arxiv:1304.0282v4 [math.ST] 30 Dec 2014

UNIFORM POST SELECTION INFERENCE FOR LAD REGRESSION AND
OTHER Z-ESTIMATION PROBLEMS
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ABSTRACT. We develop uniformly valid confidence regions for regressioefficients in a high-
dimensional sparse median regression model with homostea@arors. Our methods are based
on a moment equation that is immunized against non-reg@i@émation of the nuisance part
of the median regression function by using Neyman’s orthatjpation. We establish that the
resulting instrumental median regression estimator ofgetaegression coefficient is asymptot-
ically normally distributed uniformly with respect to thederlying sparse model and is semi-
parametrically efficient. We also generalize our method geiaeral non-smooth Z-estimation
framework with the number of target parametgrdeing possibly much larger than the sample
sizen. We extend Huber’s results on asymptotic normality to teitisg, demonstrating uniform
asymptotic normality of the proposed estimators gwedimensional rectangles, constructing
simultaneous confidence bands on all of thetarget parameters, and establishing asymptotic
validity of the bands uniformly over underlying approxirelgtsparse models.
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1. INTRODUCTION

We consider independent and identically distributed dators(y;, z;,d;)" that obey the
regression model

(1) yi=diog+x;fo+e€ (i=1,...,n),

whered; is the main regressor and coefficienf is the main parameter of interest. The vector
x; denotes other high-dimensional regressors or controls.r@gression erray; is independent
of d; andz; and has median zero, that is;(¢; < 0) = 1/2. The distribution function of
¢; is denoted byF, and admits a density functiofi such thatf.(0) > 0. The assumption
motivates the use of the least absolute deviation or meégression, suitably adjusted for use
in high-dimensional settings. The framewolk (1) is of ie&rin program evaluation, where
d; represents the treatment or policy variable known a priod whose impact we would like
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to infer [27,21] 15]. We shall also discuss a generalizatiothe case where there are many
parameters of interest, including the case where the igesfta regressor of interest is unknown
a priori.

The dimensiorp of controlsxz; may be much larger than, which creates a challenge for
inference onyy. Although the unknown nuisance parametgiies in this large space, the key
assumption that will make estimation possible is its sparsamelyT” = supp(f5p) hass < n
elements, where the notatienpp(d) = {j € {1,...,p} : J; # 0} denotes the support of a
vectoré € RP. Heres can depend on, as we shall use array asymptotics. Sparsity motivates
the use of regularization or model selection methods.

A non-robust approach to inference in this setting would st fo perform model selection
via the/;-penalized median regression estimator

-~

~ . A
@ (@3) € argmin B (y: — diax — o7 B]) + = ¥, 57",

where )\ is a penalty parameter antf = diag{E,,(d}), En(z},), ..., En(x},)} is a diagonal
matrix with normalization weights, where the notatiéi (-) denotes the average > ,
over the index = 1,...,n. Then one would use the post-model selection estimator

3) (@.5) € argmin { By (ly; — diov —2F5)) : ;=0 j ¢ supp(B) }

to perform inference fouy.

This approach is justified iE{2) achieves perfect modelatila with probability approaching
unity, so that the estimatdrl(3) has the oracle property. él@wconditions for perfect selection
are very restrictive in this model, and, in particular, riegstrong separation of non-zero coef-
ficients away from zero. If these conditions do not hold, tbéngatora does not converge to
o at then—1/2 rate, uniformly with respect to the underlying model, andrsousual inference
breaks down [19]. We shall demonstrate the breakdown of saste inference in Monte Carlo
experiments where non-zero coefficientgiinare not significantly separated from zero.

The breakdown of standard inference does not mean thatdhenaéntioned procedures are
not suitable for prediction. Indeed, the estimatdis (2) @)dattain essentially optimal rates
{(slogp)/n}'/? of convergence for estimating the entire median regressination [3,[33].
This property means that while these procedures will naveleperfect model recovery, they
will only make moderate selection mistakes, that is, theyt aontrols only if coefficients are
local to zero.

In order to provide uniformly valid inference, we propose ethod whose performance does
not require perfect model selection, allowing potentiaderate model selection mistakes. The
latter feature is critical in achieving uniformity over ada class of data generating processes,
similarly to the results for instrumental regression andameegression studied in_[34] and
[2,14,[5]. This allows us to overcome the impact of moderatel@h@election mistakes on
inference, avoiding in part the criticisms [n [19], who peahat the oracle property achieved by
the naive estimators implies the failure of uniform valydiff inference and their semiparametric
inefficiency [20].

In order to achieve robustness with respect to moderatetsgianistakes, we shall construct
an orthogonal moment equation that identifies the targetrpater. The following auxiliary
equation,

4) di=x;00+v;, E(vi|x)=0 (i=1,...,n),
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which describes the dependence of the regressor of intérest the other controls;, plays a

key role. We shall assume the sparsitygfthat is,7; = supp(fp) has at most < n elements,

and estimate the relationl (4) via lasso or post-lasso lgasires methods described below.
We shall usey; as an instrument in the following moment equationdgr

(5) E{gp(yl - dia(] - x’zTBO)/UZ} =0 (Z = 1’ s ,TL),

wherep(t) = 1/2 — 1{t < 0}. We shall use the empirical analog bf (5) to form an instrutalen
median regression estimator @, using a plug-in estimator for; 5y. The moment equation
(8) has the orthogonality property
(6) gE{gp(yl —diag — x; B)vi } =0 (i=1,...,n),

p B=Bo
so the estimator ofyy will be unaffected by estimation of; 3, even if §j is estimated at a
slower rate tham /2, that is, the rate of(n—'/) would suffice. This slow rate of estimation
of the nuisance function permits the use of non-regulamedtirs of3;, such as post-selection
or regularized estimators that are not!/2 consistent uniformly over the underlying model.
The orthogonalization ideas can be traced back tb [22] esw@hy an important role in doubly
robust estimatior [26].

Our estimation procedure has three steps: (i) estimatidheoonfounding function: 5 in
(@); (ii) estimation of the instruments in (4)); and (iii) estimation of the target parameteyvia
empirical analog of({5). Each step is computationally &htd, involving solutions of convex
problems and a one-dimensional search.

Step (i) estimates for the nuisance functigit via either the/;-penalized median regression
estimator[(R) or the associated post-model selection a&iin{3).

Step (ii) provides estimateas of v; in () asv; = d; — x}@\or@ =d; — m;-fg(z‘ =1,...,n).
The firstis based on the heteroscedastic lasso estifaarersion of the lasso df [30], designed
to address non-Gaussian and heteroscedastic errors [2],

@) 9 € argmin B, {(d; — 276} + 200,

where) andT are the penalty level and data-driven penalty loadings efin the Supplemen-
tary Material. The second is based on the associated patireelection estimator aritl called
the post-lasso estimator:

(8) 0 e argmein E{(d; —270)*}: 0, =0, j ¢ supp(a) .

Step (iii) constructs an estimatarof the coefficientyy via an instrumental median regression
[11], using(v;);", as instruments, defined by
_ 4| En{o(y; — B — dia)v; }|?

9 & € argmin L, («), Ly(a - ,
© gmini (). Li(o) B

whereA is a possibly stochastic parameter spacexfprWe suggesid = [@—10/b,a + 10/b]
with b = {E,,(d?)}"/? log n, though we allow for other choices.

Our main result establishes that under homoscedasticityjged that(s* log? p) /n — 0 and
other regularity conditions hold, despite possible moé@dion mistakes in Steps (i) and (ii),
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the estimatory obeys
(10) o 'n?(& — ag) — N(0,1)

in distribution, wheres? = 1/{4f2E(v?)} with f. = f.(0) is the semi-parametric efficiency
bound for regular estimators aofy. In the low-dimensional case, i = o(n), the asymptotic
behavior of our estimator coincides with that of the staddaedian regression without selec-
tion or penalization, as derived in [13], which is also sgraiametrically efficient in this case.
However, the behaviors of our estimator and the standardameegression differ dramatically,
otherwise, with the standard estimator even failing to besistent whem > n. Of course, this
improvement in the performance comes at the cost of assuspiugity.
An alternative, more robust expression &gris given by

(11) ol =J'J7Y, Q=E@W?})/4, J= E(fdv;).

n

We estimate? by the plug-in method and by Powell’s ([25]) method. Furthermore, we show
that the Neyman-type projected score statistig, («) can be used for testing the null hypothesis
o = ap, and converges in distribution toyd variable under the null hypothesis, that is,

(12) nLn(a(]) - X%

in distribution. This allows us to construct a confidencdaegvith asymptotic coverage — &
based on inverting the score statistif,, («):

(13) Ac={aeA:nL,(a) <q_¢}, prlage A = 1—¢,

whereq; _¢ is the(1 — &)-quantile of they?-distribution.

The robustness with respect to moderate model selectidakais which is due tg[6), allows
(Id) and [(12) to hold uniformly over a large class of data gty processes. Throughout
the paper, we use array asymptotics, asymptotics where tlielnchanges with, to better
capture finite-sample phenomena such as small coefficieatste local to zero. This ensures
the robustness of conclusions with respect to perturbaitidthe data-generating process along
various model sequences. This robustness, in turn, ttesstgo uniform validity of confidence
regions over many data-generating processes.

The second set of main results addresses a more genernad) dttallowingp,-dimensional
target parameters defined via Huber's Z-problems to be efést, with dimensiop, potentially
much larger than the sample sizeand also allowing for approximately sparse models instead
of exactly sparse models. This framework covers a wide yaoé semi-parametric models,
including those with smooth and non-smooth score functid¥s provide sufficient conditions
to derive a uniform Bahadur representation, and estabh#fiormn asymptotic normality, using
central limit theorems and bootstrap results[of [9], for dmire p;-dimensional vector. The
latter result holds uniformly over high-dimensional regikes of dimensiom; > n and over
an underlying approximately sparse model, thereby extgngievious results from the setting
with p; < n [14,123[24[13] to that witly; > n.

In what follows, the/s and/; norms are denoted by - || and|| - ||1, respectively, and the
lo-norm, || - ||o, denotes the number of non-zero components of a vector. Aehesnotation
aVb = max(a,b) andaAb = min(a, b). Denote byd(-) the distribution function of the standard
normal distribution. We assume that the quantities sugh@asand hencey;, x;, 8y, 6o, T andTy
are all dependent on the sample sizand allow for the case whepe= p,, -+ oo ands = s,, —

oo asn — oo. We shall omit the dependence of these quantities ahen it does not cause
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confusion. For a class of measurable functighen a measurable space, tei(e, F, || - [|g.2)
denote its-covering number with respect to tfié(Q) seminorml| - |2, whereQ is a finitely
discrete measure on the space, andilets, ) = log supg cn(e||Fllg,2, F, || [ ¢,2) denote the
uniform entropy number wher€ = supc r | f|.

2. THE METHODS, CONDITIONS, AND RESULTS

2.1. The methods. Each of the steps outlined in Sectigh 1 could be implemengeseberal
estimators. Two possible implementations are the follgwin

Algorithm 1. The algorithm is based on post-model selection estimators.

Step(i). Run post¢;-penalized median regressidd (3)wfon d; and z;; keep fitted valuecfg.
Step(ii). Run the post-lasso estimatard (8) é&fon x;; keep the residual; = d; — xﬁ.

Step(iii). Run instrumental median regressidd (9)yef— m;-fB ond; usingv; as the instrument.
Reporta and perform inference based up@nl(10)[orl(13).

Algorithm 2. The algorithm is based on regularized estimators.

Step(i). Run/;-penalized median regressidd (3)wfon d; and z;; keep fitted valuecfg.
Step(ii). Run the lasso estimatarl(7) @f on z;; keep the residual; = d; — m;fg.

Step(iii). Run instrumental median regressidd (9)ef— m;-fB ond; usingv; as the instrument.
Reporta and perform inference based up@nl(10)[orl(13).

In order to perforn?;-penalized median regression and lasso, one has to chaoperthlty
levels suitably. We record our penalty choices in the Supplgary Material. Algorithm 1 relies
on the post-selection estimators that refit the non-zerficeamts without the penalty term to
reduce the bias, while Algorithm 2 relies on the penalizaifregors. In Step (i), instead of the
lasso or the post-lasso estimators, Dantzig selector [@]Gauss-Dantzig estimators could be
used. Step (iii) of both algorithms relies on instrumentaldman regressiom [9).

Comment 2.1. Alternatively, in this step, we can use a one-step estimatbfined by

(14) & = &+ (B {f (002 Eu{o(ys — dia — 2T B)0;},

wherea is the /;-penalized median regression estimakdr (2). Another pibisgiis to use the
post-double selection median regression estimation, wikicimply the median regression of
y; on d; and the union of controls selected in both Steps (i) andd8)y. The Supplemental
Material shows that these alternative estimators alsed@yapproximately.

2.2. Regularity conditions. We state regularity conditions sufficient for validity ofettmain
estimation and inference results. The behavior of spargenealues of the population Gram
matrix E(z;z]) with z; = (d;,z])" plays an important role in the analysis &fpenalized
median regression and lasso. Define the minimal and maximsparse eigenvalues of the
population Gram matrix as

- ) 0OTE(z;xl)o - 0T E(z;x!)d
15 m(m) = min ——t— «(m) = max ———t—,
(A0 Fminlm) = O 602 Pmax72) = | 611
wherem = 1, ..., p. Assuming that,;,(m) > 0 requires that all population Gram submatrices
formed by anym components of; are positive definite.
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The main condition, Conditiop] 1, imposes sparsity of themeg3, andd, as well as other
more technical assumptions. Below lgtand C; be given positive constants, and lgt 1
0, 6, 4 0, andA,, | 0 be given sequences of positive constants.

Condition 1. Suppose that (i) (v:,d;, z])" }}-, is a sequence of independent and identically
distributed random vectors generated according to modBisafd [4), where; has distribu-
tion distribution functionF, such thatF,(0) = 1/2 and is independent of the random vector
(di,xD)T; (i) E(v? | ) > ¢ and E(|vg® | 2;) < Cy almost surely; moreovei(d}) +
E(v}) + maxj=1,__, E(z};d?) + E(|lzguil*) < C; (i) there existss = s, > 1 such that
1Bollo < s and||fgllo < s; (iv) the error distribution F, is absolutely continuous with continu-
ously differentiable densit,(-) such thatf.(0) > ¢; and f(¢) V| f/(t)| < C; forall t € R; (v)
there exist constants’,, and M, such thati(,, > max;—; ., |z;;| andM,, > 1V |z]0y| almost
surely, and they obey the growth conditipR? + (K2 v M2)s> + M?2s%} log3(p V n) < ndy;

(Vl) c < Qz_smin(gns) < Q_Smax(fns) < Cl-

Condition[1 (i) imposes the setting discussed in the prevgmction with the zero conditional
median of the error distribution. Conditidh 1 (ii) imposesment conditions on the structural
errors and regressors to ensure good model selection penfice of lasso applied to equation
(4)). Condition[1 (iii) imposes sparsity of the high-dimessl vectorss, and#,. Condition
[ (iv) is a set of standard assumptions in median regresd&®hand in instrumental quantile
regression. Conditidl 1 (v) restricts the sparsity indexnalys® log®(pVn) = o(n) is required;
this is analogous to the restrictigit(log p)? = o(n) made in [13] in the low-dimensional
setting. The uniformly bounded regressors condition caretaxed with minor modifications
provided the bound holds with probability approaching wyrilost importantly, no assumptions
on the separation from zero of the non-zero coefficient @ind 5, are made. Conditionl 1 (vi)
is quite plausible for many designs of interest. Condit{@ir{s/) and (v) imply the equivalence
between the norms induced by the empirical and populati@m@natrices oves-sparse vectors
by [29].

2.3. Results. The following result is derived as an application of a moraeagal Theoren|2
given in Section 3; the proof is given in the Supplementarydvial.

-----

Theorem 1. Leta and L, («g) be the estimator and statistic obtained by applying eithigoA
rithm 1 or 2. Suppose that Conditianh 1 is satisfied forral> 1. Moreover, suppose that with
probability at leastl — A, ||3]lo < Cis. Then, asy — oo, o 'n'/2(& — ) — N(0,1) and
nLn(cg) — X7 in distribution, wherer? = 1/{4f2E(v?)}.

Theorent ]l shows that Algorithms 1 and 2 produce estimatdfsat perform equally well,
to the first order, with asymptotic variance equal to the sganametric efficiency bound; see
the Supplemental Material for further discussion. Bottoethms rely on sparsity of andé.
Sparsity of the latter follows immediately under sharp ignehoices for optimal rates. The
sparsity for the former potentially requires a higher pgnigvel, as shown in_[3]; alternatively,
sparsity for the estimator in Step 1 can also be achievedumgating the smallest components
of B The Supplemental Material shows that suitable truncdgans to the required sparsity
while preserving the rate of convergence.

An important consequence of these results is the followioipltary. HereP,, denotes a
collection of distributions fof (y;, d;, z;)"}7_, and for P, € P, the notationpr, means that
underprp , {(yi, d;, )" }i, is distributed according to the law determinedBy.
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Corollary 1. Let & be the estimator ofyy constructed according to either Algorithm 1 or 2,
and for everyn > 1, let P, be the collection of all distributions df(y;, d;, z])" }7_, for which

Condition[1 holds anq||§||0 < (s with probability at leastl — A,,. Then forﬁg defined in
13).

PSLEII; ‘prpn {ozo €ld+om 2071 - 5/2)]} - (1- 5)‘ — 0,

sup |prp, (o € 25) —(1- 5)‘ — 0, n— oo
Pn€Pn

Corollary(1 establishes the second main result of the pdtgeighlights the uniform validity
of the results, which hold despite the possible imperfecti@hgelection in Steps (i) and (ii).
Condition[1 explicitly characterizes regions of data-gatieg processes for which the unifor-
mity result holds. Simulations presented below provideitamthl evidence that these regions
are substantial. Here we rely on exactly sparse modelshbsétresults extend to approximately
sparse model in what follows.

Both of the proposed algorithms exploit the homoscedagtafithe model [(1L) with respect
to the error terng;. The generalization to the heteroscedastic case can bevadhiut we need
to consider the density-weighted version of the auxiliagyation [4) in order to achieve the
semiparametric efficiency bound. The analysis of the impaestimation of weights is delicate
and is developed in our working paper “Robust Inference ighHbimensional Approximate
Sparse Quantile Regression Models” (arXiv:1312.7186).

2.4. Generalization to many target coefficients.We consider the generalization to the previ-
ous model:

P1
y= Zdjozj +g(u)+e e~F, F/(0)=1/2,
j=1

whered, u are regressors, ards the noise with distribution functiof, that is independent of
regressors and has median zero, thafi$)) = 1/2. The coefficientsy, ..., a,, are now the
high-dimensional parameter of interest.

We can rewrite this model ag models of the previous form:

y=adj+gi(z) +e  dj=my(z) +vj, Elvy|2) =0 (G=1....pm)
whereq; is the target coefficient,

9i(z) =>_drar +g(u),  my(z) = E(d; | 2),

kit
and wherez; = (di,...,dj—1,dj41,...,dp,,u™)". We would like to estimate and perform
inference on each of the coefficientsa, . .., «;,, simultaneously.

Moreover, we would like to allow regression functiohs = (g;,m;)" to be of infinite di-
mension, that is, they could be written only as infinite lineambinations of some dictionary
with respect taz;. However, we assume that there are sparse estimﬁ}o& (gj,m;)" that
can estimaté,; = (g;,m;)" at sufficiently fasio(n /%) rates in the mean square error sense,
as stated precisely in Section 3. Examples of functionthat permit such estimation by sparse
methods include the standard Sobolev spaces as well as mroeeafjrearranged Sobolev spaces
[7,16]. Here sparsity of estimatogg andm; means that they are formed by (s)-sparse linear
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combinations chosen fromtechnical regressors generated fromwith coefficients estimated
from the data. This framework is general; in particular ibizins as a special case the tradi-
tional linear sieve/series framework for estimationgf which uses a small number= o(n)
of predetermined series functions as a dictionary.

Given suitable estimators fér; = (g;,m;)", we can then identify and estimate each of the
target paramete(mj)§;1 via the empirical version of the moment equations

Epj{w,a;,hi(2)} =0 (G =1,....,p1),

wherey;(w, a,t) = p(y — djo — t1)(dj — t2) andw = (y,d1, ..., d,,,u")". These equations
have the orthogonality property:

OE{W; (w,az,) | 2}/0M][,y o) =0 (= 1Loop0).
The resulting estimation problem is subsumed as a spedalindhe next section.

3. INFERENCE ON MANY TARGET PARAMETERS INZ-PROBLEMS

In this section we generalize the previous example to a menemgl setting, wherg; tar-
get parameters defined via Huber's Z-problems are of intevdth dimensionp; potentially
much larger than the sample size. This framework coversanagigression, its generalization
discussed above, and many other semi-parametric models.

The interest lies ip; = p1,, real-valued target parameters, . . ., oy, . We assume that each
a; € A;, where eachd; is a non-stochastic bounded closed interval. The true pateama; is
identified as a unigue solution of the moment condition:

(16) Elyj{w, aj, hj(z)}] = 0.
Herew is a random vector taking values v, a Borel subset of a Euclidean space, which
contains vectors; (j = 1,...,p;) as subvectors, and eachtakes values ir£;; herez; and
zj with j # j' may overlap. The vector-valued functien— h;(z) = {hjm(2)}2_, is a
measurable map frorg; to RM, where)M is fixed, and the functiotw, o, t) — v;(w, a, t) is
a measurable map from an open neighborhoothok A; x R to R. The former map is a
possibly infinite-dimensional nuisance parameter.

Suppose that the nuisance function= (h;,,,)}_, admits a sparse estimal@r = (ﬁjm)n]‘{zl
of the form

p
hjm() = Z fjmk‘(')ajmh H(Hjmk)zleO <s (m =1,... 7M)7
k=1

wherep = p, may be much larger than while s = s,,, the sparsity level oﬁj, is small
compared toy, and f;,,,;, : Z; — R are given approximating functions.

The estimatoty; of «; is then constructed as a Z-estimator, which solves the ssamallogue
of the equation{16):

(17) | Enltbi{w, @5, 1 ()] < in} | Enltr{w, o hy(2)}]] + €n,

QaEA;
wheree, = o(n~1/2b;1) is the numerical tolerance parameter apd= {log(ep;)}'/%; A; is
a possibly stochastic interval containedAn with high probability. Typically,4; = A; or can
be constructed by using a preliminary estimatoapf
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In order to achieve robust inference results, we shall neeely on the condition of orthogo-
nality, or immunity, of the scores with respect to small pdsations in the value of the nuisance
parameters, which we can express in the following condition

(18) O E{j(w, j,t) | 2}, (z;) = 0,

where we use the symbé} to abbreviated/ot. It is important to construct the scoreg to
have property[(18) or its generalization given in Renfark #elow. Generally, we can con-
struct the scoreg; that obey such properties by projecting some initial nahamyonal scores
onto the orthogonal complement of the tangent space for tiance parametef[ JjvdV-
W,vdV,kosorok:book. Sometimes the resulting constructienerates additional nuisance pa-
rameters, for example, the auxiliary regression functioithie case of the median regression
problem in Section 2.

In Conditions 2 and]3 below, ng, c;, andC; are given positive constantdy is a fixed
positive integery,, | 0 andp,, | 0 are given sequences of constants. &et= max(p1, p,n,e)
andb,, = {log(ep;)}"/2.

Condition 2. For everyn > 1, we observe independent and identically distributed pie
(w;)7, of the random vectow, whose law is determined by the probability measlire P,,.
Uniformly inn > ng, P € P,,andj = 1,...,p1, the following conditions are satisfied: (i)
the true parametety; obeys [ZIB);@ is a possibly stochastic interval such that with probabil-
ity 1 — 6, [a; + cin~/2log?a,] € A; C Aj; (i) for P-almost every:;, the map(a, t) —
E{yj(w,a,t) | z;} is twice continuously differentiable, and for everye {«,t1,...,tx},
E(supy, e, |0 E[j{w, a, hj(z)} | zi]|?) < Cj; moreover, there exist constanfs,, >

1, Ly, > 1, and a cubeT; (z;) = xM_, T3, (2;) in RM with centerh;(z;) such that for every
v,V € {a,th, .t} SUD( e, xT; (=) 10w 0w E{bj (W, o, t) | 2} < Lin, and for every
a, ol € Ayt 1" € Ti(z), E[{vj(w, a,t) —dbj(w, o/, )} | 2] < Lon(la — /| + ||t — ]|°);
(iii) the orthogonality condition[{1I8) or its generalizati stated in[(Z0) below holds; (iv) the
following global and local identifiability conditions hal®|E[y;{w, a, h;(z)}]| > |I'j(a —
aj)| Aepforall o € Aj, wherel'; = 0, E[¢;{w,aj,hj(z;)}], and|I';| > ci; and (v) the
second moments of scores are bounded away from ié{rxz)]%{w, aj,hi(z)}] > .

Condition[2 states rather mild assumptions for Z-estinmgpimblems, in particular, allowing
for non-smooth scoreg; such as those arising in median regression. They are ansdgo
assumptions imposed in the setting with- o(n), for example, in[[13]. The following condition
uses a notion of pointwise measurable classes of funcigffis [

Condition 3. Uniformly inn > ng, P € P,, andj = 1,...,p1, the following conditions are
satisfied: (i) the nuisance functidry = (h;,)Y_; has an estimatoﬁj = (ﬁjm)%zl with good
sparsity and rate properties, namely, with probability- §,,, ﬁj € H;, whereH; = x%zl’;'-ljm
and each#,, is the class of functions;,, : Z; — R of the formh,,(-) = S0 _ Fimk(-)0mk
such that| (0,4 )2 _, lo < 8, hjm(2) € Tjm(2) forall 2 € Z;, and E[{hjm(2;) — hjm(z;)}?] <
Cys(logay)/n, wheres = s, > 1 is the sparsity level, obeying (iv) ahead; (ii) the class of
functions?; = {w — ¢;{w, a,ﬁ(zj)} to € Aj,ﬁ € H; U{h;}} is pointwise measurable and
obeys the entropy conditiamt (e, ;) < C1Mslog(a, /) forall 0 < e < 1; (iii) the class F;
has measurable envelopg > supc, | f|, such thatF’ = max;—; . ,, F; obeysE{F?(w)} <
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(1 for someg > 4; and (iv) the dimensiong,, p, and s obey the growth conditions:
n~2{(slogan)"/? +n = 9slog an} < pu, p5/*(Lonslogan)'/? + 0/ *Linpl < b, "

Condition[3 (i) requires reasonable behavior of sparsmaﬂlirsﬁj. In the previous section,
this type of behavior occurred in the cases whiereconsisted of a part of a median regres-
sion function and a conditional expectation function in arikkary equation. There are many
conditions in the literature that imply these conditionsnfr primitive assumptions. For the
case withg = oo, Condition[3 (vi) implies the following restrictions on tteparsity indices:
(slog® a,)/n — 0 for the case where = 2, which typically happens wheg; is smooth, and
(s31og® ay,) /n — 0 for the case where = 1, which typically happens when; is non-smooth.
Condition[3 (iii) bounds the moments of the envelopes, armit be relaxed to a bound that
grows withn, with an appropriate strengthening of the growth condgtietated in (iv).

Condition3 (i) implicitly requiresy; not to increase entropy too much; it holds, for example,
when; is a monotone transformation, as in the case of median @grgsor a Lipschitz
transformation; seé [32]. The entropy bound is formulatetéims of the upper bourdon the
sparsity of the estimators apdhe dimension of the overall approximating model appeaviag
ay. In principle our main result below applies to non-spardaregors as well, as long as the
entropy bound specified in Conditi¢n 3 (ii) holds, with indexp) interpreted as measures of
effective complexity of the relevant function classes.

Recall thafl'; = 0, E[¢;{w, o, h;(z;)}]; see Conditiofl2 (iii). Define

o} = B0 *Yi{w, a5, hi(z)}],  ¢i(w) = —o; T ifw, a5,hi(z)} (GG =1,...,p1).
The following is the main theorem of this section; its praofound in AppendiXA.
Theorem 2. Under Condition$ 2 and|3, uniformly iR € P,,, with probability 1 — o(1),

max =o(b), n— .

.]:17"'7p1

n
n'Poit@; —ag) —nTV2 Y d(wy)
=1
An immediate implication is a corollary on the asymptotiemality uniform in P € P,, and
j=1,...,p1, which follows from Lyapunov’s central limit theorem foiangular arrays.

Corollary 2. Under the conditions of Theorédm 2,

_max sup sup |prp {nl/Qafl(&j —aj) < t} — @(t)‘ =o0(1), n— oco.

J=L,...p1 PP, tcR
This implies, providethax;—,.. ,, |0; — 0j| = op(1) uniformly inP € P, that

‘max sup ‘prp {ozj € o :I:/J\jnfl/QQ)*l(l - 5/2)]} —(1- 5)‘ =o(l), n— oo.

j=L...p1 pep,

This result leads to marginal confidence intervalsdgr and shows that they are valid uni-
formlyin Pe P,andj =1,...,p;.

Another useful implication is the high-dimensional cehtimit theorem uniformly over
rectangles inR?:, provided that(log p1)” = o(n), which follows from Corollary 2.1 in[[9].
Let V' = (N)%_, be a normal random vector iR”* with mean zero and covariance matrix

[E{¢j(w)¢jf(w)}]§fj,:1. Let R be a collection of rectangle8 in RP* of the form

R= {z € R : max z; < t,max(—z;) < t} (teR,ABCA{L,...,p1}).
JEA jEB
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For example, wherl = B = {1,...,p1}, R = {z € RP! : max;_1,__p, |2 < t}.
Corollary 3. Under the conditions of Theorérh 2, provided tHat p;)” = o(n),

sup sup ‘prp [nl/Q{Ufl(aj —oy) ML, € R] —prp(N € R)‘ =o(l), n— oo.
PePn RER

This implies, in particular, that for;_, = (1 — &)-quantile ofmax;—1 . ,, |V,

sup |prp <ozj € o :I:cl_gajnfl/Q], j=1... ,pl) —(1- f)‘ =o(l), n— oo.

PePy
This result leads to simultaneous confidence bandgdgy’L, that are valid uniformly in
P € P,. Moreover, Corollary B is immediately useful for testing Iltiple hypotheses about
(aj)§;1 via the step-down methods 6f [28] which control the familiseverror rate; seé¢ [9] for
further discussion of multiple testing wih > n.
In practice the distribution ol is unknown, since its covariance matrix is unknown, but it
can be approximated by the Gaussian multiplier bootstréjzwgenerates a vector
1 n p1
(19) N*=NJ)L, = {m > Eiqf)j(wz')} ;
i=1 j=1
where(¢;)?_; are independent standard normal random variables, indepeof the datéw; )} ,,
and¢; are any estimators af;, such that
- max (B {¢j(w)dy (w)} — En{d;(w)ey (w)} = op(b,?)
J.5'€{1,....p1}
uniformly in P € P,. Let 8? = En{%(w)}. Theorem 3.2 in[[9] then implies the following
result.

Corollary 4. Under the conditions of Theorem 2, provided thiak p;)” = o(n), with proba-
bility 1 — o(1) uniformly inP € P,

sup sup [prp{N" € R [ (wi)i_i} —prp(V € R)| = o(1).
PePn RER

This implies, in particular, that fot; _¢ = (1 — &£)-conditional quantile ofnax;—; . ,, w;y,
Sup ‘prp (aj elaj+agom V%, j= 1,---,p1) -(1- 5)‘ = o(1).
€Pn

Comment 3.1. The proof of Theorem]2 shows that the orthogonality condiif@8) can be
replaced by a more general orthogonality condition:

(20) Eln(z)™{hj(z) = hj(z)}] =0, (hj € Hy, j=1,...,p1),

wheren(z;) = O E{¢j(w, a;,t) | zj}|s=n,(-,), OF even more general condition of approximate
orthogonality: E[n(z;)™{h;(z) — hj(z)}] = o(n=1/2b;1) uniformly in h; € H; andj =
1,...,p1. The generalization (20) has a number of benefits, whichdcbel well illustrated
by the median regression model of Secfidon 1, where the gonditmoment restrictior (v; |

x;) = 0 could be now replaced by the unconditional diie;z;) = 0, which allows for more
general forms of data-generating processes.
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4. MONTE CARLO EXPERIMENTS
We consider the regression model
(21) yi = diag + 7 (cybh) + €, di = x; (cablo) + vi,

whereay = 1/2, 6p; = 1/42 (j = 1,...,10), andfy; = 0 otherwise,z; = (1, 2])" consists
of an intercept and covariates ~ N(0,X), and the errorg; andv; are independently and
identically distributed asv (0, 1). The dimension of the controlsz; is 300, and the sample size
n is 250. The covariance matriX has entries;; = pl"~Jl with p = 0-5. The coefficients:,
andc, determine thek? in the equationg; — d;ag = z7 (¢,6p) +¢€; andd; = a7 (cqabp) +v;. We
vary theRR? in the two equations, denoted B} and R respectively, in the s€0,0-1, ..., 0-9},
which results in 100 different designs induced by the dififerpairs of(RZ, Rfi); we performed
500 Monte Carlo repetitions for each.

The first equation if(32) is a sparse model. However, uniggsvery large, the decay of the
components ofly rules out the typical assumption that the coefficients ofdrtgnt regressors
are well separated from zero. Thus we anticipate that thedatd post-selection inference
procedure, discussed aroumd (3), would work poorly in theuktions. In contrast, from the
prior theoretical arguments, we anticipate that our imsgntal median estimator would work
well.

The simulation study focuses on Algorithm 1, since AlgaritB performs similarly. Standard
errors are computed using {11). As the main benchmark wedsmthe standard post-model
selection estimataf based on the pogt-penalized median regression methidd (3).

In Figure[1, we display the empirical false rejection praligbof tests of a true hypothesis
a = ag, with nominal size5%. The false rejection probability of the standard post-nheee
lection inference procedure based upodeviates sharply from the nominal size. This confirms
the anticipated failure, or lack of uniform validity, of Erfence based upon the standard post-
model selection procedure in designs where coefficienta@revell separated from zero so that
perfect model selection does not happen. In sharp contvast,of our proposed procedures,
based on estimatar and the resul{{10) and on the statisfig and the resul{(13), closely track
the nominal size. This is achieved uniformly over all theigies considered in the study, and
confirms the theoretical results of Corolléady 1.

In Figure[2, we compare the performance of the standardgsbsttion estimatai and our
proposed post-selection estimatarWe use three different measures of performance of the two
approaches: mean bias, standard deviation, and root maaresgrror. The significant bias for
the standard post-selection procedure occurs when theragiessotri; is correlated with other
controlsz;. The proposed post-selection estimaigperforms well in all three measures. The
root mean square errors dfare typically much smaller than those ®&f fully consistent with
our theoretical results and the semiparametric efficieficy. o

SUPPLEMENTARY MATERIAL

In the supplementary material we provide omitted proofshnéal lemmas, discuss exten-
sions to the heteroscedastic case, and alternative imptatiens.

APPENDIXA. PROOF OFTHEOREM[Z

A.1l. A maximal inequality. We first state a maximal inequality used in the proof of Thaore
2.
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FIGURE 1. The empirical false rejection probabilities of the noati’ level
tests based on: (a) the standard post-model selectionchnacbased of, (b)
the proposed post-model selection procedure based ¢g) the score statistic
L,, and (d) an ideal procedure with the false rejection ratakguhe nominal
size.
Lemma 1. Letw, wq,...,w, be independent and identically distributed random vamzktak-

ing values in a measurable space, andjfébe a pointwise measurable class of functions on that
space. Suppose that there is a measurable envelopesup s r | f| such thatF { F9(w) } < oo

for someg > 2. Consider the empirical process indexed By G,,(f) = n~1/? Yo [f (wy) —
E{f(w)}],f € F. Leto > 0 be any positive constant such thatp;. » E{f?*(w)} <

o? < E{F?(w)}. Moreover, suppose that there exist constafts> ¢ ands > 1 such that
ent(e, F) < slog(A/e) forall 0 < e < 1. Then

1/2

E {Sup \Gn(f)!} < K[{802 10g(A[E{F2(W)}]1/2/0)}

feF

+ n_1/2+1/qs[E{Fq(w)}]1/q log(A[E{FQ(w)}]l/Z/g) ’



14 UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS

()

Bias
Bias

(b) (e)

Standard deviation
Standard deviation

Root mean square error
Root mean square error

FIGURE 2. Mean bias (top row), standard deviation (middle row), ro@an
square (bottom row) of the standard post-model selectitima®r o (panels
(a)-(c)), and of the proposed post-model selection estinia{panels (d)-(f)).

where K is a universal constant. Moreover, for every> 1, with probability not less than
1—t79/2

sup |G, (f)] < 2E ¢ sup |Gn(f)| p + K, <at1/2 +n—1/2+1/q[E{Fq(w)}]1/qt) :
fer feFr

whereK, is a constant that depends only gn

Proof. The first and second inequalities follow from Corollary 5ridarheorem 5.1 in [10]
applied witha = 1, using thaf E{max;—1 ., FQ(wZ-)}]l/2 < [E{maxj—1, 5 Fq(wi)}]l/q <
! B{F9(w)}]"/, O

A.2. Proof of Theorem[2. It suffices to prove the theorem under any sequédhee P, € P,.

We shall suppress the dependencé’ain » in the proof. In this proof, leC denote a generic
positive constant that may differ in each appearance, laatdbes not depend on the sequence
PeP,,norj=1,...,p1. Recall that the sequengg | 0 satisfies the growth conditions in
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Condition[3 (iv). We divide the proof into three steps. Bele# use the following notation: for
any given functiory : W — R, G,,(g) = n= Y231 [g(w;) — E{g(w)}].
Stepl. Leta; be any estimator such that with probability- o(1), max;—1,.__p, |a; —a;| <
C'pr. We wish to show that, with probability — o(1),
Ey[0{w, @, hyj(z)}Y) = Balthj{w, aj, hj(z)}] + T;(a; — aj) +o(n™26."),
uniformly inj =1,...,p;. Expand

Enli{w, 6, b ()} = Balti{w, aj,hi (2)}] + Elj{w, o h(z) )l o—s, 5,
+ nil/an[wj{w,&j,ﬁj(zj)} — T,Z)j{’w,Oéj, hj(Zj)}] = Ij + II] + III]',
where we have useB[y;{w, a;, hj(z;)}] = 0. We first bound/ ;. Observe that, with proba-

-----

defined by
F={ww— wj{w,a,ﬁ(zj)}—i/}j{w,aj,hj(zj)} cj=1,...,pihe Hj, o € Aj, |la—aj| < Cppt,

which has2F" as an envelope. We apply Lemfra 1 to this class of functionsC@ydition[3 (ii)
and a simple covering number calculation, we haves, ) < C'slog(ay/c). By Condition[2
(ii), sup ;e » E{f?(w)} is bounded by

~ 2
s BB ([ptai) - vt et 15) | £ O,

j:l,...,pl,(a,h)GAj XH]'

la—a;|<Cpn
where we have used the fact th&f{h,,(z;) — hjm(z;)}3] < Cp2 forallm = 1,...,M
wheneverh = (h,,)M_, € ;. Hence applying Lemmi 1 with = log n, we conclude that,
with probability 1 — o(1),
n'/? max |[I11;| < sup |Gp(f)] < C{ps/?(Lanslog an) 2 +n~1 2 510g a,} = o(b71),
J=1,...p1 fer

where the last equality follows from Conditidh 3 (iv). o

Next, we expand ;. Pick anya € A; with | — aj| < Cpn,h = (hy)M_; € H;. Then by
Taylor's theorem, for any = 1,...,p; andz; € Z;, there exists a vectdi(z;),t(z;)")" on
the line segment joininge, h(2;)™)" and (o, hj(z;)")" such thatEy;{w, o, h(z;)}] can be
written as
El{w, a;, hj(z))}] + E@aEli{w, aj, hyj(2)} | 2]) (e — o)
+ Yot BAE (O, Bl {w, o, hj(2)} | 25)) {hun(z)) = Bjm(25)}}
+ 27 B0 Bl {w, az), 1(z)} | 7)) (o — ;)

+ 27 o B0, 0, Bl {w, a(2), 8z)} | 2T (25) = B (2) H s (23) = B (25)})
(22)

+ o1 E(0al, B[ {w, a(2)), £(z))} | 2)(c = ) {hun(25) = hjm (25)})-

The third term is zero because of the orthogonality condif@8). Condition[2 (ii) guar-

antees that the expectation and derivative can be integeldafor the second term, that is,
E (O Ei{w, a5, hj(zj)} | 25]) = 0aEpj{w,a;j,hi(2;)} = I';. Moreover, by the same
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condition, each of the last three terms is bounded’tiyi,,p> = o(n~'/2b;’1), uniformly in

j =1,...,p1. Therefore, with probability. — o(1), IT; = T;(&@; — a;) + o(n~/2b;1), uni-
formlyinj =1,...,p;. Combining the previous bound did; with these bounds leads to the
desired assertion.

Step2. We wish to show that with probability — o(1), infaeﬁj | Enti{w, a,ﬁj(zj)}ﬂ =
o(n1/2p1), uniformly inj = 1,...,p1. Definea = o — I’;lEnwj{w, aj, hi(z)}] (=
1, . ,pl). Then we I‘]aVG’nan:L___71!,1 ‘Oé;k — Oéj‘ < Cman:17,,,7p1 ]En[wj{w,aj, h](z])}]]
Consider the class of functiod® = {w — ¥;{w,a;, hj(z;)} : 7 = 1,...,p1}, which hasF
as an envelope. Since this class is finite with cardinalitywe haveent (e, ') < log(p;/¢).
Hence applying Lemnfd 1 t8” with o = [E{F?(w)}]"/? < C andt = logn, we conclude that
with probability 1 — o(1),
j=r?axp1 ‘En [wj{wv @, h](zj)}” < Cn_l/Q{(log an)1/2+n_1/2+1/q log an} < Cn_1/2 log ap,.
SinceA; O [a;+cin~/?log? a,] with probability1 —o(1), o} € A; with probability1 —o(1).

Therefore, using Step 1 with; = o7, we have, with probability. — o(1),

igﬂ} | Bl {w, @,y ()] < | Enltos{w, o3, by (2)}]] = o(n™7201),
acA;
uniformly inj = 1,...,p1, where we have used the fact thiat[y); {w, o, hj(2j)}] + T'j(af —
Oéj) =0.

Step3. We wish to show that with probability—o(1), max;— .. ,, |@;—a;| < Cp,. By Step
2 and the definition afi;, with probabilityl—o(1), we havemax;—, . p, |En[Yj{w, a;, hj(z;)}]]| =
o(n~1/2b;1). Consider the class of functiot®’ = {w — ¥;j{w, o, h(z;)} : 5 =1,...,p1,a €
A, h € H; U{h;}}. Then with probabilityl — o(1),

Balts {0, By ()N 2 | B, b))y i |~ 07 sup G ()
uniformly inj = 1,...,p;. Observe thaF” hasF as an envelope and, by Conditidn 3 (ii) and
a simple covering number calculatiomt(c, 7”) < Cslog(a,/¢). Then applying Lemmal1
with o = [E{F?(w)}]"/? < C andt = log n, we have, with probability — o(1),

n~ Y2 sup |Gy (f)] < Cn~ V2 {(slog an)'/? +n~ 2 95l0g ay} = O(pn).
feF
Moreover, application of the expansidn22) with = « together with the Cauchy—Schwarz
inequality implies that E[¢;{w, a, h(z;)}] — E[¢j{w,a, hj(z;)}]| is bounded byC(p, +
L1n,p2) = O(py), so that with probabilityl — o(1),

Efi{w, a,h(zj)loes, i, | = [EWi{w, @ b (25) Nlaza, | = Olpn),

uniformly in j = 1,...,p1, where we have used Conditibh 2 (ii) together with the faet th
E[{hm(2) — hjm(z))}?] < Cp2 forall m = 1,..., M wheneverh = (h,,)M_, € #H;. By
Condition[2 (iv), the first term on the right side is boundednirbelow by(1/2){|I';(a; —
a;)| A e1}, which, combined with the fact thélf ;| > ¢;, implies that with probabilityl — o(1),

|a; — ;] < o(n=2b;1) + O(p,) = O(py), uniformly inj = 1,...,p;.
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Step4. By Steps 1 and 3, with probability— o(1),

Enltbj{w, &5, hj(z)}] = En[t{w, o, hj(2)}] + Tj(@; — o) + o(n~ /2, 1),

uniformly in j = 1,...,p1. Moreover, by Step 2, with probability — o(1), the left side is
o(n~1/2b;1) uniformly in j = 1,..., p;. Solving this equation with respect t8; — ;) leads
to the conclusion of the theorem. O
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Suplementary Material
Uniform Post Selection Inference for Least Absolute Devrat
Regression and Other Z-estimation Problems

This supplementary material contains omitted proofs,rieeh lemmas, discus-
sion of the extension to the heteroscedastic case, andatiter implementa-
tions of the estimator.

APPENDIX B. ADDITIONAL NOTATION IN THE SUPPLEMENTARY MATERIAL

In addition to the notation used in the main text, we will use following notation. Denote
by || - ||l the maximal absolute element of a vector. Given a veétes R? and a set of
indicesT' C {1,...,p}, we denote by € RP the vector such thaiir); = 6; if j € T and
(67); = 0if j ¢ T. For a sequence;)?_, of constants, we Writdz; |2, = {E,(z?)}/? =
(n=1 327, 22)Y/2. For example, for a vectai € RP and p-dimensional regressor@;)?,,
|27 8|20 = [En{(xT5)?}]*/? denotes the empirical prediction normdfDenote by - || p.» the
populationZ2-seminorm. We also use the notation< b to denotea < cb for some constant
¢ > 0 that does not depend en anda <Sp bto denoten = Op(b).

APPENDIX C. GENERALIZATION AND ADDITIONAL RESULTS FOR THELEAST ABSOLUTE
DEVIATION MODEL

C.1. Generalization of Section 2 to heteroscedastic cas®/e emphasize that both proposed
algorithms exploit the homoscedasticity of the modél (1)hwieespect to the error termy.
The generalization to the heteroscedastic case can bevadhés follows. Recall the model
yi = diog + x] By + €; wheree; is now not necessarily independentdfandz; but obeys
the conditional median restrictiopr(e; < 0 | d;,z;) = 1/2. To achieve the semiparametric
efficiency bound in this general case, we need to considendighted version of the auxiliary
equation[(#). Specifically, we rely on the weighted decorijuos

(23) fidi = fixi 05 +vf, E(fiv] |z;) =0 (i=1,...,n),

where the weights are the conditional densities of the ¢eranse; evaluated at their conditional
medians of zero:

(24) fi:fsi(o‘divwi) (z':l,...,n),

which in general vary under heteroscedasticity. With thahind it is straightforward to adapt
the proposed algorithms when the weigtfts}- ; are known. For example Algorithm 1 becomes
as follows.

Algorithm 1’. The algorithm is based on post-model selection estimators.

Step(i). Run post¢; -penalized median regressiongfon d; and x;; keep fitted valuesgffi.
Step(ii). Run the post-lasso estimator ffd; on f;x;; keep the residuah’ = f;(d; — xiTg).
Step(iii). Run instrumental median regression of — x}fi on d; usingv; as the instrument.
Reporta: and/or perform inference.
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Analogously, we obtain Algorithn?’, as a generalization of Algorithm 2 in the main text,
based on regularized estimators, by removing the word *poglgorithm 1'.

Under similar regularity conditions, uniformly over a largollection?;; of distributions of
{(yi, di,z])"}*_,, the estimator above obeys

{AE(w) /201 %(@ — ag) — N(0,1)

in distribution. Moreover, the criterion function at thagrvaluex in Step (iii) also has a pivotal
behavior, namely

nLn(a(]) - X%

in distribution, which can also be used to construct a conﬁderegiongg based on thd.,,-
statistic as in[{113) with coverage— ¢ uniformly in a suitable collection of distributions.
In practice the density function valug¢g;)?”_, are unknown and need to be replaced by esti-

mates(ﬁ);;l. The analysis of the impact of such estimation is very dedieand is developed
in the companion work “Robust inference in high-dimensiaaproximately sparse quantile
regression models’ (arXiv:1312.7186), which consideesrttore general problem of uniformly
valid inference for quantile regression models in appratéty sparse models.

C.2. Minimax Efficiency. The asymptotic variancd,l/4){E(v;?)}~?, of the estimatox is

the semiparametric efficiency bound for estimationogf To see this, given a lawp,, with

1Bollo V 1165110 < s/2, we first consider a submodBFU? C P such thatP, € PSP, indexed by
the parametet = (¢1,1,) € R? for the parametric components, 3, and described as:

yi = di(ao +t1) + x; (Bo + t20)) + €,
fidi = fixi; 05 +vi, E(fiv] | z;) =0,

where the conditional density ef varies. Here we usg;; to denote the overall model collecting
all distributions for which a variant of conditions of Theaon[1 permitting heteroscedasticity is
satisfied. In this submodel, setting= 0 leads to the given parametric componeamisj, at P,.
Then by using a similar argument fo [18], Section 5, the effitscore fory in this submodel
is

Si = 4p(yi — dico — x7 Bo) fildi — 2705} = dep(ei)vy,
so that{E(S?)}~! = (1/4){E(v;?)}~! is the efficiency bound aP, for estimation ofaq
relative to the submodel, and hence relative to the entirdetri®;, as the bound is attainable

by our estimatori uniformly in P, in P}. This efficiency bound continues to apply in the
homoscedastic model with = f. for all .

C.3. Alternative implementation via double selection. An alternative proposal for the method
is reminiscent of the double selection method proposed]ifoffartial linear models. This ver-
sion replaces Step (iii) with a median regressiony ofh d and all covariates selected in Steps (i)
and (ii), that is, the union of the selected sets. The metho@scribed as follows:

Algorithm 3. The algorithm is based on double selection.
Step(i). Run/;-penalized median regressiongfond; and x;:

~ B . A
(@,5) € argmin Bo(ly: — dioc = B]) + - ¥(a, 5.


http://arxiv.org/abs/1312.7186

UNIFORM POST SELECTION INFERENCE FOR Z-PROBLEMS 21
Step(ii). Run lasso ofl; on z;:
o . T\2 A2
RS argm@mEn{(di —x/0)°} + ;HFQHL
Step(iii). Run median regression @f ond; and the covariates selected in Steps (i) and (ii):

(&,B) € arg r;liﬁn {En(|yi —dia — 27 B)) = supp(B) C supp(B) U Supp(g)} :

)

Reporta and/or perform inference.

The double selection algorithm has three main steps: @ctebvariates based on the stan-
dard/;-penalized median regression, (ii) select covariatesthaséneteroscedastic lasso of the
treatment equation, and (ii) run a median regression withtrbatment and all selected covari-
ates.

This approach can also be analyzed through Thebfem 2 sia@ates instruments implicitly.
To see that lef™* denote the variables selected in Steps (i) and ﬁi‘):: supp(ﬁ) U supp(é\).

By the first order conditions fofc, 5) we have

| Bn {tw = dic = aTB) (i, )7 | = O e [dal + Kl T4V (1 + T7]) /),

which creates an orthogonal relation to any linear comtmnatf (d;, xin*)T. In particular, by
taking the linear combinatiofd;, «™ )(1, —0%, )™ = d; — 2™ 07 = d; — 270 = ;, which is
the instrument in Step (ii) of Algorithm 1, we have

Eu{o(y: — i — a7 B)3:} = O (1,~8%)7)|( max |di| + Kl T|/2)(1 + [ T7))/m}.

As soon as the right side is(n~1/2), the double selection estimatarapproximately mini-
mizes §
T ey — [Bnlotys = dia = eB0}?
E.[{e(yi — dia — x] B)}20?]
where?; is the instrument created by Step (ii) of Algorithm 1. Thus tlouble selection esti-
mator can be seen as an iterated version of the method basestmments where the Step (i)
estimates3 is updated with3.

APPENDIX D. AUXILIARY RESULTS FOR{;-PENALIZED MEDIAN REGRESSION AND
HETEROSCEDASTICLASSO

D.1. Notation. In this section we state relevant theoretical results opérormance of the es-
timators: /1-penalized median regression, péstpenalized median regression, heteroscedastic
lasso, and heteroscedastic post-lasso estimators. Hsiésrwere developed inl/[3] and [2]. We
keep the notation of Sections 1 and 2 in the main text, and;let (d;,«;)". Throughout the
section, leicy > 1 be a fixed constant chosen by users. In practice, we suggedtetq, = 1-1
but the analysis is not restricted to this choice. Moredegr;, = (co +1)/(co — 1). Recall the
definition of the minimal and maximah-sparse eigenvalues of a matrixas

0T Ao 0T Ao

(bmin va - (bmax va = max -5,
(m, 4) (m, 4) 1<]ldllo<m ||0]2

min —_—
1<sllo<m |62
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wherem = 1,...,p. Also recallpmin(m) = dmin{m, E(T;T1)}, dmax (M) = dmax{m, E(7:Z7)},
and defin@min (m) = dmin{m, E,(z;z])}, oL ., (M) = dmin{m, B, (x;z])}, andgl . (m) =
Gmax{m, En(x;x])}. Observe thaby.x(m) < 2B, (d?) + 26%,..(m).

D.2. ¢;-penalized median regression.Suppose thaf(y;, z;' )" }?_, are independent and iden-
tically distributed random vectors satisfying the corafiil median restriction

pr(yi <Timo | ;) =1/2 (i=1,...,n).

We consider the estimation gf via the/;-penalized median regression estimate
. . —r A
0 € argmin Bn(ly; — Z;n[) + [0l

whereW? = diag{E,(z3,),..., E.(7},)} is a diagonal matrix of penalty loadings. As estab-
lished in [3] and[[33], under the event that

A _ ~ ~
(25) = 200 ¥ E[{1/2 = 1(ys < F10)}T] oo

the estimator above achieves good theoretical guarantesder unild design conditions. Al-
thoughr is unknown, we can set so that the event i _(25) holds with high probability. In
particular, the pivotal rule discussed in [3] proposes tose- conA(1 — v | ) with vy — 0
where

(26) A =7 7) = Q1 =7, 2|¥™ B, [{1/2 = 1(U; < 1/2)}T4]l|0),

whereQ(1 — v, Z) denotes thél — ~)-quantile of a random variabl&. Herel,,...,U, are
independent uniform random variables @)1) independent ok, ..., z,. This quantity can
be easily approximated via simulations. The values @ind ¢y are chosen by users, but we
suggest to take = v, = 0-1/logn andc¢y = 1-1. Below we summarize required technical
conditions.

Condition 4. Assume thalinollo = s > 1, E(7};) = 1, |E.(%;) — 1] < 1/2forj =1,...,p
with probability 1 — o(1), the conditional density af; givenz;, denoted byf;(-), and its de-
rivative are bounded by and f’, respectively, and;(zn) > f > 0 is bounded away from
zero.

Condition4 is implied by Conditionl 1 after a normalizing tieiables so thaE(:EZ?j) = 1for
j =1,...,p. The assumption on the conditional density is standardeargtiantile regression
literature even with fixegh or p increasing slower than, see respectively [16] and [13].

We present bounds on the population prediction norm of thgenalized median regression
estimator. The bounds depend on the restricted eigenvatpeged in([7], defined by

Feo = 5&{0 12761l P2/ |67,
whereT = supp(1p), Acy = {§ € RPF 1 |67 |11 < 3¢h|0z[l1} andTe = {1,...,p+ 1}\T.

The following lemma follows directly from the proof of Thaon 2 in [3] applied to a single
guantile index.
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Lemma 2. Under Conditior{# and using = c¢onA(1 — v | 7) < [nlog{(p vV n)/v}]*/?, we
have with probability at least — v — o(1),
1 [slog{(pVvn)/7}]"?

X (n — <
R . ,

provided that
2k, I 12761
[slog{(p V) /)2 [ sehe, B(T;0P)
Lemmal2 establishes the rate of convergence in the populptiediction norm for the;-

penalized median regression estimator in a parametringefThe extra growth condition re-
quired for identification is mild. For instance for many dgs of interest we have

inf ||2760||%,/E(|27s)?
6&0 |z 6|pa/E(|z; 6]°)

bounded away from zero as shownlin [3]. For designs with bedmédgressors we have

HfosH?fD,z .. 2" P2 S Reg
sedey E(|TF013) ~ s€hey ||6]1 K, sY2(1+3c)) K,

whereK,, is a constant such thdf,, > ||Z;||». almost surely. This leads to the extra growth
condition that2s2 log(p V n) = o(R2,n).

In order to alleviate the bias introduced by thepenalty, we can consider the associated
post-model selection estimate associated with a seleutmbstf

(27) i € argmin { B, (lys — &) : supp(n) € T}

The following result characterizes the performance of gterator in [27); see Theorem 5 in
[3] for the proof.

Lemma 3. Suppose thatupp(7) C T and lets = |A|. Then under the same conditions of
Lemmd?®,

15 G = )l 5 {
provided that

/2 {Pmin(5+ 9)/Smax (5 + )12 A Fey fFF 156113, N
1/2 E(aTg3y P
[slog{(p vV n)/7}] [ 1olo<srs E(JZFSP)

Lemmd_3 provides the rate of convergence in the predictiomrior the post model selection
estimator despite possible imperfect model selection. rékes rely on the overall quality of
the selected model, which is at least as good as the modetezlby /;-penalized median
regression, and the overall number of componént©nce again the extra growth condition
required for identification is mild.

Reo

(5 + 5)dma (5 + 5) log(n V p) }“2 L1 [slog«p v n)/v}] v
NPmin(5 + 5) R n ’

Comment D.1. In Step (i) of Algorlthm 2 we usé;-penalized median regressmn with =
(di,z)7T, S=m—mn = (a3 —ag, BT — B5)T, and we are interested in rates fprT(B Bo)ll P2
instead of||z; || p2. However, it follows that

[l (B = Bo)llp2 < [|Z; 0] P2 + [ — ol [|dil p2-
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Sinces > 1, without loss of generality we can assume the componentised with the
treatmentd; belongs tol’, at the cost of increasing the cardinality Bfby one which will not
affect the rate of convergence. Therefore we have that

|8 — ao| < |67 < (|77 0]l p2/Feo,

provided thath € A.,, which occurs with probability at leagt— ~. In most applications of
interest||d;|| p2 and1/%., are bounded from above. Similarly, in Step (i) of Algorithnwé
have that the postr-penalized median regression estimator satisfies

|27 (B = Bo)llpz < |Fdllp2 |1+ [Idill p2/{Smin(5 + )}/?| .
D.3. Heteroscedastic lassoln this section we consider the equati@h (4) of the form
d; :ZC;FH()—{-UZ‘, E(UZ | ZCZ) =0 (Z = 1,...,n),

where we observé(d;, =] )"}, that are independent and identically distributed random ve
tors. The unknown support @f, is denoted byl; and it satisfies7,| < s. To estimate),, we
compute

(28) 9 & argmin B, {(d; — 76} + 200,

where) andT are the associated penalty level and loadings which arenipaitg data-driven.
We rely on the results of [2] on the performance of lasso amstHasso estimators that allow for
heteroscedasticity and non-Gaussianity. Accordingltovj2]use an initial and a refined option
for the penalty level and the loadings, respectively

B = [Buday (ds — D22, X = 202811 =/ (2p)},
F; = {E, (x202)}1/2, A =2en'201{1 —~v/(2p)},

ij i

(29)

forj =1,...,p, wherec > 1 is a fixed constanty € (1/n,1/logn), d = E,(d;) andv; is an
estimate ofy; based on lasso with the initial option or iterations.

We make the following high-level conditions. Belaw, C; are given positive constants, and
£, T oo is a given sequence of constants.

Condition 5. Suppose that (i) there exists= s,, > 1 such that||6y|jo < s. (i) E(d?)

Cl,minjzl,___,pE(x%j) > cq, E(U2 | ac) > ¢; almost Surely, andnaxj:L“,J,E(|xl-jdi|2)

Cy. (i) maxj—y_p{E(jzijvi]*)}/3log2(n v p) = o(n'/%). (iv) With probability 1

o(1), maxj—_i,.p |En(:r:12]vl2) — E(:U?jv?ﬂ V max;—i . p |En(x$]d?) — E(:U?jd?ﬂ = o(1) and

max;—1, . ||zi]|%slog(n V p) = o(n). (V) With probabilityl — o(1), ¢; < ¢, (bns) <
z (fns) S Cl.

max

Condition[5 (i) implies Condition AS iri |2], while Conditi@ (ii)-(iv) imply Condition RF
in [2]. Lemma 3 in [2] provides primitive sufficient conditis under which condition (iv) is
satisfied. The condition on the sparse eigenvalues enats:t in Theorem 1 ofl[2], applied
to this setting, is bounded away from zero with probability o(1); see Lemma 4.1 in[7].

Next we summarize results on the performance of the estisigenerated by lasso.

<
<
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Lemma 4. Suppose that Conditidd 5 is satisfied. Setting= 2cn!'/2®~1{1 — ~/(2p)} for
¢ > 1, and using the penalty loadings as in{29), we have with gediba 1 — o(1),

N 1/2
1F (@ — 00 am < 25

Associated with lasso we can define the post-lasso estiraator
0 € arg mein {En{(dZ —276)?} : supp(8) C supp(é\)} .

That is, the post-lasso estimator is simply the least sguesémator applied to the regressors
selected by lasso i (P8). Sparsity properties of the lastimatord under estimated weights
follows similarly to the standard lasso analysis deriveff]n By combining such sparsity prop-
erties and the rates in the prediction norm, we can estafdisis for the post-model selection
estimator under estimated weights. The following resuttisarizes the properties of the post-
lasso estimator.

Lemma 5. Suppose that Conditidd 5 is satisfied. Consider the lassmatsir with penalty level
and Ioadngs specified as in Lemfda 4. Then the data-depentmel|7,; selected by the lasso
estimatord satisfies with probability — o(1):

0]l = |Ta| < s-

Moreover, the post-lasso estimator obeys
1/2
~ slog(pVvn
ot @ o)l < { ZELLT

APPENDIX E. PROOFS FORSECTION 2

E.1. Proof of Theorem[d. The proof of Theorerml1 consists of verifying Conditions 2 &rahd
application of Theorem]2. We will use the properties of thst@g-penalized median regression
and the post-lasso estimator together with required reuleonditions stated in Sectidn] D of
this Supplementary Material. Moreover, we will use Leminasnd 8 stated in Sectidn G of this
Supplementary Material. In this proof we focus on AlgoritAimThe proof for Algorithm 2 is
essentially the same as that for Algorithm 1 and deferredaext subsection.

In application of Theorerhl2, take, = 1,2 = z,w = (y,d,z2")", M = 2,¢(w,a,t) =
{1/2 = 1y < ad+t1)}(d — t2),h(2) = (2" fo,2"00)" = {g(x),m(z)}" = h(z), A =
[cg — e2, ap + co] wherec, will be specified later, and™ = R?, we omit the subindex;*” In
what follows, we will separately verify Condition$ 2 and 3.

Verification of Conditior 2: Part (i). The first condition folvs from the zero median con-
dition, that is,F.(0) = 1/2. We will show in verification of Conditionl3 that with probdby
1 —o0(1), |a — ap| = o(1/logn), so that for some sufficiently small> 0, [« £ ¢/logn| C
A C A, with probability 1 — o(1).

Part (ii). The map

(. t) = E{p(w, 1) | 2} = E([1/2 = F{(a — ao)d + 1 — g(2)}|(d — t2) | )

is twice continuously differentiable singéis continuous. For eveny € {«, t1,t2}, 0, E{t(w, o, t) |
z}is —E[f{(a—ao)d+t —g(x)}d(d 1) | 2] of —E[f{(a—ag)d-+t1 — g(z) Hd—12) | ]
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or E[FA{(a — ag)d+t1 — g(x)} | z]. Hence for everyy € A,
0 E[¢{w, a, h(x)} | ]| < CLE(|dv] | z) vV CLE(Jv] | 2) V 1.
The expectation of the square of the right side is bounded bgnatant depending only on
c3,C1, asE(dY) + E(v?) < Cy. Moreover, letT (z) = {t € R? : |ty — m(z)| < c3} with any
fixed constants > 0. Then for every, v’ € {«,t,t'}, whenevery € A,t € T (z),
lal/al/’E{w(wv «, t) ’ 1’}’
<Cp[1v E{|d*(d - t2)| | z} V E{|d(d — t2)| | z} V E(|d| | ) V E(|d — to| | z)] .
Sinced = m(x) 4+ v, |m(z)| = 270y < My, |t — m(x)| < c3fort € T(z), andE(|v]? |
x) < C4, we have
E{|d*(d — t2)| | } < E[{m(x) +v}?(cs + |v]) | 2] < 2E[{m*(2) + v*}(e3 + [v]) | ]
<2B{(M +v*)(c3 + o) | 2} S My
Similar computations lead t@, 0,/ E{y)(w, a,t) | }| < CM?2 = Ly, for some constant’
depending only onsz, C;. We wish to verify the last condition in (ii). Foreveny o’ € A, t,t' €
T (),
Bl{¢(w, a,t) = p(w, o/, )}* | 2] < C1B{[d(d — ta)| | w}[a — |
+CLE{|(d — ta)| | &}ty — 1] + (ta — t5)> < C'My(Ja — | + |t — 1) + (t2 — t5)?,
whereC" is a constant depending only o5 C;. Here asto —th| < |ta—m(z)|+|m(x) —ta] <
2¢3, the right side is bounded B}/2(C'M,, + 2¢3)(la — o/| + ||t — '||). Hence we can take
Loy = 2Y/2(C' M, + 2¢3) ands = 1.
Part (iii). Recall that! = 276y + v, E(v | ) = 0. Then we have
On E{Y(w, ap, t) | 2}|i=p(z) = E{fc(0)v | 2} =0,
Oy E{tp(w, a0, t) | & }ip() = —E{Fe(0) = 1/2 |z} = 0.
Part (iv). Pick anyr € A. There exists’ between, anda such that

E[{w, a, h(z)}] = 0o E[{w, ao, h(2)}](a — a0) + %aiE[w{wﬂ" h(z)})(a — a)?

LetT' = 9,E[{w,ap, h(x)}] = f(0)E(v?) > c2. Then sinceldo?E[y{w,d’, h(z)}]| <
C1E(|d%>v]) < Cy whereCs can be taken depending only 6h, we have

Bl {w, a,h(@)}] 2 3Tla — adl,

whenevela — ag| < ¢2/Cs. Takecy = ¢2/C5 in the definition ofA. Then the above inequality
holds for alla € A.

Part (v). Observe that[y?{w, ag, h(z)}] = (1/4)E(v?) > ¢, /4.

Verification of Conditior{_B: Note here that, = p vV n andb,, = 1. We first show that the
estimator@(:c) = (27 B,z"0)" are sparse and have good rate properties.

The estimatog3 is based on postr-penalized median regression with penalty parameters as
suggested in Sectidn D.2 of this Supplementary Material.aBgumption in Theorem 1, with

probability 1 — A,, we haves = [5]o < Cis. Next we verify that Conditiofil4 in Section
of this Supplementary Material is implied by Conditidradd invoke Lemmas]2 arid 3.
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The assumptions on the error densjty-) in Condition[4 (i) are assumed in Conditibh 1 (iv).
Because of Conditiorls 1 (v) and (v, is bounded away from zero for sufficiently large,
see Lemma 4.1 ir[7], aneh < ¢min(1) < E(Ec’?) < Gmax(1) < Cy foreveryj = 1,...,p.
Moreover, under Conditiod 1, by Lemrha 8, we havex—1 . 11 |E,(77)/E(T3) — 1| < 1/2
andduax (¢),5) < 2E,(d?) + 2¢%,,.. (¢',s) < 5C; with probability 1 — o(1) for somef!, — oco.
The required side condition of Leml’ﬁh 2 is satisfied by refeti@0) and(31) ahead. By Lemma
in Sectiof D.2 of this Supplementary Material, we h&vé (3 — Bo)llp2 Sp {slog(n Vv
p)/n}/? since the required side condition holds. Indeed ot (d;, z7)™ ands = (64, 07)",
because||jo < Cys with probability 1 — Ay, ¢; < Gmin(C15 + 5) < Gmax(Crs + 5) < C1,
andE(|d;|?) = O(1), we have

- 17311, > inf {bmin(s+C15)}3/2]153
10l0Ze+Crs EUTTOP) = |15 Loty s 1B (L 8P +A0PE (i)
> {¢m1n(s+cls)}3/2”5”3

inf
||5||O<s+cls4KnII61||1¢max(s+cls)||6l|\2+4|\5|\3E(|d %)

{¢111111£3+Cls)}3/2 > 1
= 4K, {s+C18}/2hpmax(s+C18)+4E(|d;|3) ~ Kpsl/2®

V

Therefore, sincd(2s?log?(p V n) = o(n), we have

1/2{¢m1n(3+015)/¢max(5+cl5)}1/ /\l“@co 1 ”f;r(;”%g > n1/2
{slog(pvn)}1/2 I6llo<s+Crs EQETO)  ~ Knslogpvn

)—>OO.

The argument above also shows tfiat- | = o(1/ log n) with probability 1 — o(1) as claimed
in Verification of Conditior 2 (i). Indeed by Lemnia 2 and RekiBx1 we havela — ag| <
{slog(p V n)/n}*/? = o(1/log n) with probability 1 — o(1) ass?log3(p VV n) = o(n).

Thed is a post-lasso estimator with penalty parameters as staghes Sectiorl D.J3 of this
Supplementary Material. We verify that Conditidn 5 in SexfD.3 of this Supplementary Ma-
terial is implied by Conditio]1 and invoke Lemrna 5. Indeedn@ition[3 (ii) is implied by
Conditiond 1 (i) and (iv), where Conditidn 1(iv) is used twsaremin;—; E(x?) > c1. Next
sincemax;—;,_, E(|z;u[*) < C1, Condition[5 (iii) is satisfied ifog!/?(p vV n) = o(n'/%),
which is implied by Conditior]1 (v). Condition] 5 (iv) followBom Lemmal6 applied twice
with ¢; = v; and(; = d; asK2logp = o(n) and K2slog(p V n) = o(n). Condition[5 (v)
follows from Lemmd 8. By Lemm@l5 in Section ID.3 of this Suppéertary Material, we have
1276 = 60)[l2.n Sp {slog(n v p)/n}'/? and||f]lg < s with probability 1 — o(1). Thus, by
LemmdB, we havéz} (6 — 0p)|| p2 Sp {slog(n V p)/n}/2. Moreoversup), .. <x, =¥ (6 —
00)| < Knl|6 — 601 < K,s'/2||6 — boll Sp Kns{log(n Vv p)/n}'/? = o(1).

Combining these results, we halves 7 = H; x H» with probability 1 — o(1), where

H1 = {h1 : ha(z) = 278, |Bllo < Css, E[{h1(x) — g(x)}?] < £,s(log a)/n},
Ho = {712 :Eg(x) =270, |0llo < C38,5Up|4 <K, ]ﬁg(x) —m(x)] < es,
E[{ha(z) — m(z)}?] < £,s(log an)/n},

with Cs5 a sufficiently large constant arf] 1 oo sufficiently slowly.
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To verify Condition[3 (ii), observe that = ¢(G) - ', wherep(u) = 1/2 — 1(u < 0), and
G and@’ are the classes of functions defined by

g = {(y’daxT)T =y — ad —%1(56) Lo E .A,El c 7—[1},
G ={(y,d,2")" > d — ha(x) : hy € Ha}.

The classeg, G’, andp(G), asy is monotone and by Lemma 2.6.18 in[32], consist of unions
of p chooseCss VC-subgraph classes with VC indices at mésts + 3. The classp(G) is
uniformly bounded byl; recallingd = m(xz) + v, for hy € Ha, |d — ho(z)| < ¢3 + |v].
Hence by Theorem 2.6.7 in [B2], we hawet{z, (G)} V ent(e,G’) < C"slog(a,/¢) for all
0 < e < 1 for some constant” that depends only 0@'3; see the proof of Lemma 11 in/[3] for
related arguments. It is now straightforward to verify tthe classF = ¢(G) - G’ satisfies the
stated entropy condition; see the proof of Theorem 3lin ligtion (A.7).

To verify Conditior(3 (iii), observe that wheneves € Ho,

p{y — ad — ha(2)Hd — ha(2)}] < e3+ [o,

which has four bounded moments, so that Condition 3 (iiiptssfied withg = 4.
To verify Condition3 (iv), takes = ¢/, s with ¢/, 1 co sufficiently slowly and

pn =n"2{(€,sloga,)"/? + n 40 slogan} < n” (€, slog an)'?.

Asc =1, Ly, < M2 andLy, < M,, Conditior3 (iv) is satisfied provided thaf?s3 log® a,, =
o(n) andM?*s2 log? a,, = o(n), which are implied by Condition] 1 (v) with, + oo sufficiently
slowly.

Therefore, foro?2 = E[I2¢{w, ap, h(z)}] = E(v?)/{4f2(0)}, by Theoreni2 we obtain
the first resulto;, 'n'/?(a@ — ag) — N(0,1).

Next we prove the second result regarding,, (). First consider the denominator of
L, (). We have

| En(07) = En(v])| = | En{ (0; — 01) (@ + vi)} < [0 = vill2nl0; + vill2m
< |12 (8 = 80) 2. {2lvillzn + 17 (€ = 60) 2.0} = 0p (1),

where we have uselth; |2, <p {E(w2)}2 = O(1) and ||z (0 — 60)||2.n = op(1).
Second consider the numeratorlof(ag ). SinceE[¢Y{w, ag, h(z)}] = 0 we have
E, [w{wv QQ, ﬁ(w)}] =E, [w{wv QQ, h(.%')}] + OP(nil/Q)v
using the expansion in the displayed equatio8tefpl in the proof of Theorerml 2 evaluatedeat
instead ofy;. Therefore, using the identity thatd2 = n B2 +n(A,, — By,)? +2nB, (A, — By)
with
A = Bult{w, a0, h(@)}), By = Eult{w, a0, h(@)}), |Bal Sp {E@)} /2012,
we have

_ An| By {w, a0, h@)}][P _ 4n|Ey[i{w, ag, h(x)}]?
E,(02) E, [ {w, ag, h(z)}]

nLy(ao)

+op(1)
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since E(v?) is bounded away from zero. By Theorem 7.1[in/[12], and the nmdroenditions
E(d*) < Gy andE(v?) > c1, the following holds for the self-normalized sum

_ 2”1/2En[7/){% o, h(:ﬂ)}]
(En[¢*{w, a0, h(z)}])!/?
in distribution and the desired result follows sineg,,(c) = 1% + op(1).

— N(0,1)

Comment E.1. An inspection of the proof leads to the following stochastipansion:

Ep[t{w, @, h(@)}] = —{fE(@])}@ — ap) + En[t:{w, a0, h(x)}]

+op(n ™%+ n7V4a — ag)) + Op(|a — al?),

wherea is any consistent estimator of,. Hence provided thav — ag| = op(n—1/*), the
remainder term in the above expansiomjgn—'/2), and the one-step estimatodefined by

6=+ {E,(f0])} " Ealtr{w, @, h(2)}]
has the following stochastic expansion:
&=+ {fE@]) +op(n™ N {FEWD)HA — ao) + Enl{w, a0, h(x)}] + op(n~/?)]
= ao + {fEW])} Bal{w, a0, h(2)}] + op(n~'/?),
so thato, 'n'/?(a& — ag) — N(0,1) in distribution.
E.2. Proof of Theorem[1: Algorithm 2.

Proof of Theorerh]1: Algorithm 2The proof is essentially the same as the proof for Algorithm
1 and just verifying the rates for the penalized estimators.

The estimators is based orf; -penalized median regression. Condiion 4 is implied by-Con
dition[, see the proof for Algorithm 1. By Lemrha 2 and Renarki e have with probability
1—o0(1)

l2F (B = Bo)llp2 S {slog(n Vv p)/n}'/?, |@—ao| $ {slog(pV n)/n}"/* = o(1/logn),

becauses® log®(n V p) = o(n) and the required side condition holds. Indeed, without &fss
generality assume thdt containsd so that forz; = (d;,z])", 6 = (04,0, )", becauses,, is
bounded away from zero, and the fact tigtd;|®) = O(1), we have

. T 8|1} . 716|207 ]|Re
infsen., gdg;”ﬂ’% 2 infsen., 4E<|\‘xfsz|\|5>’2+”4E<H\d¢§d\3>
. IEE 81 gllorley
= If6eAcy TR 6T E(=T6. P) -8, E(4T)
. AL
(30) = Intsede, TR o T a0 B0 P B B T5 P 0 P}
AR
“0 T3 I5rTh [ +O() 2B 62 P) 1 3B (aai )]
781 gl ey

<0 8(1+3cp)l|or [l {Kn+OW)}E(7] 02]2) (243 /72,
1/2

> infsca

> infsea

> Reg/s > 1
= S{Kn+O(1)}(1+306){2+3E(d2)/E%O} ~ 12K, "
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Therefore, sincd(2s?log?(p V n) = o(n), we have
n'2ke, N () 29 n'/?

31 in —
(31) {slog(p Vv n)}'/2 sercy E(|7{63) ~ K,slog/?(pV n)

— 00

The estimatof is based on lasso. Conditibh 5 is implied by Condifibn 1 anehire(® applied
twice with ¢; = v; and(; = d; asK2logp = o(n). By Lemmd# we havﬁ:ciT(@— 00)ll2n Sp
{slog(n V p)/n}'/2. Moreover, by Lemm&l5 we hay@||, < s with probability1 — o(1). The
required rate in th¢ - | p2 norm follows from Lemma&i8.

U

APPENDIX F. ADDITIONAL MONTE-CARLO EXPERIMENTS

In this section we provide additional experiments to furiseamine the finite sample perfor-
mance of the proposed estimators. The experiments inagstige performance of the method
on approximately spare models and complement the expetsnoerexactly sparse models pre-
sented in the main text. Specifically, we considered thewiofig regression model:

(32) y=dag+ 2" (cy00) +¢, d=z"(cqbp) + v,

whereag = 1/2, and now we havé,; = 1/52,5 = 1,...,p. The other features of the
design are the same as the design presented in the main taxtelyy the vector = (1,2")"
consists of an intercept and covariates N (0, X), and the errors andv are independently and
identically distributed agV'(0,1). The dimensiorp of the covariates: is 300, and the sample
sizen is 250. The regressors are correlated witfy = pl=l andp = 0-5. We vary theR? in
the two equations, denoted tﬁé andel respectively, in the s€i0,0-1,...,0-9}, which results
in 100 different designs induced by the different pairs{ﬂf,Rfl). We performed 500 Monte
Carlo repetitions for each.

In this design, the vectdt, has allp components different from zero. Because the coefficients
decay it is conceivable that it can be well approximated bysi@ering only a few components,
typically the ones associated with the largest coefficiamtgbsolute values. The coefficients
omitted from that construction define the approximatiomerHowever, the number of coeffi-
cients needed to achieve a good approximation will alsontpe the scalings, andc, since
they multiply all coefficients. Therefore, i, or cq is large the approximation might require
a larger number of coefficients which can violate our spargtiuirements. This is the main
distinction from the an exact sparse designs considerdteimain text.

The simulation study focuses on Algorithm 1 since the atboribased on double selection
worked similarly. Standard errors are computed using thendita (11). As the main bench-
mark we consider the standard post-model selection estiridiased on the pogi—penalized
median regression method, as definedn (3).

Figure[3 displays the empirical rejection probability ofteof a true hypothesis = ay,
with nominal size of tests equal f&¥%. The rejection frequency of the standard post-model
selection inference procedure based upasvery fragile, see left plot. Given the approximately
sparse model considered here, there is no true model to feegherecovered and the rejection
frequency deviates substantially from the ideal rejectiequency of%. The right plot shows
the corresponding empirical rejection probability for gfreposed procedures based on estimator
¢ and the resuli(10). The performance is close to the ideal [E\%5% over 99 out of the 100
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FIGURE 3. The empirical rejection probabilities of the nominél level tests
of a true hypothesis based on: (a) the standard post-moeetisae procedure
based orty, and (b) the proposed post-model selection procedure lmasead

Ideally we should observe a flat surface atiferejection rate (of a true null).

designs considered in the study which illustrate the unifty property. The design for which
the procedure does not perform well correspondRﬁ@: 0-9 andRZ = 0-9.

Figure[4 compares the performance of the standard postiseleestimatory, as defined in
(3), and our proposed post-selection estimatabtained via Algorithm 1. We display results
in the same three metrics used in the main text: mean biasjasth deviation, and root mean
square error of the two approaches. In those metrics, exoepne design, the performance
for approximately sparse models is very similar to the pemnce of exactly sparse models.
The proposed post-selection estimatoperforms well in all three metrics while the standard
post-model selection estimatafsexhibits a large bias in many of the dgps considered. For the
design withR} = 0-9 and R = 0-9, both procedures breakdown.

Except for the design with largest values Bt's, R = 0-9 andR; = 0-9, the results are
very similar to the results presented in the main text for xactly sparse model where the
proposed procedure performs very well. The design withdhgelst values oR?'s correspond
to large values ot, andc,. In that case too many coefficients are needed to achieve dh goo
approximation for the unknown functions’(c,6y) andz™(c46y) which translates into a (too)
large value ofs in the approximate sparse model. Such performance is folhsistent with
the theoretical result derived in Theoréin 2 which covers@pmately sparse models but do
impose sparsity requirements.

APPENDIXG. AUXILIARY TECHNICAL RESULTS
In this section we collect some auxiliary technical results

Lemma 6. Let (¢1,z7)7, ..., (¢n, x1)" be independent random vectors whéye. .., ¢, are
scalar whilezy, ..., r, are vectors inR”. Suppose that/((}) < oo fori = 1,...,n, and
there exists a constart’,, such thatmax;—; _, ||zi]l~c < K, almost surely. Then for every

7 € (0,1/8), with probability at leastl — 8,

max |0~ S (G — B(Gad)} < 4KE{(2/n) log(2p/ )} AL B (nr)}

-----
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FIGURE 4. Mean bias (top row), standard deviation (middle row), ro@an
square error (bottom row) of the standard post-model seteastimatora
(panels (a)-(c)), and of the proposed post-model seleesimatord (panels

(d)-(F).

Proof of Lemm&l6The proof depends on the following maximal inequality dediin [5].
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Lemma 7. Letz,..., z, be independent random vectorsi4. Then for everyr € (0,1/4)
ando € (0,1/4), with probability at leastl — 47 — 49,

max 2T (= ()} < | 4{210g(2p/0)}? Q{1 — 7, max (n™'3TIL, )1 %)

7j=1,...p
V2 max Q[1/2, In =2 {2 — Ezip) Y,

=1,...,

where for a random variabl&Z we denote&)(u, Z) = u-quantile ofZ .

Going back to the proof of Lemnia 6, let; = (f:c?j. By Markov'’s inequality, we have

Q1/2,|n 20 {2y — E(zi) Y] < {207 'S0 EGH)MY? < Ka{(2/n) S E(GHY?,
and

Q{7 max (n™'YIL125)" 7} < Q{17 KR (n T LGN

]: 7"'7p
< Ko{ B/ (nm) /2.
Hence the conclusion of Lemrha 6 follows from application emd¥ withr = 4. O
Lemma 8. Under Conditiori 1L, there exist§, — oo such that with probabilityl — o(1),

[[2270|2,n

Ssu
RIS

l16]o<£,s
670

- 1‘ = o(1).

Proof of Lemmal8.The lemma follows from application of Theorem 4.3[in][29].
O

Lemma 9. Consider vectors and 3, in R? where||3o||o < s, and denote by(™ the vector3
truncated to have only its: > s largest components in absolute value. Then

1B/ — Boll1 < 2IIB = Bollx
|2F{B™ — BoYllom < 127 (B — Bo)llzn + {$%ax(m)/m}2||B — Bollr.
Proof of Lemmal9The first inequality follows from the triangle inequality
1B = Bolls < 11B = B™ |l + 118 - Bollr

and the observation thdf — 5™ ||; = minygy,<m |5 — Bll1 < |8 — Bollx sincem > s =

[15ollo-

By the triangle inequality we have

2T {BP™ — Bo}lam < |27 (B — Bo)llo.m + |27 {BZ™ — BY[|2.n-

For an integek: > 2, || 3 — Blm=—m)||; < m andB — B = 3, {BHm) — glm-—m)},
Moreover, given the monotonicity of the components, B

Hg(km-i-m) _ B\(km)H < HB\(km) _ B\(km—m)Hl/ml/Q‘
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Then

|7 {8 — B®™ Hlam = l|2F Y js{BE™ — BRI |y, < Sysgllaf {BE™ — BEm=m |,
< {an (M) g | BE™ — B || < (o (m) Y25, [|BE™ — BEmT |y it/
= {$ac (M) Y218 = B |1/ < (¢ (m)}21B = Bollr/m"/2,

where the last inequality follows from the arguments useshtmw the first result. O
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