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1 Introduction

Aggregate real output is surely the most fundamental and important concept in macroe-
conomic theory. Surprisingly, however, significant uncertainty still surrounds its historical
measurement.In the U.S., in particular, two often-divergent GD P estimates exist, a widely-
used expenditure-side version, GDPg, and a much less widely-used income-side version,
GDP;.! Nalewaik (2010) and Fixler and Nalewaik (2009) make clear that, at the very least,
G D P; deserves serious attention and may even have properties in certain respects superior
to those of GDPr.2 That is, if forced to choose between GDPp and GDPFPy, a surprisingly
strong case exists for GDP;. But of course one is not forced to choose between GD Pr and
GDPy, and a GDP estimate based on both GD Pg and GD P may be superior to either one
alone. In this paper we propose and implement a framework for obtaining such a blended
estimate.

Our work is related to, and complements, Aruoba et al. (2012). There we took a forecast-
error perspective, whereas here we take a measurement-error perspective.® In particular, we
work with a dynamic factor model in the tradition of Geweke (1977) and Sargent and Sims
(1977), as used and extended by Watson and Engle (1983), Edwards and Howrey (1991),
Harding and Scutella (1996), Jacobs and van Norden (2011), Kishor and Koenig (2011), and
Fleischman and Roberts (2011), among others.* That is, we view “true GDP” as a latent
variable on which we have several indicators, the two most obvious being GD Pg and GD Py,
and we then extract true GDP using optimal filtering techniques.

The measurement-error approach is time honored, intrinsically compelling, and very dif-
ferent from the forecast-combination perspective of Aruoba et al. (2012), for several reasons.”
First, it enables extraction of latent true G D P using a model with parameters estimated with
exact likelihood or Bayesian methods, whereas the forecast-combination approach forces one

to use calibrated parameters. Second, it delivers not only point extractions of latent true

Indeed we will focus on the U.S. because it is a key egregious example of unreconciled GDPg and GD Py
estimates.

2For additional informative background on GD Py, GDP;, the statistical discrepancy, and the national
accounts more generally, see BEA (2006), McCulla and Smith (2007), Landefeld et al. (2008), and Rassier
(2012).

3Hence the pair of papers roughly parallels the well-known literature on “forecast error” and “measure-
ment error” properties of of data revisions; see for example Mankiw et al. (1984), Mankiw and Shapiro
(1986), Faust et al. (2005), and Aruoba (2008).

4See also Smith et al. (1998), who take a different but related approach, and the independent work of
Greenaway-McGrevy (2011), who take a closely-related approach but unfortunately estimate a model that
we show to be unidentified in section 2.3 below.

®0On the time-honored aspect, see, for example, Gartaganis and Goldberger (1955).



GDP but also interval extractions, enabling us to assess the associated uncertainty. Third,
the state-space framework in which the measurement-error models are embedded facilitates
exploration of the relationship between GGDP measurement errors and the economic envi-
ronment, such as stage of the business cycle, which is of special interest.

We proceed as follows. In section 2 we consider several measurement-error models and
assess their identification status, which turns out to be challenging and interesting in the
most realistic and hence compelling case. In section 3 we discuss the data, estimation
framework and estimation results. In section 4 we explore the properties of our new GDP
series. Finally, we conclude with both a summary and a caveat in section 5, where the caveat

refers to the potential limitations of GD Py (relative to GD Pg) for real-time analysis.

2 Five Measurement-Error Models of GDP

We use dynamic-factor measurement-error models, which embed the idea that both GD Pg
and GDP; are noisy measures of latent true GDP. We work throughout with growth rates
of GDPg, GDP; and GDP (hence, for example, GD Pg denotes a growth rate).5 We assume
throughout that true GDP growth evolves with simple AR(1) dynamics, and we entertain

several measurement structures, to which we now turn.

2.1 (Identified) 2-Equation Model: 3 Diagonal

We begin with the simplest 2-equation model; the measurement errors are orthogonal to each
other and to transition shocks at all leads and lags.” The model has a natural state-space

structure, and we write

GD P, 1

GDPr

GDP, +

- ] 1)

€rt

GDPt = /J(l - p) + pGDPt—l + €a,

where GD Pg; and GD Py, are expenditure- and income-side estimates, respectively, GDP, is

latent true GD P, and all shocks are Gaussian and uncorrelated at all leads and lags. That

6We will elaborate on the reasons for this choice later in section 3.
"Here and throughout, when we say “N-equation” state-space model, we mean that the measurement
equation is an N-variable system.



is, (€gt, €gt, €1t)' ~ itd N(0,X), where

o4q 0 0
Y= 0 o%p O . (2)
0 O'%I

The Kalman smoother will deliver optimal extractions of GDP; conditional upon observed
expenditure- and income-side measurements. Moreover, the model can be easily extended,
and some of its restrictive assumptions relaxed, with no fundamental change. We now

proceed to do so.

2.2 (Identified) 2-Equation Model: 3 Block-Diagonal

The first extension is to allow for correlated measurement errors. This is surely important,
as there is roughly a 25 percent overlap in the counts embedded in GDPg and GD Py, and

moreover, the same deflator is used for conversion from nominal to real magnitudes.® We

:[1

GDP, = p(1 — p) + pGDP,_1 + ecy,

write

GDPpg,

GDP, +
GDPry

” ] 3

€1t

where now eg; and €, may be correlated contemporaneously but are uncorrelated at all other
leads and lags, and all other definitions and assumptions are as before; in particular, eg; and

(€gt, €)' are uncorrelated at all leads and lags. That is, (g, €gt, €1¢)’ ~ 1id N(0, X)), where

o4q 0 0
x= 0 ohp 0%y |- (4)

2 2
0 O 0171

Nothing is changed, and the Kalman filter retains its optimality properties.

8See Aruoba et al. (2012) for more. Many of the areas of overlap are particularly poorly measured, such
as imputed financial services, housing services, and government output.



2.3 (Unidentified) 2-Equation Model, ¥ Unrestricted

The second key extension is motivated by Fixler and Nalewaik (2009) and Nalewaik (2010),
who document cyclicality in the statistical discrepancy (GDPr — GDP;), which implies
failure of the assumption that (egy, €5;)" and eg; are uncorrelated at all leads and lags. Of
particular concern is contemporaneous correlation between ey and (€gy, €)". Hence we allow
the measurement errors (egy, €1;)" to be correlated with GDP,, or more precisely, correlated

with GDP; innovations, €. We write

GD P,

GDP, +
GDPr,

€rt

] (5)

GDP, = (1 — p) + pGDP,_1 + eqy,

where (€gy, €p, €11) ~ itd N(0,X), with

0te Otp Odr
Y= | 0k¢ Okp Owr |- (6)
olc Ol Oir
In this environment the standard Kalman filter is rendered sub-optimal for extracting GD P,
due to correlation between eg, and (egy, €7;), but appropriately-modified optimal filters are
available.

Of course in what follows we will be concerned with estimating our measurement-equation
models, so we will be concerned with identification. The diagonal-> model (1)-(2) and
the block-diagonal-¥ model (3)-(4) are identified. Identification of less-restricted dynamic
factor models, however, is a very delicate matter. In particular, it is not obvious that the
unrestricted- model (5)-(6) is identified. Indeed it is not, as we prove in Appendix A. Hence

we now proceed to determine minimal restrictions that achieve identification.

2.4 (Identified) 2-Equation Model: 3 Restricted

The identification problem with the general model (5)-(6) stems from the fact that we can
make true GD P more volatile (increase o2) and make the measurement errors more volatile
(increase 0%, and 0%;), but reduce the covariance between the fundamental shocks and the

measurement errors (reduce 0% and 0%,), without changing the distribution of observables.



2.4.1 Restricting the Original Parameterization

But we can achieve identification by slightly restricting parameterization (5)-(6). In par-
ticular, as we show in Appendix A, the unrestricted system (5)-(6) is unidentified because
the ¥ matrix has six free parameters with only five moment conditions to determine them.
Hence we can achieve identification by restricting any single element of ». Imposing any
such restriction would seem challenging, however, as we have no strong prior views directly
on any single element of 3. Fortunately, however, a simple re-parameterization exists about

which we have a more natural prior view, to which we now turn.

2.4.2 A Useful Re-Parameterization

Let L
1-29GG

) 2 2
—20Ga T 206p T 0pp

(= (7)

the variance of latent true GD P relative to the variance of expenditure-side measured G D Pg.
Then, rather than fixing an element of ¥ to achieve identification, we can fix (, about which
we have a more natural prior view. In particular, at first pass we might take 0%, ~ 0, in
which case 0 < ¢ < 1. Or, put differently, ¢ > 1 would require a very negative o2, which
seems unlikely. All told, we view a ( value less than, but close to, 1.0 as most natural. We
take ¢ = 0.80 as our benchmark in the empirical work that follows, although we explore a

wide range of ( values both below and above 1.0.

2.5 (Identified) 3-Equation Model: ¥ Unrestricted

Thus far we showed how to achieve identification by fixing a parameter, ¢, and we noted
that our prior is centered around ¢ = 0.80. It is of also of interest to know whether we can
get some complementary data-based guidance on choice of (. The answer turns out to be
yes, by adding a third measurement equation with a certain structure.

Suppose, in particular, that we have an additional observable variable U, that loads on
true GD P, with measurement error orthogonal to those of GDP; and GD Pg. In particular,

consider the 3-equation model

GDPpg, 0 1 €t
GDPH — 0 + 1 GDPt + €It (8)
Ut K A €Ut



GDP; = pu(1 — p) + pGDP;_1 + g,
where (e, €t, €11, €ut) ~ 1id N (0, 2), with
UéG U?;E O%I O%‘U
0— O-JZEG UJQEE 01291 0 9)
| o2 o? o? '
1G B 11
ot 0 0 oy

Note that the upper-left 3x3 block of €2 is just X, which is now unrestricted. Nevertheless,
as we prove in Appendix B, the 3-equation model (8)-(9) is identified. Of course some of the
remaining elements of the overall 4x4 covariance matrix ) are restricted, which is how we
achieve identification in the 3-equation model, but the economically interesting sub-matrix,
which the 3-equation model leaves completely unrestricted, is X.

Depending on the application, of course, it is not obvious that an identifying variable
U, with measurement errors orthogonal to those of GDPg and GDP; (i.e., with stochastic
properties that satisfy (9)), is available. Hence it is not obvious that estimation of the 3-
equation model (8)-(9) is feasible in practice, despite the model’s appeal in principle. Indeed,
much of the data collected from business surveys is used in the BEA’s estimates, invalidating
use of that data as U; since any measurement error in that data appears directly in either
GDPg or GD Py, producing correlation across the measurement errors. Moreover, variables
drawn from business surveys similar to those used to produce GD Pg and G D Py, even if they
are not used directly in the estimation of GD Pgr and G'D P;, might still be invalid identifying
variables if the survey methodology itself produces similar measurement errors.’

Fortunately, however, some important macroeconomic data is collected not from surveys
of businesses, but from samples of households. A sample of data drawn from a universe of
households seems likely to have measurement errors that are different than those contami-
nating a data sample drawn from a universe of businesses, especially when the “universes” of
businesses and households are not complete census counts, as is the case here. For example,
the universe of business surveys is derived from tax records, so businesses not paying taxes
will not appear on that list, but individuals working at that business may appear in the
universe of households.

Importantly, very little data collected from household surveys are used to construct

9For example, if the business surveys used to produce GDPr and GDPj tend to oversample large firms,
variables drawn from a business survey that also oversamples large firms may have measurement errors that
are correlated with those in GDPgr and GD Py, absent appropriate corrections.



GDPg and GD Py, so a U, variable computed from a household survey seems most likely to
meet our identification conditions. The change in the unemployment rate is a natural choice
(hence our notational choice U;). Uy arguably loads on true GDP with a measurement error
orthogonal to those of GDPr and GD Py, because the U; data is being produced indepen-
dently (by the BLS rather than BEA) from different types of surveys. In addition, virtually
all of the GDPr, and GDP; data are estimated in nominal dollars and then converted to real
dollars using a price deflator, whereas U, is estimated directly with no deflation.

All told,we view “3-equation identification” as a useful complement to the “(-identification”
discussed earlier in section 2.4. All identifications involve assumptions. (-identification in-
volves introspection about likely values of (, given its structure and components, and that
introspection is of course subject to error. 3-equation identification involves introspection
about various measurement-error correlations involving the newly-introduced third variable,
which is of course also subject to error. Indeed the two approaches to identification are
usefully used in tandem, and compared.

One can even view the 3-equation approach as a device for implicitly selecting . In
particular, we can find the ¢ implied by the 3-equation model estimate, that is, find the (
that minimizes the divergence between ic and Y3, in an obvious notation.'® For example,
using the Frobenius matrix-norm to measure divergence, we obtain an optimum of * = 0.82.
The minimum is sharp and unique. The implied (* of 0.82 is of course quite close to the
directly-assessed value of 0.80 at which we arrived earlier, which lends additional credibility

to the earlier assessment. See (online) Appendix C.2.1 for details.

3 Data and Estimation

We intentionally work with a stationary system in growth rates, because we believe that
measurement errors are best modeled as iid in growth rates rather than in levels, due to

»11

BEA’s devoting maximal attention to estimating the “best change. In its above-cited

“Concepts and Methods ...” document, for example,the BEA emphasizes that:

Best change provides the most accurate measure of the period-to-period move-
ment in an economic statistic using the best available source data. In an annual

revision of the NIPAs, data from the annual surveys of manufacturing and trade

10We will discuss subsequently the estimation procedure used to obtain f)c and 3.
" For example, see “Concepts and Methods in the U.S. National Income and Product Accounts,” available
at http://www.bea.gov/national/pdf/methodology/chaptersi-4.pdf.
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Figure 1: GDP and Unemployment Data

Notes: GDPg and GDP; are in growth rates and U, is in changes. All are measured in annualized percent.

are generally incorporated into the estimates on a best-change basis. In the cur-
rent quarterly estimates, most of the components are estimated on a best-change

basis from the annual levels established at the most recent annual revision.

The monthly source data used to estimate GDPg (such as retail sales) and GDP; (such as
nonfarm payroll employment) are generally produced on a best-change basis as well, using a
so-called “link-relative estimator.” This estimator computes growth rates using firms in the
sample in both the current and previous months, in contrast to a best-level estimator, which
would generally use all the firms in the sample in the current month regardless of whether
or not they were in the sample in the previous month. For example, for retail sales the BEA

notes that:1?

Advance sales estimates for the most detailed industries are computed using a

type of ratio estimator known as the link-relative estimator. For each detailed

12See http://www.census.gov/retail/marts/how_surveys_are_collected.html.
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Table 1: Descriptive Statistics for Various GDP Series

T 50% o Sk pr P2 p3 fa Q2 6. RV,
GDPg 3.03 3.04 349 -0.31 .33 .27 .08 .09 4707 328 .06 12.12
GDP; 3.02 3.39 340 -0.55 47 27 .22 .08 8160 299 .12 11.43

GDPy 2-eqn, X diag  3.02 3.22 3.00 -0.56 .56 .34 .21 .09 10825 2.48 .18 8.92
GDPys 2-eqn, ¥ block  3.02 3.35 2.64 -064 .70 .45 .28 .13 170.08 1.89 .29 6.90
GDPy 2-eqn, ( =0.65 3.02 3.32 2.61 -0.64 .67 .43 .27 .12 15756 192 .26 6.73
GDPy 2-eqn, ( =0.75 3.02 3.30 2.77 -0.63 .65 .41 .26 .11 14823 208 .25 7.60
GDPy 2-eqn, ¢ =0.80 3.02 3.29 287 -062 .64 .39 .25 .11 141.14 219 .24 8.16
GDPy 2-eqn, ¢ =0.85 3.02 3.31 2.89 -0.64 .66 .41 .28 .12 153.27 2.15 .25 8.29
GDPy 2-eqn, ¢ =0.95 3.02 3.26 3.02 -0.64 .66 .40 .28 .12 149.61 2.27 .25 9.07
GDPy 2-eqn, ¢ =1.06 3.01 3.22 3.12 -0.65 .67 .40 .28 .12 155.60 230 .26 9.69
GDPy 2-eqn, ( =1.15 3.04 3.34 3.07 -0.67 .76 .47 .31 .15 201.15 199 .35 9.46
GDPy; 3-eqn 3.02 337 302 -1.14 .63 .37 .21 .03 141.79 233 .23 9.03

GDPp 3.02 329 330 -0.51 46 .29 .19 .07 7828 292 .12 10.80

Notes: The sample period is 1960Q1-2011Q4. In the top panel we show statistics for the raw data. In the
middle panel we show statistics for various posterior-median measurement-error-based (“M”) estimates of
true GDP, where all estimates are smoothed extractions. In the bottom panel we show statistics for the
forecast-error-based estimate of true GDP produced by Aruoba et al. (2012), GDPg. z, 50%, ¢ and Sk
are sample mean, median, standard deviation and skewness, respectively, and p, is a sample autocorrelation
at a displacement of 7 quarters. ()12 is the Ljung-Box serial correlation test statistic calculated using pq,
ey P12. R2=1-— %, where G, denotes the estimated disturbance standard deviation from a fitted AR(1)
~2
5z

model, is a predictive R2. V, is the unconditional variance implied by a fitted AR(1) model, V. =

industry, we compute a ratio of current-to-previous month weighted sales using
data from units for which we have obtained usable responses for both the current

and previous month.

Indeed the BEA produces estimates on a best-level basis only at 5-year benchmarks. These
best-level benchmark revisions should drive only the very-low frequency variation in GD P,
and thus probably matter very little for the quarterly growth rates estimated on a best-

change basis.

3.1 Descriptive Statistics

We show time-series plots of the “raw” GDPp and GDP; data in Figure 1, and we show
summary statistics for the raw series in the top panel of Table 1. Not captured in the

table but also true is that the raw data are highly correlated; the simple correlations are



corr(GDPg,GDPr) = 0.85, corr(GDPg,U) = —0.67, and corr(GDP;,U) = —0.73. Median
GDP; growth is a bit higher than that of GDPg, and GDP; growth is noticeably more
persistent than that of GDPg. Related, GDP; also has smaller AR(1) innovation variance
and greater predictability as measured by the predictive R%. Figure 1 also depicts the sample
paths of changes in the unemployment rate, which we use to estimate the 3-equation model,
and the discrepancy between the growth rates GDPr and GDP;. According to our state-
space models, the discrepancy equals the measurement error difference eg; — €;. The mean
of the discrepancy series is zero, and its variance is approximately 30% of the variance of
GDPg. The first-order autoregressive coefficient is slightly negative, but the R? associated
with an AR(1) regression is only about 4%.

3.2 Estimation

Bayesian estimation involves parameter estimation and latent state smoothing. First, we
generate draws from the posterior distribution of the model parameters using a Random-
Walk Metropolis-Hastings algorithm. Next, we apply the simulation smoother of Durbin
and Koopman (2001) to obtain draws of the latent states conditional on the parameters. See
(online) Appendix C for details.

Here we present and discuss estimation results for our various models. In Table 2 we
show details of parameter prior and posterior distributions, as well as statistics describing
the overall posterior and likelihood, for various 2-equation models, and in Table 3 we provide
the same information for the 3-equation model.

The complete estimation information in the tables can be difficult to absorb fully, how-
ever, so here we briefly present aspects of the results in a more revealing way. For the
2-equation models, the parameters to be estimated are those in the transition equation and
those in the covariance matrix Y, which includes variances and covariances of both transi-
tion and measurement shocks. Hence we simply display the estimated transition equation
and the estimated ¥ matrices. For the 3-equation model, we also need to estimate a factor
loading in the measurement equation, so we display the estimated measurement equation as
well. Below each posterior median parameter estimate, we show the posterior interquartile
range in brackets.

For the 2-equation model with ¥ diagonal, we have

GDP,= 3.07 (1-053)+ 0.53 GDP,_1+ e, (10)

[2.81,3.33] [0.48,0.57]
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Table 2: Priors and Posteriors, 2-Equation Models, 1960Q1-2011Q4

Diagonal Block Diagonal

Prior Posterior Posterior
(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%
i N(3,10) 2.81 3.07 3.33 2,77 3.06 3.34
p N(0.3,1) 0.48 0.53 0.57 0.57 0.62 0.68
0%a 1G(10,15) 6.39 6.90 7.44 4.39 5.17 5.95
o%p N(0,10) . . . . . .
o2, N(0,10) - - - - - -
bR 1G(10,15) 2.12 2.32 2.55 3.34 3.86 4.48
0% N(0,10) - - - 0.96 1.43 1.95
o2 IG(10,15) 1.52 1.68 1.85 2.25 2.70 3.22
posterior - -984.57 -983.46 -982.60 -986.23 -985.00 -984.01
likelihood - -951.68 -950.41 -949.43 -950.70 -949.49 -948.60

¢=0.75 ¢ =0.80

Prior Posterior Posterior
(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%
i N(3,10) 2.75 3.03 3.31 2.79 3.08 3.35
p N(0.3,1) 0.53 0.59 0.64 0.51 0.57 0.62
o2a 1G(10,15) 5.78 6.31 6.92 6.54 7.09 7.70
0%p N(0,10) -0.76 -0.29 0.15 -1.15 -0.69 -0.29
o2, N(0,10) -0.34 0.01 0.34 -0.74 -0.38 -0.04
o2 1G(10,15) 3.08 3.88 4.75 3.14 3.90 4.77
o2, N(0,10) 0.73 1.23 1.78 0.80 1.29 1.85
0% 1G(10,15) 1.94 2.30 2.76 1.98 2.36 2.82
posterior - -982.50 -980.99 -979.87 -982.48 -981.05 -979.91
likelihood - -950.93 -949.55 -948.40 -950.85 -949.44 -948.41

¢ =0.85 ¢ =0.95

Prior Posterior Posterior
(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%
i N(3,10) 2.72 2.96 3.14 2.84 3.03 3.25
p N(0.3,1) 0.51 0.56 0.60 0.49 0.54 0.60
ota 1G(10,15) 6.67 7.19 7.76 7.69 8.43 9.28
o2y N(0,10) 217 198  -1.77 288 273 -2.50
o2, N(0,10) -0.97  -0.80  -0.53  -1.99  -158  -1.22
o2 1G(10,15) 5.36 5.79 6.28 5.64 6.10 6.39
o2, N(0,10) 2.04 2.33 2.63 2.43 2.64 2.93
0% 1G(10,15) 2.36 2.65 3.04 2.45 3.22 3.81
posterior - -982.62 -981.40 -980.48 -984.09 -982.80 -981.57
likelihood - -949.42  -948.25 -947.49 -950.19 -948.84 -947.81

¢ =1.05 (=115

Prior Posterior Posterior
(Mean,Std.Dev) 25% 50% 75% 25% 50% 75%
i N(3,10) 2.85 3.07 3.33 2.55 2.89 3.21
p N(0.3,1) 0.48 0.53 0.58 0.52 0.56 0.61
oia IG(10,15) 8.92 9.57 10.25 9.07 9.88 10.73
0%p N(0,10) -4.04 -3.88 -3.70 -5.61 -5.50 -5.22
o2, N(0,10) 309  -265 220 438  -421  -4.01
o2 1G(10,15) 6.74 7.13 7.41 8.51 9.07 9.30
o2, N(0,10) 3.23 3.46 4.13 5.29 5.52 5.89
o2 1G(10,15) 327 lles 443 568 600 631
posterior - -984.89 -983.63 -982.49 -988.63 -987.18 -986.32
likelihood - -949.31 -948.30 -947.53 -949.82 -948.51 -947.67




Table 3: Priors and Posteriors, 3-Equation Model, 1960Q1-2011Q4

Parameter Prior Posterior
(Mean, Std) 25% 50% 5%
1 N(3,10) 2.60 2.78 2.95
p N(0.3,1) 0.54 0.58 0.63
0a 1G(10,15) 6.73 6.96 7.35
0ip N(0,10) -1.27 -1.10 -0.84
o2, N(0,10) -1.03 -0.82 -0.59
o4 1G(10,15) 4.17 4.57 4.79
o2, N(0,10) 1.70 1.95 2.12
o 1G(10,15) 2.54 3.07 3.27
oy N(0,10) 1.27 1.46 1.66
oty 1G(0.3,10) 0.50 0.59 0.71
K N(0,10) 1.53 1.62 1.71
A N(-0.5,10) -0.55 -0.52 -0.50
posterior - -1251.1 -1249.6 -1248.3
likelihood - -1199.0 -1197.5 -1196.2

6.90 0 0
[6.39,7.44]
= 0 2.32 0
2.12,2.55]
0 0 1.68
[1.52,1.85]

For the 2-equation model with ¥ block-diagonal, we have

GDP, = 3.06 (1 - 0.62) + 0.62 GDP,_1 + €qy,
[2.77,3.34] [0.57,0.68]

5.17 0 0
[4.39,5.95)
Y= 0 3.86 1.43
[3.34,4.48]  [0.96,1.95]
0 1.43 2.70

(0.96,1.95]  [2.25,3.22]

For the 2-equation model with benchmark ¢ = 0.80, we have
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GDP,= 3.08 (1—-0.57)4+ 0.57 GDP,_1+ €, (14)
[2.79,3.35] [0.51,0.62]
7.09 —0.69 —0.38
[6.54,7.70]  [-1.15,—0.29]  [—0.74,—0.04]
- —0.69 3.90 1.29
X = [~1.15,-0.29]  [3.14,4.77] [0.80,1.85] (15)
—0.38 1.29 2.36
[~0.74,—0.04]  [0.80,1.85] [1.98,2.82]
Finally, for the 3-equation model, we have
GDPg, 0 1 €p1
GDPy, 0 + 1 GDP, + | ey (16)
1.62 —0.52
Ut [1.53,1.71] [~0.55,—0.50] vt
GDP, = 278 (1—-0.58)4+ 0.58 GDP,_ + €, (17)
[2.60,2.95] [0.54,0.63]
6.96 —1.10 —0.82 1.46
e 0 [6.73,7.35]  [-1.27,—0.84] [-1.03,—0.59] [1.27,1.66]
—1.10 4.57 1.95 0
B | N 0 [~1.27,-0.84]  [4.17,4.79] [1.70,2.12] (18)
€r 01 | -082 1.95 3.07 0
0 [~1.03,-0.59]  [1.70,2.12] [2.54,3.27]
vt 1.46 0 0 0.59
[1.27,1.66] 0.50,0.71] |

Many aspects of the results are noteworthy; here we simply mention a few. First, every
posterior interval in every model reported above excludes zero. Hence the diagonal and block
diagonal models do not appear satisfactory.

Second, the ¥ estimates are qualitatively similar across specifications. Covariances are
always negative, as per our conjecture based on the counter-cyclicality in the statistical
discrepancy (GDPgr — GDPr) documented by Fixler and Nalewaik (2009) and Nalewaik
(2010). Shock variances always satisfy 62, > 655 > 07,

Finally, GD Py, is highly serially correlated across all specifications (p =~ .6), much more
so than the current “consensus” based on GD Py (p =~ .3). We shall have more to say about

these and other results in section 4 below.
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3.3 Diagnostic Checks

We have assumed throughout that all shocks are Gaussian white noise. As regards normality,
we feel that it is an obvious benchmark. The recent severe recession does not necessarily
invalidate the normality assumption, as occasional extreme draws will occur even under
normality, and moreover our Kalman filtering remains BLUE even under non-normality.
Nevertheless it is of course interesting and important to check the validity of the normality
assumption.

We report diagnostic normality checks in Figure 2 for the three model shocks, €, €
and eg. In the top panel we show the distributions of residual skewness across our 25,000
posterior draws. All are tightly and symmetrically distributed around zero, providing strong
support for symmetry. In the middle panel we show the distributions of residual kurtosis.
Those for the measurement errors ex and €; are tightly and symmetrically distributed around
three, consistent with normality. The distribution of residual kurtosis for e; again appears
consistent with normality, although less strongly so than for the distributions of g and €;. It
is centered around a median slightly greater than three, and it is skewed slightly rightward.

As regards the white noise assumption, we show the interquartile ranges of our 25,000
posterior residual autocorrelation function draws in the bottom panel of Figure 2, again for
each of €g, €; and €5. They are tightly centered around zero and reveal no evidence of serial
correlation in measurement errors or true G D P innovations. All told, then, the GDPg and

GDP; data appear to accord quite well with our benchmark dynamic factor model (1).

4 New Perspectives on the Properties of GDP

Our various extracted GD Py, series differ in fundamental ways from other measures, such

as GDPg and GDP;. Here we discuss some of the most important differences.

4.1 GDP Sample Paths

Let us begin by highlighting the sample-path differences between our GD P,; and the obvious
competitors GDPg and GDP;. We make those comparisons in Figure 3. In each panel we
show the sample path of GD P, in red together with a light-red posterior interquartile range,
and we show one of the competitor series in black.'® In the top panel we show GDPy; vs.

G D Pg. There are often wide divergences, with G D Pg well outside the posterior interquartile

BFor GDP); we use our benchmark estimate from the 2-equation model with ¢ = 0.80.
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Figure 2: Distributions of Residual Skewness, Kurtosis and Autocorrelations

Across 25,000 Posterior Draws.
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Notes: In each case the red line denotes the posterior median. The shaded region in the autocorrelation

plots denotes the posterior interquartile range.

range of GDPy;. Indeed GD Pg is substantially more volatile than GD Py;. In the bottom

panel of Figure 3 we show GDPy; vs. GDP;. Noticeable divergences again appear often,
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Figure 3: GDP Sample Paths, 1960Q1-2011Q4
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Notes: In each panel we show the sample path of GDPy; in red together with a light-red posterior in-
terquartile range, and we show one of the competitor series in black. For GDPy; we use our benchmark

estimate from the 2-equation model with ¢ = 0.80.

with GDP; also outside the posterior interquartile range of GDPy;. The divergences are
not as pronounced, however, and the “excess volatility” apparent in GD Pg is less apparent
in GDP;. That is because, as we will show later, GD P, loads relatively more heavily on
GDP;.

To emphasize the economic importance of the differences in competing real activity as-
sessments, in Figure 4 we focus on the tumultuous period 2007Q1-2009Q4. The figure makes
clear not only that both G D Pgr and G D Py can diverge substantially from G D P, but also that
the timing and nature of their divergences can be very different. In 2007Q3, for example,

G D Py growth was strongly positive and GDP; growth was negative.

4.2 GDP Dynamics

In our linear framework, the data-generating process for true GDP, is completely charac-
terized by the pair, (0%4, p).!* In Figure 5 we show those pairs across MCMC draws for all

of our measurement-error models, and for comparison we show (p, o?) values corresponding

4We provide complementary nonlinear Markov-switching results in (online) Appendix C.2.3.
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Figure 4: GDP Sample Paths, 2007Q1-2009Q4
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Notes: In each panel we show the sample path of GDPy; in red together with a light-red posterior in-
terquartile range, and we show one of the competitor series in black. For GDPy; we use our benchmark
estimate from the 2-equation model with ¢ = 0.80.

to AR(1) models fit to GDPg alone and GDP; alone. In addition, in Table 1 we show
a variety of statistics quantifying the sample properties of our various optimally extracted
G D Py; measures vs. those of GDPgr, GDP; and GD P, the forecast-error-based estimate
of true GDP produced by Aruoba et al. (2012).

A key result of our analysis is the strong serial correlation (persistence, forecastability,
...) of true GDP and our extracted GD Py, regardless of the particular specification. First
consider the (p, 0%) draws, which determine the population autocovariance function of the
true GD P process, depicted in Figure 5. Depending on the specification of the measurement
error model, the posterior mean estimates of p lie in the interval of 0.5 to 0.6. For comparison,
the estimated AR(1) coefficient for GD P is only 0.33. The large p values are accompanied
by relatively small innovation variances o2.

Now consider the sample statistics of the extracted GD Py, series summarized in Table
1. As expected from the parameter estimates depicted in Figure 5, the GD Py, series are
robustly more serially correlated than GDPgr, GDP;, GDPr. More specifically, if we fit
an AR(1) model to GDP)y; we find that the shock persistence is roughly double that of
GDPg (p of roughly 0.60 for GDPy; vs. 0.30 for GDPg). Simultaneously, the estimated
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innovation variances of the GDP,; series are much smaller than those associated with the
raw data. This translates into much higher predictive R?’s for GDP);. Indeed GDP); is
twice as predictable as GDP; or GD Pr, which in turn are twice as predictable as GD Pg.
Table 1 also reveals that the various GD P, series are all less volatile than each of GD Pg,
GDP; and GD Py, and a bit more skewed left.

To appreciate these results, consider the 2-equation model with block-diagonal . A
straightforward analysis of the implied autocovariances implies that in population both
GDPgr and GDP; have to be more volatile than true GDP. Moreover, due to the pres-
ence of measurement errors that are independent of the GDP innovations, the first-order
autocorrelations of GD Py and GDP; always provide downward-biased estimates of p, the
autocorrelation of true GDP.

Once we allow for the measurement errors to be correlated with eg;, the volatility ranking

and the sign of the bias are ambiguous. We can express the first-order autocorrelation of

GDPg as

C GDPg,,GDPg, 1) = 19
orr( Ets Bi-1) = P V(GDE) + 202, + 0%, (19)

Thus the autocorrelation of GD Pg provides an upward-biased estimate of p if
Ot > 2045 + 0hp. (20)

Because the measurement error variance oy is always non-negative, an upward bias only
arises if GDP innovation and measurement error are negatively correlated and the mea-
surement error is small. Consider, for instance, the estimated 3-equation model. Although
625 < 0, the inequality (20) is not satisfied: 6% = —1.10 and 2625 + 6%, = 2.37. Thus,
we emphasize that the high serial correlation of GDP,; is not a spurious artifact of our
signal-extraction approach. In view of the flexibility of our measurement-error model, it is a
genuine empirical finding that is a reflection of estimated size of the measurement error and

its correlation with the innovation to true GDP.

4.3 On the Relative Contributions of GD Pg and GD P; to GD Py,

It is of interest to know how the observed indicators GDPgr and GDP; contribute to our
extracted true GDP. We do this in two ways, by examining the Kalman gains, and by
finding the convex combination of GD Pg and GD Py closest to our extracted GDP.

The Kalman gains associated with GD Pg and GD P; govern the amount by which news
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Figure 5: (p, 02) Pairs Across MCMC Draws
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Notes: Solid lines indicate 90% (UéG, p) posterior coverage ellipsoids for the various models. Stars indicate
posterior median values. The sample period is 1960Q1-2011.Q4. For comparison we show (o2, p) values
corresponding to AR(1) models fit to GDPg alone and GDP; alone.

about GDPg and GD Py, respectively, causes the optimal extraction of GDP; (conditional
on time-t information) to differ from the earlier optimal prediction of GDP, (conditional
on time-(¢ — 1) information). Put more simply, the Kalman gain of GDPg (resp. GDPry)
measures its importance in influencing G D P,;, and hence in informing our views about latent
true GDP.

We summarize the posterior distributions of Kalman gains in Figure 6. Posterior median
G D P; Kalman gains are large in absolute terms, and most notably, very large relative to those
for GDPg. Indeed posterior median GD P Kalman gains are zero in several specifications.
In any event, it is clear that GD P; plays a larger role in informing us about GD P than does
G D Pg. For our benchmark ¢-model with ¢ = 0.80, the posterior median GDP; and GD Pg
Kalman gains are 0.59 and 0.23, respectively.

The Kalman filter extractions average not only over space, but also over time. Nev-
ertheless, we can ask what contemporaneous convex combination of GDPr and GDPF;,
AGDPg + (1 — \)GDPy, is closest to the extracted GDPy. That is, we can find \* =
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Figure 6: (KGg, KG;) Pairs Across MCMC Draws
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Notes: Solid lines indicate 90% posterior coverage ellipsoids. Stars indicate posterior median values.

argminy L(\), where L()) is a loss function. Under quadratic loss we have

T
X = argminy » " [(AGDPpg + (1 — \)GDPy,) — GDPy],
t=1
where G D Pyy; is our smoothed extraction of true GDP,. Over our sample of 1960Q1-2011Q4,
the optimum under quadratic loss is A* = 0.29. The minimum is quite sharp, and it puts
more than twice as much weight on GDP; than on GDPg.'5 That weighting accords closely
with both the Kalman gain results discussed above and the forecast-combination calibration
results in Aruoba et al. (2012). It does not, of course, mean that time series of GD Py,
will “match” time series of GD Pp, because the Kalman filter does much more than simple

contemporaneous averaging of GD Py and GD Py in its extraction of latent true GDP.

15Gee appendix C.2.2 for a plot of the entire surface.
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5 Conclusions, Caveats, and Future Research

We produce several estimates of GDP that blend both GDPr and GDP;. All estimates
feature GDP; prominently, and our blended GDP estimate has properties quite different
from those of the “traditional” GDPg (as well as GDP;). In a sense we build on the
literature on “balancing” the national income accounts, which extends back almost as far as
national income accounting itself, as for example in Stone et al. (1942). We do not, however,
advocate that the U.S. publish only GDP,;, as there may at times be value in being able
to see the income and expenditure sides separately. But we would certainly advocate the
additional calculation of GDP); and using it as the benchmark GDP estimate.!®

A caveat is in order, however, as GD Py is released in less-timely fashion than G D Pg,
and moreover, early releases of GD P; may be inferior to corresponding releases of GDPg. A
key reason is the simple fact that it takes time for the tax returns underlying much of GD P;
to be filed and processed. Hence if one is interested in real-time tracking of real activity
(during the most-recent four quarters, say), GDP) is not likely to add much relative to
GDPg.'" On the other hand, whether one uses up-to-the-instant GDP data, as opposed
to up-to-a-year-ago data, is typically irrelevant to the research work for which we seek to
contribute a superior input.

Interesting extensions of our framework and methods are possible. Consider, for example,
forecasting. When forecasting a “traditional” G D P series such as GD Pg, we must take it as
given (i.e., we must ignore measurement error). The analogous procedure in our framework
would take GD P, as given, modeling and forecasting it directly, ignoring the fact that it is
only an estimate. Fortunately, however, in our framework we need not do that. Instead we
can estimate and forecast directly from the dynamic factor model, accounting for all sources
of uncertainty, which should translate into superior interval and density forecasts. Related,
it would be interesting to calculate directly the point, interval and density forecast functions

corresponding to our measurement-error model.

16The Federal Reserve Bank of Philadelphia recently began doing this; see their “GDPplus” series at
http://www.philadelphiafed.org/research-and-data/real-time-center/gdpplus/.

170f course one would surely also not want to use GDPg alone. Instead, for real-time analysis GDPg
should be blended with other higher-frequency (monthly, weekly) indicators as in Aruoba et al. (2009) and
Aruoba and Diebold (2010), implemented in real time by the Federal Reserve Bank of Philadelphia at http:
//www.philadelphiafed.org/research-and-data/real-time-center/business-conditions-index.
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Appendices

Here we report various details of theory, establishing identification results for the two- and

three-variable models in appendices A and B, respectively. The identification analysis is

based on Komunjer and Ng (2011).

A Identification in the Two-Equation Model

The constants in the state-space model can be identified from the means of GDPg; and

GDPy,. To simplify the subsequent exposition we now set the constant terms to zero:

GDP, = pGDP,_1+¢€a

GDP
Et _ GDP, + €pt
GDP[t €r¢
and the joint distribution of the errors is
€at Yga
€& = | € | ~ iidN(O, E), where X = | Yo
€1t Y1

|

EEE

EIE ZII

Using the notation in Komunjer and Ng (2011), we write the system as

St4r1 = A<8)8t+B(9)€t+1
Yerr = C(0)si + D(0)ersa,

where

GD Py,
GDPr

A0) = p. BO=]10 0]

s = GDP, y =

1 10

o
C@_[ 101

p

: D(9)=[

and 0 = [p,vech(X)')'. Note that only A(f) and C() are non-trivial functions of 6.
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Assumption 1 The parameter vector 6 satisfies the following conditions: (i) ¥ is positive
definite; (ii) 0 < p < 1.

Because the rows of D are linearly independent, Assumption 1(i) implies that DXD" is
non-singular. In turn, we deduce that Assumptions 1, 2, and 4-NS of Komunjer and Ng
(2011) are satisfied.

We now express the state-space system in terms of its innovation representation

Septjerr = A(0)sye + K(0)arq (A.6)
Y1 = C(0)5 +

where a;,, is the one-step-ahead forecast error of the system whose variance we denote by
Y,(0). The innovation representation is obtained from the Kalman filter as follows. Suppose

that conditional on time ¢ information Y;, the distribution of s:|Y1: ~ N(sy, Py¢). Then

) |

the joint distribution of [s;y1,y;, ] is

}/’I:TN(

In turn, the conditional distribution of s;41|Y7.441 is

ASt\t
CSt\t

AP A"+ BYB' AP,,C'+ BXD'
CPuA'+ DYXB" CPyC'+ DED'

Y

Se41|Yig1 ~ N(3t+1|t+17 Rﬁ+1|t+1)a
where

St+1|t+1 = A5t|t + (APWC' + BED/)(CEHC/ + DZD/)_I(yt — Cst\t)
Py = APyA' + BSB' — (AP,,C' + BED')(CP,,C' + DSD') N (CPyA' + DSB').

Now let P be the matrix that solves the Riccati equation,
P = APA' + BYB' — (APC' + BXD')(CPC’' + DXD')"*(CPA  + DLB'), (A7)
and let K be the Kalman gain matrix

K = (APC' + BXD')(CPC' + DX.D')~*. (A.8)
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Then the one-step-ahead forecast error matrix is given by
Y, =CPC' + DxD'. (A.9)

Equations (A.7) to (A.9) determine the matrices that appear in the innovation-representation
of the state-space system (A.6).

In order to be able to apply Proposition 1-NS of Komunjer and Ng (2011) we need to
express P, K, and X, in terms of . While solving Riccati equations analytically is in general
not feasible, our system is scalar, which simplifies the calculation considerably. Replacing A

by p and P by p such that scalars appear in lower case, and defining
Ypp = BXB', Ypp=BYXD', and Xpp=DXD,
we can write (A.7) as
p=pp’ +Xpp — (ppC" + Lpp)(pCC" + Xpp) ™! (ppC + Lpp). (A.10)

Likewise,
K= (ppC/+EBD)(pOC/+EDD)_1 and Za :pOC/—FEDD. (All)

Because Xpp — XppXhpXps > 0 we can deduce that p > 0. Moreover, because A = p > 0
and C' > 0, we deduce that K # 0 and therefore Assumption 5-NS of Komunjer and Ng
(2011) is satisfied. According to Proposition 1-NS in Komunjer and Ng (2011), two vectors

6 and 6, are observationally equivalent if and only if there exists a scalar v # 0 such that

A(6)) = FAO (A.12)
K(0,) = ~K(0) (A.13)
c) = CcOy! (A.14)
Sa(bh) = Xa(0). (A.15)

Define 0 = [p,vech(X)'] and 0; = [p1,vech(3,)']'. Using the definition of the scalar A(6)
in (A.5) we deduce from (A.12) that p; = p. Since C(#) depends on 6 only through p we can
deduce from (A.14) that v = 1. Thus, given 6 and p, the elements of the vector vech(3)
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have to satisfy conditions (A.13) and (A.15), which, using (A.11), can be rewritten as

Za = Zal :plcc"—i—ZDm <A16)
K = K1 = (plpC/ + EBDl)E;I. (Al?)

Moreover, p; has to solve the Riccati equation (A.10):
P =P+ Spp1 — Ko(pipC + Xpp). (A.18)

Equations (A.16) to (A.18) are satisfied if and only if

pCC/—i-ZDD = plccl—i-ZDDl (Alg)
ppC' +¥pp = pipC’' + ¥pp (A.20)
p(1—p") =g = pi(1—p*) —Spp. (A.21)

We proceed by deriving expressions for the ¥, matrices that appear in (A.19) to (A.21):

Ypp = Xaga
YBp = [ Yee +XcE Xac + Xar ]

Yae + X +2XEq :
Yoa +Xge +Xar +XEr Xae + X+ 2Xar

Without loss of generality let
Yec1 = Yae + (1= p°)d, (A.22)

which implies that
2331 = EBB + (1 - p2)5.

We now distinguish the cases § = 0 and § # 0.

Case 1: § = 0. (A.21) implies p; = p. It follows from (A.20) that Xpp; = Xpp. In
turn, Ygpr = Ygp and Yo = Ygr. Finally, to satisfy (A.19) it has to be the case that
Ypp1 = Ypp, which implies that the remaining elements of ¥ and ¥; are identical. We
conclude that 6; = 6.
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Case 2: § #0. (A.21) implies p; = p+ 9. Now consider (A.20):

ppC'+Xpp = PPQ[l 1]+[EGG+EGE EGG"‘EGI}
;pp2[1 1]+5,o2 11]
+[EGG+ZGE1 EGG"‘EGH]

+5(1—p2)[1 1:

We deduce that
ZGE'l - ZGE' - 5, EGII — EGI - (5 <A23)

Finally, consider (A.19), which can be rewritten as

0 = ZDDl - EDD + 600/

Using the previously derived expressions for X pp and ¥Xpp; we obtain the following three

conditions

0 = (1—p2)5—25+(2E11—EE])‘FPQCS:EEH—EE[—(S
0 = (1—p2)5—|—(2111—Z[I)—25+p2522111—211—5.

Thus, we deduce that
Ypp = Xpe+90, Xpn =Xpr+0, and X;n =X +0. (A.24)
Combining (A.22), (A.23), and (A.24) we find that

EGG+5(1—,02) Yge—0 Ygr—90
Yar—9 Ypr+90 Xi+9d

Thus, we have proved the following theorem:

Theorem A.1 Suppose Assumption 1 is satisfied. Then the two-variable model is
(i) identified if ¥ is diagonal as in section 2.1;
(1) identified if X2 is block-diagonal as in section 2.2;
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(iii) not identified if ¥ is unrestricted as in section 2.3;
(iv) identified if ¥ is restricted as in section 2.4.

B Identification in the Three-Equation Model

The identification analysis of the three-variable is similar to the analysis of the two-variable

model in the previous section. The system is given by

GDP, = pGDP, 1+ ey (A.26)
GD Pg, 1 €Et
GDP, | = |1 |GDP+ | e |, (A.27)
Ui A €Ut

and the joint distribution of the errors is

€t Yea
by by
€ = B z'idN(O, Z), ,  Where X = pe oBE
€1t Y Y X1
€Ut Yve Yvue Yur Yyu

where 0 = [p, \, vech(X)"]'.

Assumption 2 The parameter vector 0 satisfies the following conditions: (i) ¥ is positive
deﬁmte; (ZZ) 0< p < 1,' (ZZZ) A 7é 0, (ZU) Yur = 2yr = 0.

Condition (A.12) implies that p; = p. Moreover, (A.14) implies that v = 1 and that
A1 = A provided that p # 0. As for the two-variable model, we have to verify that (A.19)
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to (A.21) are satisfied. The matrices ¥, that appear in these equations are given by

X = Maa
YXp = | Lac+Xer Xce+Xar Alge+ Xau ]

Yoo+ XEE + 226k
Ypp = | Yge+ 26+ 261+ 261 oo+ X+ 28
Ao + Alee +Xar ABge + AZar + Xev M3ga + 2 36r + Zov

Without loss of generality, let
Yee1 = Saa + (1 — p?)d,

which implies that
Ypp1 =X+ (1 — p*)d.

Case 1: § = 0. (A.21) implies p; = p. It follows from (A.20) that Xpp1 = Xpp. In turn,
Yep1 = XaE, La11 = Sar, and ey = Yep. Finally, to satisfy (A.17) it has to be the case
that Xpp1 = Xpp, which implies that the remaining elements of > and ¥; are identical for
the two parameterizations. We conclude that it has to be the case that ¢; = 6.

Case 2: § #0. (A.21) implies p; = p+ 9. Now consider (A.20):

ppC'+Xpp = pﬂz[l 1 )\]+[EGG+ZGE Yaa + Xar )\EGG‘FZGU}
= pp2[1 1 )\]+5p2[1 1 )\}
+[ZGG+EGE,1 Yae + Xara AEGG"’ZGUJ}

+(1—p2)5[ 11 )\].
We deduce that
Yol =2XgE — 0, Xgri1 =2¢r —0, Xgui= 2cu —O.
Finally, consider (A.19), which can be rewritten as

0 == EDD,l - EDD + 500/
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Using the previously derived expressions for X pp and ¥ pp; we obtain the following five

conditions
0 = (1—p*)0+ (Zpp1 —Spr) — 20+ p*6 = Xpp1 — Spp — 0
0 = (1=p")5—20+ (Spn —Xpr) +p*6 =Spn — Xpr— 0
0 = 1=p)5+ i —2Su)—20+p0=Sn1 - —90
0 = M1=p)5—=A—86+Xp?0 =46
0 = MN(1—p*6—2) + (Spv1 — Zow) + A% = Zppt — S — M2 — M.

Thus, we deduce that
0=0, ,Ygm =2%Xpp, Xen=22pr, 2m =, and Xyy =Xyy.

This proves the following theorem:

Theorem B.1 Suppose Assumption 2 is satisfied. Then the three-variable model is identi-
fied.
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C Online Appendix (For Web Publication Only)

C.1 Details of Bayesian Estimation

Here we describe Bayesian analysis of our three-equation model, which of course also includes
our various two-equation models as special cases. Bayesian estimation involves parameter
estimation and latent state smoothing. First, we generate draws from the posterior distribu-
tion of the model parameters using a Random-Walk Metropolis-Hastings algorithm. Next,
we apply a simulation smoother as described in Durbin and Koopman (2001) to obtain draws

of the latent states conditional on the parameters.

C.1.1 State-Space Representation

We proceed by introducing a state-space representation of (8) for estimation. Let y, =
[GDPEt7 GDPH7 Ut]/a C = [07 07 K’]/a St = [GDPta €FRt, €Ity 6Ut]/7 D = [M(l - p)7 07 Oa O}/ , € =

"and
[EGta €Et, €It EUt] an

p 0 0 O

1 1.0 0 00 0 0

Z=11 01 0], &=

0 0 0 0

A0 0 1
0 0 0 0

Our state-space model is
y=C+Zs (A.28)

s =D+ ®sy 1 +¢€, €~ N(0O,Q).

: O 2 2 2 2 2 2 2 9
We collect the parameters in (A.28) in © = (14, P, 0&cs G Oers Ohms Okrs 011 Ocs Ol Ky A)-

C.1.2 Metropolis-Hastings MCMC Algorithm

Now let us proceed to our implementation of the Metropolis-Hastings MCMC Algorithm.
Denote the number of MCMC draws by N. We first maximize the posterior density

p(O[Y1r) o p(Yi.r|O©)p(©) (A.29)

to obtain the mode ©Y and construct a covariance matrix for the proposal density, Xg, from

the inverse Hessian of the log posterior density evaluated at ©°. We also use ©° to initialize
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the algorithm. At each iteration j we draw a proposed parameter vector ©* ~ N (071 ¢Xg),
where ¢ is a scalar tuning parameter that we calibrate to achieve an acceptance rate of 25-
30%. We accept the proposed parameter vector, that is, we set ©/ = ©*, with probability
min {1, p&f?gﬁj;i Egjil)}, and set © = ©77! otherwise. We adopt the convention that
p(©*) = 0 if the covariance matrix € implied by ©* is not positive definite. The results

reported subsequently are based on N = 50,000 iterations of the algorithm. We discard
the first 25,000 draws and use the remaining draws to compute summary statistics for the

posterior distribution.

C.1.3 Filtering and Smoothing

The evaluation of the likelihood function p(Y7.7|©) requires the use of the Kalman filter.

The Kalman filter recursions take the following form. Suppose that
3t71|(Y'1:t71a @) ~ N(Stfl\tfla Ptfl\tfl)a (A-30)

where s;,_1;—1 and P,_;;;—; are the mean and variance of the latent state at ¢ — 1. Then the

means and variances of the predictive densities p(s;|Y1.4—1,©) and p(y;|Y14_1,©) are

Sip—1 = D+ Ps_qp1, Py = PP+ Q
Y1 = CH+Zsy1, Fiyo1=ZPp 2,

respectively. The contribution of observation y, to the likelihood function p(Y;.7|©) is given

by p(y¢|Y1.t—1,©). Finally, the updating equations are

Sttt = Stjt—1 + (ZPt\t—l)/P;ﬁl_l (?Jt - @t|t—1)
Py = Piy1— (ZPy1) (ZPpurZ') N ZPy—r),

leading to
st (Y1, ©) ~ N(sue, Pupe)- (A.31)

We initialize the Kalman filter by drawing sg|o from a mean-zero Gaussian stationary distri-

bution whose covariance matrix, Py, is the solution of the underlying Ricatti equation.
Because we are interested in inference for the latent G D P, we use the backward-smoothing

algorithm of Carter and Kohn (1994) to generate draws recursively from s;|(Si1.7, Yi.7, ©),

t=T—1,T—2,...,1, where the last iteration of the Kalman filter recursion provides the
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initialization for the backward simulation smoother,

8t|t+1 = 3t|t + Pt|tq)lpt;_11|t (StJrl — D — (I)St|t) <A32)

Pt|t+1 = Pt|t - Pt|tq)/Pt:_11‘t(PPt\t
draw 3t|<5t+1:T7 Yir, @) ~ N(St\tJrla Pt|t+1)>

t=T—-1,T—-2,..,1.

C.2 Additional Empirical Results
C.2.1 The “Optimal” ¢

We can use the Frobenius matrix norm to measure divergence between i( from our 2-equation
model and 35 from our 3-equation model. In Figure 7 we show divergence as a function of

(. We obtain an optimum of (* = 0.82. The minimum is sharp and unique.

Figure 7: Divergence Between f]c and Y

0.7 0.75 0.8 I 0.85 0.9 0.95 1

Notes: We show the Frobenius-norm divergence D(() between f)g and ig as a function of (. The optimum
is ( = 0.82.

C.2.2 The Convex Combination of GDPgr and GD P; Closest to GD Py,

We show quadratic loss, L(A) = 300004 [(AGDPg; + (1 — \)GDPy) — GDPyy]?, as a
function of A, where where GGD P, is our smoothed extraction of true GD P;, obtained from

the 3-equation model.
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Figure 8: Closest Convex Combination
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C.2.3 Non-Linear GDP Dynamics

In Table 4 we show Markov-switching AR(1) model results for a variety of GDP series. The
model allows for simultaneous switching in both mean and serial-correlation parameters.
The model switches between high- and low-growth states, with low-growth states generally
including recessions as defined by the National Bureau of Economic Research’s Business
Cycle Dating Committee (see also Nalewaik (2012)). The most interesting aspect of the
results concerns the estimated low- and high-state serial-correlation parameters (po and py,
respectively).

First, always and everywhere, py > pi; that is, a disproportionate share of overall se-
rial correlation comes from low-growth states. This interesting result parallels recent work
indicating that a disproportionate share of stock market return predictability comes from
recessions (Rapach et al. (2010)), as well as work showing that shocks to business orders for
capital goods are more persistent in downturns (Nalewaik and Pinto (2012)).

Second, comparison of GDP; to GD Pg reveals that they have identical po values (0.55),
but that p; is much bigger for GDP; than for GDPg (0.31 vs. 0.14). Hence the stronger
overall serial correlation of GDP; comes entirely from its stronger serial correlation during
expansions.

Finally, comparison of GD Py, to GD Pg reveals much bigger py and p; values for GD Py,
than for GD Pg, regardless of the particular measurement-error model M examined. The
general finding of pg > p; is preserved, but both py and p; are much larger for G D Py, than for
GDPg. In our benchmark 2-equation model with ¢ = 0.80, for example, we have pg = 0.78
and p; = 0.55.
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Table 4: Regime-Switching Model Estimates, 1960Q1-2011Q4

flo [ po P Oy 6L P Pu
GDPg 1.31 471 055 0.14 16.55 4.81 0.81 0.88
GDP; 128 487 055 0.31 1207 551 082 0.87

GDPy; 2-eqn, X diag 1.76 5.12 0.73 041 9.81 3.37 0.83 0.85
GDPy; 2-eqn, X block  1.75 4.72 0.83 0.63 6.22 241 0.81 0.86
GDPy 2-eqn, ¢ =0.80 1.79 495 0.78 0.55 7.96 3.04 0.82 0.85
GDP)y; 3-eqn 1.88 5.32 088 039 7.8 295 0.80 0.85

GDPr 1.51 493 0.64 0.30 13.20 4.17 082 0.87

Notes: In the top panel we show posterior median estimates for two-state regime-switching AR(1) models
fit to raw data. In the middle panel we show posterior median estimates for Regime-switching models fit to
GDPy;. In the bottom panel we show posterior median estimates for regime-switching models fit to GD P,
the forecast-error-based estimate of true GDP produced by Aruoba et al. (2012). We allow for a one-time
structural break in volatility in 1984 (the “Great Moderation”).

C.2.4 Comparative Maximum Likelihood Estimates

Here we show some MLE point estimates of the 2- and 3-equation model parameters, for
comparison to the Bayesian point estimates. The qualitative results are identical: large p,

2 2
and ogp > 07;.

2-equation 2-equation 2-equation 2-equation 3-equation
¢=0.75 ¢ =0.80 ¢ =0.85 ¢=0.90

I 3.0559 3.0559 3.0559 3.0559 3.01
p 0.557 0.557 0.557 0.557 0.67
0a 6.3138 6.7347 7.1555 7.5765 3.83
oty 4.5332 5.1435 5.7539 6.3641 4.92
o2, 1.4599 2.0701 2.6806 3.2908 3.49
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