, we can rewrite (6.33) as
Y = Zi(yPui+ M)+ 2ol 4V, (6.36)
Y = ZiMPo+2ZMMPyr+V, (6.37)
where
{=BPu+Pun=—(5,"9)/(05—5%,0)"? = —ao, . (6.38)
SinceMZ = 0, we have
My = MV, MY =MV, (6.39)
M1y = Ma(ty+V), MY = My (i, +V). (6.40)
where
My = MiZeMl = -0, '‘MiZ,M>a,
Hy = Mi1ZolMPs. (6.41)

Clearly, u, does not depend on the endogeneity pararmei:elf\]lé. Furthermore{ =0< 0 =
a= 0 andu,; = 0. In particular, this condition holds undernHd = a = 0). If 1, = 0 (complete
non-identification of the model parameters), we haye= 0 andu, = 0, irrespective of the value
of . In this case,

My =MV, MY = MV, Myy = M1V, MY = M1V . (6.42)

We can now show the following Cholesky invariance property of all teissitzs.

Lemma 6.1 CHOLESKY INVARIANCE OF EXOGENEITY TESTS Let

R 0
R:[ 11

(6.43)
Ro1 Roo

be a lower triangular matrix such thatiR+# 0 is a scalar and R is a honsingular G< G matrix.
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If we replace y and Y by.y=yRi1+ YR and Y. = YRy in (4.1) - (3.11), then the statistics H
(i=1,23),T (I =1,2,3,4) and RH do not change.

The above invariance holds irrespective of the choice of lower triangud#ix R. In particular,
one can choosk = P as defined in (6.28). We can now prove the following general theoretineon
distributions of the test statistics.

Theorem 6.2 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions (2.1) - (2.4) and assumptioti6.25), the statistics defined if.1) - (3.11) have the following
representations:

A =Ty +V'Ti (Mg, Mo V) [y +V], 1=1,2,3,

A = KI[U1+\7J,I_I(H1,U2a\7»v)[ﬂl+\7ja I =1,23,4,

RA = Krlly+V]TR(Hy, Bp, V. V) [y 4V,

where[V,V], u;, U, are defined in6.34) and (6.41), I3, I, and R are defined in Sectiod.

The above theorem entails that the distributions of the statistics do not depesiither3 or y.

Observe that Theoret2follows from algebraic arguments only, B Z] and[v, V] can be random

in an arbitrary way. If the distributions of and[\T,\7] do not depend on other model parameters,
the theorem entails that the distributions of the statistics depend on model pensomdy through
U, andp,. Sincep, does not involve, i, is the only factor that determines powerpif # 0, the
tests have power. This may be the case when at least one instrumentgs(ptdial identification

of model parameters). However, we can observe that WhefalT,a = 0, u; = 0 and exogeneity
tests have no power. We now provide a formal characterization of thef gatrameters in which
exogeneity tests have no power.

Corollary6.3 characterizes the power of the tests when. 4" (Cy).

Corollary 6.3 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theorens.2, if a € .4 (Cy), we haveu; = 0 and the statistics defined {@.1) - (3.11) have
the following representations:

A = TVE(Up GV =1,2,3; % = KV (U, V)Y, | =1, 2,3, 4,
R KRVFR([JZ,\T,V)\T

irrespective of whether the instruments are weak or strong, whére,,v,V) = (0, U,,v,V),
I_I(IJza\TaV) = ﬁ(oul'lZ)\TaV)v I_R(u27\77V) = I_R(0>u27\77\/)5 Z = _(2\715)/(05 - 512\715)1/27 I_i)

[, andlg are defined in Sectiod

First, note that whem € .4"(Cy), i.e. whenMZ2lM,a = 0O, the conditional distributions, given
Z andV of the exogeneity tests, only depend prirrespective of the quality of the instruments.
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In particular, this condition is satisfied whdi, = 0 (complete non-identification of the model

parameters) od = a = 0 (under the null hypothesis). Singg does not depend od or a, all

exogeneity test statistics have the same distribution under both the null hgisgthe- a = 0) and

the alternativgd # 0) whena e .4/ (Cy) : the power of these tests cannot exceed the nominal levels.

So, the practice of pretesting based on exogeneity tests is unreliable indis ca
Theorenb.4characterizes the distributions of the statistics in the special case of GaeISsids.

Theorem 6.4 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Let the assumptions of
Theorem6.2 hold. If furthermore the normality assumpti¢6.27) holds and Z= [Z;, Z,] is fixed,
then

S = T+ Ta(Hy, UV, V) [y + V],

Ay = T+ Ta(Hy, Hp, Vo V) [y +V] ~ Ty (V, V1) /@(V; v3),
BV ~ T/[14+ k(T -k —2G, G,uz, v1)] < K;F (G, T — ki — 2G; vy, U2),
FIV ~ F(G, ka—G;v1, V1), B|V ~F(G, T —ki —2G;v1, U),

T = Kol +VI'Ta(liy, U, VV) [y +V] ~ Koy (V; V1) /@,(V, V3),

TN~ Ka/[L+ K, F (T —ki — 2G, G; Uz, v1)] < K3F (G, T —ky — 2G; vy, Up),

%%“7 ~ F(kz,T—k—G;VR, UR),

where@, (V, v1)|V = [ty +V'C'A-IC[u; + V]|V ~ X2(G; V1), @o(V, v3)|V = R, |V ~ x3(T —ky —
G;v3), vi = piC'A™ICuy, v3 = pj(D.D*)py, U1 = PiEpy, Uz = pj(C. —C'ATIC)py, VR =
H1Pb,z, g, UR= M (D1—Pb,z)Hy, K1 =TG/(T —k1—2G), kK3 = (T —ki —G)G/(T —ki — 2G).

The above theorem entails that giw_énthe statisticsr, % andZ s follow double noncentral
F-distributions, whileZ; and.>73 are bounded by a double noncentratype distribution. How-
ever, the distributions of3, 7% and.7#1 cannot be characterized by standard distributions. As in

Theorem6.2 u, is the factor that determines power. df # 0, the exogeneity tests have power.
However, wheru,; = 0, all tests have no power as shown in Coroll&r§.

Corollary 6.5 FINITE-SAMPLE DISTRIBUTIONS OF EXOGENEITY TESTS Under the assump-
tions of Theoren8.4, if a € .4 (Cy), we havevy = v3 =01 = Uz = Vg = Ur = 0 so that

A = TV V), o =TV (g, UV )V~ Ty (V) / 95(V),
M ~ T/(A+kF(T —k—2G,G)) <K;F(G, T~k —2G),
T ~ F(G k—G), Z~F(G,T—k —2G),

Ty = KVTo(Hp, VIV~ K200, (V)] 0 (V),

T~ Ka/[1+K'F(T —ki—2G, G)] < K3F (G, T — kg — 2G),

RHA ~ F(ko, T—k—G),

Whereq)l(\7) = (pl(\Tv 0)7 (pZ(W = (pZ(\T? O)a (pl(\z Vl)a (pl(\z V3>7 ri(ul’ IJ27\77V)3 I = lv 2 are defined
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in Theorenb.4.

Observe that whea € .4 (C;;), the non-centrality parameters in tRedistributions vanish. In
particular, under the null hypothesigHve havea= 0 € .4/ (C;;) and all exogeneity test statistics
are pivotal. Furthermore, all exogeneity test statistics have the same distribmnder the null
hypothesisd = a= 0) and the alternatived(% 0): the power of the tests cannot exceed the nominal
levels.

We now describe the exact procedure for testing exogeneity even witsaassian errors: the
Monte Carlo exogeneity tests.

7. Exact Monte Carlo exogeneity (MCE) tests

The finite-sample characterization of the distribution of exogeneity test statistithe previous
section shows that the tests are typically robust to weak instruments (lewesitislted). However,
the distributions of the statistics (under the null hypothesis) are not sthifdhe errors are non
Gaussian. Furthermore, even for Gaussian erréfg, 7%, and .73 cannot be characterized by
standard distributions. This section develops exact Monte Carlo tests afeiaentification-robust
even if the errors are non-Gaussian.

Consider again (2.1) and assume that we test the strict exogen¥ity.ef the hypothesis:

Ho : uisindependentofy,Z]. (7.1)

If the distribution under Kl of u/oy is given, the conditional distributions of the exogeneity test
statistics giver[Y, Z] do not involve nuisance parameters and so can be simulated [see Theorem
5.1]. Let

W e [, A RA, 1 =1,2,3;1 =1,2,3,4}. (7.2)

We shall consider two cases. The first one where the supp®t of continuous, and the second
one where it is a discrete set.
Let us first focus on the case where the statistics have continuous distmgal_et 71, ..., N
be a sample oN replications of identically distributed exchangeable random variables with the
same distribution a¥” [for more details on exchangeability, see Dufour (2006)]. De#eN) =
(7, ..., #A) and let#; be the value of#” based on observed data. Define
. o NGy +1

P (X) = TNl (7.3)

whereGy (x) is the survival function given by

N
Gn(X) = G 7 (N) = 1 Zn(% >X), (7.4)
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1(C) = 1 ifcondition C holds,

= 0 otherwise. (7.5)
Then, we can show that
Plpn(70) <a] = W for 0<a<1 (7.6)

[see Dufour (2006, Proposition 2.2)], whdre] is the largest integer less than or equaktdSo,
Pn(#0) < a is the critical region of the Monte Carlo test with level-Tr andpn(#5) is the Monte
Carlo test p-value.

We will now extend this procedure to the general case where the distriboftithre statistic
# may be discrete. Assume th#t(N) = (#4, ..., #n)’ is a sequence of exchangeable random
variables which may exhibit ties with positive probability. More precisely

P#;=#i)>0 forj#j" j,i'=1...,N. (7.7)
Let us associate each variab#¢, j =1, ..., N, with a random variabl®j, j =1, ..., N such that
U, ..., % S w(01), (7.8)

U (N) = (%, ...,%)" is independent o/ (N) = (W, ..., #N)" where% (0,1) is the uniform
distribution on the interval0, 1). Then, we consider the pairs

Zi=M,%),1=1,...,N, (7.9)
which are ordered according to the lexicographic order:
i Uy) < Wy, Uy ) = Wi < Wy or (W) =Wy and < Uj)}. (7.10)

Let us define the randomized p-value function as

. . NGy +1
Pn(X) = TNLL (7.11)
where the tail-area functioBy is given by
. . N
GN(X) = GN[X; @/0,7/( N Z QP > X %o ] (7.12)

U is a7 (0,1) random variable independent@f (N) and% (N). Then, following Dufour (2006,
Proposition 2.4), we have

Plon(70) <a] = W for 0<a<1 (7.13)
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So, pn(#0) < a is the critical region of the Monte Carlo test with level-do and pn(%#0) is the
MC-test p-value.

We now describe the algorithm to compute the Monte Carlo tests p-value whéistiilgutions
of the statistics is continuotisBefore proceeding, it will be useful to recall that under the assump-
tions of Theorenb.1, all DWH and RH statistics can be expressed as [see the proof in (B.8)}k(B

M = T(u/ou)'Co(u/0u)/(u/0y)'Da(u/ou), (7.14)
A3 = T(u/0y)'Co(u/ou)/(u/ou)'Di(u/ay), (7.15)
F = Ki(u/0y)'Co(u/0u)/(u/0u) (D1—D1)(u/ay), (7.16)
Tp = Ka(u/0y)'Co(u/0y)/(u/0u)'(D1—Co)(u/0u), (7.17)
T = K3(u/au)'Co(u/ay)/(u/0y)'Da(u/oy), (7.18)
Ts = Ka(u/0y)'Co(u/ou)/(u/0u)'Di(u/0y) (7.19)

where the matrice€, D1, D1 are defined in (3.13)-(3.30). Suppose that
o tu|Y,Z~ .7, where.Z independent ofY, Z) under H and is completely specified(7.20)
The MC p-values are computed through the following steps:

1. compute the test statisti€g based on observed data;

2. generateN i.i.d. variablesoytu) = ulV = [l . WD)y j=1... N, according to
the specified distributio”, and compute the corresponding test statis#gsusing (7.14)-
(7.19);

3. compute thé/AC p-value as

NI > ) +1,
N N+1 '

Pmc (7o) (7.21)

4. reject the null hypothesisd-at levela if puc(#0) < a.

We now study the performance of the standard exogeneity tests and gasedoMonte Carlo
tests through a Monte Carlo experiment.

8. Simulation experiment

In each of the following experiments, the model is described by the followatg generating pro-
cess:
y=Y1B1+Y2B,+U, (Y1,Y2) = (Zal121,Z2MM22) + (V1,V2), (8.1)

3Note that the algorithm can easily be generalized to discrete distributions.
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whereZ, is aT x ko matrix of instruments such thd L. N(O, Iy,) forallt=1,..., T, 21 and

5, areko-dimensional vectors such that

31 =n1Co, M2 = N,Cy, (8.2)

wheren, andn, take the value O (design of complete non identificatiof}, (design of weak
identification) or.5 (design of strong identification)Co,C1] is aky x 2 matrix obtained by taking
the first two columns of the identity matrix of ordks. Observe that (8.2) allows us to consider
the partial identification of = (84,8,)’. In particular, if[T21 = 0 butT22 # O, B is not identified
but B, is. The true value op is set atB, = (2,5)" and the number of instrumenks varies in
{5,10,20}. We assume that

u=Va+¢e=Via; +Voar +¢, (8.3)

wherea; anda, are 2x 1 vectors anc is independent witlv = (V1,V2), Vi andV, areT x 1
vectors. We consider two type framework for model error distributions:

1 00
(1) (Va,Va, &) Z2'NJ0, |0 1 0 forall t=1,...,T (8.4)
0 01
V4 andg; are independent such that
and(2) (Vi Va, &)’ %9 standard Cauchy distributionforati=1, ..., T. (8.5)

The sample size is fixed at= 50 but our results remain valid for alternative choice of the sample
size (even less than 50). The endogeneity paramagtechosen such that

a=(ay,a) € {(—20,0),(-5,5),(0,0),(.5,.2)",(100,100)'} . (8.6)
From the above notations, the usual exogeneity hypothe¥issoéxpressed as
Ho:a= (a1,a) = (0,0)". (8.7)
The nominal level of the tests in each experiment is set at 5%.

8.1. Standard exogeneity tests

Table 1 presents the empirical size and power when errors are Gauwssilenrable 2 is for Cauchy-

type errors. The number of replicationsNs= 10000 in both cases. The first column of each
table reports the statistics, while the second column contains the valuggémimber of excluded
instruments). In the other columns, for each value of endogeneity parsaraatd the quality of the
instruments); andn,, the rejection frequencies are reported. Our main findings can be summarized
as follows:
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1. all DWH and RH tests are valid (level is controlled) whether identificatiotrasg or weak,
and the errors are Gaussian or not. This confirms our theoretical redtite precisely,
when the errors are Gaussian [framework (8.4}, 92, 4, #, and RH have a correct
level, while .73, 71 and. 7% are conservative when identification is weak. For Cauchy-type
errors [framework (8.5)], in addition t63, 71 and %, .77 is now conservative with weak
instruments. Howevery,, 7, s, andRH still have correct level whether identification is
strong or weak;

2. all exogeneity tests exhibit power even if not all parameters are idehtfievided partial
identification holds. This shows how Staiger and Stock (1997) weak instiisrasymptotic
may be misleading when identification is partially weak. However, when the instits are
completely irrelevanti.e. n, = n, =0, all DWH and RH tests have no power whether the
errors are Gaussian or not [similar to Staiger and Stock (1997) ande@hgrger (2010)];

3. our results also indicate that in terms of powgf; dominatess/% and.7% dominatess#;
irrespective of whether identification is deficient or not. In the same Wwaylominates7;,
T4 dominates7; and.7; dominates7s.

We now analyze the performance of the proposed Monte Carlo exogéestity
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Table 1. Power of exogeneity tests at nominal level 8%; 2, T =50

(al, 8.2)/ = (—207 0)/

(a1,8)" = (=5,5)

(al,az)’ = (07 0)/

(al,az)’ = (.5, .2)/

(a1,a2)’ = (100, 100/

k1 ny=0 ny=01 ny=5|\n,=0 n=01 nu=5{n,=0 =01 ny=5|n=0 ny=01 ny=5{n,=0 n;,=.01 n;=5
N2=0 nN,=0 NnNy=0|nN=0 1ny=0 1Ny=0]np,=0 1nNy=0 1nNy=0|n=0 1nNy=0 1ny=0|n,=0 np,=0 1n,=0
TN 5 4.98 4.6 65.81| 5.26 4.92 70.9 4.87 5.06 5.24 5.09 4.84 19.85| 4.94 4.18 70.09
) 5 4,98 24.92 100 5.04 6.77 100 4.96 5.38 5.26 4.87 4.61 53.19| 4.91 76.71 100
T3 5 0 0.19 97.93 | 0.02 0.05 97.85| 0.02 0.03 0.59 0.03 0 29.02 | 0.01 5.83 97.93
7 5 4.64 24.07 100 4.67 6.29 100 4.63 491 4.93 451 4.42 52 4.62 76.25 100
JA 5 0 0.09 9253 | 0.01 0.02 91.83| 0.01 0.02 0.26 0 0 17.97 0 3.59 92.48
W2 5 0.01 0.25 98.09| 0.03 0.05 98.02 | 0.02 0.04 0.74 0.04 0 31.42 | 0.02 6.89 98.14
W %) 5 5.34 25.73 100 5.33 7.19 100 5.27 5.72 5.56 5.18 4.92 5441| 5.31 77.11 100
R | 5 4.84 45.25 100 5.36 7.83 100 5.04 5.2 4.9 4.88 473 41.31| 5.02 100 100
A 10 4.9 3.95 98.38 | 4.92 5.34 98.93 | 4.82 481 5.25 4.88 5.22 34.18| 4.91 3.28 99.23
D 10| 5.01 17.5 100 5.19 6.2 100 5.16 4.88 5.07 477 5.45 54.24 4.8 50.74 100
T 10| 0.35 1.88 100 0.38 0.29 100 0.3 0.33 1.47 0.36 0.3 43.01| 0.22 14.7 100
T 10| 4.65 16.77 100 4.75 5.73 100 4.78 4,55 4.72 4.45 5.02 52.81| 4.46 50.05 100
J4 | 10| 0.16 1.05 99.31| 0.18 0.14 99.22 0.2 0.14 0.49 0.14 0.14 28.92 0.1 9.88 99.25
J% | 10| 0.46 2.3 100 0.48 0.42 100 0.38 0.43 1.76 0.46 0.39 4554 | 0.33 16.85 100
% | 10| 5.32 18.11 100 5.43 6.56 100 5.46 5.18 5.41 5.06 5.75 55.31| 5.12 51.25 100
% | 10| 5.17 57.58 100 4.83 7.62 100 4.83 5.34 4.97 4.93 5.41 345 4.57 100 100
A 20| 4.93 2.26 99.8 4.94 4.64 99.78 4.9 5.02 5.07 5.02 4.93 394 5.02 1.5 99.96
2 20| 4.75 8.97 100 4.9 5.54 100 5.09 5.32 4.99 4,95 4,94 4934 | 4.92 17.32 100
T 20| 1.95 3.73 100 1.82 2.01 100 2.1 2.02 2.79 2.01 1.95 44.9 1.94 9.2 100
Ty | 20| 4.43 8.42 100 451 5.21 100 4,74 5.04 4.61 4.63 4.57 47.89| 4.52 16.45 100
4 | 20| 1.08 2.43 99.89| 1.13 1.08 99.82| 1.13 1.2 1.03 1.08 1.21 29.88| 1.15 6.44 99.7
J | 20| 2.32 4.37 100 2.26 2.6 100 2.67 2.57 3.28 2.46 2.48 47.46 | 2.33 10.39 100
J% | 20| 5.15 9.36 100 5.25 5.73 100 5.4 5.68 5.41 5.23 5.18 50.31| 5.23 17.76 100
x| 20| 4.88 79.08 100 5.03 8.36 100 5.38 5 5.21 5.07 5.04 24.88 5.3 100 100
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Table 1 (continued). Power of exogeneity tests at nominal levelG%2, T =50

&

(a]_, 8.2)/ = (—20, 0)/

(al, az)/ = (—57 5)/

(a1,8)" = (0,0)

(al,ag)’ = (.5, .2)/

(al,az)’ = (IOQ 100)/

n1=0 n;=01 n

ni=0 n;=.01 n;=.

1=5|n=0 n=01 n=5|{n=0 n=01 n=5{n=0 n=01 ny=.5 <

n,=5 n,=5 n,=5|n,=5 n,=5 »=5|1NnN,=5 n,=5 nN,=5|n,=5 n,=.5 >=.5|N,=5 n,=5 n,=.

A 5 4.73 15.16 81.58| 69.69 68.76 78.22| 4091 5.26 5 8.01 7.48 24.2 63.6 65.14 78.0.
) 5 5.1 37.9 100 100 100 100 551 5.29 5.2 12.95 12.42 64.31| 100 100 100
T3 5 0.63 18.25 98.68| 98.15 98.26 98.50| 0.75 0.85 0.83 3.82 3.47 42.79 | 97.43 97.09 98.5
Ta 5 4.77 36.89 100 100 100 100 5.06 4.98 478 | 12.24 11.72 63.06| 100 100 100
4 5 0.27 10.48 90.44 92 92.3 92.20 | 0.39 0.29 0.32 1.93 1.69 2439 | 924 91.95 92.1:
5 5 0.77 20.16 98.82| 98.33 98.43 98.52| 0.87 0.96 0.99 4.44 4.08 45.64 | 97.59 97.31 98.6
¥4 5 5.48 38.88 100 100 100 100 5.83 5.64 541 | 13.39 12.95 65.44| 100 100 100
R | 5 5.13 28.27 100 100 100 100 4.77 5.13 5.17 9.81 10.28 50.59| 100 100 100
1 | 10| 5.8 26.81 99.76 | 98.81 99.17 99.56| 5.26 5.3 486 | 11.05 11.61 43.71| 99.12 99.28 99.7
Jp | 10| 5.29 41.58 100 100 100 100 4.92 5.19 5.07 | 13.49 14.75 66.24| 100 100 100
Tz | 10 1.7 311 99.98 | 99.97 99.99 100 1.58 1.6 1.88 7.75 8.29 57.52| 100 100 100
Js | 10| 4.96 40.35 100 100 100 100 4.57 4.87 4.67 | 1281 14 65.15 100 100 100
24 | 10| 0.73 18.21 98.22| 99.08 98.98 98.9 0.55 0.5 0.48 3.34 3.88 32.85| 99.28 99.26 98.2
5 | 10 2 33.67 99.98 | 99.98 100 100 1.88 2.03 2.31 8.65 9.3 60.4 100 100 100
3 | 10| 5.61 42.64 100 100 100 100 53 5.53 5.38 | 14.05 15.32 67.3 100 100 100
XA | 10| 5.24 24.16 100 100 100 100 4.92 5.07 511 8.55 8.94 43.87 | 100 100 100
g | 20| 5.12 27.67 99.96| 99.45 99.48 99.62| 4.86 4.91 4.29 | 10.45 10.95 41.15| 99.91 99.9 99.9:
J | 20| 5.06 34.7 100 100 100 100 4.93 4.77 4.3 11.85 12.03 51.76| 100 100 100
T3 | 20| 297 30.26 100 100 100 100 3.2 2.88 2.74 9.14 9.14 47.52| 100 100 100
Ia | 20 4.7 33.32 100 100 100 100 4.57 4.45 3.97 | 11.13 11.34 50.35| 100 100 100
J4 | 20 1.2 17.73 99.24| 99.93 99.91 990.93| 1.1 1.03 0.72 4.51 4.53 27.81| 99.77 99.81 98.7'
Ho | 20| 3.59 32.57 100 100 100 100 3.65 3.39 3.27 | 10.24 10.25 50.07| 100 100 100
3 | 20| 5.32 35.69 100 100 100 100 5.25 5.06 455 | 1242 12.55 52.91| 100 100 100
X | 20 | 5.46 16.17 100 100 100 100 5.2 4.64 4.82 7.45 7.45 26.62 | 100 100 100
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Table 2. Power of exogeneity tests at nominal level 5% with Cauchy efots2, T =50

(al, 8.2)/ = (—207 0)/

(a1,8)" = (=5,5)

(al,az)’ = (07 0)/

(al,az)’ = (.5, .2)/

(a1,a2)’ = (100, 100/

k1 ny=0 ny=01 ny=5|\n,=0 n=01 nu=5{n,=0 =01 ny=5|n=0 ny=01 ny=5{n,=0 n;,=.01 n;=5
N2=0 nN,=0 NnNy=0|nN=0 1ny=0 1Ny=0]np,=0 1nNy=0 1nNy=0|n=0 1nNy=0 1ny=0|n,=0 np,=0 1n,=0
AN 5 4.96 4.94 4.9 4.98 4.95 5.14 5.19 5.23 4.97 5.1 5.34 5.23 5.01 4.83 6.66
) 5 5.08 8.58 59.38| 5.48 6.02 2451 | 5.46 5.38 5.29 5.15 4.97 5.54 5.32 44.68 81.16
T3 5 0.05 0.08 491 0.02 0.03 0.65 0 0.03 0.05 0.02 0.01 0.02 0.01 1.62 8.71
7 5 4.82 8.08 58.8 5.19 5.62 23.87| 5.14 5 4.9 4,75 4.63 5.14 5.01 44 80.76
JA 5 0.04 0.02 3.26 0.01 0 0.33 0 0.01 0.02 0.01 0 0.01 0 0.91 6.2
W2 5 0.07 0.11 5.86 0.05 0.04 0.81 0 0.05 0.05 0.02 0.03 0.03 0.02 2.02 9.95
Wi 5 5.41 9.01 59.84| 5.81 6.38 25.21| 5.67 5.7 5.64 5.49 5.23 5.77 5.57 45.34 81.48
R | 5 5.13 12.29 82.91| 5.61 6.79 40.66 | 6.04 5.98 5.93 4.88 4.43 5.06 6.12 68.34 96.73
A 10| 5.61 4,79 5.07 4.97 5.2 4.63 4.83 5.48 4.7 5.04 5.08 5.22 5.09 2.95 3.24
) 10| 5.42 6.48 38.72| 5.53 5.41 9.28 4,79 5.17 4.81 4.92 4.94 5.14 5.01 22.57 54.36
T 10| 0.39 0.44 10.96 0.3 0.3 0.8 0.31 0.28 0.32 0.34 0.28 0.19 0.38 3.53 18.51
T4 10| 5.08 6.09 38.06| 5.24 5 8.86 4.45 4.87 4.46 4.61 4.63 4.83 4.69 21.74 53.51
J4 | 10| 0.17 0.17 7.6 0.11 0.13 0.42 0.16 0.08 0.09 0.14 0.17 0.09 0.14 2.06 13.04
J% | 10| 0.49 0.65 1256 | 0.46 0.42 1.11 0.4 0.38 0.45 0.44 0.39 0.33 0.51 4.19 20.96
% | 10| 5.61 6.8 39.32 5.8 5.64 9.66 5.01 5.42 5.05 5.19 5.2 5.43 5.33 23.16 55.1
*# | 10| 6.09 11.71 81.63| 6.41 5.77 22.73| 5.06 4.67 4.98 4.22 4.63 4.77 3.86 62.53 96.32
A 20| 5.27 5.02 3.63 4.64 4.63 4.35 4.96 5.27 5.09 4.77 5.16 4.85 51 3 2.55
2 20| 5.34 5.4 13.09| 4.94 4.9 6.76 4.85 5.06 4.98 4,76 5.26 4,98 4.84 8.73 18.56
T 20| 2.03 2.16 6.97 1.8 1.77 2.45 1.95 2.09 1.87 1.91 2.19 1.88 2.06 3.74 11.08
J4 | 20| 5.03 5.13 12.58 4.6 4.57 6.42 4.47 4.68 4.67 4.48 5.01 4.7 457 8.2 18.04
J4 | 20| 1.21 1.25 4,78 1.05 1.01 1.61 1.14 1.19 1.06 0.94 1.35 1.09 1.26 2.42 8.21
J5 | 20| 254 2.62 8.03 2.27 2.25 3.25 2.3 2.62 2.33 2.35 2.56 2.4 2.43 4.38 12.28
J5 | 20| 5.72 5.69 13.49| 5.14 5.12 7.07 5.21 5.4 5.29 5.04 55 5.27 5.08 9.06 19.12
X | 20 6.3 9.15 75.83 | 4.05 4.15 23.42| 6.55 6.42 6.83 5.49 5.03 5.27 5.01 54.94 94.83
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Table 2 (continued). Power of exogeneity tests at nominal level 5% witblGaerrorsG =2, T =50

(a]_, 8.2)/ = (—20, 0)/

(al, az)/ = (—57 5)/

(a1,8)" = (0,0)

(al,ag)’ = (.5, .2)/

(al,az)’ = (IOQ 100)/

ke | 1,=0 n;=.01 n=5|n=0 n=01 n=5|n=0 =01 ny=5|n,=0 n=01 nNy=5|n;=0 nNy=01 ny=2=
n,=5 n,=5 n,=5|n,=5 n,=5 »=5|1NnN,=5 n,=5 nN,=5|n,=5 n,=.5 >=.5|N,=5 n,=5 n,=.

A 5 521 4.86 4.43 4.53 5.03 4.65 4.88 4.42 4.88 531 5.16 5.05 4.64 4.66 5.31
) 5 451 7.01 52.88 | 22.05 22.32 33.84| 4.83 4.77 5.01 5.02 4.91 552 | 77.26 77.11 78.1:
T3 5 0.01 0.01 3.51 0.72 0.6 1.47 0.01 0.01 0.04 0.01 0.06 0.02 8.81 9.01 10.2°
Ta 5 4.24 6.6 52.29 | 2141 21.56 33.16| 4.42 4.5 4.7 4.64 4.63 5.07 | 76.83 76.71 7.7
4 5 0 0 2.22 0.42 0.21 0.95 0 0 0.01 0 0.02 0.01 6.38 6.37 7.38
5 5 0.04 0.01 4.22 0.89 0.75 1.74 0.02 0.03 0.05 0.02 0.06 0.03 | 10.02 10.14 115
H3 5 4.84 7.31 53.53| 22.61 22.8 34.49| 5.19 5.08 5.42 541 5.24 5.77 77.6 77.53 78.6.
R | 5 4.36 8.62 77.57| 37.03 36.83 53.81| 5.32 5.34 5.36 5.03 5.29 546 | 96.24 96.42 97.6
S | 10| 472 4.97 4.34 4.87 5.41 5.3 5.2 5.3 5.16 4.89 4.93 4.7 5.07 4.59 4.81
Jp | 10| 4.53 6.71 36.17| 13.87 13.91 17.44| 494 5.01 511 511 5.14 5.15 | 49.25 49.57 52.8
I3 | 10| 0.23 0.49 10.23 16 1.95 3.09 0.34 0.34 0.27 0.27 0.34 0.31 | 16.39 15.82 18.7
Js | 10| 4.16 6.3 353 | 13.24 13.31 16.82| 4.65 4.68 4.7 4.77 4.73 4.85 | 48.54 48.81 52.0
24 | 10| 0.08 0.25 7.01 0.9 1.04 1.86 0.12 0.19 0.15 0.08 0.09 0.11 | 12.12 11.64 13.8
>, | 10| 0.34 0.75 11.8 2.03 2.38 3.62 0.44 0.43 0.35 0.42 0.49 0.41 | 18.12 17.91 20.7
3 | 10| 491 7.18 36.81| 14.51 14.37 18.09| 5.17 5.45 5.45 5.37 5.44 5.46 | 49.86 50.25 53.4
X | 10 | 4.94 9.41 78.79 | 34.19 33.03 45.3 5.36 4.98 5.44 511 5.01 546 | 95.77 95.26 97.2
A | 20| 4.83 4.39 2.6 4.31 4.21 3.47 4.85 5.12 4.67 4.66 4.85 5.05 2.26 2.19 1.79
F | 20| 461 4.6 13.11| 6.41 6.08 6.78 4.65 4.85 4.95 4.56 4.7 5.13 | 18.38 17.85 18.4.
T3 | 20| 2.04 1.85 6.7 2.6 2.54 3 1.69 1.99 1.9 1.88 2 2.23 11.17 10.59 10.6.
Ja | 20| 4.21 4.34 12.41| 6.09 5.79 6.48 4.27 4.57 4.73 4.23 4.4 4.8 17.78 17.22 17.8
J64 | 20| 112 1.16 4.61 1.59 1.55 1.66 1.01 1.07 1.12 1.08 1.15 1.35 8.44 7.93 7.45
Ho | 20| 2.44 2.2 7.67 3.04 3.12 3.52 2.16 2.48 2.39 2.26 241 2.76 | 12.37 11.67 12.0.
3 | 20| 4.86 4.93 13.56| 6.75 6.36 7.23 4.93 5.17 5.26 4.85 4.97 5.5 19.04 18.46 18.9
X | 20| 6.64 9.64 75.85| 18.22 18.08 33.69| 531 5.11 5.31 4.38 4.64 4.93 94.4 94.26 96.0




8.2. Exact Monte Carlo exogeneity (MCE) tests

We now evaluate the empirical performance of the Monte Carlo tests debénilibe previous
section. To do that, we use the same DGP introduces in Section 8 in addition witdenStype-
distribution for model errors. We generate=- 10000 samples of siZE = 50 following this DGP.
For each sample=1, ..., J, a replication?; of the statistic#’ € {4, 74, ##,1=1,2,3;| =
1,2,3,4} is computed from the simulated sample. In addition, for each sample drawN = 99
realization of the statistic, namely/;", j = 1, ..., 99, following the same DGP as above. We then
compute the Monte Carlo test p-value as

o SPEAN > )+ 1

(8.8)

and estimate the rejection probability (RP) of the test as the proportion ¢f, {# ) that are less
thana, the nominal level. This yields the following estimate of the RP of the Monte Carlo test:

RPuc = ——= Y 1[5 (#)<al. (8.9)

Tables 3- 5 present the results. We note that all Monte Carlo tests novappreximately correct
size, even when identification is weak. So, size adjustment of all stand&id ests is feasible,
unlike the conclusion of Staiger and Stock (1997). Furthermore, comhparthe standard tests,
all tests power has improved slightly even when instruments are weak in botthyZand Student
distributions setups [see Tables 4-5]. But the Monte Carlo tests still exhibiptaver when all
instruments are weak. In addition, the Monte Carlo tests seem to have moee when errors
have Gaussian and Student distributions than when their distributions acey=type.

Overall, our results clearly suggest that finite-sample improvement ofatdhesdogeneity tests
is feasible, whether model errors are Gaussian or not, and identificastioig or weak. Hence,
the view that size adjustment is infeasible for some versions of DWH testfojsexeample, Staiger
and Stock (1997)] is questionable.
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Table 3 . Power of MCE tests with Gaussian errors

(al, 8.2)/ = (—207 0)/

(a1,a2)

(_57 5)/

(al,az)’ = (07 0)/

(3.17a2)/ = (.5, .2)/

(a]_, 3.2)/ = (100, 100)/

k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
TN 5 5 7 30 4 4 41 4 5 5 12 9 13 77 78 81
) 5 5 8 100 5 6 99 5 4 5 13 7 23 100 100 100
T3 5 3 9 93 3 4 95 4 3 4 12 8 22 91 94 89
7 5 5 8 100 5 5 99 5 5 5 13 7 23 100 100 100
JA 5 4 9 91 3 4 94 4 4 4 12 9 22 91 93 89
W2 5 4 9 93 3 4 95 4 5 5 12 8 22 91 94 89
W %) 5 5 8 100 5 6 99 5 5 5 13 7 23 100 100 100
R | 5 5 18 100 5 6 100 5 5 5 13 9 23 100 100 100
A 10 4 7 55 4 3 50 4 5 5 6 5 17 97 95 95
D 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
T3 10 4 5 99 4 3 99 3 4 3 5 7 20 99 98 97
T4 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
J4 | 10 3 5 99 3 3 98 3 4 3 6 7 21 99 98 96
I | 10 4 5 99 4 3 99 4 3 4 5 7 22 99 98 97
% | 10 5 8 99 5 7 99 5 5 5 6 8 23 99 100 98
%A | 10 5 16 100 5 6 100 4 5 4 6 13 24 100 100 100
A 20 5 6 33 4 5 68 4 5 4 6 7 10 88 83 90
) 20 5 7 80 5 7 99 5 4 5 6 8 12 92 84 93
T3 20 4 7 82 3 4 99 3 3 3 5 8 10 94 88 93
Ta | 20 5 7 80 5 6 99 4 5 4 6 8 12 92 84 93
J4 | 20 3 6 81 4 4 99 3 3 3 6 7 10 94 89 93
It | 20 3 7 82 3 4 99 3 3 3 5 8 11 94 88 93
I | 20 4 7 80 5 6 99 5 5 5 6 8 12 92 84 93
XA | 20 5 6 100 4 7 100 3 5 4 12 13 12 100 100 100
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Table 4 . Power of MCE tests with Cauchy errors

(al,ag)’ = (—207 0)/ (al,az)’ = (—5, 5)/ (al,az)’ = (07 0)/ (3.17a2)/ = (.57 .2)/ (al,az)’ = (100, 100)/
k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
N 5 4 7 27 4 9 17 2 4 3 6 5 5 38 41 40
) 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
I3 5 4 5 38 5 5 20 5 3 3 7 4 4 50 50 50
7 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
Wil 5 4 5 38 4 5 20 5 5 3 7 3 4 47 51 49
W) 5 4 5 38 4 5 20 5 3 3 7 4 4 50 50 50
W4 5 5 8 62 5 6 32 5 5 4 9 6 5 76 81 78
R | 5 5 7 82 5 5 47 5 5 5 8 6 6 95 96 98
A 10 3 2 24 5 8 10 3 5 4 4 6 5 34 36 37
D 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51
T3 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
T4 10 5 3 37 5 6 15 4 3 5 6 9 4 55 54 51
4 | 10 4 4 34 4 3 14 4 2 4 4 7 4 43 52 41
I | 10 5 5 34 4 3 12 4 2 4 4 7 5 43 49 44
I3 | 10 5 3 37 5 6 15 4 3 5 6 9 6 55 54 51
x| 10 5 7 82 4 5 37 4 4 5 7 10 7 96 96 93
N 20 5 6 11 4 7 6 4 4 4 6 6 4 9 12 10
D> 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
T3 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
T 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
70 | 20 5 8 15 4 8 8 3 5 4 4 5 5 14 17 12
I | 20 5 8 13 5 8 8 4 5 4 5 5 5 15 17 11
I3 | 20 5 9 15 5 7 8 5 5 4 6 5 5 14 19 12
XA | 20 4 6 73 5 10 31 5 4 5 5 7 8 98 94 98




LZ

Table 5 . Power of MCE tests with Student errors

(al,ag)’ = (—207 0)/ (al,az)’ = (—5, 5)/ (al,az)’ = (07 0)/ (3.17a2)/ = (.57 .2)/ (al,az)’ = (100, 100)/
k1 n,=0 n=01 ny=5\n,=0 n=01 ny=5{n,=0 nu=01 ny=5|n,=0 ny=.01 n=5|n=0 n=01 n=.5
N2=0 nNy=0 Ny=0|nN=0 1nNy=0 1nNy=0|nNp,=0 1Ny=0 1nNy=0]|nN,=5 Npy=5 Npy=5|N,=5 Ny=.5 nNp=.5
TN 5 3 6 24 6 7 33 5 4 4 7 7 9 75 68 63
) 5 5 7 97 4 5 92 5 4 5 10 10 10 98 100 99
I3 5 4 4 86 6 6 72 4 3 3 10 8 6 89 82 90
7 5 5 7 97 4 5 92 5 5 5 10 10 10 98 100 99
Wil 5 3 4 86 6 6 71 3 3 4 10 8 6 87 82 90
W) 5 4 5 86 6 6 72 4 3 3 10 8 6 89 82 90
W4 5 5 5 97 4 5 92 5 4 4 10 10 10 98 100 99
R | 5 5 7 100 4 8 100 5 5 4 12 12 10 100 100 100
A 10 2 6 18 3 5 29 4 5 4 5 2 4 52 62 59
D 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93
T3 10 4 5 83 5 2 77 5 4 3 6 3 8 84 86 88
T4 10 4 7 90 5 5 82 5 3 5 6 4 8 90 90 93
4 | 10 3 6 82 5 2 78 4 3 3 6 3 8 82 86 88
I | 10 4 6 83 5 2 77 3 3 4 6 3 8 84 86 88
I3 | 10 4 7 90 5 5 82 5 5 5 6 4 8 90 90 93
x| 10 3 7 100 5 8 99 5 4 4 6 7 10 100 100 100
N 20 4 6 15 4 10 15 5 4 5 5 4 4 50 51 55
D> 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73
T3 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
T 20 5 8 65 5 10 44 5 5 4 5 6 6 64 60 73
70 | 20 4 5 65 4 11 48 3 3 2 5 7 4 64 61 74
I | 20 3 6 65 4 11 48 4 4 3 5 7 4 64 61 74
I3 | 20 5 8 65 5 10 44 5 5 5 5 6 6 64 60 73
XA | 20 5 7 100 5 14 98 4 4 5 5 9 5 100 100 100




9. Conclusion

This paper develops a finite-sample analysis of the distribution of the sthbdabin-Wu-Hausman
and Revankar-Hartley specification tests under both the null hypotHesiegeneity (level) and the
alternative hypothesis of endogeneity (power), with or without identifinafi@ur analysis provides
several new insights and extensions of earlier procedures. Thaotdidzation of the finite-sample
distributions of the statistics under the null hypothesis shows that all testgpacally robust to
weak instruments (level is controlled). We provide a characterization gidher of the tests that
clearly exhibits the factors that determine power. We show that exogensiisyhiave no power in
the extreme case where all IVs are weak [similar to Staiger and Stock (1&@9¥)Guggenberger
(2010)], but do have power as soon as we have one strong instrurAsrd. result, exogeneity
tests can detect an exogeneity problem even if not all model parameteigeatified, provided
partial identification holds. Moreover, the finite-sample characterizatidheo@listributions of the
tests allows the construction of exact identification-robust exogeneity dests in cases where
conventional asymptotic theory breaks down. In particular, DWH and Rk$ t@re valid even
if the distribution of the errors does not have moments (Cauchy-type distribdor example).
We present a Monte Carlo experiment which confirms our finite-sampleyth&be large-sample
properties of the tests and estimation issues related to pretesting are exaniaa ifichatoka
and Dufour (2011).
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APPENDIX

A. Notes

A.1. Unified formulation of DWH test statistics

We establish the unified formulation of Durbin-Wu statistics in (4.1) - (3.11Wwelb as the three
versions of Hausman (1978) statistic. From Wu (1973, Egs. (2.1), )2(286), (3.20)),T;,
| =1, 2, 3, 4 are defined as

S = Ki1Q'/Q1, 72 =K2Q"/Q2, 71 = K3Q"/Q3, T2 = K4Q" /Qu, (A1)
Q= (b—b) [(YAY) L~ (YAY) ™ (b —by), (A2)
Q = (Y-Y)A(y-Yk),Q=Q-Q", (A.3)
Q = (Y-Yb)A(y—Yh),Qs= (y—Yhk) Ay - Yhp), (A.4)

b= (YAY) YAYi=12 A =My, A =M— M, (A.5)

whereb; is the ordinary least squares estimatoBofandb, is the instrumental variables method
estimator of3. So, from our notationdy; = B andb, = f3
So, from (3.9) - (3.11), we have

=T(B-B)YA Y B-B)=T&%B—-B) S (B B), (A.6)
leTai, Qs— T2, Qu=T&?, (A7)
Q=Q-Q =T&>-T(B- B) YB-B)=T8% (A.8)

so thatJ], can be expressed as:

T = k(B-B)EHB-B), 1=1,234, (A.9)

wherek;, and 5, are defined in (4.1)-(3.11). The formulation in (A.9) shows clearly the link
between Wu (1973) tests and Hausman (1978) test.

A.2. Regression interpretation of DWH test statistics

Consider equations (3.3) - (3.6). First, we note thaeHdH},, can be written as

Hp : RE=0< Rb=a,
Hh ¢ RO,=0& RO, =p-—a,

whereR = [ le } andR, = [ lc 0 —Ig |.By definition, we haved, = [Bl V,b] and
~/

y’ whereB andy are the 2SLS estimators @f and y andB andy are the OLS

29



estimators of3 andy based on the following model:

y=YB+Ziy+u,Y =21,

with [T = (22)~1Z'Y. So, we can observe that

bo = B.+(XX) R [RMKXR)'R] " (-RB.)
8.0)-S0B.) = (B.o—B.YRR(B.0—B8.) = (RO, [R(RX)WR]
Furthermore, we have
o Bl
RO = [1c 0 —|G} 7 | =B-b,
) b
gx = | OO 0 gy | (0O
0 (VWV) | 0 (V)1
. vy vz, | Myy M
(Xixl)_l _ - 1 _ 11 12 :
| ZY 4z M21 Mz

1

whereMy; = [(YY) = V'Z1(Z,21)"2Z,¥] * = [Y'M1¥] " = [Y/(My —M)Y] 2. So

Hence, we get

B—B =My M1+ (V'V) ]

-1 -1,

wherea’= B—B is the OLS estimate ad from (3.4). We see from?) that

= [Mu+ ) MEB - B)

~ ~

(b—B) =M M1+ (V'V) 1] 74,

M1 Mg 0 IS M11
= M21 |V|22 0 0 = IV|21
0 0 (vVv)! —lg VA
= Myu+(V'V) !
[ B-B M11 . )
= y—v | = Ma1 M1+ (VV) 1 (b—B)
| B-b VA

= {Y'(My=M)Y]"1+ (VV) 1} Y (M —M)Y](B—B).

(R.) [R(XX)'R] " (RB,)

30

(A.10)



= (b B){[Y/(Ml—M)le+<0’\7>*1}‘l” B)
= (B—B)]Y'(My—M MIYI{Y' (M1 —M)Y] ™ +(VV) ) x

Y/ (M= M)Y](B — B) = (B — B)My! [Ma1+ (YMY) Y] M (B — B)
= (B—BYMy [Maz+ (YMY —MH Y ME(B - B). (A.11)

Now, we can apply the following lemma which proof is straightforward and,tiseomitted.
Lemma A.1 Let A and B be two nonsingularsr matrices. Then

Afl_ Bfl —

Furthermore, if B- A is nhonsingular, then A—Blis nonsingular with

At-BHt = AB-AB=A+AB-A A=AA T+ (B-A 1A
= B(B-A!A=BB-AB-B=B|(B-A1-B1B
= AA-ABIA)1A
= B(BAB-B) !B

By settingA = M{ll andB =Y’M;Y in (A.11), and applying LemmA.1, we get

~ ~

S(B.0)-S(8.) = (B—B)M [Mm(YMlY Mn UMLB-B
= (B-BYAA T+ (B-AAB-B) = (B~ B)(B-l AYHYB-B)
= (B-B){IY'(M—M)Y]™? <YM1Y> BB -B)
1

= ZB-BOV -0 B-B)=B-BYAB-B).  (A12)

whereQy = 1Y'(M; —M)Y andQs = 1Y'M,Y. Note also that

S(0.0)—S(B.) = S(Bo)—S(B) =&V'MxVI4, (A.13)
whereMy = | — B = | — X(X'X)~1X’, X = [Y, Z3, V]. Moreover, from (3.12), we have
S8) = T82 Bo) =To2 S.(8°) =T52. (A.14)

Hence, except foH;, the other statistics can be expressed as:

Ay = T[S(6o) -

/S <é> A =T[S(Bo) — S(0)]/S(Bo) , (A.15)
T = Ki[S(Bo)—S(8)]/[S.(8

%) —Se(8)], 7 = k2[S(Bo) — S(B)]/S(B),  (A.16)
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Z = Kka[S(Bo) — (8))/S.(80), Ta = ka[S(Bo) — (8)]/S(o), (A.17)
RA = Kr|SBo)—S(6)]/S(60), (A.18)

Equations (A.15) - (A.18) are the regression interpretation of DWH andfatistics.

B. Proofs

PrRooOF oOFLEMMA 6.1 Note first that

B = B+[Y(Mi—MY] Y (Mi—M)u=B+A,
Ar =Y (M1 — M)Y] "Y' (My — M), (B.1)
B = B+(Y'MY) W Mu=B+Au, A= (YMY) Y M (B.2)
B-B = (Ai—A)u, (B—BYA™ (B~ B)=uCou, (B.3)

with Co= (Kl — Al)/AAfl(Kl — Al). We also have

) = B, (B.4)
) = Mu—MYAU=Mu—MMYAu= MMy, myU, (B.5)

WhereB_l =M — P(leM)Y = M]_(l — P(leM)Y) = MlM(leM)Y7 and

- 1 — A 1

5% = = 'MiMy,_myyu=UDiu, &°= ?u’MlMMlyu =uDsu, (B.6)
- ~ o — 1

7 = §%°—6%°=U(D1—Diu= ?u’(Ml—M)M(MrM)Yu, (B.7)
- 1

% = ?U/MlMMNU—U/CoU: u' (D1 —Co)u. (B.8)

Now, from (B.1) - (B.8) and the definitions of the statistics, we get:

M = TUCou/uDiu=T(u/0y)'Co(u/oy)/(u/oy)'Di(u/ay), (B.9)
M = TUuCou/UDiu=T(u/0y)'Co(u/oy)/(u/ay)'Di(u/ay), (B.10)
Fi = Ki(u/0y)'Co(u/0y)/(u/0u) (D1~ D1)(u/0u), (B.11)
Fo = Kz(u/ou)'Co(u/ay)/(u/0y) (D1—Co)(u/0u), (B.12)
Tz = Ka(u/0y)'Co(u/0y)/(u/Tu)D1(u/ay), (B.13)
Ts = Ka(u/0y)'Co(u/0u)/(u/0u)'Di(u/0u) (B.14)

Under H,, Y is independent afi, and if further the instrumen& are exogenous, the conditional
distribution, given)? of all statistics in (B.9) - (B.14) depend only on the distributiorugb, irre-
spective of whether identification is strong or weak. The same result fmidgi. By observing
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that 1 (My, —Mg) = Po,z,, Z# can also be expressed as:
ARAH = Kr(U/0y)Po,z,(u/00) /ke/(u/Tu)' (D1~ Pb,z,)(u/0w). (B.15)

Thus, under Ij, the distribution ofZ 77, given)?, only depends on/g,, whether RankT,) = G
or not. O

PROOF OFLEMMA 6.1 Consider the identities expressingf,i =1,2, 3, 9,1 =1,2, 3 4, and
X7 in (B.9)-(B.15). Under H, we haveu =Va+ ¢ and the results of Theorem2follow. [

PROOF OFLEMMA 6.1 Suppose tha € .4 (C;;). Then, we can show that

(AL—A)Va = 0,CoVa=0,DVa=0,DVa=0, (B.16)
MxVa = DjVa=0,MgVa=D;Va—Pp,zVa=0, (B.17)

whereA_l, A1, Co, D1, andD; are defined in (B.1)-(B.8) and (B.15).
To simplify, let us prove tha@l — A1)Va= 0. First, note thaV =Y — Z;I1; — Z,I, so that
(A1 —A1)Va= [AY — ArY — (A1 — A1) (Z1l1 + ZolMo)]a. SinceArY = Ig = ArY, hence we have

(AL —A1Va= —[(A1 — A1) (ZsTy + ZoTp)]a = — (A — A1) Zolha, (B.18)

becaused;Z; = A;Z; = 0. Now, we observe thatMi — M)Z, = M1Z,, hence(A; — A1)ZolM.a =

(O — O 3H)M1ZMza, which equals zero if and onM; ZoM,a = 0, i.e. M15Z,M1Z2Tpa or equiv-
alently,a € .4 (Cy). So, we have e .4 (Cy) if and only if (A; — A1)Va= 0. The proof is similar
for the other identities in (B.16)-(B.17). Thus by substituting these identitieh@ofiem5.2, we

get the results of Corollary.3.

Suppose now that (5.13)-(5.17) hold. It is easy to see from Thebr2that this equivalent to

(AL—A1)Va=0,CoVa=0, D;Va= 0, DVa=0, P,z,Va=0 (B.19)

with probability 1. However, we know that (B.19) holds if and onlgif .4 (C;;). Hence the result
follows. O

PrROOF OFLEMMA 6.1 To simplify the proof, let us focus oszz. We recall that

A =T(B-B)EMB-B), (B.20)
where = (Y'M1Y)~2Y'May, B = [Y'(M1—M)Y]2Y'(My— M)y, £5 = &%((Y'(My—M)Y/T) "1~
(Y'MyY/T)"Y, and 6% = (y— YB)'Ma(y—YB)/T. Let us replace/ andY by y, = yRi1+Y R
andY, = YR in (B.20). Then, we get:
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where[?*, [3*, 55, and 63 are also obtained by replaciygy y. = YRi1+ Y R andY by Y, =
Y R,. Now, we have:

Y/M1Y, = RoY'M1Y Rz = RoY'M1Y Roz, Y/ M1y, = Roo(Y/M1yRi1 4+ Y'M1Y Ror) (B.22)

so that we get:

A~

B. Ry2 (Y'M1Y) L (RyD) Ron(Y'MayRi1 +Y' MY Rep) = RoH(BRu1+ Roa)

B, = (Y.(Mi—M)Y,)"Y/ (M1~ M)y, = Ry} (BRu1+Rea), B, — B, = Ryz (B — B)Rus.

Furthermore, we also have

!

(Y[ (M1 —M)Y./T) ™ = (VM1 /T) "t = Ryy [(Y/ (M1 = M)Y/T) " — (YM1Y/T) ] (Ry3)
and, sinceéR;1 > 0, we get

(B, —B.) [(Y. (M1~ M)Y,/T) = (/MY /T) Y (B, - B.)
<~ BY [(Y My —=M)Y/T) 2= (YMyY/T) ] 1 (B-B).

By the same way, we find

—YB., = YRu+YRa2—YRea[ReoY (Mi—M)YRe] Y RMi(yRi1+Y Reo)
— YRu+YR2—YBRi—YRa= (Y- YB)Ru.
62 = (yo—YB,)Mi(y.—YB,)/T =Ry (y—YB)Mi(y—YB)/T = R, 62

Hence, from (B.21), we can see that

M = R%(B BY [(Y/ (ML~ M)Y./T)" L~ (Y/MyY./T) Y (B - B) /RE, 62
T(B-py o

,1 ~ ~
"(My— M )Y*/T)-l—az(vglvllY*/T)‘l} (B—B)
— (B.23)

and the same invariance holds for the author statistics so that Lé&xirfalows. O

PROOF OFTHEOREMG6.2 Let us replace by y andY by\?in the expressions of the statistics. By
Lemma6.1, we can write:

A = TB,-B)5 B, —-B,),i=123, (B.24)
<7| = K|(B*_ﬁ*)/i|:1(ﬁ*_ﬁ*)al :17 23 3747 (825)
RA = KrY2RY, (B.26)

whereB,, B, 5., £, andZ,g are the correspondents Bf B, 5 and3; defined in (4.2)-(3.11).
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From (6.40) and by observing that alt¥, = 0, we have
My'= MV, MY = MV, Myy'= My (; +V), MyY = My (i, +V),

wherep; = M1ZolMx{ = u2P2‘21Z andu, = M1Z,lM,Pop, where{ = P11+ Po1. From (2?), we get:

Y (M —=M)Y = (Hp+V) (M—=M)(Uy+V), YMy = (U +V)'Mi(py +V),  (B.27)

YMY = (Hp+V)'Mi(p+V) = Qus(Hp,V), (B.28)
Y(Mi=M)Y = (y+V) (Mi=M)(iy+V) = Qv (Hp,V), (B.29)

so thatB, = Qus(kp, V) H(ky +V)'Ma(ty +V), B, = Qv (Hp,V) 2ty + V) (ML — M) (3 + V),

and B, — B, = C(uy +V), whereC = Qu (1, V) (ki + V) (ML = M) — Qus(pp, V) Mo +

V)'M;i. Moreover, we haved? = L(y— YB,)/Mi(Y—YB.) = L(uy + V)/Cu(pty + V) =

%wES(“LquVvv)? 65 = %(y__ Y_E*)/Ml(y__ Y_B*) - %(ul + V)/D;D*(ul + \7) -

%wﬁ/(ul,uzﬁ,\ﬂ, with C. = [I — Ma(k, + V) Qus(a, V) (1 +\7)/]M1 and D, =
-1

[1=Mz1(pa+V) Qv (U, V), +V) (M1 — M)|M;1. Hence, we get

St = @R (Hys MooV V) Qi (Mo, V) ™ — wlg(Hy, Uph V V) Qus(p,V) 72,

- 1 v s _1 v
5o = TR (M1 MV VA, Za = Zafs(py, .V VA, (8.30)

whereA =C'C = Qu/ (H,,V) ™1 — Qi s(1,, V)L If T—k—k > G, thenA > 0, thus
=T Uy +VI'Ti (Mg, M, V) [y +V], 1=1,2,3.
whererl;(uy, o, V,V), i = 1, 2, 3 are defined in Theore®2 Since.7, = (k4/T) ., we find
Ta = Kalpg + VI Ta(Hy, Mo, V) [y +V]. (B.31)

In addition, 62, = 62 — 6%(8, — B.)'(I2) "X(B. — B.) and 62, = wRs(Hy, hp,V,V) — (Hy +
V)/C'A~IC(uy +V) = (Uy 4+ V) (C. —C'A1C) (g +V) = wh(uy, 1y, V,V) = w3, hence, we find

T = Zé[ulJrWC’AlC[uﬁﬂ . (8.32)
In the same way, we also get:
= ;():2[u1+\7J’C’A10[u1+\7J, | = 1,3, %7 = Zg[ulJr\?J’PDlZz[ulJr\?J,
wherew,z, | = 1, 3 andw? are defined in Section 3. O

PROOF OFLEMMA 6.1 SetlT,a= 0 in the above proof of Theoreth2and Corollarys.3follows.
O
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PROOF OFTHEOREM6.4 From Theoren®.2, we have

‘% = K|[ul—i_ﬂ/ﬁ(ulvub\zv)[“l—i_ﬂ:%:T[ul+ﬂ/ﬁ(ulvu27\z\7)[ul+ﬂa
RHA = KrlUy+V]TR(H1, Hp,V,V) [y + V],

foralll =1,2,3, 4 and alli = 1, 2, 3, wherel (i, Uy, V, V), [i(Hy, Ho, V., V), TR(Uq, Uy, V, V),
M4, Uy, K| @andkr are defined in Section 3.

Assume thaZ is fixed. Under the normality assumption (6.2F), + V is independent of/
andp; +V]z ~ N(uy, 1). SinceC'A~1C, is symmetric idempotent of rar®, C andA are defined
in Theorem6.2, we have (u; +v)’C'’A~1C(u; + V)|V ~ x3(G, v1), wherev; = p;,C'A~'Cu;.
By the same way, the denominator &% (without the scaling factor) i$u1+\7)’E(u1+\7)|\7~
X (k2 — G, v1), whereE defined in Section 3 is symmetric idempotent of r&ak- G, and with
U1 = UyEp,. Furthermore, we hawC'A~1C)E = 0, hence

TV ~ F(G, ky — G; vy, U1). (B.33)

By the same way, we get:
DIV ~F(G, T —ky—2G;v1, Uy), (B.34)

whereu, = 7 (C. —C'A~1C) ;. Now, from the notations in Theoref2, we can write:

Ta=Ka/(1+

Kz%)’ (B.35)

and since%|V ~ F(G, T — ki — 2G; v1, Up), we haveyizva F(T —ki — 2G, G; Uz, v1) so that
34]\7~K4/[1+K12F(T—k1—26, G; U2, v1)]. (B.36)
Note also thatv’s > w3 entails that
TNV < Z)%(u1+\7)'C'A1C(/,l1+\7)|\7: KTV ~ K5F (G, T — ki — 2G;v1, U2),  (B.37)

whereky, K4, K5 are given in Theorerf.4. For 73, we note that its numerator and denominator
are such that

(U1 +V)CTATC(U + V)|V ~ X2(Giva), Wiy = (Mg +V)'DLD. (g +V)
~ XAT—ki—G;va), (B.38)

wherevs = DD, ;. SinceD,D..(C'A~1C) # 0, 75 does not follow necessaryradistribution.
By the same way, we get the results #6, 773 andZ .7 . Ol
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