
Valid Post-Selection and
Post-Regularization
Inference: An Elementary,
General Approach
Victor Chernozhukov,1 Christian Hansen,2

and Martin Spindler3

1Department of Economics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02142; email: vchern@mit.edu
2University of Chicago Booth School of Business, Chicago, Illinois 60637;
email: chistian.hansen@chicagobooth.edu
3Munich Center for the Economics of Aging, 80799 Munich, Germany;
email: spindler@mea.mpisoc.mpg.de

Annu. Rev. Econ. 2015. 7:649–88

The Annual Review of Economics is online at
economics.annualreviews.org

This article’s doi:
10.1146/annurev-economics-012315-015826

Copyright © 2015 by Annual Reviews.
All rights reserved

JEL codes: C18, C55, C26

Keywords

Neyman, orthogonalization, C(a) statistics, optimal instrument,
optimal score, optimal moment, efficiency, optimality

Abstract

We present an expository, general analysis of valid post-selection or
post-regularization inference about a low-dimensional target parame-
ter in the presence of a very high-dimensional nuisance parameter that
is estimated using selection or regularization methods. Our analysis
provides a set of high-level conditions under which inference for the
low-dimensional parameter based on testing or point estimation meth-
odswill be regular despite selection or regularizationbiases occurring in
the estimation of the high-dimensional nuisance parameter. A key ele-
ment is the use of so-called immunized or orthogonal estimating equa-
tions that are locally insensitive to small mistakes in the estimation of
the high-dimensional nuisance parameter. As an illustration, we ana-
lyze affine-quadratic models and specialize these results to a linear
instrumental variablesmodelwithmany regressors andmany instruments.
We conclude with a review of other developments in post-selection infer-
ence and note that many can be viewed as special cases of the general
encompassing framework of orthogonal estimating equations provided
in this article.
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1. INTRODUCTION

Analysis of high-dimensional models, models in which the number of parameters to be esti-
mated is large relative to the sample size, is becoming increasingly important. Such models
arise naturally in readily available high-dimensional data, which have many measured char-
acteristics available per individual observation, as in, for example, large survey data sets,
scanner data, and text data. Such models also arise naturally even in data with a small number
of measured characteristics in situations where the exact functional form with which the
observed variables enter the model is unknown. Examples of this scenario include semi-
parametric models with nonparametric nuisance functions. More generally, models with
many parameters relative to the sample size often arise when attempting to model complex
phenomena.

The key concept underlying the analysis of high-dimensional models is that regularization,
such asmodel selection or shrinkage ofmodel parameters, is necessary if one is to drawmeaningful
conclusions from the data. For example, the need for regularization is obvious in a linear re-
gressionmodel with the number of right-hand-side variables greater than the sample size but arises
far more generally in any setting in which the number of parameters is not small relative to the
sample size. Given the importance of the use of regularization in analyzing high-dimensional
models, it is then important to explicitly account for the impact of this regularization on the be-
havior of estimators if one wishes to accurately characterize their finite-sample behavior. The use
of such regularization techniques may easily invalidate conventional approaches to inference
about model parameters and other interesting target parameters. A major goal of this article is
to present a general, formal framework that provides guidance about setting up estimating
equations and making appropriate use of regularization devices so that inference about param-
eters of interest will remain valid in the presence of data-dependent model selection or other
approaches to regularization.

It is important to note that understanding estimators’ behavior in high-dimensional settings
is also useful in conventional low-dimensional settings. As noted above, dealing formally with
high-dimensional models requires that one explicitly account for model selection or other forms
of regularization. Providing results that explicitly account for this regularization then allows us
to accommodate and coherently account for the fact that low-dimensional models estimated in
practice are often the result of specification searches. As in the high-dimensional setting, failure
to account for this variable selection will invalidate the usual inference procedures, whereas the
approach that we outline will remain valid and can easily be applied in conventional low-
dimensional settings.

The chief goal of this article is to offer a general framework that encompasses many existing
results regarding inference on model parameters in high-dimensional models. The encompassing
framework we present and the key theoretical results are new, although they are clearly heavily
influenced and foreshadowed by previous, more specialized results. As an application of the
framework, we also present new results on inference in a reasonably broad class ofmodels, termed
affine-quadratic models, that includes the usual linear model and linear instrumental variables
(IV) model and then apply these results to provide new ones regarding post-regularization in-
ference on the parameters on endogenous variables in a linear IV model with very many instru-
ments and controls (and also allowing for somemisspecification). We also provide a discussion of
previous research that aims to highlight that many existing results fall within the general
framework.

Formally, we present a series of results for obtaining valid inferential statements about a low-
dimensional parameter of interest,a, in the presence of a high-dimensional nuisance parameter, h.
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The general approach we offer relies on two fundamental elements. First, it is important that
estimating equations used to draw inferences about a satisfy a key orthogonality or immunization
condition.1 For example, when estimation and inference for a are based on the empirical analog
of a theoretical system of equations

Mða,hÞ ¼ 0,

we show that setting up the equations in a manner such that the orthogonality or immunization
condition

∂hMða,hÞ ¼ 0

holds is an important element inprovidingan inferential procedure fora that remains valid when h
is estimated using regularization. We note that this condition can generally be established. For
example, we can apply Neyman’s classic orthogonalized score in likelihood settings (see, e.g.,
Neyman 1959, 1979). We also describe an extension of this classic approach to the generalized
method of moments (GMM) setting. In general, applying this orthogonalization will introduce
additional nuisance parameters that will be treated as part of h.

Second, it is important to use high-quality, structured estimators of h. Crucially, additional
structure on h is needed for informative inference to proceed, and it is thus important to use
estimation strategies that leverage and perform well under the desired structure. An example of
a structure that has been usefully employed in the recent literature is approximate sparsity (e.g.,
Belloni et al. 2012). Within this framework, h is well approximated by a sparse vector, which
suggests the use of a sparse estimator such as the Lasso (Frank & Friedman 1993, Tibshirani
1996). The Lasso estimator solves the general problem

ĥL ¼ argmin
h

‘ðdata, hÞ þ l
Xp
j¼1

��cjhj

��,
where ‘ðdata,hÞ is some general loss function that depends on the data and the parameter h, l is
a penalty level, and cj’s are penalty loadings. The choice of the regularization parameter l is an
important issue. We provide some discussion of this issue in the context of the linear model in
Appendix A (see also, e.g., Belloni&Chernozhukov 2011 for additional detailed discussion). The

leading example is the usual linearmodel inwhich ‘ðdata,hÞ ¼
Xn

i¼1
ðyi � xi0hÞ2 is the usual least-

squares loss, with yi denoting the outcome of interest for observation i and xi denoting predictor
variables, and we provide further discussion of this example in Appendix A. Other examples of
‘ðdata,hÞ include suitable loss functions corresponding towell-knownM-estimators, the negative
of the log-likelihood, and GMM criterion functions. This estimator and related methods, such as
those in Candès & Tao (2007), Meinshausen & Yu (2009), Bickel et al. (2009), Belloni &
Chernozhukov (2013), and Belloni et al. (2011), are computationally efficient and have been
shown tohave good estimation properties evenwhenperfect variable selection is not feasible under
approximate sparsity. These good estimation properties then translate into providing good-
enough estimates ofh to result in valid inference aboutawhen coupledwith orthogonal estimating
equations, as discussed above. Finally, it is important to note that the general results we present do
not require or leverage approximate sparsity or sparsity-based estimation strategies. We provide

1We refer to the condition as an orthogonality or immunization condition, as orthogonality is amuch-used term and our usage
differs from some other usage in defining orthogonality conditions used in econometrics.
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this discussion here simply as an example and because the structure offers one concrete setting in
which the general results we establish may be applied.

In the remainder of this article, we present the main results. In Sections 2 and 3, we provide our
general set of results that may be used to establish uniform validity of inference about low-
dimensional parameters of interest in the presence of high-dimensional nuisance parameters.
We provide the framework in Section 2 and then discuss how to achieve the key orthogonality
condition in Section 3. In Sections 4 and 5, we provide details about establishing the necessary
results for the estimation quality ofhwithin the approximately sparse framework. The analysis
in Section 4 pertains to a reasonably general class of affine-quadratic models, and the analysis of
Section 5 specializes this result to the case of estimating the parameters on a vector of en-
dogenous variables in a linear IV model with very many potential control variables and very
many potential instruments. The analysis in Section 5 thus extends results from Belloni et al.
(2012, 2014a).We also provide a brief simulation example and an empirical example that looks
at logit demand estimation within the linear many instrument and many control setting in
Section 5. We conclude with a literature review in Section 6.

With regard to notation, we use wp → 1 to abbreviate the phrase “with probability that con-
verges to 1,” and we use the arrows →Pn and ⇝Pn to denote convergence in probability and in
distribution under the sequence of probability measures fPng. The symbol ∼ means distributed as.
Thenotation a. bmeans that a ¼ OðbÞ, and a.Pnbmeans that a ¼ OPn ðbÞ. The ‘2 and ‘1 norms are
denoted by k×k and k×k1, respectively, and the ‘0 norm, k×k0, denotes the number of nonzero com-
ponents of a vector. When applied to a matrix, k×k denotes the operator norm. We use the notation
a⋁ b ¼ maxða, bÞ and a⋀ b ¼ minða, bÞ. Here and below, En½×� abbreviates the average n�1

Xn

i¼1
½×�

over index i. That is, En½f ðwiÞ� denotes n�1
Xn

i¼1
½f ðwiÞ�. In what follows, we use them-sparse norm

of a matrix Q defined as

kQkspðmÞ ¼ sup
n��b0Qb

���kbk2 : kbk0 �m, kbk� 0
o
.

We also consider the pointwise norm of a square matrix Q at a point x� 0:

kQkpwðxÞ ¼
��x0Qx

���kxk2.
For a differentiable map x1f ðxÞ, mapping Rd to Rk, we use ∂x0 f to abbreviate the partial
derivatives ð∂=∂x0Þf , and we correspondingly use the expression ∂x0 f ðx0Þ to mean ∂x0 f ðxÞjx¼x0 , etc.
We use x0 to denote the transpose of a column vector x.

2. A TESTING AND ESTIMATION APPROACH TO VALID POST-SELECTION
AND POST-REGULARIZATION INFERENCE

2.1. The Setting

We assume that estimation is based on the first n elements ðwi,nÞni¼1 of the stationary data stream
ðwi,nÞ1i¼1, which lives on the probability space ðV,A, PnÞ. The data points wi,n take values in
a measurable spaceW for each i and n. Here, Pn, the probability law or data-generating process,
can change with n. We allow the law to change with n to claim robustness or uniform validity of
results with respect to perturbations of such laws. Thus, the data, all parameters, estimators, and
other quantities are indexed by n, but we typically suppress this dependence to simplify notation.

The target parameter value a ¼ a0 is assumed to solve the system of theoretical equations
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Mða,h0Þ ¼ 0,

whereM ¼ ðMlÞkl¼1 is ameasurablemap fromA3H toRk, andA3H are some convex subsets of
Rd 3Rp. Here the dimension d of the target parameter a2A and the number of equations k are
assumed to be fixed, and the dimension p ¼ pn of the nuisance parameter h2H is allowed to be
very high, potentially much larger than n. To handle the high-dimensional nuisance parameter h,
we employ structured assumptions and selection or regularization methods appropriate for the
structure to estimate h0.

Given an appropriate estimator ĥ, we can construct an estimator â as an approximate solution
to the estimating equation:

���M̂ðâ, ĥÞ
���� inf

a2A

���M̂ða, ĥÞ
���þ o

�
n�1=2

�
,

where M̂ ¼ ðM̂lÞkl¼1 is the empirical analog of theoretical equations M, which is a measurable
map from Wn 3A3H to Rk. We can also use M̂ða, ĥÞ to test hypotheses about a0 and then
invert the tests to construct confidence sets.

It is not required in the formulation above, but a typical case is when M̂ and M are formed as
theoretical and empirical moment functions:

Mða,hÞdE
�
cðwi, a, hÞ

�
, M̂ða,hÞdEn

�
cðwi, a, hÞ

�
,

where c ¼ ðclÞkl¼1 is a measurable map from W3A3H to Rk. Of course, there are many
problems that do not fall in the moment condition framework. As illustrations of the general
conditions we will provide, we show how our general conditions can be verified in the context of
affine-quadratic models and use these results to give primitive conditions in the linear IV model
with many instruments and many controls in Sections 4 and 5.

2.2. Valid Inference via Testing

A simple introduction to the inferential problem is via the testing problem in which we would like
to test some hypothesis about the true parameter value a0. By inverting the test, we create
a confidence set for a0. The key condition for the validity of this confidence region is adaptivity,
which can be ensured by using orthogonal estimating equations and using structured assumptions
on the high-dimensional nuisance parameter.2

The key condition enabling us to perform valid inference on a0 is the adaptivity condition:

ffiffiffi
n

p 

M̂ða0, ĥÞ � M̂ða0,h0Þ

�
→Pn 0. ð1Þ

This condition states that using
ffiffiffi
n

p
M̂ða0, ĥÞ is as good as using

ffiffiffi
n

p
M̂ða0,h0Þ, at least to the first

order. This condition may hold despite using estimators ĥ that are not asymptotically linear and
are nonregular. Verification of adaptivity may involve substantial work, as illustrated below. A
key requirement that often arises is the orthogonality or immunization condition:

∂h0Mða0,h0Þ ¼ 0. ð2Þ

This condition states that the equations are locally insensitive to small perturbations of the nui-
sance parameter around the true parameter values. In several important models, this condition is

2Readers are referred to Bickel (1982) for a definition of and introduction to adaptivity.
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equivalent to the double-robustness condition (Robins & Rotnitzky 1995). Additional assump-
tions regarding the quality of estimation of h0 are also needed and are highlighted below.

The adaptivity condition immediately allows us to use the statistic
ffiffiffi
n

p
M̂ða0, ĥÞ to perform

inference. Indeed, suppose we have that

V�1=2ða0Þ
ffiffiffi
n

p
M̂ða0,h0Þ⇝Pn Nð0, IkÞ ð3Þ

for some positive-definiteVðaÞ ¼ Varð ffiffiffi
n

p
M̂ða,h0ÞÞ. This condition can be verified using central

limit theorems for triangular arrays. Such theorems are available for independently and identically
distributed (i.i.d.) as well as dependent and clustered data. Suppose further that there exists V̂ðaÞ
such that

V̂�1=2ða0ÞV1=2ða0Þ→Pn Ik. ð4Þ

It is then immediate that the following score statistic, evaluated at a ¼ a0, is asymptotically normal,

SðaÞdV̂
�1=2
n ðaÞ ffiffiffi

n
p

M̂ða, ĥÞ⇝Pn Nð0, IkÞ, ð5Þ

and that the quadratic form of this score statistic is asymptotically x2 with k degrees of freedom:

Cða0Þ ¼
��Sða0Þ

��2 ⇝Pn x
2ðkÞ. ð6Þ

The statistic given in Equation 6 simply corresponds to a quadratic form in appropriately
normalized statistics that have the desired immunization or orthogonality condition. We refer to
this statistic as a generalizedCðaÞ-statistic in honor of Neyman’s fundamental contributions (e.g.,
Neyman 1959, 1979) because, in likelihood settings, the statistic in Equation 6 reduces to
Neyman’sCðaÞ-statistic and the generalized score Sða0Þ given in Equation 5 reduces to Neyman’s
orthogonalized score. We demonstrate these relationships in the special case of likelihood models
in Section 3.1 and provide a generalization to GMM models in Section 3.2. Both these examples
serve to illustrate the construction of appropriate statistics in different settings, butwenote that the
framework applies far more generally.

The following elementary result is an immediate consequence of the preceding discussion.

Proposition 1 (valid inference after selection or regularization): Consider a sequence
fPng of sets of probability laws such that for each sequence fPng2 fPng the adaptivity
condition in Equation 1, the normality condition in Equation 3, and the variance
consistency condition in Equation 4 hold. Then CR1�a ¼ fa2A :CðaÞ� cð1� aÞg,
where cð1� aÞ is the 1� a-quantile of a x2ðkÞ, is a uniformly valid confidence in-
terval for a0 in the sense that

lim
n→1

sup
P2Pn

��Pða0 2CR1�aÞ � ð1� aÞ�� ¼ 0.

We remark here that in order tomake the uniformity claim interesting, we should insist that the
sets of probability laws Pn nondecreasing in n (i.e., Pn ⊆Pn whenever n� n).

Proof: For any sequence of positive constants en approaching 0, let Pn 2 Pn be any
sequence such that
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��Pnða0 2CR1�aÞ � ð1� aÞ��þ en � sup
P2Pn

��Pða0 2CR1�aÞ � ð1� aÞ��.

By the conditions in Equations 3 and 4, we have that

Pnða0 2CR1�aÞ¼ Pn


Cða0Þ� cð1� aÞ

�
→P


x2ðkÞ� cð1� aÞ

�
¼ 1� a,

which implies the conclusion from the preceding display.

2.3. Valid Inference via Adaptive Estimation

Suppose that Mða0,h0Þ ¼ 0 holds for a0 2A. We consider an estimator â2A that is an ap-
proximate minimizer of the map a1

��M̂ða, ĥÞ�� in the sense that��M̂ðâ, ĥÞ
��� inf

a2A

��M̂ða, ĥÞ
��þ o

�
n�1=2

�
. ð7Þ

To analyze this estimator, we assume that the derivatives G1d∂a0Mða0,h0Þ and ∂h0Mða,h0Þ
exist. We assume that a0 is interior relative to the parameter space A; namely, for some ‘n →1
such that ‘n=

ffiffiffi
n

p
→0, n

a2Rd : ka� a0k� ‘n
� ffiffiffi

n
p o

⊂A. ð8Þ

We also assume that the following local-global identifiability condition holds: For some con-
stant c > 0,

2kMða,h0Þk�kG1ða� a0Þk⋀ c "a2A, mineig
�
G

0
1G1

�
� c. ð9Þ

Furthermore, for V ¼ Varð ffiffiffi
n

p
M̂ða0,h0ÞÞ, we suppose that the central limit theorem,

V�1=2 ffiffiffi
n

p
M̂ða0,h0Þ⇝Pn Nð0, IÞ, ð10Þ

and the stability condition, ��G0
1G1

��þ
��V��þ

��V�1
��. 1, ð11Þ

hold.
Assume that for some sequence of positive numbers frng such that rn → 0 and rnn1=2 →1, the

following stochastic equicontinuity and continuity conditions hold:

sup
a2A

��M̂ða, ĥÞ �Mða, ĥÞ
��þ ��Mða, ĥÞ �Mða,h0Þ

��
rn þ

��M̂ða, ĥÞ
��þ ��Mða,h0Þ

�� →Pn0, ð12Þ

sup
ka�a0k�rn

��M̂ða, ĥÞ �Mða, ĥÞ � M̂ða0,h0Þ
��

n�1=2 þ
��M̂ða, ĥÞ

��þ ��Mða,h0Þ
�� →Pn0. ð13Þ
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Suppose that uniformly for alla�a0 such that ka� a0k� rn →0, the following conditions on the
smoothness of M and the quality of the estimator ĥ hold, as n→1:

��Mða,h0Þ �Mða0,h0Þ � G1½a� a0�
����a� a0

���1
→0,ffiffiffi

n
p ��Mða, ĥÞ �Mða,h0Þ � ∂h0Mða,h0Þ½ĥ� h0�

��→Pn 0,���n∂h0Mða,h0Þ � ∂h0Mða0,h0Þ
o
½ĥ� h0�

���ka� a0k�1 →Pn 0.

ð14Þ

Finally, as before, we assume that the orthogonality condition

∂h0Mða0,h0Þ ¼ 0 ð15Þ

holds.
The above conditions extend the analysis of Pakes & Pollard (1989) and Chen et al. (2003),

which in turn extended Huber’s (1964) classical results on Z-estimators. These conditions allow
for both smooth and nonsmooth systems of estimating equations. The identifiability condition
imposed above is mild and holds for broad classes of identifiable models. The equicontinuity and
smoothness conditions imposed above requiremild smoothness on the functionMandalso require
that ĥ is a good-quality estimator of h0. In particular, these conditions will often require that ĥ
converges to h0 at a faster rate than n�1=4, as demonstrated, for example, in the next section.
However, the rate condition alone is not sufficient for adaptivity. We also need the orthogonality
condition in Equation 15. In addition, it is required that ĥ2Hn, where Hn is a set whose com-
plexity does not grow too quickly with the sample size, to verify the stochastic equicontinuity
condition (see, e.g., Belloni et al. 2013a,d). In Sections 4 and 5, we use the sparsity of ĥ to control
this complexity. Note that the conditions in Equations 12 and 13 can be simplified by leaving only
rn and n�1=2 in the denominator, although this simplification would then require imposing
compactness on A even in linear problems.

Proposition 2 (valid inference via adaptive estimation after selection or regularization):
Consider a sequence fPng of sets of probability laws such that for each sequence
fPng2 fPng the conditions in Equations 7–15 hold. Then we obtain

ffiffiffi
n

p ðâ� a0Þ þ
h
G

0
1G1

i�1
G

0
1

ffiffiffi
n

p
M̂ða0,h0Þ→Pn 0.

In addition, for VndðG0
1G1

Þ�1
G

0
1VG1ðG

0
1G1Þ�1, we have that

lim
n→1

sup
P2Pn

sup
R2R

��P
V�1=2
n ðâ� a0Þ 2R

�
� PðN ð0, IÞ 2RÞ

�� ¼ 0,

where R is a collection of all convex sets. Moreover, the result continues to apply
if Vn is replaced by a consistent estimator V̂n such that V̂n � Vn →Pn 0 under each

sequence fPng. Thus, CRl
1�a ¼

h
l0â6 cð1� a=2Þ



l0V̂nl=n

�1=2i
, where cð1� a=2Þ is

the ð1� a=2Þ-quantile of Nð0, 1Þ, is a uniformly valid confidence set for l0a0:

lim
n→1

sup
P2Pn

���P�l0a0 2CRl
1�a

�
� ð1� aÞ

��� ¼ 0:
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Note that the above formulation implicitly accommodates weighting options. Suppose
Mo and M̂

o
are the original theoretical and empirical systems of equations, and let Go

1 ¼
∂a0Moða0,h0Þ be the original Jacobian. We could consider k3 k positive-definite weight
matrices A and Â such that��A2

��þ
���
A2��1

���. 1,
���Â2 � A2

���→Pn 0. ð16Þ

For example, we may wish to use the optimal weighting matrix A2 ¼ Var

 ffiffiffi

n
p

M̂
oða0,h0Þ

��1
,

which can be estimated by Â
2
obtained using a preliminary estimator âo resulting from solving the

problemwith somenonoptimalweightingmatrix such as I.We can then simply redefine the system
of equations and the Jacobian according to

Mða,hÞ ¼ AMoða,hÞ, M̂ða,hÞ ¼ ÂM̂oða,hÞ, G1 ¼ AGo
1. ð17Þ

Proposition 3 (adaptive estimation via weighted equations): Consider a sequence
fPngof sets of probability laws such that for each sequence fPng2 fPng the conditions
of Proposition 2 hold for the original pair of systems of equations ðMo, M̂oÞ and
Equation 16 holds. Then these conditions also hold for the new pair ðM,M̂Þ in
Equation 17, so all the conclusions of Proposition 2 apply to the resulting ap-

proximate argmin estimator â. In particular, if we use A2 ¼ Var

 ffiffiffi

n
p

M̂
oða0,h0Þ

��1

and Â2 � A2 →Pn 0, then the large sample variance Vn simplifies to Vn ¼ ðG0
1G1

Þ�1.

2.4. Inference via Adaptive One-Step Estimation

We next consider a one-step estimator. To define the estimator, we start with an initial estimator
~a that satisfies, for rn ¼ o



n�1=4

�
,

Pn

k~a� a0k� rn

�
→1: ð18Þ

The one-step estimator �a then solves a linearized version of Equation 7:

�a ¼ ~a�
h
Ĝ

0
1Ĝ1

i�1
Ĝ

0
1M̂ð~a, ĥÞ, ð19Þ

where Ĝ1 is an estimator of G1 such that

Pn
���Ĝ1 � G1

��� rn
�
→1: ð20Þ

Because the one-step estimator is considerably more crude than the argmin estimator, we need
to impose additional smoothness conditions. Specifically, we suppose that uniformly for all a�a0

such that ka� a0k� rn →0, the following strengthened conditions on stochastic equicontinuity,
smoothness of M, and the quality of the estimator ĥ hold, as n→1:

n1=2
��M̂ða, ĥÞ �Mða, ĥÞ � M̂ða0,h0Þ

��→Pn 0,��Mða,h0Þ �Mða0,h0Þ � G1½a� a0�
��ka� a0k�2 . 1,ffiffiffi

n
p ��Mða, ĥÞ �Mða,h0Þ � ∂h0Mða,h0Þ½ĥ� h0�

��→Pn 0,ffiffiffi
n

p ��n∂h0Mða,h0Þ � ∂h0Mða0,h0Þ
o
½ĥ� h0�

��→Pn 0. ð21Þ
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Proposition 4 (valid inference via adaptive one-step estimators):Consider a sequence
fPngof sets of probability laws such that for each sequence fPng2 fPng the conditions
of Proposition 2 as well as those in Equations 18, 20, and 21 hold. Then the one-step
estimator �adefined byEquation19 is first-order equivalent to the argmin estimator â:

ffiffiffi
n

p 

�a� â

�
→Pn 0.

Consequently, all conclusions of Proposition 2 apply to �a in place of â.

The one-step estimator requires stronger regularity conditions than the argmin estimator.
Moreover, there is finite-sample evidence (e.g., Belloni et al. 2013e) that in practical problems the
argmin estimator oftenworksmuch better, as the one-step estimator typically suffers from higher-
order biases. This problem could be alleviated somewhat by iterating on the one-step estimator,
treating the previous iteration as the crude start ~a for the next iteration.

3. ACHIEVING ORTHOGONALITY USING NEYMAN’S
ORTHOGONALIZATION

Here we describe orthogonalization ideas that go back at least to Neyman (1959) (see also Neyman
1979). Neyman’s idea was to project the score that identifies the parameter of interest onto the
orthocomplement of the tangent space for the nuisance parameter. This projection underlies semi-
parametric efficiency theory, which is concerned particularly with the case in which h is infinite di-
mensional (see van der Vaart 1998). Here we consider finite-dimensional h of high dimension (for
discussion of infinite-dimensional h in an approximately sparse setting, see Belloni et al. 2013a,d).

3.1. The Classical Likelihood Case

In likelihood settings, the construction of orthogonal equations was proposed byNeyman (1959),
who used them in construction of his celebrated CðaÞ-statistic. The CðaÞ-statistic, or the or-
thogonal score statistic, was first explicitly utilized for testing (and also for setting up estimation) in
high-dimensional sparsemodels in Belloni et al. (2013d) andBelloni et al. (2013c), in the context of
quantile regression, and Belloni et al. (2013e) in the context of logistic regression and other
generalized linear models. More recent uses of CðaÞ-statistics (or close variants) include those by
Voorman et al. (2014), Ning & Liu (2014), and Yang et al. (2014).

Suppose that the (possibly conditional, possibly quasi-) log-likelihood function associatedwith
observation wi is ‘ðwi, a, bÞ, where a2A⊂Rd is the target parameter and b2B⊂Rp0 is the
nuisance parameter. Under regularity conditions, the true parameter values g0 ¼ ða0

0 , b0Þ0 obey

E
�
∂a‘


wi, a0, b0

�� ¼ 0, E
�
∂b‘


wi, a0, b0

�� ¼ 0: ð22Þ

Now consider the moment function

Mða,hÞ ¼ E
�
cðwi, a, hÞ

�
, cðwi, a, hÞ ¼ ∂a‘ðwi, a, bÞ � m∂b‘ðwi, a, bÞ. ð23Þ

Here the nuisance parameter is
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h ¼
�
b0, vecðmÞ0

�0
2 B � D⊂Rp, p ¼ p0 þ dp0,

wherem is the d3 p0 orthogonalization parameter matrix whose true valuem0 solves the equation

Jab � mJbb ¼ 0
�
i.e.,m0 ¼ JabJ

�1
bb

�
, ð24Þ

where, for gdða0,b0Þ0 and g0d


a0
0 ,b0

0 �0,
Jd�∂g0E

�
∂g‘ðwi, gÞ

����
g¼g0

e

�
Jaa Jab
Jba Jbb


.

Note that m0 not only creates the necessary orthogonality but also creates the optimal score (in
statistical language) or, equivalently, the optimal instrument/moment (in econometric language)
for inference about a0.

3

Provided m0 is well defined, we have by Equation 22 that

Mða0,h0Þ ¼ 0:

Moreover, the function M has the desired orthogonality property:

∂h0Mða0,h0Þ ¼
h
Jab � m0Jbb; FE

�
∂b‘ðwi, a0, b0Þ

�i ¼ 0, ð25Þ

whereF is a tensor operator, such thatFx ¼ ∂mx=∂vecðmÞ0��
m¼m0

is ad3 ðdp0Þmatrix for any vector

x in Rp0 . Note that the orthogonality property holds for Neyman’s construction even if the
likelihood is misspecified. That is, ‘ðwi, g0Þ may be a quasi-likelihood, and the data need not be
i.i.d. and may, for example, exhibit complex dependence over i.

An alternative way to define m0 arises by considering that, under correct specification and
sufficient regularity, the information matrix equality holds and yields

J ¼ J0dE
h
∂g‘ðwi, gÞ∂g‘ðwi, gÞ0

i���
g¼g0

¼

 
E
h
∂a‘ðwi, gÞ∂a‘ðwi, gÞ0

i
E
h
∂a‘ðwi, gÞ∂b‘ðwi, gÞ0

i
E
h
∂b‘ðwi, gÞ∂a‘ðwi, gÞ0

i
E
h
∂b‘ðwi, gÞ∂b‘ðwi, gÞ0

i
!�����

g¼g0

e

 
J0aa J0ab
J0ba J0bb

!
.

Hence, define m�
0 ¼ J0abJ

0�1
bb as the population projection coefficient of the score for the main

parameter ∂a‘ðwi, g0Þ on the score for the nuisance parameter ∂b‘ðwi, g0Þ:

∂a‘ðwi, g0Þ ¼ m�
0∂b‘ðwi, g0Þ þ 9, E

h
9∂b‘ðwi, g0Þ0

i
¼ 0: ð26Þ

We can see this construction as the nonlinear version of Frisch-Waugh’s “partialling out” from
the linear regression model. It is important to note that under misspecification, the information

3The connection between optimal instruments/moments and the likelihood/score has been elucidated in the fundamental work
of Chamberlain (1987).
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matrix equality generally does not hold, and this projection approach does not provide valid
orthogonalization.

Lemma 1 [Neyman’s orthogonalization for (quasi-)likelihood scores]: Suppose that
for each g ¼ ða,bÞ 2A3B, the derivative ∂g‘ðwi, gÞ exists, is continuous at g with
probability 1, and obeys the dominance condition Esupg2A3B

��∂g‘ðwi, gÞ
��2 < 1.

Suppose that the condition in Equation 22 holds for some (quasi-) true value ða0,b0Þ.
Then, (a) if J exists and is finite and Jbb is invertible, the orthogonality condition in
Equation 25 holds; (b) if the information matrix equality holds, namely J ¼ J0, then
the orthogonality condition in Equation 25 holds for the projection parameter m�

0 in
place of the orthogonalization parameter matrix m0.

The claim follows immediately from the computations above.
With the formulations given above, Neyman’s CðaÞ-statistic takes the form

CðaÞ ¼ ��SðaÞ��22, SðaÞ ¼ V̂
�1=2ða, ĥÞ ffiffiffi

n
p

M̂ða, ĥÞ,

where M̂ða, ĥÞ ¼ En½cðwi, a,  ĥÞ� as before, Vða, h0Þ ¼ Var

 ffiffiffi

n
p

M̂ða, h0Þ
�
, and V̂ða, ĥÞ and ĥ

are suitable estimators based on sparsity or other structured assumptions. The estimator is then

â ¼ arg inf
a2A

CðaÞ ¼ arg inf
a2A

�� ffiffiffi
n

p
M̂ða, ĥÞ��,

provided that V̂ða, ĥÞ is positive definite for each a2A. If the conditions of Section 2 hold,
we have

CðaÞ⇝x2ðdÞ, V�1=2
n

ffiffiffi
n

p ðâ� a0Þ⇝Nð0, IÞ, ð27Þ

where Vn ¼ G�1
1 Vða0,h0ÞG�1

1 and G1 ¼ Jaa � m0J
0
ab. Under correct specification and i.i.d. sam-

pling, the variance matrix Vn further reduces to the optimal variance

G�1
1 ¼

�
Jaa � JabJ

�1
bb J

0
ab

��1

of the firstd components of themaximum likelihood estimator in aGaussian shift experimentwith
observation Z∼Nðh, J�1

0 Þ. Likewise, the result in Equation 27 also holds for the one-step esti-
mator �a of Section 2 in place of â as long as the conditions in Section 2 hold.

Provided that sparsity or its generalizations are plausible assumptions to make regarding h0,
the formulations above naturally lend themselves to sparse estimation. For example, Belloni et al.
(2013e) used penalized and post-penalized maximum likelihood to estimate b0 and used the
information matrix equality to estimate the orthogonalization parameter matrix m�

0 by employing
Lasso or post-Lasso estimation of the projection equation (Equation 26). It is also possible to
estimate m0 directly by finding approximate sparse solutions to the empirical analog of the system
of equations Jab � mJbb ¼ 0 using ‘1-penalized estimation, as, for example, in van de Geer et al.
(2014), or post-‘1-penalized estimation.

3.2. Achieving Orthogonality in Generalized Method of Moments (GMM) Problems

Here we consider g0 ¼ ða0
0 , b0

0 Þ0 that solve the system of equations
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E
�
mðwi, a0, b0Þ

� ¼ 0,

wherem :W3A3B1Rk,A3B is a convex subset ofRd 3Rp0 , and k� d þ p0 is the number of
moments. The orthogonal moment equation is

Mða, hÞ ¼ E
�
cðwi, a, hÞ

�
, cðwi, a, hÞ ¼ mmðwi, a, bÞ. ð28Þ

The nuisance parameter is

h ¼
�
b0, vecðmÞ0

�0 2 B � D⊂Rp, p ¼ p0 þ dk,

where m is the d3 k orthogonalization parameter matrix. The true value of m is

m0 ¼
�
G

0
aV

�1
m �G

0
aV

�1
m Gb

�
G

0
bV

�1
m Gb

��1
G

0
bV

�1
m


,

where, for g ¼ ða0, b0Þ0 and g0 ¼ ða0
0 , b0

0 Þ0,

Gg ¼ ∂g0E
�
mðwi, a, bÞ

����
g¼g0

¼
h
∂a0E

�
mðwi, a, bÞ

�
, ∂b0E

�
mðwi, a, bÞ

�i���
g¼g0

e
�
Ga, Gb

�
,

and

Vm ¼ Var
� ffiffiffi

n
p

En
�
mðwi, a0, b0Þ

��
.

As before, we can interpret m0 as an operator creating orthogonality while building the optimal
instrument/moment (in econometric language) or, equivalently, the optimal score function (in
statistical language).4 The resulting moment function has the required orthogonality property;
namely, the first derivative with respect to the nuisance parameter when evaluated at the true
parameter values is zero:

∂h0Mða0, hÞ
���
h¼h0

¼
h
m0Gb, FE

�
mðwi, a0, b0Þ

�i ¼ 0, ð29Þ

whereF is a tensor operator, such that Fx ¼ ∂mx=∂vecðmÞ0��
m¼m0

is a d3 ðdkÞmatrix for any vector
x in Rk.

Estimation and inference on a0 can be based on the empirical analog of Equation 28:

M̂ða0, ĥÞ ¼ En
�
cðwi, a, ĥÞ

�
,

where ĥ is a post-selection or other regularized estimator of h0. Note that the previous framework
of (quasi-)likelihood is incorporated as a special case with

mðwi, a, bÞ ¼
h
∂a‘ðwi,aÞ0, ∂b‘ðwi, bÞ0

i0
.

With the formulations above, Neyman’s CðaÞ-statistic takes the form

4Readers are referred to footnote 3.
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CðaÞ ¼ ��SðaÞ��22, SðaÞ ¼ V̂
�1=2ða, ĥÞ ffiffiffi

n
p

M̂ða, ĥÞ,

where M̂ða, ĥÞ ¼ En
�
cðwi, a, ĥÞ

�
as before, Vða, h0Þ ¼ Var


 ffiffiffi
n

p
M̂ða,h0Þ

�
, and V̂ða, ĥÞ and ĥ

are suitable estimators based on structured assumptions. The estimator is then

â ¼ arg inf
a2A

CðaÞ ¼ arg inf
a2A

��� ffiffiffi
n

p
M̂ða, ĥÞ

���,
provided that V̂ða, ĥÞ is positive definite for each a2A. If the high-level conditions of Section 2
hold, we have that

CðaÞ⇝Pn x
2ðdÞ, V�1=2

n

ffiffiffi
n

p ðâ� aÞ⇝Pn Nð0, IÞ, ð30Þ

where Vn ¼ ðG0
1Þ�1Vða0,h0ÞðG1Þ�1 coincides with the optimal variance for GMM; here G1 ¼

m0Ga. Likewise, the same result in Equation 30 holds for the one-step estimator �a of Section
2 in place of â as long as the conditions in Section 2 hold. In particular, the variance Vn cor-
responds to the variance of the first d components of the maximum likelihood estimator in the

normal shift experiment with the observation Z∼N
�
h,


G

0
gV

�1
m Gg

��1
�
.

The above is a generic outline of the properties that are expected for inference using orthog-
onalized GMM equations under structured assumptions. The problem of inference in GMM
under sparsity is a very delicate matter owing to the complex form of the orthogonalization
parameters. One approach to the problem is developed in Chernozhukov et al. (2014).

4. ACHIEVING ADAPTIVITY IN AFFINE-QUADRATIC MODELS VIA
APPROXIMATE SPARSITY

Here we take orthogonality as given and explain howwe can use approximate sparsity to achieve
the adaptivity property in Equation 1.

4.1. The Affine-Quadratic Model

We analyze the case in which M̂ and M are affine in a and affine quadratic in h. Specifically, we
suppose that for all a,

M̂ða, hÞ ¼ Ĝ1ðhÞaþ Ĝ2ðhÞ, Mða,hÞ ¼ G1ðhÞaþ G2ðhÞ,

where the orthogonality condition holds,

∂h0Mða0, h0Þ ¼ 0,

and h1 ĜjðhÞ and h1GjðhÞ are affine quadratic in h for j ¼ 1 and j ¼ 2. That is, we will have
that all second-order derivatives of ĜjðhÞ and GjðhÞ for j ¼ 1 and j ¼ 2 are constant over the
convex parameter space H for h.

This setting is both useful, including most widely used linear models as a special case, and
pedagogical, permitting simple illustration of the key issues that arise in treating the general
problem. The derivations given below easily generalize to more complicated models, but we defer
the details to the interested reader.

The estimator in this case is
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â ¼ arg min
a2Rd

���M̂ða, ĥÞ
���2¼ �

h
Ĝ1ðĥÞ0Ĝ1ðĥÞ

i�1
Ĝ1ðĥÞ0Ĝ2ðĥÞ, ð31Þ

provided the inverse is well defined. It follows that

ffiffiffi
n

p ðâ� a0Þ ¼ �
h
Ĝ1ðĥÞ0Ĝ1ðĥÞ

i�1
Ĝ1ðĥÞ0

ffiffiffi
n

p
M̂ða0, ĥÞ. ð32Þ

This estimator is adaptive if, for G1dG1ðh0Þ,
ffiffiffi
n

p ðâ� a0Þ þ
h
G

0
1G1

i�1
G

0
1

ffiffiffi
n

p
M̂ða0, h0Þ→Pn 0,

which occurs under the conditions in Equations 10 and 11 if

ffiffiffi
n

p 

M̂ða0, ĥÞ � M̂ða0,h0Þ

�
→Pn0, Ĝ1ðĥÞ � Ĝ1ðh0Þ→Pn 0. ð33Þ

Therefore, the problem of the adaptivity of the estimator is directly connected to the problem of
the adaptivity of testing hypotheses about a0.

Lemma 2 (adaptive testing and estimation in affine-quadratic models): Consider a
sequence fPng of sets of probability laws such that for each sequence fPng2 fPng,
conditions stated in the first paragraph of Section 4.1, the condition in Equation 33,
the asymptotic normality condition in Equation 10, the stability condition in
Equation 11, and the condition in Equation 4 hold. Then all the conditions of
Propositions 1 and 2 hold. Moreover, the conclusions of Proposition 1 hold, and the
conclusions of Proposition 2 hold for the estimator â in Equation 31.

4.2. Adaptivity for Testing via Approximate Sparsity

Assuming the orthogonality condition holds, we follow Belloni et al. (2012) in using approximate
sparsity to achieve the adaptivity property in Equation 1 for the testing problem in the affine-
quadratic models.

We can expand each element M̂j of M̂ ¼ ðM̂jÞkj¼1 as follows:

ffiffiffi
n

p 

M̂jða0, ĥÞ � M̂jða0, h0Þ

� ¼ T1,j þ T2,j þ T3,j, ð34Þ

where

T1,jd
ffiffiffi
n

p
∂hMjða0, h0Þ0ðĥ� h0Þ,

T2,jd
ffiffiffi
n

p 

∂hM̂jða0, h0Þ � ∂hMjða0, h0Þ

�0ðĥ� h0Þ,

T3,jd
ffiffiffi
n

p
2�1ðĥ� h0Þ0∂h∂h0M̂jða0Þðĥ� h0Þ. ð35Þ

The term T1,j vanishes precisely because of orthogonality; that is,

T1,j ¼ 0:

However, termsT2,j and T3,j need not vanish. To show that they are asymptotically negligible, we
need to impose further structure on the problem.
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4.2.1. Structure 1 (exact sparsity). We first consider the case of using an exact sparsity structure
in which kh0k0 � s and s ¼ sn � 1 can depend on n. We then use estimators ĥ that exploit the
sparsity structure.

Suppose that the following bounds hold with probability 1� oð1Þ under Pn:��ĥ��0 . s,
��h0

��
0 � s,

��ĥ� h0

��
2 .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=nÞlogðpnÞ

q
,
��ĥ� h0

��
1 .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2=nÞlogðpnÞ

q
. ð36Þ

These conditions are typical performance bounds that are well known to hold for many sparsity-
based estimators, such as Lasso, post-Lasso, and their extensions (see, e.g., Belloni & Chernozhukov
2011).

We suppose further that the moderate deviation bound

T2,j ¼
��� ffiffiffi

n
p �

∂h0M̂jða0,h0Þ � ∂h0Mjða0,h0Þ
����

1
.Pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logðpnÞ

q
ð37Þ

holds and that the sparse norm of the second-derivatives matrix is bounded:

T3,j ¼
���∂h∂h0M̂jða0Þ

���
spð‘nsÞ

.Pn 1, ð38Þ

where ‘n →1 but ‘n ¼ oðlognÞ.
Following Belloni et al. (2012), we can verify the condition in Equation 37 using the moderate

deviation theory for self-normalized sums (e.g., Jing et al. 2003), which allows us to avoid making
highly restrictive sub-Gaussian or Gaussian tail assumptions. Likewise, following Belloni et al.
(2012),we can verify the second condition using laws of large numbers for largematrices acting on
sparse vectors, as in Rudelson&Vershynin (2008) and Rudelson&Zhou (2011) (see Lemma 7).
Indeed, the condition in Equation 38 holds if���∂h∂h0M̂jða0Þ � ∂h∂h0Mjða0Þ

���
spð‘nsÞ

→Pn0,
���∂h∂h0Mjða0Þ

���
spð‘nsÞ

. 1:

The above analysis immediately implies the following elementary result.

Lemma 3 (elementary adaptivity for testing via sparsity): Let fPng be a sequence of
probability laws. Assume that (a) h1M̂ða0,hÞ and h1Mða0,hÞ are affine qua-
dratic in h, and the orthogonality condition holds; (b) the conditions on sparsity and
the quality of estimation in Equation 36 hold, and the sparsity index obeys

s2 logðpnÞ2
.
n→ 0; ð39Þ

(c) themoderate deviation bound in Equation 37 holds; and (d) the sparse normof the
second-derivatives matrix is bounded as in Equation 38. Then the adaptivity con-
dition in Equation 1 holds for the sequence fPng.

We note that Equation 39 requires that the true value of the nuisance parameter sufficiently
sparse. We can relax this condition in some special cases to the requirement s logðpnÞc=n→0, for
some constant c, by using sample-splitting techniques (see Belloni et al. 2012). However, this
requirement seems unavoidable in general.
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Proof:We note above that T1,j ¼ 0 by orthogonality. Under Equations 36 and 37, if
s2 logðpnÞ2=n→0, then T2,j vanishes in probability, as by Hölder’s inequality

T2,j �T2,jkĥ� h0k1 .Pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 logðpnÞ2

.
n

r
→Pn 0.

Also, if s2 logðpnÞ2=n→ 0, then T3,j vanishes in probability, as by Hölder’s inequality
and for sufficiently large n

T3,j �T3,jkĥ� h0k2 .Pn

ffiffiffi
n

p
s logðpnÞ�n→Pn0.

The conclusion follows from Equation 34.

4.2.2. Structure 2 (approximate sparsity). Following Belloni et al. (2012), we next consider an
approximate sparsity structure.Approximate sparsity imposes that, given a constant c > 0,we can
decompose h0 into a sparse component hm

r and a small nonsparse component hr:

h0 ¼ hm
0 þ hr

0, support


hm
0

�\ support


hr
0

� ¼ 0=,��hm
0

��
0 � s,

��hr
0

��
2 � c

ffiffiffiffiffiffiffi
s=n

p
,
��hr

0

��
1 � c

ffiffiffiffiffiffiffiffiffiffi
s2=n

p
.

ð40Þ

This condition allows formuchmore realistic and richermodels than can be accommodated under
exact sparsity. For example, h0 needs not have any zero components at all under approximate
sparsity. In Section 5, we provide an example in which Equation 40 arises from a more primitive
condition that the absolute values fjh0jj, j ¼ 1, . . . , pg, sorted in decreasing order, decay at
a polynomial speed with respect to j.

Suppose thatwehaveanestimator ĥ such that with probability 1� oð1Þ under Pn the following
bounds hold:

kĥk0 . s,
��ĥ� hm

0

��
2 .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=nÞlogðpnÞ

q
,
��ĥ� hm

0

��
1 .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2=nÞlogðpnÞ

q
. ð41Þ

This condition is again a standard performance bound expected to hold for sparsity-based esti-
mators under approximate sparsity conditions (see Belloni et al. 2012). Note that by the ap-
proximate sparsity condition, we also have that, with probability 1� oð1Þ under Pn,

kĥ� h0k2 .
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs=nÞlogðpnÞ

q
, kĥ� h0k1 .

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2=nÞlogðpnÞ

q
. ð42Þ

We can employ the same moderate deviation and bounded sparse norm conditions as in the
previous subsection. In addition, we require the pointwise norm of the second-derivatives matrix
to be bounded. Specifically, for any deterministic vector a� 0, we require���∂h∂h0M̂jða0Þ

���
pwðaÞ

.Pn 1. ð43Þ

This condition can be easily verified using ordinary laws of large numbers.

Lemma 4 (elementary adaptivity for testing via approximate sparsity): Let fPng be
a sequence of probability laws. Assume that (a) h1M̂ða0,hÞ and h1Mða0,hÞ are
affine quadratic in h, and the orthogonality condition holds; (b) the conditions on
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approximate sparsity in Equation 40 and the quality of estimation in Equation 41
hold, and the sparsity index obeys

s2 logðpnÞ2
.
n→ 0;

(c) the moderate deviation bound in Equation 37 holds; (d) the sparse norm of the
second-derivativesmatrix is boundedas inEquation38; and (e) the pointwise normof
the second-derivatives matrix is bounded as in Equation 43. Then the adaptivity
condition in Equation 1 holds:

ffiffiffi
n

p 

M̂ða0, ĥÞ � M̂ða0, h0Þ

�
→Pn 0.

4.3. Adaptivity for Estimation via Approximate Sparsity

We work with the approximate sparsity setup and the affine-quadratic model introduced in the
previous subsections. In addition to the previous assumptions, we impose the following conditions
on the components ∂hG1,ml of ∂hG1, where m ¼ 1, . . . , k and l ¼ 1, . . . , d. First, we need the
following deviation and boundedness condition: For each m and l, we need that

���∂hĜ1,mlðh0Þ � ∂hG1,mlðh0Þ
���
1
.Pn 1,

���∂hG1,mlðh0Þ
���
1
. 1: ð44Þ

Second,we require the sparse and pointwise norms of the following second-derivativesmatrices to
be stochastically bounded: For each m and l, we need that

���∂h∂h0 Ĝ1,ml

���
spð‘nsÞ

þ
���∂h∂h0 Ĝ1,ml

���
pwðaÞ

.Pn 1, ð45Þ

where a�0 is any deterministic vector. Both these conditions are mild. They can be verified using
self-normalized moderate deviation theorems and using laws of large numbers for matrices, as
discussed in the previous subsections.

Lemma 5 (elementary adaptivity for estimation via approximate sparsity): Consider
a sequence fPng for which the conditions of Lemma 4 hold. In addition, assume that
the deviation bound in Equation 44 holds and that the sparse norm and pointwise
norms of the second-derivatives matrices are stochastically bounded as in Equation
45. Then the adaptivity condition in Equation 33 holds for the testing and estimation
problem in the affine-quadratic model.

5. ANALYSIS OF THE INSTRUMENTAL VARIABLES MODEL WITH VERY
MANY CONTROL AND INSTRUMENTAL VARIABLES

Consider the linear IV model with response variable

yi ¼ di
0a0 þ xi0b0 þ ɛi, E½ɛi� ¼ 0, ɛi’ðzi, xiÞ, ð46Þ

where here and below we write w’v to denote Covðw, vÞ ¼ 0, yi is the response variable, and
di ¼ ðdikÞp

d

k¼1 is a pd-vector of endogenous variables, such that
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di1¼ xi0g01 þ zi0d01 þ ui1, E½ui1� ¼ 0, ui1’ðzi, xiÞ,
« « «

dipd ¼ xi0g0pd þ zi0d0pd þ uipd , E
h
uipd
i
¼ 0, uipd’ðzi, xiÞ.

ð47Þ

Here xi ¼ ðxijÞp
x

j¼1 is a p
x-vector of exogenous control variables, including a constant, and zi ¼

ðziÞp
z

i¼1 is a p
z-vector of IV.Wewill have n i.i.d. draws ofwi ¼ ðyi, di

0, xi0, zi0Þ0 obeying this system
of equations. We also assume that VarðwiÞ is finite throughout so that the model is well
defined.

The parameter value a0 is our target. We allow px ¼ pxn 	 n and pz ¼ pzn 	 n, but we
maintain that pd is fixed in our analysis. Thismodel includes the case ofmany instruments and
a small number of controls considered by Belloni et al. (2012) as a special case, and the
analysis readily accommodates the case of many controls and no instruments (i.e., the linear
regression model) considered by Belloni et al. (2013b, 2014a) and Zhang & Zhang (2014).
For the latter, we simply set pzn ¼ 0 and impose the additional condition ɛi ’ ui for ui ¼ ðuijÞpdj¼1,
which together with ɛi ’ xi implies that ɛi ’ di. We also note that the condition ɛi’ xi, zi
is weaker than the condition E½ɛijxi, zi� ¼ 0, which allows for some misspecification of the
model.

Wemay have that zi and xi are correlated so that zi are valid instruments only after controlling
for xi; specifically, we let zi ¼ Pxi þ zi, forP a pzn 3 pxn matrix and zi a pzn-vector of unobservables
with xi ’ zi. Substituting this expression for zi as a function of xi into Equation 46 gives a system
for yi and di that depends only on xi:

yi ¼ xi0u0 þ r
y
i , E

�
r
y
i

� ¼ 0, r
y
i ’ xi,

di1 ¼ xi0q01 þ rdi1, E
�
rdi1
� ¼ 0, rdi1 ’ xi,

« « «

dipd ¼ xi0q0pd þ rdipd , E
h
rdipd

i
¼ 0, rdipd ’ xi.

ð48Þ

Because the dimension p ¼ pn of

h0 ¼
�
u
0
0,


q

0
0k, g

0
0k, d

0
0k

�pd
k¼1

�0
may be larger than n, informative estimation and inference about a0 are impossible without
imposing restrictions on h0.

To state our assumptions, we fix a collection of positive constants ða,A, c,CÞ, where a > 1, and
a sequence of constants dn↘ 0 and ‘n b1. These constants will not vary with P; rather, we will
work with collections of P defined by these constants.

Condition AS 1: We assume that h0 is approximately sparse, namely that the de-
creasing rearrangement


jh0j�j
�p
j¼1

of absolute values of coefficients ðjh0jjÞpj¼1
obeys

jh0j�j �Aj�a, a> 1, j ¼ 1, . . . , p. ð49Þ

Given this assumption,we can decomposeh0 into a sparse component hm
0 and small nonsparse

component hr
0:
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h0 ¼ hm
0 þ hr

0, support


hm
0

�\ support


hr
0

� ¼ 0=,��hm
0

��
0 � s,

��hr
0

��
2 � c

ffiffiffiffiffiffiffi
s=n

p
,
��hr

0

��
1 � c

ffiffiffiffiffiffiffiffiffiffi
s2=n

p
,

s ¼ cn
1
2a,

ð50Þ

where the constant c depends only on ða,AÞ.

Condition AS 2: We assume that

s2 logðpnÞ2
.
n� oð1Þ. ð51Þ

We perform inference on a0 using the empirical analog of theoretical equations:

Mða0, h0Þ ¼ 0, Mða,hÞdE
�
cðwi, a, hÞ

�
, ð52Þ

where c ¼ ðckÞp
d

k¼1 is defined by

ckðwi, a, hÞd
0
@yi � x0iu�

Xpd
k¼1

�
dik � x0iqk

�
ak

1
A
x0igk þ z0idk � x0iqk

�
.

We can verify that the following orthogonality condition holds:

∂h0Mða0, hÞ
���
h¼h0

¼ 0. ð53Þ

This means that missing the true value h0 by a small amount does not invalidate the moment con-
dition. Therefore, the moment condition will be relatively insensitive to nonregular estimation of h0.

We denote the empirical analog of Equation 52 as

M̂ðâ, ĥÞ ¼ 0, M̂ða,hÞdEn
�
ciða,hÞ

�
. ð54Þ

Inference based on this condition can be shown to be immunized against small selection mistakes
by virtue of orthogonality.

The above formulation is a special case of the linear-affine model. Indeed, here we have

Mða,hÞ ¼ G1ðhÞaþ G2ðhÞ, M̂ða,hÞ ¼ Ĝ1ðhÞaþ Ĝ2ðhÞ,

G1ðhÞ ¼ E
�
caðwi, hÞ

�
, Ĝ1ðhÞ ¼ En

�
caðwi, hÞ

�
,

G2ðhÞ ¼ E
�
cbðwi, hÞ

�
, Ĝ2ðhÞ ¼ En

�
cbðwi, hÞ

�
,

where

ca
k,k

ðwi, hÞ ¼ �
�
dik � x0iqk

�

x0igk þ z0idk � x0iqk

�
,

cb
kðwi, hÞ ¼



yi � x0iu

�

x0igk þ z0idk � x0iqk

�
.

Consequently we can use the results of the previous section. To do so, we need to provide
a suitable estimator forh0. Here we use the Lasso and post-Lasso estimators, as defined in Belloni
et al. (2012), to deal with nonnormal errors and heteroscedasticity.
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Algorithm 1 (estimation of h0): (a) For each k, do Lasso or post-Lasso regression
of dik on xi, zi to obtain ĝk and d̂k. (b) Do Lasso or post-Lasso regression of yi on xi to
get û. (c) Do Lasso or post-Lasso regression of d̂ik ¼ xi0ĝk þ zi0d̂k on xi to get q̂k. The

estimator of h0 is given by ĥ ¼
 
û
0
,
�
q̂

0
k, ĝ

0
0k, d̂

0
k

�pd
k¼1

!0
.

We then use

V̂ða, ĥÞ ¼ En

h
cðwi,a, ĥÞcðwi,a, ĥÞ0

i

to estimate the variance matrix Vða,h0Þ ¼ En
�
cðwi,a,h0Þcðwi,a,h0Þ0

�
. We formulate the or-

thogonal score statistic and the CðaÞ-statistic,

SðaÞd V̂
�1=2
n ða, ĥÞ ffiffiffi

n
p

M̂ða, ĥÞ, CðaÞ ¼ ��SðaÞ��2, ð55Þ

as well as our estimator â:

â ¼ argmin
a2A

��� ffiffiffi
n

p
M̂ða, ĥÞ

���2.
Note also that â ¼ arg mina2ACðaÞ under mild conditions, as we work with exactly identified
systems of equations.We also need to specify a variance estimator V̂n for the large sample variance

Vn of â. We set V̂n ¼


Ĝ1ðĥÞ0

��1
V̂ðâ, ĥÞ



Ĝ1ðĥÞ

��1
.

To estimate the nuisance parameter, we impose the following condition. Let fidðfijÞpfj¼1d

ðxi0, zi0Þ0; hidðhilÞphl¼1d


yi, di

0, di
0
�0
, where di ¼



dik

�pd
k¼1

and dikdxi0g0k þ zi0d0k; vi ¼ ðvilÞphl¼1d

ɛi, r

y
i , r

d0
i , 9i

0
�0
, with 9i ¼ ð9ikÞp

d

k¼1 and 9ikddik � dik. Let ~hidhi � E½hi�.

Condition RF: (a) The eigenvalues of E½fif i0� are bounded from above by C and from

below by c. For all j and l, (b) E
�
h2il
�
þ E
���f 2ij ~h2il���þ 1=E

�
f 2ij v

2
il

�
�C and E

���f 2ij v2il����
E
�jf 2ij ~h2ilj�, (c) E�jf 3ij v3ilj�2log3ðpnÞ=n� dn, and (d) s logðpnÞ=n� dn. With probability

no less than 1� dn, we have that (e) maxi�n,jf 2ij
�
s2logðpnÞ

�.
n� dn, maxl,jjðEn � EÞ�

f 2ij v
2
il

����þ ���ðEn � EÞ
�
f 2ij
~h2il

����� dn, and (f )
���En

�
fif i0
�
� E
�
fif i0
����

spð‘nsÞ
� dn.

The conditions aremotivated by those given in Belloni et al. (2012). The current conditions are
made slightly stronger to account for the fact thatweuse zero covariance conditions in formulating
the moments. Some conditions could be easily relaxed at a cost of more complicated exposition.

To estimate the variancematrix and establish asymptotic normality, we also need the following
condition. Let q > 4 be a fixed constant.

Condition SM: For each l and k, (a) E
�jhiljq�þ E

�jviljq��C, (b) c�E
�
ɛ2i
��xi, zi��C,

c < E
�
92ik

��xi, zi��C almost surely, and (c) supa2Akak2 �C.

Under the conditions set forth above, we have the following result on the validity of post-
selection and post-regularization inference using theCðaÞ-statistic and estimators derived from it.

Proposition 5 [valid inference in large linear models using CðaÞ-statistics]: Let Pn be
the collection of all P such that Conditions AS 1 and 2, RF, and SMhold for the given
n. Then uniformly in P2 Pn, we find that Sða0Þ⇝Nð0, IÞ and Cða0Þ⇝x2ðpdÞ. As
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a consequence, the confidence setCR1�a ¼ fa2A :CðaÞ� cð1� aÞg, where cð1� aÞ
is the 1� a-quantile of a x2ðpdÞ, is uniformly valid for a0, in the sense that

lim
n→1

sup
P2Pn

��Pða0 2CR1�aÞ � ð1� aÞ�� ¼ 0:

Furthermore, for Vn ¼ ðG1
0 Þ�1Vða0,h0ÞðG1Þ�1, we have that

lim
n→1

sup
P2Pn

sup
R2R

���P�V�1=2
n ðâ� a0Þ 2R

�
� P


Nð0, IÞ 2R
���� ¼ 0,

where R is the collection of all convex sets. Moreover, the result continues to ap-

ply if Vn is replaced by V̂n. Thus, CRl
1�a ¼

h
l0â6 cð1� a=2Þ



l0V̂nl=n

�1=2i
, where

cð1� a=2Þ is the ð1� a=2Þ-quantile of an Nð0, 1Þ, provides a uniformly valid
confidence set for l0a0:

lim
n→1

sup
P2Pn

�����P
�
l0a0 2CRl

1�a

�
� ð1� aÞ

����� ¼ 0:

The proof of Proposition 5 is given in the Supplemental Appendix (follow the Supplemental
Material link from the Annual Reviews home page at http://www.annualreviews.org).

5.1. Simulation Illustration

In this section, we provide results from a small Monte Carlo simulation to illustrate the perfor-
mance of the estimator resulting from the application of Algorithm 1 in a small sample setting. As
comparison, we report results from two commonly used unprincipled alternatives for which
uniformly valid inference over the class of approximately sparse models does not hold. Simulation
parameters were chosen so that approximate sparsity holds but exact sparsity is violated in such
a way that we expect the unprincipled procedures to perform poorly.

For our simulation, we generate data as n i.i.d. draws from the model:

yi ¼ adi þ xi0bþ 2ɛi
di ¼ xi0g þ zi0dþ ui
zi ¼ Pxi þ 0:125zi

�������

0
BBB@

ɛi
ui
zi
xi

1
CCCA∼N

0
BBB@0,
0
BBB@

1 0:6 0 0
0:6 1 0 0
0 0 Ipzn 0
0 0 0 S

1
CCCA
1
CCCA,

where S is a pxn 3 pxn matrix with Skj ¼ ð0:5Þjj�kj and Ipzn is a p
z
n 3 pzn identity matrix. We set the

number of potential control variables (pxn) to 200, the number of instruments (pzn) to 150, and the
number of observations (n) to 200. For model coefficients, we set a ¼ 0, b ¼ g as pxn-vectors with

entries bj ¼ gj ¼ 1=ð9nÞ, n ¼ 4=9þ
Xpxn

j¼5
1=j2 for j� 4 and bj ¼ gj ¼ 1=



j2n
�
for j > 4, d as

a pzn-vector with entries dj ¼ 3=j2, and P ¼ �Ipzn , 0pzn3ðpxn�pznÞ
�
. We report results based on 1,000

simulation replications.
We provide results for four different estimators: an infeasible oracle estimator that knows the

nuisance parameter h, two naive estimators, and the proposed double-selection estimator. The
results for the proposed double-selection procedure are obtained following Algorithm 1 using
post-Lasso at every step. To obtain the oracle results, we run standard IV regression of yi � E½yijxi�
on di � E½dijxi� using the single instrument zi0d. The expected values are obtained from the model
above, and zi

0d provides the information in the instruments that is unrelated to the controls.
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The two naive alternatives offer unprincipled, although potentially intuitive, alternatives. The
first naive estimator follows Algorithm 1 but replaces Lasso/post-Lasso with stepwise regression
with a p value for entry of 0.05 and a p value for removal of 0.10 (stepwise). The second naive
estimator (nonorthogonal) corresponds to the use of a moment condition that does not satisfy the
orthogonality condition described previously but will produce valid inference when perfect model
selection in the regression of d on x and z is possible or when perfect model selection in the
regression of y on x is possible and an instrument is selected in the regression of d on x and z.5

All of the Lasso and post-Lasso estimates are obtained using the data-dependent penalty level
from Belloni & Chernozhukov (2013). This penalty level depends on a standard deviation that is
estimated by adapting the iterative algorithm described in Belloni et al. (2012, appendix A) using
post-Lasso at each iteration. For inference in all cases, we use standard t-tests based on conventional
homoscedastic IV standard errors obtained from the final IV step performed in each strategy.

We display the simulation results in Figure 1, and we report the median bias, median absolute
deviation, and size of 5% level tests for each procedure inTable 1. For each estimator, we plot the
simulation estimate of the sampling distribution of the estimator centered around the true pa-
rameter and scaled by the estimated standard error. With this standardization, usual asymptotic
approximations would suggest that these curves should line up with anNð0, 1Þ density function,
which is displayed as the red solid line in the figure. We can see that the oracle estimator and the
double-selection estimator are centered correctly and line up reasonably well with the Nð0, 1Þ
density function, although both estimators exhibit some mild skewness. It is interesting that the
sampling distributions of the oracle and double-selection estimators are very similar, as predicted
by the theory. In contrast, both the naive estimators are centered far from zero, and it is clear that
the asymptotic approximation provides a very poor guide to the finite-sample distribution of these
estimators in the design considered.

The poor inferential performance of the two naive estimators is driven by different phenomena.
The unprincipled use of stepwise regression fails to control spurious inclusion of irrelevant
variables, which leads to the inclusion of many essentially irrelevant variables, resulting in many-
instrument-type problems (e.g., Chao et al. 2012). In addition, the spuriously included variables
are those most highly correlated to the noise within the sample, which adds an additional type of
endogeneity bias. The failure of the nonorthogonal method is driven by the fact that perfect model
selection is not possible within the present design: Here we havemodel selectionmistakes in which
control variables that are correlated to the instruments but only moderately correlated to the
outcome and endogenous variable aremissed. Such exclusions result in standard omitted variables
bias in the estimator for the parameter of interest and substantial size distortions. The additional
step in the double-selection procedure can be viewed as a way to guard against such mistakes.
Overall, the results illustrate the uniformity claims made in the preceding section. The feasible
double-selection procedure following from Algorithm 1 performs similarly to the semipara-
metrically efficient infeasible oracle method. We obtain good inferential properties, with the
asymptotic approximation providing a fairly good guide to the behavior of the estimator despite

5Specifically, for the second naive alternative (nonorthogonal), we first do Lasso regression of d on x and z to obtain Lasso
estimates of the coefficients g and d. Denote these estimates as ĝL and d̂L, and denote the indices of the coefficients estimated to

be nonzero as Î
d
x ¼ fj : ĝLj�0g and Î

d
z ¼ fj : d̂Lj�0g. We then run Lasso regression of y on x to learn the identities of controls

that predict the outcome. We denote the Lasso estimates as ûL and keep track of the indices of the coefficients estimated to be

nonzero as Î
y
x ¼ fj : ûLj�0g.We then take the union of the controls selected in either step Îx ¼ Î

y
x [ Î

d
x . The estimator ofa is then

obtained as the usual 2SLS estimator of yi on di using all selected elements from xi, xij such that j2 Îx, as controls and the

selected elements from zi, zij such that j2 Î
d
z , as instruments.
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working in a setting in which perfect model selection is impossible. Although simply illustrative of
the theory, the results are reassuring and in linewith extensive simulations in the linearmodel with
many controls provided in Belloni et al. (2014a), in the IV model with many instruments and
a small number of controls provided in Belloni et al. (2012), and in linear panel data models
provided in Belloni et al. (2014b).

5.2. Empirical Illustration: Logit Demand Estimation

As further illustration of the approach, we provide a brief empirical example in which we estimate
the coefficients in a simple logit model of demand for automobiles using market share data. Our
example is based on the data and most basic strategy from Berry et al. (1995). Specifically, we
estimate the parameters from the model

logðsitÞ � logðs0tÞ ¼ a0pit þ xit0 b0 þ ɛit,
pit ¼ zit0 d0 þ xit0 g0 þ uit,

where sit is themarket share of product i inmarket twith product zero denoting the outside option,
pit is the price and is treated as endogenous, xit are observed included product characteristics, and

0.5

0.4

0.3

0.2

0.1

–5 50

b   Stepwise

0

0.5
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0.3

0.2

0.1
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c   Nonorthogonal

0

0.5

0.4
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0.2

0.1

–5 50

d   Double-selection

0

0.5

0.4

0.3

0.2

0.1

–5 50

a   Oracle

0

Figure 1

Histogramsof the estimator fromeachmethod centeredaround the true parameters and scaledby the estimated
standard error from the simulation experiment: (a) oracle, (b) stepwise, (c) nonorthogonal, and (d) double
selection. The red curve is the probability density function of a standard normal, which will correspond to the
sampling distribution of the estimator under the asymptotic approximation.
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zit are instruments. One could also adapt the proposed variable selection procedures to extensions
of this model such as the nested logit model or models allowing for random coefficients (see, e.g.,
Gillen et al. 2014 for an example with a random coefficient).

In our example, we use the same set of product characteristics (x variables) as used in obtaining
the basic results in Berry et al. (1995). Specifically, we use five variables in xit: a constant, an air
conditioning dummy, horsepower divided byweight, miles per dollar, and vehicle size.We refer to
these five variables as the baseline set of controls.

We also adopt the argument from Berry et al. (1995) to form our potential instruments. Berry
et al. (1995) argued that characteristics of other products will satisfy an exclusion restriction,
E½ɛitjxjt� ¼ 0 for any t and j� i, and thus that any function of characteristics of other productsmay
be used as an instrument for price. This condition leaves a very high-dimensional set of potential
instruments, as any combination of functions of fxjtgj�i,t�1 may be used to instrument for pit. To
reduce the dimensionality, Berry et al. (1995) used intuition and an exchangeability argument to
motivate the consideration of a small number of these potential instruments formedby taking sums
of product characteristics formed by summing over products excluding product i. Specifically, we
form baseline instruments by taking

zk,it ¼
0
@ X

r�i,r2I f

xk,rt,
X

r�i,rÏI f

xk,rt

1
A,

where xk,it is the k-th element of vector xit, and I f denotes the set of products produced by firm f.
This choice yields a vector zit consisting of 10 instruments.We refer to this set of instruments as the
baseline instruments.

Although the choice of the baseline instruments and controls ismotivated by good intuition and
economic theory, we note that theory does not clearly state which product characteristics or
instruments should be used in the model. Theory also fails to indicate the functional form with
which any such variables should enter the model. The high-dimensional methods outlined in this
article offer one strategy to help address these concerns that complements the economic intuition
motivating the baseline controls and instruments. As an illustration, we consider an expanded set
of controls and instruments. We augment the set of potential controls with all first-order inter-
actions of the baseline variables, quadratics, and cubics in all continuous baseline variables, and
a time trend that yields a total of 24 x variables. We refer to these as the augmented controls. We
then take sums of these characteristics as potential instruments following the original strategy that
yields 48 potential instruments.

Table 1 Summary of simulation results for the estimation of a

Method Median bias Median absolute deviation Size

Oracle 0.015 0.247 0.043

Stepwise 0.282 0.368 0.261

Nonorthogonal 0.084 0.112 0.189

Double selection 0.069 0.243 0.053

This table summarizes the simulation results from a linear instrumental variables model with many instruments and controls.
Estimators include an infeasible oracle as a benchmark, two naive alternatives (stepwise and nonorthogonal) described in the
text, and our proposed feasible valid procedure (double selection). Size is for 5% level tests.
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We present estimation results in Table 2. We report results obtained by applying the method
outlined in Algorithm 1 using just the baseline set of five product characteristics and 10
instruments in the row labeled “Baseline 2SLS selection” and results obtained by applying the
method to the augmented set of 24 controls and 48 instruments in the row labeled “Augmented
2SLS selection.” In each case, we apply the method outlined in Algorithm 1 using post-Lasso in
each step and forcing the intercept to be included in all models. We employ the heteroscedasticity
robust version of post-Lasso of Belloni et al. (2012) following the implementation algorithm
provided in their appendix A. For comparison, we also report ordinary least-squares (OLS) and
two-stage least-squares (2SLS) estimates using only the baseline variables, and we report OLS and
2SLS estimates using the augmented variable set. All standard errors are conventional hetero-
scedasticity robust standard errors.

Considering first estimates of the price coefficient, we see that the estimated price coefficient
increases inmagnitude aswemove fromOLS to 2SLS and then to the selection-based results. After
selection using only the original variables, we estimate the price coefficient to be �0.185 with an
estimated standard error of 0.014 compared to an OLS estimate of �0.089 with an estimated
standard error of 0.004 and a 2SLS estimate of�0.142with an estimated standard error of 0.012.
In this case, all five controls are selected in the log-share on controls regression, all five controls but
only four instruments are selected in the price on controls and instruments regression, and four of
the controls are selected for the price on controls relationship. The difference between the baseline
results is thus largely driven by the difference in instrument sets. The change in the estimated
coefficient is consistent with the wisdom from the many instrument literature that the inclusion of
irrelevant instruments biases 2SLS toward OLS.

Table 2 Estimates of price coefficient

Price coefficient Standard error Number inelastic

Estimates without selection

Baseline OLS �0.089 0.004 1,502

Baseline 2SLS �0.142 0.012 670

Augmented OLS �0.099 0.005 1,405

Augmented 2SLS �0.127 0.014 874

2SLS estimates with double selection

Baseline 2SLS selection �0.185 0.014 139

Augmented 2SLS
selection

�0.221 0.015 12

This table reports estimates of the coefficient on price along with the estimated standard error obtained using different sets of
controls and instruments. The rows Baseline OLS and Baseline 2SLS, respectively, provide ordinary least-squares (OLS) and
two-stage least-squares (2SLS) results using the baseline set of variables (5 controls and 10 instruments) described in the text.
The rows Augmented OLS and Augmented 2SLS are defined similarly but use the augmented set of variables described in the
text (24 controls and 48 instruments). The rows Baseline 2SLS with Selection and Augmented 2SLS with Selection apply the
double-selection approach developed in this article to select a set of controls and instruments and perform valid post-selection
inference about the estimated price coefficient in which selection occurs considering only the baseline variables. For each pro-
cedure, we also report the point estimate of the number of products for which demand is estimated to be inelastic in the column
Number inelastic.
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With the larger set of variables, our post–model selection estimator of the price coefficient is
�0.221 with an estimated standard error of 0.015 compared to the OLS estimate of�0.099 with
an estimated standard error of 0.005 and 2SLS estimate of �0.127 with an estimated standard
error of 0.014. Here, we see some evidence that the original set of controls may have been overly
parsimonious as we select some terms that were not included in the baseline variable set. We also
see closer agreement between theOLS estimate and2SLS estimatewithout selection,which is likely
driven by the larger number of instruments considered and the usual bias towardOLS seen in 2SLS
with many weak or irrelevant instruments. In the log-share on controls regression, we have eight
control variables selected, and we have seven controls and only four instruments selected in the
price on controls and instrument regression. We also have 13 variables selected for the price on
controls relationship. The selection of these additional variables suggests that there is important
nonlinearity missed by the baseline set of variables.

The most interesting feature of the results is that estimates of own-price elasticities become
more plausible as we move from the baseline results to the results based on variable selection with
a large number of controls. Recall that facing inelastic demand is inconsistent with profit-
maximizing price choice within the present context, so theory would predict that demand
should be elastic for all products.However, the baseline point estimates imply inelastic demand for
670 products.Whenwe use the larger set of instrumentswithout selection, the number of products
for which we estimate inelastic demand increases to 874, with the increase generated by the 2SLS
coefficient estimatemoving back toward theOLS estimate. The use of the variable selection results
provides results closer to the theoretical prediction. The point estimates based on selection from
only the baseline variables imply inelastic demand for 139 products, and we estimate inelastic
demand for only 12 products using the results based on selection from the larger set of variables.
Thus, the new methods provide the most reasonable estimates of own-price elasticities.

We conclude by noting that the simple specification above suffers from the usual drawbacks of
the logit demand model. However, the example illustrates how the application of the methods
outlined may be used in the estimation of structural parameters in economics and adds to the
plausibility of the resulting estimates. In this example, we see that we obtain more sensible esti-
mates of key parameters with at most a modest cost in increased estimation uncertainty after
applying the methods in this article while considering a flexible set of variables.

6. OVERVIEW OF RELATED LITERATURE

Inference following model selection or regularization more generally has been an active area of
research in econometrics and statistics for the past several years. In this section, we provide a brief
overview of this literature highlighting some key developments. This review is necessarily selective
because of the large number of papers available and the rapid pace at which new papers are
appearing. We choose to focus on papers that deal specifically with high-dimensional nuisance pa-
rameter settings and note that the ideas in these papers apply in low-dimensional settings as well.

Early work on inference in high-dimensional settings focused on inference based on the so-
called perfect recovery property (see, e.g., Fan & Li 2001 for an early paper, Fan & Lv 2010
for a more recent review, and Bühlmann & van de Geer 2011 for a textbook treatment). A
consequence of this property is that model selection does not impact the asymptotic distribution
of the parameters estimated in the selected model. This feature allows one to do inference
using standard approximate distributions for the parameters of the selected model ignoring that
model selection was done. Although convenient and fruitful in many applications (e.g., signal
processing), such results effectively rely on strong conditions that imply that one will be able to
perfectly select the correct model. For example, such results in linear models require the so-called
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beta-min condition (Bühlmann&van deGeer 2011) that all but a small number of coefficients are
exactly zero and the remaining nonzero coefficients are bounded away from zero, effectively ruling
out variables that have small, nonzero coefficients. Such conditions seem implausible in many
applications, especially in econometrics, and relying on such conditions produces asymptotic
approximations that may provide very poor approximations to finite-sample distributions of
estimators as they are not uniformly valid over sequences of models that include even minor
deviations from conditions implying perfect model selection. The concern about the lack of uniform
validity of inference based on oracle properties was raised in a series of papers (e.g., Leeb&Pötscher
2008a,b), and the more recent work on post–model selection inference has been focused on offering
procedures that provide uniformly valid inference over interesting (large) classes of models that
include cases in which perfect model selection will not be possible.

To our knowledge, the first work to formally and expressly address the problem of obtaining
uniformly valid inference following model selection is by Belloni et al. (2010) who considered
inference about parameters on a low-dimensional set of endogenous variables following selection
of instruments from among a high-dimensional set of potential instruments in a homoscedastic,
Gaussian IV model. The approach does not rely on implausible beta-min conditions that imply
perfect model selection but instead relies on the fact that the moment condition underlying IV
estimation satisfies the orthogonality condition in Equation 2 and the use of high-quality variable
selection methods. Belloni et al. (2012) further developed these ideas in the context of providing
uniformly valid inference about the parameters on endogenous variables in the IV context with
many instruments to allow non-Gaussian heteroscedastic disturbances. These principles have also
been applied by Belloni et al. (2013b), who developed approaches for regression and IV models
with Gaussian errors; Belloni et al. (2014a), who covered the estimation of the parametric
components of the partially linear model, and the estimation of average treatment effects, and
provided a formal statement of the orthogonality condition in Equation 2; Farrell (2014), who
covered average treatment effects with discrete, multivalued treatments; Kozbur (2014), who
covered additive nonparametric models; and Belloni et al. (2014b), who extended the IV and
partially linear model results to allow for fixed effects panel data and clustered dependence
structures. The most recent, general approach has been provided by Belloni et al. (2013a), who
analyzed inference about parameters defined by a continuum of orthogonalized estimating
equations with infinite-dimensional nuisance parameters and developed positive results on in-
ference. The framework in Belloni et al. (2013a) is general enough to cover the aforementioned
papers and many other parametric and semiparametric models considered in economics.

As noted above, providing uniformly valid inference followingmodel selection is closely related
to the use of Neyman’s CðaÞ-statistic. Valid confidence regions can be obtained by inverting tests
based on these statistics, andminimizers ofCðaÞ-statisticsmay be used as point estimators. The use
ofCðaÞ statistics for testing and estimation in high-dimensional approximately sparse models was
first explored in the context of high-dimensional quantile regression in Belloni et al. (2013c,d) and
in the context of high-dimensional logistic regression and other high-dimensional generalized
linear models in Belloni et al. (2013e).More recent uses ofCðaÞ-statistics (or close variants, under
different names) include those by Voorman et al. (2014), Ning & Liu (2014), and Yang et al.
(2014).

There have also been parallel developments based upon ex post debiasing of estimators. This
approach is mathematically equivalent to doing classical one-step corrections in the general
framework of Section 2. Indeed, although at first glance this debiasing approach may appear
distinct from that taken in the papers listed above in this section, it is the same as approximately
solving—by doing oneGauss-Newton step—orthogonal estimating equations satisfying Equation
2. The general results of Section 2 suggest that these approaches, the exact solving and one-step
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solving, are generally first-order asymptotically equivalent, although higher-order differencesmay
persist. To the best of our knowledge, the one-step correction approachwas first employed in high-
dimensional sparse models by Zhang & Zhang (2014), who covered the homoscedastic linear
model, aswell as in several of their follow-upworks. This approachhas been further usedby vande
Geer et al. (2014), who covered homoscedastic linear models and some generalized linear models,
and Javanmard & Montanari (2014), who offered a related, although somewhat different, ap-
proach. Belloni et al. (2013d,e) also offered results on one-step corrections as part of their analysis
of estimation and inference based on the orthogonal estimating equations. We would not expect
the use of orthogonal estimating equations or the use of one-step corrections to dominate each
other in all cases, although computational evidence fromBelloni et al. (2013e) suggests that the use
of exact solutions to orthogonal estimating equations may be preferable to approximate solutions
obtained from one-step corrections in the contexts they considered.

Another branch of the recent literature takes a complementary, but logically distinct, approach
that aims at doing valid inference for the parameters of a pseudo-true model that results from the
use of amodel selection procedure (see Berk et al. 2013). Specifically, this approach conditions on
a model selected by a data-dependent rule and then attempts to do inference—conditional on the
selection event—for the parameters of the selected model, which may deviate from the true model
that generated the data. Related developments within this approach appear in G’Sell et al. (2013),
Lee et al. (2013), Lee & Taylor (2014), Lockhart et al. (2014), Loftus & Taylor (2014), Taylor
et al. (2014), and Fithian et al. (2014). It seems intellectually very interesting to combine the
developments of the present article (and other preceding papers cited above) with developments in
this literature.

The previously mentioned work focuses on doing inference for low-dimensional parameters in
the presence of high-dimensional nuisance parameters. There have also been developments on
performing inference forhigh-dimensionalparameters.Belloni&Chernozhukov (2011) proposed
inverting a Lasso performance bound in order to construct a simultaneous, Scheffé-style confi-
dence band on all parameters. An interesting feature of this approach is that it usesweaker design
conditions than many other approaches but requires the data analyst to supply explicit bounds
on restricted eigenvalues. Gautier & Tsybakov (2011) and Chernozhukov et al. (2013)
employed similar ideas while also working with various generalizations of restricted eigen-
values. van de Geer & Nickl (2013) constructed confidence ellipsoids for the entire parameter
vector using sample splitting ideas. Somewhat related to this literature are the results of Belloni
et al. (2013d),whoused the orthogonal estimating equations frameworkwith infinite-dimensional
nuisance parameters and constructed a simultaneous confidence rectangle for many target
parameters in which the number of target parameters could be much larger than the sample size.
They relied on the high-dimensional central limit theorems and bootstrap results established by
Chernozhukov et al. (2013).

Most of the aforementioned results rely on (approximate) sparsity and related sparsity-based
estimators. Some examples of the use of alternative regularization schemes are available in the
many instrument literature in econometrics. For example, Chamberlain & Imbens (2004) used
a shrinkage estimator resulting from the use of aGaussian random coefficients structure over first-
stage coefficients, and Okui (2011) employed ridge regression for estimating the first-stage re-
gression in a framework in which the instruments may be ordered in terms of relevance. Carrasco
(2012) employed a different strategy based on directly regularizing the inverse that appears in the
definition of the 2SLS estimator, allowing for a number of moment conditions that are larger than
the sample size (see also Carrasco & Tchuente 2015). The theoretical development in Carrasco
(2012) relies on restrictions on the covariance structure of the instruments rather than on the
coefficients of the instruments. Hansen & Kozbur (2014) considered a combination of ridge

677www.annualreviews.org � Valid Post-Selection and Post-Regularization Inference

A
nn

u.
 R

ev
. E

co
n.

 2
01

5.
7:

64
9-

68
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
73

.1
88

.1
19

.0
 o

n 
10

/2
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



regularization and the jackknife to provide a procedure that is valid, allowing for the number of
instruments to be greater than the sample size under weak restrictions on the covariance structure
of the instruments and the first-stage coefficients. In all cases, the orthogonality condition holds,
allowing root-n-consistent and asymptotically normal estimation of the main parameter a.

Many other interesting procedures beyond thosementioned in this review have been developed
for estimating high-dimensional models (see, e.g., Hastie et al. 2009 for a textbook review).
Developing new techniques for estimation in high-dimensional settings is also still an active area of
research, so the list of methods available to researchers continues to expand. The use of these
procedures and the impact of their use on inference about low-dimensional target parameters of
interest are interesting research directions to explore. It seems likely that many of these procedures
will provide sufficiently high-quality estimates that they may be used for estimating the high-
dimensional nuisance parameter h in the present setting.

APPENDIX A: THE LASSO AND POST-LASSO ESTIMATORS IN THE LINEAR
MODEL

Suppose we have data fyi, xig for individuals i ¼ 1, . . . , n, where xi is a p-vector of predictor
variables, and yi is an outcome of interest. Suppose that we are interested in a linear prediction
model for yi, yi ¼ xi0hþ ɛi, and define the usual least-squares criterion function:

Q̂ðhÞd1
n

Xn
i¼1

�
yi � xi0h

�2
.

The Lasso estimator is defined as a solution of the following optimization program:

ĥL 2 arg min
h2Rp

Q̂ðhÞ þ l

n

Xp
j¼1

���cjhj

���, ð56Þ

where l is the penalty level, and fcjgpj¼1
are covariate specific penalty loadings. The covariate

specific penalty loadings are used to accommodate data that may be non-Gaussian, hetero-
scedastic, and/or dependent and also help ensure basic equivariance of coefficient estimates to
rescaling of the covariates.

The post-Lasso estimator is defined as the ordinary least-squares regression applied to the
model Î selected by Lasso:6

Î ¼ supportðĥLÞ ¼
n
j2f1, . . . , pg:

���ĥLj

���> 0
o
.

The post-Lasso estimator ĥPL is then

ĥPL 2 argmin
n
Q̂ðhÞ: h2Rp such that hj ¼ 0 for all jÏ Î

o
. ð57Þ

In otherwords, this estimator isOLSusing only the regressorswhose coefficientswere estimated to
be nonzero by Lasso.

Lasso and post-Lasso are motivated by the desire to predict the target function well without
overfitting. The Lasso estimator is a computationally attractive alternative to some other classic

6Wenote thatwe canalso allow the set Î to contain additional variables not selected by Lasso, but we do not consider that here.
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approaches, such as model selection based on information criteria, because it minimizes a convex
function. Moreover, under suitable conditions, the Lasso estimator achieves near-optimal rates in
estimating the regression function xi0h. However, Lasso does suffer from the drawback that the
regularization by the ‘1-norm employed in Equation 56 naturally shrinks all estimated coefficients
toward zero, causing a potentially significant shrinkage bias. The post-Lasso estimator is meant to
remove some of this shrinkage bias and achieves the same rate of convergence as Lasso under
sensible conditions.

Practical implementation of the Lasso requires setting the penalty parameter and loadings.
Verifying good properties of the Lasso typically relies on having these parameters set so that the
penalty dominates the score in the sense that

cjl

n
� max

j�p
2c

�����1n
Xn
i¼1

xj,iɛi

����� or, equivalently, lffiffiffi
n

p � max
j�p

2c

��������
1ffiffiffi
n

p
Xn

i¼1
xj,iɛi

cj

��������
for some c > 1 with high probability. Heuristically, we would have the term inside the
absolute values behaving approximately like a standard normal random variable if we set

cj ¼ Var
�
1ffiffiffi
n

p
Xn

i¼1
xj,iɛi

�
. We could then get the desired domination by setting l=ð2c ffiffiffi

n
p Þ large

enough to dominate the maximum of p standard normal random variables with high
probability, for example, by setting l ¼ 2c

ffiffiffi
n

p
F�1ð1� 0:1=½2p logðnÞ�Þ, where F�1ð×Þ denotes

the inverse of the standard normal cumulative distribution function. Verifying that this
heuristic argument holds with large p and data that may not be i.i.d. Gaussian requires careful
and delicate arguments, as by, for example, Belloni et al. (2012), who covered heteroscedastic
non-Gaussian data, or Belloni et al. (2014b), who covered panel data with within-individual
dependence. The choice of the penalty parameter l can also be refined, as done by Belloni et al.
(2011). Finally, feasible implementation requires that cj be estimated, which can be done
through the iterative procedures suggested by Belloni et al. (2012) or Belloni et al. (2014b).

APPENDIX B: PROOFS

B.1. Proof of Proposition 2

Consider any sequence fPng in fPng.
Step 1 (rn rate). Here we show that kâ� a0k� rn wp →1. We have by the identifiability con-
dition, in particular the assumption mineigðG0

1G1Þ� c, that

Pn
���â� a0

��> rn
�
� Pn

���Mðâ,h0Þ
��� iðrnÞ

�
, iðrnÞd2�1

�� ffiffiffi
c

p
rn
�
⋀ c
�
.

Hence, it suffices to show that wp →1,
��Mðâ,h0Þ

�� < iðrnÞ. By the triangle inequality, we obtain

I1 ¼ ��Mðâ, h0 Þ �Mðâ, ĥÞ��,��Mðâ, h0Þ
��� I1 þ I2 þ I3, I2 ¼ ��Mðâ, ĥÞ � M̂ðâ, ĥÞ��,

I3 ¼ ��M̂ðâ, ĥÞ��.
By the assumption in Equation 12, wp →1, we have
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I1 þ I2 � oð1Þfrn þ I3 þ
��Mðâ, h0Þ

��g.
Hence, we obtain

��Mðâ, h0Þ
���1� oð1Þ

�
� oð1Þðrn þ I3Þ þ I3.

By construction of the estimator, we have

I3 � o
�
n�1=2

�
þ inf

a2A

��M̂ða, ĥÞ��.Pn n
�1=2,

which follows because

inf
a2A

��M̂ða, ĥÞ��� ��M̂ða, ĥÞ��.Pn n
�1=2, ð58Þ

where a is the one-step estimator defined in Step 3, as shown in Equation 59. Hence, wp → 1��Mðâ, h0Þ
��� oðrnÞ < iðrnÞ,

where to obtain the last inequality we have used the assumption mineigðG0
1G1Þ� c.

Step 2 (nL1/2 rate). Herewe show that kâ� a0k.Pn n
�1=2. By the condition in Equation 14

and the triangle inequality, wp →1, we find that��Mðâ, h0Þ
��� ��G1ðâ� a0Þ

��� oð1Þ��â� a0
��� 
 ffiffiffi

c
p � oð1Þ���ðâ� a0Þ

��� ffiffiffi
c

p �
2
��ðâ� a0Þ

��.
Therefore, it suffices to show that

��Mðâ, h0Þ
��.Pn n

�1=2. We have that

II1 ¼ ��Mðâ, h0 Þ �Mðâ, ĥÞ��,��Mðâ,h0Þ
��� II1 þ II2 þ II3, II2 ¼ ��Mðâ, ĥÞ � M̂ðâ, ĥÞ � M̂ða0, h0Þ

��,
II3 ¼ ��M̂ðâ, ĥÞ��þ ��M̂ða0, h0Þ

��.
Then, by the orthogonality ∂h0Mða0, h0Þ ¼ 0 and the condition in Equation 14, wp →1, we find
that

II1 �
���Mðâ, ĥ Þ �Mðâ, h0Þ � ∂h0Mðâ, h0Þ½ĥ� h0�

���þ ���∂h0Mðâ, h0Þ½ĥ� h0�
���

� oð1Þn�1=2 þ oð1Þkâ� a0k

� oð1Þn�1=2 þ oð1Þ
2� ffiffiffi
c

p �kMðâ, h0Þk.

Then, by the condition in Equation 13 and by I3 .Pn n
�1=2, we obtain

II2 � oð1Þ
�
n�1=2 þ ��M̂ðâ, ĥÞ��þ ��Mðâ, h0Þ

���
.Pnoð1Þ

n
n�1=2 þ n�1=2 þ ��Mðâ, h0Þ

��o.
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Because II3 .Pn n
�1=2 by Equation 58 and

��M̂ða0, h0Þ
��.Pn n

�1=2, it follows that wp →1,
ð1� oð1ÞÞ��Mðâ, h0Þ

��.Pn n
�1=2.

Step 3 (linearization). Define the linearization map a1L̂ðaÞ by L̂ðaÞdM̂ða0, h0Þ þ
G1ða� a0Þ. Then we obtain

III1 ¼ ��Mðâ, ĥ Þ �Mðâ,h0Þ
��,��M̂ðâ, ĥÞ � L̂ðâÞ��� III1 þ III2 þ III3, III2 ¼ ��Mðâ,h0Þ � G1ðâ� a0Þ
��,

III3 ¼ ��M̂ðâ, ĥÞ �Mðâ, ĥÞ � M̂ða0,h0Þ
��.

Then, using the assumptions in Equations 13 and 14, conclude that

III1 �
���Mðâ, ĥ Þ �Mðâ, h0Þ � ∂h0Mðâ, h0Þ½ĥ� h0�

���þ ���∂h0Mðâ, h0Þ½ĥ� h0�
���

� oð1Þn�1=2 þ oð1Þkâ� a0k,
III2 � oð1Þkâ� a0k,

III3 � oð1Þ
�
n�1=2 þ

���M̂ðâ, ĥÞ
���þ kMðâ, h0Þk

�

� oð1Þ
�
n�1=2 þ n�1=2 þ III2 þ

���G1ðâ� a0Þ
����.

Conclude that wp → 1, as
���G0

1G1

���. 1 by the assumption in Equation 11,

��M̂ðâ, ĥÞ � L̂ðâÞ��.Pn oð1Þ
�
n�1=2 þ kâ� a0k

�
¼ o

�
n�1=2

�
.

Also consider the minimizer of the map a1
��L̂ðaÞ��, namely,

a ¼ a0 �
�
G

0
1G1

��1
G

0
1M̂ða0, h0Þ,

which obeys k ffiffiffi
n

p ða� a0Þk.Pn n
�1=2 under the conditions of the proposition. We can repeat the

argument above to conclude that wp→1,
��M̂ða, ĥÞ � L̂ðaÞ��.Pn o



n�1=2

�
. This implies, as��L̂ðaÞ��.Pn n

�1=2, that ��M̂ða, ĥÞ��.Pn n
�1=2. ð59Þ

This also implies that
��L̂ðâÞ�� ¼ ��L̂ðaÞ��þ oPn ðn�1=2Þ, as ��L̂ðaÞ��� ��L̂ðâÞ�� and

��L̂ðâÞ��� oPn
�
n�1=2

�
� ��M̂ðâ, ĥÞ��� ��M̂ða, ĥÞ��þ o

�
n�1=2

�
¼ ��L̂ðaÞ��þ oPn

�
n�1=2

�
.

The former assertion implies that
��L̂ðâÞ��2¼ ��L̂ðaÞ��2þoPnðn�1Þ, so that

��L̂ðâÞ��2���L̂ðaÞ��2¼ ���G1ðâ � aÞ
���2¼ oPn



n�1�,

from which we can conclude that
ffiffiffi
n

p k â � ak→Pn 0:
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Step 4 (conclusion). Given the conclusion of the previous step, the remaining claims are
standard and follow from the continuous mapping theorem and Lemma 8.

B.2. Proof of Proposition 3

We have wp →1 that, for some constants 0 < u < l < 0, lkxk� kAxk� ukxk and lkxk���Âx��� ukxk. Hence, we obtain

sup
a2A

��ÂM̂oða, ĥÞ � AMoða, ĥÞ
��þ ��AMoða, ĥÞ � AMoða, h0Þ

��
rn þ

��ÂM̂oða, ĥÞ
��þ ��AMoða, h0Þ

��
� sup

a2A

u
l

��M̂oða, ĥÞ �Moða, ĥÞ
��þ ��Moða, ĥÞ �Moða, h0Þ

��
ðrn=lÞ þ

��M̂oða, ĥÞ��þ ��Moða, h0Þ
��

þ sup
a2A

��Â� A
����M̂oða, ĥÞ

��
rn þ l

��M̂oða, ĥÞ
�� .Pn oð1Þ þ

��Â� A
���l→Pn 0:

The proof that the rest of the conditions hold is analogous and is therefore omitted.

B.3. Proof of Proposition 4

Step 1. We define the feasible and infeasible one-step estimators

�a ¼ ~a� F̂M̂ð~a, ĥÞ, F̂ ¼
�
Ĝ

0
1Ĝ1

��1
Ĝ

0
1,

a ¼ a0 � FM̂ða0, h0Þ, F ¼
�
G

0
1G1

��1
G1
0 .

We deduce by Equations 11 and 20 that

��F̂��.Pn 1,
��F̂G1 � I

��.Pn rn,
��F̂ � F

��.Pn rn.

Step 2. By Step 1 and by the condition in Equation 21, we have that

D ¼
��F̂M̂ð~a, ĥÞ � F̂M̂ða0, h0Þ � F̂G1ð~a� a0Þ

��
�
��F̂����M̂ð~a, ĥÞ � M̂ða0, h0Þ � G1ð~a� a0Þ

��
.Pn

��M̂ð~a, ĥÞ �Mð~a, ĥÞ � M̂ða0, h0Þ
��þ D1 .Pno

�
n�1=2

�
þ D1,

where D1d
��Mð~a, ĥÞ � G1ð~a� a0Þ

��.
Moreover,we haveD1 � IV1 þ IV2 þ IV3, where wp →1 by the condition in Equation 21 and

r2n ¼ oðn�1=2Þ
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IV1d
��Mð~a, h0Þ � G1ð~a� a0Þ

��.
��~a� a0

��2
. r2n ¼ o

�
n�1=2

�
,

IV2d
��Mð~a, ĥÞ �Mð~a, h0Þ � ∂h0Mð~a, h0Þ½ĥ� h0�

��. o
�
n�1=2

�
,

IV3d
���∂h0Mð~a, h0Þ½ĥ� h0�

���. o
�
n�1=2

�
.

Conclude that n1=2D→Pn 0.

Step 3. We have by the triangle inequality and Steps 1 and 2 that

ffiffiffi
n

p ����a � a

���� ffiffiffi
n

p ��
I � F̂G1
�ð~a� a0Þ

��þ ffiffiffi
n

p ��
F̂ � F
�
M̂ða0, h0Þ

��þ ffiffiffi
n

p
D

� ffiffiffi
n

p ��
I � F̂G1
���k~a� a0k þ

��F̂ � F
���� ffiffiffi

n
p

M̂ða0, h0Þ
��þ ffiffiffi

n
p

D

. Pn

ffiffiffi
n

p
r2n þ oð1Þ ¼ oð1Þ.

Thus, we have
ffiffiffi
n

p k�a � ak→Pn 0, and
ffiffiffi
n

p k�a� âk→Pn 0 follows from the triangle inequality and

the fact that
ffiffiffi
n

p kâ � ak→Pn 0.

B.4. Proof of Lemma 2

The conditions of Proposition 1 are clearly satisfied, and thus the conclusions of Proposition 1
immediately follow. We also have that, for Ĝ1 ¼ Ĝ1ðĥÞ,

ffiffiffi
n

p ðâ� a0Þ ¼ �F̂
ffiffiffi
n

p
M̂ða0, ĥÞ, F̂ ¼

�
Ĝ

0
1Ĝ1

��1
Ĝ1,ffiffiffi

n
p ða� a0Þd� F

ffiffiffi
n

p
M̂ða0, h0Þ, F ¼

�
G

0
1G1

��1
G1.

We deduce by Equations 11 and 33 that
��F̂��.Pn 1 and

��F̂ � F
��→Pn 0: Hence, we have by the

triangle and Hölder inequalities and the condition in Equation 33 that

ffiffiffi
n

p ��â � a
�����F̂�� ffiffiffi

n
p ��M̂ða0, ĥÞ � M̂ða0, h0Þ

���þ
��F̂ � F

�� ffiffiffi
n

p ��M̂ða0, h0Þ
��→Pn 0:

The conclusions regarding the uniform validity of inference using â of the form stated in the
conclusions of Proposition 2 follow from the conclusions regarding the uniform validity of in-
ference using a, which follow from the continuous mapping theorem, Lemma 8, and the assumed
stability conditions in Equation 11. This establishes the second claim of the lemma. Verification of
the conditions of Proposition 2 is omitted.

B.5. Proof of Lemmas 3 and 4

The proof of Lemma 3 is given in the main text. As in the proof of Lemma 3, we can expand:

ffiffiffi
n

p 

M̂jða0, ĥÞ � M̂jða0, h0Þ

� ¼ T1,j þ T2,j þ T3,j, ð60Þ

where the terms ðTl,jÞ3l¼1 are as defined in the main text. We can further bound T3,j as follows:

T3,j �Tm
3,j þ T4,j,

Tm
3,j :¼

ffiffiffi
n

p ���
ĥ� hm
0

�0∂h∂h0M̂jða0Þ


ĥ� hm

0

����,
T4,j :¼

ffiffiffi
n

p ���hr0
0∂h∂h0M̂jða0Þhr

0

���. ð61Þ
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Then T1,j ¼ 0 by orthogonality, T2,j →Pn 0 as in the proof of Lemma 3. Given that
s2 logðpnÞ2=n→0, Tm

3,j vanishes in probability because, by Hölder’s inequality and for sufficiently
large n,

Tm
3,j �

ffiffiffi
n

p
T3,j

��ĥ� hm
0

��2
.Pn

ffiffiffi
n

p
s logðpnÞ�n→Pn 0:

Also, if s2 logðpnÞ2=n→0, T4,j vanishes in probability because

T4,j �
ffiffiffi
n

p ���∂h∂h0M̂jða0Þ
���
pwðhr

0Þ
��hr

0

��2 .Pn

ffiffiffi
n

p
s logðpnÞ�n→Pn 0,

where the inequalities follow by Hölder’s inequality and Equation 43. The conclusion follows
from Equation 60.

B.6. Proof of Lemma 5

Form ¼ 1, . . . , k and l ¼ 1, . . . , d, we can bound each element Ĝ1,mlðhÞ ofmatrix Ĝ1ðhÞ as follows:

��Ĝ1,mlðĥÞ � Ĝ1,mlðh0Þ
��� X4

k¼1

Tk,ml,

T1,mld
���∂hG1,mlðh0Þ0ðĥ� h0 Þ

���,
T2,mld

�����∂hĜ1,mlðh0Þ � ∂hG1,mlðh0Þ
�0
ðĥ� h0Þ

����,
T3,mld

���
ĥ� hm
0

�0∂h∂h0 Ĝ1,ml


ĥ� hm

0

����,
T4,mld

���hr0
0∂h∂h0 Ĝ1,mlh

r
0

���.
Under the conditions in Equations 44 and 45, we have that wp → 1,

T1,ml �
��∂hG1,mlðh0Þ

��
1kĥ� h0k1 .Pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 logðpnÞ=n

q
→ 0,

T2,ml �
��∂hĜ1,mlðh0Þ � ∂hG1,mlðh0Þ

��
1kĥ� h0k1 .Pn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 logðpnÞ=n

q
→0,

T3,ml �
���∂h∂h0 Ĝ1,ml

���
spð‘nsÞ

��ĥ� hm
0

��2 .Pn s logðpnÞ=n→0,

T4,ml �
���∂h∂h0 Ĝ1,ml

���
pwðhr

0Þ
��hr

0

��2 .Pn s logðpnÞ=n→0:

The claim follows from the assumed growth conditions, as d and k are bounded.

APPENDIX C: KEY TOOLS

LetF andF�1 denote the distribution and quantile function ofNð0, 1Þ. Note that, in particular,
F�1ð1� aÞ� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 logðaÞp
for all a2 ð0, 1=2Þ.

Lemma 6 (moderate deviation inequality for the maximum of a vector): Suppose that

Sjd
Xn

i¼1
Uij=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
U2

ij

q
, where Uij are independent random variables across i

with mean zero and finite third-order moments. Then, we obtain

684 Chernozhukov � Hansen � Spindler

A
nn

u.
 R

ev
. E

co
n.

 2
01

5.
7:

64
9-

68
8.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
 A

cc
es

s 
pr

ov
id

ed
 b

y 
73

.1
88

.1
19

.0
 o

n 
10

/2
2/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.



P
�
max
1�j�p

��Sj

��>F�1ð1� g=2pÞ

� g

 
1þ A

‘3n

!
,

where A is an absolute constant, provided for ‘n > 0,

0�F�1
1� g=ð2pÞ�� n1=6

‘n
min
1�j�p

M2
j � 1, Mjd

�
1
n

Xn

i¼1
E
h
U2

ij

i1=2
�
1
n

Xn

i¼1
E
h��Uij

��3i1=3.

This result is essentially due to Jing et al. (2003). The proof of this result, given by Belloni et al.
(2012), follows from a simple combination of union bounds with their result.

Lemma7 (lawsof large numbers for largematrices in sparse norms):Let sn,pn,kn, and
‘n be sequences of positive constants such that ‘n →1 but ‘n=logn→0 and c1 and c2
be fixed positive constants. Let ðxiÞni¼1 be i.i.d. vectors such that

��E½xixi0 ���spðsn log nÞ � c1,
and either one of the following holds: (a) xi is a sub-Gaussian random vector
with supkuk�1

��xi0u��c2,P
� c2, where k×kc2,P

denotes the c2-Orlicz norm of a random
variable, and snðlognÞðlogðpn ⋁ nÞÞ=n→0, or (b) kxik1 � kn almost surely and
k2nsnðlog4 nÞlogðpn ⋁ nÞ=n→0. Then there is oð1Þ term such that with probability
1� oð1Þ, ��En½xixi0� � E½xixi0�

��
spðsn‘nÞ � oð1Þ, ��En½xixi0�

��
spðsn‘nÞ � c1 þ oð1Þ.

Under (a), the result follows from theorem 3.2 of Rudelson & Zhou (2011), and under (b), the
result follows from Rudelson & Vershynin (2008), as shown in the supplemental material of
Belloni & Chernozhukov (2013).

Lemma8 (useful implications of the central limit theorem inRm): Consider a sequence
of random vectors Zn in Rm such that Zn ⇝Z ¼ Nð0, ImÞ. The elements of the se-
quence and the limit variable need not be defined on the same probability space. Then
we obtain

lim
n→1

sup
R2R

jPðZn 2RÞ � PðZ2RÞj ¼ 0,

where R is the collection of all convex sets in Rm.

Proof: Let R denote a generic convex set in Rm. Let Re ¼ fz2Rm : dðz, RÞ� eg and
R�e ¼ fz2R :Bðz, eÞ⊂Rg, where d is the Euclidean distance andBðz, eÞ ¼ fy2Rm:
dðy, zÞ� eg. The set Re may be empty. By theorem 11.3.3 in Dudley (2002), we find
that endrðZn,ZÞ→0, where r is the Prohorov metric. The definition of the metric
implies that PðZn 2RÞ�PðZ2Ren Þ þ en. By the reverse isoperimetric inequality
(Chen & Fang 2011, proposition 2.5), we obtain jPðZ2Ren Þ � PðZ2RÞj �m1=2en.
Hence, PðZn 2RÞ�PðZ2RÞ þ enð1þm1=2Þ. Furthermore, for any convex setR, we
find that ðR�enÞen ⊂R (interpreting the expansion of an empty set as an empty set).
Hence, for any convex R, we have PðZ2R�enÞ�PðZn 2RÞ þ en by definition of
Prohorov’s metric. By the reverse isoperimetric inequality, we obtain jPðZ2R�enÞ�
PðZ2RÞj �m1=2en. Conclude that PðZn 2RÞ�PðZ2RÞ � enð1þm1=2Þ.
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